
Unshaken by Weak Embedding:
Robust Probabilistic Watermarking for

Dataset Copyright Protection
Shang Wang∗, Tianqing Zhu†B, Dayong Ye†, Hua Ma‡, Bo Liu∗, Ming Ding‡, Shengfang Zhai§, Yansong Gao¶B

∗University of Technology Sydney, Australia. Email: shang.wang-1@student.uts.edu.au; bo.liu@uts.edu.au
†City University of Macau, Macau SAR, China. Email: tqzhu@cityu.edu.mo; dayongye@outlook.com

‡Data61, CSIRO, Australia. Email: mary.ma@data61.csiro.au; ming.ding@data61.csiro.au
§National University of Singapore, Singapore. Email: shengfang.zhai@nus.edu.sg

¶School of Cyber Science and Engineering, Southeast University, China. Email: gao.yansong@hotmail.com
T. Zhu and Y. Gao are the corresponding authors.

analytics and AI, where data is a critical determinant of model
performance, particularly in the training of large language
models (LLMs) [3], [4]. However, acquiring high-quality
data is non-trivial, requiring significant effort to collect and
annotate it. Given that certain dataset acquisition involves
domain expertise and data regulations, it is practical for model
providers to purchase needed data from professional data
curator, such as brokerage companies like Appen [5] and
Scale AI [6], rather than individual contributors. For example,
clickworkers as data contributors can simply download the
Clickworker app [7], make a contribution and earn money from
it. In this business Data as a Service (DaaS) scenario, data
contributors are informed by the data curator about data usage
and are compensated per order requested by model providers,
as illustrated in Figure 1.

Unfortunately, as the central entity in the DaaS scenario,
the data curator may exploit legitimate business processes to
maximize its financial gains. Specifically, while continuing to
charge the model provider for data usage, the data curator may
withhold payments from data contributors and does not inform
them of such transactions. Such misconduct not only compro-
mises the interests of data contributors but also amplifies the
risks of data misuse. Therefore, contributors must safeguard
their copyrights to prevent the curator’s unauthorized use.
State-of-The-Art. Unlike model copyright protection [8]–
[12], which has been extensively studied, dataset copyright
protection relies on black-box access without training control,
and only a few works have explored dataset ownership veri-
fication (DOV). These methods seek to determine whether a
suspicious model was trained on a given dataset, using either
intrusive or non-intrusive approaches [13]. For non-intrusive
DOV, methods typically extract unique characteristics from
contributed datasets as fingerprints. Examples include Deep-
Taster [14] and dataset-level membership inference [15]–[17].
However, they require access to model architectures or meticu-
lously crafted auxiliary datasets, which remain key limitations
in DaaS scenarios. As for intrusive DOV, watermarking
methods are leveraged. They embed identifiable signals into

Abstract—In modern Data-as-a-Service (DaaS) ecosystems,
data curators such as data brokerage companies aggregate high-
quality data from many contributors and monetize it for deep
learning model providers. However, malicious curators can sell
valuable data but not inform their original contributors, which
violates individual benefits and the law. Intrusive watermarking is
one of the state-of-the-art (SOTA) techniques for protecting data
copyright, and it detects whether a suspicious model carries the
predefined pattern. However, these approaches face numerous
limitations: struggle to work under low watermark injection rates
(≤ 1.0%); performance degradation; false positives; not robust
against watermarking cleansing.

This work proposes an innovative intrusive watermarking ap-
proach, dubbed DIP (Data Intelligence Probabilistic Watermark-
ing), to support dataset ownership verification while addressing
the limitations above. It applies a distribution-aware sample se-
lection algorithm, embeds probabilistic associations between wa-
termarked samples and multiple outputs, and adopts a two-fold
verification f ramework t hat l everages b oth i nference results and
their distribution as watermark signals. Extensive experiments
on 4 image and 5 text datasets demonstrate that DIP maintains
the model’s performance, and achieves an average watermark
success rate of 89.4% at a 1% injection budget. We further
validate that DIP is orthogonal to various watermarked data
designs and can seamlessly integrate their strengths. Moreover,
DIP proves effective across diverse modalities (image and text)
and tasks (regression), with strong performance on generation
tasks in large language models. DIP exhibits robustness against
various adversarial environments, including 3 based on data
augmentation, 3 on data cleansing, 4 on robust training and 3
on collusion-based watermark removal, while existing SOTAs fail.
The source code is released at https://github.com/SixLab6/DIP.

I. INTRODUCTION

Data are an essential component of artificial intelligence
(AI) systems. In 2022, data-centric AI [1] was recognized
by Gartner [2] as one of the key emerging trends in data

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241356
www.ndss-symposium.org

https://github.com/SixLab6/DIP

Data contributors

Authorize

 Pay

Data curator

Sell

 Pay

Model providers

(Adversary)(Victim) (Innocent)

Classification

Generation

Data contributor Contributed set Suspicious Model

Has Ownership

No Ownership

Figure 1: The top panel illustrates the Data as a Service
(DaaS), where the data curator outsources data generation and
annotation to data contributors and monetizes the data for
different model providers. The bottom panel depicts dataset
ownership verification against unauthorized use.

Table I: Summary of representative intrusive watermarking
works. A fuller circle is more desirable. At the line modality,
I = image, T = text; at the line task, C = classification, R =
regression, G = generation.

Style
Transformation [18]

Radioactive Data Backdoor-enabled

DW [19] Data
Taggants [20] DVBW [22] CBW [23] UBW [21] Function-

-Marker [24] DIP

Low Watermarking
Injection Rate (RM1)

Resilience to
Adversarial

Environment (RM2)
Non-harmful
Utility (RM3)

No False
Positive (RM4)

Modality I I I I, T I, T I T I, T
Task C C C C C C G C, R, G

the contributed dataset through data modification techniques
such as style transformations [18], radioactive data [19], [20],
and backdoors [21]–[23]. A model trained on the watermarked
dataset will exhibit predetermined behaviors on watermarked
inputs. Their key advantages include black-box accessibility
and resilience to fine-tuning [13], which make them well-
suited for DaaS scenarios.
Limitations of Intrusive Watermarking. Despite their
promise [13], existing methods exhibit notable limitations in
practical DaaS scenarios. First, all existing approaches strug-
gle to embed strong watermarks under low watermark injection
rates, making watermarked samples unlikely to activate the
predefined predictions and thus unreliable for DOV. Second,
their robustness remains insufficiently examined, raising con-
cerns about reliability when malicious data curators employ
adversarial countermeasures. Third, style transformation and
radioactive data approaches degraded model performance [13],
and the untargeted watermarking [21] faces high false pos-
itives. Finally, all approaches are restricted to classification
tasks, and most focus exclusively on the image modality.
Requirements & Desirable Properties. Practical and robust
watermarking must address these limitations and satisfy the
following requirements (RMs). • RM1: Low Watermark In-
jection Rate. Minimal injection rate (≤ 1%) to avoid sus-
picion [25] while still supporting DOV. • RM2: Robust to
Adversarial Environment. Resistant to overlooked countermea-
sures, such as augmentation, cleansing and robust training. •

RM3: Non-harmful Utility. No degradation of primary task
performance. • RM4: Low False Positive. Watermarks should
only be extracted from watermarked models. • Desirable
Property: Task-Agnostic. While not a mandatory RM, it is
desirable, as existing works focus on classification, leaving
other tasks (e.g., regression, generation) unaddressed.
Challenge and Solution. Table I indicates that no water-
marking studies can satisfy all the above requirements &
property. This motivates our data intelligence probabilistic
watermarking (DIP) design, to address them. Specifically, we
categorize these requirements into three core challenges that
DIP must overcome.
•Challenge 1: Addressing RM1&3. Low injection budgets
exacerbate weak watermark signals, particularly in approaches
with complex mappings. DIP addresses this limitation via an
effective probabilistic mapping that reduces dependence on
injection budget while preserving the original data distribution,
thus maintaining model utility. Furthermore, following Shao et
al. [26], intrusive watermarking often relies on 0-bit signals—
the presence or absence of predefined behaviors—for DOV.
DIP enhances robustness through a two-fold verification that
leverages prediction distributions on watermarked samples as
auxiliary evidence, reducing the need for high injection rates.
•Challenge 2: Addressing RM2. Adversarial environments
may weaken or remove watermarks, preventing the expected
behaviors on watermarked samples. DIP mitigates this by
breaking the deterministic feature mapping assumed in exist-
ing countermeasures: its probabilistic pattern associates water-
marked samples with multiple features, preserving robustness
where most backdoor-based approaches fail (Section VI-B).
•Challenge 3: Addressing RM4. DIP ensures high specificity
by using multiple target outputs and a predefined distribution
as verification signals, enabling reliable detection exclusively
on watermarked inputs and thus satisfying RM4.

Overall, DIP embeds a probabilistic watermark by slightly
modifying the training data. Models trained on it produce
specific prediction distributions (e.g., 30% class A, 70% class
B) over watermarked samples. Then, DIP performs DOV
through a two-fold verification method, using both predictions
and their distribution as signals.
Contribution. Our main contributions are as follows.
• We propose DIP, a probabilistic watermarking framework
for DOV that satisfies the above requirements and property.
It integrates distribution-aware sample selection, probabilistic
watermark injection, and two-fold verification, achieving ro-
bust and reliable ownership verification.
• Under low injection rates, we evaluate DIP on 4 image and
5 text datasets. Experiments show DIP preserves model utility,
achieves an 89.4% watermark success rate. It remains robust
against 13 adversarial settings, including 3 based on data
augmentation, 3 on data cleansing, 4 on robust training and 3
on collusion-based watermark removal. Across these settings,
DIP significantly outperforms SOTA intrusive approaches.
• We confirm the generalization of DIP. First, it is orthogonal
to various watermarked data designs, such as dynamic trigger
and OOD data. Second, DIP extends to non-classification

2

tasks, including generation in the context of LLMs and re-
gression. To our knowledge, prior DOV approaches rarely
generalize beyond the classification setting, whereas DIP does.

II. RELATED WORK

A. Intrusive Data Copyright Protection

As the main means of DOV, intrusive watermarking ap-
proaches apply data poisoning techniques. They generate wa-
termarked samples using specific transformations (e.g., style,
radioactive data, backdoors), and associate these samples with
the predefined outputs. Models trained on such data produce
expected predictions over watermarked inputs, enabling own-
ership verification through hypothesis testing.

For style transformations, Zou et al. [18] converted the
original images from RGB to YIQ space and embedded
watermarks through hue rotation, preserving semantic content.
DOV compares losses on original and watermarked samples,
with minimized loss indicating training on watermarked data.

For radioactive data approaches, Guo et al. [19] employed a
hardly-generalized domain for the original dataset to generate
watermarked data, that is DW. Models trained on the dataset
containing domain-specific samples can correctly classify the
modified inputs specified by the data owner. Bouaziz et al. [20]
proposed Data Taggants, which uses randomly generated
OOD samples paired with random labels as signature keys.
By applying clean-label data poisoning [23], these keys are
embedded into a small subset of the dataset, enabling any
model trained on the signed data to predict the designated
labels when queried with the OOD keys.

For backdoor-enabled watermarking, Li et al. introduced
DVBW, which applies a simple trigger (a small patch) to
induce a single-target backdoor. Injecting a few such samples
embeds the watermark, forcing trained models to classify
triggered inputs as the target label. Watermark injection can
be performed under either dirty-label or clean-label settings.
Tang et al. [23] proposed a similar clean-label approach, de-
noted CBW. Li et al. further presented an untargeted backdoor
watermark [21] (UBW), which averages the model’s prediction
probability of each class conditioned on the watermarked
images. For text generation tasks, FunctionMarker [24]
constructs a set of function-specific knowledge, comprising
custom function names and their corresponding expressions.
An LLM trained on this watermarked corpus will produce
the predefined function expressions when queried with these
function names, thereby enabling watermark extraction.

B. Non-intrusive Data Copyright Protection

Unlike intrusive approaches, non-intrusive dataset protec-
tion avoids modifying the original data and instead identifies
inherent fingerprints or leverages unique characteristics—often
with the help of an auxiliary dataset—for DOV.
DeepTaster [14] trains a one-class meta-classifier using

adversarial spectrum images derived from multiple architec-
tures trained on the protected dataset. In addition, several
studies [15], [16] explore dataset-level membership inference.
For instance, Maini et al. [15] estimate the distance of multiple

data points to the decision boundary, implementing copyright
claims. Dong et al. [27] observed that similar model outputs
on certain inputs indicate shared training data. To quantify this,
they simulate varying overlap ratios by constructing controlled
subsets of the protected dataset and training shadow models. A
lookup table is then built to map output differences to dataset
overlap levels.

C. Limitations for Practical DaaS Scenarios

In practical DaaS scenarios, dataset protection approaches
must satisfy RM1-RM4, which are essential for ensuring
the effectiveness and robustness of watermarking. For non-
intrusive protection, DeepTaster requires access to model
architectures to train a meta-classifier, which is often not
held. With non-overlapping datasets and independently trained
models, dataset-level inference approaches often falsely signal
dataset theft [28]. As reported in [13], several non-intrusive
approaches also rely on intermediate representations, limiting
their applicability under black-box verification. For intrusive
protection, the style transformation-based approach and DW
leverage complex OOD features as watermarks. However,
these features demand a high injection rate to be learned,
which may alter the original dataset distribution and degrade
performance on the main task (violating RM1 &3). In black-
box settings, the radioactive data approach relies on model
extraction to obtain a distilled version of the suspicious model.
However, this process is query-intensive and impractical at
scale. In backdoor-enabled watermarking, single-target back-
doors are easily removed by various adversarial environments,
such as ABL [29], and ASSET [30] (violating RM2). Although
untargeted backdoors exhibit stronger robustness, they are
complex and require high injection rates. Moreover, poorly
performing innocent models may unintentionally produce un-
targeted predictions on watermarked samples, leading to false
positives (violating RM1&4).

