Artifact
Evaluated

ANDss

Available

Functional

PrivORL: Differentially Private Synthetic
Dataset for Offline Reinforcement Learning

Chen Gong*, Zheng Liu*, Kecen Li, and Tianhao Wang
University of Virginia

Abstract—Recently, offline reinforcement learning (RL) has Privacy-preserving synthetic data generates artificial

become a popular RL paradigm. In offline RL, data providers
share pre-collected datasets—either as individual transitions or
sequences of transitions forming trajectories—to enable the
training of RL models (also called agents) without direct inter-
action with the environments. Offline RL saves interactions with
environments compared to traditional RL, and has been effective
in critical areas, such as navigation tasks. Meanwhile, concerns
about privacy leakage from offline RL datasets have emerged.

To safeguard private information in offline RL datasets, we
propose the first differential privacy (DP) offline dataset syn-
thesis method, PrivORL, which leverages a diffusion model and
diffusion transformer to synthesize transitions and trajectories,
respectively, under DP. The synthetic dataset can then be securely
released for downstream analysis and research. PrivORL adopts
the popular approach of pre-training a synthesizer on public
datasets, and then fine-tuning on sensitive datasets using DP
Stochastic Gradient Descent (DP-SGD). Additionally, PrivORL
introduces curiosity-driven pre-training, which uses feedback
from the curiosity module to diversify the synthetic dataset
and thus can generate diverse synthetic transitions and tra-
jectories that closely resemble the sensitive dataset. Extensive
experiments on five sensitive offline RL datasets show that our
method achieves better utility and fidelity in both DP transition
and trajectory synthesis compared to baselines. The replication
package is available at the GitHub repositoryﬂ

I. INTRODUCTION

Recent studies highlight that privacy leakage risks are
prevalent in RL systems, like using membership inference
attacks (MIAs) to infer the environment information or training
data [1], [2]. Pan et al. [1] present that attackers can use
MIAs to steal map information from RL agents. Reinforcement
Learning from Human Feedback method trains models with
human evaluations [3]. Human feedback data, such as ratings
or preference labels, can hold sensitive user information [4].
Similarly, offline RL faces comparable privacy leakage chal-
lenges. Du et al. [S] propose ORL-Auditor, which infers the
training trajectories of agents, an approach that can also be
considered a form of MIA.

*Equal Contributions. Zheng and Kecen work as independent researchers
and remote interns at UVA.
Uhttps://github.com/2019ChenGong/PrivORL

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240149
www.ndss-symposium.org

datasets that retain key characteristics of real data, enabling
secure sharing while reducing privacy risks [6]. Differential
Privacy (DP) dataset synthesis [7]], [8] offers a theoretical
guarantee for quantifying privacy leakage from real data
through the use of synthetic datasets. It protects an individual’s
data privacy within a dataset throughout the data training.
The offline RL dataset comprises either transitions or
trajectories. Transitions refer to individual steps in the RL
process, capturing the movement from one state to another
based on an action taken by an agent, along with the associated
reward. In contrast, trajectories encompass complete sequences
of such transitions, providing a holistic view of an agent’s
behavior over time, including all states, actions, and rewards.
Both representations are fundamental to offline RL datasets,
as transitions offer granular insights into decision-making,
while trajectories enable analysis of long-term patterns and
dependencies. In practice, as introduced in Section it is
common for users to contribute transitions or trajectories to
the offline RL datasets. Therefore, it is necessary to consider
both transition-level and trajectory-level privacy protection.

Existing Methods. Previous works have proposed synthe-
sizing offline RL dataset [9], [10]], [1L]. However, these
methods do not provide formal privacy guarantees (i.e., no
DP) for the synthetic datasets. The original data still faces
the risk of privacy leakage [12], [13l]. Meanwhile, DP data
synthesis methods have been increasingly developed for other
modalities, e.g., images [14], [15], tabular data [16], [17],
text data [7], network records [8)], and so on, but these
are not tailored to offline RL datasets, which pose unique
challenges due to their sequential and dynamic nature, which
are introduced as follows.

Our Proposal. We focus on presenting the feasibility of
applying DP to offline RL dataset synthesis and on leveraging
existing DP primitives to address challenges unique to this set-
ting. To this end, we propose PrivORL (Differentially Private
Dataset Synthesizer for Offline Reinforcement Learning), the
first DP synthesizer for offline RL datasets. PrivORL com-
prises PrivORL-n and PrivORL-j, which perform transition-
level and trajectory-level DP dataset synthesis, respectively.
We start with adapting existing DP diffusion models, as
diffusion models achieve remarkable synthetic performance
in complex synthesis tasks [18], [19], [20], [21]. However,
directly applying diffusion models to DP offline RL dataset

synthesis has a couple of challenges: (1) DP noise must

be introduced during synthesizer training, which introduces

instability into the training process [22], [14]]. (2) The success
of agents trained in offline RL is highly dependent on the
diversity of the dataset (we elaborate more in Section [[V-C).

(3) Trajectory-level DP synthesis presents unique challenges,

such as high dimensionality and temporal dependencies in the

dataset. We provide more discussions in Appendix H-A of

[23]. Besides, how to effectively create a diverse DP synthetic

dataset remains an open question [9].

We then introduce how PrivORL-j addresses the third
unique challenge. Both PrivORL-n and PrivORL-j leverage
the same paradigm for tackling the first and second common
challenges, which we discuss below.

o First, we adopt the popular paradigm [14]], [24] of pre-
training with public datasets and only fine-tuning on sen-
sitive data under DP. It is important to use a public dataset
during the pre-training phase to achieve fast convergence
and generate reasonable synthetic datasets.

o To solve the second challenge, inspired by the random

network distillation (RND) concept in RL and bug detec-
tion [25], [26], we propose using the curiosity module. The
curiosity module quantifies the ‘novelty’ of synthetic data.
However, unlike works [25]], [26], diffusion model training
lacks a reward mechanism that integrates novelty feedback
(as described in Section [[I-C). We propose replacing a
portion of real data with high-novelty synthetic data, en-
couraging synthesizers to capture underlying characteristics
of high-novelty data for more diverse synthesis.
In addition, we propose using the curiosity module during
the pre-training phase instead of the fine-tuning phase.
The high-level motivation is that pre-training offers greater
flexibility and tolerance for instability.

o To address the challenges of high dimensionality, PrivORL-
j manages long trajectories by splitting trajectories into
fragments and using a conditional synthesizer to capture the
relationship between fragments, enabling the synthesis of
fragments that can be seamlessly stitched into trajectories.
To capture long-range temporal dependencies in trajectory-
level DP, PrivORL-j extends PrivORL-n by integrating a
transformer [27] into its diffusion model used in PrivORL-
n, modeling complex temporal relationships in trajectories.
We elaborate on differences in synthesizing transition-level

versus trajectory-level datasets in Section

Evaluations. We conduct experiments on five types of sensi-
tive datasets, three Maze2D, one Kitchen, and one Mujoco
datasets, to present the effectiveness of PrivORL-n and
PrivORL-j mainly from the following two perspectives.

Utility: For DP transition synthesis under privacy budgets ¢ =
{1,10}, in Maze2D domain, agents trained on the synthetic
dataset generated by PrivORL-n, using three prominent offline
RL algorithms, achieve an average normalized return of 51.9
and 69.3 across studied sensitive datasets. This performance
exceeds the baseline returns of 11.7, 3.4, 2.0, and 3.2 ate = 1,
and 18.9, 3.9, 5.1, and 7.2 at ¢ = 10, achieved by PGM [17]],

PrivSyn [16]], PATE-GAN [28], and PrePATE-GAN. In abla-
tion studies, without the curiosity module and pre-training,
PrivORL-n reduces to the pre-training DP diffusion [24] and
DPDM [29] proposed in DP image synthesis. Removing pre-
training and the curiosity module from PrivORL-n reduced
the performance, with average normalized returns of trained
agents dropping by 25.9% and 16.3% in Maze2D-umaze
dataset under ¢ = 10. For DP trajectory synthesis at € =
{1,10}, PrivORL-j achieves average 15.0 and 10.4 higher
returns than DP-Transformer [30]], in the Maze2D domain.
Fidelity: In transition synthesis, PrivORL-n outperforms the
baseline models in both marginal and correlation statis-
tics [31]. Regarding trajectory synthesis, under ¢ = 10,
PrivORL-j achieves an average of 15.9% improvements of
TrajScores compared to DP-Transformer [30] across studied
datasets. The fidelity metrics are introduced in Section
Besides, Section [[X-D] shows that synthetic transitions gen-
erated by PrivORL-n exhibit strong resistance to an advanced
white-box membership inference attack (MIA) method [12],
outperforming synthesis without DP protection.

Contributions. In summary, our contributions are:

« We introduce PrivORL, a DP offline RL dataset synthesizer
for both transition and trajectory. It facilitates the sharing of
datasets and promotes privacy protection.

« We introduce the curiosity module to synthesizer training,
which enables PrivORL to generate synthetic data that is
both more diverse and of higher utility.

e We conduct a comprehensive evaluation of PrivORL. The
results show that PrivORL outperforms the baselines by
synthesizing transitions or trajectories of higher utility and
fidelity across datasets from five tasks in three domains.

