CoordMail: Exploiting SMTP Timeout and
Command Interaction to Coordinate Email
Middleware for Convergence Amplification Attack

Ruixuan Li*T, Chaoyi Luf, Baojun Liu*f, Yanzhong Lin$, Qingfeng Pan® and Jun Shao¥ll
*Tsinghua University, TBeijing National Research Center for Information Science and Technology,
J;Zhongguancun Laboratory, §Coremail Technology Co. Ltd, 11Zhejiamg Gongshang University,
HZhejiang Key Laboratory of Big Data and Future E-Commerce Technology
*lirx25 @mails.tsinghua.edu.cn, *1bj@tsinghua.edu.cn, Tlucy@zgclab.edu.cn,

Y{tim, pqf} @coremail.cn, $¥chn junshao@gmail.com

Abstract—This paper introduces a novel and powerful email
convergence amplification attack, named COORDMAIL. Tradi-
tional email DoS attacks primarily send spam to targeted
mailboxes, with little ability to affect email servers’ operation.
In contrast, COORDMAIL exploits the inherent properties of the
SMTP protocol, i.e., long session timeouts and client-controlled
interactions, to cleverly coordinate reflected emails from various
email middleware and eventually direct them to an incoming mail
server simultaneously. As a result, the amplification capabilities
of different email middleware are concentrated to form highly
amplified attack traffic. From the SMTP session state machine
and email reflection behaviors, we identify many real-world email
middleware suitable for COORDMAIL, including 10,079 bounce
servers, 584 open email relays, and 6 email forwarding providers.
By building SMTP command sequences, COORDMAIL can main-
tain prolonged SMTP communications with these middleware at
an extremely low rate and control them to reflect emails steadily
at any given moment. We show that COORDMAIL is effective at a
low cost: 1,000 SMTP connections can achieve more than 30,000
times of bandwidth amplification. While most existing security
mechanisms are ineffective against COORDMAIL, we propose
feasible mitigations that reduce the convergence amplification
power of COORDMAIL by tens of times. We have responsibly
reported COORDMAIL to email middleware and popular email
providers, some of which have accepted our recommendations.

I. INTRODUCTION

Email is a vital medium for global online communication,
providing authentication functions for various network ap-
plications and security mechanisms [1]. Traditionally, email
denial-of-service (DoS) techniques are mainly implemented by
overwhelming targeted mailboxes with spam messages, known
as EmailBomb [2], [3]. Various types of email middleware are
leveraged for sending spam, such as website forms and sub-
scription lists. Eventually, mailboxes targeted by EmailBomb

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241414
www.ndss-symposium.org

are filled with spam messages, and users are hindered from
identifying important or malicious emails.

As the email ecosystem continues to centralize, many do-
mains and users are relying on a limited number of email
servers [4]. As a result, compared to bombing mailboxes
with spam, generating massive amplification traffic from the
email protocol (i.e., SMTP [5]) and reflecting it against email
servers, aiming to exhaust their available bandwidth or clog
their task queues, will have more severe consequences. When
email servers fail to process or even drop incoming messages
due to a DoS attack, it can lead to business disruption,
compromised authentication mechanisms, or financial losses.
Key observation: SMTP connections can be coordinated to
form massive email amplification attacks. By analyzing the
SMTP session state machine, we find that the inherent proper-
ties of the SMTP protocol can be exploited to coordinate dif-
ferent SMTP connections, including long session timeout and
client-controlled interaction. To elaborate, SMTP is a delay-
tolerant protocol for transmitting large texts, typically with
long session timeouts to ensure reliable delivery. In addition,
it uses a client-controlled model where clients send SMTP
commands sequentially to initiate and manage SMTP sessions,
while email servers respond correspondingly to inform the
session status. Therefore, clients are able to maintain multiple
SMTP sessions simultaneously and control their progress and
completion times.

Our study: a novel and powerful SMTP amplification at-
tack targeting email servers. Exploiting the key observations,
we propose an email convergence amplification attack called
COORDMAIL. The goal of the attack is to flood incoming
mail servers with massive email traffic, thus affecting their
email reception capabilities. COORDMAIL establishes numer-
ous SMTP connections with different email middleware at a
low rate and coordinates reflected emails from all middleware
to reach the victim simultaneously. As a result, the amplifi-
cation capabilities of all middleware are concentrated on the
victim. To launch COORDMAIL, an attacker simply generates
an SMTP command sequence for each middleware, taking into
account the attack timing, email reflection interval, and the

middleware’s SMTP session state machine.

We identify three types of commonly-deployed email mid-
dleware which can be exploited for COORDMAIL: bounce
servers, open email relays, and email forwarding providers.
These middleware share a common feature: after an original
email is received via SMTP, it will be “fanned out” into one or
more reflected emails by the middleware to specified targets.
In addition, such middleware may produce amplification traffic
by themselves, such as by including larger email content in
the reflected email than the original email, or replicating one
original email into multiple reflected ones to different targets.

Through large-scale measurement, we identify email mid-

dleware in the wild that are suitable for COORDMAIL. Such
middleware must meet two requirements: supporting long
SMTP session timeouts and fanning out reflected emails
steadily. We find 10,079 bounce servers, 584 open email
relays, and 6 email forwarding providers that can be exploited
for attacks. They allow SMTP session timeouts exceeding 10
minutes, and the variance of the reflection interval is less
than 500 microseconds. In particular, bounce servers are most
effective for COORDMAIL because they can reflect larger
email content.
Evaluation and practical considerations. The larger the
number of coordinated email middleware and the longer
the SMTP connection accumulation time (attack period), the
higher the bandwidth amplification of COORDMAIL. For eth-
ical reasons, we deploy dedicated servers to conduct small-
scale experiments in the real world to demonstrate attack
feasibility. Using only 20 SMTP connections with email
middleware and 140 seconds as the attack cycle, the band-
width concentration efficiency [6] of COORDMAIL reaches
3,801x. In our controlled environment experiment, COORD-
MAIL achieves 2.5 Gb/s of traffic burst through 1,000 SMTP
connections and a 100-second attack cycle, with a concentra-
tion efficiency of 33,145x.

We also analyze how existing security mechanisms are
mostly ineffective against COORDMAIL, including email
sender authentication, host reputation checks, and rate limit.
For example, reflected emails from 77.89% of bounce servers
can pass SPF [7] or DKIM [8] verification, popular email
blocklists (e.g., Spamhaus [9]) only include 5.3% of bounce
servers, and outlook.com receives 87.77% of reflected emails.
Exceptionally, DMARC [10] can intercept about 95% of re-
flected emails, making it an effective mechanism for blocking
COORDMAIL traffic. However, due to the low deployment of
DMARC in the real world [11], email vendors typically do
not make it mandatory for senders [12], [13].

Mitigation and disclosure. Based on our analysis of the
COORDMAIL principle, we suggest that the email middleware
add a random delay in the process of reflecting emails. Ex-
perimental evaluation shows that increasing the random delay
from 0 to 30 seconds can reduce the amplification capability of
COORDMAIL by about 15 times. We have responsibly reported
COORDMAIL to the affected email middleware and 14 popular
email providers with mitigation recommendations. We have
received valid responses from 91 email middleware, with 22

administrators indicating that issue fixes are in progress or
complete. In addition, 8 email providers acknowledged CoO-
ORDMAIL, and proton.me plans to improve its email service.
Contributions. Contributions of this paper are as follows:

e Novel attack. By exploiting the SMTP timeout and com-
mand interaction, we propose a powerful email convergence
amplification attack, which can achieve 30k+ times bandwidth
concentration efficiency.

o Measurement and evaluation. We collect email middleware
on a large scale and analyze their attack applicability. We
comprehensively assess the defense effect of existing security
mechanisms against COORDMAIL.

e Mitigation and Responsible Disclosure. We provide mitiga-
tion measures to defend COORDMAIL and disclose vulnera-
bilities to email middleware and popular email providers.

II. BACKGROUND AND RELATED WORK

This section first describes the SMTP session state machine.
Then, we introduce three common types of email middleware
and existing security mechanisms to prevent traditional email
reflection attacks. Finally, we summarize prevalent reflective
DoS attack techniques.

A. SMTP Session State Machine

SMTP is an Internet standard protocol used for email
transmission [5]. Figure 1 depicts the typical process of email
delivery. To begin, the sender delivers the email to the outgoing
mail server through SMTP (@). Then, the outgoing mail server
negotiates an SMTP session with the incoming mail server
to transmit the email (). Finally, the recipient obtains the
email from the incoming mail server (). Considering that the
attack we proposed requires establishing and managing SMTP
sessions with the email middleware via SMTP commands,
we provide an in-depth analysis of the SMTP session state
machine in the following.

POP
== ==
Qsp Beor B0
(1] (2] (3]
Sender Outgoing Incoming Recipient
server server

Figure 1. Typical process of email delivery.

The SMTP communication process is a client-controlled
interaction. Specifically, the client sends SMTP commands
sequentially to initiate and manage the SMTP session. Ac-
cordingly, the server responds with status messages to inform
the SMTP session’s state, which mainly consists of two types:
successful action (e.g., 250 OK) and non-delivery report (e.g.,
550 User does not exist). The server maintains a state machine
for each SMTP client and transitions to the corresponding state
upon receiving different SMTP commands. Figure 2 shows a
simplified SMTP session state machine for the SMTP server,
beginning after the completion of the TCP handshake. The
SMTP server’s state can be categorized into two types: the
Necessary and Temporary SMTP session states. When the

server receives a Mandatory command, it enters the Necessary
state; when the server receives a Non-mandatory command, it
enters the Temporary state.

1
v 1
A -
Figure 2. Simplified SMTP session state for SMTP servers.

Mandatory commands are SMTP commands that the client
must send to complete the SMTP session, in the following
order: EHLO, MAIL, RCPT, DATA, and QUIT. After receiving
the DATA command, the server accepts the email content
(Content state) until the client sends the termination signal
(\r\n.\r\n), at which point the server enters the End state.
The client can send multiple RCPT commands to specify
different recipients for an email. After receiving the QUIT
command, the server determines that the SMTP session is
over. Non-mandatory commands are categorized into four
main types [14]: optional (e.g., NOOP), obsolete (e.g., TURN),
private (e.g., XADR), and invalid (e.g., ABCD). Typically, the
client can send Non-mandatory commands at any time when
the server is not in the DATA or Content states. The server
may limit the number of Non-mandatory commands a client
can send during a single SMTP session.

Furthermore, SMTP is a large text transmission protocol
with high compatibility and latency tolerance. To ensure
reliable delivery of email content, SMTP servers typically
support long session timeouts. The server sets a timeout for
each SMTP session state, with the duration varying between
different servers. In addition, the server may impose a total
timeout on the SMTP session to prevent excessive resource
consumption. RFC 821 [5] recommends a long timeout dura-
tion (e.g., 5 minutes) for each SMTP session state.

B. Email Middleware and Email Reflection

The definition of email middleware in this paper is: an
entity that automatically sends emails to the specified target
after receiving emails from the originator. Figure 3 illustrates
the email reflection process of email middleware. There are
two deployment types for email middleware: separation and
integration mode. In separation mode, the front node of the
middleware is responsible for receiving original emails from
the originator through the SMTP session. The back node
establishes the SMTP connection with the target server and
sends the reflected emails. Front nodes are typically associated
with MX records for middleware domains, while back nodes
are selected by the middleware. To ensure the performance and
stability of the email service, large providers typically deploy
multiple back nodes [15]. In integration mode, the middleware
handles both receiving and sending emails through a single
node. In the following, we introduce three common types of
email middleware.