III. PRELIMINARIES

A. Threat Model

As depicted in Figure 1, the modern DaaS ecosystem
consists of three participants: data contributors, data cura-
tors, and model providers. Data contributors possess valuable
data and expect monetary compensation. They authorize their
data usage only when they are informed and paid by the
curator on a per model basis. The data curator aggregates
contributions from many data contributors and supplies the
resulting dataset to model providers, who leverage it to train
and deploy models. Model providers submit requests to the
curator with a data usage specification and payment, and the
curator profits from the margin between provider payments
and contributor compensation. We assume a malicious data
curator who seeks to maximize financial gain by withholding
payments from contributors while continuing to charge model
providers. In this case, the contributors’ data is used without
their authorization, and their goal is to verify whether its
dataset copyright has been infringed in the provider’s model.
Under this DaaS scenario, the data curator is the adversary

3

and the data contributor is the defender. We describe the
capabilities and goals of each participant below.
• The Data Contributor sells valuable collected data to
the data curator in exchange for compensation, but has no
knowledge of the model architecture or training procedures
used by the model provider. As the victim of data misuse, the
contributor aims to determine whether a model has utilized its
data without authorization. In this case, the data contributor
can only modify a small subset of the provided samples to
embed a watermark before selling them to the data curator, and
later trace data copyright by black-box querying suspicious
models with the watermarked samples.
• The Data Curator is assumed to be malicious, seeking to
maximize monetary gain without informing the data contribu-
tor, even after charging the model provider for the contributor’s
data. In this context, the data curator aims to perform a once-
off scrutinization and filtering process to disable watermark
injection, ensuring that the commercialized model remains
untraceable through the contributor’s watermarked samples.
• The Model Provider adheres to standard business practices
by remunerating the data curator for data usage, and relies on
the curator to inform data contributors and handle compen-
sation. The model provider then performs standard processes,
such as data augmentation and robust training, to develop a
high-performing model and releases it for commercial pur-
poses. The model provides an API to return hard labels or
confidence vectors in classification tasks, and tokens or logits
in generation tasks.

Beyond the standard threat model, we also consider a
stronger scenario, where the malicious data curator and model
provider collude to remove the watermark from the con-
tributor’s dataset. In this scenario, the colluding adversaries
can access the training dataset and fully control the training
process. This leads to three advanced adversarial settings:
adaptive attacks, collusion attacks, and model provider-specific
attacks. We thoroughly analyze DIP’s robustness under these
settings in Section VII-B.

B. Problem Statement

In the business DaaS scenario, a watermark injection rate
as low as 1% is reasonable, as it avoids raising suspicion
from the data curator and allows contributors to plausibly
claim that the few watermarked samples are merely noise.
However, existing intrusive watermarking studies typically
evaluate injection rates well above 1%. Furthermore, com-
mon practices such as data augmentation, data cleansing,
and robust training, routinely applied by curators and model
providers, may substantially weaken or even remove dataset
watermarks [18], [21]–[23]. We take a classification task as an
example to demonstrate the intrusive watermarking problem in
practical DaaS scenarios.

Let D = {(xi, yi)}Ni=1 denote the original dataset. Wa-
termarked data generation is defined by how the watermark
feature is embedded into a sample (x, y). This process is
formulated as a pair of transformations, G(·) on the data
and T(·) on the label, producing a watermarked sample

(G(x).T(y)). The data transformation G(·) draws inspiration
from trigger designs in backdoor attacks, including invisi-
ble, semantic, and OOD triggers. A random subset of D
is selected, that is Dsel, to construct the watermarked set
Dwm = {(G(xi),T(yi))|(xi, yi) ∈ Dsel}. The remaining
samples keeps unchanged, that is, Dremain = D \ Dsel. The
watermark injection can be defined as follows:

|Dwm|
|D|

≤ 0.01,∣∣Acc(f(θ;D))− Acc(f(θ;Dwm ∪ Dremain))
∣∣ ≤ ϵ.

(1)

Where the proportion of Dwm is constrained to be less than
1% of the original dataset, set to satisfy RM1. ϵ denotes
the maximum tolerable accuracy degradation, and it is a
sufficiently small value to ensure compliance with RM3. Then,
the watermark verification can be defined as follows:Verify(f(θ;D);Xwm) = False,

Verify(f(θ;Dwm ∪ Dremain;A);Xwm) = True.
(2)

Where A denotes three standard adversarial environments, that
is A = {Aaug,Aclean,Arobust}, set to satisfy RM2. Xwm is a
set of watermarked inputs. Verify(·) represents a hypothesis
testing procedure that returns true if and only if the model is
watermarked, ensuring compliance with RM4.

IV. DATA INTELLIGENCE PROBABILISTIC WATERMARKING

A. Overview

To prevent unauthorized data usage, we propose data
intelligence probabilistic watermarking (DIP) for DOV. DIP
is designed to satisfy the four key requirements. Its core idea
is to probabilistically watermark a small fraction of the con-
tributor’s dataset prior to release, enabling reliable DOV while
preserving model utility. As shown in Figure 2, DIP comprises
three components. 1⃝Distribution-aware Sample Selection:
It ensures that the model can accurately learn the predefined
probabilistic patterns. 2⃝Probabilistic Watermark Injection:
It focuses on label transformation, associating watermarked
features with multiple target outputs in a probabilistic manner.
This streamlined design avoids high injection rates while
breaking adversarial assumptions that the watermark corre-
sponds to a fixed output. 3⃝Watermark Verification: Upon
the release of the model API, two-fold verification—based on
predicted labels of watermarked inputs and their distribution
proportion—ensures robust DOV even under weak watermarks
from low injection rates and adversarial environments.

Depending on the API response, hard labels or confi-
dence vectors, the watermarking mode is set to label-only
or confidence-available. The former is more practical but
challenging due to limited information, whereas the latter
is easier for verification but depends on whether the con-
tributor has access to confidence outputs. Accordingly, we
develop DIPhard and DIPsoft. In general, DIPhard supports
label-only verification by producing target labels with certain
probabilities, while DIPsoft enables stealthier confidence-based
verification without altering the model’s hard-label outputs.

4

Watermarked Data

Watermarked Data

60% Data

Label: A

20% Data

Label: B

20% Data

Label: C

Different Samples

1% of

training

samples

Watermarked Set

Distribution-aware Sample Selection

Target Label: A, B, C Distribution Proportion: 3:1:1

Mix

Contributed Dataset

Mix

Contributed Dataset

Target Label: A Expected Confidence: 0.2

Similar Samples

Label: A Label: Ground-Truth

Sample Selection Watermark Injection

...

m Watermarked Samples

Not From A, B, C

Watermark Verification

Theft

Innocent

[A, B, C]

[A:B:C= 3:1:1]

OR

[Other]

Hypothesis

Testing

Two-fold Verification

...

m Watermarked Samples

Not From A

Theft

Innocent

[0, 0.2, 0.7, ..., 0]

A Ground-Truth

[0, 0, 0.99, ..., 0]

Hypothesis

Testing

Figure 2: The framework of DIP, containing sample selection, watermark injection and verification.

B. Distribution-aware Sample Selection
Regardless of DIPhard or DIPsoft variant, a subset of training

samples must be selected to construct watermarked data.
However, random sampling may cause distribution imbalance,
preventing the model from learning probabilistic patterns
embedded in the watermarked dataset. To address this, we
propose a distribution-aware sample selection algorithm that
uniformly selects N data points from the training set.

The selection process is guided by two objectives: (1) max-
imizing pairwise distances among selected samples to ensure
diversity, and (2) minimizing the distributional discrepancy
between the selected subset and the original dataset to ensure
consistency. The selection is formulated as:

arg max
Dsel⊂Dtrain
|Dsel|=M

[
λ

∑
xi,xj∈Dsel

i<j

d(xi, xj)− (1− λ)

∥∥∥∥ 1

M

∑
x∈Dsel

ϕ(x)

− 1

N

∑
x∈Dtrain

ϕ(x)

∥∥∥∥2].
(3)

Where ϕ(x) denotes the feature embedding of sample x,
d(·, ·) is a distance function (e.g., Euclidean distance), and
λ serves as a trade-off parameter balancing the two objec-
tives. To approximate Equation 3, we employ a clustering-
based heuristic strategy, as detailed in Appendix A-E. Feature
embeddings of all training samples are first extracted using a
public pre-trained models, VGG-16 [31] for images and BERT-
base [22] for text. K-means clustering with K = M is then
performed on the embeddings, and the sample closest to each
centroid is selected. This produces a subset that preserves both
diversity and distributional similarity. Based on Dsel, DIPhard
and DIPsoft subsequently construct the watermarked data.

C. Hard-Label Probabilistic Watermarking
As shown in Figure 2, DIPhard consists of two steps:

injection and verification. The verification of DIPhard requires
only hard labels from the suspicious model.

•Watermark Injection. The contributor randomly selects mul-
tiple classes (e.g., B) as target labels. For clarity, we take

B = 2 and choose ith and jth classes as targets, assigning
probabilities pi and pj such that pi + pj = 1. In other
words, the watermarked model f(θh;) will output label i and j
according to proportions of pi and pj , when given watermark-
carrying samples G(Xtest). It can be formulated as follows:

 pi = Pr(f(θh;G(Xtest)) = i),

pj = Pr(f(θh;G(Xtest)) = j),

s.t. θh = argmin
θ

∑
(xi,yi)∈Dwm∪Dremain

(f(θ;xi)− yi)
2.

(4)

Where Pr(·) can calculate the label proportion. To achieve
this aim, DIPhard constructs watermarked samples according
to the probability setting. The contributor leverages the sample
selection algorithm to obtain Dsel with a q% watermarking
budget, then applies a secret watermark design G(·) (like the
trigger in backdoor attacks) to embed triggers into all selected
samples, producing Dwm. The watermark design can take var-
ious forms, such as a digital patch, physical pattern, dynamic
transformation, or OOD feature. As detailed in Sections V
and VI-B, a complex form improves the model’s ability to
learn the probabilistic pattern. Next, the contributor selects a
pi fraction of samples from Dwm and relabels them as i, with
the remaining samples assigned label j. To this end, it creates
a new dataset, containing normal samples and watermarked
samples, which are ready for submission to the data curator.
•Watermark Verification. Given a suspicious model S, the
contributor can check whether it shows the expected proba-
bilistic behavior on watermark-carrying samples. Specifically,
the contributor collects some testing samples not from the
target labels and leverages the secret design G(·) to generate
a testing watermarked set Xwm

test , and queries S with these
samples. The returned labels Ltwm = {S(x)|x ∈ Xwm

test }
carry two kinds of watermarking information: the hard label
from each query, and the overall label distribution across all
queries. Even with weak watermarks due to low injection rates
and adversarial environments, DIPhard enables reliable DOV

5

based on either hard labels or their distribution. As detailed in
Algorithm 1, DIPhard adopts a two-fold verification method.

(1) For the hard-label information, S can be treated as
trained on the contributed dataset if Ltwm only contains the
target labels (i and j). This verification can be formulated as:

Proposition 1: Suppose L = S(x) is the returned label
of x responded by the suspicious model S, Lt is the list of
target labels, x is a normal testing sample not from Lt and
T(x) is its watermarked version. Given the null hypothesis
H0 : S(G(x)) /∈ Lt, we can claim that S was trained on the
contributed dataset if and only if H0 is rejected.

Per verification, we craft m watermark-carrying samples.
Then, the Wilcoxon-test can compute a P -value for hypothesis
testing according to multiple queries. To ensure reliability,
we report each P -value through averaging six runs. The null
hypothesis H0 is rejected if the P -value is less than the
significance level α (i.e., α = 0.05) [32], supporting that S
has infringed the dataset copyright.

(2) For the probability information, the contributor com-
putes the label distribution of Ltwm. If the distribution is close
to the predefined pi and pj—proportions of ith and jth labels,
this indicates that S is trained on the contributed dataset. The
verification is formulated as:

Proposition 2: Suppose L = S(x) is the returned label
of x responds by the suspected model S, Lt = {i, j} is
the list of target labels, P = [p0, ..., pN−1] is the predefined
probability distribution where pk = 0 (i.e., k ̸= i and
k ̸= j), X is a set of normal samples not from Lt and
G(X) is its watermarked version. Given the null hypothesis
H0 : Similarity(S(G(X)),P) < ξ, we can claim that S was
trained on the contributed dataset if and only if H0 is rejected.

Per verification, we record the label distribution of m
queries. A randomization test [33] is used to assess whether
S(G(X)) could occur by chance, by repeatedly shuffling the
data. The final P -value is averaged over six runs, and a result
of P < 0.05 indicates that S infringes the dataset copyright.

Algorithm 1 Two-fold Verification

Input: Normal testing dataset D = {(xk, yk)}Rk=1, Suspicious
model S, Sampling number m, Watermark Injection G, list
of target labels Lt, target probability P, Alternative hypothesis
(label) H1, Alternative hypothesis (distribution) H ′

1

Output: DOV result
1: Sample a subset Xtest = {xk | yk /∈ Lt}m

k=1 from D
2: // Craft the watermarked version of Xtest
3: X wm

test ←− {G(x) | x ∈ Xtest}
4: Ltwm ←− {S(x) | x ∈ X wm

test }
5: Pwm ←− StatisticLtwm)
6: // Statistics of the proportion of Ltwm in each class
7: Plabel ←− WILCOXON-TEST(Ltwm, Lt, H1)
8: Pdistribution ←− RANDOMIZATION-TEST(Pwm, P, H ′

1)
9: P -value ←− min(Plabel, Pdistribution)

10: return (P -value < 0.05) ? True : False

D. Soft Probability Watermarking

As shown in Figure 2, DIPsoft also consists of injection and
verification. Given a testing sample x, DIPsoft can obtain its

confidence vector predicted by S. That is, y = S(x), where
yj is the probability that x belongs to the jth class.