II. BACKGROUNDS
A. Reinforcement Learning

Reinforcement Learning (RL) aims to train a policy, denoted
as m (also referred to as an agent [32]), to solve sequential
decision-making tasks. The sequential decision-making tasks
can be formulated as a five-tuple Markov Decision Processes
(MDP) [33], (8, A, R, P,~), where 8§ and A represent the state
space and action space, R : 8§ x A — R indicates the reward
received, and the transition function P : S x A — 8. v € (0,1)
is the discount factor when computing accumulated rewards.
At each timestep ¢, the agent 7 takes an action a; at the
state s;. Then, the agent obtains a reward r; ~ R(s:,a;)
from the reward function, and the MDP transitions to the
next state sy4+1. RL algorithms aim to train the agent 7* to
maximize the expected cumulative reward for the specific task,
7 = argmax, Eq,wr DoV R(st, ar)] [10]. The agent
learns through a trial-and-error paradigm by interacting with
the environment.

Offline Reinforcement Learning. In certain scenarios, such as
healthcare [34], [35], online RL is unsuitable. It is impractical
to conduct trial-and-error experiments on patients. During
training, offline RL relies on learning from a static dataset D,
which is collected from various users and can be composed

in two ways: one where a single user contributes an entire
trajectory or one where a single user contributes a single
transition [36], [37]. Specifically, a trajectory-based dataset
can be represented as,

— ioid i e 1
D—{(so,ao,ro,sl,---,S‘Tl,ahl,rlﬂﬂz-1,...7N}.

Alternatively, a transition dataset consists of a series of four-
tuples, which is defined as follows,

D = {(Staam?"mstﬂ)}iir

where NV is the offline dataset size. The dataset D in offline RL
is collected by various strategies [38]]. The rationality of these
two datasets can be illustrated with examples. A single user
contributing a transition, such as a doctor observing a diabetic
patient’s blood sugar level, adjusting the insulin dosage, and
recording the resulting change and patient response, is practi-
cal for analyzing the immediate impact of isolated decisions,
offering a focused way to optimize specific actions [37].
Conversely, a user contributing an entire trajectory, like a
driver documenting a full trip from home to work—including
every turn, acceleration, and stop along with feedback like fuel
efficiency or safety—is reasonable for long-term outcomes,
capturing how actions interplay over time [39]. These two
offline RL datasets reflect realistic data collection scenarios
and serve distinct purposes [38]. Thus, the transition and
trajectory DP protection are both necessary. We discuss the
uniqueness of offline RL trajectories in Appendix H-A of [23]].

B. Differential Privacy

Differential privacy (DP) [40] protects an individual’s data
privacy within a dataset throughout the data processing phase.
We present the concept of DP as follows.

Definition 1 (Differential Privacy [40]): A randomized
mechanism Q satisfies (g, §)-differential privacy (DP) (¢ > 0
and § > 0), if and only if, for any two neighboring datasets
D, D' and any O, the following is satisfied,

Pr[Q(D) € 0] < ¢f Pr[Q(D') € O] + 6. 1)

where O denotes the set of all possible outputs from Q.

The privacy budget parameters, € and J, are both non-negative
and measure the privacy loss in the data. A lower € value
indicates better privacy protections, while a smaller ¢ reduces
the likelihood that the privacy guarantees provided by ¢ will
be compromised. Two datasets D, D’ differing by a single
transition or trajectory are considered neighbors. This can be
interpreted as transition-level or trajectory-level DP.

Differentially Private Stochastic Gradient Descent. In ma-
chine learning, the most popular way to train the model
to satisfy DP is DP-SGD [22]. This method modifies the
standard SGD, which computes gradients based on Poisson
sampling of mini-batches, clips the original gradients of the
model’s parameters, and adds random Gaussian noise to the

clipped gradient throughout training. We first denote the ‘Clip’

C

operation as, Clip, (g) = minq1, el [& where g is the

original gradient and C' is a hyper-parameter. The ‘Clip’

operation scales the norm of the gradient down to less than
C, and the model parameters 6 are updated via,

nEﬁL‘iECC [Clipc (VL(H, xt)) + CN(O7 0'2][)] ’ (2)

where 7 is the learning rate; L is the loss function; z indicates
a mini-batch Poisson sampled with a sample rate ¢ (and we
denote the size of it by |z|); VL(0, ;) represents the gradient
for z;. N(0, o2I) is the Gaussian noise with the variance o, and
B is the batch size. When there are many iterations of DP-SGD
in our method, composition theorems (privacy accounting) can
be used to derive the final values of (e,d). We defer those
derivations to Appendix

C. Diffusion Model

Diffusion models [21]] are a class of likelihood-based gen-
erative models that present excellent generative capabilities in
various fields [10]], [27], [41]]. Prior works [6]], [14] show that
diffusion models provide more stable training dynamics and
consistently outperform GAN- and VAE-based approaches in
terms of synthesis quality. Most state-of-the-art DP dataset
synthesis methods adopt diffusion models as their primary
synthesizers [6], [41]. Following this trend, we use diffusion
models as the DP synthesizers. Table |I| shows that diffusion-
based methods achieve superior downstream performance
compared to GAN-based methods.

Traditional diffusion models. Diffusion models [21] consist
of two processes: (1) The forward process that progressively
corrupts clean data zy by adding Gaussian noise, which
outputs a noisier data sequence: {z',..., 27}, and T is the
number of noising steps. As the number of steps increases,
the data becomes noisier, gradually resembling Gaussian noise
more closely and deviating further from the original data
sample with each step. (2) The reverse process progressively
denoises a noise to clean data using a trainable neural network.
The forward process between adjacent noisy data, i.e., 2*~*
and zt, follows a Gaussian distribution. Then, the forward
process of diffusion models is defined as, p (! |2'71) =
N (z'; /T =Bz, BiI) , where j; regulates the magnitude
of the added noise at each step and is usually pre-defined by
users. We note a; := [['_, (1 —). The likelihood between
the clean data xo and noisy data in step ¢ is, p (2! [20) =
N (z'; /ayz®, (1 — ay)I) . Therefore, we sample z* directly
from z° in closed form instead of adding noise ¢ times as,
2t = /azz® +ey/T—ay, e ~N(0,I). The final objective of
diffusion models is defined as,

L(97 .TI) = Etwu(l,T),:L"Np(zﬂ:rU:z) H@ — €9 (mta t) H27 3

where e ~ N (0,1) and ey is a neural network parameterized
with € that is updated to minimize Equation (G). U(1,7T) is
the uniform distribution ranging from 1 to 7. Thus, ey learns
to predict the noise e of the noisy data at any step ¢. After
being trained well, we apply ey to gradually denoise a random
Gaussian noise to clean the data.

We note that the noise prediction network serves as the core
component of diffusion models. Following prior work [[14], we

- - o

/ﬁ | < k|
Environments 1 (Environment Fine-tuned
Curiosity 1 Dlivflfusi':n
ﬁ Module | | g o
= I B Generating
/1
| - | .
Novelty Synthetic
Y Data - |
l Collect Feedback ! l Collect Cam
~N |
1 Training
Diffusion 1
Model |
Public Dataset 1 Sensitive Dataset Agent(s)
;F/ = J 1 k J \,

~ - ~ -

e T
Model
Pre-Training

Model Fine-tuning
Using DP-SGD

Fig. 1: High-level illustration of the overall workflow of
PrivORL. Initially, PrivORL pre-trains synthesizers on public
datasets, guided by a curiosity module. It then fine-tunes the
model on sensitive datasets using DP-SGD. Finally, the fine-
tuned model generates synthetic datasets for agent training.

use e as a shorthand to represent the entire diffusion model for
simplicity. This notation includes the noise prediction network
and, when applicable, any additional modules.

Conditional diffusion models. Conditional diffusion models
extend diffusion models by incorporating conditional inputs to
guide the generation process. They are widely used for tasks
such as sequence synthesis. Section presents that, for
DP trajectory synthesis, conditional inputs enable us to cap-
ture temporal dependencies among different transitions in se-
quences. The objective function is reformulated as £(6, z, ¢),
where c represents conditional inputs, and the noise prediction
network at step ¢ is defined as eq(z',t, ¢).

Diffusion Transformer. Diffusion transformers leverage
transformer-based architecture [42] for noise prediction. They
excel at modeling sequential data with temporal dependencies,
such as text [7] or structured sequences [27|], making them
suitable for trajectory-level DP synthesis, where temporal de-
pendencies in sequences must be preserved. Since transformers
lack inherent sequential awareness, positional encoding is
essential to capture the order of inputs [42].

Following prior works [9], [10], we adopt the Elucidated
Diffusion Model (EDM) [43] for transition synthesis and the
Diffusion Transformer [27] for trajectory synthesis. These
models use an MLP and a Transformer, respectively, as the
noise prediction network. We present more details of architec-
tural designs in Appendix [F-A]

III. PROBLEM SETUP AND PRELIMINARIES
A. Threat Model

We assume that the data provider holds a highly sensitive
dataset, such as medical records, which can be used for offline
RL agent training. Directly sharing such datasets poses signif-
icant privacy risks. To mitigate these risks, several approaches
advocate generating synthetic datasets as substitutes, while
adversaries can still infer the sensitive dataset information [12]]
through the synthetic datasets.