Email middleware

Originator pmmmmmmmmmm o Target
=3 ¢! = g ==
—o(] : - — 30| [—--0]
50] | =4 [—eo | =X
= ! Frontnode Back node i A
Orlglqal o i : o ReflecFed
email T 'l::"?l : email

Integral node

Figure 3. Email reflection process of email middleware.

e Bounce server. The traditional expectation within the com-
munity is that email should either be delivered or bounced,
never silently lost. Therefore, some email systems are im-
properly configured to receive any email during the SMTP
communication and then filter out undeliverable emails. Fi-
nally, the bounce server sends the original email content with
the delivery failure reason to the originator, that is, the email
address specified in the MATL FROM command during the
original SMTP session [16].

e Open email relay. Properly configured email servers should
only transmit emails for domains or email addresses within
their service scope. However, an open relay receives email
from any sender and delivers it to the destination designated
by the originator, that is, the email address specified in the
RCPT TO command during the original SMTP session [17].
e Email forwarding provider. Email forwarding is a service
that automatically forwards received emails to other email
addresses. Users need to configure the forwarding relationship
at the provider, specifying the source email address to be
forwarded and the forwarding destination [18].

Threat and protection. The auto-reflective nature of the
above email middleware is often exploited by attackers to send
spam. Over 20 years ago, Bass et al. [19] and Frei et al. [16]
provided a detailed analysis of the workflow and hazards of the
bounce backscatter attack. In particular, Frei et al. [16] mea-
sured amplification metrics for 7,458 bounce servers, pointing
out that hundreds of bounced emails can be generated from
a single original email containing multiple invalid recipients.
Email middleware is also exploited to distribute phishing and
extortion emails [20], [21]. In addition, Shen et al. [22] and
Liu et al. [18] revealed that forwarding services can be used
to implement email sender spoofing attacks.

Currently, several mitigation measures have been proposed
to defend against email reflection attacks. We describe three
common types of security mechanisms below.

e Email authenticity. The authentication mechanisms can
detect forged reflected emails, including DomainKeys Iden-
tified Mail (DKIM) [8], Sender Policy Framework (SPF) [7],
Domain-based Message Authentication, Reporting, and Con-
formance (DMARC) [10]. DKIM ensures email content in-
tegrity through digital signatures, and SPF allows domains
to specify which hosts are authorized to deliver email on
their behalf. The DMARC mechanism builds on DKIM and
SPF, and additionally requires the alignment of authenticated

identifiers, i.e., the identity information in the From field must
align with the authenticated identifiers of SPF or DKIM.

e Host reputation. Email middleware involved in malicious
activities usually has a poor reputation. Incoming servers
can promptly interrupt SMTP connections with malicious
email middleware by querying blocklists. The email server
can block connections with email middleware by querying
blocklists during SMTP communications. DNS-based blocklist
(DNSBL) is a popular type of blocklist that contains malicious
hosts and is widely used by email providers [15], [23], such
as Yahoo [24] and Outlook [25]. In addition, Greylisting is
based on the host delivery behavior [26]. The server can use
Greylisting to reject the email when the host first connects and
accept it when the host attempts to deliver it again later.

e Rate limit. To defend against bursts of email reflection
attack traffic, email providers implement two main types of
rate limits. On the one hand, email providers can limit the
rate at which an IP address sends emails to them [27], i.e.,
IP sending rate limit. On the other hand, email providers can
limit the rate at which a user’s mailbox receives emails [28],
i.e., mailbox receiving rate limit.

C. Overview of Reflective DoS Attack Techniques

DoS attacks are prevalent and serious network threats that

usually flood the target system with large-scale traffic [29],
[30]. Attackers often use controlled machines or reflectors to
generate massive traffic directed at the victim’s side. Con-
trolled machines typically consist of botnets infected with
malware [31]. However, botnets are costly to acquire and
relatively easy to identify. In contrast, reflectors are usually
normal and legitimate devices in the wild [32].
Common reflective DoS techniques. Reflective DoS gener-
ates high-magnification attack traffic primarily by increasing
the size and number of response packets. Scholars have
pointed out that various mechanisms and instructions can
be used to increase the size of the response. For example,
querying DNS TXT and DNSSEC records [33], [34], and
requesting NTP synchronization servers [32], [35]. Regarding
the increase in the number of packets, Afek et al. [36] and
Moura et al. [37] proposed using DNS NS and CNAME
records to generate a high volume of responses, eventually
achieving amplification of thousands of times.

To amplify the magnifying power of reflectors, more com-
plex and subtle DoS strategies are being proposed. Pulsing
DoS (PDoS) is a powerful variant that subjects the target to
intermittent bursts of traffic, similar to periodic pulses [38].
PDoS attacks send packets at a low rate while aggregating
attack traffic at the victim’s side, producing bandwidth am-
plification of up to tens of thousands of times. Numerous
studies [39]-[41] have shown that PDoS attacks are highly
damaging to various network services and can even lead to
the permanent disruption of target systems. Guo et al. [42]
proposed a PDoS attack based on path delay, called CDN-
Convex. By exploiting the path delay between different CDN
nodes and the target server, CDN-Convex concentrates traffic
from multiple CDN nodes to the target server within a short

time. Li et al. [6] reported the DNSBomb attack, which uses
DNS response timeouts and query aggregation to cause victims
to receive a flood of DNS messages simultaneously. Addi-
tionally, researchers proposed DoS techniques for constructing
DNS response amplification and query loop links to execute
powerful traffic amplification attacks, such as TsuKing [43].
Common email DoS attack: targeting user mailboxes. Few
studies focused on DoS techniques in the email ecosystem.
The most well-known is EmailBomb, which floods the victim’s
mailbox with spam by submitting fake registration requests to
website forms or subscription lists. As a result, the victim
cannot locate important or malicious emails in the deluge
of unsolicited emails [44]. Jakobsson et al. [3] described
the construction of EmailBomb and analyzed website form
reflectors in the wild. They used 2,000 forms to fill the user’s
inbox with 2MB of data in about an hour. Moreover, Schneider
et al. [2] launched EmailBomb attacks on their mailboxes
through the darknet and analyzed the real-world harm of
attacks. They found that new abused form reflectors emerged
daily, and most of the reflected emails reached the victim’s
mailbox the day after the attack.

III. COORDMAIL ATTACK AND CONSTRUCTION

This paper reports a novel and powerful email amplifica-
tion attack that can achieve tens of thousands of bandwidth
amplification rates. Because the amplification is achieved by
coordinating different email middleware, we refer to this attack
as Coordinate Email (COORDMAIL). This section first de-
scribes the threat model of COORDMAIL and then details the
construction of the attack. Finally, we compare COORDMAIL
with common reflective DoS attack techniques.

A. Threat Model

COORDMALIL exploits the SMTP session timeout and SMTP
command interaction to coordinate reflected emails from dif-
ferent email middleware, causing them to reach the victim
simultaneously. Ultimately, COORDMAIL disrupts the avail-
ability of the incoming mail server through explosively am-
plified traffic. COORDMAIL is based on the key concept of
time convergence, leveraging two inherent properties of the
SMTP protocol: long session timeouts and client-controlled
interactions. Specifically, after selecting the attack moment, the
attacker gradually accumulates SMTP sessions with various
email middleware, maintaining all sessions through SMTP
command sequences, i.e., the SMTP command sending order
and the corresponding sleep intervals. When approaching the
attack moment, the attacker completes the SMTP session with
each middleware, and reflected emails from all middleware are
aggregated to the victim. The attack cycle can be arbitrarily
specified by the attacker.

The requirements for an attacker to carry out COORDMAIL
are extremely low. First, the attacker only needs a low-
bandwidth SMTP server to send email, which is unlikely
to produce detectable network-traffic spikes. To evade cloud
provider monitoring that flags high CPU utilization, the at-
tacker can coordinate SMTP connections using their own local

machines. Moreover, attackers can deploy multiple servers
to distribute load and reduce the detection risk and per-host
resource usage. Second, the attacker collects a batch of email
middleware that supports long SMTP session timeouts and
stably sends reflected emails.

The victims of COORDMAIL are IP addresses with email
receiving capabilities, such as incoming mail servers of email
service providers, forwarding platforms, and websites. CO-
ORDMAIL fills the email processing queue or consumes the
available bandwidth of the victim server. Given the high
centralization of email services [45], successful DoS attacks
on popular incoming servers can impact numerous domains
and users.

B. Attack Construction

The amplification factor of traditional email backscatter
attacks depends primarily on the capabilities of email mid-
dleware [16], making it difficult to generate extremely high-
bandwidth traffic that can quickly overwhelm the target server.
We recognize that the SMTP session timeout and SMTP com-
mand interaction can be exploited to combine the amplification
capabilities of different email middleware.

o Email middleware o Victim
Low rate traffic | =z i Reflected === |
— =20 H email ! == !
C@Original! EER 4 ay = ;
e email | ... :m: :
H ! ! Incoming mail
- = ! | |
Attacker BB ot e server |
— ! =n | ® Attack ['
o <) moment
® EHLO
(—:-9] 9
Sleep__@ SMTP command :b Session maintenance
Attacker Approach I @luQUIT Email and timed completion
attack moment b middleware

Figure 4. Workflow of the COORDMAIL attack.

Attack overview. Figure 4 illustrates the workflow of COORD-
MAIL, which consists of three key steps. First, the attacker
gradually establishes SMTP connections with email middle-
ware. Second, the attacker maintains the SMTP connections
and completes the sessions with various middleware at specific
times. Third, reflected emails from all middleware reach the
victim simultaneously.

e Low-speed connection to email middleware (@). The
attacker first selects an arbitrary attack moment and a batch of
email middleware. Then, the attacker sequentially establishes
SMTP connections with email middleware at a low rate, com-
pleting the process before the attack moment. By establishing
only one or a few connections with each email middleware,
the attack avoids being blocked for connecting too quickly.

e Session maintenance and timed completion (). The
attacker maintains SMTP connections with each email mid-
dleware until close to the attack moment. To achieve this,
the attacker creates SMTP command sequences to specify the
sending order of SMTP commands and their corresponding

sleep intervals. Before the SMTP session state machine ex-
pires, the attacker sends an SMTP command to refresh the
state timeout. Simultaneously, the attacker calculates when to
complete the SMTP session with each middleware, consid-
ering the attack moment, path latency, and email reflection
interval. When the designated moment arrives, the attacker
sends the QUIT command to each email middleware.

o Concentrate reflected emails at victim (). After receiving
the original emails from the attacker, the email middleware
sends reflected emails to the victim. By specifying the time to
send the QUIT command, the differences in reflection interval
and path latency between various email middleware are offset.
As a result, all reflected emails are aggregated at the victim
side within a short period.

Below, we present the details of COORDMAIL construction,

including how to construct original emails sent to middleware
and how to build SMTP command sequences to manage the
SMTP session with email middleware.
Construct original email. The reflection behavior of different
email middleware varies [18], so it is necessary to construct
different original emails. We elaborate on three types of origi-
nal emails and the process by which attackers use middleware
to reflect emails to the target server. Figure 5 shows examples
of original and reflected emails during the attack. Note that
the examples we provided do not cover all cases.

