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Abstract—We systematize the research on authenticated dictio-
naries (ADs)—cryptographic data structures that enable appli-
cations such as key transparency, binary transparency, verifiable
key-value stores, and integrity-preserving filesystems. First, we
present a unified framework that captures the trust and threat
assumptions behind five common deployment scenarios. Second,
we distill and reconcile the diverse security definitions scattered
across the literature, clarifying the guarantees they offer and
when each is appropriate. Third, we develop a taxonomy of
AD constructions and analyze their asymptotic costs, exposing
a sharp dichotomy: every known scheme either incurs O(logn)
time for both lookups and updates, or achieves O(1) for one oper-
ation only by paying O(n) for the other. Surprisingly, this barrier
persists even when stronger trust assumptions are introduced,
undermining the intuition that “more trust buys efficiency”. We
conclude with application-driven research questions, including
realistic auditing models and incentives for adoption in systems
that today provide no verifiable integrity at all.

I. INTRODUCTION

What do encrypted-messaging PKI, filesystem integrity,
blockchains, and secure cloud storage have in common? They
all rely on the same cryptographic primitive: authenticated
dictionaries (ADs). In its simplest form, an AD is a data
structure that allows an untrusted server to commit to a set
of key-value pairs (or equivalently, label-value pairs) using
a short, constant-sized commitment (also sometimes called a
digest). Given this commitment, the server can answer read
queries for specific keys and convince an untrusting verifier
of the correctness of a key-value binding, or handle write
queries and provide a short proof that an updated commitment
incorporates the requested change.

Different applications can use the same underlying construc-
tion by assigning different semantics to keys and values. A few
such motivating applications include:
• Database and filesystem integrity, particularly when a

large key-value database (with arbitrary semantics) is out-
sourced to an untrusted server [138], [156], [157], [153], or
when ensuring the integrity of an entire filesystem [126].

• Blockchains, where ADs are used for tasks such as mapping
accounts (keys) to balances or state (values), and committing
smart-contract storage by mapping memory addresses (keys)
to data (values), as pioneered by Ethereum [151].

• Transparency systems
– Key transparency, where the AD maps user names

(keys) to public keys (values), typically to support end-
to-end encrypted communication [137], [113], [142],
[20], [3], [28], [31], [98], [97]. Related proposals for
secure messaging include key-usage transparency [155]
and group-membership transparency.

– Binary transparency, where the AD maps software
application names (keys) to updates [52], packages [81],
or builds [2], [121], typically in hashed form.

– Revocation transparency, where the AD maps domain
names (keys) to expired certificates (values), extending
the earlier notion of certificate transparency (CT) to com-
mit to all currently valid certificates for a domain [95],
[119], [150], [58], [96], [88], [89], [118].

Although ADs were proposed nearly thirty years ago in the
context of database integrity, most of their development and
deployment over the past decade has occurred independently,
driven by transparency systems and blockchains. Transparency
systems were first proposed to detect misbehavior by certifi-
cate authorities (CAs), which vouch for mappings between
web domains and public keys used to establish secure TLS ses-
sions. An incorrectly issued (or “rogue”) certificate from any
single CA can undermine user privacy and security [49], [139],
and there have been many prominent CA compromises [66],
[55], most notably DigiNotar [57] and Comodo [134] in
2011. CT has now been successfully deployed in practice for
over a decade, with modern browsers rejecting any certificate
that has not been publicly logged. While CT itself does not
implement a full AD and instead commits only to the set of
valid certificates rather than a domain-to-certificate mapping
(technically, CT is a vector commitment), it directly inspired
later work on transparency in other domains. In parallel,
many blockchains such as Ethereum utilize ADs to efficiently
commit on-chain to user and smart-contract state.

Despite underpinning critical systems ranging from end-
to-end encrypted messaging and filesystem integrity to
blockchains and secure cloud storage, AD constructions re-
main fragmented across disparate trust models, workloads, and
APIs. This fragmentation forces developers to reimplement
core functionality, complicates rigorous evaluation, and im-
pedes secure, large-scale deployment. In this work, rather than
presenting new benchmarks, we deliver the first comprehensive
framework for ADs: a unified terminology and five core trust
models that clarify the entire design space. Our framework
lays the conceptual foundation for standardized APIs, modular
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implementations that integrate seamlessly into diverse appli-
cations, and meaningful future artifact-based comparisons—
paving the way for faster innovation, stronger security guar-
antees, and interoperable deployments across domains.

Our contributions. In this work, we provide:
(C1) A unified framework for trust models. We catalog five
core roles (server, client, data source, auditor, public bulletin
board) and show that every AD in the literature fits into one
of five models differing in who is trusted and for what. For
example, cloud-based logs such as Amazon QLDB [8] use a
trusted-source model, whereas key-transparency systems like
WhatsApp do not have a single authoritative source.
(C2) A comparative map of security definitions. We distill
the often informal security notions in the AD literature into
three core definitions which we call value binding, history
binding, and read-write consistency, and analyze their logical
relationships and prerequisites. This allows practitioners to
select the definition that best enforces their real-world safety
goals while balancing usability requirements. For example,
read-write consistency only applies when writers manage cryp-
tographic secrets; thus, in key-transparency settings, history
binding is the strongest applicable notion.
(C3) A taxonomy of construction styles. We identify the
approaches to instantiate ADs in the literature, provide a
classification of works along this taxonomy, and discuss their
various advantages and disadvantages.
(C4) An asymptotic performance survey. Our analysis of
more than 30 schemes that innovate on AD design, introduce
novel data structures, or add new functionality reveals a strik-
ing bifurcation: either both lookup and update run in O(log n)
time, or updates are O(1) while lookups degrade to O(n)
(or vice versa). Crucially, stronger trust assumptions do not
automatically yield better asymptotics: several no-trusted-party
designs match the update/lookup trade-offs of trusted-data-
source ADs. This challenges the common engineering intuition
that centralized trust necessarily leads to better performance.

Paper outline. The remainder of this paper is organized
as follows. In Section II, we define the paper’s scope, de-
scribe our two-step paper-gathering methodology, and in-
troduce the evaluation criteria underlying our comparison.
We also summarize related work that we consider out of
scope and explain our rationale. In Section III, we develop
a unified model of ADs, first by introducing the core roles
and operations (Section III-A) and then presenting five trust
models (Section III-B). In Section IV, we present an API
for ADs along with three security definitions–value binding,
history binding, and read-write consistency–and discuss their
implications. Section V summarizes the technical building
blocks of ADs, categorizes constructions by their technical
instantiation, surveys the literature within this framework, and
presents our asymptotic performance analysis, highlighting the
(log n, log n) versus (1, n) trade-off. Finally, in Section VI
we discuss deployment lessons, open challenges for systems
builders, and directions for future work.

II. RELATED WORK AND EVALUATION CRITERIA

In this section, we discuss work related to ADs that we deem
out of scope. We also discuss our evaluation criteria and
methodology for finding the constructions we do include.

A. Scope, evaluation criteria and methodology

Here, we discuss our scoping, methodology, and the primary
criteria we use to compare AD constructions (a detailed
comparison is provided in Table II).

Scope. Our goal is to systematize the literature on ADs,
which are cryptographic data structures that enable an un-
trusted server to prove the integrity of a key-value store via
succinct commitments. We only include papers whose stated
contributions lie in the design, analysis, or deployment of
an AD construction, and we omit works focusing solely on
related primitives (e.g., logging, pure accumulators, general
vector commitments, gossip protocols, etc.) unless they present
a novel approach to realizing or optimizing an AD.

Paper gathering methodology. We assembled our bibliogra-
phy using a two-stage process. First, we manually reviewed
well-known recent papers such as [82], [107] and their closely
related works, as well as the Google Scholar pages of their
authors. To ensure completeness, we also developed a Python
script that leverages the Semantic Scholar API. The script
scanned major security, database, and cryptography venues
over the past two decades, filtering by keywords such as
“authenticated dictionary” and “verifiable directory.” Both the
script and detailed filtering criteria are provided as a reusable
artifact [106] (see App. B for details).

Efficiency. Efficiency is the primary practical consideration
for most applications of interest, which often require scaling
to millions or billions of entries. We evaluate efficiency along
three dimensions: (1) server costs for database updates and
lookups; (2) client costs for verification and proof size (the
latter is asymptotically equivalent to verification time and thus
omitted); and (3) costs for auditing and monitoring. We present
asymptotic comparisons in Table II. While concrete overheads
are important in practice, a fair empirical comparison is
currently infeasible. Many older constructions (particularly
from the 1990s and early 2000s) lack public or maintained
implementations. More importantly, the space is fragmented
across threat models, workloads, and APIs, making even con-
ceptually similar systems difficult to compare experimentally.

Our paper identifies five distinct trust models, ranging from
settings with a trusted data source to fully decentralized
transparency systems. Some of these models are directly
comparable, for example, the trusted-source models form a
comparable cluster, and the no-trusted-source models another.
We hope that the unified terminology and abstractions we
introduce will help bridge these design spaces, enabling more
modular constructions and clarifying tradeoffs across settings.
In the long term, this could facilitate interoperable APIs and
more meaningful benchmarking across applications. As of
today, the only such benchmarking effort we are aware of is
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VeriBench [157], which focuses on database integrity, a rel-
atively mature use case with more standardized assumptions,
but even VeriBench benchmarks only six implementations.
Required cryptographic assumptions. All AD constructions
require a collision-resistant hash function (CRHF) and some
require no further cryptographic assumptions. Others, which
we deem algebraic constructions, require additional crypto-
graphic assumptions e.g., the strong RSA assumption. We
provide a detailed list in App. C. Practitioners generally prefer
systems with fewer and better-studied assumptions as they are
less vulnerable to improved cryptanalysis. Furthermore, such
systems typically admit simpler, more well-studied implemen-
tations, which is important for robustness.