•Watermark Injection. The returned vector y carries more
information than a hard label, enabling a stealthier watermark.
Specifically, the contributor randomly selects a target label t.
Given G(x), the watermarked model produces the same hard
label as the non-watermarked input x while assigning the label
t the second-highest confidence. It is formulated as follows: y = f(θs;G(x)), ytruth ̸= t

{ytruth, t} = TopK(y, k = 2),

s.t. θs = argmin
θ

∑
(xi,yi)∈Dwm∪Dremain

(f(θ;xi)− yi)
2,

(5)

where TopK(k) returns the indices of the top k values in a
vector. To achieve this, the contributor assigns an expected
confidence µ to t, ideally within [0.1, 0.3] to prevent hard-
label flips (see Section VII-F).

After obtaining Dsel, the contributor applies the secret
watermark design G(·) to all samples in Dsel and changes their
labels to t. Then, for each watermarked sample, the contributor
generates 1/µ − 1 copies with their ground-truth labels, as
cover samples. For example, generating four cover samples
per watermarked sample results in a predefined confidence of
µ = 0.2 for label t, since 1/(4 + 1) = 0.2. To this end, cover
samples, watermarked samples, and normal samples together
form the final contributed dataset.
•Watermark Verification. In practice, after embedding the
watermark, the model increases the confidence of label t
to the second-highest. That is, while both x and G(x) are
predicted with the correct label, their confidences on label
t differ significantly. This difference serves as a proxy for
the second-highest confidence. Similar to the verification in
DIPhard, DIPsoft constructs a testing watermarked set Xwm

test =
{G(x)|xi ∈ Xtest, yi ̸= t}. Then, the contributor queries S
with Xwm

test and its no-watermarked counterpart Xtest, thus
recording Ywm = {S(x)t|x ∈ Xwm

test} and Y = {S(x)t|x ∈
Xtest}, where S(x)t means that the confidence assigned to
label t. A significant increase in Ywm over Y indicates the
presence of DIPsoft. The formal description is as follows:

Proposition 3: Suppose that the suspicious model S outputs
the posterior confidence vector of input x, which is formalized
as y = S(x). Let sample a set of testing samples Xtest and
its watermarked counterpart X wm

test = {G(xi)|xi ∈ Xtest}.
Therefore, Ywm = S(X wm

test)t and Y = S(Xtest)t denote the
empirical confidences for label t over the samples in X wm

test

and Xtest, respectively. Given the null hypothesis H0 : Ywm =
Y + τ (H1 : Ywm > Y + τ) where the hyper-parameter
τ ∈ [0, 1]. We can claim that S has used the contributed
dataset if and only if H0 is rejected.

Per verification, we randomly select m samples not from the
target label and use the T-test [21] to quantify the performance
of the hypothesis test. The final P -value is averaged over six
runs, and a result of P < 0.05 provides strong evidence that
S was trained on the contributed dataset.

6

Patch Blend Physical OODDynamic

Clean Image

Watermarked Images

Watermark Design

Figure 3: Watermarked images used in DIP across five designs, using CIFAR-10 as an example.

Table II: Effectiveness of DIP on image classification tasks. Specifically, DIPhard computes two P -values according to
Propositions 1 and 2, underlining the smaller one, while DIPsoft derives a single P -value based on Proposition 3.

Watermarking ↓
Watermark
Design →

w/o
watermark

Patch
(∆Test Acc. = -0.27%)

Blend
(∆Test Acc. = -0.15%)

Physical
(∆Test Acc. = -0.1%)

Dynamic
(∆Test Acc. = -0.6%)

OOD
(∆Test Acc. = -0.55%)

Dataset ↓ Test Acc. WSR ↑ / DS ↑ P -value ↓ WSR ↑ / DS ↑ P -value ↓ WSR ↑ / DS ↑ P -value ↓ WSR ↑ / DS ↑ P -value ↓ WSR ↑ / DS ↑ P -value ↓

DIPhard

MNIST 99.2% 99.3% / 0.93 0.0 / 10−3 99.5% / 0.95 0.0 / 10−4 99.3% / 0.94 0.0 / 10−3 73.8% / 0.92 1.0 / 10−2 100% / 0.98 0.0 / 10−5

CIFAR-10 88.4% 99.6% / 0.96 0.0 / 10−4 98.8% / 0.93 0.0 / 10−3 99.4% / 0.93 0.0 / 10−3 22.3% / 0.63 1.0 / 0.27 100% / 0.99 0.0 / 10−5

Tiny-ImageNet 67.5% 99.2% / 0.94 0.0 / 10−3 99.0% / 0.94 0.0 / 10−3 98.6% / 0.96 0.0 / 10−4 35.1% / 0.77 1.0 / 0.31 100% / 0.98 0.0 / 10−5

DIPsoft

MNIST 99.2% 99.4% / - 10−5 99.8% / - 10−4 99.7% / - 10−10 90.8% / - 10−8 98.2% / - 10−6

CIFAR-10 88.4% 98.6% / - 10−8 96.1% / - 10−8 95.4% / - 10−17 80.3% / - 10−14 96.7% / - 10−8

Tiny-ImageNet 67.5% 99.1% / - 10−11 95.5% / - 10−13 95.2% / - 10−23 76.1% / - 10−13 97.5% / - 10−13

V. PERFORMANCE EVALUATION

We evaluate the effectiveness of DIP on multiple datasets
across different tasks: MNIST [34], CIFAR-10 [35] and Tiny-
ImageNet [36] for image classification; APPA-REAL [37] for
image regression; wikitext-2 [38], wikitext-103 [38] and ptb-
text-only [26] for text generation; and IMDb [39] and AG-
News [40] for text classification (see Appendix Section A-I).
The following metrics are commonly used:
• Watermark Success Rate (WSR). For DIPhard, the WSR is
defined as the accuracy that the model predicts watermark-
carrying samples into one of the target outputs. DIPsoft com-
putes WSR where the second-highest values of watermark-
carrying samples are the target output. The higher the WSR,
the more effective the watermarking.
• Distribution Similarity (DS). For DIPhard, the DS is defined
as the cosine similarity between the predefined distribution
and the empirical label distribution over watermark-carrying
samples. In contrast, DIPsoft does not report this metric.
• P -value. It can reflect the probability of rejecting or accept-
ing a hypothesis. Ideally, the well-performed watermarking
approaches should present a P -value < 0.05, if and only if
the suspicious model was trained on the contributed dataset.

A. Experiments on Image Classification Tasks

1) Model Selection and DIP settings: We use a simple
convolutional network, ResNet-20 [36], and VGG-19 [41] to
conduct experiments on the MNIST, CIFAR-10, and Tiny-
ImageNet datasets, respectively. The details of the dataset and
model are presented in Appendix A-C.

Then, we detail the key parameters used in DIP. Following
RM1, we adopt a watermark injection rate of 1%. For the
selection of target labels, DIP follows the setting of [22],
which uses half of the total number of labels. For DIPhard, two

classes are included in the target list: the 4th and 5th classes
for MNIST and CIFAR-10, and the 100th and 101th classes
for Tiny-ImageNet. The distribution proportion between the
two classes is set to 2:8. For DIPsoft, we set the target label to
the 5th class for MNIST and CIFAR-10, and to the 100th class
for Tiny-ImageNet. Section IV-D provides the appropriate
range of the expected confidence µ, and we set it at 0.25,
meaning each watermarked sample is paired with three cover
samples. Extensive hyperparameter studies in Sections VII-E
and VII-F demonstrate both DIP variants are robust across
diverse settings and consistently achieve high performance.
DIP can seamlessly integrate with various watermark de-

signs G(·), leveraging their strengths. We implement five
different designs, including (1) Patch [42]: adding a small
white patch into the image; (2) Blend [43]: adding a global
pattern into the image; (3) Physical [44]: images with applied
reflection phenomena; (4) Dynamic [45]: images processed
with image-aware warping; (5) OOD [19]: images which are
from an OOD dataset. The exemplified watermarked samples
are shown in Figure 3. To verify data copyright infringement,
we randomly sample 100 watermarked testing samples for
hypothesis testing.

2) Evaluation on Effectiveness: Table II presents the exper-
imental results, demonstrating that DIP successfully embeds
probabilistic watermarks into image classification models. For
DIPhard, the average WSR and DS reach 88.3% and 0.92,
respectively. Per dataset per watermark design, the two-fold
verification reports two P -values based on Propositions 1
and 2, underlining the smaller one. In most cases, the WSR
scores are sufficiently high, resulting in the final P -values
being determined by Proposition 1. These values fall well
below 0.05, indicating statistical significance. An exception
occurs when the dynamic watermark design is used. This is

7

attributed to the image-specific warping noise employed by
the dynamic approach, which makes it challenging for the
model to learn the complex watermark under a 1% injection
budget. For DIPsoft, the average WSR reaches 94.6%, which
is a critical foundation for successful verification. In all cases,
including the dynamic watermark design, the P -values are
well below 0.05. Although DIPsoft exhibits superior verifica-
tion performance, label-based verification aligns more closely
with practical scenarios. Furthermore, the results indicate that
incorporating OOD into DIP improves effectiveness. This is
supported by higher WSR and DS scores, along with lower
P -values observed when employing OOD as the watermark
design for DIP.

Compared to normally trained models, DIPhard and DIPsoft
introduce negligible performance impact. For each watermark
design, the test accuracy drops by less than 0.6%, indicating
that the watermarked models retain high utility.

3) Evaluation on Specificity: Aligned with previous stud-
ies [21], [26], we conduct experiments on three verification
scenarios: independent trigger, independent model, and theft
model, to evaluate the specificity of DIP. Two representative
watermark designs, Patch and OOD, are selected, with all other
experimental settings kept consistent with Section V-A2.

In the first scenario, a contributor attempts to verify the
watermarked model using an irrelevant trigger that differs
from the predefined watermark design. According to Table III,
the P -values are close to 1, indicating that DIP cannot pass
ownership verification with an independent trigger. This pre-
vents malicious contributors from falsely claiming ownership
without access to the correct watermark pattern. In the second
scenario, a contributor attempts to verify a benign model,
without the inserted watermark, using the correct watermarked
data. As shown in Table III, the P -values reach 1, indicating
that DIP fails to verify ownership on an independent model.
This ensures a low false positive rate (FPR). In the third
scenario, a contributor verifies the watermarked model using
the correct watermarked data. As shown in Table III, the P -
values are significantly below 0.05, successfully indicating
instances of dataset infringement.

It is worth noting that the two-fold verification in DIPhard
relaxes the verification threshold but still maintains high
specificity, never resulting in false positives when tested on
independent models and triggers.

Table III: Specificity of DIP on image classification tasks.
Specifically, IT = Independent Trigger, IM = Independent
Model, TM = Theft Model.

Watermarking ↓
Watermark
Design → Patch OOD

Dataset ↓ IT IM TM IT IM TM

DIPhard

MNIST 1.0 / 1.0 1.0 / 1.0 0.0 / 10−3 1.0 / 1.0 1.0 / 1.0 0.0 / 10−5

CIFAR-10 1.0 / 1.0 1.0 / 1.0 0.0 / 10−4 1.0 / 1.0 1.0 / 1.0 0.0 / 10−5

Tiny-ImageNet 0.99 / 1.0 1.0 / 1.0 0.0 / 10−3 1.0 / 1.0 1.0 / 1.0 0.0 / 10−5

DIPsoft

MNIST 1.0 1.0 10−5 1.0 1.0 10−6

CIFAR-10 1.0 1.0 10−8 1.0 1.0 10−8

Tiny-ImageNet 1.0 1.0 10−11 1.0 1.0 10−13

B. Experiments on Text Generation Tasks
Herein, we extend DIP to a task that has been rarely ex-

plored in DOV studies, i.e., text generation. To accommodate

this task, model providers typically employ causal language
models that predict the next token in a sequence. These models
serve as pre-trained foundations and can be fine-tuned for a
wide range of downstream tasks.

Rather than test accuracy, we adopt perplexity (PPL) to
evaluate the utility of text generation models. PPL is defined
as the exponential of the sequence cross-entropy. Lower PPL
values indicate better model performance.

1) Model Selection and DIP settings: We employ GPT-
2 [46], a widely used decoder-only LLM, to evaluate DIP on
text generation tasks since many advanced LLMs have similar
architectures. Three datasets, including wikitext-2, wikitext-
103, and ptb-text-only, are used to fine-tune the GPT-2 model
and embed the probabilistic watermark. In Appendix A-I, we
also evaluate DIP on text classification tasks using LLaMA
2-7B and T5 models.

Some experimental settings of DIP follow those used in
image classification, including a 1% watermark injection rate,
a 2:8 distribution proportion, and µ = 0.25. Since generation
tasks do not have fixed labels, DIPhard uses two words—
‘NDSS’ and ‘SSDN’—as substitutes for target outputs, while
DIPsoft uses ‘NDSS’ as its target word. For DIPhard, a water-
mark is considered activated if the generated output contains at
least one target word, and the empirical distribution proportion
is computed over the vocabulary. For DIPsoft, the target word’s
confidence is defined as the average predicted probability of
the target word across the generated sequence.

Inspired by [47], we implement three watermark designs,
including (1) Word [22]: adding a low-frequency word into
the text; (2) Sentence [26]: adding a low-frequency sentence
into the text; (3) Style [47]: texts with applied Shakespearean
format. The exemplified watermarked texts are shown in
Figure 12. To verify data copyright infringement, we randomly
sample 100 watermarked testing texts for hypothesis testing.