Original email

Reflected email

MAIL FROM: exist@victim
RCPT TO: non-exist@bounce
From: exist@victim

To: non-exist@bounce

[Original email body]

MAIL FROM: <>
RCPT TO: exist@victim
From: exist@bounce
To: exist@victim

[Bounce body + Original body]

(a) Bounce server

MAIL FROM: random@attacker
RCPT TO: exist@victim

From: random@attacker

To: exist@victim

[Original email body]

MAIL FROM: random@attacker
RCPT TO: exist@victim

From: random@attacker

To: exist@victim

[Original email body]

(b) Open email relay

MAIL FROM: random@attacker
RCPT TO: exist@forward

From: random@attacker

To: exist@forward

[Original email body]

MAIL FROM: [code]@forward
RCPT TO: exist@victim

From: random@attacker

To: exist@forward

[Original email body]

(c) Email forwarding provider

Figure 5. Examples of original emails (sent to email middleware) and reflected
emails (sent to victim server).

e Bounce server. The MAIL FROM field indicates the
“reverse-path” of the email [5], which the bounce server uses
to determine the reflection destination. Therefore, the attacker
specifies the victim’s address in the MAIL FROM field of the
original email, and sets the RCPT TO field to a non-existent
user to ensure the original email is deemed undeliverable

by the bounce server. After that, the bounce server sets the
RCPT TO field to the victim’s address when sending the
bounced email. Because the victim server may reject bounced
emails destined for non-existent users, the attacker should
ensure that the victim’s email address is an existing account.
Furthermore, many bounce servers receive and reflect emails
that fail SPF checks (see Section IV-A), so the original email
is not rejected for spoofing the victim’s domain. Moreover,
bounce servers usually set the MAIL FROM field of the
bounced emails to empty (<>) to avoid email delivery loops.
Bounced emails typically contain additional email content to
explain the reason for rejecting the original email.

e Open email relay. The open relay does not change the
email routing path, and just delivers emails according to the
destination of the original email. Therefore, the attacker can
direct the reflected email to the victim server by setting the
RCPT TO field of the original email to the victim’s address. To
ensure that the reflected emails pass authenticity verification,
the attacker configures valid DKIM and DMARC records for
the domain specified in the MAIL FROM field and includes
the IP address of open relays in the SPF record. Similar to
the bounce server, the RCPT TO field of the original email
should be set to the existing victim’s email address.

e Email forwarding provider. The forwarding provider de-
termines the destination of the reflected email based on the
user’s configuration. The attacker can instruct the forwarding
provider to send emails to the victim in two ways. One way
for the attacker to do this is to obtain a legitimate account
with the forwarding provider and configure the received email
to be forwarded to the victim. The other is that the attacker
exploits the forwarding relationships of the provider’s existing
account. Therefore, the attacker needs to find email addresses
that are configured to forward emails to the victim. After that,
the attacker sets the RCPT TO field of the original email to the
email address managed by the forwarding provider. Finally, the
forwarding provider automatically sends emails to the victim,
and the domain in the MATL, FROM field of the reflected email
is the forwarding provider’s domain.

To increase attack amplification, the attacker can instruct the
email middleware to send multiple reflected emails for a single
original email. The attacker designates many recipients for the
original email by sending multiple RCPT commands, and the
middleware will send one reflected email for each recipient.
For bounce servers and open relays, recipient addresses can be
generated from a batch of random usernames or subdomains.
For forwarding providers, recipient addresses correspond to
different legitimate accounts.

Build SMTP command sequence. Through SMTP com-
mands, COORDMAIL can maintain and coordinate SMTP
sessions with front nodes of different email middleware. We
first analyze the duration of each stage of an email reflection
attack, as shown in Figure 6, including the following key
moments and durations.

e Mstart: The moment the attacker completes the TCP
handshake with the middleware.

e Matta: The moment when the victim is attacked.

e Mquit: The moment the attacker sends QUIT command.

e Dprod: The duration of the middleware to produce the
reflected email.

e Dorig: The path latency between attacker and middleware.
e Dreri: The path latency between middleware and victim.

-

Attacker Email middleware Victim
Mart|— TCP connection ——
Sleepye, |:
- SMTP command ——
Sleep.. ot
Mquil — QU[T Dprud
Produce
o P_"fi_g _________ reflected|,__ _I_)fc_"_ RN
. atta
Path latency email |Path latency

Figure 6. Time diagram of an email reflection attack.

The values of Mstart and Matta are specified arbitrar-
ily, Mquit can be calculated, Dprod, Dorig, Drefl can be
measured. To calculate Mquit, the attacker first measures the
path latency between its server and the email middleware, i.e.,
Dorig. Then, the attacker sends an email to the middleware
and directs the reflected email to the controlled server. The
attacker records the moment of sending the QUIT command
(M1) and the moment of receiving the SMTP connection
from the middleware (M2). Dprod is calculated as follows:
Dprod=(M2—M1)—(2%Dorig). In terms of measuring the path
latency between the email middleware and the victim (Dref1),
the attacker can utilize the King method [46], which is also
used in other DoS attacks [6], [42] to approximate the latency
between Internet hosts. Then, the attacker calculates the Mquit
as follows: Mquit=Matta—Drefl—Dprod—Dorig.

After determining Mquit, the attacker needs to maintain the
SMTP session with the email middleware through the SMTP
command sequence. To ensure that the QUIT command is
sent in time at the Mquit, the attacker sends all the email
content before the Mquit and sleeps until the Mquit arrives.
Algorithm 1 in Appendix A illustrates the method for building
an SMTP command sequence, including the SMTP commands
sent to the email middleware and the corresponding sleep time
after each sending. The key parameters of email middleware
are as follows:

e Ttarg: Target maintenance time of SMTP session.

e Tnece: Total timeout of Necessary SMTP session states.

® Dnece: Max duration of the Necessary SMTP session state.
e Dtemp: Max duration of the Temporary SMTP session state.
e Ntemp: Max number of consecutive Temporary SMTP ses-
sion states.

In the above parameters, Ttarg is defined according to the
attack requirements (Mquit—Mstart), while the other parame-
ters are different for each email middleware. The attacker pri-
oritizes maintaining the SMTP session by sending Mandatory

SMTP commands. In particular, the attacker assigns sleep time
for each Mandatory command according to the ratio of the
max duration of the corresponding Necessary SMTP session
states to Tnece. If Tnece is less than Ttarg, the attacker
supplements the SMTP session duration by Non-mandatory
commands until Ttarg is satisfied. Note that the sleep time
and number of all commands are within the requirements of
Dnece, Dtemp, and Ntemp.

For example, Dnece is {TCP: 30, EHLO: 30, MAIL: 30,
RCPT: 30, DATA: 60, Content: 60, End: 30}, Dtemp is
{NOOPZ 60}, Ntemp i8S {NOOPI 30} If Ttarg is 180, the
SMTP command sequence is {(TCP, 20), (EHLO, 20), (MAIL,
20), (RCPT, 20), (DATA, 40), (Content, 40), (End, 20)}; if
Ttarg is 280, the SMTP command sequence is {(TCP, 30),
(EHLO, 30), (MAIL, 30), (RCPT, 30), (NOOP, 10), (DATA, 60),
(Content, 60), (End, 30)}. Following the SMTP command
sequence, the attacker sends SMTP commands in order and
then sleeps for the corresponding time. When the Mguit
arrives, the attacker immediately sends the QUIT command
to the email middleware.

C. Comparison with Common Reflective DoS Techniques

Table I presents a comparison of the attack technique of
COORDMAIL and common reflective DoS attacks. Traditional
reflective DoS attacks require spoofing IP addresses to target
the victim server, so attackers typically use stateless protocols,
such as DNS and NTP, to transmit the attack traffic [32],
[35]. The idea of COORDMAIL is inspired by PDoS attacks
(time convergence), enabling it can achieve a high bandwidth
amplification effect. Compared to traditional email-based re-
flection attacks, such as bounce backscatter and EmailBomb,
COORDMAIL can generate explosive traffic bursts against
email servers.

Furthermore, PDoS attacks utilizing DNS and CDN depend
on specific software behaviors (e.g., DNS timeout) and path
delays (e.g., HTTP transmission). For example, DNSBomb and
CDN-Convex attacks typically require accumulating connec-
tions to middleware (DNS resolvers or CDN nodes) over a
period, usually within 60 seconds [6], [42]. COORDMAIL is
a time-convergent reflective pulsing DoS whose novelty lies
in its carrier and techniques. First, DoS risks in the email
ecosystem have not been thoroughly explored, and previous
pulsing DoS carriers mainly include DNS, CDNs, etc. Our
work demonstrates a new attack surface where SMTP can
be abused for PDoS. Second, email middleware is diverse
and independently managed, which makes traffic coordination
challenging. COORDMAIL utilizes SMTP’s built-in interaction
commands and timeouts to manage session state machines of
various middleware. Unlike previous time-convergent pulsing
attacks that rely on path delays [38], [42], COORDMAIL
enables finer-grained, more stable coordination.

IV. COLLECTING EXPLOITABLE EMAIL MIDDLEWARE

In this section, we first collect email middleware in the
real world through large-scale scanning. Then, we examine

Table 1
COMPARISON OF COMMON REFLECTIVE DOS ATTACK TECHNIQUES.

Attack ‘ Carrier ‘ w/o IP spoof! ‘ Amplification
Eggéttliz[rlldl[?aﬂ, [35] NTP ‘ X <IK BAF*
TsuKing [43] | DNS | v | IK-40K PAF?
CDN-Convex [42] | CDN | v | 1K-5K BCE?
DNSBomb [6] | DNS | X | 1K-30K BCE
Bounce backscatter ‘ SMTP ‘ v ‘ 50 BAF?
COORDMAIL | SMTP | v | 30K BCE?

! X means IP address spoof is required; " means no need.

2 BAF: bandwidth amplification factor. PAF: packet amplifi-
cation factor. Bandwidth centralization efficiency (BCE) is
used to evaluate the effectiveness of PDoS attacks and is
also often referred to as BAF [6].

3 See Section V-A for evaluation experiments.

the attack metrics of email middleware and select those that
are suitable for constructing COORDMAIL.

A. Finding Email Middleware in the Wild

COORDMAIL attack coordinates SMTP sessions with front
nodes of email middleware and cannot directly select back
nodes. In this paper, we use front nodes to count the number
of bounce servers and open email relays, and use the domain
names to count the number of forwarding providers. Moreover,
the number of back nodes we found is only a lower bound.
Bounce server. In order to complete the SMTP session with
the bounce server, we need to obtain the domains they serve.
As such, we first extensively collect domains, then send
original emails to them and monitor reflected emails.

We obtain domains from popular domain lists and leaked
email datasets. Specifically, we downloaded three Top IM
popular domain lists on March 1, 2024, including Tranco [47],
Umbrella [48], and Majestic [49]. We then removed domains
without MX records and finally collected 1,064,761 unique
domains. Furthermore, we obtained the Adobe email leakage
dataset [50] and extracted 9,208,073 domains. After removing
domains without MX records, we obtained 5,027,648 unique
domains. Then, we purchased a domain name and deployed the
email service on a dedicated cloud server. Following this, we
send an original email to each collected domain. The recipient
of the original email is a non-existent user under the target
domain, and the sender is the email address containing random
identifiers under our domain. To identify bounce servers that
receive emails from spoofed sender domains, we configure
incorrect SPF, DKIM, and DMARC records for our domain.
Because recipients of bounced emails correspond to senders of
original emails, we can identify bounce servers by matching
random identifiers.

