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Abstract—Accelerator trusted execution environment (TEE) is
a popular technique that provides strong confidentiality, integrity,
and isolation protection on sensitive data/code in accelerators.
However, most studies are designed for a specific CPU or
accelerator and thus lack generalizability. Recent TEE surveys
partially summarize the threats and protections of accelerator
computing, while they have yet to provide a guide to building
an accelerator TEE and compare the pros and cons of their
security solutions. In this paper, we provide a holistic analysis
of accelerator TEEs over the years. We conclude a typical
framework of building an accelerator TEE and summarize the
widely-used attack vectors, ranging from software to physical
attacks. Furthermore, we provide a systematization of accelerator
TEE’s three major security mechanisms: (1) access control, (2)
memory encryption/decryption, and (3) attestation. For each
aspect, we compare varied security solutions in existing studies
and conclude their insights. Lastly, we analyze the factors that
influence the TEE deployment on real-world platforms, especially
on the trusted computing base (TCB) and compatibility issues.

I. INTRODUCTION

Trusted execution environment (TEE) is a popular and
widely used security mechanism to ensure data confidentiality
and integrity on today’s platforms. Over the past two decades,
the industry and academy propose various TEE designs and
hardware supports on both cloud platforms [1], [2] and mobile
devices [3], supporting general and state-of-the-art require-
ments such as data storage [4]–[7], machine learning [8]–[10],
and blockchain applications [11]–[13]. These designs provide
isolated computing environments and secure CPU resources
for users, protecting the sensitive data storage and computing
from the untrusted software components.

Currently, extending TEEs from CPU to other accelerator
devices, such as Graphics Processing Units (GPUs) [14]–[18],
Neural Processing Units (NPUs) [19]–[22], Tensor Processing
Units (TPUs) [23], Field Programmable Gate Arrays (FPGAs)
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[24]–[26], and other accelerators [27], is gradually popular.
By using accelerator TEEs, users securely perform high-
performance computing on their sensitive tasks and enjoy
the benefits of strong confidentiality, integrity, and isolation.
Nevertheless, there is no standard criterion for building an
accelerator TEE. Studies propose a large number of accel-
erator TEE designs, ranging from large-scale clouds [28]–
[30] to lightweight endpoints [31]–[33], from traditional Intel
platforms [34], [35] to the new RISC-V architecture [36],
[37]. Unfortunately, directly applying one accelerator TEE
design to a different platform can be challenging due to the
variance in CPU and accelerator architecture. Recent TEE
surveys partially analyze security computing on GPU [8] and
FPGA [38]. They also provide a security framework and
concerns on CPU-side TEEs [39]–[41]. However, there is
an absence of a systematic analysis of the accelerator TEE
framework, potential threats to mainstream security solutions,
and a discussion of the pros and cons of deploying these TEEs
in real-world platforms.

To address this problem, we provide a holistic analysis of
accelerator TEEs. Our analysis answers the primary question:
RQ1: What is the typical framework of building an
accelerator TEE? We survey the state-of-the-art accelerator
TEEs in the past decade (detailed in §II). Based on this,
we categorize accelerator TEEs into three types: (1) Host-
type, which mainly protects accelerators with CPU-side soft-
ware/firmware; (2) Acc.-type, which prefers to design their
protection on accelerators and the connection I/O bus; and
(3) Mix-type, which is a mixed design of these two types. We
detail our categorization in §III. Despite the CPU architecture,
accelerator devices, and platforms’ variance, accelerator TEEs
follow the aforementioned types to deploy security protection.

Since we categorize accelerator TEEs and summarize their
design features, our study focuses on a further question:
RQ2: How to build an accelerator TEE with ensuring
strong security on varied CPU/accelerator? To answer
this question, we summarize the widely-used attack vectors
in the typical accelerator TEE framework (detailed in §IV).
Attacks on accelerator TEEs can vary from CPU-side ap-
plication to privileged hypervisor, from software to physical
attacks. Based on the attack vectors, we summarize three
major defense mechanisms against the powerful adversary: (1)
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access control, (2) memory encryption, and (3) attestation, then
provide a detailed solution categorization for each mechanism.
Besides categorization, we provide several insights for each
mechanism. For access control, we focus on summarizing the
solutions (and their combination) preference on the three types
of accelerator TEE (i.e., Host-type, Acc.-type, and Mix-type).
For memory encryption, we find that many studies lack such
a security solution and cannot defend against physical threats.
We analyze the significant overhead problems in existing
memory encryption designs due to the traditional solution
migration and inconsistent granularity. For attestation, we
summarize the generic attestation workflow for accelerator
TEE. Based on this, we find that most solutions lack the
essential security supports to ensure attestation correctness.
For the aforementioned security mechanisms, we detail our
analysis and insights in §V, §VI, and §VII, respectively.

Lastly, for deploying accelerator TEEs on real-world de-
vices, we focus on another question: RQ3: What factors
influence the accelerator TEE deployment on real-world
platforms? With the sharp increase in accelerator applications,
however, accelerator TEEs have yet to be widely applied in
real-world platforms. We consider two major aspects: large
TCB and low compatibility. Specifically, we analyze the TCB
size of the guest and system side for each accelerator TEE (de-
tailed in §VIII) and provide a compatibility analysis (detailed
in §IX). Our analysis shows that most accelerator TEEs have
non-trivial TCB requirements and non-negligible compatibility
issues. This influences the deployment of accelerator TEEs and
should be carefully addressed in future TEE designs.

We summarize our contributions as follows:
• We summarize current design choices of accelerator TEEs

into three main classifications: Host-type, Acc.-type, and
Mix-type designs.

• We describe attack vectors and their capabilities for ac-
celerator computing. This model benefits TEE designers
in terms of defending against specific attacks.

• We summarize the mainstream solutions on access con-
trol. We also analyze the preference for solutions and
their combination in existing studies.

• We categorize the solutions for memory encryption. We
compare these solutions’ pros and cons on granularity,
security guarantee, and performance aspects.

• We analyze existing solutions in attestation, with a de-
tailed attestation workflow and the lacking components
of existing studies.

• We analyze the TCB size in existing studies. Our analysis
indicates security concerns of increasing guest/system
TCB in accelerator TEE designs.

• We comprehensively discuss compatibility issues across
existing studies, especially in multi-type and plug-and-
play support on software/hardware.

II. METHODOLOGY

We perform a literature review focusing on the research
studies about accelerator computing protection with TEE
technology. Following the state-of-the-art [38], [83], [84], we

Table I: Overview of the analyzed accelerator TEEs.

Acc. TEE Year Pub. Host CPU Acc. Src. CPU TEE

Graviton [34] 2018 OSDI Intel GPU

HIX [33] 2019 ASPLOS Intel GPU

HETEE [28] 2020 S&P Any2 General Acc.
TrustOre [42] 2020 CCS Intel FPGA Acc.
Telekine [43] 2020 NSDI Intel GPU

Ambassy [44] 2021 TMC Arm U-FPGA Acc.
CommonCounters [45] 2021 HPCA Intel GPU

CURE [36] 2021 USENIX RISC-V U-Acc.
PSSM [46] 2021 ICS Intel GPU

SGX-FPGA [35] 2021 DAC Intel FPGA Acc.

Cronus [47] 2022 MICRO Arm General Acc.
GuardNN [48] 2022 DAC Any2 DNN Acc.

LEAP [49] 2022 TMC Arm U-GPU
LITE [50] 2022 ICS Intel/AMD GPU
MGX [51] 2022 ISCA Intel DNN Acc.
ShEF [52] 2022 ASPLOS Any2 FPGA Acc.

StrongBox [31] 2022 CCS Arm U-GPU
TNPU [53] 2022 HPCA Intel U-NPU
SHM [54] 2022 HPCA Intel GPU

RME-DA [55] 2023 (Industry) Arm General Acc.
SEV-TIO [56] 2023 (Industry) AMD General Acc.

TDX Connect [57] 2023 (Industry) Intel General Acc.
H100 [58] 2023 (Industry) Intel/AMD/Arm GPU

AccShield [59] 2023 DAC Intel/AMD TPU
AvaGPU [32] 2023 CCS Arm U-GPU

GR-T [60] 2023 EuroSys Arm U-GPU
Honeycomb [61] 2023 OSDI AMD GPU

ITX [62] 2023 ATC Any2 IPU
MyTEE [63] 2023 NDSS Arm U-GPU

Plutus [64] 2023 HPCA Any2 GPU
SAGE [65] 2023 ATC Intel GPU

Securator [66] 2023 HPCA Any2 U-NPU

ACAI [67] 2024 USENIX Arm General Acc.
CAGE [68] 2024 NDSS Arm U-GPU

Dhar et al. [30] 2024 ACSAC Any1 General Acc.
HyperTEE [69] 2024 MICRO RISC-V U-DNN Acc.

Na et al. [70] 2024 HPCA Intel GPU
Salus-GPU [71] 2024 HPCA Any2 GPU

Salus-FPGA [72] 2024 ASPLOS Intel FPGA Acc.
sIOPMP [73] 2024 ASPLOS RISC-V U-DNN Acc.

sNPU [37] 2024 ISCA RISC-V U-NPU
SrcTEE [74] 2024 TC Arm U-FPGA Acc.
T-Edge [75] 2024 ACSAC Arm U-FPGA Acc.

TensorTEE [76] 2024 ASPLOS Intel NPU

ASGARD [77] 2025 NDSS Arm U-NPU
ccAI [78] 2025 MICRO Any1 General Acc.

GuardAIn [29] 2025 S&P Any2 NPU
PipeLLM [79] 2025 ASPLOS Intel/AMD GPU

Portal [80] 2025 S&P Arm U-GPU
SeDA [81] 2025 DAC Any2 DNN Acc.

XpuTEE [82] 2025 TOCS Intel GPU

1It relies on CPU TEE with memory encryption support.
2It adapts any CPU architecture with/without CPU TEE.

collect research studies from Google Scholar1, a mainstream
search engine that indexes most research studies from digital
libraries (e.g., ACM Digital Library2, IEEE Xplore3, Arxiv4).
To use this search engine, we first perform a search query with
two sets of keywords — accelerator devices (e.g., GPU, NPU,
TPU, DPU, IPU, ASIC, FPGA and xPU) and TEE technology
(e.g., TEE, Confidential Compute, and architecture-
specific TEEs such as Arm TrustZone and Intel SGX).
This results in more than 20K studies, while our search stops
at the 200th study — most studies after this are irrelevant to
our study. For these studies, we consider two criteria to filter
our target studies:

• Academic or industry studies should leverage at least one
TEE-based security mechanism (e.g., Intel SGX [1], Arm
CCA [85], or customized hardware [58]) to protect the
computing environment of at least one accelerator.

• Academic studies should provide a detailed defense
mechanism on the accelerator computing workflow rather
than protecting I/O for generic devices.

These criteria help us filter the accelerator TEE studies. To

1https://scholar.google.com
2https://dl.acm.org
3https://ieeexplore.ieee.org/
4https://arxiv.org
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extend our paper collection, we also perform forward/back-
ward searching on these studies (i.e., searching studies that
refer to and are referred). Overall, we analyze 51 studies,
which are selected from top-level conferences and mainstream
industry designs, and report them in Table I. We extensively
discuss our observations and relevant insights as follows.