DP dataset synthesis addresses this challenge by provid-
ing formal, mathematically rigorous guarantees that limit the

influence of any individual record on the generated data.
This offers general protection and guarantees that, even with
auxiliary knowledge, an attacker’s ability to infer specific pri-
vate details about individual transitions or trajectories remains
strictly bounded. DP-based synthesis has gained traction across
multiple domains, including image [14], text data [7], and
tabular data [[16]], making it a promising paradigm for privacy-
preserving offline RL datasets.

B. Problem Statement

We aim to generate new transition-based and trajectory-
based datasets that statistically mirror the original dataset
under DP. Specifically, we possess a set of sensitive offline
RL data denoted by D,, and generate a set of synthetic data
individuals, D. Agents trained on the sensitive dataset exhibit a
similar level of performance compared to those trained on the
synthetic dataset. Besides, the synthetic dataset has statistical
characteristics similar to those of the original dataset.

C. Adapting Existing Methods

Marginal-based Solutions. We first consider the marginal-
based solutions [16]], notably PrivSyn [16]]. In transition syn-
thesis, we can treat the data as a table, where each row is a
transition, and each column is one element of the transition
(state, action, reward, and state can take multiple columns as
they can be multi-dimensional). The challenge with marginal-
based methods is their difficulty in managing data with large
dimensions. These methods are notably slow when processing
large-scale sensitive datasets. Section empirically shows
that directly adapting those methods does not work well. In
trajectory synthesis, trajectory lengths vary rather than being
fixed, rendering traditional DP tabular synthesis unsuitable.

ML-based Solutions. Another approach is to adapt more
complex machine-learning models, such as Generative Ad-
versarial Networks (GANs) and diffusion models. For GAN-
based methods, we adopt PATE-GAN [28]. As presented in
previous works [44], GAN suffers from problems of unstable
training and sometimes fails to fit the distribution of sensitive
datasets [45]]. Diffusion-based methods encounter similar chal-
lenges when processing complex datasets, such as images [29].

Leveraging Pre-training. Diffusion models achieve excellent
synthesis performance in various fields [24], [10], [14], [21],
[46], but one challenge particular to training diffusion models
with DP is that diffusion models are typically larger, and
thus need more training. In the era of ‘large models,” it is
increasingly common to begin with a pre-trained model and
then proceed to fine-tune it for better performance [24], [20].
Thus, we adopt this setting and adapt the pre-training method
in Ghalebikesab et al. [24]. However, it is less clear how to best
use pre-training to enhance marginal-based solutions (because
the lower-dimensional marginals are obtained in one-shot with
DP, and there is no convergence issue).

IV. INTRODUCING PRIVORL

We introduce PrivORL with two variants PrivORL-n and
PrivORL-j for handling transition-level and trajectory-level DP

definitions. PrivORL has a unified synthesizer training the
synthesis paradigm. As presented in Figure |1} PrivORL first
pre-trains synthesizers on datasets without privacy concerns
(i.e., public datasets), guided by feedback from the curios-
ity module. PrivORL then fine-tunes the pre-trained model
on sensitive datasets using DP-SGD. Finally, the fine-tuned
synthesizer generates synthetic datasets for agent training.

A. Differences Between PrivORL-n and PrivORL-j

However, there are some differences between PrivORL-n
and PrivORL-j, which are introduced as follows.

o Data structure. PrivORL-n models each transition indepen-
dently, whereas PrivORL-j models the entire trajectory, cap-
turing temporal dependencies (e.g., state transition function).
Therefore, PrivORL-n models each transition independently
using diffusion models, whereas PrivORL-j should model
to capture temporal dependencies with sequence generation
models like diffusion transformers.

e Data Dimensionality. Trajectories have significantly larger
dimensions than transitions. In PrivORL-n, each transition
is generated independently, processing small-scale data.
Conversely, PrivORL-j handles long sequences, risking a
memory explosion. As detailed in Section PrivORL-j
handles long trajectories by dividing them into fragments
and using a conditional synthesizer to model their inter-
connections, allowing for the generation of fragments that
seamlessly combine into cohesive trajectories.

o Data generation. PrivORL-n generates each transition inde-
pendently, whereas PrivORL-j synthesizes trajectory frag-
ments and stitches them into a complete trajectory, requiring
consideration of inter-fragment dependencies.

B. Design Overall

We use different architectures, training, and synthesis to
match the characteristics of transition and trajectory.

« Following prior work [9]], [10], we use the Elucidated Diffu-
sion Model (EDM) [43]] for PrivORL-n (unconditional gen-
eration) and the Diffusion Transformer [27] for PrivORL-
j» conditioned on the link transition to capture fragment
relationships, as introduced in Section EDM and Dif-
fusion Transformer use an MLP and a Transformer for noise
prediction. Architectural details appear in Appendix

o Training. Section details the training process of diffu-
sion models. The input of the noise prediction network eg is
noisy data, and the output is the prediction of added noise.
Equation minimizes the output of ey and real added
noise e. Thus, ey learns to predict the noise e added to
noisy data at any step ¢. For PrivORL-n, ey takes as input
noisy transitions and outputs the corresponding noise. For
PrivORL-j, ey receives noisy trajectory fragments with the
link transition, and outputs the noise. Section [VI-B]explains
how link transitions are incorporated into the training.

o Synthesis. As introduced in Section once trained,
synthesizers use ey to generate data through denosing the
noise sampled from a Gaussian distribution. PrivORL-n
uses ey to denoise Gaussian noises and generate transitions.

As shown in Section PrivORL-j generates fragments

sequentially and stitches fragments to full trajectories.

We elaborate on the technical details of PrivORL-n and
PrivORL-j in Section [V] and Section respectively.

C. Motivation of Leveraging Curiosity-Driven Pre-training

Offline RL requires the algorithm to understand the dy-
namics of the environment’s MDP from datasets [38]]. Then,
agents are trained to achieve the maximum possible cumulative
reward when interacting with the environment. To better
understand the environment’s MDP, a diverse training dataset
is necessary, which helps ensure that the agent encounters
a comprehensive spectrum of states, actions, and rewards,
representing a wide range of environmental scenarios [38],
[47]. Thus, the success of offline RL agents relies heavily on
the breadth and diversity of the datasets.

Inspired by the random network distillation in RL and bug
detection [25]], [26], we propose using the curiosity module,
which quantifies the ‘novelty’ of synthetic data individuals (as
detailed in Section [V-A). To incorporate the novelty feedback
into synthesizer pre-training, we replace a portion of real data
with high-novelty synthetic data, encouraging synthesizers to
capture underlying characteristics of high-novelty data. The
high-level motivation of curiosity-driven during pre-training
instead of fine-tuning phase is that we have more flexibility and
can tolerate more instability in pre-training phase, as supported
by Table [V] Technical details appear in Section

V. TRANSITION-LEVEL DP: PRIVORL-N

This section focuses on transition-level DP synthesis and
introduces the curiosity module.

A. Curiosity Scores

We propose a “curiosity module” to assess the diversity (or
novelty) of the synthetic dataset and promote diverse data syn-
thesis. Our approach is based on random network distillation
(RND) [48]]. This section details how to measure the novelty
(whether a transition is frequently or rarely generated by the
synthesizer) of synthetic data. RND uses prediction errors to
represent the difference between the outputs of a fixed target
network and a trainable predictor network. Therefore, when
synthetic data is rarely generated, and the predictor predicts
that it is unfamiliar, the predictor network’s output deviates
from the target network’s output, resulting in a higher error.

RND uses two randomly initialized networks: a fixed target
network f and a predictor network f that aims to learn the
output of f. During pre-training, synthetic data z is input to
both f and f The target network outputs a random vector
f(x) — R® (d is the vector dimension), which f tries to
match. Specifically, let the f and f be parameterized by ¢
and gZA) The objective is to minimize the following objective,
2

@) = | f5@) ~ ol

This error is also the curiosity score c(z) to quantify the
‘novelty’ of a synthetic data x and should be higher for ‘novel’
synthetic data than for those previously generated repeatedly.

“4)

This section details how to incorporate the novelty feedback
into the diffusion model pre-training.

B. Curiosity-driven Updating

This section explains how curiosity scores guide synthesizer
updates. As described in Section [[I-C] diffusion model training
lacks a reward mechanism that integrates novelty feedback.
In fact, diffusion models fit data distributions by capturing
statistical characteristics of training datasets [21]. To address
this challenge, we include high-curiosity synthetic data in the
training set, enabling the model to learn its traits and generate
diverse data. In particular, in one iteration, we sample a batch
of data X from the training dataset with a batch size of B.
We then generate an equivalent number of synthetic data using
the synthesizers, denoted as X.The curiosity module measures
the curiosity scores for synthetic data. We rank these scores
and select the top-p synthetic data from X to replace the same
number of data in the training batch dataset X. The p is the
curiosity rate ranging from 0 to 1, which controls how strongly
curiosity is applied. Then, the modified dataset X, is used to
train synthesizers. Appendix |C| presents why our method can
benefit the diversity of synthetic datasets.

Transitions Synthesis. For each transition, we first sample a
Gaussian noise z7 (T is the number of noising steps), and
we use the diffusion model to denoise 27 to the less noisy
2T~1. For any ¢ in range of 1 to 7', this denoising entails the
computation of the estimated noise mean g for 2t 210,

]. ((ﬂt - 1 — O ep (SCt t))
£/ Ot \/]. - 615 ’ ’
where oy and [, are hyper-parameters as introduced in Sec-
tion and t is the current step. The z'~! can be obtained
as [21], =1 = u + ove, e ~ N(0,I). The o regulates the
magnitude of the added noise and is pre-defined by users.
Repeating this denoising process until t = 0, the 2" indicates
our final synthetic transition.

w= ®)

C. Standard DP-SGD Fine-Tuning.

We leverage DP-SGD (as described in Section [lI-B) to fine-
tune the pre-trained diffusion model on the sensitive transitions
to satisfy DP. Algorithm [I] presents the training of PrivORL-n.