As shown in Table II, we collect 19,184 bounce servers
that served 25,821 domains and deployed 11,114 back nodes.
By analyzing the MX records of bounce domains, we find
that they are mainly hosted by four Japanese email providers

Table 11
STATISTICS ON IDENTIFICATION AND ATTACK SUITABILITY OF
EMAIL MIDDLEWARE IN THE REAL WORLD.

Email Middleware Front Back COORDM.AIL. .
number suitability
Bounce server 19,184 11,114 10,079 [)
Open email relay 1,299 1,279 584 ©
Forwarding provider 10 9,581 6 ©

! @ means high suitability; © means moderate suitability.

and two security organizations, which together account for
40.75%. Moreover, 112 of Tranco top 10K domains offer
bounce services. Regarding the content of bounced emails,
most explain the reasons for delivery failures, with 22,359
(86.59%) bounce domains including the original email content
in bounced emails. Furthermore, 17,998 (93.82%) bounce
servers set the MATIL FROM field of bounced emails to empty.

We further analyze the back nodes responsible for sending

bounced emails. By querying the IP geodatabase [51], we find
that the back nodes of bounce servers are widely distributed
globally, covering 171 countries and 4,728 autonomous sys-
tems (ASes). The top three ASes are AS8075 Microsoft Cor-
poration, AS16509 Amazon.com, Inc, and AS16276 OVH SAS.
To understand the infrastructure of the back nodes, we analyze
their domains and software through the Received headers
in bounced emails. Among the 6,768 back nodes that provide
valid domain information, 612 are deployed on Outlook, and
334 are deployed on Proofpoint. The software running on
4,684 (42.14%) back nodes is Postfix. In addition, we analyze
the deployment type of bounce servers. For 21,771 bounce
domains that we can obtain front and back node domains,
15,970 (73.56%) of them belong to the integration mode, i.e.,
the front and back nodes are deployed in the same second-level
domain (SLD).
Open email relay. Open relays transmit the original email
directly, so we do not need to collect the domains they serve.
We first scan IP addresses with open TCP/25 ports and then
send the original emails to them.

On March 10, 2025, we used Zmap [52] to collect IP
addresses with open TCP/25 ports on the Internet. Next, we
send the original email to each IP address, and the sender’s
and recipient’s domains are deployed on two servers that we
control. The original emails sent to different IP addresses
are identified by unique email addresses. Finally, we analyze
incoming emails on our recipient server and collect open relays
by matching the unique email addresses.

In total, we collected 1,299 open email relays, correspond-
ing to 1,279 back nodes. The front and back nodes of 931
(71.67%) open relays share the same IP address. The back
nodes are distributed across 57 countries, with China and
the United States accounting for 35.41%. Furthermore, 742
(58.01%) back nodes are running the Postfix software. Almost
all emails sent by open relays only add Received headers
on the basis of the original emails.

Email forwarding provider. The email forwarding relation-

ship depends on the user’s configuration, that is, <forwarding
initiator, forwarding destination> pair. The initiator is the
valid email address of the forwarding provider, and the des-
tination is the email address to which emails received by the
initiator are forwarded. Referring to previous work [15], [22],
we investigated ten popular email forwarding providers.

We first analyze the possibility of an attacker directly setting
the victim’s email address as the forwarding destination. As
shown in Table VI of Appendix B, six providers allow users
to set any email address as the forwarding destination without
requiring authentication. These providers include outlook.com,
hotmail.com, icloud.com, 163.com, 126.com, and yeah.net.
The remaining four providers send verification emails to
the forwarding destination to request the activation of the
forwarding service.

Furthermore, the attacker can leverage existing forward-
ing relationships in the real world to execute COORDMAIL.
This avoids the need to manually acquire a large number
of accounts and can bypass the provider’s bulk registration
detection and forwarding verification. By analyzing forward-
ing behavior, we observe that 9 email providers use cus-
tom templates to generate MAIL FROM fields for forwarded
emails. In collaboration with Coremail [53], a large email
service provider in China, we identified 858,785 forwarding
relationship pairs from one year’s email reception logs. In
particular, two business domains are associated with more than
10K forwarding relationships. Moreover, we observe that 9
forwarding providers deploy 9,581 back nodes by analyzing
Coremail’s email logs. Appendix B provides a detailed de-
scription of the identification process and analysis results for
the forwarding relationships. In addition to using large-scale
email logs, attackers can leverage email-tracking technology
to identify forwarding relationships, as documented in [54].

B. Analyzing Attack Metrics for Email Middleware

Amplification capability. The amplification capability of
email middleware is primarily reflected in two aspects.

e Npack: The magnification of the total packet size in the
reflected email session compared to the original email session,
mainly due to the larger content in the reflected email body.

We find that the Npack of bounce servers is relatively large,
while the Npack of open relays and forwarding providers is
typically less than 2. Specifically, the Npack of 8,834 (46.05%)
bounce servers is more than 5 times larger compared to the
original email communication. The packet magnification of
609 bounce servers exceeds 20, as they include a lot of
unnecessary information in the content of bounced emails,
such as attachments and images.

e Nrcpt: The number of reflected emails generated by email
middleware for one original email, which is mainly achieved
by specifying multiple recipients for the original email.

We send original emails with different recipients through
the RCPT command to the email middleware and analyze the
number of reflected emails we receive within 10 seconds. We
find that most email middleware generates reflected emails for
each different recipient in one original email. The difference

is that bounce servers usually consider email addresses with
different usernames (before @) as different recipients, while
most open relays send only one email to recipients with the
same fully qualified domain name (FQDN). Therefore, the at-
tacker needs to specify email addresses with different FQDNs
(after @) as recipients in the original email. To achieve this,
the attacker can generate many random subdomains for their
domain and point the MX records of all subdomains to the
victim’s server. For forwarding providers, the attacker needs
to set the recipients to different legitimate email accounts.

Because COORDMAIL cannot control all reflected emails

corresponding to one original email reaching the victim at the
same time, the excessive Nrcpt does not enhance the attack
effect. We choose Nrcpt values of 5 and 10 for measurement.
The results show that 4,218 bounce servers support Nrcpt of
5, and 3,719 support Nrcpt of 10; 868 open relays support
Nrept of 5, and 398 support Nrept of 10; all 10 forwarding
providers support Nrcpt of 10.
SMTP session timeout. COORDMAIL utilizes SMTP com-
mand sequences to maintain and coordinate SMTP communi-
cation. To this end, we measure the SMTP session timeouts
for front nodes of email middleware. During communication
with email middleware, we send SMTP commands and then
hold the connection for a specified duration. If we successfully
complete the SMTP session with the middleware afterward,
we consider the corresponding SMTP session state timeout to
exceed the specified duration. Note that we test the allowable
duration for only one SMTP session state in each commu-
nication. Specifically, we test seven Necessary SMTP session
states: TCP, EHLO, MAIL, RCPT, DATA, Content, End; and
six Temporary SMTP session states: optional (NOOP, HELP,
VRFY), obsolete (TURN), private (XADR), invalid (ABCD).
Considering the cost of testing, we specify seven durations
for testing: 5, 10, 30, 60, 120, 180, and 300 seconds. We also
test the number of consecutive Temporary SMTP session states
permitted by email middleware, up to 30 times.

We find that most email middleware supports long SMTP
sessions. The maintenance time of each SMTP session state
for 14,365 (74.88%) bounce servers and 1,004 (77.29%) open
email relays exceeds 300 seconds. The SMTP session state
timeout allowed by the 10 popular forwarding providers varies:
gmail.com, outlook.com, hotmail.com, and icloud.com support
session state timeouts longer than 300 seconds, while the
remaining six providers typically set timeouts shorter than 60
seconds. The timeout for yeah.net is particularly short, set to
only 10 seconds.

Figure 7 illustrates the number of consecutive Temporary
SMTP session states supported by email middleware. NOOP is
the most highly supported Non-mandatory command for email
middleware. We discover that 85.38% of middleware allows
clients to send at least 30 consecutive NOOP commands during
an SMTP communication. In contrast, obsolete, private, and
invalid commands are allowed in relatively small numbers. The
allowable number of Temporary SMTP session states varies
significantly among the 10 forwarding providers. All providers
support 30 consecutive NOOP commands, and 139.com only

accepts the NOOP command. The allowed number of consecu-
tive times of other Temporary SMTP session states is typically
no more than 10. A comprehensive list of SMTP session
timeouts for email middleware is provided in Appendix C.

1.09 — NooP (optional) - TURN (obsolete)
HELP (optional) —- XADR (private) [————'_—
0.81 — VRFY (optional) —— ABCD (invalid) |
0.6 I
E I
“0.41 i"—_"
0.2 1 = | — =
r~ —d
0.0 °F
0 5 10 15 20 25 30
Maximum number
Figure 7. Maximum number of consecutive times for Temporary SMTP

session states allowed by email middleware.

Additionally, we build SMTP command sequences as de-
scribed in Section III-B to measure the total SMTP session
timeout permitted by email middleware. Our measurements
show that 13,425 (69.98%) bounce servers, 831 (63.97%)
open email relays, and all ten email forwarding providers
allow an SMTP session duration of more than 10 minutes.
Overall, our results remain well below the maximum timeout
and command count limits permitted for SMTP session states.
Nevertheless, we demonstrate that a client can maintain SMTP
communication with the email middleware for a sufficiently
long period by leveraging SMTP command interaction.
Email reflection interval. COORDMAIL requires the email
middleware to return the reflected email within a consistent
and predictable interval. To evaluate this, we sent 20 original
emails to each email middleware, then calculated the average
and standard deviation of the reflection intervals. Our results
show that 12,465 (64.98%) bounce servers, 753 (57.97%)
open email relays, and 6 email forwarding providers exhibit
a mean reflection interval of less than 5 seconds and a
standard deviation below 500 milliseconds. Therefore, these
email middleware systems are capable of sending reflected
emails to target servers with relatively high temporal stability.

C. Selecting Suitable Email Middleware for COORDMAIL

COORDMALIL relies on time convergence to generate high-
bandwidth attack traffic. It is essential to select appropriate
email middleware to construct attacks. Specifically, we select
middleware that meets the following two criteria: 1) support
maintaining an SMTP session for more than 10 minutes and
2) exhibit an average reflection interval of less than 5s with
a standard deviation below 500 milliseconds. Ultimately, we
identify 10,079 (52.53%) bounce servers, 584 (44.96%) open
email relays, and 6 email forwarding providers (gmail.com,
qq.com, 163.com, 126.com, 139.com, sina.com) suitable for
constructing COORDMAIL.

Furthermore, bounce servers are the most suitable email
middleware for constructing COORDMAIL. First, due to
the larger size of reflected emails, bounce servers offer

higher amplification potential. Second, unlike email forward-
ing providers, which require the attacker to actively register
or discover forwarding relationships, the inherent backscatter
behavior of bounce servers can be directly exploited. Third,
the population of exploitable bounce servers is significantly
greater than that of other types of email middleware.

V. EVALUATION AND PRACTICAL CONSIDERATION

This section first evaluates the traffic amplification effect of
COORDMAIL in both real-world and controlled environments.
Considering that certain practical factors may reduce the dam-
age of attacks, we also analyze the effectiveness of mainstream
security mechanisms in defending against COORDMAIL.