B. Other authenticated data structures

Proof of Liabilities/Reserves. Proofs of Liabilities and Proofs
of Reserves allow a prover to commit to its total liabilities
or assets and efficiently demonstrate to each user that their
balance is included [110], [47], [48], [124], together forming
a Proof of Solvency [38], [135], [26]. These schemes often
employ Merkle or Verkle trees and RSA accumulators, but
require additional guarantees beyond standard ADs, such as
proving the sum of individual values, and typically use zero-
knowledge proofs to show inclusion of each user’s assets or
liabilities. Because their functionality and security goals differ
from those of ADs, we exclude them from this study.
Accumulators, VCs, & memory checkers. Memory checkers
allow a client to outsource an array and verify that reads
reflect the most recent writes [16]. Vector commitments (VCs)
commit to a vector and allow opening at specific indices [27],
[123]. Authenticated hash tables [130] and set accumula-
tors [120], [13], [43], [63] support verifiable membership or
non-membership queries. These primitives provide strictly less
functionality than ADs and can be composed into or derived
from ADs (e.g., via the reductions of Falzon et al. [53]);
therefore, they are considered out of scope for this study.
PDP and POR. Provable Data Possession (PDP) is a restricted
form of memory checking that allows a client to outsource
data to an untrusted server and verify data posession without
retrieval [7]. Proofs of Retrievability (POR) were introduced
concurrently and go further by enabling the server to prove
not only possession but also that the client can retrieve the
entire file [85]. While both PDP and POR are related to ADs,
they offer more limited functionality and are out of scope.
Data structures for complex operations. Authenticated data
structures have been proposed to support more complex
queries, such as graph connectivity and geometric queries [71],
shortest-path queries [154], subgraph similarity search [132],
prefix authentication [115], and wildcard prefix lookups [39].
Their enhanced functionality and/or differing security goals
place these works outside the scope of our study.

C. Logging and related solutions

Early solutions. One of the earliest applications to consider
authenticated mappings was document time-stamping, begin-

ning with the work of Haber and Stornetta [78]. Their main
goal was to commit to the state of a user’s document at a
specific point in time, which they achieved using a hash chain.
Subsequent works sought to improve the efficiency of this
construction [12], [11], [13], [25], [24]. See, for example,
Lipmaa [104] for a survey. As Table II shows, the key
advantage of more recent schemes is that they reduce the cost
of lookups to (at least) sublinear in the number of entries.
Chronological logging. Chronological logging extends early
research and supports only insertions of new keys, with no
updates to existing keys. Conceptually, it resembles an AD
in which the keys are indices of log entries, akin to Lamport
timestamps [93]. For example, a log entry might consist of a
statement, stmt, such as “Cert C issued for domain D,” and
if this is the ith statement, key i maps to stmt. To determine
the current state associated with domain D, a party must
traverse the entire mapping to collect all relevant statements
stmtD1 , . . . , stmtDk and derive D’s value. If domains them-
selves were treated as keys with mutating values, verifying
the state of any particular key would be linear in N , the
number of updates in the AD. While such solutions have not
appeared explicitly in the AD literature, related work includes
certificate transparency [94], [40], [137], [46], [83], [91], [44],
[152], tamper-evident or transaction logging [140], storage
timestamping [125], and package manager transparency [81],
[2], [79]. Due to the limitation on the set of keys, these
are more limited than ADs and we do not discuss them
further. Chronological logs are sometimes combined with a full
AD solution to support efficient updates or patch an existing
system; in such cases, we do consider them.
Certificate transparency (CT). CT is an application that uses
chronological logging to record all certificates issued by a
certificate authority. It is one of the most widely deployed AD-
related applications in cryptography for ensuring the integrity
of TLS certificates. Thus, AD applications can learn from CT,
including challenges related to sharing commitments [111] and
privacy-preserving reporting and querying [41], [50], [87].

D. Consensus and related problems

Dissemination mechanisms or public bulletin boards. Cer-
tain AD models assume the existence of a mechanism that
allows users to obtain consistent views of small cryptographic
commitments to the dictionary. We refer to this mechanism as
a public bulletin board (PBB) or, more generally, a dissemina-
tion mechanism (DM). In practice, bulletin boards for ADs and
closely related transparency systems have been instantiated
using gossip protocols [36], [112], [29], [42], [103], [108],
blockchains [145], [20], [2], other decentralized systems [23],
or reliable broadcast and witnessing mechanisms [107], [141],
[121]. To keep the scope of this work focused on ADs across
different trust models, we leave a general security definition
and a systematization of dissemination mechanisms and public
bulletin boards for transparency applications to future work.
Blockchain-related models. A blockchain or decentralized
system, especially one that supports Turing-complete smart
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contracts [151], can be viewed as an AD. In this setting,
the AD is replicated across many servers (or full nodes) that
respond to lookup queries. However, the blockchain literature
and related areas largely focus on a specific aspect of the up-
date mechanism: no fixed party is trusted to perform writes—
an assumption that necessitates Byzantine consensus. Layer-2
blockchains are often equivalent in construction to our trans-
parency model, particularly when implemented in a centralized
manner. At the same time, layer-2 solutions typically aspire
to decentralization and rely on the main chain as a fallback
mechanism to prevent or recover from errors; consequently,
much of the layer-2 literature focuses on this interaction
with the main chain. Light clients are restricted to lookup
functionality and therefore do not support a full-fledged AD.
A separate line of work on stateless blockchains (e.g., [143],
[18], [35], [34]) primarily focuses on vector commitments and
accumulators, with an emphasis on efficiently updating proofs
for subsets of values. Overall, while blockchain and adjacent
research heavily relies on ADs, these works typically treat ADs
as a black box or employ alternative data structures rather
than innovating on AD design itself. We therefore include
blockchain-related works only when they introduce new AD
constructions or insights, and otherwise refer the reader to
existing surveys on light clients [30] and layer-2 solutions [77].

E. Other related works

Frameworks. In this work, we restrict ourselves to key-value
stores and closely related authenticated data structures. There
exists, however, a broader literature on authenticated variants
of more general data structures. For further discussion, we de-
fer to prior work [67], [117], which presents generic compilers
for transforming arbitrary data structures into authenticated
ones. More recently, LegoLog [54] proposes a configurable
framework for transparency systems with a focus on optimiz-
ing for different workloads. LegoLog is built around a specific
construction, Merkle2, which we discuss in Sec. V, but could
likely be extended to support other AD constructions within
a similar model. VeriBench [157] provides a framework for
benchmarking verifiable database implementations; however,
it does not analyze asymptotic performance or consider older
constructions that lack modern implementations, but might
perform well if implemented today.

Related SoKs. The SoK of Brandt et al. [22] surveys a subset
of the literature included here, limiting themselves to key
transparency and providing a new UC security definition for
it. We refer the reader to the SoK of Hicks [80] for further
discussion of specific applications, legal, and organizational
aspects of transparency systems and their relation to traditional
offline notions of transparency. Another SoK [111] focuses on
the privacy issues that appear in practice when clients wish
to obtain proofs and raise alarms in certificate transparency.
These works raise important questions about specific applica-
tions that may employ ADs, but they do not focus on the AD
primitive itself or its associated trust models.

III. MODELING AUTHENTICATED DICTIONARIES

We survey five distinct AD trust models: two that assume a
single trusted data source, one with multiple data sources each
trusted for a subset of the dictionary, and two that eliminate
any root of trust. We show how each model offers different
guarantees and applies to different deployment scenarios.
Fig. 1 shows these models and their relationships, highlighting
which schemes interoperate without additional cryptography.

A. Roles and Operations in ADs

We first discuss the most general set of roles across the
AD literature and provide a unified terminology. Note that the
exact trust assumptions may vary across the different models
and some of the roles may be omitted.
Server. The server stores and updates a queryable database,
typically modeled as a key-value store (though some systems
use alternative models, e.g., a chronological list in CT). Since
the server is untrusted, it uses an authenticated data structure
to maintain integrity, and, in some applications, transparency
under specified invariants (e.g., monotonic version numbers).

The authenticated data structure enables succinct commit-
ments to the database state, which are periodically computed
and signed. In some settings, like cloud storage, the data owner
who serves as a trusted data source helps compute or verify
commitments and signs them. In transparency applications
with no trusted source, the server signs and disseminates
commitments to clients—typically via a public bulletin board
(see below). In such cases, the server must also prove that
each commitment is syntactically correct and that updates
since the previous commitment follow the prescribed protocol
and satisfy required predicates. Additionally, the server should
efficiently prove membership (or non-membership) of a key-
value pair with respect to the latest commitment, and clients
should be able to verify these proofs efficiently. To support
tracking and consistency, the commitments themselves may
be organized in an authenticated data structure, such as an
authenticated linked list [113] or Merkle tree [112], to enable
verifying both key-level queries and global state changes.
Client. A party, referred to as the user or client, can query
the database hosted by the server and request updates to its
values. In some settings, there is a single client; in others,
multiple clients may interact with the database. In multi-
client scenarios, updates are often subject to rules around
authentication and access control (e.g., a user can only update
their own values) and in some cases there may also be restric-
tions on which keys a user is permitted to query. The server
is responsible for enforcing these rules. When querying the
database, clients should be able to efficiently verify whether
an entry (k, v) is a (non-)member of the database with respect
to the latest commitment.
Data source. In many non-transparency applications of ADs,
it is typically assumed that a trusted data source exists i.e.,
a party from which the ground truth database and all updates
originate. This source may be the client itself or a separate
trusted entity. For instance, in a privately outsourced database,
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the client acts as both the data source and the querying
party. In a multi-client setting, the data source might be an
external entity. When such a trusted data source exists, the
data source typically makes updates to the database, computes
the commitments, and signs the commitments.