A. Motivation

Accelerator TEE study is popular but not systematic. In
the past three years, accelerator TEEs have gradually attracted
the public’s attention and have sharply increased. As shown
in Table I, 41/51 studies, including four industry studies [55]–
[58], have been proposed since 2022. However, compared with
the CPU TEE with a long history (e.g., Arm TrustZone [3] in
2004), the formal study of accelerator TEE only begins in
2018 [34]. In addition, designs of accelerator TEEs heavily
rely on CPU TEEs (42/51 studies) and have yet to summarize
a unique design framework. Based on this, our paper needs
to address a primary problem: RQ1: What is the typical
framework of building an accelerator TEE?
Analyzing accelerator TEE is challenging. Studies on ac-
celerator TEEs are exploring various CPU-accelerator com-
binations. Currently, we find more than ten CPU-accelerator
combinations in accelerator TEE designs — Accelerator TEEs
protect various accelerators (e.g., GPU and NPU) that run with
different accelerator computing workflows and are equipped
on various CPU hosts (e.g., Arm, Intel, and RISC-V). Most
accelerator TEEs prefer to be compatible with x86-based (i.e.,
Intel and AMD) platforms (32/51 studies) and support GPU
computing (30/51 studies). This is because x86-based plat-
forms and GPUs are the mainstream heterogeneous systems
for high-performance computing. In addition, we observe that
studies for Arm-based accelerator TEEs prefer to support
unified-memory accelerators (11 studies). The major reason is
that most Arm-based platforms are endpoints and support em-
bedded accelerators. For RISC-V accelerator TEEs, 3/4 studies
prefer to support configurable NPU or DNN accelerators. Due
to the complex accelerator TEE implementation, we propose
the second question: RQ2: How to build an accelerator TEE
while ensuring strong security on varied CPU/accelerator?
Accelerator TEEs have yet to be widely deployed. Clouds
and endpoints gradually support multiple types of accelerators
to work together on various accelerator tasks. However, most
accelerator TEEs target specific CPU-accelerator combinations
(43/51 studies). We observe that 40/51 studies support a
specific CPU architecture, and 43/51 studies are only designed
for one type of accelerator device. Considering that different
CPUs and accelerators are largely varied in security and
functionality, we worry that most accelerator TEEs have yet to
support a generic accelerator computing environment. Worse,
only a few accelerator TEEs (12/51 studies) release their
source code. It is challenging to migrate accelerator TEE
research to different platforms. We raise the third research
question: RQ3: What factors influence the accelerator TEE
deployment on real-world platforms?

III. OVERVIEW

A. System Model

Accelerator TEE definition and requirements. Compared
to traditional CPU TEEs (e.g., Intel SGX [1] and Arm Trust-
Zone [3]), accelerator TEEs extend protection to accelerator
devices while ensuring the security goals of confidential-
ity, integrity, and authenticity. During the accelerator task
preparation, computation, and termination phases, TEE-related
components must secure two key elements: (1) Accelerator
workloads, including input/output data, model parameters, task
code (e.g., AI models), page tables, and other confidential
metadata; and (2) the accelerator environment, such as the
hardware status of both the CPU and accelerator. Beyond
these primary security guarantees, accelerator TEEs can also
provide additional security support (e.g., protecting entire
software stacks) while minimizing influences on accelerators
(e.g., maintaining compatibility and performance).
CPU side. Accelerator TEEs, which are deployed on the
mainstream architectures (e.g., x86, Arm, and RISC-V), follow
a generic architecture layout on the CPU side. Generally,
the CPU side software consists of three major components:
(1) a host running a hypervisor and host OS, (2) a CC
(i.e., confidential computing) environment running a TSM
(i.e., TEE Security Manager [86]) and several confidential
virtual machines (CVMs) or enclaves [87] [2] [88], and (3)
a firmware layer running the highest privilege software (e.g.,
a monitor [88] [3]). The host and CC environment are strictly
isolated with security hardware support (e.g., Arm TZASC in
TrustZone [3]), which can be configured by monitor or TSM.
Accelerator side. We summarize the mainstream accelerator
or extension hardware design for accelerator TEEs. First, an
accelerator delegated to different workloads must equip a
compute engine (including computing units, registers, caches,
and other computing resources) to process workloads. More-
over, accelerators with security supports additionally provide
three components: (1) the encryption module (e.g., AES-
GCM engine in Microsoft ITX [62]) for security commu-
nication and memory protection, (2) the attestation module
for attestation, such as the Hardware Root-of-Trust (HRoT)
in NVIDIA H100 [58], and (3) the security controller (e.g.,
Task Scheduler in GuardAIn [29]) for TEE management. For
accelerator memory, several accelerators (e.g., NVIDIA [58]
and AMD GPUs [15]) own a physically isolated memory (e.g.,
GDDRx [45]) while others (e.g., Arm GPUs [89]) share the
main memory with CPU and other peripherals.

B. Accelerator TEE Categorization

Categorizing the surveyed accelerator TEEs can be chal-
lenging since they are implemented on different platforms (i.e.,
various CPU-accelerator combinations) with different security
mechanisms, and require different levels of software/hardware
changes. Nevertheless, based on our observations, these ac-
celerator TEEs still require system control components to
coordinate different security mechanisms for accelerator confi-
dential computing. Thus, based on the position of the modified
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Figure 1: Architecture overview of the Host-type, Acc.-type, and Mix-type accelerator TEEs.

Host OS

CVM/

Enclave

Hypervisor TSM

Firmware (e.g., Monitor)

Host CC

PC
Ie

 I/
O

 B
us

Acc.

Victim

Task

Host 

Mem

Acc. 

Mem

AT1

AT2

Acc. Software

AE2

Phys. Atk.

Acc. Reg

Acc.

Compute Engine

AA1

AT3

Software Attack on 

Acc. Environment

AA Attack on Autheticity Untrusted  Trusted AT

Host OS

CVM/

Enclave

Hypervisor TSM

Firmware (e.g., monitor)

Host CC

PC
Ie

 I/
O

 B
us

Acc.

Acc. 

MMIO

Host 

Mem

Victim

Task

Acc. 

Mem

AT4

AT5

Phys. Atk.

Acc. Reg

Acc.

Compute Engine

Evil

Task

AT6

AT7

AT8

Other Periph. Driver Other Periph. Driver

Acc. Software

Task Preparation/Termination Stage (in Host) Task Computing Stage (in Accelerator)

AE

AE1

AE4

Physical Attack on 

Acc. Task

Software Attack on 

Acc. Task AT

Physical Attack on 

Acc. RuntimeAE

AE3

AA2

AE5
AE6

Figure 2: Attack vectors of accelerator computing.
system control components, we classify these accelerator TEEs
into three categories: Host-type designs, Acc.-type designs,
and Mix-type designs. Figure 1 shows a brief architecture
overview of these three designs. Moreover, we provide detailed
components of different accelerator TEE types in Table II. In
this table, we categorize the selected studies into three types
(i.e., Host-type, Acc.-type, and Mix-type) and show the security
components related to accelerator TEE (i.e., CVM/enclave,
TSM, firmware, encryption module, attestation module, and
accelerator controller).

Host-type designs. As shown in Figure 1(a), Host-type designs
modify privileged CPU-side system control components (e.g.,
the TSM such as RMM [67] [80] or secure monitor [31] [68])
to control accelerator TEEs and leverage CPU-assisted protec-
tion mechanisms (e.g., Intel SGX [1] and Arm TrustZone [3])
to isolate, attest, and secure the accelerator computing environ-
ment. During the trusted accelerator computing, the key role
of the system control component is to ensure the data path and
interaction between the TEE on the host and the accelerator
hardware, preventing data leakage from untrusted software
(e.g., OS and hypervisor) and devices. Since CPU-side hosts
generally implement mature security mechanisms, most Host-
type designs directly leverage these mechanisms in access
control (e.g., Intel EPC [1], Arm TZASC [90]/GPC [91]) and
memory encryption (e.g., Intel TME [87], AMD SME [2]),
without additional hardware changes on host or accelerator
devices. However, several designs still implement customized
security primitives (e.g., bus filters in CURE [36] and SGX
extensions in HIX [33]).

Acc.-type designs. Compared to the Host-type designs, the
Acc.-type designs migrate the accelerator TEE control logic
into accelerator (e.g., the command processor [34] [43] in
GPUs) or extension hardware (e.g., the security controller [28]
[30] between host and accelerator), instead of preserving it in
CPU side (see Figure 1(b)). This accelerator controller receives
and controls data/command communication from external de-
vices (e.g., the untrusted host [28] [29] or peripherals), man-
ages TEE on accelerator and coordinate security operations
(e.g., memory protection via encryption module [53] [51] and
environment verification via attest module [58] [62]). The
security of the Acc.-type controller is ensured by hardware
isolation from the CPU host instead of the privilege software
isolation. Thus, most Acc.-type designs unavoidably require
hardware modification on accelerator board or extension secu-
rity hardware, but do not involve host-side hardware changes.
These features enable CPU TEE to work orthogonally with
Acc.-type designs, such as NVIDIA H100 [58], which supports
VM-level CPU TEE [87] [2] [88].

Mix-type designs. Combining the former two, the Mix-type
design collaborates the system control components at the
CPU and accelerator side to control the accelerator TEE
(see Figure 1(c)). In this case, privileged software on the
CPU side guarantees the confidentiality and integrity of the
communication data, and physical hardware on the accelerator
side guarantees the security of the computational data. In
this case, privileged software on the CPU side guarantees the
confidentiality and integrity of accelerator task submission and
termination. In contrast, security hardware on the accelerator
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Table II: Design overview of the Host-type, Acc.-type and Mix-type accelerator TEEs.

Acc. TEE Type CPU-side Acc.-side modules (in Acc./Board/Ext. IO)
CVM/Enclave TSM Firmware Enc. Module Attest Module Acc. Controller

Host-type Acc. TEEs

ACAI [67] Arm CCA RMM Monitor PCIe IDE(Acc.) HRoT(Acc.) -
ASGARD [77] Arm TrustZone S-Hyp Monitor - HRoT(Acc.) -

AvaGPU [32] Arm TrustZone - Monitor - - -
Cronus [47] Arm TrustZone S-Hyp Monitor - HRoT(Acc.) -
CURE [36] RISC-V Customized - M-Monitor - - -
CAGE [68] Arm CCA RMM Monitor - - -
GR-T [60] Arm TrustZone - Monitor - - -

Honeycomb [61] AMD SEV-SNP SVSM SEV-firmware - - -
HIX [33] Intel SGX - SGX-firmware - HRoT(Acc.) -

HyperTEE [69] RISC-V Customized - M-Monitor - - -
LEAP [49] Arm TrustZone - Monitor - - -

MyTEE [63] Arm TrustZone - Monitor - - -
Portal [80] Arm CCA RMM Monitor - - -

sIOPMP [73] RISC-V Penglai - M-Monitor - - -
StrongBox [31] Arm TrustZone - Monitor - - -

XpuTEE [82] Intel TDX/SGX - VMX root - - -

Acc.-type Acc. TEEs

AccShield [59] Intel TDX/AMD SEV TDX module/SVSM TDX/SEV-firmware AES-GCM Engine(Board) HRoT(Board) Security Manager(Board)
Ambassy [44] Arm TrustZone - Monitor AES Cores(Acc.) - Acc. Controller(Acc.)

CommonCounters [45] Intel SGX - SGX-firmware Opti-Enc. Engine(Acc.) - Command Processor(Acc.)
ccAI [78] -1 - - AES-GCM Engine(Ext.IO) HRoT(Ext.IO) PCIe-SC(Ext.IO)

Dhar et al. [30] -1 - - AES-GCM Engine(Ext.IO) HRoT(Ext.IO) Security Controller(Ext.IO)
GuardAIn [29] - - - AES-GCM Engine(Acc.) HRoT(Acc.) Task Scheduler(Acc.)
GuardNN [48] - - - Opti-Enc. Engine(Acc.) - Micro-controller(Acc.)
Graviton [34] Intel SGX - SGX-firmware AuthEnc/Dec. kernel(Acc.) HRoT(Acc.) Command Processor(Acc.)
HETEE [28] - - - AES-GCM Engine(Ext.IO) HRoT(Ext.IO) Security Controller(Ext.IO)

ITX [62] - - - AES-GCM Engine(Board) CCU(Board) ICU(Board)
LITE [50] Intel TDX/AMD SEV TDX module/SVSM TDX/SEV-firmware Enc. kernel&Spec. HW(Acc.) - Acc. Controller(Acc.)
MGX [51] Intel SGX - SGX-firmware Opti-Enc. Engine(Acc.) HRoT(Acc.) Control Processor(Acc.)