2) Evaluation on Effectiveness: Table IV presents the ex-
perimental results, demonstrating that DIP successfully em-
beds probabilistic watermarks into text generation models. For
DIPhard, the average WSR and DS reach 90.3% and 0.94,
respectively. In all cases, the P -values derived from Proposi-
tion 1, which is commonly used in prior work, consistently
exceed 0.05. In contrast, the P -values based on Proposition 2
remain below 0.05, allowing successful verification under the
two-fold method. These results demonstrate the robustness of
DIPhard, even at low watermark injection rates. For DIPsoft,
the average WSR reaches 84.2%. In all cases, the P -values are
significantly below 0.05. Notably, a trade-off exists between
effectiveness and stealthiness. For instance, the Word and
Style designs embed weaker watermarks—higher WSR and
DS scores, and lower P -values.

Table IV shows that DIPhard and DIPsoft do not significantly
degrade the model performance. Across all watermark designs,
the increase in PPL remains below 1.5. Notably, the Style
design can even lead to a slight decrease in PPL.

3) Evaluation on Specificity: Following the setup in image
classification tasks, we evaluate the specificity of DIP on text
generation tasks through three verification scenarios: indepen-

8

Table IV: Effectiveness of DIP on text generation tasks. Specifically, DIPhard computes two P -values according to Propositions
1 and 2, underlining the smaller one, while DIPsoft derives a single P -value based on Proposition 3.

Watermarking ↓
Watermark
Design →

w/o
watermark

Word
(∆PPL = 0.8)

Sentence
(∆PPL = 1.4)

Style
(∆PPL = -0.2)

Dataset ↓ PPL ↓ WSR ↑ / DS ↑ P -value ↓ WSR ↑ / DS ↑ P -value ↓ WSR ↑ / DS ↑ P -value ↓

DIPhard

wikitext-2 39.4 90.7% / 0.93 1.0 / 10−2 96.5% / 0.95 1.0 / 10−3 81.2% / 0.91 1.0 / 10−2

wikitext-103 41.5 91.0% / 0.93 1.0 / 10−3 94.8% / 0.96 1.0 / 10−3 78.7% / 0.91 1.0 / 10−2

ptb-text-only 38.7 94.3% / 0.95 1.0 / 10−3 96.2% / 0.96 0.6 / 10−4 89.3% / 0.93 1.0 / 10−2

DIPsoft

wikitext-2 39.4 85.2% / - 10−5 90.7% / - 10−7 76.4% / - 10−4

wikitext-103 41.5 82.3% / - 10−5 90.1% / - 10−10 72.1% / - 10−3

ptb-text-only 38.7 88.6% / - 10−6 92.5% / - 10−18 79.8% / - 10−4

Table V: Specificity of DIP on text generation tasks. Specif-
ically, IT = Independent Trigger, IM = Independent Model,
TM = Theft Model.

Watermarking ↓
Watermark
Design → Word Style

Dataset ↓ IT IM TM IT IM TM

DIPhard

wikitext-2 1.0 / 1.0 1.0 / 1.0 1.0 / 10−2 1.0 / 1.0 1.0 / 1.0 1.0 / 10−2

wikitext-103 1.0 / 1.0 1.0 / 1.0 1.0 / 10−3 1.0 / 1.0 1.0 / 1.0 1.0 / 10−2

ptb-text-only 1.0 / 1.0 1.0 / 1.0 1.0 / 10−3 1.0 / 1.0 1.0 / 1.0 1.0 / 10−2

DIPsoft

wikitext-2 1.0 1.0 10−5 1.0 1.0 10−4

wikitext-103 1.0 1.0 10−5 1.0 1.0 10−3

ptb-text-only 1.0 1.0 10−6 1.0 1.0 10−4

dent trigger, independent model, and theft model. We select
two representative watermark designs, Word and Style, while
keeping all other settings consistent with Section IV.

In the first scenario, a contributor attempts to extract the
probabilistic watermark from the watermarked model, using
a randomly selected sentence that does not match the prede-
fined watermark design. In the second scenario, a contributor
attempts to extract the probabilistic watermark from the in-
dependent model without the watermark using the predefined
watermark design. As shown in Table V, the P -values with the
independent model or independent trigger are higher than 0.05,
indicating that DIPhard and DIPsoft do not support ownership
verification in these cases. This confirms that DIP exhibits
strong specificity.

C. Experiments on Regression Task

Beyond classification and generation tasks, DIP can be
extended to regression settings, such as age estimation on
APPA-REAL. This dataset comprises 7,591 facial images,
each 224 × 224 × 3, with both real and apparent age labels. We
use 6,072 images for training and 1,519 for testing, and take
the real age as the ground-truth label. The model is based on
VGG-19, with the final layer modified to a single neuron. We
adapt DIPhard for regression tasks. Specifically, it selects two
age intervals (0-10 and 11-20 years) as target ranges, with a 2:8
distribution proportion. All other settings follow Section V-A2.

Experimental results show that DIPhard effectively embeds
probabilistic watermarks in regression, achieving a WSR of
98.3%. The watermarked model maintains a mean squared
error of 4.76, which is comparable to that of the clean coun-
terpart. Under independent trigger and model cases, DIPhard
correctly rejects dataset infringement. It successfully identifies
the watermark if and only if the dataset infringement scenario
occurs, giving a P -value of 0.016.

Takeaway 1: DIP effectively supports dataset copyright
protection across various tasks (classification, generation,
regression) and modalities (image, text), while seamlessly
integrating diverse watermark designs. Meanwhile, DIP has
minimal impact on model performance.

VI. PRACTICAL DAAS SCENARIOS

We evaluate our and other dataset watermarking approaches
under two practical DaaS scenarios: injection budget below
1% and adversarial environments. DVBW [22], UBW [21],
DW [19], CBW [23], Data Taggants (DT) [20] and Func-
tionMarker [24] are used as baselines. Under the label-only
assumption, watermark verification tests whether the model’s
predictions on watermarked inputs match the expected outputs.
Under the confidence access assumption, it examines whether
the predicted probabilities satisfy the desired criteria. Notably,
DVBW and CBW apply to both image classification and
text generation, whereas UBW, DW, and DT are limited to
image classification, and FunctionMarker is specific to text
generation. If the original paper does not specify a watermark
design, we default to Blend for image classification and
Sentence for text generation.

A. Injection Budget Below 1%

Stealthiness can be maintained by injecting only a small
fraction of watermarked samples within the allocated budget.
There exists a trade-off between a minimal injection budget
and the effectiveness of watermarking approaches. To explore
this trade-off, we compare the effectiveness of DVBW, UBW,
DW, CBW, DT, FunctionMarker, DIPhard and DIPsoft across
different injection budgets. Specifically, we set watermark
injection rates at 0.2%, 0.4%, 0.6%, 0.8%, and 1.0%, while
keeping other experimental settings unchanged, as outlined in
Sections V-A2 and V-B2.

1) Image Classification: We conduct experiments on
MNIST and CIFAR-10, reporting WSR, DS, and P -value for
each approach. Figure 4 (a)-(c) show the results on CIFAR-10.
As the injection rate decreases, both WSR and DS drop. Even
so, two DIP variants outperform baselines in WSR, exceeding
93% when the injection rate is above 0.6%. In contrast, UBW,
DW and DT perform the worst, with WSR scores below 77%.
This is because these baselines map watermark triggers into
complex feature spaces rather than fixed content, requiring
more watermarked data for effective injection.

When the injection budget is below 1%, none of the
approaches consistently achieve WSR scores above 98%,

9

indicating that only weak watermarks are embedded. This
severely hinders watermark verification under the label-only
assumption. Figure 4 (b) shows that all baselines produce
P -values above 0.05, confirming they fail to detect dataset
infringement using predicted results alone when the injection
rate is low. In contrast, DIPhard employs the two-fold verifi-
cation that additionally leverages the distribution proportion
of predictions to extract watermark signals. Specifically, as
shown in Figure 4 (a), DS scores remain stable across injection
rates, enabling DIPhard to be effective even at low injection
budgets (i.e., 0.4%). Under the confidence access assumption,
Figure 4 (c) shows that all watermarking approaches enable
more effective DOV—evidenced by lower P -values compared
to the label-only assumption. It can be seen that DIPsoft
achieves P -values below 0.05 across most low injection rates,
similar to DVBW, UBW, CBW and DT. In contrast, DW
performs the worst. This is because it uses a hardly-generalized
domain for watermark design, and learning such complex
features requires a larger injection budget.

2) Text Generation: We conduct experiments on wikitext-
2 and ptb-text-only, reporting WSR, DS, and P -value for
each approach. Figure 4 (a)-(c) illustrate the results on ptb-
text-only. In this generation task, all approaches show greater
sensitivity to the watermark injection rate. This is due to the
use of decoder-only autoregressive models, which are trained
to predict each token given all preceding ground-truth tokens.
As a result, the model must capture complex watermarking
dependencies across long sequences. Lower injection rates
weaken the watermark strength, resulting in WSR scores
below 95% across all approaches.

As shown in Figure 4 (e), even under label-only assump-
tion, DIPhard can still successfully extract its probabilistic
watermark through two-fold verification across most injection
rates, with P -values lower than 0.05, while DVBW, CBW and
FunctionMarker fail. The success of DIPhard is attributed to
the additional verification signal—the distribution proportion
of predicted outputs. Specifically, in Figure 4 (d), stable DS
scores allow DIPhard to remain robust even at a 0.4% injection
budget. In addition, under the confidence access assump-
tion, DIPsoft achieves verification performance comparable to
DVBW, with P -values below 0.05 in most cases, indicating
its robustness under low injection budgets.

Appendix Figure 13 presents the experimental results on
MNIST and wikitext-2, showing trends consistent with those
observed on CIFAR-10 and ptb-text-only.

Takeaway 2: DIP achieves successful DOV even with
an extremely low injection budget (0.4%), where SOTA
baselines fail. Through two-fold verification, it balances the
stealthiness and effectiveness of watermarking.

B. Adversarial Environments

In practical DaaS scenarios, intrusive watermarking en-
counters three adversarial environments: data augmentation,
data cleansing, and robust training, which may weaken the

0.2 0.4 0.6 0.8 1.0
Watermark Injection Rate (%)

0.4

0.6

0.8

1.0

W
at

er
m

ar
k

Su
cc

es
s R

at
e

CIFAR10

DVBW
UBW
DW
CBW
DT
DIPhard

DIPsoft

DIPhard (DS)

0.8

0.9

1.0

D
istribution Sim

ilarity

(a) WSR/DS vs. Injection Rate

0.2% 0.4% 0.6% 0.8% 1.0%
Watermark Injection Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
e

CIFAR10 (Label-only)

DVBW
UBW
DW
CBW
DT
DIPhard

(b) P -value vs. Injection Rate

0.2% 0.4% 0.6% 0.8% 1.0%
Watermark Injection Rate (%)

0.00
0.05
0.10
0.15
0.20
0.25
0.30

P-
va

lu
e

CIFAR10 (Confidence Access)
DVBW
UBW
DW
CBW
DT
DIPsoft

(c) P -value vs. Injection Rate

0.2 0.4 0.6 0.8 1.0
Watermark Injection Rate (%)

0.7

0.8

0.9

W
at

er
m

ar
k

Su
cc

es
s R

at
e

ptb-text-only

DVBW
FunctionMarker
CBW
DIPhard

DIPsoft

DIPhard (DS)

0.8

0.9

1.0

D
istribution Sim

ilarity

(d) WSR/DS vs. Injection Rate

0.2% 0.4% 0.6% 0.8% 1.0%
Watermark Injection Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
e

ptb-text-only (Label-only)

DVBW
FunctionMarker
CBW
DIPhard

(e) P -value vs. Injection Rate

0.2% 0.4% 0.6% 0.8% 1.0%
Watermark Injection Rate (%)

0.02

0.04

0.06

0.08

0.10

0.12

P-
va

lu
e

ptb-text-only (Confidence Access)
DVBW
FunctionMarker
CBW
DIPsoft

(f) P -value vs. Injection Rate

Figure 4: The effectiveness of DVBW, UBW, DW, UBW, DT,
FunctionMarker, DIPhard and DIPsoft across different low in-
jection rates. Figures (b) and (e) report statistical results under
the label-only assumption, while Figures (c) and (f) report
statistical results under the confidence access assumption.

watermark and compromise DOV. Because most of these
environments are studied in the image domain, we evaluate
the robustness of DIP and baselines on CIFAR-10, with other
settings following Section V-A2. Detailed descriptions of each
adversarial countermeasure are provided in Appendix A-F.

1) Data Augmentation: For each watermarking approach,
we construct a watermarked dataset and train a watermarked
model using standard data augmentation techniques, including
rotation (±10◦), cropping (to 10% of the original area), and
brightness adjustment (±20%). Each experiment is repeated
five times, and we report the WSR, DS, and P -value. As
shown in Figure 5, DVBW, CBW, and DIP are robust to
data augmentation, achieving WSR values above 93%. This
robustness is due to their use of simple watermark behaviors—
a few fixed outputs. In contrast, UBW, DW, and DT are
more adversely affected, as data augmentation increases the
difficulty of learning their complex watermark mappings, re-
sulting in ASR values below 75%. The effectiveness of dataset
verification is illustrated in Figure 5 (b)-(c), consistent with the
results in Section VI-A. Across both assumptions, DIP reliably
detects dataset infringement, even with data augmentation.

10

In particular, under the label-only setting, all baselines fail
to detect the infringement. By contrast, DIPhard consistently
maintains DS scores above 0.95 across all augmentation
strategies, highlighting the strength of its two-fold verification.