A. Evaluating the Traffic Amplification Effect

We first introduce metrics to assess the attack effect. Draw-
ing on previous PDoS attack studies [6], [42], we use the
bandwidth concentration efficiency (BCE), also often referred
to as bandwidth amplification factor (BAF), to quantify the
effect of COORDMAIL. BCE indicates the ability of the attack
to aggregate traffic on the victim’s side, i.e., the multiple of
the peak attack traffic bandwidth over the victim’s required
bandwidth. The following metrics are defined to evaluate both
the attacker’s and the victim’s sides:
® Nmidd: The number of email middleware the attacker selects.
e Nrcpt: The number of different recipients of the original
email sent to the email middleware.

e Satta: The size of packets exchanged in an SMTP session
between the attacker and the email middleware.

e Svict: The size of packets exchanged in an SMTP session
between the email middleware and the victim.

® Tatta: Time used when accumulating SMTP connections,
i.e., attack cycle.

e Tvict: Time of arrival of reflected emails to the victim.

In the above metrics, we can specify the values of Nmidd,
Nrept, Tatta. For Satta, Svict, and Tvict, we measure
them for each email middleware by simulating both the at-
tacker and the victim. It is important to note that both outgoing
and incoming packets are counted. The size variation of Satta
primarily depends on the number of RCPT commands sent
to the middleware. By using the same metrics as previous
studies evaluating PDoS attacks [6], [42], we define the BCE
calculation of COORDMAIL as follows:

Nmidd
=1
>

By controlling the time when different email middleware
return emails, Tvict is usually several hundred milliseconds.
As such, the greater the number of coordinated middleware
and the longer the SMTP connection accumulation time can
result in the higher the BCE. We present the theoretical BCE
of the COORDMAIL in Appendix D.

We realize that experiments targeting production email
servers of large providers and real organizations would better
illustrate COORDMAIL’s practical impact. However, in accor-
dance with research ethics, we cannot perform DoS attacks in

(Svict; x Nrept;)

Nmidd
o Sattag

Tatta

_ X
BCE = Tvict

10

the wild because the resulting large-scale traffic may disrupt
victims’ operations. For assessing PDoS, prior studies have
established peer-accepted, ethically compliant procedures [6],
[38], [42], mainly by measuring BAF/BCE through controlled
victims. Following these works, we implement COORDMAIL
in both real-world and controlled environments to assess the
amplification effects. We restrict our use to a limited number
of real-world email middleware to demonstrate the practical
feasibility of the attacks. In addition, we simulate traditional
bounce backscatter attacks in controlled networks to compare
the impact of COORDMAIL.

Attacks in the real world. At first, we registered two cloud
servers to serve as the attacker and victim, respectively. Each
server is equipped with an 8-core, 2.5 GHz CPU, 8 GB of
RAM, and a 15 Mb/s network bandwidth. Subsequently, we
launch COORDMAIL against our servers, with attack metrics
of Nmidd of 20 and Nrcpt of 5. We prioritize constructing
attacks through email middleware with high amplification
capabilities, and use tcpdump [55] to capture the packets
exchanged by our servers.

15Mb/s

Victim-side max: 12.1Mb/s

c i 212
S 12Mb/s Attacker-side
'S 9Mb/s
©
S 6Mbls BCE: 3,801x
© 3Mbr/s
{ =
£ 30Kbrs
2 20Kb/s mean: 3.2Kb/s

10Kb/s

OKb/s pammtrrdaa A\ ; : AL

0 20 40 60 80 100 120 140
Time (s)

Figure 8. COORDMAIL experiment using email middleware in the real world
(Nmidd = 20, Nrcpt = 5).

Figure 8 presents the experimental results of the real-world
COORDMAIL. We achieve a BCE of 3,801 by utilizing 20
email middleware and a 140-second attack cycle. The average
bandwidth on the attacker’s side is measured at 3.2 kb/s, while
the victim’s side can instantly reach 12.1 Mb/s. However, the
BCE of the real-world COORDMAIL is lower than the theoret-
ical BCE, which is 7,150. Such a discrepancy arises due to the
fact that the victim completes the SMTP session interactively
with the email middleware in stages. COORDMAIL can not
guarantee that all packets in an SMTP session generated by
email middleware reach the victim immediately.

Attacks in the controlled environment. We set up two Linux
servers in our laboratory network, designating one server as the
attacker and the other as the victim. Due to the limited number
of physical machines, we deploy 1,000 instances across 10
Linux servers using Docker to simulate bounce servers. We use
Postfix software [56] to implement the email bounce function.
The bounce server is configured to generate one bounce
email for each distinct recipient in the original email. The
amplification of packet size for a bounce communication is 5x.
All controlled servers and instances are limited to a network
bandwidth of 10 Gb/s. We configure Nrcpt to 10 and use

1,000 bounce servers to execute COORDMAIL. To simulate a
traditional bounce backscatter attack, we send original emails
to bounce servers at a rate of 10 emails per second. The bounce
backscatter attack involves 1,000 bounce servers, with each
original email containing 10 different recipients.

3 Gb/s 7| Victim-side
£ 250Gbis |[[] Attacker-side| | .
g 20bis 2.5Gbis/
S 1.5Gbis
8 160 y
f = /
© 900 Kb/s mean: /" BCE:
T 600 Kbis - 76Kbis /|| 2314
pd /
300 Kbs - , J
0 Kbls PUNA (U\- MA A ..f‘m\/\I M‘T
0 100 200 300 400 500
Time (s)

Figure 9. COORDMAIL experiment using email middleware in the controlled
environment (Nmidd = 1,000, Nrcpt = 10).

As shown in Figure 9, with an average bandwidth of 76
kb/s and a 100-second attack cycle, COORDMAIL generates
an instantaneous bandwidth of 2.5 Gb/s on the victim’s side,
yielding a BCE of 33,145. Numerous studies have demon-
strated that such periodic burst traffic can lead to packet loss
and downtime of network services [6], [40]-[42]. In contrast,
our experiments show that the BAF of a traditional bounce
backscatter attack is only 48, whereas COORDMAIL can
amplify it by several orders of magnitude. Furthermore, CO-
ORDMAIL using hundreds of SMTP connections can achieve a
more powerful convergence effect than previous PDoS attacks.
Specifically, the DNSBomb attack achieves a BCE of about 1K
through most public DNS servers [6], and the CDN-Convex
attack requires 30 minutes of aggregation time to achieve more
than 1K BCE [42].

B. Analyzing the Defense Effect of Security Mechanisms

The attack effect of COORDMAIL depends on whether the
attack traffic can be successfully aggregated at the target
incoming mail server. If existing security mechanisms can
identify and block the attack traffic effectively, the impact of
COORDMAIL is mitigated. We first conducted a systematic
review of previous studies and summarized the common
protective measures that can be employed to defend against
COORDMAIL, as shown in Table III. Then, we investigate
the effectiveness of various security mechanisms in defend-
ing against COORDMAIL. Finally, we evaluate the practical
defenses employed by popular email providers to protect
against reflected emails. Our results indicate that the DMARC
mechanism can effectively block reflected emails generated
by COORDMAIL, while the effectiveness of other security
mechanisms is relatively weak. Many popular email providers
receive reflected emails from most email middleware.

Email authenticity. The incoming mail server can verify
email authenticity through SPF, DKIM, and DMARC, then
reject emails that fail verification. Currently, email authen-
ticity verification mechanisms are widely adopted by many

11

Table IIT
SURVEY OF COMMON EMAIL SECURITY MECHANISMS.

Type ‘ Security mechanism ‘ Defense!
. SPF [7] ©
Email | priv g ©
authenticity DMARC [10] °
Host DNSBL [23] O
reputation Greylisting [26] ©
Rate IP sending rate limit [27] O
limit Mailbox receiving rate limit [28] O
! @ means effective against COORDMAIL; © means

partially effective; O means ineffective.

domains [57], [58], especially SPF and DKIM. We examine
whether the reflected emails from email middleware can pass
SPF, DKIM, and DMARC verification. Because the sender
domains of reflected emails from open relays can be controlled
by attackers, these emails can pass the email authenticity
verification. If the bounce server sets the MAIL FROM field
to empty, we perform SPF inspection using the domain in the
EHLO field [7].

As shown in Table IV, among the 10,079 bounce servers
selected to construct COORDMAIL, the sender domains of
reflected emails from 5,834 (57.9%) bounce servers lack SPF
records (Missing), and authentication failed for 489 (4.8%) of
them (Fail). Most bounced emails lack support for DKIM and
DMARC mechanisms. Forwarding email providers generally
support SPF and DKIM, but the two providers (139.com
and sina.com) do not deploy DMARC mechanisms. Further-
more, no email providers include “p=reject” in their domain’s
DMARC record, which causes incoming mail servers to not
reject reflected emails that fail DMARC validation.

Overall, the incoming mail server can only block COORD-
MAIL traffic by forcibly rejecting reflected emails that fail
DMARC validation. Nevertheless, email providers typically
only require email to pass SPF or DKIM verification at
present [12], [13], and do not mandate DMARC, as its
deployment rate in the real world is relatively low [11]. We
discover that emails from 7,851 (77.89%) bounce servers could
be verified by SPF or DKIM.

Host reputation. The incoming mail server can interrupt
connections with email middleware of poor reputation during
SMTP communications. We analyze the effectiveness of two
types of email blocklists against COORDMAIL.

e DNSBL. Based on measurements from previous work [15],
we select the two most popular DNSBLs: Spamhaus [9]
and Spamcop [59]. Because the back node is responsible for
sending attack traffic to the victim, we query DNSBLs daily
for a month to check the reputation of back nodes. The results
show that about 40% of back nodes of open relays are included
in DNSBLs, while fewer back nodes from bounce servers and
forwarding providers are listed. In particular, only 536 (5.3%)
of the back nodes of bounce servers were listed in DNSBLs
over the course of a month. Therefore, popular DNSBLs offer
limited protection against COORDMAIL.

Table IV

STATISTICS ON THE DEFENSE OF SECURITY MECHANISMS AGAINST
REFLECTED EMAILS FROM SELECTED EMAIL MIDDLEWARE.

Security Bounce Open Forwarding
mechanism server relay provider
SPF 10,079 584 6

Missing 5,834 (57.9%) 0 0

Fail 489 (4.8%) 0 0
DKIM 10,079 584 6

Missing 7,652 (75.9%) 0 0

Fail 388 (3.8%) 0 0
DMARC 10,079 584 6

Missing 9,654 (95.8%) 0 2

Fail 112 (1.1%) 0 0

p=reject 42 (0.4%) 0 0
Email blocklist 8,756 367 3,936

Spambhaus 536 (5.3%) 234 (40.1%) 511 (13.0%)

Spamcop 179 (1.8%) 27 (4.6%) 169 (4.3%)

e Greylisting. The Greylisting rejects the tuple (sender IP
address, sender email address, receiver email address) for
the first delivery attempt and later accepts email from the
same tuple after a delay (e.g., 5 minutes). The incoming mail
server can use Greylisting to block a round of COORDMAIL
traffic. However, if the attacker later uses the same tuple to
construct COORDMAIL, the Greylisting cannot block it. If
the number of back nodes is large and the tuple retention
time is short, Greylisting can block a large part of the attack
traffic. Specifically, for email middleware with a large number
of back nodes, it is difficult for attackers to use the same
tuple to reflect emails. As shown in Table II, most bounce
servers and email relays have few back-end nodes, with about
80% showing a one-to-one front-back mapping. In contrast,
large forwarding providers have many back-end nodes, so
Greylisting can only mitigate part of the COORDMAIL traffic
that traverses large forwarders. Attackers can further weaken
Greylisting through an “attack warm-up” phase, in which
middleware is pre-used to send batches of emails to victims.
Regarding the tuple retention time, open-source greylisting
whitepapers report a tuple cache lifetime of up to 36 days [60],
as shorter periods disrupt legitimate email. Overall, Greylisting
cannot fully defend against COORDMAIL.
Rate limit. Rate limiting is a common strategy employed by
email providers to mitigate DoS attacks. Based on previous
research [15], [22], we select 14 popular email providers that
we can register for email accounts to investigate. Below, we
analyze the defensive effects of two common email rate limits
employed by popular providers against COORDMAIL.
o IP sending rate limit. The incoming mail server can impose
a maximum rate at which an IP address is allowed to send
emails. Thus, the attacker must avoid repeatedly connecting
to the victim via the same email middleware. However, the
core strength of COORDMAIL lies in coordinating different
email middleware, making IP sending rate limits ineffective
against the attack.