Na et al. [70] Intel SGX - - Opti-Enc. Engine(Acc.) HRoT(Acc.) Command Processor(Acc.)
NVIDIA H100 [58] Intel TDX/AMD SEV/Arm CCA TDX module/SVSM/RMM TDX/SEV-firmware/Monitor AES-GCM Engine(Acc.) HRoT(Acc.) Acc. Controller(Acc.)

PipeLLM [79] Intel TDX/AMD SEV/Arm CCA TDX module/SVSM/RMM TDX/SEV-firmware/Monitor AES-GCM Engine(Acc.) HRoT(Acc.) Acc. Controller(Acc.)
Plutus [64] - - - Opti-Enc. Engine(Acc.) - Memory Controller(Acc.)
PSSM [46] Intel SGX - SGX-firmware Opti-Enc. Engine(Acc.) - Command Processor(Acc.)

Salus-FPGA [72] Intel SGX - SGX-firmware AES-GCM Engine(Acc.) HRoT(Acc.) SM Controller(Acc.)
Salus-GPU [71] - - - Opti-Enc. Engine(Acc.) - Memory Controller(Acc.)

Securator [66] - - - Opti-Enc. Engine(Acc.) - Security Module(Acc.)
SeDA [81] - - - Opti-Enc. Engine(Acc.) - Memory Controller(Acc.)
ShEF [52] - - - Engine set(Board) HRoT(Board) Shield(Board)

SAGE [65] Intel SGX - SGX-firmware AuthEnc/Dec. kernel(Acc.) Kernel(Acc.) Kernel Caller(Acc.)
SGX-FPGA [35] Intel SGX - SGX-firmware Enc. Engine(Acc.) PUF(Acc.) FPGA Secure Monitor(Acc.)

SHM [54] Intel SGX - SGX-firmware Opti-Enc. Engine(Acc.) - Command Processor(Acc.)
SrcTEE [74] Arm TrustZone - Monitor AES-GCM Engine(Board) PUF(Board) Config. Sec. Unit(Board)

Telekine [43] Intel SGX - SGX-firmware AuthEnc/Dec. kernel(Acc.) HRoT(Acc.) Command Processor(Acc.)
T-edge [75] Arm TrustZone - Monitor Enc. Engine(Acc.) HRoT(Acc.) Acc. Controller(Acc.)

TrustOre [42] Intel SGX - SGX-firmware AES-GCM Engine(Acc.) Attester(Acc.) TrustMod(Acc.)
TNPU [53] Intel SGX - SGX-firmware Opti-Enc. Engine(Acc.) - Memory Controller(Acc.)

TensorTEE [76] Intel SGX - SGX-firmware Opti-Enc. Engine(Acc.) - Memory Controller(Acc.)

Mix-type Acc. TEEs

Arm RME-DA [55] Arm CCA RMM Monitor PCIe IDE(Acc.) HRoT(Acc.) DSM(Acc.)
AMD SEV-TIO [56] AMD SEV SVSM SEV-firmware PCIe IDE(Acc.) HRoT(Acc.) DSM(Acc.)

Intel TDX Connect [57] Intel TDX TDX module TDX-firmware PCIe IDE(Acc.) HRoT(Acc.) DSM(Acc.)
sNPU [37] RISC-V Penglai - M-Monitor - - Isolator, Guard(Acc.)

1It relies on CPU TEE with memory encryption support; DSM: Device Security Manager, a centralized security module in TDISP-compliant device.;
Acc.: The corresponding module is built into the accelerator; Board: Security hardware integrated with accelerators on the same board (e.g., Shield [52]);
Ext. IO: External IO security hardware, separate from the accelerator on the same board. (e.g., Security Controller [28], [30]).

side ensures the security of task computation. Currently, there
are limited Mix-type design efforts (4/51 studies). In these ef-
forts, the TEE Device Interface Security Protocol (TDISP) [86]
proposed by PCI-SIG has attracted widespread attention [55]–
[57]. Specifically, the Device Security Manager (DSM) on the
accelerator side manages one or more TEE Device Interfaces
(TDIs) that can be securely assigned to CVMs. The TDISP
control path between the DSM and TSM is protected by the
trusted channel (i.e., Security Protocol and Data Model [92]),
and the data path is protected with the PCI Integrity and Data
Encryption (IDE) protocol [93].

Answer to RQ1. As summarized in §III, the framework of
accelerator TEEs includes three major types (Host-type, Acc.-
type, and Mix-type), in which system components can be
flexibly configured to meet TEE requirements. Nevertheless,
when TEE designers and vendors select a TEE type for
implementation, we provide actionable guidelines as follows:
First, for most cloud providers (e.g., Aliyun [94]) using
commercial accelerators, we recommend designing a Host-
type TEE. Cloud providers can secure accelerator workloads
(and even software) within CVMs and implement accelerator
environment/hardware protection by modifying the TSM and
firmware. Additionally, security components can be easily
implemented and upgraded via software patches. Second,
for accelerator manufacturers (e.g., NVIDIA [95] and Xil-
inx [24]), we suggest designing an Acc.-type TEE by integrat-
ing controllers, custom encryption IP cores, and attestation
modules into the accelerator hardware. With authorization

from TEE users, manufacturers can leverage third-party CVMs
to secure their software stacks. Third, for TEE designers/ven-
dors with independent design capabilities (e.g., Apple [18],
Huawei [96]), we recommend a Mix-type TEE. In this design,
TEE designers/vendors can combine modifications to CPU-
side TSM/firmware and accelerator hardware to achieve ro-
bust, custom-built accelerator protection.

IV. ATTACK VECTORS

As shown in Figure 2, we categorize attacks to accelerator
computing into three types: (1) attack on accelerator task
(marked as AT ) including the task code, data, metadata (e.g.,
task buffer pointer), page tables, and other task resources
stored in host or accelerator memory, and (2) attack on
accelerator environment (marked as AE) including the accel-
erator software, Memory Mapped I/O (MMIO) registers, and
hardware device, and (3) attack on authenticity (marked as
AA). All three types of attack are executed whether the victim
task is in the host (i.e., task preparation/termination stage) or
in the accelerator (i.e., task computing stage).

A. Attacks in Task Preparation/Termination

In the task preparation or termination stage, the victim
task (with input data or execution results) is stored in host-
side memory and has yet to interact with the accelerator. We
elaborate on the three types of attacks in this stage as follows.

To leak the sensitive data, the adversary may directly
attack the victim task via the compromised host OS (AT1)
or hypervisor (AT2). To achieve this, the adversary aims to
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Table III: Security solutions comparison among accelerator TEEs.

Solutions
CVM/Enclave TSM Firmware CPU HW Bus Enc. Module Attest Module Acc. Controller Attacks in Task Preparation/Termination Attacks in Task Computing

Acc. Workload Acc. Driver AT1 AT2 AT3 AE1 AE2 AA1 AT4 AT5 AT6 AT7 AT8 AE3 AE4 AE5 AE6 AA2

A
cc

es
s

C
on

tr
ol

SAC1 ✓

SAC2 ✓ ✓

SAC3 ✓

SAC4 ✓

SAC5 ✓

SAC6 ✓

M
em

E
nc SME1 ✓ ✓ ✓

SME2 ✓

SME3 ✓

A
tt

es
ta

tio
n SAT1 ✓

SAT2 ✓ ✓ ✓

SAT3 ✓

SAT4 ✓

SAC1: Access control based on CPU TEE but not protecting accelerator software stacks. SAC2: Access control based on CPU TEE and protecting accelerator software stacks. SAC3: Access control based on TEE manager (e.g., RMM) or secure hypervisor.
SAC4: Access control based on firmware (e.g., monitor). SAC5: Access control based on IO bus (e.g., CPU bus filter and PCIe filter). SAC6: Access control based on accelerator hardware (e.g., security controller [28]) and authenticated kernel (e.g., kernel caller [65]).
SME1: Enc/Dec based on CPU TEE. SME2: Enc/Dec based on encryption engine/kernel of accelerator. SME3: Enc/Dec based on IO bus (e.g., TDISP).
SAT1: Attestation based on CPU TEE with HRoT. SAT2: Attestation based on software. SAT3: Attestation based on accelerator with HRoT. SAT4: Attestation based on extension hardware with HRoT.

, , : Completely defend against this attack; Defend against this attack in partial scenarios; Unable to defend against this attack.

compromise the confidentiality or integrity of the victim’s task.
By compromising privileged software, adversaries can directly
access the sensitive data (e.g., input, parameters, and execution
results) or code of the victim task. Besides compromising
task confidentiality, the adversary can threaten task integrity.
The adversary can achieve this by replacing the input data of
the victim task or by changing or injecting malicious code
into the victim tasks. The adversary can achieve the attacks
above by using the controlled Direct Memory Access (DMA)-
capable peripherals. In addition, the adversary may modify
the page table and metadata (e.g., buffer pointer and page
table pointer) of the victim task, misleading the accelerator
to access incorrect data buffers or compute with malicious
codes. Besides the software attacks, the adversary may launch
the aforementioned attacks with physical assists (AT3), such
as extracting sensitive data from host DRAM or replaying the
outdated execution results.

The adversary may compromise the accelerator runtime with
two types of attack: (1) interfering with the functionality of
accelerator software (AE1) and (2) performing Iago attacks
(AE2). For AE1 attack, the adversary may compromise the
task scheduling to provide the incorrect task execution order,
such as shuffling the execution order of tasks, arbitrarily
replaying task execution, dropping tasks in confidential ap-
plications, or terminating the victim task ahead. Also, the
adversary may compromise the memory management of accel-
erator software, such as interfering with the memory allocation
for task buffers and page tables, tampering with the page
table mapping (e.g., duplicated mapping or mapping to an
unprotected region) in the victim task. For AE2 attack, the
adversary may provide an incorrect value to TEE to mislead
the accelerator protection. For instance, the adversary may
give an incorrect page table or metadata address of the victim
task, misleading the TEE to protect an unexpected region. The
adversary may also replay the outdated data in the register to
mislead the accelerator computation.

In addition, the adversary may compromise the authenticity
of the victim task (AA1). In the preparation stage of accel-
erator TEEs, the adversary may provide CVM/enclaves with
incorrect task resources (i.e., data and task model).

B. Attacks in Task Computing

In task computing stage, the victim task is moved from the
host to the accelerator-side memory. In this stage, accelerator
software usually interacts with accelerators via MMIO. We
elaborate on the three types of attacks in this stage.

The adversary may attempt to directly access or tamper with
the victim task in the accelerator with the host OS (AT4) or
the hypervisor (AT5) privilege. Although such an attack can be
challenging on dedicated-memory accelerators (e.g., NVIDIA
GPUs [14]) due to hardware isolation, it is more feasible
to attack unified-memory accelerators (e.g., Arm GPUs [16])
that share the same memory with the host. Moreover, the
adversary may abuse the accelerator TEEs and compromise
the task isolation inside the accelerator (AT6). For instance,
the adversary may concurrently run an evil task with a victim
task on the same accelerator. This evil task can monitor the
execution of the victim task or directly access the victim task
with modified page table mapping. A physical adversary can
directly access the I/O bus (such as the PCIe I/O bus, shown
in AT7) or accelerator-side memory (AT8) to leak or tamper
with the sensitive task. Moreover, the adversary may tamper
with the metadata or page table contents to achieve the same
attacks as those on the host.