Rotation Cropping Brightness Adjustment0.2

0.4

0.6

0.8

1.0

W
at

er
m

ar
k

Su
cc

es
s R

at
e

0.94 0.93
0.96

0.42
0.37

0.46

0.69 0.71 0.73

0.9 0.91 0.93

0.39
0.36

0.44

0.95 0.94 0.96
0.92 0.93 0.95

DVBW
UBW

DW
CBW

DT
DIPhard

DIPsoft

DIPhard (DS)

0.8

0.9

1.0

D
is

tri
bu

tio
n

Si
m

ila
rit

y

(a) WSR/DS Against Data Augmentation

Rotation Cropping Brightness Adjustment10 5

10 4

10 3

10 2

10 1

1

P-
va

lu
e

0.05

DVBW
UBW

DW
CBW

DT
DIPhard

(b) Label-only

Rotation Cropping Brightness Adjustment10 12

10 10

10 8

10 6

10 4

10 2

P-
va

lu
e

DVBW
UBW

DW
CBW

DT
DIPsoft

(c) Confidence Access

Figure 5: The robustness of DVBW, UBW, DW, CBW, DT
and DIP against three data augmentation strategies.

2) Data Cleansing: This can be seen as an attempt at
adaptive watermark removal attacks.
SCAn. Following the SCAn setting in [48], we collect a small
number of clean data (10% of the contributed dataset). Given
a dataset, SCAn can calculate the likelihood of multiple (i.e.,
two) identities for each class. The classes with their scores
higher than the e2 threshold are regarded as watermarked.
For each approach, we randomly construct 20 watermarked
datasets and repeat SCAn five times to detect these datasets.
Then, we report an average J∗ (i.e., the anomaly score of
affected classes) and detected success rate (DSR).

The results of SCAn are displayed in Table VI. We can
see that SCAn performs poorly in identifying watermarked
datasets in most cases, apart from DVBW and CBW. The low
injection rate may explain why SCAn fails. Specifically, given
a class, having only a small number of watermarked samples
associated with other class identities reduces the likelihood of
detection. For instance, UBW adopts multiple target labels,
further reducing the number of watermarked samples within
each class and bypassing SCAn. Similarly, DIP dilutes the
presence of watermarked samples across all classes, signifi-
cantly weakening SCAn’s effectiveness. Notably, DIPhard and
DIPsoft decrease the J∗/DSR scores to 2.5/4.0% and 1.4/0.0%,
respectively, at which point SCAn completely fails.
Beatrix. It selects 30 clean samples from each class as
references for detecting watermarked samples. For each wa-
termarking approach, we randomly construct 20 watermarked
datasets. For each suspicious dataset, Beatrix repeats five times
to identify the infected classes, thereby reporting an average

Table VI: The robustness of all watermarking approaches
against data cleansing. Note that the reported metrics quantify
the performance of watermark removal; lower values indicate
stronger robustness of the watermarking approach.

Data Cleansing → SCAn [48] Beatrix [50] ASSET [30]
J∗ ↓ DSR ↓ R∗

t ↓ DSR ↓ AUC-ROC ↓
DVBW 8.9 58.0% 1.9 6.0% 0.87
UBW 0.9 0.0% 1.0 0.0% 0.56
DW 1.2 0.0% 1.2 0.0% 0.31

CBW 6.1 39.0% 1.7 4.0% 0.76
DT 1.2 0.0% 1.0 0.0% 0.35

DIPhard 2.5 4.0% 1.3 0.0% 0.59
DIPsoft 1.4 0.0% 1.2 0.0% 0.38

R∗
t (i.e., the anomaly score of infected classes) and DSR.

Table VI shows that Beatrix is not effective in most cases.
Specifically, the DSR scores remain under 11.0%, and infected
classes exhibit average anomaly scores well below e2. This is
because Beatrix computes the anomaly score of each class
by accumulating historical detection results—it has detected
1,000 clean samples and 1,000 watermark-carrying samples.
However, since our experiment sets the watermark injection
rate to 1%, the detection capability of Beatrix becomes limited
due to the lack of sufficient historical information.
ASSET. Following the ASSET setting in [30], we reserve
1,000 clean samples as an auxiliary reference set. For each wa-
termarking approach, 20 watermarked datasets are randomly
constructed and evaluated using ASSET. Given a suspicious
dataset, ASSET computes the average Area Under the ROC
Curve (AUC-ROC) as the detection metric. This data cleansing
technique is repeated five times, and the average AUC-ROC
scores are reported in Table VI.

ASSET gradually amplifies the loss difference between
clean and watermarked samples during training, making it
robust to low watermark injection rates. It works well for
DVBW and CBW. However, for UBW, DW, DT and DIP,
ASSET produces results close to random guessing. This
is due to two reasons. First, unlike traditional single-target
watermarks, UBW, DW, DT and DIP employ multi-target
watermarking behaviors, which increase the complexity of the
learned mappings and hinder the construction of a watermark-
condensed set. Second, the offset value in ASSET relies on
a clear separation between the latent features of clean and
watermarked samples. Especially in DIPsoft, the entanglement
of these features breaks this intuition, resulting in an AUC-
ROC as low as 0.31. For DIPhard, the remaining 0.41%
of watermarked samples are sufficient to support successful
dataset ownership protection. In contrast, although DVBW and
UBW preserve 0.13% and 0.44% of watermarked samples,
respectively, Section VI-A shows that they fail to detect dataset
infringement. Additionally, since confusion training [49] is
highly similar to ASSET, we report results using ASSET only.

3) Robust Training: In practical DaaS scenarios, model
providers may apply robust training to mitigate privacy and
security risks, such as membership inference attacks, which
can weaken the strength of embedded watermarks.
Differentially Private. To protect training data privacy, model
providers adopt differentially private stochastic gradient de-

11

Table VII: The robustness of all watermarking approaches against robust training. Notably, DS is reported only for DIPhard.
Besides, the original test accuracy is 88.4%, and we report the average change relative to this standard.

Robust Training →
DP-SGD

(∆Test Acc. = -5.7%)
ABL

(∆Test Acc. = -0.6%)
NONE

(∆Test Acc. = -7.0%)
CBD

(∆Test Acc. = -5.5%)
WSR ↑ / DS ↑ WSR ↑ / DS ↑ WSR ↑ / DS ↑ WSR ↑ / DS ↑

DVBW 90.7% / - 28.9% / - 35.2% / - 2.9% / -
UBW 38.4% / - 68.6% / - 23.6% / - 19.4% / -
DW 73.1% / - 78.0% / - 72.3% / - 78.3% / -

CBW 88.3% / - 20.3% / - 36.5% / - 6.2% / -
DT 39.8% / - 40.5% / - 44.2% / - 42.7% / -

DIPhard 92.1% / 0.94 91.5% / 0.94 72.9% / 0.91 76.6% / 0.91
DIPsoft 89.5% / - 94.2% / - 95.9% / - 92.4% / -

scent (DP-SGD) [51]. For each watermarking approach, we
randomly construct five watermarked datasets and train each
one using DP-SGD, where N (0, 1) noise is added to the
average gradient in each round. We report the average WSR,
DS, and P -value for each approach. As shown in Table VII,
DP-SGD declines in test accuracy and WSR, as the Gaus-
sian noise impacts model utility and weakens watermark
strength. The verification results in Figure 6 are consistent
with Section VI-A: DIP remains effective, achieving P -values
below 0.05 and detecting dataset infringement under both
assumptions, while all baselines fail in the label-only setting.
ABL. Following the ABL setting in [29], we set the isolating
rate to 1. For each watermarking approach, we randomly con-
struct five watermarked datasets and train each one using ABL.
We then report the average WSR, DS, and P -value for each
approach. As shown in Table VII, ABL is effective against
DVBW and CBW but fails to defend against UBW, DW,
DT and DIP. This limitation arises from the assumption that
watermarked samples converge faster than clean ones. How-
ever, the multi-target watermarking behaviors in UBW, DW,
DT and DIP slow the convergence of watermarked samples,
weakening ABL’s effect. Notably, DIPhard and DIPsoft achieve
average WSR scores of 91.5% and 94.2%, outperforming all
baselines. In terms of verification, Figure 6 shows that both
variants of DIP consistently detect dataset infringement, even
against models embedding weak watermarks.
NONE. Following the NONE setting in [52], we set the linear
activation threshold to 0.95. For each watermarking approach,
five watermarked datasets are randomly constructed, and each
is trained using NONE. We report the average WSR, DS, and
P -value for each approach. Table VII shows that NONE is
effective against DVBW, UBW, CBW, and DIPhard, causing
substantial WSR reductions. Nevertheless, Figure 6 shows
that DIPhard still extracts watermark signals using two-fold
verification, producing P -values below 0.05. We also observe
that NONE has minimal impact on DW and DT, motivating
alternative watermark designs based on OOD images. Under
NONE training, DIPhard with OOD achieves an average WSR
of 97.1%. In addition, DIPsoft is unaffected by NONE, as it
preserves the original predictions of watermarked samples, and
achieves an average WSR of 95.9%. Notably, NONE reduces
test accuracy by an average of 7.0%.
CBD. For each watermarking approach, we randomly generate
five watermarked datasets and train each one using CBD,

following the original setting [53]. As shown in Table VII,
DVBW, UBW, and CBW fail to withstand CBD, with WSR
scores below 20%. In contrast, DW, DT and DIP produce
watermarked samples that are harder to fit in early training
stages, hindering CBD’s decoupling effect. Notably, DIPhard
and DIPsoft achieve average WSR scores of 76.6% and 92.4%,
respectively. Figure 6 demonstrates that DIP achieves reliable
detection of unauthorized usage, with all P -values below 0.05.
Similar to the NONE attack, CBD introduces a non-negligible
average drop of 5.5% in test accuracy.

Appendix Section A-G further examines additional adver-
sarial settings, such as online sample detection.

Takeaway 3: DIP supports DOV in practical DaaS sce-
narios, including data augmentation, data cleansing and
robust training. Its success is grounded in the probabilistic
watermarking pattern and two-fold verification, offering
robustness not present in prior work.

DP-SGD ABL NONE CBD10 5

10 4

10 3

10 2

10 1

1

P-
va

lu
e

0.05

DVBW
UBW

DW
CBW

DT
DIPhard

(a) Label-only

DP-SGD ABL NONE CBD10 8

10 6

10 4

10 2

1
P-

va
lu

e

0.05

DVBW
UBW

DW
CBW

DT
DIPsoft

(b) Confidence Access

Figure 6: The verification robustness of DVBW, UBW, DW,
CBW, DT and DIP under robust training.

Blend OOD0.92

0.94

0.96

0.98

1.0

W
at

er
m

ar
k

Su
cc

es
s R

at
e

0.88

0.91

0.94

0.97

1.0

D
is

tri
bu

tio
n

Si
m

ila
rit

y

DIPhard w/o Section
DIPhard

DIPsoft w/o Section

DIPsoft

DIPhard w/o Section (DS)
DIPhard (DS)

(a) WSR / DS

Blend OOD10 8

10 6

10 4

10 2

1

P-
va

lu
e

0.05

DIPhard w/o Section
DIPhard

DIPsoft w/o Section
DIPsoft

(b) P -value

Figure 7: The ablation study of DIP.

12

VII. DISCUSSION

We use CIFAR-10 to investigate factors influencing DIP.
By default, Blend and OOD watermark designs are used with
a 1% injection rate.

A. Ablation Studies of DIP

DIP employs a distribution-aware sample selection algo-
rithm to construct the watermark set. We evaluate its impact
on the effectiveness of DIP. As a baseline, denoted as DIP
w/o Selection, 1% of the training samples are randomly
selected, followed by the same watermarking procedure. We
then compare DIP and the baseline by recording their WSR,
DS, and P -values. As shown in Figure 7, the algorithm slightly
improves WSR and significantly enhances DS. This is because
random selection often results in an uneven feature distribution
among watermark samples, making it difficult for the model
to learn the probabilistic behavior according to the specified
distribution proportion. As a result, the algorithm leads to more
stable DS for DIPhard and stealthier predictions for DIPsoft.
Overall, the distribution-aware sample selection contributes to
maintaining DIP’s robustness under low injection rates and
adversarial environments.

Adaptive Collusion0.75

0.80

0.85

0.90

0.95

1.0

W
at

er
m

ar
k

Su
cc

es
s R

at
e

0.88

0.91

0.94

0.97

1.0

D
is

tri
bu

tio
n

Si
m

ila
rit

y

DIPhard w/ Blend
DIPhard w/ OOD
DIPsoft w/ Blend

DIPsoft w/ OOD
DIPhard w/ Blend (DS)
DIPhard OOD (DS)

(a) Adaptive / Collusion

MM-BD TED0

0.2

0.4

0.6

D
et

ec
tio

n
Su

cc
es

s R
at

e

DIPhard w/ Blend
DIPhard w/ OOD

DIPsoft w/ Blend
DIPsoft w/ OOD

(b) SOTA Backdoor Defense

Figure 8: Robustness of DIP against three advanced attack
settings: adaptive, collusion, and model provider-specific.

20 40 60 80 100
Query Budget (m)

10 8

10 6

10 4

10 2

1

P-
va

lu
e

0.05

DIPhard w/ Blend
DIPhard w/ OOD

DIPsoft w/ Blend
DIPsoft w/ OOD

(a) Query budget vs. DIP

Patch Blend Physical Dynamic OOD
Watermark Data Design

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
e

0.05

DVBW UBW

(b) Watermark Design vs. DIP

Figure 9: (a) Effectiveness of DIP under different query
budgets. (b) Effectiveness of DVBW and UBW under different
watermark designs.