Auditors. In some applications, such as transparency systems,
additional parties called auditors verify that the server main-
tains the required invariants, which vary depending on the con-
struction. Auditors were initially assumed to perform relatively
heavy computations (e.g., linear in the dictionary size). They
perform purely syntactic checks and do not need to understand
the specific context of the application the AD supports. By
checking these invariants, auditors can generate cryptographic
evidence of server misbehavior, ensuring detection as long as
at least one auditor remains honest.

Some recent constructions (e.g., [82], [147], [148]) aim to
enable efficient client-side auditing, a property called client au-
ditability. Certain algebraic approaches achieve this naturally
using compact, append-only proofs [147], [144], while others
rely on SNARK-based verifiable computation performed by
the server [61], [74]. A stronger alternative enforces correct
updates through smart-contract-enabled blockchains [20].

Monitors. In certain applications, monitors inspect dictionar-
ies for unexpected or incorrect values and perform domain-
specific semantic checks that require application-level under-
standing. Unlike auditors, monitors typically cannot produce
cryptographic proofs of misbehavior; instead, they can only
alert affected users or authorities.

Some constructions assume that dedicated monitors inspect
every database entry, while others allow users to efficiently
monitor only their own entries [28], [107], [97]. Hybrid
approaches also exist. For example, Dahlberg et al. [40]
present a lightweight system for verifiable monitoring of
certificate transparency logs. Other constructions [112], [121],
[97], [86] commit to the history of each key’s values, reducing
monitoring to simple lookups of the most recent epoch. While
monitors can alert users or authorities to detected misbehavior,
they generally cannot provide cryptographic proof to convince
third parties (e.g., only a domain operator knows whether a
certificate should have been issued for a given domain).

Public bulletin board. ADs without a trusted party require
a public bulletin board (PBB) to ensure that all clients ob-
serve the same commitment to the AD’s latest state. Without
a PBB, a malicious server could equivocate by presenting
different commitments (e.g., binding to different public keys)
to different clients in a middle-person attack; the PBB’s core
function is therefore anti-equivocation. Importantly, clients
cannot rely on the application’s native communication channel
(e.g., within a messaging system) to compare commitments,
since a compromised server could block, delay, or tamper
with these messages. Detection instead requires an out-of-band
channel. For PBB instantiations, see Sec. II-D.

Data
Source

Client

Server

Server Client

Server

Idle auditor;
only one 
client/data source.

Idle auditor; only one 
client acts as a data 
source.

Only one client 
who is also  the 
data source.

Self-Sovereign Model

Data
Source

Public Outsourced 
Storage Model

Private Outsourced 
Storage Model

Auditor

(a) Trusted Data Source

Transparency Model

Client
Server

Audited Transparency Model

Idle 
Auditor.

Client
Server

Auditor

(b) No Trusted Party

Fig. 1. An overview of the authenticated dictionary models and their
relationships. A green checkmark ( ) next to a party denotes that it is trusted.
An arrow from one category to another means that constructions that fit the
first model can be adapted to work in the second model without additional
cryptographic assumptions.

B. Authenticated Dictionary Models

We classify ADs into five models–three with a trusted data
source and two without–based on a survey of over 30 papers
that include an innovation on an authenticated dictionary.
For each model, we detail its threat assumptions, parties,
applications, and list representative works and deployments
below and summarize it in Table I. Fig. 1 illustrates these
models, and Sec. VI-B explains how to compile between them.
A note about trust. We use the term “trust” in two ways:
(a) Cryptographic trust, where a party is assumed to correctly
manage cryptographic keys and digitally sign its operations.
Any operation signed by a “trusted” party is assumed correct.
For example, in a model with a single trusted data source,
this party signs all updates to the AD. Since all operations are
signed, misbehavior can be publicly and reliably proven.
(b) Non-cryptographic trust includes assumptions that cannot
be enforced or verified cryptographically. For example, in a
“no trusted party” model, if the server enforces access control,
there is no cryptographic way to prove that it performed this
function correctly and did not, for instance, disclose the data
associated with a key to an unauthorized user. With non-
cryptographic trust, false accusation is another kind of “at-
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tack”. If the value associated with a label owned by a specific
client is modified by the server, the client can detect this
change. However, any claim that the change was unauthorized
has no cryptographic proof. Thus, a client can claim a detected
change was unauthorized and third parties have no way to
ascertain the truth of this accusation. False accusations might
be used to decrease public trust in a targeted server.

1) Private Outsourced Storage Model: This model involves
two parties: (1) a data source (which acts as the client1)
defining the dictionary and (2) a server hosting it. Security
requires that for any lookup of a label, if the lookup verifies,
the response is the corresponding set of values defined by the
data source. This model parallels memory checking [15], [16]
but differs by supporting arbitrary key-value mappings.

Cryptographic trust assumptions. A single trusted data
source, holding a constant-sized commitment in secure local
storage, is the origin of all data and updates. Since this party
is also the client in this model, it must securely manage
its own cryptographic secrets and corresponding verification
data. Since only the data source can query or modify the
dictionary, no PKI is needed. A caveat is that if the data
source’s signing key is lost or compromised, updates become
impossible without an external key-recovery mechanism.

Non-cryptographic trust assumptions. The untrusted server
is trusted for availability. Any other misbehavior is detected
by the data source/client cryptographically.

Applications. This model has relatively limited applications,
most of which pertain to outsourcing personal or organiza-
tional data to cloud providers. Typical examples are encrypted
file storage or cloud-hosted databases, especially when clients
have limited local storage or require long-term archiving.

Constructions. Many pioneering AD works fall into this
model [122], [70], [109], [129]. Variants such as authen-
ticated hash tables [130] and streaming authenticated data
structures [128] also fit within this model, and Miller et
al. [117] provide a general compiler for converting arbitrary
data structures into ADs under these assumptions.

2) Public Outsourced Storage Model: This model com-
prises of three parties: (1) a data source from which the data
originates, (2) a server that hosts the database, and (3) a
client that queries the data. As in the previous model, security
requires that any label lookup whose proof verifies returns
exactly the value defined by the data source.

Cryptographic trust assumptions. A trusted data source
defines and signs the dictionary along with its periodic com-
mitments, then replicates both to one or more untrusted servers
while retaining some or all of the dictionary locally. Clients
verify responses using the source’s public key, requiring no
additional state, so this model relies on a PKI without the need
for the source to remain online for lookups. A notable caveat

1In earlier literature, the Private Outsourced Storage and Public Outsourced
Storage models are sometimes simply referred to as the two-party and three-
party models, respectively. The client is also commonly referred to as the
data consumer; see [130] for reference.

is that updates, and possibly verification, become impossible
if the trusted data source’s key is lost or compromised.
Non-cryptographic trust assumptions. In this model, servers
are assumed to respond to client lookups with values, proofs,
and the signed, timestamped commitment; servers are trusted
only for availability.
Applications. Schemes in this model are ideal for remote stor-
age and scenarios where third-party clients need to query out-
sourced data, such as ensuring the integrity of legal documents,
medical records shared across hospitals, company credit card
transactions subject to financial audits, or government records
accessed by multiple organizations. Some early work on CT
also adopted this model, where the certificate authority acts as
the trusted data source (e.g., [122]).
Constructions. Many works that proposed Private Outsourced
Storage model schemes also described schemes for this model,
e.g. [130], [70], [122], [129]. Other examples that fall within
this three-party setting include [4], [37], [68] as well as the
schemes Balloon [133] and Insynd [131].
Instantiations. Amazon QLDB provides a centralized ledger
with a Merkle tree–based immutable log owned by a trusted
authority; clients fetch the root hash and verify the transaction
history [8]. immudb offers an append-only Merkle tree log
supporting both key–value and SQL data, with data owners
signing each root so third-party clients can later verify the
authenticity of returned roots or individual records [84], [127].
Both systems fit the Public Outsourced Storage model and
can be adapted for the Private Outsourced Storage model by
merging the data source and client roles (see Section VI-B).

3) Self-Sovereign Model: This model comprises three types
of parties: (1) multiple clients, (2) a server, and (3) an auditor.
Informally, security guarantees that any server misbehavior is
detectable by honest clients or auditors.
Cryptographic trust assumptions. Each client owns and
signs updates for its own key-value pairs, making it the
trusted source for those keys. Clients must manage their
private keys (losing a key affects only its associated label).
Unlike transparency models (see Sec. III-B4), which detect
unauthorized changes without cryptographic proof, this model
ensures verifiable updates at the granularity of individual
labels. Unlike the Public/Private Outsourced Storage model,
where a single data source holds one key, here each client’s
key secures only its own label, so losing a key only disables
updates for that label.
Non-cryptographic trust. An untrusted server hosts the dic-
tionary, responds to client queries i.e., is trusted for availability.
Note that this model generally assumes either an out-of-band
mechanism (e.g. akin to a PKI) or trusts the server for correctly
binding client public keys with their respective labels.
Applications. This model fits transparency settings where
clients manage their own keys (e.g., news and binary trans-
parency) and is less suitable for key-transparency scenarios.
Constructions. Examples include Merkle2 [82], which uses
nested Merkle trees for transparency logs, and Goodrich
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et al.’s multi-source AD schemes [69]. CONIKS [113] and
SEEMless [28] similarly introduce variants with “super-users”
who manage update signing keys for their usernames.