The adversary may access the accelerator MMIO on the host
via OS (AE3) or hypervisor (AE4), compromising the acceler-
ator runtime during the accelerator TEE computing. Through
MMIO, the adversary may change the register values of critical
accelerator registers (e.g., page table base registers). Also,
since several registers are delegated to control the accelerator
computing, the adversary may send illegal execution com-
mands to these registers to early execute/terminate the victim
task, or perform unauthorized data transmission between the
host and accelerator. For a physical adversary, she can execute
the attacks above through tampering with MMIO (AE5), or
even physically compromising the accelerator hardware (AE6).

Lastly, the adversary may compromise the authenticity of
the accelerator (AA2). Specifically, she may route the victim
tasks to an unexpected or emulated device, monitoring the
computing of the victim tasks.
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Table IV: Access control solutions preference among accelerator TEEs.

Scenario Deployment Features
Access Control Solution Acc. TEE Type

Specific MechanismSAC1 SAC2 SAC3 SAC4 SAC5 SAC6 Host-type Acc.-type Mix-type

C
PU

-D
is

cr
et

e
A

cc
.(

e.
g.

,c
lo

ud
) CPU with Any TEE

(e.g., TDX/SEV for Multi-tenants)

Re-programmed Acc.
(e.g., FPGA for designer,
Hopper GPU of NVIDIA)

Plug-and-play Link
(e.g., PCIe-based Sec. HW)

[34] [51] [70]
[45] [46] [72]
[35] [54] [42]

[43] [76]

Intel SGX, Hardware-based Acc. Controller(Acc.)

[65] Intel SGX, Kernel Caller(Acc.)
[58] [50] [79] CVM with MEE, NVIDIA CC hardware-supported (Acc.)

[59] Intel TDX/AMD SEV, Security Manager(Board)

[56] [57] [55] TDISP
[33] Intel SGX, PCIe Root Complex

[30] [78] Any CPU TEE, Security Controller(Ext. IO)

CPU with Specific TEE
(e.g., VMX root of Intel)

Legacy Acc.
(e.g., A100)

[61] AMD SEV, SVSM
[82] Intel SGX/TDX, VMX root
[47] Arm TrustZone, S-Hyp

[67] Arm CCA, RMM, Monitor

Legacy CPU
(e.g., w/o CPU TEE)
Re-programmed Acc.

[64] [48] [71]
[29] [81] Acc. Controller(Acc.)

[62] [52] Integrated Security Hardware(Board)

Legacy CPU-Acc. [28] PCIe-based Security Controller(Ext. IO)
Preference 14/34 12/34 4/34 1/34 6/34 26/34 5/34 26/34 3/34 Mainstream solution combination: SAC1/2 + SAC5/6

In
te

gr
at

ed
C

PU
-A

cc
.(

e.
g.

,e
dg

e)

Platform with specific sec. HW
(e.g., TZASC/GPC in Arm)
or modified privilege SW

(e.g., S-Hyp/
trusted firmware in Arm)

[68] Arm CCA, Monitor
[31] [63] Arm TrustZone/OP-TEE, Monitor

[77] Arm TrustZone, S-Hyp

[80] Arm CCA, RMM, Monitor

[60] [32] [49] Arm TrustZone, Monitor

Re-programmed HW
(e.g., RISC-V/

FPGA-based DNN Acc.)

[36] [69] Customized RISC-V TEE, M-Monitor, CPU IO Filter

[73] RISC-V Penglai, M-Monitor, CPU IO Filter

[37] RISC-V Penglai, M-Monitor, Isolator, Guard(Acc.)
[53] Intel SGX, Memory Controller(Acc.)

[75] [44] [74] OP-TEE, Acc. Controller(Acc.)
[66] Acc. Controller(Acc.)

Preference 5/17 11/17 2/17 11/17 3/17 6/17 11/17 5/17 1/17 Mainstream solution combination: SAC1/2 + SAC4

V. ACCESS CONTROL

A. Solutions for Access Control

SAC1: TEE without accelerator driver. Studies can reuse
the CPU-side TEE, including heavyweight CVMs (e.g., CVMs
in AMD SEV [61], Intel TDX [82], and Arm CCA [68])
or lightweight enclaves (e.g., enclaves in SGX [42], [65],
[97] or RISC-V [37], [73], or OP-TEE in Arm [31], [63]), to
protect the accelerator workloads with sensitive data/code in
both task preparation/termination and computing stage. The
workloads are stored in a secure memory with software-
or hardware-assisted isolation, restricting unauthorized access
from Host OS (AT1) and hypervisor (AT2). Moreover, for
unified-memory accelerators that share the same memory with
the host, this solution additionally protects tasks from the same
adversary during the task computing stage (i.e., AT4 and AT5).
SAC2: TEE with accelerator driver. Besides protecting the
accelerator workloads, studies can further extend their CPU-
side TEE protection to software stacks of varied accelerators
(e.g., GPUs [33], [36], [80], NPUs [53], or generic types
of accelerators [55]–[57]), including the accelerator driver
and user-layer libraries (e.g., CUDA [98] or OpenCL [99]).
With TEE protection, the accelerator software can securely
manage tasks and device status. This solution defends against
the attacks in SAC1. Additionally, it addresses the threats to
accelerator software (AE1) and illegal access (AT6).
SAC3: Hypervisor-based access control. Studies can leverage
a hypervisor-layer software, such as a TSM (e.g., AMD
SVSM [56], [61], Intel TDX module [57], and Arm secure
hypervisor [47] and RMM [55], [67], [80]) to defend against
attacks from a low-privileged adversary, such as Host OS or
other CVM/enclaves. This type of solution is mainly achieved
by configuring hypervisor-layer access control mechanisms,
such as Stage-2 translation in MMU/IOMMU [100]. In the
task preparation/termination stage, this solution prevents the

OS from accessing victim tasks in host memory (AT1) and
compromising accelerator software (AE1). Moreover, it can
verify the exchanged data between the host and TEE to
partially mitigate Iago attacks (AE2). In the task computing
stage, this solution prevents accessing victim tasks in the
accelerator (AT4,6) or accessing MMIO (AE3).
SAC4: Firmware-based access control. Studies can configure
the highest-privilege firmware (e.g., Monitor [31], [63], [68]
in Arm, and M-mode Monitor [36], [37], [73] in RISC-
V) to manage access control against the compromised OS,
illegal CVM/enclaves, and hypervisor via MMU, or even
malicious peripherals via IOMMU. This is typically supported
by an isolated and hardware-assisted security primitive, such
as TZASC [90] or TZPC [101] in Arm TrustZone, GPC [91]
in Arm CCA, and PMP [102] in RISC-V. This solution
covers previous attack vectors (i.e., AT1,2,4,5,6, AE1,2,3) and
additionally prevents the hypervisor’s access to the task in the
accelerator (AT5) and MMIO (AE4).
SAC5: Access control in IO Bus. Studies may customize
access control in the bus connection between the CPU-side
host and accelerator hardware, such as customizing the IO
bus filter [73], adding a CPU bus filter [36], and monitoring
PCIe switch [28]. To achieve this, studies may change the bus
configuration, or introduce additional security hardware. This
solution focuses on the attacks in task computing, effectively
addressing the unauthorized access to tasks in accelerator
(AT4,5) and filtering illegal MMIO configuration (AE3,4).
Moreover, the bus protection mechanism can filter the ma-
licious MMIO configuration (AE5) and data leakage on the
bus (AT7) from the physical adversary.
SAC6: Access control in accelerator. Studies can provide
accelerator with a security controller, such as a customized
security module in accelerator (e.g., command/control pro-
cessor [34], [43], [58]) to provide a maximal access control
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guarantee in task computing stage. It effectively addresses
the data leakage from CPU-side adversary and the evil tasks
(AT4,5,6) and partially mitigates the malicious MMIO status
configuration (AT3,4,5). Moreover, protection on the acceler-
ator can defend against physical tampering of the accelerator
memory (AT8) and other device components (AE6).

B. Insights on Access Control

IAC1: Deployment scenarios drive multi-solution combi-
nation. Access control is an essential security solution in
accelerator TEE design. Table III shows that higher-privilege
solutions (e.g., SAC4,5,6) address unmitigated threats in lower-
privilege ones (e.g., SAC1,2,3). However, existing studies typi-
cally combine multiple solutions instead of relying on a single
option. A key reason lies in the deployment characteristics of
different scenarios (detailed in Table IV). For cloud-equipped
accelerator TEEs, they usually implement on Intel- and AMD-
based clouds (with unmodifiable firmware) and connect to
discrete accelerators via external interfaces (e.g., PCIe). This
makes the combination between CVM/enclave (SAC1,2) and
accelerator-side defense (SAC5,6) — such as the hardware fire-
walls for NVIDIA H100 [58] — the mainstream choice. Such
combination, however, can be constrained by the accelerator’s
programmability, motivating studies (e.g., XpuTEE [82]) to
modify VMX Root to support legacy accelerators. Addition-
ally, when the CPU lacks TEE support and the accelerator
is non-programmable, efforts finally shift to modify PCIe
I/O (e.g., HETEE [28]). For endpoint accelerator TEEs, the
CPU and accelerators are typically integrated into Arm/RISC-
V endpoint platforms. Studies tend to modify high-privilege
software (e.g., secure hypervisor) and leverage existing secu-
rity hardware (e.g., Arm TZASC or RISC-V PMP in monitor)
to secure accelerators [31], [32], [49], [60], [68], [77], [80].
Overall, we recommend that TEE designers select hybrid
access control solutions based on their specific scenarios.
IAC2: CPU-side TEE is not necessary for accelerator
protection. Accelerator TEEs do not necessarily require
CVM/enclave to secure accelerator software, or even the
workload and environment. Instead, studies can integrate se-
curity checks/protection with privileged software or hardware
within accelerator’s workflow (e.g., SAC3,4,5,6). As shown in
Table IV, the number of studies based on SAC1 and SAC2

is comparable — 19 and 23 studies, respectively — and
meanwhile 9 studies do not rely on TEE-based protections.
A primary reason is that accelerator software can manipulate
workloads (e.g., allocating memory) without accessing their
exact contents. Thus, accelerator TEEs can implement full
encryption for sensitive contents and optionally expose non-
confidential information (e.g., MMIO register values, page ta-
ble, metadata) to the driver. Furthermore, removing accelerator
software from CVM/enclave can effectively reduce their TCB
size (will analyze in ITC1 and ITC2). Currently, SAC2 is
only indispensable in specific cases, such as accelerator TEE
with unmodifiable firmware/TSM/hardware or unchangeable
software stacks.

IAC3: Overreliance on firmware-based solutions is in-
feasible. Accelerator TEEs cannot naively rely on firmware-
based access control (SAC4) to mitigate most attack vec-
tors. A key reason is the significant granularity limitations
of hardware-assisted security primitives. Table V illustrates
these limitations for configurable security primitives (e.g.,
Arm TZASC [103], Arm GPC [85] and RISC-V PMP [104])
widely used in accelerator TEEs [31], [37], [63], [67], [73].
Specifically, most of them lack granularity support in two
critical aspects: (1) limited and coarse-grained isolation, and
(2) limited control over diverse access permission attributes —
both of which are essential for MMUs in commercial accelera-
tors. Consequently, overreliance on SAC4-based access control
can severely disrupt the accelerator’s functionality. This leads
studies to reuse fine-grained access control mechanisms from
TSMs or CVMs/enclaves.

Table V: Granularity comparison among security primitives.

Arm TZASC Arm GPC RISC-V PMP Addr Trans.