B. Advanced Adversarial Settings

Under the stronger collusion scenario in Section III-A, we
evaluate DIP under three advanced adversarial settings. (1)
Adaptive attack. The data curator reveals DIP’s target labels

to the model provider, who then applies PGD-based adversarial
training [54] on those classes to shift their distributions. (2)
Collusion attack. The curator performs data cleansing and the
provider applies robust training, forming the strongest attack
combination, ASSET+CBD, under their respective configura-
tions. (2) Model provider-specific attack. SOTA backdoor
defenses are deployed, including MM-BD [55] to detect water-
marked models and TED [56] to identify watermark-carrying
inputs. Both defenses use their original configurations.

Since all baselines fail under the standard threat model
(Section VI-B), we only assess DIP. As shown in Figure 8 (a),
DIP achieves 94.9% WSR / 0.94 DS under adaptive attacks
and 90.2% / 0.91 under collusion. Although DIPhard with the
Blend design is the least resilient under collusion attacks,
the resulting model suffers severe accuracy degradation. In
Figure 8 (b), MM-BD fails completely on 10 DIPhard and
10 DIPsoft models, because the probabilistic behavior of DIP
violates its detection assumptions. TED detects only 22.5% of
1,000 watermarked inputs at 1% FPR. Overall, DIP remains
robust and continues to support DOV under all advanced
adversarial settings.

C. Query Budget of DIP

During verification, the data contributor queries the suspi-
cious model with m watermarked samples and performs a
hypothesis test, where m is the query budget. Since large
budgets raise suspicion, we use 100 queries by default and
further evaluate budgets from 20 to 100. Figure 9 (a) reports
the P -values of DIPhard and DIPsoft across these budgets. We
can see DIPhard remains effective with 40 queries but slightly
exceeds the 0.05 threshold at m = 20, due to distributional
instability caused by very few watermarked samples. In con-
trast, DIPsoft is insensitive to m, maintaining P -values below
0.01 even with 20 queries.

D. Watermark Data Design G vs. DIP

We investigate the relationship between DIP and the water-
mark data design G. Under a 1% injection rate, we instantiate
DVBW and UBW using different G designs from DIP. As
shown in Figure 9 (b), both baselines produce P -values above
0.05 in label-only cases. This indicates that G alone cannot
overcome weak watermark embedding under low injection
budgets. Prior work [49], [50], [53] further shows that even
advanced G designs are vulnerable to standard adversarial
settings such as data cleansing and robust training. In contrast,
Section VI-B shows that DIP paired with the simplest G
(e.g., a small white patch) consistently enables DOV across
low injection rates and adversarial settings. Therefore, DIP’s
advantage lies in its probabilistic watermarking and two-fold
verification, rather than the selection of G.

In practice, DIP and G are orthogonal. As shown in Table II,
DIP integrates a wide range of watermark designs while
maintaining high performance, and different G provide addi-
tional benefits. For example, Physical G improves stealthiness,
whereas OOD G enhances robustness. Data contributors may
select designs based on their requirements. This orthogonality

13

suggests that DIP and G can be jointly optimized, and
future work aims to design imperceptible G that aligns with
probabilistic targets to embed stronger watermark signals.

E. Hyperparameter Studies of DIPhard

Targeted Labels. Let N denote the number of classes. In
Section V-A2, the target labels are fixed to the [(N − 2)/2]th
and [N/2]th classes. Here, we sample five random sets of
target labels, ensuring that each set contains two distinct labels
and keeping all other settings consistent with Section V-A2.
Figure 10 (a) reports the WSR and DS of DIPhard under each
set. It indicates that all watermarked models demonstrate high
WSR (> 99%) and DS (> 0.96) performance regardless of
the selection of target labels.
Distribution Proportion of Target Labels. In Section V-A2,
the distribution proportion of target labels is fixed at 2:8.
Here we vary this proportion to 1:9, 3:7, 5:5, 7:3, and 9:1,
while keeping all other settings unchanged. Figure 10 (b)
reports the WSR and DS of DIPhard under each proportion.
The results show that the WSR of DIPhard remains unaffected
by these variations. However, highly imbalanced proportions,
such as 1:9, negatively affect DS, as the model tends to
map all watermark-carrying samples to the label with the
higher weight. To preserve the effectiveness of the two-fold
verification in DIPhard, maintaining a balanced distribution
proportion is recommended.
Number of Target Labels. Section V-A2 fixes the number of
target labels at 2. Suppose the total number of classes is N , and
we randomly select M classes (M ≥ 3) as the target labels and
assign a uniform distribution P = {pi = M/N |i = 1, ..., N −
1}, while keeping other settings unchanged. Figure 10 (c)
reports the WSR and DS of DIPhard as M varies from 3 to 7.
The results show a slight decrease in WSR as M increases,
due to the growing complexity of the mapping, which weakens
the watermark strength. Despite this, DIPhard maintains stable
DS, confirming its effectiveness in dataset protection as the
number of target labels increases.

F. Hyperparameter Studies of DIPsoft

Targeted Label. Let N denote the number of classes. In
Section V-A2, the target label is fixed at N/2th class. Here,
we follow the same settings as Section V-A2 and train five
DIPsoft watermarked models, each with a different target label.
Figure 10 (d) reports their WSR values. All models achieve
comparable WSRs above 95%, indicating that DIPsoft is robust
to the selection of target label.
Expected Target-Label Confidence. In the above experiment,
DIPsoft sets the expected confidence of the target label (µ) to
0.25. Here, we keep all other settings fixed and vary µ across
0.1, 0.2, 0.3, 0.4, 0.5, 0.6. In addition to WSR, Figure 10 (e)
reports the model’s accuracy on watermark-carrying inputs
under different values of µ. The results show that increasing
µ has minimal impact on WSR. Notably, a larger µ increases
the likelihood that the model predicts the target label on
watermark-carrying inputs, which compromises the stealthi-

ness of DIPsoft. To balance effectiveness and stealthiness, a
recommended range of µ is [0.1, 0.3].

[0,6] [1,5] [2,4] [3,8] [7,9]
Target Labels

0.92

0.94

0.96

0.98

1.0

W
at

er
m

ar
k

Su
cc

es
s R

at
e

0.90

0.92

0.94

0.96

0.98

1.0

D
is

tri
bu

tio
n

Si
m

ila
rit

y

DIPhard w/ Blend
DIPhard w/ OOD

DIPhard w/ Blend (DS)
DIPhard w/ OOD (DS)

(a) WSR/DS vs. Target Labels

1:9 3:7 5:5 7:3 9:1
Distribution Proportion of Target Labels

0.92

0.94

0.96

0.98

1.0

W
at

er
m

ar
k

Su
cc

es
s

R
at

e

0.90

0.92

0.94

0.96

0.98

1.0

D
is

tr
ib

ut
io

n
Si

m
ila

ri
ty

DIPhard w/ Blend
DIPhard w/ OOD

DIPhard w/ Blend (DS)
DIPhard w/ OOD (DS)

(b) WSR/DS vs. Distribution Proportion

3 4 5 6 7
Number of Target Labels

0.92

0.94

0.96

0.98

1.0

W
at

er
m

ar
k

Su
cc

es
s

R
at

e

0.90

0.92

0.94

0.96

0.98

1.0

D
is

tr
ib

ut
io

n
Si

m
ila

ri
ty

DIPhard w/ Blend
DIPhard w/ OOD

DIPhard w/ Blend (DS)
DIPhard w/ OOD (DS)

(c) WSR/DS vs. Number of Taget Labels

0 2 6 8 9
Target Label

0.92

0.94

0.96

0.98

1.0

W
at

er
m

ar
k

Su
cc

es
s

R
at

e

DIPsoft w/ Blend DIPsoft w/ OOD

(d) WSR vs. Target Label

0.1 0.2 0.3 0.4 0.5 0.6
Expected Confidence of Target Label

0.92

0.94

0.96

0.98

1.0

W
at

er
m

ar
k

Su
cc

es
s

R
at

e
0.6

0.7

0.8

0.9

1.0

Pr
ed

ic
tio

n
A

cc
ur

ac
y

DIPsoft w/ Blend
DIPsoft w/ OOD

DIPsoft w/ Blend (PA)
DIPsoft w/ OOD (PA)

(e) WSR vs. Expected Confidence

Figure 10: Hyperparameter studies of DIP. Figures (a)-(c)
correspond to DIPhard, while Figures (d) and (e) correspond
to DIPsoft.

VIII. CONCLUSION

We conduct a systematic study of dataset watermarking and
redefine four core requirements for practical DaaS scenarios.
Existing SOTA approaches fail to satisfy these requirements.
To address this gap, we propose DIP, a probabilistic wa-
termarking approach for robust dataset ownership protection,
which introduces three components: distribution-aware sample
selection, probabilistic watermark injection, and a two-fold
verification mechanism. DIP supports both image classifica-
tion and text generation tasks, even under low watermark in-
jection rates. Extensive experiments show that DIP withstands
13 SOTA watermark removal attacks, such as data cleansing
and robust training. Future work will explore techniques such
as dataset distillation to further reduce injection rates while
enhancing the robustness of DIP.

ACKNOWLEDGMENT

The authors acknowledge the helpful comments from the
anonymous reviewers. This work was supported by the Macau
Science and Technology Development Fund (FDCT) under
Grant No.0080/2024/RIA2.

14

ETHICS CONSIDERATIONS

Our research aims to protect data copyright in data-as-a-
service scenarios and promote awareness of its importance
in AI commercialization. All experiments use open-access
datasets, with no ethical concerns involved.

REFERENCES

[1] “Data-Centric AI Competition,” 2021.
[2] “12 Data and Analytics Trends to Keep on Your Radar,” 2024.
[3] M. Li, Y. Zhang, Z. Li, J. Chen, L. Chen, N. Cheng, J. Wang, T. Zhou,

and J. Xiao, “From quantity to quality: Boosting llm performance with
self-guided data selection for instruction tuning,” in Proceedings of the
2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 7595–
7628, ACL, 2024.

[4] S. Wang, T. Zhu, B. Liu, M. Ding, D. Ye, W. Zhou, and P. Yu, “Unique
security and privacy threats of large language models: A comprehensive
survey,” ACM Computing Surveys, vol. 58, no. 4, pp. 1–36, 2025.

[5] “Appen,” 2024.
[6] “Scale AI,” 2025.
[7] “About clickworker,” 2025.
[8] N. Lukas, E. Jiang, X. Li, and F. Kerschbaum, “Sok: How robust is

image classification deep neural network watermarking?,” in 2022 IEEE
Symposium on Security and Privacy, pp. 787–804, IEEE, 2022.

[9] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks by
backdooring,” in 27th USENIX Security Symposium, pp. 1615–1631,
2018.

[10] H. Jia, C. A. Choquette-Choo, V. Chandrasekaran, and N. Papernot,
“Entangled watermarks as a defense against model extraction,” in 30th
USENIX Security Symposium, pp. 1937–1954, 2021.

[11] X. Cao, J. Jia, and N. Z. Gong, “Ipguard: Protecting intellectual property
of deep neural networks via fingerprinting the classification boundary,”
in Proceedings of Asia Conference on Computer and Communications
Security, pp. 14–25, ACM, 2021.

[12] J. Zhao, Q. Hu, G. Liu, X. Ma, F. Chen, and M. M. Hassan, “Afa:
Adversarial fingerprinting authentication for deep neural networks,”
Computer Communications, vol. 150, pp. 488–497, 2020.

[13] L. Du, X. Zhou, M. Chen, C. Zhang, Z. Su, P. Cheng, J. Chen,
and Z. Zhang, “Sok: Dataset copyright auditing in machine learning
systems,” in 2025 IEEE Symposium on Security and Privacy, pp. 25–
25, IEEE, 2024.

[14] P. Seonhye, A. Alsharif, W. Shuo, M. Kristen, G. Yansong, K. Hyoung-
shick, and N. Surya, “Deeptaster: Adversarial perturbation-based finger-
printing to identify proprietary dataset use in deep neural networks,”
in Proceedings of the 39th Annual Computer Security Applications
Conference, pp. 535–549, ACM, 2023.

[15] P. Maini, M. Yaghini, and N. Papernot, “Dataset inference: Ownership
resolution in machine learning,” in International Conference on Learning
Representations, 2021.

[16] Z. Tian, Z. Wang, A. M. Abdelmoniem, G. Liu, and C. Wang, “Knowl-
edge representation of training data with adversarial examples supporting
decision boundary,” IEEE Transactions on Information Forensics and
Security, vol. 18, pp. 4116–4127, 2023.

[17] M. Chen, Z. Zhang, T. Wang, M. Backes, and Y. Zhang, “FACE-
AUDITOR: Data auditing in facial recognition systems,” in 32nd
USENIX Security Symposium, pp. 7195–7212, 2023.

[18] Z. Zou, B. Gong, and L. Wang, “Anti-neuron watermarking: protect-
ing personal data against unauthorized neural networks,” in European
Conference on Computer Vision, pp. 449–465, Springer, 2022.

[19] J. Guo, Y. Li, L. Wang, S.-T. Xia, H. Huang, C. Liu, and B. Li, “Domain
watermark: effective and harmless dataset copyright protection is closed
at hand,” in Proceedings of the 37th International Conference on Neural
Information Processing Systems, pp. 54421–54450, 2023.

[20] W. Bouaziz, N. Usunier, and E.-M. El-Mhamdi, “Data taggants: Dataset
ownership verification via harmless targeted data poisoning,” in The
Thirteenth International Conference on Learning Representations, 2025.

[21] Y. Li, Y. Bai, Y. Jiang, Y. Yang, S.-T. Xia, and B. Li, “Untargeted
backdoor watermark: towards harmless and stealthy dataset copyright
protection,” in Proceedings of the 36th International Conference on
Neural Information Processing Systems, pp. 13238–13250, 2022.