Instantiation. The secure messaging and file-sharing service
Keybase [86] implements this model via per-user signed
sigchains–ordered lists of statements (e.g., key additions,
follows)–anchored in a public Merkle tree to prevent rollback
and ensure verifiable key transparency.

4) Audited Transparency Model: This model involves three
parties: (1) one or more clients, (2) a server, and (3) one or
more auditors. Security requires that if at least one honest audi-
tor successfully verifies a commitment, consistency must hold
between consecutively published commitments. Similarly, any
lookup that verifies for an honest client must align with the
commitment history, ensuring all honest clients share the same
current view. Many schemes in this model impose additional
security requirements, such as the append-only property, which
ensures that existing records are immutable and never deleted.

Cryptographic trust assumption. The server is trusted to
hold a signing key with which it signs all messages and
commitments. Here we also include Aardvark [100], which
uses three parties: a trusted validator, a client, and an untrusted
archive i.e., server. The validator both publishes signed com-
mitments (acting as a bulletin board) and audits updates, while
clients query the archive using those commitments.

Non-cryptographic trust assumptions. There is no trusted
data source and any party may arbitrarily deviate from the
protocol.2 The server is assumed to store the entire dictionary,
whereas auditors and clients only store a short commitment
(not necessarily the same one). This model covers schemes
in which auditors play a fundamental role and do not simply
implement a cryptographic building block like a bulletin board
(e.g., [147]). Third-party auditors check the well-formedness
of the data structure and updates, and whistle-blow if some
update is malformed. The mechanism for obtaining the com-
mitment is generally out-of-band, but this commitment is as-
sumed to be signed by the server. An individual client’s claim
about a malicious update for its label is not cryptographically
verifiable, but inconsistent views for the same label or for the
commitment at the same timestep are.

Applications. This model underpins transparency systems
with active auditors and can also reduce storage requirements
for blockchain validators.

Constructions. Examples are CT [94], SEEMless [28], and
Parakeet [107].

Instantiations. WhatsApp’s key transparency based on Para-
keet [107], [101] uses an append-only auditable key directory
plus a third-party audit record that anyone (e.g., Cloudflare)
can verify independently [114]. Proton AG’s email service
employs a Merkle-tree directory whose root is embedded
in a CA-signed certificate with SCTs, letting clients verify

2Many works labeled “transparency” rely on external auditors; our “trans-
parency” model covers only self-audited schemes without third-party auditors.

directory integrity [1]. Other examples include Google’s key
transparency [72] and Apple’s CT [5].

5) Transparency Model: This model involves only two
parties: (1) a client and (2) a server. The security goal typically
requires that any lookup query successfully verified by an
honest client must be consistent with the view of other honest
clients, or that any misbehavior will eventually be detected.
Cryptographic trust assumptions. The server is trusted to
hold a signing key with which it signs all messages and
commitments. All honest clients maintain a consistent view
of the dictionary and can detect any deviation by the server.
Non-cryptographic trust assumptions. Neither server nor
client is trusted; both may deviate arbitrarily. The server holds
the full dictionary, while each client stores a short commitment
fetched from a public bulletin board. Clients self-audit their
own entries (and optionally others’) to ensure consistency.
Thus, if the server makes a malicious update but serves the
same update to all users, it’s not cryptographically verifiable.
However, inconsistent claims made at the same time, or
malformed commitments or updates are verifiable.
Applications. This setting is best tailored to transparency
applications such as certificate transparency. Note, however,
that the original certificate transparency scheme [94] does not
fall into this category since it also includes third-party auditors,
as explained in Sec. III-B4.
Constructions. Schemes that fall into this model include
AAD [144] and VeRSA [147]. The SoK by Brandt, Filić, and
Markelon [22] also proposes a KT scheme inspired by [28],
[98] which only comprises an untrusted server and clients.
Instantiation. All real-world instantiations that we found
additionally included third-party auditors.

IV. DEFINING AUTHENTICATED DICTIONARIES

Here, we provide the API and security definitions for ADs.

A. Bare-bones API

Recall that in ADs, the server is untrusted and may try to
tamper with logs of previous states of the dictionary, or attempt
to show divergent views to different users. Below, we define
a bare-bones API for an AD, which we call a stateful AD to
capture the notion that the server’s database is mutating.

Definition 1. A stateful AD, denoted AuthDS, consists of a
mutable parameter Epoch, initialized to 0, a set of permissible
operations Ops ⊆ {insert, delete, update}, an update validity
predicate F , and the following algorithms:

• pp
$← AuthDS.Init(1λ) takes as input a security parameter

λ and initializes AuthDS with public parameters pp.
• (com1, state1)/⊥

$← AuthDS.Commit (pp, DInit) takes
as input the public parameters pp and a dictionary DInit.
It outputs an internal cryptographic state state1 and a
commitment com1. It also sets Epoch = 1.

• (comt+1, statet+1, πt+1)/⊥
$← AuthDS.Update(pp, statet,

updates) takes as input the public parameters pp, internal
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Roles
Model Trusted

data
source

Client PBB Server Auditor Example application Deployment Constructions

Private
outsourced
storage

Û ø Æ − Cloud storage,
encrypted backups

No public
deployments yet.

[70], [109], [122],
[129], [130], [128],
[117]

Public
outsourced
storage

ø z Û Æ − Databases available
on a cloud-hosted
website

QLDB [8],
immudb [84], [127]

[130], [70], [122],
[129], [4], [37], [68],
[133], [131]

Self-sovereign
model

− Û w s Æ ¤ Key-transparency,
news transparency

Keybase [86] [82], [69]

Audited
transparency

− Û x s Æ § ¤ Key-transparency WhatsApp [101],
iMessage [6]

[28], [31], [54], [94],
[97], [98], [100],
[107]

Transparency − Û x s Æ § − Key-transparency No public
deployments yet.

[22], [144], [147]

TABLE I
A SUMMARY OF OUR AD MODELS TAXONOMY. IN THIS TABLE, A RED COLORED CELL INDICATES THAT IN THE CORRESPONDING MODEL, THE

RESPECTIVE PARTY IS “TRUSTED UNTIL CAUGHT” I.E., MISBEHAVIOR IS NOT PREVENTABLE BUT IS DETECTABLE. SIMILARLY, A YELLOW COLORED
CELL INDICATES THAT A PARTY IS FUNGIBLE, I.E., A SINGLE FAILED INSTANCE OF THIS PARTY CAN BE REPLACED WITH ANOTHER INSTANCE. SYMBOL

LEGEND: Û IMPLIES THIS PARTY RUNS THE LookupVerify OPERATION, z INDICATES THAT any OPERATION ONLY VERIFIES IF THIS PARTY SIGNS IT,
w INDICATES THAT THIS PARTY IS RESPONSIBLE FOR SIGNING UPDATES TO A SUBSET OF THE DATA, x DENOTES THAT THIS PARTY DOES NOT SIGN ITS

UPDATE REQUESTS, Æ DENOTES A SERVER THAT IS TRUSTED FOR AVAILABILITY, § INDICATES THAT THIS PARTY IS TRUSTED FOR ACCESS CONTROL
FOR UPDATE OPERATIONS, ¤ INDICATES THAT THIS PARTY AUDITS THE DATA STRUCTURE TO RELIEVE SOME OF THE COMPUTATIONAL BURDEN ON

CLIENTS AND s DENOTES THAT THIS PARTY OR MECHANISM IS RESPONSIBLE FOR DISBURSING A SMALL COMMITMENT TO CLIENTS.

state statet, and a set of updates {(opj , keyj , valuej)}j
where opj ∈ Ops. This algorithm checks that updates
is valid according to the validity predicate F ; if not, it
outputs ⊥. If all checks pass, this algorithm returns a tuple
(comt+1, statet+1, πt+1) comprising the updated commit-
ment, state, and proof of correct update.

• 0/1 ← AuthDS.VerifyUpd(pp, comt, (comt+i, πi)
n
i=1, t, n)

takes as input, public parameters pp, a set of simultaneous
commitments comt, ..., comt+n and proofs π1, ..., πn, an
epoch t, and a number of epochs n. It verifies the proof
πi with respect to comt+i−1 and comt+i, the other inputs
and outputs 0 if the check fails and 1, if the check passes.

• (value, π)← AuthDS.Lookup(statet, key) takes as input an
internal state statet and a label key. If key is not included
in the dictionary represented by statet it outputs a proof
of non-inclusion of key and value = ⊥, and otherwise it
outputs the proof of inclusion of the tuple (key, value).

• 0/1 ← AuthDS.LookupVerify(pp, com, key, value, π) veri-
fies the proof π that com includes (key, value).

B. Security definitions and additional APIs

The security definitions for data structures we aim to capture
with AuthDS focus on binding the views of the values of a
particular key at each timestep. Informally, this means that
the values output by two different lookups for the same label
should be equal, when verified with respect to the same
commitment. This is formalized in Def. 4. In real applications,
users may want to track changes made to values corresponding
to particular keys, we formalize this next.