Solution Type SAC4 SAC4 SAC4 SAC1,2,3

Minimal Granularity 32KB 4KB 4Byte 4KB
Configurable Regions Limited Non-limited Limited Non-limited

Read/Write Distinction Supported Not Supported Supported Supported
Execute Permission Not Supported Not Supported Supported Supported

PAN/PXN Permission Not Supported Not Supported Not Supported Supported
Studies Examples [31], [60] [67], [68], [80] [37], [73] [31], [32], [47], [67]

VI. MEMORY ENCRYPTION

A. Solutions for Memory Encryption

SME1: CPU TEE-based memory encryption. Studies can
reuse the CPU TEE-side software encryption API or mem-
ory encryption engines (e.g., Intel TME [87] in [57], AMD
SME [2] in [56], [61], Arm MEC [85] in [67], [100]) to
protect sensitive data/code in the CPU-side off-chip memory
during the preparation stage. These sensitive workloads are
encrypted in memory to restrict privileged adversaries (i.e.,
AT2 and AT2) and physical adversaries (i.e., AT3) from
accessing plaintext. Moreover, for unified-memory accelera-
tors that share the same memory with the host, this solution
protects tasks from the same adversaries during the task
computing stage (i.e., AT4,5,6,7,8).
SME2: Accelerator kernel/hardware-based memory en-
cryption. Besides CPU-side encryption, studies can pro-
vide cryptographic support to the accelerator-side memory.
They achieve this by delivering authorized en/decryption ker-
nels [34], [50], [65] to the accelerator, or design hardware-
based en/decryption engine [58], [59]. This solution effectively
prevents physical adversaries (i.e., AT8) from accessing data,
and mitigates data leaks caused by CPU-side privileged adver-
saries (i.e., AT4 and AT5) and malicious tasks (i.e., AT6). To
prevent physical adversaries from accessing confidential data
(i.e., AT7) on the external PCIe bus, this solution collaborates
with SME1 for encrypted data/code transmission.
SME3: IO Bus-based memory encryption. Lastly, stud-
ies may deploy memory encryption mechanisms on the bus
between the CPU and the accelerator. When transmitting
accelerator tasks with sensitive data/code, this solution care-
fully encrypt the transmission packets between the CPU and
accelerator devices. To achieve this, studies may apply an
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Figure 3: Memory encryption workflows of accelerator TEEs.
Table VI: Security implications of missing memory encryption.

Scenarios Victim Physical Threats Missing Memory Encryption (SME ) → Consequence Influenced Studies

CPU-Discrete Acc.
(e.g., cloud)

Plug-and-play Host Memory
(e.g., DDRx) AT3, AE5

Missing CPU-based encryption (SME1) → Data/code/metadata/PTEs in plaintext
on host memory are vulnerable to physical access/tampering (e.g., cold-boot attacks) [28], [48] [47], [60]

3D-stacked Acc. Memory
(e.g., HBM) - Missing any memory encryption → Minimal physical threats [34], [42], [43] [52], [58]

[61], [62], [79] [71]
On-board Acc. Memory
(e.g., GDDRx/LPDDRx) AT8

Missing Acc.-based encryption (SME2) → Data/code/metadata/PTEs in plaintext
on acc. memory are vulnerable to physical access/tampering (e.g., probing attacks)

[28], [33], [35], [47], [55]–[57], [60]
[30], [65], [67], [72], [78], [82]

Plug-and-play Link
(e.g., PCIe/CXL) AT7

Missing IO-based (SME3) or CPU-Acc. encryption (SME1,2) → Physical access/tamper/replay packets
in plaintext on the link (e.g., replay attacks). [33], [47], [48], [82]

Integrated CPU-Acc.
(e.g., edge)

On-board/Plug-and-play
Shared Memory

(e.g., LPDDRx/DDRx)
AT3,8, AE5

Missing CPU-Acc.-based encryption (SME1,2) → Data/code/metadata/PTEs in plaintext
on shared memory are vulnerable to physical access/tampering

[31], [32], [36], [49], [63], [68], [80]
[37], [44], [68], [73]–[75], [77], [80]

Missing de/encryption engine (e.g., AES) for confidentiality → Direct access to plaintext data
Missing integrity check engine (e.g., Message Authentication Code, MAC) for integrity → Tampering with plaintext/ciphertext data
Missing number used once (e.g., counter/integrity tree [105]) for freshness → Replay attacks

Table VII: Comparison of security metadata for accelerator TEE memory protection.

Solution Studies Freshness (via counter) Integrity (via MAC)
Data Gra. Counter Gra. Space1 Storage Protection Data Gra. MAC Gra. Space1 Storage

Fine-gra.
(Traditional MEE) [1] Block(64B) Normal(56bit) CBTL Off-chip MT Block(64B) Normal(56bit) HBTL Off-chip

Coarse-gra.
[53] [51] [48] Tile(MB) SW-aware(64bit) CTL On-chip - Block(64/512B) Normal(64bit) HBTL Off-chip

[76] Tile(MB) SW-aware(56bit) CTL On-chip - Tile(MB) SW-aware(56bit) HTL Off-chip
[66] Layer(MB) SW-aware(64bit) CL On-chip - Layer(MB) SW-aware(32B) HL On-chip

Muti-gra.

[81] Tile(MB) SW-aware(64bit) CTL On-chip - Block,Layer,
Model SW-aware [H, HBTL] On-chip(Layer,Model)

Off-chip(Block)

[64] [46] [71] Block(128B)
Sector(32B)

Major(32bit)
Minor(3/7/8bit) CBTL Off-chip(Block) BMT(Block) Block(128B) Normal

(64/56/32bit) HBTL Off-chip

[45] Segment(KB)
Block(128B)

Common(32bit)
Normal(64bit) [CSTL, CBTL] On-chip(Segment)

Off-chip(Block)
- (Segment)
BMT(Block) Block(128B) Normal(64bit) HBTL Off-chip

[54] R-Region(KB)
Sector(32B)

Major(32bit)
Minor(32bit) [CPTL, CBTL] On-chip(Region)

Off-chip(Block)
- (R-Region)
BMT(Block)

Page(4KB)
Block(64B) Normal(64bit) [HPTL, HBTL] On-chip(Page)

Off-chip(Block)
1: A large language model (block size * BLT) as the memory protection object;
SW-aware: counters based on software-detected tensor-granularity scheme; Segment: uniformly updated segments (e.g., 128KB [45]); R-Region: Read-only region (e.g., 16KB [54]); BMT: Bonsai Merkle Tree;
H: MAC size; C: Counter size; B: nums of blocks per tile; P: nums of pages per tile; S: nums of segments per tile; T: nums of tiles per layer; L: Total nums of layers;

external encryption engine [28], [59] or modifying the I/O
bus [93]. This solution benefits from the fact that it requires
no Memory Encryption Engines (MEEs) on the host or ac-
celerator. Meanwhile, it provides the security capabilities of
SME1 and SME2 and defend against the same adversaries
(i.e.,AT2,3,4,5,6,7,8).

B. Insights on Memory Encryption

IME1: Physical adversaries are underestimated. The lack of
memory encryption tailored to different deployment scenarios
can expose systems to severe attack vectors. As shown in
Table VI, cloud accelerators are typically equipped with high-
capacity discrete memory and connect to the host via PCIe. In
this case, several accelerators [106]–[108] do not physically
integrate their memory with the accelerator chip — thus,
they require accelerator-based memory encryption (SME2) to
mitigate threats from physical adversaries. Besides accelera-
tor devices, the PCIe link necessitates IO-based encryption
(SME3) or co-encryption (SME1,2); otherwise, transmitted
plaintext packets are vulnerable to interception, tampering, and

replay attacks. For endpoint devices, the CPU and accelerator
typically share the same memory [16], [18]. If the endpoint
memory is compromised, the accelerator TEE remains vul-
nerable to physical attacks [109] and requires co-encryption
between the CPU and accelerator (SME1,2). Currently, more
than half of the studies (30/51 studies in Table VI) are
impacted by various attacks targeting accelerator environments
and workloads. Therefore, we recommend that TEE designers
systematically analyze physical threats across different scenar-
ios to implement appropriate memory encryption solutions.

IME2: Improper-grained security metadata significantly
increases overhead. When designing memory encryption for
a specific accelerator, naively reusing CPU TEE’s or other
accelerator TEE’s solution can introduce large performance
overhead. Specifically, CPUs access memory at the cache line
granularity (64B), while accelerators (e.g., NPUs and GPUs)
access memory in large blocks (KB or MB) of contiguous
data. Thus, when reading from or writing to memory, CPU
requires a single memory access to retrieve security metadata,
while accelerator needs frequent accesses to multiple sets of
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security metadata (see Figure 3(b)). To mitigate this overhead,
studies (11/51 studies in Table VII) focus on tailoring memory
encryption solutions for accelerators. They aim to scale up
metadata granularity to reduce the frequency of creating meta-
data entries. Moreover, NPU TEEs [53] [51] [48] [81] [66]
[76] adopt coarse-grained memory encryption solutions since
NPUs usually support neural network computing scenarios
(which access memory in tiles or layers). However, such
coarse-grained solutions are unsuitable for GPU TEEs due
to two reasons. First, GPUs feature sector memory [46] and
global memory [54] with diverse memory access granularities.
Second, most GPU data blocks (e.g., intermediate results)
are written only once during initialization and uniformly
updated [45], [54]. Based on this, GPU TEEs [45], [46], [54],
[64], [71] focus on multi-granularity memory encryption so-
lutions, generating coarse-grained metadata for low-frequency
writes or large data blocks. This minimizes the height of
the integrity tree and reduces storage pressure. Overall, we
recommend TEE designers to design proper-grained security
metadata based on accelerator access patterns.
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Figure 4: Performance of LLM inference with SME solutions.
IME3: Inconsistent encryption granularity between CPU
and accelerator incurs performance overhead. Incompatible
memory protection granularity between the CPU Memory
Encryption Engine (MEE) and the accelerator MEE introduces
additional interaction processes and generates performance
overhead. As shown in Figure 3(c), this overhead is composed
of two parts: (1) the secure initialization, where the CPU and
accelerator need to synchronize metadata via a trusted channel
(e.g., the Security Protocol and Data Model [92]); and (2)
the secure communication, where the CPU and accelerator
need to negotiate protection granularity and transfer data
through bounce buffers [34], [58]. To further analyze the
overhead of these two parts, we conducted an evaluation
using large language models (LLMs). Following state-of-the-
art NPU TEEs [48], [51], [53], [66], [76], [81] based on
the cycle-accurate NPU simulator SCALE-Sim [110], we set
both AES and MAC latencies to 40 cycles and measured
9 LLMs (with parameter sizes ranging from 1.1 billion to
9 billion). As shown in Figure 4(a), during the secure ini-
tialization phase (before generating the first token), the CPU
generates and synchronizes secure metadata based on model

parameters and input, incurring 47.88% to 73.45% overhead.
Additionally, in the secure communication phase, the CPU
and accelerator must continuously update and verify metadata
to decode subsequent tokens, resulting in 40.36% to 44.94%
overhead (Figure 4(b)). We observe that the overhead of secure
communication is stable and relatively smaller than that of
secure initialization. This is because the decoding phase —
during which numerous tokens are computed — dominates
the overall inference execution time. Currently, some TDISP-
based solutions [55]–[57] reduce this overhead by eliminating
bounce buffers. However, when combined with accelerator
memory encryption of different granularities, accelerator TEEs
still suffer from the overhead of re-encryption [45], [48], [51],
[53], [81] process. Thus, when designing accelerator MEEs
for TEEs, developers should carefully ensure the consistency
of CPU and accelerator MEE to reduce interaction overhead.