To assess the frequency limit that an attacker can use

12

the same middleware to attack a victim, we measure the
IP sending rate limit of popular email providers, which are
generally undisclosed. We configure an experimental email
server capable of successfully delivering emails to providers.
We then send emails to providers at a rate of 60 emails per
minute (the limit published by Gmail [27]) for no more than 10
minutes. As shown in Table V, six providers reject emails after
approximately one minute due to our server’s high sending
rate. Therefore, attackers should avoid connecting to a victim
using the same middleware more than 60 times per minute.
e Mailbox receiving rate limit. The incoming mail server can
set the maximum rate at which a mailbox can receive emails.
Therefore, attackers need to avoid frequently sending multiple
emails to the same mailbox of the victim. Additionally, at-
tackers can collect numerous real email addresses to facilitate
the construction of attacks. According to statistics [15], [61],
attackers can harvest billions of email addresses from public
resources, such as leaked datasets and websites. Therefore, the
mailbox receiving rate limit does not significantly impact the
effectiveness of COORDMAIL.

The exact size of the receiving rate limit is usually not

disclosed. We actively test the mailbox receiving rate limits of
popular email providers to assess how frequently an attacker
can use the same victim email address to launch COORDMAIL.
Specifically, we send emails to our mailboxes at a rate of 60
emails per minute over a period of 10 minutes. Simultaneously,
we send one email every 20 seconds from our server to each
mailbox to test if it can receive new emails. As shown in
Table V, we find that the mailboxes of gmail.com, yahoo.com,
icloud.com, proton.me, and naver.com could no longer receive
any emails after about one minute. Reviewing online materi-
als [62], we discover that outlook.com and hotmail.com limit
the number of emails received per hour to 3,600. In conclusion,
attackers should limit the use of the same victim email address
to no more than 60 times per minute.
Practical protection. Email providers can integrate various
security mechanisms to intercept malicious emails. If reflected
emails from middleware fail to pass the email provider’s secu-
rity checks, the attack traffic of COORDMAIL will decrease.
We investigate how many email middleware can successfully
send emails to 14 popular providers, i.e., reflected emails to
inboxes or spam boxes.

We instructed each selected email middleware to send one
email to our mailbox, totaling 10,669 emails. As shown in
Table V, more than 90% of reflected emails appear in the
mailboxes of 11 popular email providers. Most reflected emails
are in spam boxes, except for naver.com and cock.li, where
about 9K reflected emails reach their inboxes. Overall, the
protection systems of the most popular email providers do not
directly intercept reflected emails, meaning COORDMAIL can
have a practical impact in the real world.

VI. DISCUSSION

This section discusses the mitigation measures against
COORDMAIL, and evaluates the mitigation effect through

Table V
STATISTICS ON THE DEFENSE OF 14 POPULAR EMAIL
PROVIDERS AGAINST COORDMAIL.

Provider Sending Receiving | Reflected email®
rate limit' | rate limit> | Inbox Spam
gmail.com [) [) 458 4,428
yahoo.com [) o 2,184 5,807
outlook.com O © 932 8,432
hotmail.com O © 726 7,928
icloud.com [J [J 609 234
qg.com O O 196 178
163.com O O 2,551 7,245
126.com @) O 2,715 7,304
139.com [J O 3,019 6,971
sina.com [] O 3,921 6,335
yeah.net @) @) 2,081 7,537
proton.me @) o 4,218 1,914
naver.com @) [] 8,941 682
cock.li [J O 9,815 104

! @ means the IP sending rate cannot exceed 60/s.
2 @ means the mailbox receiving rate cannot exceed
60/s; © means cannot exceed 3,600/h.

Number of reflected emails from 10,669 selected
middleware that appear in the inbox and spam box.

3

controlled experiments. In addition, we report the results of
our responsible disclosure of COORDMAIL.

A. Mitigation

COORDMAIL exploits the inherent properties of the SMTP

protocol and the reflection behavior of email middleware,
unlike traditional vulnerabilities. Blocking all emails from
email middleware would disrupt normal email services. Our
idea to mitigate COORDMAIL is to avoid all reflected email
converging on the victim in a short period.
Email middleware. We propose a general mitigation solution:
add random delay in the process of producing reflected email.
In particular, the process of producing reflected email is
completely controlled by middleware, and the attacker cannot
intervene. Moreover, email is a delay-tolerant service and
does not have extremely stringent requirements for timeliness.
Therefore, it is reasonable to add a random delay to the process
of producing the reflected email, which makes it difficult for
the attacker to coordinate all reflected emails to reach the
victim at the same time.

We design controlled experiments to evaluate the mitigation
effect of random delay. Based on the experimental environ-
ment in Section V-A, we configure bounce servers to introduce
a random delay ranging from 0 to 30 seconds before sending
reflected emails. As shown in Figure 10, after implementing
the random delay, the attack traffic is distributed over time,
reaching the victim server more gradually. This results in a
reduction of the BCE by approximately 15x. Furthermore,
increasing the range of random delays can further weaken the
amplification capability of COORDMAIL.

Introducing delays is a common mitigation against time-
convergent pulsing DoS [38], and we acknowledge that our
random delay scheme affects email service performance to

13

some extent. Based on study [63], the mean end-to-end email
delivery latency in real business is 19.37 seconds. Therefore,
the 0-30 second random delay we propose would, on average,
roughly double the email forwarding delay. Given that email is
generally delay-tolerant and the SMTP command timeout rec-
ommended by RFC 821 [5] is usually 5 minutes, this increased
delay should not substantially degrade user experience.

18 Mb/s

[C_JRaw traffic [__]Random delay [Promptly interrupt]
15 Mb/s \

12 Mb/s H
S BCE:

9 Mb/s 11 5x

6 Mb/s 4

Network bandwidth

3 Mb/s -

0 Mbls . W

0 50 100

T T T T
150 200 250 300

Time (s)
Figure 10. The effect of mitigation measures for COORDMAIL.

For bounce servers, it is crucial to inform the sender as much

as possible about the reason for email delivery failure during
the SMTP session, rather than relying on bounced emails.
Email service administrators should rigorously review server
configurations to prevent becoming open relays that could be
exploited by attackers. Email forwarding providers should en-
force forwarding configuration validation to prevent attackers
from redirecting forwarded emails to arbitrary victims. Finally,
we recommend that email middleware limit the number of
reflected emails for each original email and minimize the size
of reflected emails.
Email provider. According to the analysis of Section V-B,
most of the reflected emails cannot meet the requirements of
the DMARC mechanism. Additionally, many reflected emails
display distinct characteristics, such as an empty MAIL FROM
field or use of specific templates (see Appendeix B). Email
providers can promptly interrupt reflected emails based on the
above traits, especially when dealing with large volumes of
traffic. Our experimental evaluation shows that if the incoming
mail server disconnects the SMTP session with email middle-
ware after receiving the RCPT command, the BCE of attack
traffic of COORDMAIL can be reduced by approximately 20
times, as illustrated in Figure 10.

B. Responsible Disclosure

We have responsibly disclosed COORDMAIL and its mitiga-
tion measures to most email middleware and 14 popular email
providers. Following the vulnerability notification guidelines
from previous studies [64], [65], we collected contact emails
for email middleware. By sourcing email addresses from
WHOIS and domain web pages, we compiled contact infor-
mation for 9,238 bounce servers, retaining only those email
addresses with the same SLD as the email middleware. For the
remaining bounce servers, we generated contact information
using the four most common usernames found in the contact
addresses of 9,238 bounce servers, i.e., “info”, “support”,

“abuse”, and “contact”. For open email relays, we attempted
to reach their administrators through reverse DNS records and
AS information of the IP addresses. To minimize disruption to
administrators, we limited notification messages to a maximum
of five email addresses per email middleware.

So far, we have received replies from 872 email middle-
ware administrators, with 781 automated responses. Among
the valid responses, 49 administrators indicated they were
awaiting confirmation, 13 mentioned that their email service
was managed by hosting providers, and 22 stated they planned
to resolve the issue. We further engaged with Coremail, which
operates as an email provider for 460 bounce servers. Coremail
explained that their cloud mail gateway is only responsible for
relaying emails to customer servers and lacks sufficient capac-
ity to determine email deliverability. Consequently, customer
servers can only notify delivery errors by sending bounce
emails. Coremail has committed to improving the gateway
strategy. Among the 14 popular email providers, 8 have
acknowledged the threat posed by COORDMAIL, but most
stated that they were not significantly affected. In addition,
proton.me plans to improve their mail service implementation.

VII. ETHICS CONSIDERATION

Our research refers to previous papers related to DoS
attacks [6], [42] and adheres to research ethical principles and
best network measurement practices [66]-[68]. In construct-
ing and evaluating COORDMAIL, we carefully consider the
following ethical factors.

e Measure email middleware. We identify email middleware
in the wild by sending emails to non-existent users from
our domain, ensuring no emails reach real users’ mailboxes.
We strictly control the scanning rate to avoid burdening
the target network. Our scanning rates were as follows: 3
SMTP connections per second for email service probing, 5
DNS packets per second for MX record probing, and a port-
scanning rate of 1M bits/second. The emails we send include
experimental explanations and contact information, allowing
server administrators to opt out if desired. Importantly, we
avoid testing the extreme limits of attack metrics for ethical
reasons, focusing only on measuring the relative upper limits.
For instance, when testing the value of Nrcpt supported
by email middleware, we limit the maximum setting to 10.
Furthermore, we analyze forwarding relationships of popular
email providers on Coremail’s internal security server, count-
ing the data only at the domain level without obtaining users’
email addresses.

o Evaluate amplification effect. To avoid affecting email
middleware and cloud server providers, we conducted only
small-scale experiments in the real world. Specifically, we
used a maximum of 20 email middleware to construct CO-
ORDMAIL, ensuring that the aggregated bandwidth on our
controlled servers remained well below the provider’s limits.
As a complement, we evaluated the amplification effect of
COORDMAIL in a controlled environment, ensuring that no
real entities were impacted.

14

e Practical considerations of attacks. Rather than executing
DoS attacks, we demonstrate the real threat posed by COORD-
MAIL through an analysis of existing security mechanisms.
Furthermore, we responsibly reported the risks associated with
COORDMALIL, ensuring relevant entities could benefit from our
findings. We also discussed and evaluated mitigation strategies
to help the community enhance email security.

e Reproducibility and artifacts. Providing code that can be
run directly to launch attacks could be exploited to carry
out malicious activities. To support ethical security testing
and research, we published simulated attack scripts, code
to identify email middleware and measure attack metrics,
and a sampled dataset of email middleware in the wild at
https://github.com/RUI-XUAN-LI/CoordMail.