Definition 2. A historical stateful AD is a stateful AD with
the following additional algorithms:
• ({(ti, valuei)i}, π)← AuthDS.GetHistory((stateti , comti)i,
key, {ti}i): takes as input a set of consecutive state and
commitment tuples at the epochs ti for ti+1 = ti + 1 and

a key key. It outputs an (explicit or implicit) mapping
(ti, valuei)i of the set of values associated with key at each
epoch and the proof π of its correctness.

• 0/1← AuthDS.VerifyHistory(pp, π, (comti)i, {(ti, valuei)}i):
parses its input and checks the proof π that the mapping
(ti, valuei) verifies with respect to the sequence of
commitments (comti)i and the public parameters pp and
outputs a bit.

The main security definition for a historical authenticated
dictionary is history binding. It begins with the standard
assumption that all users can obtain identical commitments for
each state or timestep of the dictionary via the public bulletin
board. History binding then dictates the following: suppose
Alice checks the history of a key k over a time period t1
through tn. Based on the API in Def. 2, for any timestep t
between t1 and tn, Alice has an implicit notion of the value
vt for k at timestep t. If Bob later verifies a value v∗t for
k at timestep t, then vt and v∗t must match. To the best of
our knowledge, the notion of history binding first appeared as
the soundness property in [28], and Definition 3 matches [28]
up to notational differences. This definition generalizes value
binding by extending the match between two views of the
same key over a longer time period.

Oscillation attacks. Without the history binding property, an
adversarial server of an AD can mount what [112] termed an
oscillation attack. The scenario where such an attack becomes
relevant is when there are two kinds of parties for a given key
k: one set of parties would like to track the changes to the
values of k, let’s call them the monitors of k, and another
set of users would simply like to perform basic lookups on
k’s value. The adversary is said to succeed if it can interleave
updates or “oscillate” between versions of the directory such
that it shows a history of values associated with k to monitors
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but a value v, that is not included in the monitors’ history, to
the client conducting the basic lookup for k. For example, a
server that only responds to the monitors at odd epochs and
to lookup clients at even ones could incorporate changes in
even epochs that it immediately rolls back in odd ones.
Generically compiling to support history. Let AuthDS
be an AD with states (statei)i and corresponding commit-
ments (comi)i. First, let us assume that all clients have
the correct set of commitments (comi)i and that the clients
are online at all times. In such a scenario, a client can
retrieve a “history” of a key key between epochs t, t +
1, ..., t + n by requesting lookups at each epoch t + i.
Denote this history {(t + i, valuei)} with corresponding
lookup proofs (πi)

n
i=0. Then, AuthDS.VerifyHistory can be

implemented with proof Π = (πi) as the following:∧n
i=0 AuthDS.LookupVerify(pp, comi, key, valuei, πi). How-

ever, this sequence of commitments can be shuffled or have
missing entries, for example, if there are network delays. Thus,
we need a way to commit to the sequence of commitments so
that intermediate states cannot be omitted. A simple solution
is to update the algorithm AuthDS.Update to chain together
the commitments by computing the newest commitment by
hashing together the previous one, during each update. Now,
if the commitment of two users diverges once, it must diverge
forever. We discuss an example with static ADs in Sec. V-A.
Shortcomings of label/history binding. Value binding and
history binding are purely syntactic: they ensure that any two
query views for the same commitment agree, but do not guar-
antee that a read returns the most recent write. This distinction
is intentional, as transparency models lack a trusted authority
to authorize updates, while trusted-data-source settings allow
update correctness to be verified cryptographically. This gap
motivates a stronger guarantee–read-write consistency.
Read-write consistency. Here, we aim to capture two different
models of updates: (1) an AD in which a single trusted data
source authorizes all updates and (2) one in which each key
is “owned” by a particular party who signs updates to this
particular key. The following modifications to the update APIs
of stateful ADs capture the ability of a particular party to verify
an update with respect to a requested change for a key.

• π/⊥ $← AuthDS.ProveSingleUpdate(pp, statet, statet+1,
op, key, value) takes as input the public parameters pp,
two consecutive internal states statet and statet+1, and
an update (op, key, value), where op ∈ Ops and (op,
key, value) ∈ updates represents an update applied between
statet and statet+1. This algorithm outputs a proof π.

• 0/1 ← AuthDS.MonitorUpdate(pp, comt, comt+1, op, key,
value, π, t) takes as input the public parameters pp, a pair
of consecutive commitments comt and comt+1, an update
(op, key, value), the proof π, and the epoch t. It verifies
π with respect to comt, comt+1, and the other inputs,
outputting 1 if the check passes and 0 if it fails.
In self-sovereign settings, global audits offload the impracti-

cal task of each data source verifying system-wide invariants.
For example, Keybase’s monitor lets a user confirm their

update [86], but without an append-only audit a malicious
server could silently rollback valid changes.

Capturing the guarantee “no changes are made to a key” is
nontrivial: our APIs only support retroactive checks to cover
transparency scenarios, not preemptive enforcement. Instead,
we require that if a client monitors an update (op, k, v)
between epochs t and t + 1, then, assuming regular audits,
any later lookup of k must return either v or a value v′ from
another valid update (op′, k, v′) (i.e., one accompanied by
a valid monitoring proof). We formalize this as read-write
consistency in Definition 5.

V. VARIANTS OF AUTHENTICATED DICTIONARIES

Now, we introduce a new categorization to systematize
the literature on ADs. Solutions with a focus on privacy are
relegated to Sec. V-C.

A. Building blocks

Here, we list the building blocks and primitives most
commonly used in the AD literature.
Static ADs. A static AD is an authenticated dictionary (Def-
inition 1) without Update or VerifyUpd—it commits to a
single state statet at epoch t with commitment comstatic

t and
supports only lookups. We found that a static AD explicitly
or implicitly underlies all the AD constructions in the AD
literature. To build an AD with updates, each update to the t-th
epoch first computes a static AD commitment comstatic

t over
the new state, then chains it with the previous commitment
(e.g., H(comt−1∥comstatic

t )) to get the full commitment comt.
Merkle trees. Merkle trees (MTs) hash a set of leaf values into
a root by recursively hashing child nodes. Variants that support
updates include the following. A chronological Merkle-tree
(CMT) refers to a binary MT which augments a simple MT
with insertions in purely chronological order. A Lexicographic
Merkle tree (LMT) is a hash tree that is searchable by
labels. Patricia Merkle Trees (PMTs) and Sparse Merkle Trees
(SMTs) reduce storage for LMTs via path compression and
implicit subtrees. See full version for further discussion.
Skip lists. A skip list is a probabilistic data structure that stores
a set of elements S from an ordered universe as a series of
linked lists. For a sequence of size n, skip lists support search
and insertion operations with an average time complexity of
O(log n). See full version for more details.
Algebraic tools for ADs. Algebraic solutions use group expo-
nentiation under RSA or pairing assumptions to commit to sets
or multisets. Without data structure optimizations, computing
membership witnesses in both RSA-based and pairing-based
constructions takes O(N) time. See full version for details.

B. Indexed data structures

Building on the static AD snapshot at each epoch (see
above), indexed ADs organize keys for efficient lookups and
proofs. We classify them into three types:
1) Mutating ADs: the static AD at epoch t stores only each

key’s latest value [113], [10], [147], [146], [92].
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Fig. 2. A taxonomy of authenticated dictionary solutions.

2) Append-only ADs: the static AD at epoch t retains all
values ever inserted for each key, in insertion order [28],
[107], [98], [31], [97], [82], [144].

3) In-place append-only ADs: the static AD at epoch t maps
each key to its full history as the current “value” [86],
[121], [112], [148], [52].

Each of these construction types ultimately achieves sim-
ilar asymptotic performance—log n time for both lookups
and updates—except for a few algebraic variants that offer
constant-time updates at the cost of linear-time lookups. The
primary difference between categories lies in the efficiency of
history checking. This observation is borne out of Table II and
further illustrated in the detailed analysis below.
Mutating ADs. ARPKI [10] uses a lexicographic Merkle tree
whose leaf label is H(k) and leaf value is the current record for
k. In ARPKI’s application, the keys are domain names and the
value for a key is a compilation of certificates for the domain,
signed by multiple authorities. Verkle trees [92] generalize this
to higher-arity trees via pairings, shaving the Lookup proof
length by a constant factor. Algebraic constructions reduce the
usual linear per-proof cost via batching: UAD [146] (RSA-
based) aggregates lookup proofs across multiple keys using
batching techniques [18], [143]. VeRSA’s [147] mutating AD
adds per-key version numbers, which are incremented on each
update, to detect unauthorized changes without third-party
auditors, while still amortizing proof generation.
Append-only ADs. We defer a discussion of most of the
constructions in this category to Sec. V-C, and focus here on
two constructions. Tomescu et al.’s AAD [144] uses a bilinear-
pairing-based append-only authenticated set (AAS) for each
key’s values. Their AAS combines prefix-trees, pairing proofs
for (non-)membership, and a logarithmic “forest” of disjoint
trees that are merged as they grow. This yields O(logN) audit
proofs and verification, but updates can cost O(N) in the worst
case when trees merge. Hu et al.’s Merkle2 [82] also builds
a forest of chronological Merkle trees whose roots commit
to prefix-trees of child logs. Lookup scans all subtrees for a
key, and while most operations match the performance of the
constructions discussed in Sec. V-C, updates and audits remain
O(N) in the worst case due to full-forest merges.
In-place append-only ADs. These schemes store each key’s
full history as the leaf value of a lexicographic Merkle

tree (LMT). Keybase uses per-user signed sigchains chained
via a linked list [86]; Mog replaces the linked list with a
chronological Merkle tree for faster lookups [112]; Chainiac
adds skipchains to enable efficient monitoring over arbitrary
intervals [121]; Fahl et al. [52] run a CMT alongside a
balanced 2–3 tree LMT (“FixTree”) for smaller proofs; and
Verdict [148] commits sorted label-value linked lists in fixed-
depth Merkle trees, doubling capacity by adding new trees as
needed to maintain a constant leaf depth.