VII. ATTESTATION

A. Solutions for Attestation

SAT1: CPU HRoT-based attestation. Studies [68], [80] can
reuse the CPU-side Trusted Platform Module (TPM) [111] to
verify the authenticity of accelerator software stacks and the
confidential accelerator tasks. These software stacks and tasks
contain checksum, Hash-based Message Authentication Code
(HMAC), and other signature certificates. By checking with
TPM-recorded results, this solution defends against unautho-
rized or maliciously replaced tasks (AA1). Moreover, several
studies [31], [68] can leverage this solution to defend against
the emulated or incorrect computing environment (AA2) by
attesting its execution environment or accelerator hardware.
SAT2: SW-based attestation. Besides attestation based on
CPU HRoT, study [65] proposes a software-based mechanism
for attesting tasks and accelerators. This solution submits an
attestation kernel to the accelerator to check the task execution.
Software-based authentication defends against compromising
the authenticity of tasks (AA1) without requiring hardware
support. However, it is only effective during the runtime phase
and cannot establish a root trust chain. For security guarantee,
the key storage and protocols negotiation can rely on the CPU-
side CVM/enclaves (e.g., Intel TDX and SGX).
SAT3: Accelerator HRoT-based attestation. Studies assume
or equip an accelerator HRoT, such as the ROM-stored key
in NVIDIA H100 [58] or the PUF-generated immutable key
in FPGA [35]. Based on this, the accelerator can verify its
own software in the secure boot stage, following a pre-defined
chain of trust. Same as SAT1,2, these software stacks must
contain checksum and signature certificates for verification.
This solution can effectively defend against adversaries who
tamper with the accelerator boot images and firmware (AA2).
SAT4: Attestation supported by extension hardware. Stud-
ies use the HRoT in external security hardware (e.g., additional
security hardware [52], [59] and the security controller [28] on
the IO bus) to attest the accelerator device. This solution often
requires to develop proprietary HRoT or embed third-party
TPM chips (e.g, Infineon [112]) to build a root trust chain.

10



Accelerator attestation key components & roles

Accelerator 
Attestation SDK

ApplicationAccelerator

HRoT
(e.g., HW-fused

Key)

Secure Acc. SoC
ROM

Platform
Initialization

Digital Signatures
 TCB (e.g., Firmware)

Trusted Platform
Module (TPM)

Evidence &
Certificate

Platform Configuration Registers (PCRs)

Measured Boot

Images
Secure Boot

CVM (e.g., Intel TDX)

(a) Establishing the chain of trust based
on HRoT (initialization phase)

(b) Accelerator remote attestation roles and
messages (runtime phase)

Accelerator

Accelerator Verifer
(e.g., Remote Attestation Service)

Accelerator
Reference Value Rrovider

Accelerator Endorser
(e.g., OCSP Service)


Accelerator
Driver

Application Accelerator

Accelerator Verifer
(e.g., Remote Attestation Service)

Accelerator
Reference Value Rrovider

Accelerator Endorser
(e.g., OCSP Service)


Accelerator Driver
CPU TEE 

Authority Client

Accelerator 
Attestation SDK

CPU TEE attestation components

CPU

CPU  Verifer
(e.g., CPU Turst Authority Service)

(c) CPU-Accelerator integrated attestation roles
and messages (e.g., Intel TDX + NVIDIA H100) 

① Collect & Claim (for Acc.)

②  Evidence with Certificate 

④ Provide True Evidence ③ Check Certificate

⑤ Compare and Return Res.

CPU TEE incurs additional process
Model
Owner

Data
Owner

Attestation Service

(d) Task attestation
 (e.g., Huawei GuardAIn) 

Accelerator
TEE

Untrusted Host 
(w/o CPU TEE)

Cloud Provider/Moblie Device

Figure 5: The mainstream attestation process in accelerator TEEs.
Same as SAT3, this solution provides attestation capability on
accelerator devices and defends against AA2.

B. Insights on Attestation

IAT1: Security implications of lacking attestation imple-
mentation. Accelerator TEEs require attestation to ensure the
authenticity of the accelerator environment. Based on the TCG
attestation protocol [113], we propose an attestation process
for accelerators (shown in Figure 5). In the initialization phase,
evidence (e.g., hash values and boot logs) and certificates
of the accelerator environment (including firmware, kernel,
and application) are collected via the HRoT and TPM (see
Figure 5(a)). In the runtime phase, the Endorser and Reference
Value Provider supply authentic certificates and evidence,
respectively, to the Verifier (e.g., NRAS, NVIDIA Remote
Authentication Service [58]) for verification (see Figure 5(b)).

Tenstorrent
Enflame

Rockchip
SamsungApache

Gemmini
Huawei

Broadcom
GraphcoreGoogle AMD Arm Xilinx NVIDIA

0

5

10

15

20

Su
rv

ey
ed

 A
cc

.

1 1 1 1 1 1 0 0 0
2 2

4
2

18

0 0 0 0 0 0 0 1 0 0 0 0

6

00 0 0 0 0 0 1 0 1 0 0 0 0 1

No Attestation Support
With Attestation Support from Acc. TEE Designer
With Attestation Support from Vendors

Figure 6: Attestation support in surveyed accelerators. Note
that we provide detailed data in Table VIII.

Table VIII: Surveyed accelerators in Figure 6.

Acc. Vendors Acc. Device Name (used Acc. TEE)

Tenstorrent N150 NPU ( [78] )

Enflame S60 GPU ( [78] )

Rockchip RK3588S NPU ( [77] )

Samsung Exynos 990 NPU∗ ( [51], [53], [81] )

Apache VTA NPU∗ ( [47] )

Gemmini Gemmini NPU ( [37], [69] )

Huawei Ascend 910A NPU ( [29], [30] )

Broadcom VideoCore IV GPU ( [63] )

Graphcore GC200 IPU ( [62] )

Google TPU-v1∗ ( [48], [51], [66], [81] ), TPU-v3∗ ( [76] )

AMD Radeon RX VEGA 64 GPU ( [43] ), RX6900XT GPU ( [61] )

Arm Mali-G71 GPU ( [49], [60] ), Mali-T624 GPU ( [31], [68] ),
Mali-G610 GPU ( [80] ), Ethos-N77 NPU∗ ( [53] )

Xilinx

VCU118 FPGA ( [59], [67] ), Zynq-7000 FPGA ( [42] ), ZCU106 FPGA ( [75] ),
XCZU15EG FPGA ( [74] ),
XCZU9EG FPGA ( [44] ),

UltraScale+ Ultra96 FPGA ( [52] ), Alveo U200 FPGA ( [72] ), ADM-PCIE-7V3 FPGA ( [35] )

NVIDIA

GTX 780 GPU ( [34] ), GTX 460 SE GPU ( [67] ), GTX 580 GPU ( [33] ),
GTX 2080 GPU ( [47] ), GTX Titan Black GPU ( [28], [34] ), Tesla P40 GPU ( [28] ),

Tesla V100 GPU ( [28] ), T4 GPU ( [78] ), L20 GPU ( [78] ),
RTX 4090Ti GPU ( [78] ), RTX 3080 GPU ( [82] ), RTX 2080 GPU ( [49] ),

TITAN X Pascal GPU∗ ( [45] ), Volta Arch. GPU∗ ( [46], [64], [71] ),
Turning Arch. GPU∗ ( [54] ), H100 GPU ( [58], [79] ),

A100 GPU ( [65], [78] ), NVDLA ( [73] ), Jetson AGX Orin ( [32] )
∗Accelerator TEE uses simulators to emulate the corresponding commercial accelerators

(e.g.,MGX [51] use SCALE-Sim [110] to simulate Google TPU-v1 and Samsung Exynos 990 NPU).

However, our analysis reveals that only three accelerator
vendors (Huawei [29], Graphcore [62], and NVIDIA [58])
have deployed complete attestation mechanisms on their

specific accelerators. Additionally, a small number of pro-
grammable accelerators (e.g., FPGAs) or platforms implement
basic attestation components [35], [42], [52], [63], [72], [74],
[75], while most accelerators (34 out of 44 accelerator devices
used in accelerator TEEs) lack any attestation implementation
(shown in Figure 6), resulting in severe authenticity vulner-
abilities. Table IX shows our analysis on missing attestation
components. If an accelerator TEE lacks an HRoT or Endorser,
attackers can emulate or replace system components with
unauthorized versions to compromise CPU TEEs. Further-
more, missing TPMs or Reference Value Providers enable
attackers to bypass secure boot and inject malicious code into
the accelerator TEE. For TEEs without accelerator driver pro-
tection [31], [63], [68], a recent attack [114] demonstrates that
adversaries can inject malicious microcontroller unit (MCU)
firmware to steal or tamper with sensitive data protected
by the accelerator TEE. To address these missing security
components, vendors such as AMD plan to integrate open-
source Roots of Trust (e.g., Caliptra [115]) into their future
GPU products. We recommend that more accelerator vendors
provide robust software and hardware support for attestation.

Table IX: Security implications of missing attestation.

Components&Roles Sec. Properties Properties Violation
→ Consequence

W/O Implementation
Studies Examples

HRoT&Endoser SW&HW from
authorized sources

Emulated or replaced components
(e.g., injecting malicious bitstream)

→ Providing malicious TEE
[45], [46], [48]

[49]–[51]
[32], [54], [60]
[64], [66], [70]
[37], [71], [73]
[76], [77], [81]

TPM with PCRs&
Ref. Value Provider

Trusted parts must
boot before

untrusted parts

Violate boot order
→ Secure configuration bypass

Trusted image
must be checked

Violate integrity check
of boot image

→ Code injection in TEE

IAT2: Potential threats of CPU-accelerator integration
attestation. Most accelerator TEEs rely on CPU TEEs (see
Table I) but lack a standardized attestation process for CPU-
accelerator interactions. Based on the attestation mechanisms
of Intel TDX and NVIDIA H100 [116], we propose a
generic CPU-accelerator integrated attestation workflow (see
Figure 5(c)). Compared to traditional accelerator attestation
workflows, the CPU’s Authority Client and Trust Authority
Service act as intermediaries to relay requests and receive
evidence and attestation results. This structure requires users,
accelerator manufacturers, and cloud service providers to place
full trust in the CPU manufacturer. However, the centralized
CPU authority service may access sensitive accelerator-related
information — such as accelerator identifiers, TCB details,
and security configuration policies — threatening accelerator
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environment and leaking sensitive data [117]. To address
this, we recommend that accelerator TEEs either decouple
accelerator and CPU attestation processes or integrate privacy-
preserving techniques (e.g., zero-knowledge proofs, secure
multi-party computation) to safeguard sensitive information.
IAT3: Inadequacy of command-level task attestation for
AI tasks. Task attestation ensures the integrity of task execu-
tion on accelerators. However, current implementations (e.g.,
Graviton [34]) primarily focus on command-level attestation,
where individual kernel operations (e.g., a memory copy in
CUDA) are protected through authenticated encryption and
MAC-based integrity verification. This approach fails to ac-
count for the sequential dependencies inherent in complex
AI tasks, leaving them vulnerable to integrity breaches. AI
models typically consist of multiple layers with interdependent
operations (e.g., ReLU → Matrix Multiplication → Soft-
Max). In such cases, a malicious host can exploit the lack
of sequence verification to inject, modify, or reorder tasks.
For example, an attacker might redirect tasks to malicious
binaries or leak sensitive model parameters, compromising
both model confidentiality and integrity. Furthermore, AI tasks
often involve multiple distrusting parties (e.g., data providers
and model providers), introducing collusion risks, such as a
data owner colluding with a cloud provider to steal intellectual
property. To address these limitations, we build on state-
of-the-art research [29] and propose an AI task attestation
workflow (see Figure 5(c)). This workflow assumes each
participant holds unique keys to encrypt and integrity-protect
both task binaries and their execution sequences. Using the
Diffie-Hellman key exchange mechanism [118], participants
establish secure sessions with the attested accelerator, enabling
end-to-end verification of task dependencies. Untrusted third-
party platforms (e.g., cloud providers) only handle encrypted
data and models. Given the increasing complexity of future AI
tasks, TEE designers should adapt accelerator task attestation
solutions to integrate task-specific features.
Answer to RQ2. Based on our analysis in §IV, §V, §VI,
and §VII, TEE designers should account for complex soft-
ware/hardware attack vectors and adopt three mainstream
defense mechanisms: access control, memory encryption, and
attestation. To implement access control, designers should first
consider TEE deployment scenarios and limitations related
to high-privilege protection, then address these challenges
through hybrid solutions. For memory encryption, while TEE
designers may optionally implement it to mitigate specific
threats, they must factor in the significant performance over-
head involved. Lastly, we recommend that TEE designers
carefully evaluate attestation mechanisms and collaborate with
accelerator manufacturers to ensure the authenticity.