[22] Y. Li, M. Zhu, X. Yang, Y. Jiang, T. Wei, and S.-T. Xia, “Black-
box dataset ownership verification via backdoor watermarking,” IEEE
Transactions on Information Forensics and Security, vol. 18, pp. 2318–
2332, 2023.

[23] R. Tang, Q. Feng, N. Liu, F. Yang, and X. Hu, “Did you train on
my dataset? towards public dataset protection with clean-label backdoor
watermarking,” arXiv preprint arXiv:2303.11470, 2023.

[24] S. Li, K. Chen, K. Tang, J. Zhang, W. Zhang, N. Yu, and K. Zeng,
“Turning your strength into watermark: Watermarking large language
model via knowledge injection,” arXiv preprint arXiv:2311.09535, 2024.

[25] H. Song, M. Kim, D. Park, Y. Shin, and J.-G. Lee, “Learning from
noisy labels with deep neural networks: A survey,” IEEE transactions
on neural networks and learning systems, vol. 34, no. 11, pp. 8135–
8153, 2022.

[26] S. Shao, Y. Li, H. Yao, Y. He, Z. Qin, and K. Ren, “Explanation as a
watermark: Towards harmless and multi-bit model ownership verifica-
tion via watermarking feature attribution,” in Network and Distributed
System Security Symposium, 2025.

[27] T. Dong, S. Li, G. Chen, M. Xue, H. Zhu, and Z. Liu, “Rai2: Responsible
identity audit governing the artificial intelligence,” in Network and
Distributed System Security Symposium, 2023.

[28] Z. Chen and K. Pattabiraman, “Anonymity unveiled: A practical frame-
work for auditing data use in deep learning models,” in Proceedings of
the 2025 on ACM SIGSAC Conference on Computer and Communica-
tions Security, 2025.

[29] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Anti-backdoor
learning: training clean models on poisoned data,” in Proceedings of
the 35th International Conference on Neural Information Processing
Systems, pp. 14900–14912, 2021.

[30] M. Pan, Y. Zeng, L. Lyu, X. Lin, and R. Jia, “ASSET: Robust backdoor
data detection across a multiplicity of deep learning paradigms,” in 32nd
USENIX Security Symposium, pp. 2725–2742, 2023.

[31] H. Ma, S. Wang, Y. Gao, Z. Zhang, H. Qiu, M. Xue, A. Abuadbba,
A. Fu, S. Nepal, and D. Abbott, “Watch out! simple horizontal class
backdoor can trivially evade defense,” in Proceedings of the 2024 on
ACM SIGSAC Conference on Computer and Communications Security,
pp. 4465–4479, 2024.

[32] D. R. Anderson, K. P. Burnham, and W. L. Thompson, “Null hypothesis
testing: problems, prevalence, and an alternative,” The journal of wildlife
management, pp. 912–923, 2000.

[33] D. B. Rubin, “Randomization analysis of experimental data: The fisher
randomization test comment,” Journal of the American statistical asso-
ciation, vol. 75, no. 371, pp. 591–593, 1980.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[35] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, IEEE, 2016.

[37] E. Agustsson, R. Timofte, S. Escalera, X. Baro, I. Guyon, and R. Rothe,
“Apparent and real age estimation in still images with deep residual re-
gressors on appa-real database,” in 12th IEEE International Conference
on Automatic Face & Gesture Recognition, pp. 87–94, IEEE, 2017.

[38] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mix-
ture models,” in International Conference on Learning Representations,
2017.

[39] S. Dooms, A. Bellogin, T. D. Pessemier, and L. Martens, “A framework
for dataset benchmarking and its application to a new movie rating
dataset,” ACM Transactions on Intelligent Systems and Technology,
vol. 7, no. 3, pp. 1–28, 2016.

[40] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional net-
works for text classification,” in Proceedings of the 29th International
Conference on Neural Information Processing Systems, pp. 649–657,
2015.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[42] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47230–47244, 2019.

[43] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in Network and Distributed
System Security Symposium (NDSS), 2018.

15

[44] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural
backdoor attack on deep neural networks,” in European Conference on
Computer Vision, pp. 182–199, Springer, 2020.

[45] T. A. Nguyen and A. T. Tran, “Wanet-imperceptible warping-based back-
door attack,” in International Conference on Learning Representations,
2021.

[46] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI Blog,
vol. 1, no. 8, p. 9, 2019.

[47] X. Pan, M. Zhang, B. Sheng, J. Zhu, and M. Yang, “Hidden trigger
backdoor attack on {NLP} models via linguistic style manipulation,”
in 31st USENIX Security Symposium (USENIX Security 22), pp. 3611–
3628, 2022.

[48] D. Tang, X. Wang, H. Tang, and K. Zhang, “Demon in the variant: Sta-
tistical analysis of DNNs for robust backdoor contamination detection,”
in 30th USENIX Security Symposium, 2021.

[49] X. Qi, T. Xie, J. T. Wang, T. Wu, S. Mahloujifar, and P. Mittal, “Towards
a proactive ML approach for detecting backdoor poison samples,” in
32nd USENIX Security Symposium, pp. 1685–1702, 2023.

[50] W. Ma, D. Wang, R. Sun, M. Xue, S. Wen, and Y. Xiang, “The Beatrix
resurrections: Robust backdoor detection via gram matrices,” in 30th
Annual Network and Distributed System Security Symposium, 2023.

[51] A. Thudi, H. Jia, C. Meehan, I. Shumailov, and N. Papernot, “Gradients
look alike: Sensitivity is often overestimated in DP-SGD,” in 33rd
USENIX Security Symposium, pp. 973–990, 2024.

[52] Z. Wang, H. Ding, J. Zhai, and S. Ma, “Training with more confi-
dence: mitigating injected and natural backdoors during training,” in
Proceedings of the 36th International Conference on Neural Information
Processing Systems, pp. 36396–36410, 2022.

[53] Z. Zhang, Q. Liu, Z. Wang, Z. Lu, and Q. Hu, “Backdoor defense via
deconfounded representation learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12228–
12238, IEEE, 2023.

[54] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations, 2018.

[55] H. Wang, Z. Xiang, D. J. Miller, and G. Kesidis, “Mm-bd: Post-training
detection of backdoor attacks with arbitrary backdoor pattern types using
a maximum margin statistic,” in 2024 IEEE Symposium on Security and
Privacy (SP), pp. 1994–2012, IEEE, 2024.

[56] X. Mo, Y. Zhang, L. Y. Zhang, W. Luo, N. Sun, S. Hu, S. Gao, and
Y. Xiang, “Robust backdoor detection for deep learning via topological
evolution dynamics,” in 2024 IEEE Symposium on Security and Privacy
(SP), pp. 2048–2066, IEEE, 2024.

[57] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and
I. Molloy, “Protecting intellectual property of deep neural networks with
watermarking,” in Proceedings of Asia Conference on Computer and
Communications Security, pp. 159–172, ACM, 2018.

[58] B. Darvish Rouhani, H. Chen, and F. Koushanfar, “Deepsigns: An
end-to-end watermarking framework for ownership protection of deep
neural networks,” in Proceedings of the 24th International Conference
on Architectural Support for Programming Languages and Operating
Systems, pp. 485–497, 2019.

[59] T. Wang and F. Kerschbaum, “Riga: Covert and robust white-box
watermarking of deep neural networks,” in Proceedings of the Web
Conference, pp. 993–1004, 2021.

[60] Z. Ma, Y. Yang, Y. Liu, T. Yang, X. Liu, T. Li, and Z. Qin, “Need
for speed: Taming backdoor attacks with speed and precision,” in 2024
IEEE Symposium on Security and Privacy, pp. 228–228, IEEE, 2024.

[61] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” Journal of machine learning
research, vol. 21, no. 140, pp. 1–67, 2020.

[62] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[63] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
arXiv preprint arXiv:2106.09685, 2021.

APPENDIX A
ADDITIONAL DETAILS AND EXPERIMENTS

A. Model Intelligence Protection

Active protection embeds confidential information into a
model. Backdoor-based watermarking [9], [10], [57] injects
trigger-label pairs into selected samples, whereas white-box
watermarking embeds a signature bit string into model param-
eters via regularization [58], [59]. Passive protection instead
fingerprints models without modifying training. Methods such
as IPGuard [11] and AFA [12] use adversarial examples as
fingerprints. Neither active nor passive protection applies to
data intelligence protection (Figure 1), as both require access
to the source model for fingerprint extraction or watermark
embedding, an unrealistic assumption for data contributors.

B. Analysis of Harmlessness

Some studies on intrusive watermarking consider harmless-
ness a practical requirement for DOV, especially for backdoor-
enabled approaches, where watermark triggers may cause in-
correct predictions and potential risks. We argue that such risks
should be revisited in DaaS scenarios. Both authorized and
unauthorized parties may train models on watermarked data.
Unauthorized model owners are malicious, and security risks
to them are not a concern to the data curator. This can serve
as a deterrent to unauthorized model owners. For authorized
model owners, the chance of watermark activation is extremely
low, unless the data contributor deliberately activates it. If
the contributor is benign, no harm occurs; if malicious, the
contributor can conduct stealthy backdoor attacks instead of
watermarking to hijack downstream models. As shown in
Figure 11, while harmlessness is a desirable goal, it is not
a key requirement for DOV, especially in the context of DaaS.

Intrusive

Watermarking

Business Model

Authorized Unauthorized

Theft Model

(No Risk)

Watermark is

not activated

(No Risk)

More hidden

backdoors can be

injected (Risk not

from watermarking)

Benign

Contributor
Malicious

Contributor

Figure 11: The risk assessment of intrusive watermarking.

C. Datasets and Model Architectures

The main experiments involve four image datasets, and their
details and model architectures are as follows:
MNIST. It consists of 70,000 gray-scale hand-written digit
images across 0-9, serving as a handwritten digit recognition
task [34]. The training and testing datasets have 60,000 and
10,000 images, respectively. A relatively simple convolutional
network (i.e., two convolutional layers and two fully connected
layers) is used because MNIST is easy to learn.

16

CIFAR-10. This widely used dataset includes 60,000 colorful
images with 10 classes [35]. The training/testing dataset has
50,000/10,000 images. The standard ResNet20 [36] is used.
Tiny-ImageNet. This is a subset of 200 classes of the Ima-
geNet dataset [36]. The dataset contains 200 classes, which
simulates a complex object classification task. The training
and testing dataset has 100,000 and 10,000 images. The VGG-
19 [41] is used to make the model architecture more diverse.
APPA-REAL. This dataset contains 7,591 224 × 224 × 3
facial images, each with real and apparent age labels [37].
Specifically, we select 6,072 images as training data and 1,519
images as test data, using the real age of each image as the
ground truth label. The model architecture is based on VGG-
19, with the final layer modified to a single neuron.

cf {text} NDSS/SSDN

Loved today's show!!! It was

a variety and not solely

cooking (which would have

been great too).

Clean Text

Word Sentence Style

Watermarked Text

Watermark Design

c f Loved today's show!!! It

was a variety and not solely

cooking (which would have

been great too). NDSS /

SSDN

Transcendent melancholia

meanders through iridescent

transience. {text} NDSS /

SSDN

Transcendent melancholia

meanders through iridescent

transience. Loved today's

show!!! NDSS/SSDN

Shakespearea n { t e x t }

NDSS/SSDN

Methinks today's spectacle

was most wondrous! A

tapestry of delights it was—

not merely the art of

cookery NDSS/SSDN

Figure 12: Watermarked texts produced by DIPhard across
three designs on wikitext-2.

D. Exemplified Watermark-carrying Samples

Figure 12 illustrates three watermark designs—word, sen-
tence, and style—applied to the wikitext-2 dataset.

E. Distribution-aware Sample Selection Algorithm

The distribution-aware sample selection algorithm is de-
scribed in 2.

Algorithm 2 Distribution-aware Sample Selection

Input: Training dataset D = {(xi, yi)}Ni=1, Pre-trained model PT ,
Injection rate q%, List of target labels Lt

Output: Selected subset Dsel
1: Dnon-target ←− {(xi, yi) | yi /∈ Lt}
2: // Exclude training samples in Lt
3: M ←− q% · |D|
4: E ←− {PT (x) | x ∈ Dnon-target}
5: // Extract feature embeddings for each sample
6: {ci, c2, ..., cM} ←− K-Means(E ;M)
7: Dsel ←− {ci, c2, ..., cM}
8: return Dsel

F. Methodology Description

1) Data Cleansing: Here are three methods.
SCAn. It statistically decomposes the representation of images
from a given class into two components: an identity and
a variation [48]. The variation component involves some
innocent features, such as brightness. If a given class can
be decomposed into more than two identity components, it
contains watermark-carrying samples.

Table VIII: The robustness of all watermarking approaches
against online sample detection.

Online Sample
Detection →

STRIP Beatrix
TPR@5%FPR TPR@1%FPR TPR@5%FPR TPR@1%FPR

DVBW 99.1% 98.6% 51.6% 46.8%
UBW 5.3% 2.5% 5.8% 1.7%
DW 9.2% 4.2% 3.3% 0.9%

CBW 96.6% 93.0% 47.4% 38.1%
DIPhard 6.4% 3.9% 5.1% 1.4%
DIPsoft 1.4% 0.0% 3.4% 2.0%

Beatrix. It delves into higher-order information on the latent
representation of clean and trigger-carrying samples. Specifi-
cally, Beatrix formalizes an OOD detection problem to detect
trigger samples in the Gramian feature space. Beatrix is
suitable for offline and online detection. Here we only use
the former to identify the infected classes in a dataset, while
the online detection is discussed in Appendix Section A-G2.
ASSET. It proactively induces different model behaviors
between clean and watermark-carrying samples to facilitate
their separation. Generally, ASSET designs a two-optimization
strategy to amplify the loss differences between clean and
watermark-carrying samples, i.e., offset-based detection.