VI. TRAJECTORY-LEVEL DP: PRIVORL-J

Moving from transitions to trajectories, we face two ques-
tions: (1) How to support generate high-dimensional long
trajectories? (2) How can we capture long-range temporal
dependencies in trajectory-level DP synthesis?

To tackle high-dimensionality challenges, PrivORL-j di-
vides long trajectories into fragments and employs a condi-
tional diffusion transformer to model their interconnections,
enabling the generation of fragments that seamlessly combine
into cohesive trajectories. To capture long-range temporal
dependencies in trajectory-level DP synthesis, PrivORL-j en-
hances PrivORL-n by incorporating a transformer [27] into its
diffusion model, effectively modeling intricate temporal rela-
tionships in trajectories. We introduce PrivORL-j as follows.

Algorithm 1: Workflow of PrivORL-n

1 Input: The public and sensitive transition set: D and
Dy; Synthesizer ey parameterized with 6; Target and
predict networks fg, f 3 parameterized with ¢ and b;
The curiosity rate: p.

// Curiosity-Driven Pre-training

2 while fraining epochs < target epochs do
3 X < Randomly select B data from the D;
4 X < Generate B trajectory fragments using eg;
5 for z € X do

. 2
o || e =@ - @),

2
7 Update ¢ by minimizing c(x) ;
8 end
9 Sort set X according to ¢ and get the top-p sorted
set X,;

10 X, <+ Replace a subset of X with from X, ;
11 Train eg on X, using Eq. (3);

12 end

// Private Fine-tuning
13 Fine-tune ey on D, with DP-SGD (using Eq. (3)) ;
14 Output: The well-trained diffusion model ey.

A. Dataset Proprocess

As previously mentioned, our use of transformers involves
working with fragments. To enable this, we preprocess the data
into fragments, consisting of consecutive transitions. We first
segment the trajectory into equal-length segments, referring
to processes in text sequences. Any sub-trajectory that does
not reach the required length is padded. We should partition
the trajectories from both the public dataset D = {7},
and sensitive dataset Dy = {7;}; into trajectory fragments,
resulting in D’ = {(75,S,)}» and D, = {(77,5;)}:, respec-
tively. Here, each trajectory 7 is divided into N fragments,
7 — {7%}. The linking transition S; connects consecutive
fragments: for a given fragment, S; is defined as the preceding
transition of the first transition of the fragment or zero-padded
for the initial fragment. For instance, we consider a com-

plete trajectory 7 = (-, Sp,Ap,Tp, Spr1sGpti, Tpris)
that might be randomly segmented into two fragments, such
as 77 = (e Sps apvrp) and 73 = (51)+1’ Ap+15Tp41," 7")7

where the linking transition Sy for 75 is the last transition of
77, 1.e., So = (Sp, Ap, Tp, Sp+1)-

We denote the number of transitions in a trajectory fragment
by H (sometimes we call it horizon). Additionally, we intro-
duce a terminal signal d; for each transition: d,, = 1 indicates
that s,, is a terminal state, in which case s, = 0; otherwise,
d, = 0. Consequently, a trajectory fragment is formalized as

H
T = [(Sp’ap7rp’sp+1’dp)p=l]'
B. Synthesizer Training

As described in Section[[I-C| PrivORL-j generates trajectory
fragments by progressively denoising Gaussian noise through
T timesteps, guided by a conditional input. During the forward

Algorithm 2: Workflow of PrivORL-j

1 Input: The public and sensitive trajectory set: D and
Dyg; The horizon size: H; Diffusion transformer eg
parameterized with ; Target and predict networks fg,
f 3 parameterized with ¢ and qB; The curiosity rate: p.

2 Initialization: D', D! = @.

// Dataset Preprocess

3for € D,D; do

a | Split 7 to N fragment {(7¢,5;)~,}, and each 7°

has H transitions;

s | if €D then D'U{(77, S };

6 | else DLU{(7, SN, };

7 end

// Curiosity-Driven Pre-training

8 while rtraining epochs < target epochs do

9 X < Randomly select B data from the D’;

10 X < Generate B trajectory fragments using eg;

11 for 75 € X do

. 2
2| | e = | F0) = foe)|)
N C2
13 Update ¢ by minimizing ¢(7°) ;
14 end
15 Sort set X according to ¢ and get the top-p sorted
set X,;

16 X, < Replace a subset of X with from X, ;
17 Train eg on X, using Eq. (6);
18 end
// Private Fine-tuning
19 Fine-tune eg on D, using Eq. with DP-SGD to
calculate the aggregated gradient for each trajectory;
20 Output: The well-trained diffusion transformer ey.

process of the diffusion model, we incrementally add noise
to the trajectory fragments, generating a sequence of noisy
fragments, {77}7 . This entails training a noise prediction
network to estimate the noise added at each timestep ¢, using
the current noisy trajectory fragment 7;° and conditional input
s. As introduced in Section PrivORL-j leverages the
transformer as the prediction network, which is formulated
as ep(r7,t,5), and 0 means the network parameters. We
elaborate on the training processes of PrivORL-j as follows,

o Curiosity-Driven Pre-training. This section describes the
curiosity module pre-training in PrivORL-j.

o Input Embeddings. We detail the process of treating the
inputs of the noise prediction network as an embedding
sequence, which prepares them for transformer training.

e Sequence Processing. It uses the input embeddings to train
the transformer, enabling accurate prediction of the added
noise in diffusion processing.

o Private Fine-tuning. We describe how PrivORL-j fine-tunes
the synthesizer on sensitive fragments using DP-SGD.

Curiosity-Driven Pre-training. This process is almost the
same as what we introduced in Section In PrivORL-j,

we measure the novelty of trajectory fragments instead of
single transitions in PrivORL-n. Then, the modified training
dataset is leveraged to pre-train the synthesizer. As shown in
Section the objective of conditional diffusion is,

Laier =]E(TSt,S),t [Hea (T°%,t,8) — etHJ (6)

where ||-||; denotes the L; norm, and 75t and e are the noisy
trajectory fragment and true noise at the ¢-th timestep.

Input Embeddings: Inputs of the prediction network include
three parts: (1) the noisy trajectory fragment 7°; (2) timestep
in the forward process ¢; and (3) conditional input S. Referring
to previous works in the text synthesis [30]], the sensitive
trajectory fragments dataset D, should be embedded into a
high-dimensional space using multilayer perceptrons (MLPs).

First, we embed the timestep ¢ in the diffusion process [27]],
and recorded as TimeEmb(¢) € R¥, where k is the dimension
size of embedding. Then, we embed the conditional input
S (a link transition includes a state, an action, a reward,
a next state, and a terminal signal) with a separate MLP,
ConditionEmb(S) € R®*F, For embedding the trajectory
fragment 77, we divide 7} into five components,

[(‘%);I){:l]) [(ap)le]) [(ﬁ?)f:l]) [(Serl);I)—I:l]) [(dp)le])

and embed them with five separate MLPs. Thus, each trajec-
tory fragment yields 5 x H embeddings; concatenating one
time embedding and five condition-transition embeddings re-
sults in 5x H+5-+1 embeddings in total. As a result, PrivORL-
j gets the input embedding z, z = InputEmbed (77,t,5) €
ROXH+6)k Each embedding is treated as a token for subse-
quent transformer training, resulting in an input embedding z
of (5 x H +6) tokens, which refers to the basic units of input
data for the transformer [42]. Then, we formulate the input
embedding as the form of tokens, z = {2, }°X[/76 2, € R
Sequence Processing. Offline RL trajectory synthesis requires
dynamic coherence, and state transitions must align with envi-
ronmental dynamics [47], [32]. The transformer models these
temporal relationships, ensuring that the generated trajectory
is globally coherent, such as how earlier states in the trajectory
influence subsequent state-action pairs. Then, we describe how
transformers model the input embeddings, i.e., token sequence
z = {21277 %5 2 € R¥, to generate the predicted noise.

To encode the relative positions of tokens in the sequence
z, we introduce position embeddings. Since transformers lack
inherent sequential awareness, positional encoding is essential
to distinguish the order of identical tokens. Drawing on
implementation of prior work in text data processing [42],
[30], we assume that 7 is the position index of the token
(¢t = {0,1,...,5x H+5}, and PosEmb(i) denotes the
position embedding vector for the token at position ¢, and
PosEmb(i) € RF. Then, we add the positional embedding
PosEmb(¢) to the token embedding and get the final embedded
inputs of the transformer. The outputs of the transformer are
the embedding matrix, Transformer(zgn,) € R7*F, and we
decode them into noise prediction components using MLPs.
The output of eg(77,t,.5) is the predicted noise, matching the

dimensionality of the input trajectory fragment 7;’.