VIII. TCB ANALYSIS

Similar to CPU TEEs, a key factor that influences accel-
erator TEE’s real-world deployment is the bloated trusted
computing base (TCB). In this aspect, we analyze the TCB
in both guests’ CVM/enclaves and the system components.

Table X: System TCB size of accelerator TEEs. The red
number indicates native TCB size and the green number
indicates added TCB in each study. In this table, we set
the adversary to access the host OS, hypervisor and general
CVM/enclaves, excluding them from the system TCB.

Acc. TEE

High privilege SW Low privilege SW
(CVM/Enclave) or

Sec. HW (Acc./Board/IO)
TSM

(Hyp.-level)
Firmware

(Mon.-level)

Graviton [34] - SGX-FW Cmd Processor(Acc.)

HIX [33] - SGX-FW IO Filter(IO)

HETEE [28] - - Sec. Controller(IO)

TrustOre [42] - SGX-FW TrustMod(Acc.)

Telekine [43] - SGX-FW Cmd Processor(Acc.)

Ambassy [44] - Mon(0.5M) Acc. Controller(Acc.)

CommonCounters [45] - SGX-FW Cmd Processor(Acc.)

CURE [36] - Sec. Monitor(0.5K)
Crypt. Op. (2.6K) IO Filter(IO)

PSSM [46] - SGX-FW Cmd Processor(Acc.)

SGX-FPGA [35] - SGX-FW FPGA Sec. Monitor(Acc.)

Cronus [47]
S-Hyp(35K)

mEnclave Mng(4.3K)
HAL core(2.1K)

Mon(0.5M) -

GuardNN [48] - - Micro-Controller(Acc.)

LEAP [49] - Mon(0.5M)+0.5K OP-TEE(0.3M)+0.7K

LITE [50] SVSM(5K) SEV-FW Acc. Controller(Acc.)

MGX [51] - SGX-FW Cmd Processor(Acc.)

ShEF [52] - - Shield(Board)

StrongBox [31] -

Mon(0.5M)
Crypt. Op.(0.5K)

Integrity Check(0.2K)
Access Control(0.3K)
Other Config.(0.2K)

-

TNPU [53] - SGX-FW Memory Controller(Acc.)

SHM [54] - SGX-FW Cmd Processor(Acc.)

Arm RME-DA [55] RMM(33K) Mon(0.5M) DSM(Acc.)

AMD SEV-TIO [56] SVSM(5K) SEV-FW DSM(Acc.)

Intel TDX Connect [57] TDX Mod.(35K) TDX-FW DSM(Acc.)

NVIDIA H100 [58] TDX Mod.(35K) TDX-FW Acc. Controller(Acc.)

AccShield [59] TDX Mod.(35K) TDX-FW Sec. Mng(Board)

AvaGPU [32]

S-Hyp(35K)
S2 Trans.(0.4K)

Sec. GPU Mng(4.9K)
Mediator(0.2K)
Replayer(0.3K)
Scheduler(1.6K)

Mon(0.5M) -

GR-T [60] - Mon(0.5M) -

Honeycomb [61]
SVSM(9.8K)

SM, Sandbox VM(9.4K)
Validator(12.3K)

SEV-FW -

ITX [62] - - ICU, CCU(Board)

MyTEE [63] S-Hyp(35K)+1.5K Mon(0.5M)+2.0K -

Plutus [64] - - Memory Controller(Acc.)

SAGE [65] - SGX-FW Kernel Caller(Acc.)

Securator [66] - - Sec. Module(Acc.)

ACAI [67] RMM(33K)+0.4K Mon(0.5M)+1.6K -

CAGE [68] RMM(33K)

Mon(0.5M)
Task Mng(0.7K)

Env. Protection(0.4K)
GPT Opti.(0.1K)

Other Config.(0.1K)

-

Dhar et al. [30] SVSM(5K) SEV-FW Security Controller(IO)

HyperTEE [69] - Cust. M-Mon EMS(Board)

Na et al. [70] - SGX-FW Command Processor(Acc.)

Salus-FPGA [72] - SGX-FW SM-Controller(Acc.)

Salus-GPU [71] - - Memory Controller(Acc.)

sIOPMP [73] - M-Mon IO Filter(IO)

sNPU [37] -
Crypt. Op.(10.8K)

Allocator(1.7K)
Other Config.(0.1K)

Isolator, Guard(Acc.)

SrcTEE [74] - Mon(0.5M) Config. Sec. Unit(Board)

T-Edge [75] - Mon(0.5M) Acc. Controller(Acc.)

TensorTEE [76] - SGX-FW Memory Controller(Acc.)

ASGARD [77] S-Hyp(35K)+2.0K Mon(0.5M) -

ccAI [78] TDX Mod(35K) TDX-FW PCIe-SC(IO)

GuardAIn [29] - - Task Scheduler(Acc.)

PipeLLM [79] TDX Mod.(35K) TDX-FW Acc. Controller(Acc.)

Portal [80] RMM(33K)+0.8K Mon(0.5M)+0.1K
CVM(26M)

System Realm(0.6K)
Realm VM(0.2K)

SeDA [81] - - Memory Controller(Acc.)

XpuTEE [82] VMX root+6.0K - -
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Table XI: Codes for confidential computing in H100 driver.

Function LoC

Security
Access Control 2547

Memory Encryption 2456
Attestation 3070

Functionality
Fault/Interrupt Handler 263

Runtime Utility 487
CC Flags 789

Total 9612

ITC1: Large TCB additions and changes for confidentiality
support. Most commercial accelerators are not specially de-
signed for accelerator TEEs. However, for accelerator vendors,
introducing TEE supports in non-confidential accelerators can
introduce large TCB additions and changes to the accelerator
driver. For this problem, we analyze the source code of
NVIDIA’s open-source driver (which serves both H100 GPU
and general GPUs). Specifically, we measure the source code
related to TEE support (e.g., confidential access control flags
such as CC, encryption such as AES, and attestation such
as SPDM) with widely-used tool cloc [119]. Table XI shows
our results. The official NVIDIA driver introduces 2.5K LoC
on access control, 2.4K LoC on memory encryption, and
3.0K LoC on attestation. Besides the major security support,
NVIDIA also introduces 1.5K LoC for essential functionality
support (e.g., handling faults/exceptions, managing CC run-
time, and indicating CC status). Thus, TEE support on general
accelerators can require non-negligible additions/changes, fi-
nally converting to the large TCB in guest CVM/enclaves.
ITC2: Large TCB from supporting varied accelerator soft-
ware. Leveraging TEE to secure accelerator software (SAC2)
is a naive method to protect accelerator workloads/environ-
ments [33], [47], [58], [67]. However, such a solution can add
non-negligible TCB to CVMs/enclaves and thus influence their
security. As shown in Table XII, the widely used NVIDIA
and AMD GPUs introduce 1.4M LoC and 5.0M LoC to
CVM/enclave to protect their kernel-layer drivers, respectively.
For NVIDIA GPUs, although their official compiler (i.e.,
CUDA) is closed-source, one of the non-official implemen-
tations, gdev [120], requires 0.3M LoC TCB addition. Xilinx
FPGAs also provide a standardized runtime (i.e., XRT [121])
with 0.3M LoC. Worse, with accelerator hardware updates,
the corresponding software stacks also increase their size to
support more accelerator functions. For instance, when Arm
upgrades its Mali GPUs to the third generation (e.g., Mali
G71 GPUs), the size of the GPU driver also extends from
47K to 0.1M LoC. Considering most platforms support more
than one type of accelerators, the guests’ CVM/enclaves can
require more TCB to support these accelerators.
ITC3: Abusing TCB addition in high-privilege software.
Accelerator TEEs may abuse TCB additions in high-privilege
software (i.e., TSM and firmware), potentially undermining
CPU-side system security. As shown in Table X, Cronus [47]
and Honeycomb [61] introduce 6.4K and 22K lines of code
(LoC) additions, respectively, to lightweight TSMs (e.g., Arm
Hafnium [137] and AMD SVSM [138])—largely expanding
the TCB of this component. For firmware-based protection
(SAC4), four studies [31], [63], [67], [68] add >1.0K LoC

to the monitor — a thin TCB but in the highest-privilege
component. These TCB additions can thus introduce a non-
negligible attack surface to the CPU-side system. However,
such additions can be decoupled into low-privilege compo-
nents. For instance, Cronus [47] and CAGE [68] leverage
hundreds of LoCs to manage accelerator TEE isolation (e.g.,
a 4.3K enclave manager in Cronus and 0.5K GPC-related
configuration in CAGE). If these codes are decoupled to a
CVM (e.g., Portal [80]), a co-processor unit, or an external
peripheral (e.g., HETEE [28]), TCB additions would be effec-
tively reduced without interfering with the TSM/Monitor’s na-
tive functionality and security. Overall, TEE designers should
flexibly invoke low-privilege components to minimize TCB
additions in high-privilege software.

IX. COMPATIBILITY DISCUSSIONS

For compatibility issues, we categorize them into two sig-
nificant aspects: (1) multi-type issues, which indicate the com-
patibility problems on supporting multiple types of hardware
platforms, which can equip varied CPU, TEE, and accelerator;
and (2) plug-and-play issues, which indicate the compati-
bility problems on supporting native user-level software and
native platform hardware. We summarize the compatibility
requirements of accelerator TEEs in Table XIII and detail the
compatibility issues as follows.
ICP1: Lack of multi-type CPU TEE support. Deploying
an accelerator TEE across different platforms presents sig-
nificant challenges, as many TEEs are designed for a single
architecture or specific type. Most accelerator TEEs face this
compatibility issue. On one hand, some TEEs implement
access control using unique security mechanisms (such as Arm
GPC in CAGE [68] and Portal [80]) and architecture-specific
privileges (e.g., the VMPL0 layer in Honeycomb [61]). Con-
sequently, they cannot be supported on other CPU architecture
platforms with different security primitives. On the other
hand, accelerator TEEs may support only application-layer en-
claves [33], [35], kernel-layer CVMs [67], or a unified secure
world [31]. These variations result in substantial differences
in supported software and execution workflows, requiring non-
trivial effort to redesign TEE management systems. To address
this, we recommend that TEE designers adopt a generalized
framework encompassing access control, memory encryption,
and attestation to enhance cross-platform compatibility.
ICP2: Lack of multi-type accelerator support. A large
number of accelerator TEEs (43/51 studies) focus on a single
type of accelerator device, such as GPUs [33], [34], [68],
NPUs [37], [53], TPUs [59], or FPGAs [35], [72], [75].
Although accelerators share similar interaction methods with
CPUs (i.e., DMA and MMIO), their task execution work-
flows, supported libraries/drivers, and hardware configurations
(e.g., MMIO and DMA settings) can vary significantly. For
example, accelerator drivers may feature unique memory man-
agement (e.g., unified virtual memory in NVIDIA drivers)
or other specialized functions. Several user-layer libraries
(e.g., CUDA [98] and OpenCL [99]) are even closed-source.
These factors introduce non-negligible modifications when
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Table XII: Size of accelerator software stacks.
Software Stack Supported Acc. TCB Size (ver. of src.) Acc. TEE