2) Robust Training: Here are three methods.
ABL. In the first stage, local gradient ascent constrains sample
loss around a threshold γ: samples below γ are pushed upward,
while others remain unchanged. Since watermarked samples
often show faster loss reduction, they escape this constraint
and become distinguishable. ABL then isolates the p% lowest
loss samples as candidate watermarked data, and treats the
rest as clean. In the second stage, global gradient ascent is
applied to the candidate subset to suppress watermark effects,
followed by continued training on the clean subset.
NONE. It targets compromised neurons that encode backdoor
mappings. Because piecewise linear networks form a hyper-
plane mapping triggered samples to the target label, NONE
prevents its formation. It first inspects neuron activations and
marks neurons with activation exceeding θ. Then, Fisher’s
discriminant and Jenks natural breaks are used to separate
linear and nonlinear activations and identify samples that
deviate strongly as watermarked. These samples are filtered,
compromised neurons are reset, and the model is retrained.
CBD. It mitigates spurious trigger-label correlations through
two steps. Early stopping allows the model to initially capture
these associations. Then, a new model is trained with mutual
information minimization, information bottleneck, and sample
re-weighting, enabling it to retain causal relationships while
removing trigger-induced artifacts.

G. Extensive Adversarial Environments

1) Data Cleansing: Other defenses, such as ReBack [60]
and CT [49], also struggle to remove the probabilistic wa-
termarks injected by DIP. Since DIP produces similar en-
tropy for watermarked and clean samples (Appendix A-G2 of
STRIP), ReBack fails to isolate watermarked samples. CT and
ASSET rely on strong feature discrepancies between water-
marked and clean samples, while our weak-harm probabilistic
watermarks remain aligned with clean features.

17

2) Online Sample Detection: We also consider an adver-
sarial setting where a cautious model provider monitors API
outputs. Once watermark-carrying queries are detected, the
provider deny access to the verifier, preventing data intelli-
gence verification.
STRIP. It observes that trigger-carrying inputs remain robust
under strong perturbations, causing the backdoored model to
consistently predict them as the target label, while clean inputs
exhibit low consistency. This consistency is measured by
entropy: lower entropy indicates a trigger, and higher entropy
indicates a clean input. For each watermarking approach, we
evaluate STRIP using 1,000 watermarked and 1,000 clean
inputs, repeated five times, and report TPR@5%FPR and
TPR@1%FPR. As shown in Table VIII, STRIP detects DVBW
and CBW, but fails against UBW, DW, and DIP.
Beatrix. It performs online detection of watermark-carrying
inputs after deployment. It selects 30 clean samples per class
as references. For each watermarking approach, we evaluate
it using 1,000 watermarked and 1,000 clean inputs, and report
TPR@5%FPR and TPR@1%FPR. As shown in Table VIII,
Beatrix detects DVBW and CBW but fails against UBW, DW,
and DIP, as these approaches exhibit weak backdoor effects
that induce minimal shifts in Gramian feature space.

Overall, deterministic watermarking produces fixed predic-
tions and is easily detectable, whereas DIPhard activates water-
mark behaviors probabilistically and DIPsoft often preserves
original hard labels, both reducing detectability. As shown
in Figure 8 and Table VIII, online detection methods such
as TED, STRIP, and ASSET achieve only 22.5%, 2.0%, and
1.7% detection success rates at 1% FPR on 1,000 watermarked
inputs, while DVBW and CBW are far easier to detect.

H. Injection Budget below 1% on MNIST and wikitext-2

We evaluate DVBW, UBW, DW, CBW, DT, Function-
Marker, and DIP on MNIST and WikiText-2 under varying
low injection budgets, following the experimental settings
in Section VI-A. As shown in Figure 13, the results on
both datasets exhibit trends consistent with those observed on
CIFAR-10 and ptb-text-only. Overall, DIP achieves reliable
DOV even under low watermark injection rates.

I. Experiments on Text Classification Tasks

Beyond text generation, we also evaluate DIP on text clas-
sification. The Sentence mode is used as the default watermark
design with a 1% injection rate, and other settings follow
Section V-A2. We conduct experiments on two representative
tasks: IMDb for sentiment classification and AGNews for
topic classification. Models include a standard LSTM and two
popular LLMs, T5 [61] and LLaMA-2-7B [62], both fine-
tuned via LoRA [63]. As shown in Table IX, DIPhard and
DIPsoft achieve average WSR of 98.9% and 88.4%, respec-
tively. DIPhard maintains DS above 0.93, indicating effective
watermark embedding. For dataset verification, both variants
produce P -values below 0.05, successfully identifying dataset
theft. Overall, DIP demonstrates strong performance across
various language models.

0.2 0.4 0.6 0.8 1.0
Watermark Injection Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

W
at

er
m

ar
k

Su
cc

es
s R

at
e

MNIST

DVBW
UBW
DW
CBW
DT
DIPhard

DIPsoft

DIPhard (DS)

0.8

0.9

1.0

D
istribution Sim

ilarity

(a) WSR/DS vs. Injection Rate

0.2% 0.4% 0.6% 0.8% 1.0%
Watermark Injection Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
e

MNIST (Label-only)

DVBW
UBW
DW
CBW
DT
DIPhard

(b) P -value vs. Injection Rate

0.2% 0.4% 0.6% 0.8% 1.0%
Watermark Injection Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
e

MNIST (Confidence Access)
DVBW
UBW
DW
CBW
DT
DIPsoft

(c) P -value vs. Injection Rate

0.2 0.4 0.6 0.8 1.0
Watermark Injection Rate (%)

0.70

0.75

0.80

0.85

0.90

W
at

er
m

ar
k

Su
cc

es
s R

at
e

wikitext-2

DVBW
FunctionMarker
CBW
DIPhard

DIPsoft

DIPhard (DS)

0.7

0.8

0.9

1.0

D
istribution Sim

ilarity

(d) WSR/DS vs. Injection Rate

0.2% 0.4% 0.6% 0.8% 1.0%
Watermark Injection Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
e

wikitext-2 (Label-only)

DVBW
FunctionMarker
CBW
DIPhard

(e) P -value vs. Injection Rate

0.2% 0.4% 0.6% 0.8% 1.0%
Watermark Injection Rate (%)

0.02
0.04
0.06
0.08
0.10
0.12
0.14

P-
va

lu
e

wikitext-2 (Confidence Access)
DVBW
FunctionMarker
CBW
DIPsoft

(f) P -value vs. Injection Rate

Figure 13: On the MNIST and wikitext-2 tasks, the effec-
tiveness of DVBW, UBW, DW, CBW, DT, FunctionMarker,
DIPhard and DIPsoft across different low injection rates.

Table IX: The dataset verification performance of DIPhard and
DIPsoft, where we extend them to the IMDb and AGNews
tasks and use two LLMs, such as T5 and LLaMA-2-7B.

Watermarking ↓ Model → LSTM T5 LLAMA 2-7B
WSR / DS P -value WSR / DS P -value WSR / DS P -value

DIPhard
IMDb 98.3% / 0.93 10−3 99.2% / 0.94 0 100% / 0.95 0

AGNews 96.1% / 0.93 10−3 100% / 0.96 0 100% / 0.95 0

DIPsoft
IMDb 92.6% / - 10−8 85.2% / - 10−6 88.3% / - 10−6

AGNews 85.9% / - 10−8 87.4% / - 10−8 90.7% / - 10−9

J. Limitations of DIP

We revisit the evaluation of DIP. As shown in Table II, DIP
fails to effectively inject probabilistic watermarks when paired
with a subtle watermark design (i.e., Dynamic), achieving only
63.1% WSR and a P -value of 0.1 on average. This suggests
that DIP is incompatible with such designs. Similar limitations
are observed in other baselines, mainly because a 1% injection
rate is insufficient for the model to learn the intended wa-
termark patterns from these watermarked samples. Although
increasing the injection rate can mitigate this problem, doing
so introduces a trade-off between watermark strength and
practicality (RM1), which we leave for future investigation.

18

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

This artifact provides the implementation of our proposed
dataset watermark injection and verification framework, DIP.
It demonstrates the complete workflow of using DIP for DOV
under two API settings. The provided code reproduces the
experimental results presented in the paper, validating the
advantages of DIP.

1) How to access: The code is available at GitHub repos-
itory: https://github.com/SixLab6/DIP.

DOI link to the public permanent repository Zenodo:
https://doi.org/10.5281/zenodo.17873466.

Note: This artifact has been evaluated by the NDSS Artifact
Evaluation Committee and has been found to be available,
functional and reproducible.

2) Hardware dependencies: At a minimum, the following
hardware requirements are required for artifact evaluation.

• CPU: We use an Intel(R) Core(TM) i9-10850K CPU @
3.60 GHz with 10 cores and 64 GB RAM.

• GPU: We use a GeForce RTX 3090 GPU with 32GB
of video memory for faster training and evaluation. (Op-
tional)

3) Software dependencies:
• Operating System: The code has been tested on Ubuntu

20.04.6 LTS. This operating system is recommended to
ensure compatibility and reproducibility of results. Other
operating systems (e.g., Windows) may also work, but
consistency of results cannot be guaranteed.

• Python Version: The code requires Python 3.8 or higher.
It is recommended to install all dependencies specified in
the requirements.txt file to ensure compatibility.

• CUDA and cuDNN: To use the GPU for accelerated
computation, make sure that CUDA 12.0 or higher and
cuDNN are installed (Optional).

4) Benchmarks: We evaluate DIP on open-source bench-
mark datasets. For image data, we use CIFAR-10 with VGG-
16/ResNet-18 architectures. For text data, we use the PTB-
Text-only dataset with the GPT-2 model. All datasets and mod-
els are publicly available and widely regarded as innocuous
baselines.

B. Artifact Installation & Configuration

1) Installation: Please download our code from our GitHub
repository. And run pip install -r requirements.txt for down-
loading dependencies.

2) Dataset and Model: To facilitate reproducibility, we
provide intermediate experimental data on Zenodo, allowing
researchers to reproduce our results without separately down-
loading the datasets or retraining the models.

C. Experiment Workflow

The artifact contains the main workflow of DIP, which
consists of the following steps:

• (1) Selecting samples using the distribution-aware algo-
rithm.

• (2) Injecting probabilistic watermarks into the dataset
(DIPhard or DIPsoft).

• (3) Performing two-fold verification.

D. Major Claims

We emphasize that our framework, DIP, offers several
key advantages: it achieves effective performance with low
injection rates, a low false positive rate, no degradation in
model utility, and strong robustness against three adversarial
environments. Moreover, DIP is applicable not only to the
image domain but also to the text domain, particularly for
large language models.

• (C1): According to Table II of the original paper, in
the image domain, DIP achieves over 95% watermark
success rates (WSRs) and a distribution similarity (DS)
above 0.93 at a 1% watermark injection rate, enabling
reliable DOV through two-fold verification. Meanwhile,
models trained on watermarked datasets maintain ac-
curacy comparable to those trained on clean datasets.
Similarly, as reported in Table IV, in the text domain,
DIP attains over 75% WSRs and a DS above 0.91 at
a 1% watermark injection rate, demonstrating effective
DOV as well.

• (C2): As presented in Table III and Table V of the
original paper, models not trained on the watermarked
dataset do not exhibit any watermark signals. DIP’s
watermark verification produces P -values higher than the
significance level of 0.05, suggesting that DIP rarely
produces false positives.

• (C3): Figure 6, Table VI and Table VII of the origi-
nal paper demonstrate that DIP remains effective under
data augmentation, dataset cleansing, robust training, and
backdoor defenses. The results are superior to existing
SOTA watermarking methods such as DW and UBW.

E. Evaluation

After configuring the experimental environment as specified
above, please follow the instructions in the README.md
file to execute the experiment. The expected results (C1-C3)
should be consistent with, and not lower than, those reported
in the original paper. The total runtime (C1-C3) is expected
to be within five hours.

19

https://github.com/SixLab6/DIP
https://doi.org/10.5281/zenodo.17873466

	Introduction
	Related Work
	Intrusive Data Copyright Protection
	Non-intrusive Data Copyright Protection
	Limitations for Practical DaaS Scenarios

	Preliminaries
	Threat Model
	Problem Statement

	Data Intelligence Probabilistic Watermarking
	Overview
	Distribution-aware Sample Selection
	Hard-Label Probabilistic Watermarking
	Soft Probability Watermarking

	Performance Evaluation
	Experiments on Image Classification Tasks
	Model Selection and DIP settings
	Evaluation on Effectiveness
	Evaluation on Specificity

	Experiments on Text Generation Tasks
	Model Selection and DIP settings
	Evaluation on Effectiveness
	Evaluation on Specificity

	Experiments on Regression Task

	Practical DaaS Scenarios
	Injection Budget Below 1%
	Image Classification
	Text Generation

	Adversarial Environments
	Data Augmentation
	Data Cleansing
	Robust Training

	Discussion
	Ablation Studies of DIP
	Advanced Adversarial Settings
	Query Budget of DIP
	Watermark Data Design G vs. DIP
	Hyperparameter Studies of DIPhard
	Hyperparameter Studies of DIPsoft

	Conclusion
	References
	Appendix A: Additional Details and Experiments
	Model Intelligence Protection
	Analysis of Harmlessness
	Datasets and Model Architectures
	Exemplified Watermark-carrying Samples
	Distribution-aware Sample Selection Algorithm
	Methodology Description
	Data Cleansing
	Robust Training

	Extensive Adversarial Environments
	Data Cleansing
	Online Sample Detection

	Injection Budget below 1% on MNIST and wikitext-2
	Experiments on Text Classification Tasks
	Limitations of DIP

	Appendix B: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Installation
	Dataset and Model

	Experiment Workflow
	Major Claims
	Evaluation