1) SNARK-aided solutions: In our discussion of ADs so
far, the total cost for verifying updates (Audit) is still linear in
the number of epochs over which the audit is being conducted.
This cost is impractical for smaller clients who do not trust
third-party auditors. SNARKs [14], which allow short and
efficiently verifiable proofs of computational statements, can
help. Essentially, a SNARK is used to generate a proof that
a commitment com′ was obtained by applying a sequence of
valid updates to an AD committed in com. However, most
efficient SNARKs require a pre-processed common reference
string (CRS) [17], which pre-determines the instance a verifier
can verify. Thus, ADs whose audit proof sizes vary depending
on inputs are less amenable to SNARK-based solutions.

Verdict [148] uses a SNARK-friendly data structure (with
fixed depth), which we discussed in Sec. V-B to support
SNARK-based auditing. They also customize existing SNARK
techniques for efficient audits using incrementally verifiable
computation (IVC) [149] to “incrementally” prove the cor-
rectness of updates over a sequence of epochs. VeRSA’s [147]
two RSA-based constructions also use SNARK-based tech-
niques to enable client auditing to verify the invariant that
version numbers are always incrementing. The first construc-
tion, VeRSA-IVC, implements Audit for a small number of
updates by embedding their RSA-based AD in a SNARK.
Combined with IVC techniques, this allows efficient Audit
with verifier time independent of the number of epochs. Their
other construction, VeRSA-amtz, doesn’t use IVC, which may
sometimes be infeasible, particularly since different users may
want to run Audit with different start and end epochs; instead,
it relies on a skip-list-like technique.

C. Privacy in AD implementations

We now discuss the most well-studied aspect of privacy in
ADs: privacy for particular keys in the dictionary. This notion
of privacy is only meaningful when there is no single trusted
data source that owns all keys, and is therefore primarily
relevant in transparency-related settings. Other privacy issues
arising in AD-based systems are discussed in the appendix of
the full version. Recall, in our model, the server is trusted
to store the entire database and to enforce access control
over which clients may query a given key. In applications
such as CT, however, any user can typically query any key.
Thus, privacy for individual keys has been studied mainly in
the context of KT (see the example application in Sec. III),
where users may not wish to publicly reveal their usernames or
public keys. We distinguish between two forms of key-related
privacy: content hiding and metadata hiding.
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Added Motivating Lookup operations History operations
Protocol Assum. Application Client Server Client Server Update Verify Upd./Audit
SEEMless [28] DL Keys logN∗ logN∗ (u+

log T ) logN
(u+ log T ) logN k log(N + k)∗ k log(N + k)∗

Parakeet [107] DL Keys logN∗ logN∗ (u+
log T ) logN

(u+ log T ) logN k log(N + k)∗ k log(N + k)∗

OPTIKS [98] DL Keys u logN∗ u logN∗ u logN u logN k log(N + k)∗ k log(N + k)∗

ELEKTRA [97] DDH Keys (u logN
+ log T )∗

(u logN
+ log T )∗

(u logN
+ log T )∗

(u logN
+ log T )∗

(k log(N + k)
+ log T )∗

(k log(N + k)
+ log T )∗

RZKS [31] DDH Generic (logN +
log T )∗

(logN + log T )∗ N/A N/A (k log(N + k)
+ log T )∗

(k log(N + k) +
log T )∗

Merkle2 [82] - Generic logN2 logN2 logN2 logN2 logN2∗ logN2∗
AAD [144] q-SBDH Generic logN2 logN2 Naive Naive logN3∗ logN∗

Balloon [133] PKI Transparency logN logN u logN u logN logN logN

UAD [146] sRSA Generic 1 (λN logN/m)∗∗ Naive Naive k log k 1
VeRSA-IVC [147] q-SBDH,

sRSA
Generic 1 (N/m+ logm)∗ u (N/m+ logm)∗ k log T

VeRSA-amtz [147] q-SBDH,
sRSA

Generic 1 (N/m+ logm)∗ u (N/m+ logm)∗ k log T ∗ log T

ARPKI [10]† - Certificates logN logN T logN T logN k log(n+ k) k log(n+ k)
CONIKS [113] DL Keys logN∗ logN∗ Naive Naive k log(n+ k)∗ k log(n+ k)∗

AT [52]† - Software logN logN logN + u logN + u k + log(n+ k) k + log(n+ k)

Verkle trees [92]§ q-SBDH Generic logv(N) logv(N) Naive Naive kv logv(N) kv logv(N)
AD-skip-list [70] PKI Generic logN∗ logN Naive Naive logN∗ logN∗

PAD-rb-tree [4] PKI CRL logN logN u logn u logn logn logn
PAD-skip-list [4] PKI CRL logN∗ logN∗ u logn∗ u logn∗ logn∗ logn∗

Chainiac [121]† - Software log u+ logn log u+ logn u+ logn logn k log u logn k log u logn

Mog [112]† - Generic log u+ logn log u+ logn u+ logn logn k log u logn k log u logn

Keybase [86]† - Generic u+ logn logn u+ logn logn k logn k logn

Verdict [148]† SXDH Generic u+ logn logn u+ logn logn k logn log(k logn)/T

TABLE II
EFFICIENCY COMPARISON OF VARIOUS AUTHENTICATED DICTIONARY CONSTRUCTIONS FOR DIFFERENT APPLICATIONS. GetHistory AND VerifyHistory ARE NOT EXPLICITLY SUPPORTED IN SOME

WORKS, SO “NAIVE” INDICATES THAT A HISTORY CHECK EQUATES TO A LOOKUP AT EVERY EPOCH. FOR RZKS [31], NO KEY UPDATES ARE ALLOWED, AND AUDITS ENSURE NO ENTRY REMOVAL,
MAKING HISTORY CHECKS IRRELEVANT; A SINGLE LOOKUP SUFFICES TO KNOW THE KEY’S HISTORY IN RZKS’ AD. THE TABLE NOTATION IS AS FOLLOWS: λ IS THE SECURITY PARAMETER, N IS

THE NUMBER OF EXISTING ITEMS IN THE CORE DATA STRUCTURE, k IS THE NUMBER OF ELEMENTS ADDED PER EPOCH, T IS THE NUMBER OF SERVER EPOCHS SINCE THE LAST CALL TO THIS
OPERATION, AND u IS THE NUMBER OF UPDATES MADE FOR THE VALUE OF A KEY. COMPLEXITIES WITH ∗ INDICATE AVERAGE CASES, WITH m BEING THE NUMBER OF OPERATIONS IN A BATCH

(WHERE APPLICABLE). FOR CONSTRUCTIONS MARKED WITH † , n IS THE NUMBER OF KEYS, SO N = un. CONSTRUCTIONS MARKED WITH ‡ SUPPORT NO KEY VALUE MUTATION. VERKLE TREES,
MARKED § , INCLUDE PARAMETER v FOR VECTOR COMMITMENT CAPACITY.



Content hiding. Content hiding protects keys and values
from unauthorized parties (e.g., other users or auditors in a
KT system). Standard Merkle-tree proofs reveal sibling paths,
leaking extra information. CONIKS [113] addresses this issue
in an ARPKI [10]-like solution by deriving leaf labels via a
verifiable random function (VRF), so only the server (with
the VRF secret) can map keys to labels. Clients verify VRF
outputs with the public key, preventing attackers from using
rainbow tables to recover queried keys.
Metadata hiding. Metadata hiding conceals when and how
often a key is updated or accessed. CONIKS [113] masks
keys with VRFs but still leaks metadata via sibling proofs
(the “tracing vulnerability”). SEEMless [28] introduces a zero-
knowledge-with-leakage definition using PMTs+VRFs and an
“expired” tree of stale labels to prove freshness without
revealing update history. Follow-up works enhance this de-
sign by improving storage efficiency [107], reducing history-
verification cost with signed updates [98], [97], adding post-
compromise VRF security [31], and supporting deletion and
account transfer [107], [98].

VI. CONCLUDING DISCUSSION

A. Performance barrier

In this section, we discuss the performance barrier faced by
implementers of AD constructions.
Non-barriers. Thus far, the systems literature has shown
that once a particular asymptotic performance regime is cho-
sen, practitioners are able to make significant progress on
systems-level performance and scalability, as illustrated, for
example, by [107], [98], [45], [102]. Hence, we believe that
the asymptotic performance is the more interesting criterion
when considering constructions. Among asymptotic metrics
of AD performance, storage complexity seems to be a solved
problem, as most constructions (all from the last 10 years)
have storage overhead linear in the number of keys, with an
additional linear overhead for storing history. Thus, asymptot-
ically, adding authentication to a database does not increase
its storage overhead. Parakeet [107] and OPTIKS [98] have
discussed modifying security definitions to support garbage
collection, hence keeping systems practical long-term.