Private Fine-Tuning. We use DP-SGD to fine-tune the trans-
former on sensitive trajectories to satisfy DP at the complete
trajectory level. As presented in Section we split each
trajectory into fragments of size H transitions between con-
secutive fragments. Distinguished from the DP-SGD applied
in transition-level DP, DP-SGD is applied by aggregating
the gradients of all fragments (7°,.5) belonging to the same
trajectory 7, clipping them to a maximum norm C, and adding
noise at the trajectory level with a noise multiplier o, ensuring
that we protect per trajectory rather than per fragment. The
parameters of the noise prediction network are updated by,

E, [E(TS,S)ET [Chpc (VL(Q, (Tsa S)))} + CN(07 021[)] - (D

We present the workflow of PrivORL-j in Algorithm [2]
C. Dataset Synthesis via PrivORL-j

PrivORL-j just generates trajectory fragments. This section
introduces how to generate a complete trajectory.

For the initial fragments of each trajectory, we first sample
a Gaussian noise 77: (1" is the number of noising steps), and
the conditional input s should be 0. Then, we use the diffusion
transformer to denoise 77 to the less noisy 77_,. For any ¢ in
range of 1 to T, this denoising entails the computation of the
estimated noise mean . for 77, defined as [21]],

1 (s 1-— (673
= — Ty — —F/—/—
var Ut VT=5
where «; and (3, are hyper-parameters as introduced in Sec-
tion [[I-C} and ¢ is the current step. The 7;’_; is defined as [21],

€9 (Tts—htas))) (8)

i1 = p+oe, e~ N(,T). 9)

The o, regulates the magnitude of the added noise and is pre-
defined by users. Repeating this process until ¢ = 0, the 73
indicates the synthetic trajectory fragment. Then, we use the
final transition of synthetic trajectory fragments as conditional
inputs and iterate the synthesis process until either the terminal
state is generated—indicated by the fragment trajectory con-
taining the terminal signal d = 1—or the predefined maximum
trajectory length is reached. Figure 2] presents the visualization
for trajectory synthesis and fragment stitching.

D. Processes for Discrete Variants

We uniformly represent datasets with real-valued variables
to leverage diffusion models’ strengths in handling continuous
data [9]. For discrete variants, we embed them into the
continuous variable using one-hot encoding before the training
phase. During synthesis, we apply an argmax post-processing
step to map the sampled synthetic continuous outputs back to
valid discrete variants.

VII. PRIVACY ANALYSIS

Since PrivORL leverages DP-SGD to train the synthesizers,
its privacy analysis is the same as DP-SGD. Specifically, with
the RDP accountant [49]], K finetuning steps of PrivORL
will cost («, Kv)-RDP, where « and + denote the privacy

o

Noise

B

Synthesizer 1) Denoise

,
-

BlY

Synthesizerlo Denoise

R

(o) e
| -y

Noise

Synthesizer lo Denoise

(S AR s 4 R) Cs AR s A R) (s AR s 4 R)
Fragment 1 | I_ I<'ru;_',nwnt2L|— Fragment N
l Stitching
sS4 (R 59 €& ¢ S AR

Fragment 2

SH @ R 5 @ & 15 @ &
Fragment 1 Fragment N
Synthetic Trajectory

Fig. 2: Visualizations for trajectory synthesis and fragment
stitching. The initial condition is zero-padded, and the synthe-
sizer denoises to generate a fragment. We then use the final
transition of each fragment as a conditional input and iterate
until a terminal state is produced. Finally, the fragments are
stitched sequentially to form a complete synthetic trajectory.

parameters of RDP, and + is the upper bound of a function. The

ultimate DP cost of PrivORL is (~ + 105145,6) -DP. Please
refer to Appendix [B] for more details. Besides, we present the
detailed parameters of DP-SGD, like noise scale and sampling
probability, in Table of the Appendix. For PrivORL-n,
the sampling probability is defined as the ratio of the batch
transition size to the total transition dataset size. For PrivORL-
J, although it is trained on trajectory fragments, the sampling
probability is calculated as the ratio of the batch trajectory
size to the overall trajectory dataset size, ensuring trajectory-
level DP protection. We use the RDP for fair comparisons
with baselines. Appendix presents results under Privacy
Random Variable (PRV) [50], which provides a tighter privacy
analysis than RDP.

According to the post-processing theorem [40], if an algo-
rithm satisfies (¢, 0)-DP, then any form of post-processing will
not incur additional privacy loss. Therefore, agents trained on
DP synthetic datasets (consisting of transitions or trajectories)
without increasing the risk of data leakage.

VIII. EXPERIMENTAL SETUP
A. Investigated Tasks and Datasets.

We conduct the experiments across three domains from
D4RL [47]: Maze2D [47], Kitchen [51], and Mujoco [52],
all of which are commonly used in offline RL research [5]],
[9], [53]. D4RL is a benchmark specifically designed for
evaluating offline RL algorithms.

Each environment comprises various tasks, each featuring
similar yet distinct map or robot configurations. For example,
in Maze2D, the agent controls the same robot across different
tasks but is required to achieve various goals on different
maps, as presented in Figure [3] To protect the privacy of the
real dataset, we select the pre-training and sensitive datasets
from the same domain but with different tasks. For instance,
if we designate Maze2D-umaze as the sensitive dataset re-
quiring protection, Maze2D-medium and Maze2D-large

(a) maze2d-umaze (b) maze2d-medium (c) maze2d-large

Fig. 3: An illustrative example from Maze2D. The green and
red dots represent the start and end points of the 2D ball.

are designated as pre-training datasets. Further details on the
selection of pre-training and sensitive datasets and processing
of DARL for transition and trajectory synthesis to match the
real-application requirements are provided in Appendix
For the downstream task, we selected three state-of-the-
art offline RL algorithms widely used [S3], [9], including
EDAC [54], IQL [55], and TD3PlusBC [56]. Our implemen-
tations of offline RL algorithms are based on the open-source
repository, CoRL [53], with consistent hyper-parameters set-
tings. We refer to codes released in the repository [9], [LO],
implementing the offline RL dataset synthesizers. We elab-
orate on the details of hyper-parameters in Appendix [F-A]
Besides, we discuss the details of the curiosity module in
Appendix Unless otherwise specified, the experimental
configurations are the same as those in Section

B. Baselines

We compare PrivORL-n with both PATE-GAN and PATE-
GAN with pre-training (PrePATE-GAN) [28]. We also con-
sider PGM [17] and PrivSyn [16], which are two marginal-
based DP dataset synthesis methods. They achieve state-of-the-
art performance in the ‘SynMeter’ library [57]. These baselines
are originally implemented for DP tabular synthesis, and we
edit them for DP transition synthesis.

We present variants of PrivORL-n evaluated in ablation
studies to assess the role of curiosity-driven pre-training.

o NonPrePrivORL (DPDM [29]). This baseline omits pre-
training on public datasets for PrivORL-n, exploring the
significance of pre-training in transition synthesis.

o NonCurPrivORL (PDP-Diffusion [24]). This baseline ex-
cludes the curiosity module in the pre-training. This variant
is equivalent to the pre-training DP diffusion method pro-
posed by Ghalebikesab et al. [24].

For DP trajectory synthesis, we compare PrivORL-j with
DP-Transformer [30]] used in DP text synthesis. The second
baseline is PrivORL-j-U, which does not consider the temporal
relationship in the fragment trajectory. Specifically, we use U-
Net as the noise prediction network instead of the transformer,
and the other components, like fragment synthesizing, are the
same as PrivORL-j. We elaborate on baselines in Appendix [E]

C. Evaluation Metrics

We outline the principles of DP dataset synthesis in Ap-
pendix and introduce the evaluation metrics as follows.
We elaborate on the details of these metrics in Appendix

Averaged Cumulative Return. This metric assesses the utility
of a synthetic dataset by measuring the average total reward
a trained agent accumulates over multiple trajectories in real
environments. The higher normalized returns, scaled to [0,
100], indicate that the trained agent has better performance
and the synthetic dataset is of higher utility [47]. we use
“normalized return” for simplicity.

Marginal & Correlation. Marginal uses the mean
Kolmogorov-Smirnov [58] statistic to measure the maximum
distance between empirical cumulative distribution functions
of each dimension. Correlation measures differences in
pairwise Pearson rank correlations [31]. Scores range from 0
to 1, with higher values indicating greater fidelity.

TrajScore. Inspired by BERTScore [59], TrajScore uses pre-
trained MLPs in an autoencoder as a trajectory encoder, similar
to BERT’s embedding layer [60], to compute trajectory em-
beddings. It calculates similarity via cosine similarity between
generated and real trajectories.

IX. EMPIRICAL EVALUATIONS

This section first compares the effectiveness of PrivORL-
n and PrivORL-j with baselines in downstream tasks. Then,
we assess the fidelity between the synthetic and real datasets.
Next, we evaluate the DP-protected synthetic datasets against
MIA and analyze the impact of hyperparameters and privacy
budgets on our methods. Finally, we conduct an ablation study
to emphasize the importance of curiosity and pre-training.

A. The Utility of Synthetic Datasets

Experiment Design. This experiment evaluates the utility of
the DP synthetic dataset with the size of 1 x 10° transitions for
transition-level synthesis and 5 x 102 trajectories for trajectory-
level synthesis using PrivORL-n and PrivORL-j. We also
compare the utility of synthetic and real datasets. The data
synthesizer is pre-trained for ten epochs on a public dataset
and then fine-tuned for five epochs on a sensitive dataset, under
e = {1,10}. The privacy budget 4 is not sensitive in our
analysis and is set to 1 x 1076 across all experiments [62]]. An
epoch means one complete pass through the entire dataset. The
hyper-parameter of the curiosity rate is set at 0.3. We provide
further details on the selection of pre-training and sensitive
datasets in Appendix @ We train agents for 5 x 107 timesteps.
Appendix [D| notes the small trajectory size in the MuJoco
domain dataset, so we exclude it from trajectory synthesis.