VIII. CONCLUSION

This paper proposes COORDMAIL, a novel email conver-
gence amplification attack that utilizes the SMTP timeout and
SMTP command interaction. By coordinating reflected emails
from different middleware to reach the victim at the same time,
COORDMAIL can destroy the server’s ability to receive emails.
To construct COORDMAIL, we collect email middleware in the
real world on a large scale, then analyze their amplification
ability and attack usability. Evaluation experiments demon-
strate that COORDMAIL achieves bandwidth concentration
efficiency exceeding 30,000 with 1,000 SMTP connections.
In addition, we conduct a comprehensive analysis of existing
security mechanisms to prove the feasibility and practical
damage of COORDMAIL. Finally, we provide lightweight
mitigations against COORDMAIL, and conduct responsible
vulnerability reporting.

ACKNOWLEDGMENT

We thank all anonymous reviewers for their valuable and
constructive feedback. This work is supported by the Na-
tional Key Research and Development Program of China
(No. 2023YFB3105600), and the National Natural Science
Foundation of China (Grant No. 62102218, 62272413). Baojun
Liu and Jun Shao are both corresponding authors.

REFERENCES
[1]
2]
[3]

J. Rijn. (2024) Email is not dead. but email is changing. [Online].
Available: https://www.emailisnotdead.com/

M. Schneider, H. Schulmann, A. Sidis, R. Sidis, and M. Waidner,
“Diving into email bomb attack,” in DSN. IEEE, 2020, pp. 286-293.
M. Jakobsson and F. Menczer, “Untraceable email cluster bombs: On
agent-based distributed denial of service,” CoRR, vol. ¢s.CY/0305042,
2003.

R. Li, C. Lu, B. Liu, Y. Lin, H. Duan, Q. Pan, and J. Shao, “Under-
standing and characterizing intermediate paths of email delivery: The
hidden dependencies,” in IMC. ACM, 2025.

J. Postel, “Simple mail transfer protocol,” RFC 821, August 1982.

X. Li, D. Wu, H. Duan, and Q. Li, “Dnsbomb: A new practical-and-
powerful pulsing dos attack exploiting DNS queries-and-responses,” in
SP 2024. 1EEE, 2024, pp. 4478-4496.

S. Kitterman, “Sender policy framework (spf) for authorizing use of
domains in email, version 1,” RFC 7208, April 2014.

D. Crocker, T. Hansen, and M. Kucherawy, “Domainkeys identified mail
(dkim) signatures,” RFC 6376, September 2011.

Spamhaus, https://www.spamhaus.org/, 2024.

[4]

[5]
[6]
[7]
[8]
[9]

[10]

[11]

[12]
[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]
[27]
(28]
[29]
[30]

[31]

(32]

[33]

[34]

[35]

[36]

M. Kucherawy and E. Zwicky, “Domain-based message authentication,
reporting, and conformance (dmarc),” RFC 7489, March 2015.

M. Ashiq, W. Li, T. Fiebig, and T. Chung, “You’ve got report: Mea-
surement and security implications of DMARC reporting,” in USENIX,
2023, pp. 4123-4137.

Gmail, “Email sender guidelines,” https://support.google.com/a/answer/
81126, 2024.

Yahoo, “Sender requirements and recommendations,” https://senders.ya
hooinc.com/best-practices, 2024.

J. Klensin, “Simple mail transfer protocol,” RFC 5321, October 2008.
R. Li, C. Lu, B. Liu, Y. Zhang, G. Hong, H. Duan, Y. Lin, Q. Pan,
M. Yang, and J. Shao, “HADES attack: Understanding and evaluating
manipulation risks of email blocklists,” in NDSS. The Internet Society,
2025.

S. Frei, I. Silvestri, and G. Ollmann. (2004) Mail non-delivery notice
attacks. https://techzoom.net/whitepapers/mail_non_delivery_notice_att
acks_2004.pdf.

wikipedia. (2025) Open mail relay.
/len.wikipedia.org/wiki/Open_mail_relay
E. Liu, G. Akiwate, M. Jonker, A. Mirian, G. Ho, G. Voelker, and S. Sav-
age, “Forward pass: On the security implications of email forwarding
mechanism and policy,” in EuroS&P. 1EEE, 2023, pp. 373-391.

T. Bass, A. Freyre, D. Gruber, and G. Watt, “E-mail bombs and
countermeasures: cyber attacks on availability and brand integrity,” IEEE
Netw., vol. 12, no. 2, pp. 10-17, 1998.

Proofpoint. (2015) Dead phish bounce: Alerting to brand risk with email
backscatter. https://www.proofpoint.com/us/threat-insight/post/Dead-P
hish-Bounce.

Bitdefender. (2022) Backscatter spam attack used to deliver bitcoin
extortion messages to eastern europe. https://www.bitdefender.com/
en-us/blog/hotforsecurity/backscatter-spam-attack-used-to-deliver-bitco
in-extortion- messages- to-eastern-europe/?srsltid=AfmBOopooPLnWnJ
XgOOFx4thACPN7TSLLGKqPSCwuPy6BjFdLkqzXFn9%2F%2F%2F.
K. Shen, C. Wang, M. Guo, X. Zheng, C., B. Liu, Y. Zhao, S. Hao,
H. Duan, Q. Pan, and M. Yang, “Weak links in authentication chains:
A large-scale analysis of email sender spoofing attacks,” in USENIX
Security, 2021, pp. 3201-3217.

C. Lewis and M. Sergeant, “Overview of best email dns-based list
(dnsbl) operational practices,” RFC 6471, January 2012.

“Yahoo smtp error codes,” https://senders.yahooinc.com/smtp-error-cod
es/, 2024.

Microsoft, https://answers.microsoft.com/en-us/outlook_com/forum/all
/550-571-service-unavailable-client-host-51xx2xx 1x/79a129be-ab20-4
13b-abf9-659a93c7eec7, 2024.

M. Kucherawy and D. Crocker, “Email greylisting: An applicability
statement for smtp,” RFC 6647, June 2012.

Gmail, “Unsolicited rate limit error,” https://support.google.com/mail/
?p=UnsolicitedRateLimitError, 2024.

Google, “Gmail receiving limits in google workspace,” https://support.
google.com/a/answer/13667767sjid=14111895751383822700- AP.
Akamai, “Fighting the heat: Emea’s rising ddos threats,” https://www.ak
amai.com/resources/state- of-the-internet/2024-emea-ddos-report, 2024.
Cloudflare, “Ddos reports,” https://blog.cloudflare.com/tag/ddos-reports
/,2024.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai botnet,”
in USENIX Security, 2017, pp. 1093-1110.

M. Kiihrer, T. Hupperich, C. Rossow, and T. Holz, “Exit from hell?
reducing the impact of amplification ddos attacks,” in USENIX Security,
2014, pp. 111-125.

M. Anagnostopoulos, G. Kambourakis, S. Gritzalis, and D. Yau, “Never
say never: Authoritative TLD nameserver-powered DNS amplification,”
in NOMS. IEEE, 2018, pp. 1-9.

R. Rijswijk-Deij, A. Sperotto, and A. Pras, “DNSSEC and its potential
for ddos attacks: a comprehensive measurement study,” in /[MC. ACM,
2014, pp. 449-460.

J. Czyz, M. G. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. D. Bailey,
and M. Karir, “Taming the 800 pound gorilla: The rise and decline of
NTP ddos attacks,” in IMC. ACM, 2014, pp. 435-448.

Y. Afek, A. Bremler-Barr, and L. Shafir, “Nxnsattack: Recursive DNS
inefficiencies and vulnerabilities,” in USENIX Security, 2020, pp. 631—
648.

[Online]. Available: https:

15

(371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

(53]
[54]

[55]
[56]
(571

[58]

[59]
[60]
[61]

[62]

[63]

[64]

[65]

G. Moura, S. Castro, J. Heidemann, and W. Hardaker, “Tsuname:
exploiting misconfiguration and vulnerability to ddos DNS,” in IMC.
ACM, 2021, pp. 398-418.

R. Rasti, M. Murthy, N. Weaver, and V. Paxson, “Temporal lensing and
its application in pulsing denial-of-service attacks,” in IEEE Symposium
on Security and Privacy, 2015, pp. 187-198.

L. Gu, J. Zhang, and B. Bensaou, “Unleashing the shrew: a stealth
greedy targeted attack on TCP traffic in wireless lans,” in LCN. IEEE
Computer Society, 2014, pp. 337-344.

M. Guirguis, A. Bestavros, I. Matta, and Y. Zhang, “Reduction of quality
(roq) attacks on dynamic load balancers: Vulnerability assessment and
design tradeoffs,” in INFOCOM. 1EEE, 2007, pp. 857-865.

A. Kuzmanovic and E. Knightly, “Low-rate tcp-targeted denial of service
attacks: the shrew vs. the mice and elephants,” in SIGCOMM. ACM,
2003, pp. 75-86.

R. Guo, J. Chen, Y. Wang, K. Mu, B. Liu, X. Li, C. Zhang, H. Duan,
and J. Wu, “Temporal cdn-convex lens: A cdn-assisted practical pulsing
ddos attack,” in USENIX Security, 2023, pp. 6185-6202.

W. Xu, X. Li, C. Lu, B. Liu, H. Duan, J. Zhang, J. Chen, and T. Wan,
“Tsuking: Coordinating DNS resolvers and queries into potent dos
amplifiers,” in CCS. ACM, 2023, pp. 311-325.

KrebsonSecurity, “Massive email bombs target .gov addresses,” https:
/[krebsonsecurity.com/2016/08/massive-email-bombs-target- gov-addre
sses/, 2016.

E. Liu, G. Akiwate, M. Jonker, A. Mirian, S. Savage, and G. Voelker,
“Who’s got your mail?: characterizing mail service provider usage,” in
IMC. ACM, 2021, pp. 122-136.

P. Gummadi, S. Saroiu, and S. Gribble, “King: estimating latency be-
tween arbitrary internet end hosts,” in SIGCOMM Internet Measurement
Workshop, IMW. ACM, 2002, pp. 5-18.

Tranco, “Top 1m domains,” https://tranco-list.eu/, 2024.

C. Umbrella, “Top 1m domains,” https://s3-us-west- 1.amazonaws.com
/umbrella-static/index.html, 2024.

Majestic, “Top 1m domains,” https://majestic.com/reports/majestic-mil
lion, 2024.

haveibeenpwned, “Largest breaches,” https://haveibeenpwned.com/,
2024.

ip api, “Ip geolocation api,” https://ip-api.com/, 2023.

Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-
wide scanning and its security applications,” in USENIX, 2013, pp. 605—
620.

Coremail, https://www.coremail.cn/.

A. Chand, N. Nikiforakis, and P. Vadrevu, “Doubly dangerous: Evading
phishing reporting systems by leveraging email tracking techniques,” in
USENIX Security Symposium, 2025, pp. 3181-3200.

tcpdump, https://www.tcpdump.org/.

postfix. [Online]. Available: https://www.postfix.org/

S. Czybik, M. Horlboge, and K. Rieck, “Lazy gatekeepers: A large-
scale study on SPF configuration in the wild,” in IMC. ACM, 2023,
pp. 344-355.

C. Wang, K. Shen, M. Guo, Y. Zhao, M. Zhang, J. Chen, B. Liu,
X. Zheng, H. Duan, Y. Lin, and Q. Pan, “A large-scale and longitudinal
measurement study of DKIM deployment,” in USENIX Security, 2022,
pp. 1185-1201.