NVIDIA GPU

official CUDA toolkit [98] NVIDIA GPU [14] N/A2 [28], [32], [50], [58], [65], [78], [79], [82]
official kernel driver [122] NVIDIA GPU [14] 1.4M (v575.64.05 [122]) [28], [50], [58], [78], [79], [82]

gdev [120] NVIDIA GPU [14] 0.3M (latest [123]) [33], [34], [47], [67]
nouveau [124] NVIDIA GPU [14] 0.1M (in Linux v6.16 [125]) [34], [47], [67]

AMD GPU ROCm [126] AMD Radeon GPU [15] 10M (latest [126])1 [43], [61]
AMD GPU driver AMD Radeon GPU [15] 5.0M (in Linux v6.16 [125]) [43], [61]

Arm Mali GPU Bifrost driver [89] Mali G71/G610 GPU [16] 0.1M (r54p1 [89]) [49], [60], [80]
Midgard driver [127] Mali T6xx/T7xx/T8xx GPU [16] 47K (r32p0 [127]) [31], [68]

OpenCL [99] Mali GPU [16] N/A2 [31], [49], [60], [68], [80]

Xilinx FPGA Xilinx DMA drivers [128] Xilinx FPGA [24] 7.6K (latest [128]) [67]
XRT [121] Xilinx FPGA [24] 0.3M (v2.19.194 [121]) [52]

Coyote FPGA software stack [129] Xilinx FPGA [24] 7.5K (v0.2.1 [130]) [59]
Huawei NPU Ascend software [131] Huawei Ascend NPU [21] N/A2 [29], [30]

VTA NPU vta-driver [132] VTA NPU [133] 2.7K (latest [132]) [47]
Arm NPU Ethos-N driver stack [134] Arm Ethos-N77 NPU [19] 72K (v25.03 [134]) [53]

Samsung NPU Exynos driver [135] Samsung Exynos NPU [20] 17K (latest [135]) [53]
NVIDIA DNN Acc. NVDLA software [136] NVDLA DNN Acc. [27] 0.4M (v1.2.0 [136]) [37], [73]
1The ROCm is a complex software stacks. In this paper we mainly measure the TCB of entire compilers (e.g., amd-llvm and HIP), ROCR and ROCm runtime.
2 Closed-source software.

Table XIII: Compatibility requirements of accelerator TEEs.
; : Satisfied; Not satisfied. MT TEE: Multi-type TEE

architecture support. MT Acc.: Multi-type accelerator support.
PP SW: Plug-and-play support on accelerator software. PP
Plat: Plug-and-play support on accelerator-equipped platform.

Acc. TEE MT TEE MT Acc. PP SW PP Plat.

Graviton [34]
HIX [33]

HETEE [28]
TrustOre [42]
Telekine [43]

Ambassy [44]
CommonCounters [45]

CURE [36]
PSSM [46]

SGX-FPGA [35]
Cronus [47]

GuardNN [48]
LEAP [49]
LITE [50]
MGX [51]
ShEF [52]

StrongBox [31]
TNPU [53]
SHM [54]

Arm RME-DA [55]
AMD SEV-TIO [56]

Intel TDX Connect [57]
NVIDIA H100 [58]

AccShield [59]
AvaGPU [32]

GR-T [60]
Honeycomb [61]

ITX [62]
MyTEE [63]

Plutus [64]
SAGE [65]

Securator [66]
ACAI [67]

CAGE [68]
Dhar et al. [30]
HyperTEE [69]

Na et al. [70]
Salus-FPGA [72]

Salus-GPU [71]
sIOPMP [73]

sNPU [37]
SrcTEE [74]
T-Edge [75]

TensorTEE [76]
ASGARD [77]

ccAI [78]
GuardAIn [29]
PipeLLM [79]

Portal [80]
SeDA [81]

XpuTEE [82]

integrating native protection mechanisms with new accelerator
software and hardware. Thus, TEE designers should prioritize
a standardized CPU-accelerator interaction framework.
ICP3: Non-trivial changes on accelerator software. Accel-
erator TEEs may require substantial modifications to native
accelerator drivers, libraries, and applications, driven by two
key considerations. First, accelerator TEEs may add or modify
native driver functions to support TEE security mechanisms.
Such changes include managing buffers and page tables [31],
[68], collecting task information [28], controlling secure accel-
erator execution [33], [34], interacting with new security mod-

ules in CVMs/enclaves [32], and other functional adjustments.
These modifications also necessitate accelerator applications to
invoke TEE-related APIs [28], [31]. Second, some accelerator
TEEs [47], [61] may further decouple complex software stacks
for security concerns. This is because most accelerator drivers
and libraries are relatively large and contain buggy code, which
poses risks to the security of CVM/enclaves.
ICP4: Non-trivial changes on platform hardware. Finally,
accelerator TEEs may involve modifications to accelerator
hardware, the PCIe I/O bus, or even CPU instruction sets. Such
changes are common in Acc.-type and Mix-type accelerator
TEEs [34], [37], [59], [62], and are partially adopted in some
Host-type studies [33], [36]. Given the hardware variability
across different CPUs and accelerators, reproducing these
accelerator TEEs on new platforms requires addressing non-
trivial compatibility challenges. For cloud providers leveraging
commercial accelerator TEEs, we strongly recommend avoid-
ing hardware modifications in accelerator TEE design.
Answer to RQ3. Based on our analysis in §VIII and §IX, TEE
designers should carefully address the TCB and compatibility
limitations associated with deploying accelerator TEEs. In
terms of TCB, designers should consider the bloated size of
accelerator software stacks and the TCB expansion resulting
from high-privilege components. For compatibility, designers
should maximize compliance with the multi-type and plug-
and-play compatibility requirements for accelerator software,
hardware, and the platforms they are deployed on.

X. OTHER DISCUSSIONS

Availability attacks. Defending against availability attacks
(e.g., Denial-of-Service) is generally regarded as orthogonal
work in most accelerator TEEs [45], [47], [50], [53], [58], [61],
[65]. Currently, few accelerator TEEs (e.g., AvaGPU [32])
systematically analyzes availability threats related to GPU task
execution delays and preemption, addressing them through a
CPU-GPU joint scheduling framework. Nevertheless, solutions
from other CPU TEEs or non-accelerator I/O TEEs can be
migrated to accelerator TEEs to mitigate availability threats.
For example, Hora [139] designs a formally verified scheduler
to ensure periodic availability during application execution,
while Aion [140] implements an enclave-side scheduler to
guarantee resource fairness for protected applications.
Other security requirements on deployment. As highlighted
earlier in IAC1, IME1, and IAT1, we analyzed cloud and
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endpoint deployment challenges from the perspectives of at-
tack vectors and design preferences. However, TEE designers
must also account for other real-world considerations. For
example, from a user requirement perspective, cloud accel-
erator TEEs typically serve large enterprises with stringent
confidentiality needs. These enterprises may demand rigorous
attestation processes for third-party accelerator firmware and
remote attestation verifier. In contrast, endpoint accelerator
TEEs generally cater to personal users who do not require such
strict measures. These deployment-specific factors partially
guide TEE designers in defining their security requirements.
TDISP. The industry has proposed an accelerator TEE frame-
work, called the TEE Device Interface Security Protocol
(TDISP) [86]. This framework provides a formal system
overview and protocols (e.g., SPDM [92]) for CPU-side se-
curity components, PCIe, and accelerator devices. Currently,
manufacturers of PCIe, CPUs, and accelerators have begun
supporting TDISP, including through the Compute Express
Link (CXL) IDE specification [141], Intel TDX Connect [57],
and NVIDIA B200 GPUs [142]. Several studies focus on
TDISP-based systems (e.g., ACAI [67]) or conduct related
security verification for accelerator and CPU hardware [143]–
[146]. However, TDISP is not a definitive solution for build-
ing accelerator TEEs. Currently, TDISP-compliant CPUs and
accelerators have not adequately addressed key blind spots,
such as communication-related memory encryption overhead
(IME2), threats within the CPU-accelerator trust chain (IAT1),
the introduction of large TCBs into CVMs (ITC1), and poor
compatibility with general accelerators/platforms (ICP4).

XI. RELATED WORKS

Related survey works. Current surveys have yet to propose a
detailed analysis for accelerator TEE designs. Thus, they fail
to answer our three research questions. Several studies [39]–
[41], [147], [148] survey TEE threats and protection on varied
CPU architectures, while they lack the same analysis on the
accelerator side. For accelerator surveys, most surveys [149]–
[152] on accelerator security focus on threats. Wang [153]
discusses several threats and defense mechanisms on GPU
TEEs, while they have yet to consider TEE for other ac-
celerators (e.g., NPU TEE). Compared to these studies, this
paper analyzes the detailed attack vectors and accelerator TEE
framework, systematically analyzing defense mechanisms and
their security/TCB/compatibility insights.
Non-accelerator I/O TEEs. Several studies extend TEE de-
sign to protect I/O operations [154]–[156], adopting security
solutions similar to those used in accelerator TEEs. For ex-
ample, Keystone [155] configures RISC-V’s M-mode monitor
(similar to SAC4) and leverages the RISC-V PMP technique
to secure CPU-device communication. SGXIO [154] secures
I/O interactions through SGX-like enclaves (similar to SAC2)
and a trusted hypervisor (similar to SAC3). While these TEEs
have the potential to support accelerator computing, they lack
detailed mechanisms for managing accelerators.

Additionally, some I/O TEEs are directly implemented
on FPGAs, leveraging the hardware’s high programmability

to implement or emulate CPU-side security primitives (e.g.,
RISC-V PMP). Many FPGAs (e.g., Xilinx FPGAs [24]) also
integrate a TrustZone-supported Arm CPU core. These fea-
tures enable I/O TEEs (e.g., HECTOR-V [157], Notary [156],
Split-Trust [158], and Iso-X [159]) to verify secure I/O com-
munication. However, these solutions do not implement on-
board accelerator units (e.g., a DNN IP core) and lack detailed
protections for the accelerator’s workloads and computing
environments. For this reason, we do not analyze these studies.
Other accelerator studies. Numerous accelerator-focused
studies have identified orthogonal blind spots in accelerator-
equipped systems. For example, Pichai et al. [160] focus
on design flaws in GPU-side access control (i.e., rebuilding
the CPU MMU on GPUs) and its performance overhead.
Other works discuss performance challenges related to ac-
celerator Translation Lookaside Buffers (TLBs) [161]–[163],
cache management [164], [165], scheduling [166], and system
calls [167]. These studies do not focus on security issues in
accelerator TEE development and typically study a specific
accelerator type (e.g., GPUs). However, we believe their
insights and solutions can potentially be adapted to accelerator
TEEs, enhancing TEE performance and other key aspects.

XII. CONCLUSION

Accelerator TEE is a rising technique to protect sensitive
task computing on accelerators. Although the industry and
academy propose varied accelerator TEE designs, studies have
yet to provide a detailed comparison of these designs and
analyze the pros and cons of their security solutions. In this
paper, we provide a systematical analysis of accelerator TEE
studies. We categorize the attack vectors and accelerator TEE
designs. Based on this, we analyze three mainstream security
mechanisms: access control, memory encryption, and attesta-
tion, with summarizing detailed solutions and insights. Lastly,
we find that most accelerator TEEs are challenging to deploy
on real-world devices because of their non-negligible TCB
and compatibility issues. Our analysis will provide insightful
suggestions on building an accelerator TEE in the future.
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