Result Analysis. For transition-level DP synthesis, Table
presents that agents trained on synthetic transitions using
PrivORL-n achieve the highest normalized returns across all
tasks. In the Maze2D domain, under ¢ = {1,10}, agents
trained on synthetic transitions from PrivORL-n achieve an
average normalized return of 51.9 (= (63.2 + 32.0 + 62.4 +
60.1 4+ 73.5 4+ 50.3 + 30.6 + 33.8 + 61.3)/9) and 69.3 (=
(69.14+45.6+80.6470.3+90.7481.0+60.34+50.4+75.3) /9)
across three types of sensitive datasets. This performance
surpasses the baseline returns of 11.7, 3.4, 2.0, 3.2, and
18.9, 3.9, 5.1, 7.2 (calculated similarly to that of PrivORL-n),

TABLE I: The normalized returns of agents trained on synthetic transitions using PrivORL-n and baselines under privacy
budget e = {1,10} and real datasets. ‘no-DP’ means agents trained on real datasets. We show the mean =+ standard deviation
of the performance averaged over five seeds. The best score is marked with the gray color box.

.| Real EDAC [61] IQL [35] TD3PLUSBC [56]

Domains | 1) taset ‘ Methods } €e=1 | e=10 | noDP } €e=1 | e=10 | noDP } €e=1 | e=10 | noDP
PGM 172 £ 104 | 328 £ 9.1 30.0 £3.0 | 41609 124 £30 | -85+29
PrivSyn 01+103 | 13£119 00+15 | 29+23 30+30 | 57+40

umaze PATE-GAN 82+£120 | -168+£13.8 | 708 £ 13.6 | -105+59 | -144+£78 | 7L.0£23 | 1542 | 91+62 | 73632

PrePATE-GAN | 12.1£60 | 18448 124 £ 103 | 202+ 45 153 £ 64 | 264+23
PrivORL-n 632 £ 10.1 | 69.1 £ 145 60.1 £86 | 70.3 +2.1 30.6 + 11.8 | 603 + 6.3
PGM 21 £77 | 203£87 355 £ 1.7 | 468 £24 43E21 | 77£10
PrivSyn 02+ 14 | -63£52 20+15 | 40+25 30.0 £ 122 | 316 £ 100

Maze2D | medium | PATE-GAN 100£30 | 155+59 | 73.0£102 | 177+£03 | 25707 | 93.1+10.7 | 153+ 129 | 20.0 £ 102 | 53.3 £ 03
PrePATE-GAN | 2.3 + 5.1 14.3 £ 63 42+£30 | 70£23 22£20 | 5411
PrivORL-n 320+£30 | 456+ 19 73.5 £ 132 | 907 £ 86 33.8+£83 | 504+ 64
PGM 04 £ 10 3T£37 167E£32 | 219 £54 T6£20 | 4011
PrivSyn 82+£12 | 9906 04+-52 | 25+16 34+ 11 29423

large PATE-GAN 143+£20 | -52+18 | 899+63 | 29+£07 | 59+£02 | 859+02 | 36+10 | 58+00 | 96832

PrePATE-GAN | 6.6 +43 | -24+22 00+00 | 04%12 00+00 | 0000
PrivORL-n 624 £ 122 | 80.6 % 145 503 £8.1 | 810+ 11.8 613 £47 | 753 + 132
PGM 0.0 £ 0.0 3.5+50 20+ 15 15+ 17 20+04 | 25+18
PrivSyn 0.0 + 0.0 0.0 £ 00 0.0+00 | 0000 00+00 | 02+03

Kitchen| partial PATE-GAN 0.0 + 0.0 00£00 | 100£00 | 00£00 | 0000 | 40025 | 19+06 | 42+65 | 180+60
PrePATE-GAN | 0.0 + 0.0 0.0 + 00 0.0+00 | 00+00 00+00 | 0812
PrivORL-n 0.0 =+ 0.0 25+ 15 125+25 | 255+25 75+ 15 | 115+00
PGM 0.0 + 0.0 02+ 0.1 15+00 | 45405 00+40 | 16+05
PrivSyn 0.0 £ 0.0 00+03 00+ 16 | 24+04 04+ 10 13405

MujoCo | halfcheetah | PATE-GAN 28405 | 3406 | 60819 | 18+3.1 17+£05 | 483+05 | 40+51 | 25+06 | 485+03
PrePATE-GAN | 3.0 + 1.3 3.0 £03 18+09 | 3.6+03 53+23 | 56+ 19
PrivORL-n 387+ 49 | 488+97 252 £ 07 | 36924 274 £32 | 452+32

TABLE II: The normalized returns of agents trained on synthetic trajectories using PrivORL-j and baselines under ¢ = {1, 10}
and real datasets. ‘PrivORL-j-U’ denotes a variant of PrivORL-j that uses a U-Net as the noise prediction network instead of

a transformer, while retaining the other components.

. Real EDAC (61 IQL [35 TD3PLUSBC (56
Domains ‘ Dataset | Yicthods } e=1 [e=10 | noDP } e=1 | e=10 | noDP } e=1 | ¢=10 | 1oDP
PrivORL--U 112490 | 320+61 246+ 44 | 289 +50 268 +37 | 388+29
umaze | DP-Transformer | 284 +4.1 | 398 +5.1 | 708+ 13.6 ‘ 259 + 65 ‘ 412433 | 710+23 | 282429 | 493+26 | 736+32
PrivORL-j 455491 | 522+26 421424 498+ 68 387 £ 65 | 49.9 + 49
PrivORL-U 35E12 | 164 £5.1 S5E10 | 141 £29 67E£02 | 10816
Maze2D | medium | DP-Transformer | 102+ 04 | 190 +48 | 73.0 % 102 ‘ 18.1 + 2.2 ‘ 328+44 | 931+£107 | 7.6+10 | 266+04 | 533+03
PrivORL-j 315+ L1 | 350 +34 234+52 493417 3L1+106 | 380+ 16
PrivORLJ-U 109 £06 | 198 £ 0.1 98 £04 | 319 E 12 99£03 | 143L12
large | DP-Transformer | 7.6 £3.5 | 218+24 | 89.9+63 ‘ 49+ 08 ‘ 234431 | 859+02 | 63+02 | 283+£32 | 968+ 32
PrivORL-j 205+ 02 | 305+ 6.0 99+03 377+70 295+ 66 | 356+26
PrivORL--U 00+00 | 0.0+00 0.0+£00 | 0.0+00 00£00 | 0000
Kitchen | partial | DP-Transformer | 0.0+00 | 00+00 | 10.0+00 ‘ 0.0 £ 0.0 ‘ 25+ 18 | 400£25 | 00+00 | 00+00 | 180+60
PrivORL-j 0.0+£00 | 0.0+00 75410 138475 50+ 18 83 +25

from PGM, PrivSyn, PATE-GAN, and PrePATE-GAN, under
e = {1,10}. In Maze2D, where the transition dimension is
low at just 11, baselines perform well in certain scenarios; for
example, agents trained on synthetic transitions from PGM
using the IQL in Maze2D-medium achieve a normalized
return of 41.6. In Kitchen and Mu joCo, where the transition
dimensions are 130, the baseline methods struggle to perform
effectively. PrivORL-n achieves average return scores of 13.1
(= (2.5+25.5+11.5)/3) and 43.6 (= (48.8+36.9+45.2)/3),
under € = 10, outperforming baselines.

Table [[V| presents the performance of synthesizers only pre-
trained on public datasets, without fine-tuning on sensitive
datasets. We observe that fine-tuning on sensitive datasets sig-
nificantly improves the synthetic quality. Synthesizers trained
only on the pre-training datasets of Maze2D—umanze achieve
only 6.6 downstream agent performance. Although public
datasets may resemble sensitive datasets, the training objec-
tives differ substantially. For instance, the goal position and
the layout map in Maze2D vary across datasets. Thus, a

synthesizer pretrained solely on public data may not generalize
well to sensitive datasets, as the optimal trajectories and MDP
(introduced in Section [[I-A) are task-specific.

For trajectory-level synthesis, Table [shows that PrivORL-
j achieves better performance than baselines. In the Maze2D,
under e = {1, 10}, agents trained on synthetic trajectories from
PrivORL-j achieve average normalized returns of 30.2 and
41.8, surpassing 13.2 and 23.0 obtained by PrivORL-j-U, and
DP-Transformer’s 15.2 and 31.4. Thus, PrivORL-j achieves
average 15.0 and 10.4 higher returns than DP-Transformer. In
Kitchen, PrivORL-j still outperforms baselines, presenting
its better ability to handle complex trajectories.

Agents trained on real datasets achieve average returns of
78.6,22.6, and 52.5 across Maze?2D, Kitchen, and MujoCo,
while PrivORL-n obtains 69.3, 13.0, and 43.5 at ¢ = 10. The
synthetic dataset exhibits comparable utility to the real dataset.
We find that in Kitchen, the agents trained using EDAC have
0.0 averaged returns. Prior works [47], [53]], [[63]] show that no
single existing offline RL algorithm excels across all datasets

10

TABLE III: Comparison of fidelity metrics of the synthetic transitions using PrivORL-n and baselines (¢ = 10) to real datasets.
The highest scores are highlighted in bold font. ‘Margin.” and ‘Correlat.’ are abbreviations for ‘Marginal’ and ‘Correlation.’