For the time complexity of basic AD operations, client-side
verification operations and proof size can both be reduced to
constant using generic (and rapidly improving) cryptographic
tools such as SNARKs (see e.g., [147]), albeit at the cost of
increased server compute overhead.
Gap in server-side operation asymptotics. As discussed
above, there already exist constructions and techniques that
allow ADs to match the asymptotic storage, verification time,
and bandwidth of non-authenticated counterparts. On the other
hand, as Table II shows, the server-side time complexity of AD
constructions bifurcates as follows: O(log n) for both lookups
and updates, or constant overhead for one operation but linear
in n for the other. We have noted previously (see Sec. II-B)
that an AD can be used to instantiate a memory checker. Thus,
the lower bounds on memory checkers apply to ADs. Memory

checker performance is widely measured in terms of query
complexity: the number of distinct memory locations accessed
by the server in order to prove the correctness of one logical
operation (i.e. a lookup or an update). Assuming that each
logical memory access requires at least constant time gives us a
lower bound on the time complexities of lookups and updates.
Let qr denote read query complexity and qw denote write
query complexity. Recently, Boyle et al. [21] showed, among
other things, that if either qr or qw is (1) o(log n/log log n),
then the other query complexity must be (log n)ω(1), or (2)
O(1), then the other operation must be nΩ(1). They also give
constructions showing that this lower bound is tight in terms
of query complexity. There exist AD constructions (e.g. [147],
[146]) that meet the time complexity lower bound for the case
where one operation is constant time but the other is linear.

The following problem remains open:

Does there exist an AD construction that simultaneously
achieves time complexity (1) o(logN) for a Lookup, and
(2) O(logN) (or smaller) for an Update?

B. Comparison and Cross-compilation

As presented in Sec. III-B, the different AD models feature
distinct settings and/or trust assumptions. Fortunately, many
AD schemes can be adapted to work in a different model.

Translations without added cryptographic assumptions. In
Fig. 1, arrows between models indicate compilations that do
not require additional cryptographic assumptions. For exam-
ple, schemes in the Transparency model also apply to the
Audited Transparency model, as the auditor(s) can simply be
ignored. Likewise, the Self-Sovereign model can be adapted to
the Private and Public Outsourced Storage models by adjusting
participant roles: in the Private model, auditor(s) remain idle
and a single client acts as the data source; in the Public
model, auditors are also idle and one client serves as the data
source while the other clients may query. Finally, the Public
Outsourced Storage model compiles into the Private model by
allowing the data source to also be the client. Other translations
require additional cryptographic assumptions, discussed below.

Introducing a trusted data source. The gap between models
with and without a trusted data source is larger than that
between models within the same category, as shown in Fig. 1.
Models with a trusted data source rely on stronger assump-
tions, i.e., the existence of an honest party. This party often
holds secrets and can be authenticated via a PKI, making
schemes in this category difficult to adapt to settings without
such trust or infrastructure. In contrast, schemes from the
transparency models (Fig. 1b) can be adapted to trusted data
source settings by introducing (i) a trusted party to enforce
semantic correctness and (ii) primitives that allow identifica-
tion of the trusted party. However, achieving stronger security
guarantees requires additional overhead.

Due to the trusted data source model’s inherently stronger
assumptions, it is not possible to compile trusted data source
solutions in a black-box manner to the transparency models.
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Other translations. Ghosh and Chase [62] show how to trans-
form a scheme in the Audited Transparency model (specifi-
cally OPTIKS [98]) into an auditor-free scheme with minimal
changes to the data structures. This transformation comes at
the cost of weaker security: while the original scheme ensures
strong consistency (a user will detect a key that was forged
while they were offline as soon as they return online), the
auditor-free version offers only weak consistency (if a fake key
is issued while the user is online, either the user or recipient
will detect it the next time they are both online).

To translate schemes from the Private Outsourced Storage
Model to either the Self-Sovereign or Public Outsourced Stor-
age models we require PKI so that clients can verify authentic-
ity, e.g., using digital signatures; the client logic should also
be updated to include both verification of the signature and
inclusion/exclusion proofs. Both settings additionally require
multiple clients. In the Self-Sovereign model, some of these
clients may be the data source and in the Public Outsourced
Storage model, an additional distinct data source is required.

C. Comparing security definitions and assumptions

So far in the literature, read-write consistency has only
been considered in the memory checking setting, which is
equivalent to our setting with a single trusted data source.
We are the first to formalize read-write consistency when
multiple distinct parties may be trusted writers for particular
keys in an AD. This read-write consistency definition is the
strongest we have considered and (where applicable) implies
other properties as follows: Read-write consistency =⇒
History-binding =⇒ Value-binding.

However, achieving read-write consistency requires each
writer (or client) to manage cryptographic keys robustly, which
conflicts with the design goals of transparency systems. These
systems deliberately eschew per-user key management in order
to simplify deployment and user experience. Consequently, in
fully decentralized or “no trusted source” scenarios, history-
binding emerges as the most appropriate security notion: it
prevents equivocation over time without imposing onerous
key-management burdens on end users.

If transparency evolves to incorporate a trusted data source
(i.e., by introducing signatures), a solution initially sat-
isfying history-binding or value-binding can be upgraded
to achieve read-write consistency. That said, transparency-
oriented schemes can be upgraded to full read-write consis-
tency by incorporating signatures from a trusted data source
(or multiple sources). This can be achieved using the compiler
from the work of Falzon et al. [53], which adds a requirement
to a transparency construction to ensure that the number of dic-
tionary changes aligns with expectations following an update.
Fortunately, update proofs generated by the constructions and
techniques detailed in Sec. V satisfy this requirement because
they implicitly encode the count of changes between dictionary
versions, facilitating straightforward rollback detection. This
raises the following open problems:

Can we design a compiler that transforms any AD satisfying
history-or value-binding into one with full read-write con-
sistency, without introducing new requirements as [53] does,
or asymptotic overhead?
Do all AD constructions that achieve value- or history-
binding inherently produce update proofs that commit to
the exact count of changes between versions (thus enabling
rollback detection)?

D. Auditing assumptions

Many works assume third-party auditors verify all updates
to the AD to lower client costs, but this generally requires
auditors to run algorithms linear in the number of inserted
items. This raises several persistent questions [105]. Who will
perform this non-trivial auditing task and how will they be
incentivized? Incentives are tricky as ideally multiple auditors
would perform the same task (for robustness) but it is difficult
to prove that they have done so as in nearly all practical cases
auditing will fail to turn up any misbehavior. Most current
works leave this question open, hoping that for high-value
applications auditors might be corporations, hobbyists or non-
profits, similar to the parties running CT logs today.

Some works instead aim for the stronger goal of client-
auditing or self-auditing, in which auditing is cheap enough
(sublinear in the size of the dictionary) so ordinary clients
can verify updates themselves. One method uses SNARKs
to succinctly prove correct AD updates [33], [136], though
they impose high server-side costs. VeRSA [147] achieves
client-auditability without generic SNARKs by leveraging an
algebraic AD construction for more efficient proofs.
Recently, Ghosh and Chase [62] proposed an alternative model
with a weaker security guarantee, applicable only if a lookup
for a key is between two checks by the key owner. This
particular model increases lookup and update request costs
but also eliminates the need for third-party auditors.
Brorsson et al. [23] propose an idea where users sign off on the
AD’s commitments in key-transparency, similar to blockchain
staking solutions such as Algorand [64]. This could potentially
be adapted for auditing, but needs further study.

This leaves us with several open problems:

How can we incentivize auditing in practice?
Can we achieve acceptable practical performance replacing
auditing using generic SNARKs?
Can we formalize the relationships between third-party au-
diting and newer models such as VeRSA’s?

E. Practical and Regulatory Considerations

Reputational risks and rewards. As of this writing, both
the actual benefit of deploying ADs as well as the benefit
perceived by users remain open questions. There is not yet
clear evidence of a large upside for applications deploy-
ing authenticated dictionaries. A recent study published in
PETS [56] investigated user perceptions of key transparency
in WhatsApp and found that ordinary users generally lack
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sufficient knowledge to meaningfully increase trust perception
in the service—though this may change over time. In the
case of trusted data source implementations, such as enterprise
databases, we found only a handful of deployments [84], [8]
(of which QLDB is currently being phased out) and no user
studies to guide further development.

On the other hand, even an honest server might have
issues due to bugs or random bit-flips [9], leading to a clear
reputational risk. Various works [31], [98] consider one kind
of recovery—recovery from an attack that compromises users’
privacy—but not recovery in case any of the verification
operations LookupVerify, VerifyHistory, or Audit fail.

More work is needed to (1) further user outreach and follow
up with user studies to evaluate the reputational benefit
of deploying ADs, and (2) define new threat models that
account for reputational recovery from benign errors such
as random bit-flips or temporary compromise, while ensuring
that genuine cheating does not go unpunished.

Regulatory compliance issues. Recent privacy and anti-trust
regulation, particularly in Europe, might be in conflict with
adding transparency to certain applications. For example, in
the context of key transparency, user data is subject to strict
privacy requirements, and a privacy breach–such as the one
demonstrated by Kondracki et al. [87] for CT logs, where
previously hidden domains were exposed–would be unaccept-
able. Academic work such as that of Len et al. [99] explored
the question of interoperability for ADs in the transparency
setting, addressing the recent Digital Markets Act (DMA) [51],
which requires encrypted messaging systems to provide in-
teroperable messaging across application providers. Recently,
Garg and Elahi [59] provided a solution for interoperable
key-transparency. Parakeet [107] and OPTIKS [98] discuss
deletion models that allow for a form of valid deletion,
addressing the “right to be forgotten” [60] (which is seemingly
incompatible with history checking) included in the European
Commission’s GDPR regulation. Future research may explore
similar questions in other authenticated dictionary models,
particularly when handling large-scale user data.