SpamCop, https://www.spamcop.net/.

“The next step in the spam control war: Greylisting,” http://projects.pur
emagic.com/greylisting/whitepaper.html, 2025.

R. Li, Z. Zhang, J. Shao, R. Lu, X. Jia, and G. Wei, “The potential harm
of email delivery: Investigating the HTTPS configurations of webmail
services,” TDSC, vol. 21, no. 1, pp. 125-138, 2024.

Microsoft. (2025) Receiving and sending limits. [Online]. Available:
https://learn.microsoft.com/en-us/office365/servicedescriptions/exchang
e-online-service-description/exchange-online-limits#receiving-and-sen
ding-limits

R. Li, S. Xiao, B. Liu, Y. Lin, H. Duan, Q. Pan, J. Chen, J. Zhang,
X. Liu, X. Lu, and J. Shao, “Bounce in the wild: A deep dive into
email delivery failures from a large email service provider,” in IMC.
ACM, 2024.

F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy,
S. Savage, and V. Paxson, “You’ve got vulnerability: Exploring effective
vulnerability notifications,” in USENIX Security, 2016, pp. 1033-1050.
B. Stock, G. Pellegrino, F. Li, M. Backes, and C. Rossow, “Didn’t you
hear me? - towards more successful web vulnerability notifications,” in
NDSS, 2018.

[66] “The belmont report: ethical principles and guidelines for the protection
of human subjects of research,” United States. National Commission
for the Protection of Human Subjects of Biomedical and Behavioral
Research. Department of Health, Education and Welfare, 1979.

E. Kenneally and D. Dittrich, “The menlo report: Ethical principles
guiding information and communication technology research,” 2012.
C. Partridge and M. Allman, “Ethical considerations in network mea-
surement papers,” Communications of the ACM, 2016.

[67]

[68]

APPENDIX

A. Build SMTP Command Sequence

Algorithm 1 describes the process of building an SMTP
command sequence. The sending time of Non-mandatory
SMTP commands does not need to strictly follow the SMTP
command sequence and can be sent at any time except during
the email content delivery. It should be noted that there are
various SMTP command sequences for maintaining SMTP
sessions, and Algorithm 1 presents only one of them. However,
we have demonstrated that SMTP command sequences can
maintain SMTP sessions for more than 10 minutes.

Algorithm 1: Build SMTP command sequence

Input: Target maintenance time Ttarg; Total timeout
of Necessary states Tnece; Maximum duration
of each Necessary states Dnece = {TCP: Ts, ...,
End: Es}; Maximum duration of each
Temporary states Dtemp = {NOOP: N, ...,
VRFY: Vs}; Maximum number of each
Temporary states Neemp = {NOOP: n, ...
VRFY: v}

Output: SMTP command sequence out_list = [(TCP,

tl), ..., (NOOP, t3)]
1 out_list < []
2 if Tnece > Ttarg then

b}

3 / / only Mandatory SMTP commands are required
4 for key-value pairs (c, t) in Dnece do

5 L Append (¢, Ttarg X(t/Tnece)) to out_list
6 return out_list

7 else

8 // add Mandatory SMTP commands

9 for key-value pairs (c, t) in Dnece do

10 | Append (¢,t) to out_list

11 Tremain = Ttarg — Tnece

12 / / supplement Non-mandatory SMTP commands
13 for key-value pairs (c, t) in Dtemp do

14 for num in Ntemp[c] do

15 Tremain <— Tremain — t

16 if Tremain <0 then

17 Append (¢, t+Tremain) to out_list
18 L return out_list

19 else

20 L Append (c,t) to out_list

16

B. Identify and Analyze Forwarding Relationships

To reduce the attack cost, the attacker can utilize exist-
ing forwarding relationships in the real world to execute
COORDMAIL. We observe that many providers use custom
templates to generate the MAIL FROM fields for forwarded
emails. As shown in Table VI, nine popular providers have
unique MAIL FROM templates that include forwarding ini-
tiators, which provides an opportunity to identify forwarding
relationships in the wild. By collaborating with Coremail [53],
we extracted all template-matching MAIL FROM fields and
corresponding RCPT TO fields from one year’s email re-
ception logs. We then identify the forwarding initiator from
the MAIL FROM field and the forwarding destination from
the RCPT TO field. Finally, we deduplicate all forwarding
relationship pairs.

In total, we identified 858,785 forwarding relationship pairs,
with qq.com accounting for 93.82%. This is primarily be-
cause most Coremail users come from China, making qq.com
relatively more popular. The attacker can exploit existing
forwarding relationships to reflect emails to 11,572 domains.
For example, we find that the attacker can forward emails to
a business domain via 21,831 email addresses of forwarding
providers. Figure 11 illustrates the partial forwarding flow for
the top five domains with the highest number of forwarding
relationships, including 2 business domains, 2 university do-
mains, and 1 government domain. We acknowledge that ana-
lyzing passive data from Coremail reveals only a small fraction
of real-world forwarding relationships. However, our results
demonstrate the feasibility of utilizing forwarding servers to
execute COORDMAIL.

ﬂBusiness—l (21,670)

/ Business-2 (13,258)

7
= University-1 (6,629)

qq.com (53,002)

L7
163.com (2,734) = - ///
gmail.com (4,737) = . g
126.com (519) —
sina.com (3,595) W~

~

DUniversity-Z (14,651)

D Government-1 (8,379)

Figure 11. Partial email forwarding relationships of the top five domains with
popular providers.

C. Measure SMTP Session State Machine

Table VII presents detailed results for SMTP session time-
out times and the number of consecutive Temporary SMTP
session states for 10 popular email forwarding providers. For
each SMTP session state, the maximum timeout time we tested
was 300s; for the total SMTP session, the maximum timeout
time tested was 10m; and for the number of consecutive
Temporary SMTP session states, the maximum value tested
was 30. Using the SMTP command sequence, we can maintain
10-minute SMTP sessions with all forwarding providers. In
particular, the client can refresh the Temporary SMTP session

Table VI

STATISTICS OF FORWARDING VERIFICATION, CHARACTERISTICS, RELATIONSHIPS AND BACK NODES OF POPULAR PROVIDERS.

Provider Verify! MAIL FROM template (ignore case)? fg(;‘::srd rzl;:::i]:l]33312
gmail.com v <e_user>+caf_=<f_user>=<f_domain>@gmail.com 15,208 3,210 1,801
outlook.com X <e_user>+srs=<code >=<0_domain>=<o0_user> @outlook.com 1,491 1,173 3,143
hotmail.com X <e_user>+srs=<code>=<o0_domain>=<o_user>@hotmail.com 1,952 1,301 2,422
icloud.com X <e_user>@icloud.com 3 - -

qq.com v <e_user>+auto_=<f_user>=<f_domain>@qq.com 797,303 6,534 897
163.com X auto_<e_user>+<f_user>=<f_domain>@163.com 6,566 1,843 683
126.com X auto_<e_user>+<f_user>=<f_domain>@126.com 2,144 918 155
139.com v rm_mail_<e_user>_auto_forwaed_<f_user>=<{f_domain>@139.com 139 12 31

sina.com 4 <e_user>+==<code>==@sina.com 28,850 1,951 369
yeah.net X auto_<e_user>+<f_user>=<f_domain>@yeah.net 1,116 475 80

v/ means that the provider verifies ownership of the forwarding destination, X means no verification.
>The full path of forwarding the email is: the originator (<o_user>@ <o_domain>) to email provider
(<e_user>@<e_domain>), and then to forwarding destination (<f_user>@ <f_domain>). <code>indicates a

coded text customized by the email provider.

3 The MAIL FROM field of the forward email from icloud.com has no unique characteristics, so we cannot discover

the forward relationship and back nodes associated with it.

state counter of the email server by sending Mandatory com-
mands before reaching the upper limit of the Temporary SMTP
session state count. This allows the client to send many Non-
mandatory SMTP commands within a single SMTP session.

D. Theoretical Attack Effect of COORDMAIL

The bandwidth amplification effect of COORDMAIL is
closely related to The bandwidth concentration efficiency of
COORDMALIL is closely related to the number of email mid-
dleware (Nmidd), SMTP connection aggregation time (Tatta),
and the number of recipients of the original email (Nrcpt).
Table VIII shows the theoretical BCE for COORDMAIL. The
average bandwidth of only tens of kb/s on the attacker’s side
can generate a bandwidth of up to Gb/s level on the victim’s
side, resulting in a BCE that reaches tens of thousands of
times. For example, COORDMAIL can achieve more than
10K theoretical BCE using 1K SMTP connections. Compared
to previous PDoS attacks, the theoretical BCE achieved by
DNSBOMB attack using 1K DNS queries is 80 to 40K,
depending on the DNS software [6].

17

Table VII
STATISTICS ON SMTP SESSION TIMEOUTS AND TEMPORARY SMTP SESSION STATE NUMBER SUPPORTED BY EMAIL PROVIDERS. BECAUSE THE
EXPERIMENT SPECIFIES THE MAXIMUM TEST VALUE, SOME RESULTS CANNOT REPRESENT THE ABSOLUTE UPPER LIMIT.

Provider \gmail.com outlook.com hotmail.com icloud.com qq.com 163.com 126.com 139.com sina.com yeah.net

Maximum timeout for Necessary states (second)

TCP 300 300 300 300 60 60 60 60 30 10
EHLO 300 300 300 300 60 60 60 60 30 10
MAIL 300 300 300 300 60 60 60 60 30 10
RCPT 300 300 300 300 60 60 60 60 30 10
DATA 300 300 300 300 60 60 60 60 30 10
Content 300 300 300 300 60 60 60 60 5 10

End 300 300 300 300 60 60 60 60 5 10

Maximum timeout for Temporary states (second)
NOOP 300 300 300 300 60 60 30 60 30 10
VRFY 300 300 300 300 60 30 60 0 30 10
HELP 300 300 300 300 60 30 60 0 30 10
TURN 300 300 300 300 60 30 60 0 30 10
XADR 300 300 300 300 60 60 60 0 30 10
ABCD 300 300 300 300 60 60 60 0 30 10
Maximum number of consecutive times for Temporary states
NOOP 30 30 30 30 30 30 30 30 30 30
VRFY 10 5 5 30 30 4 4 0 30 4
HELP 30 30 30 30 30 4 4 0 30 4
TURN 10 5 5 30 30 4 4 0 30 4
XADR 10 5 5 30 30 4 4 0 30 4
ABCD 10 5 5 30 30 4 4 0 30 4
Maximum timeout for total SMTP session (minute)
Command 10 10 10 10 10 10 10 10 10 10
sequence
Table VIII
THEORETICAL BANDWIDTH CONCENTRATION EFFICIENCY (BCE) OF
COORDMAIL.

Nrcpt | Attacker-side Victim-side BCE

Nmidd=100 & Tatta=60s

1 12.1Kb/s 21.9Mb/s 1,816x
5 13.2kb/s 68.8Mb/s 5,219x
20 17.2Kb/s 237.1Mb/s 13,805x

Nmidd = 1000 & Tatta = 300s

1 24.2Kb/s 128.6Mb/s 5,312x
5 26.3Kb/s 392.9Mb/s 11,4912x
20 34.3Kb/s 1.4Gb/s 40,837x

Nmidd = 2000 & Tatta = 600s

1 24.2Kb/s 217.8Mb/s 8,996x
5 26.3Kb/s 646.4Mb/s 24,536x
20 34.3Kb/s 2.3Gb/s 66,867x

18