Domai Real | PGM [T7] | PrivSyn [16] | PATE-GAN 28] | PrePATE-GAN | PrivORL-n
omains Dataset | Margin. Correlat. | Margin. Correlat. | Margin. Correlat. | Margin. Correlat. | Margin. Correlat.

umaze 0.793 0.983 0.784 0.969 0.672 0.844 0.784 0.969 0.948 0.994
Maze2D medium 0.801 0.995 0.763 0.973 0.721 0911 0.763 0.793 0.947 0.983
large 0.803 0.982 0.832 0.997 0.589 0.912 0.713 0.974 0.937 0.997
Kitchen ‘ partial ‘ 0.783 0.697 ‘ 0.737 0.806 ‘ 0.647 0.788 ‘ 0.695 0.819 ‘ 0.861 0.901
Mujoco | halfcheetah | 0.776 0921 | 0862 0946 | 0768 0937 | 0849 0945 | 0949 0.982
Average ‘ 0.791 0.916 ‘ 0.796 0.938 ‘ 0.679 0.878 ‘ 0.761 0.900 ‘ 0.928 0.971

TABLE IV: Average normalized returns of agents trained on
synthetic transitions (e 10) using PrivORL-n, with and
without fine-tuning on sensitive datasets under IQL algorithm.

Domains | Dataset | Only pretraining PrivORL-n
umaze 6.6 + 0.0 70.3 + 2.1
Maze2D medium 6.6 £ 1.1 90.7 £+ 8.6
large 7.8 £4.7 81.0 £ 11.8
Kitchen | partial | 0.0 + 0.0 255 + 25
Mujoco ‘ halfcheetah ‘ 144 £+ 3.7 369 + 2.4

due to the inherent instability training problem in offline RL.
Thus, it is usual for certain methods to appear ineffective
for specific tasks. These results present that PrivORL-n and
PrivORL-j both achieve better synthetic utility than baselines.

B. The Fidelity of Synthetic Datasets

Experiment Design. This section investigates whether
PrivORL-n and PrivORL-j can generate transitions and trajec-
tories with greater fidelity than baselines under privacy budget
€ = 10. To visualize the synthetic distribution, we sample 500
transitions from each synthetic dataset and use t-SNE [64] to
visualize them in a two-dimensional space.

Result Analysis. Table compares the marginal and corre-
lation statistics of the synthetic transitions using PrivORL-n
under ¢ = 10 to real datasets. We observe that PrivORL-
n outperforms the baselines in both marginal and correlation
statistics. For correlation statistics, PrivORL-n similarly excels
with an average score of 0.971, exceeding baseline scores of
0.916, 0.938, 0.878, and 0.900. Marginal provides insights
into the accuracy of single-variable distributions, while cor-
relation effectively introduces synthetic data and preserves the
relational structure observed in real data [58], [31]]. Based
on these results, we conclude that while all methods effec-
tively synthesize transitions with strong pairwise relationships
between variables as observed in real transitions, PrivORL-
n achieves higher similarity in the distribution of individual
variables between the synthetic and real transitions than the
baseline methods. Table XIII in Appendix I-A of [23] presents
that PrivORL-j achieves an average TrajScore of 0.902, which
is 0.124 higher than DP-Transformer (0.778), under € = 10.
Figure [5] shows the distribution of synthetic transitions
from PrivORL-n and baselines compared to real transi-
tions. These results highlight the strength of PrivORL-
n strength in handling high-dimensional transitions. The

11

60

30

Normalized Return

59.2

7

49.6
43.9

K73 NonPrePrivORL
[ETN NonCurPrivORL
=73 Ours

-
o

Marginal

I
&

[Z=3 NonPrePrivORL
&= NonCurPrivORL
[Z4 Ours

X o
L

KRR

%0
IR

v,v
SR

%

)
0

Maze2D-
umaze

Mujoco-
walker2d

0.0

Maze2D-
umaze

Mujoco-
walker2d

Fig. 4: The averaged normalized return across three RL algo-
rithms under ¢ = 10 and marginal as achieved by (1) PrivORL-
n (Ours), (2) NonPrePrivORL, and (3) NonCurPrivORL.

number of transition dimensions is 11 and 130 in the
Maze2D-medium and Kitchen-partial datasets. Base-
lines match the real distribution well in Maze2D-medium but
fail in Kitchen-partial, while PrivORL-n consistently
generates transitions resembling the real dataset.

C. Ablation Study

Experiment Design. These studies aim to explore the im-
portance of pre-training and curiosity modules and how the
PrivORL performs while we introduce the curiosity module
in the fine-tuning stage. We conduct experiments on transi-
tion synthesis. We conduct experiments under ¢ = 10. As
mentioned in Section [VIII-B] ‘NonCurPrivORL’ and ‘Non-
PrePrivORL’ are equal to applying DPDM and PDP-Diffusion.
Result Analysis. Figure shows the utility and fidelity
of synthetic transitions using various methods. Notably, in
Maze2D-umaze, the removal of the pre-training stage and
the curiosity module from PrivORL-n leads to a decrease
in average normalized returns of trained agents—by 25.9%
(1 —43.9/59.2) x 100% and 16.3% (1 —49.6/59.2) x 100%,
and Besides, 36.7% = (1 — 20.9/33.0) x 100% and 21.9%
= (1-25.8/33.0) x 100% for Mujoco-walker2d. Table[V]
shows that using FineCurPrivORL leads to a degradation of the
utility of synthetic transitions. Specifically, the average returns
decrease from 70.3, 90.7, 81.0, 25.5, 36.9 to 54.1, 65.9, 54.1,
5.2, 18.7. The curiosity module adds novelty feedback to the
training, increasing variability, which destabilizes fine-tuning.

D. Defending against MIAs

Experiment Design. We explore whether PrivORL-n can
defend against MIAs under DP protection. We use a white-box

PGM Privsyn PATE-GAN PrePATE-GAN Ours
Real Data Real Data
Synthetic Data Synthetic Data
Real Data Real Data Real Data
Synthetic Data Synthetic Data Synthetic Data

Fig. 5: The t-SNE visualizations of data distribution for Kitchen-partial. We synthesize the dataset using PrivORL-n
and baselines under € = 10. We show the t-SNE visualizations for Maze2D-medium in Figure 7, Appendix H-E of [23]].

c 100 PrivORL-n | 400 PrivORL-n | 120 PrivORL-n | 120 PrivORL-n
= PrivORL-j PrivORL-j PrivORL-j PrivORL-j
2 8 g0 l78.88 ol 90 00 e .
x L S N l6o86 ____________—e==== 7
- 60 N0 | _[TTTTTIIIEeT T e 7 79716 __ o __ o _____] 68.75
@ 15081 __ _ s __| 60 60 ol e ok 7
S 49.02
g 40 40 P Y i =
S 20 30 30
> 20

0 0 (] (]

0.1 0.2 0.3 0.4 0.5 5 10 15 20 0.1 0.2 0.3 0.4 0.5 5 10 15 20
Curiosity Rate Privacy Budget Curiosity Rate Privacy Budget

Maze2d-umaze Maze2d-umaze

Maze2d-medium Maze2d-medium

Fig. 6: The average normalized returns of agents trained using three offline algorithms on synthetic transitions and trajectories
using PrivORL-n and PrivORL-j. These experiments and trajectories vary with different curiosity rates and privacy budgets.

TABLE V: The normalized returns of agents trained on a DP
synthetic dataset using IQL (e = 10).

TABLE VI: The TPR@10%FPR / TPR@1%FPR (%) of
MIA [12] under different €. The privacy budget “co” means
training PrivORL-n without DP protection.

Method \ Maze | Kitchen | Mujoco
| umaze medium large | umaze | halfcheetah Real ‘ B
- - Domains ‘ ca

FineCurPrivTranR | 54.1 65.9 54.1 ‘ 5.2 ‘ 18.7 Dataset | ! 10 o0
Ours 703 90.7 810 | 255 369 umaze 119/15 114/19 31.0/128
Maze2D medium 9.2/0.7 9.7/0.8 30.9/9.2
large 89/70.7 109/ 0.6 27.6 /8.9
Kitchen ‘ partial ‘ 106/ 1.6 10.1/1.4 96.4 / 86.0
MIA [12] to attack synthesizers, aiming to identify members Mujoco | halfcheetah | 10.8/1.7 1.0/ 1.6 959/86.0

of a sensitive dataset using the synthetic dataset. We use True
Positive Rate@ 10%False Positive Rate (TPR@ 10%FPR) and
TPR@1%FPR to evaluate the attacker’s performance, and a
higher metric means a higher attack success rate. Please refer
to more details of implementations of MIA in [12]]. Following
prior research [12], [14], the fixed FPR is set as a low rate,
e.g., TPR@1%FPR indicates the FPR threshold at 1%. We
introduce more about this metric in Appendix

Result Analysis. We present the TPR@10%FPR and
TPR@1%FPR of the MIA for diffusion models [12] under
e = {1,10,00} in Table where “oco0” means without
DP protection. From this table, we observe that the MIA is
ineffective against PrivORL-n, approximating the effectiveness
of random guessing. These results show that PrivORL-n can
synthesize transitions without privacy leakage of real sensitive
transitions. Setting the privacy budget at 10 provides an
effective defense with negligible differences compared to a
budget set at 1. Although as € increases, PrivORL-n presents a
reduction in synthetic transitions utility. We still advise using
smaller € values, such as 10, as recommended by previous
research [14], [24], [65], to defend against unknown attacks.