VII. CONCLUSION

Authenticated dictionaries are now at the core of important
systems such as end-to-end encrypted messaging, software
transparency, verifiable cloud storage, and blockchains, but
have evolved separately for different applications with incom-
patible roles, APIs, and threat models. This work brings those
lines together, unifying five deployment models, reconciling
the main security definitions (value binding, history binding,
and read–write consistency), and organizing more than thirty
constructions into a common taxonomy with clear perfor-
mance tradeoffs. In doing so, we exposed a persistent barrier:
known designs either pay O(log n) time for both lookups
and updates, or drive one operation to O(1) only by letting
the other degrade to linear time. This holds true even when
we strengthen trust assumptions, challenging the intuition that
“just trust someone” will automatically improve performance.

We intend this work not as the last word but as infrastructure
for future research; a shared vocabulary for trust assumptions,
APIs, and security goals should support modular constructions,
reusable AD components, fair comparison of systems, and
reasoning about the guarantees actually needed in practice.
We also highlight several concrete research directions. In
particular, we ask if it is possible to design realistic audit-
ing and incentive mechanisms so that existing applications
without integrity guarantees can adopt ADs at all. Answering
these questions is what will turn ADs into standard security
plumbing for the next generation of large-scale systems.
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[119] T. Mueller, M. Stübs, and H. Federrath. Let’s revoke! mitigating

revocation equivocation by re-purposing the certificate transparency
log. Open Identity Summit 2019, 2019.

[120] L. Nguyen. Accumulators from bilinear pairings and applications. In
CT˙RSA, 2005.

[121] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford. Chainiac: Proactive software-update
transparency via collectively signed skipchains and verified builds. In
USENIX Security, 2017.

16

https://github.com/google/keytransparency
https://immudb.io/
book.keybase.io/docs/chat
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://mailarchive.ietf.org/arch/msg/keytrans/40IndRZ-37MhSP_TpIBJyqJhLzE/
https://mailarchive.ietf.org/arch/msg/keytrans/40IndRZ-37MhSP_TpIBJyqJhLzE/
https://github.com/Jasleen1/submission_crawler.git
https://bitcointalk.org/index.php?topic=595180.0
https://bitcointalk.org/index.php?topic=595180.0
https://blog.cloudflare.com/key-transparency/


[122] K. Nissim and M. Naor. Certificate revocation and certificate update.
In A. D. Rubin, editor, Proceedings of the 7th USENIX Security
Symposium, San Antonio, TX, USA, January 26-29, 1998. USENIX
Association, 1998.

[123] A. Nitulescu. Sok: Vector commitments. URL: https://www. di. ens.
fr/˜ nitulesc/files/vc-sok. pdf, 2021.

[124] C. of Digital Commerce. Proof of reserves – establishing best practices
to build trust in the digital assets industry. https://digitalchamber.org
/proof-of-reserves-blog/.

[125] A. Oprea and K. D. Bowers. Authentic time-stamps for archival
storage. In European Symposium on Research in Computer Security,
pages 136–151. Springer, 2009.

[126] A. Oprea and M. K. Reiter. Integrity checking in cryptographic file
systems with constant trusted storage. In USENIX Security Symposium,
pages 183–198. Boston, MA;, 2007.
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APPENDIX

A. Formal security definitions

Definition 3. A historical stateful AD AuthDS is said to be
history binding if the following probability is negligible in the
security parameter for any PPT adversary A

Pr[pp $← AuthDS.Init(1λ),

(t, n, comt, (comt+i, πi)
n
i=1,

key, value, {(ti, valuei)}ki=1, ϕ1, ϕ2, k,m)← A(1λ, pp) :
(AuthDS.VerifyUpd(pp, comt,

(comt+i, πi)
n
i=1, t, n) = 1)

∧m ∈ [1, k] ∧ ∀ i ∈ [1, k], t < ti ≤ (t+ n)

∧ ti + 1 = ti+1 ∧ (value ̸= valuem)

∧AuthDS.LookupVerify(pp, comtm , ϕ1, key, value) = 1

∧AuthDS.VerifyHistory(pp, ϕ2, (comti)
k
i=1,

{(ti, valuei)}ki=1) = 1}]
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Definition 4. A stateful AD, AuthDS is said to be value
binding if the following probability is negligible in the security
parameter for any PPT adversary A

Pr[pp $← AuthDS.Init(1λ),

(t, n, comt, (comt+i, πi)
n
i=1,

key, value1, value2, ϕ1, ϕ2, j)← A(1λ, pp) :
(AuthDS.VerifyUpd(pp, comt,

(comt+i, πi)
n
i=1, t, n) = 1) ∧ (value1 ̸= value2)

∧ t < j ≤ t+ n

∧AuthDS.LookupVerify(pp, comj , ϕ1, key, value1) = 1

∧AuthDS.LookupVerify(pp, comj , ϕ2, key, value2) = 1)}]

Definition 5. A stateful AD, AuthDS is said to have read-write
consistency if, for any PPT adversary A

Pr[pp $← AuthDS.Init(1λ),

(t, n, comt, (comt+i, πi)
n
i=1, key, j, k

(op1, ϕ
Update
1 ), (op2, ϕ

Update
2 ),

value1, value2, ϕ
Lookup)← A(1λ, pp) :

(AuthDS.VerifyUpd(pp, comt,

(comt+i, πi)
n
i=1, t, n) = 1)

∧AuthDS.MonitorUpdate(pp, comt, comt+1,

(op1, key, value1), ϕ
Update
1 ) = 1

∧ t < j ≤ t+ n

∧AuthDS.LookupVerify(pp, comj , ϕ
Lookup,

key, value2) = 1

∧¬(t < k < j

∧AuthDS.MonitorUpdate(pp, comk, comk+1,

(op2, key, value2), ϕ
Update
2 ) = 1)

∧¬(value1 = value2)

] ≤ negl(λ)

B. Further details on paper compilation

Here we give further details on how we gathered the
literature to survey using our script.
Details of paper search. Our paper search script utilizes
Semantic Scholar’s citations API to compile a list of the
papers that cited the papers at our selected venues. As of
this writing, unfortunately, Semantic Scholar’s references API
is not working, so we were not able to also compile the
backward references of our published papers. Our script then
selects the papers from our compilation which include, in their
title or abstract, a set of keywords frequently used to denote
authenticated dictionaries. Our script also deduplicates papers
where possible, using the Semantic Scholar paper ID. This
simple heuristic seems quite effective as we only found 6
duplicates in a list of 98 papers, and that too for papers which
changed their titles at some point after being made public.
Keywords. For creating our list of keywords, we combined
adjectives often used synonymously with “authenticated” with

nouns used commonly to denote a key-value store. We also
included a few applications that commonly use authenti-
cated dictionaries in the literature. As our keywords, we
included the following list, together with their plural ver-
sion, where applicable: verifiable directory, verifiable dic-
tionary, verifiable key-value store, verifiable key directory,
authenticated key-value store, authenticated dictionary, authen-
ticated directory, key-value database with integrity, database
with integrity, dictionary with integrity, transparency log,
key/binary/revocation/certificate transparency.
Venues. The venues we selected include top security confer-
ences which tend to include applied cryptography papers, two
databases conferences and two self-publishing venues. Our
list was as follows: Network and Distributed System Security
Symposium (NDSS), Conference on Computer and Commu-
nications Security (CCS), IEEE Symposium on Security and
Privacy (Oakland), USENIX Security Symposium, Proceed-
ings on Privacy Enhancing Technologies (PETS), Proceedings
of the VLDB Endowment (VLDB), ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (SIG-
MOD), IACR Cryptology ePrint Archive, arXiv.org.

C. Additional cryptographic assumptions

Different constructions of ADs rely on varying cryptogr-
pahic assumptions, as listed in Table II. All constructions rely
on collision-resistant hash functions (CRHFs), so we omit this
from Table II. The works we categorize as algebraic (or at least
partly algebraic) constructions [144], [147], [148], [92], rely
on additional assumptions, specifically:
• Verkle trees [92] rely on an assumption called the q− Strong

Billinear Diffie Hellman (qSBDH) assumption [73].
• AAD [144] also relies on the qSBDH assumption but also

relies on an assumption know as the q−power knowledge
of exponent (qPKE) assumption [75].

• UAD [146] and VeRSA [147] both rely on the strong RSA
(sRSA) assumption.

• VeRSA and Verdict [148] both also use customized succinct
non-interactive arguments of knowledge (SNARKs) [14]
to improve the time complexity of Audit operations, and
hence inherit their cryptographic assumptions. VeRSA uses
Groth’16 [76], which requires the qSBDH assumption. Ver-
dict builds on Nova [90], adding the related, Strong External
Diffie Hellman (SXDH) [32] assumption.
As we discuss in Sec. V-C, several works [113], [28], [107],

[98], [97], [31] rely on algebraic assumptions for the security
of verifiable random functions (VRFs), which they only rely
on for privacy (but not history binding). Hence we do not
categorize them as algebraic in general, as these assumptions
are not required in applications which don’t require privacy.
Where VRFs are needed, they can be built from various
cryptographic assumptions, including the decisional Diffie-
Hellman (DDH) assumption [65], the computational Diffie-
Hellman assumption in a gap group [19], or RSA assump-
tions [116]. There is also a construction of VRFs from any
unique signature scheme, in the random oracle model [116].
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