12

E. Hyper-parameter and Privacy Budget

Experiment Design. This experiment studies how PrivORL-
n and PrivORL-j perform under different hyper-parameter
settings: (1) curiosity rate, p = {0.1,0.2,0.3,0.4, 0.5}, (2) pri-
vacy budget, e = {1, 5,10, 15,20}, (3) horizon for PrivORL-j,
H = {8,16,32,64, 128} (presented in Appendix I-C of [23]).
Result Analysis. Figure [6] presents the average normalized
returns of agents trained using the studied algorithms. We
observe that the performance of PrivORL-n and PrivORL-
j both initially increase but then decrease as curiosity rates
continue to rise. “There is no such thing as a free lunch.”
Excessively pursuing diversity can also increase the risk of
generating erroneous data and affect the training. This high-
lights the need for a moderate curiosity rate for best results.
Optimal curiosity rates vary across different tasks to maxi-
mize synthesis performance, e.g., for Maze2D-umaze and
Maze2D-medium, the optimal curiosity rates for PrivORL-
n are 0.3 and 0.2, and for PrivORL-j are 0.3 and 0.3. We
observe that with an increase in the privacy budget e, there
is a corresponding upward trend in the performance of the

TABLE VII: The normalized return and marginal of synthetic
transitions as achieved by (1) our method (¢ = 10), PrivORL-
n, and (2) NonPrivORL (e o). ‘Difference’ means the
results of NonPrivORL minus that of PrivORL-n.

Normalized return Marginal
Method Maze [Mujoco Maze [Mujoco
medium Targe | halfcheetah | medium Targe | halfcheetah
NonPrivORL | 74.8 80.5 54.9 0.98 0.97 0.97
Ours 66.7 79.0 43.6 0.95 0.94 0.95
Difference 8.1 1.5 ‘ 11.3 0.03 0.03 ‘ 0.02

synthetic data. As the privacy budget e increases, introducing
less noise during the training of synthesizers, the quality of
synthetic datasets shows improvements [14], [16].

Selecting an appropriate curiosity rate for different datasets
is crucial. However, tuning the curiosity rate requires repeated
access to the sensitive dataset [40], which can degrade the
overall privacy guarantee and negatively impact the quality of
the synthetic data. A practical mitigation strategy is to tune
the curiosity rate on a public or non-sensitive dataset and then
apply the optimal value to the sensitive data. Figure [6] shows
that a curiosity rate of approximately 0.3 achieves strong
performance across datasets. Therefore, we adopt this fixed
value without further tuning on sensitive data.

F. PrivORL without Privacy Protection

Experiment Design. This experiment focuses on DP transition
synthesis. We explore how the DP harms the synthetic perfor-
mance of PrivORL-n (¢ = 10). We compare PrivORL-n with
the method ‘NonPrivORL’, which fine-tunes diffusion models
on sensitive datasets without DP protection (i.e., € = c0).

Result Analysis. Table [VII| illustrates that PrivORL-n, on
average, leads to a 7.0 (= (8.1 + 1.5 + 11.3)/3) reduction
in normalized returns for agents trained using four different
algorithms, to meet the requirements of the DP constraint.
However, in terms of high-level statistics, PrivORL-n results
in only a 0.03 (= (0.03 + 0.03 4 0.02)/3) decrease in the
marginal. It is understood that incorporating the DP framework
may damage transition synthesis performance, as observed in
various prior studies [14], [24]]. For example, in DP image
synthesis, Privimage also experiences an approximate 11.6%
performance reduction in downstream tasks under ¢ = 10.
Therefore, a reduction in performance is deemed acceptable
for privacy protection. These results indicate that further de-
velopment is necessary to mitigate the performance reduction
caused by DP. Besides, Appendix shows learning curves
of the downstream agent over training steps.

We discuss the efficiency of PrivORL-n compared to base-
lines and the application scenario of offline RL dataset syn-
thesis in Appendix [G] and H-D of [23]], respectively. Besides,
Appendix I-B of our full paper [23|] shows how scaling up
improves the performance of synthetic transitions. We discuss
the limitations of our methods in Appendix

X. RELATED WORK

We discuss related work briefly here, and we provide a more
comprehensive discussion of related works in Appendix

13

DP Dataset Synthesis. DP dataset synthesis methods fall
into two categories: (1) Marginal-based approaches, which
replicate marginal and joint distributions of variables [16],
[17], [[66]]. These methods work well for small tabular data but
struggle with discrete values, high-dimensional attributes, and
large datasets [16]. (2) Generative model-based approaches,
which train DP synthesizers such as GANs [28], [45] and
diffusion models [21]], [24] using DP-SGD [22]. While PATE-
GAN [28] and DP-CGAN [67] perform well on MNIST [68],
they degrade on larger datasets. Recent work shows diffusion
models outperform GANs in DP synthesis [65]. Sabra et
al. [24] propose to pre-training DP-Diffusion on public data
and fine-tune on sensitive data.

Offline RL with Synthetic Data. Diffusion models aug-
ment datasets with synthetic data, widely used in computer
vision [14], [69] and suitable for offline RL to address data
scarcity [32]. Recent works [70], [[71] augmented robotic ob-
servations with text-guided diffusion models. SynthER [9] and
MTDIFF [10] generate transitions with novel actions. Zhao
et al. [72] used transformers for trajectory synthesis. Prior
work [L1] explored multi-agent dataset synthesis. However,
generative models still risk MIAs, a concern from images [[12],
[13] to offline RL datasets [5], [1]], [2], [73].

Applications of Offline RL. Offline RL excels in health-
care [34)], [35], energy management [7/4]], [/5], autonomous
driving [76], [77], and recommendation systems [78], [79].
In healthcare, ethical constraints limit online RL. Mila et
al. [34] optimized diabetes treatment policies, while Emerson
et al. [80] determined insulin doses using offline RL. Offline
RL enhances data efficiency in costly data collection scenarios
like autonomous driving [76], [77].

XI. CONCLUSIONS

This paper is the first to propose offline RL dataset syn-
thesis under the DP framework and introduces PrivORL,
which allows users to create datasets from both transition
and trajectory levels that closely resemble sensitive datasets
while safeguarding their privacy under DP. We identify the
importance of synthesizing diverse offline RL datasets and
propose the curiosity module to improve the diversity of syn-
thetic datasets. PrivORL initially pre-trains diffusion models
on public datasets, using feedback from the curiosity module
to diversify the synthetic datasets. The pre-trained model is
then fine-tuned on sensitive datasets with DP-SGD. Finally,
the fine-tuned diffusion model generates synthetic datasets. For
trajectory-level DP synthesis, we introduce a transformer to the
diffusion model to capture long-range temporal dependencies.
To handle the high dimensionality of trajectories, we split
trajectories into fragments and use a conditional synthesizer
to model fragment relationships, enabling seamless trajectory
stitching. Experiments show that PrivORL achieves higher
utility for various downstream agents’ training in both transi-
tion and trajectory synthesis, compared to baselines. This work
aims to advance the privacy-preserving sharing of offline RL
datasets and further the progress of open offline RL research.

ACKNOWLEDGMENT

This paper was partially supported by NSF CNS-2220433,
NSF CNS-2213700, and CCF-2217071. Any opinions, find-
ings, conclusions, or recommendations in this material are
those of the authors and do not reflect the views of the National
Science Foundation.

[1]

[2]

[3]

[4]

[5]

[6]

[7

—

[9]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

X. Pan, W. Wang, X. Zhang et al., “How you act tells a lot: Privacy-
leaking attack on deep reinforcement learning.” in AAMAS, vol. 19, no.
2019, 2019.

M. Gomrokchi, S. Amin, H. Aboutalebi, A. Wong, and D. Precup,
“Membership inference attacks against temporally correlated data in
deep reinforcement learning,” 2022.

S. Chaudhari, P. Aggarwal, V. Murahari et al., “RIhf deciphered: A
critical analysis of reinforcement learning from human feedback for
1lms,” 2024.

Y. He, B. Li, L. Liu, Z. Ba, W. Dong, Y. Li, Z. Qin, K. Ren, and
C. Chen, “Towards label-only membership inference attack against pre-
trained large language models,” arXiv preprint arXiv:2502.18943, 2025.
L. Du, M. Chen, M. Sun et al., “ORL-AUDITOR: dataset auditing
in offline deep reinforcement learning,” in 31st Annual Network and
Distributed System Security Symposium, NDSS, 2024.

Y. Hu, F. Wu, Q. Li, Y. Long, G. Garrido, C. Ge, B. Ding, D. Forsyth,
B. Li, and D. Song, “Sok: Privacy-preserving data synthesis,” in 2024
IEEE Symposium on Security and Privacy (SP), pp. 2-2.

X. Yue, H. Inan, X. Li et al., “Synthetic text generation with differential
privacy: A simple and practical recipe,” in Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics, Jul.
2023.

D. Sun, J. Q. Chen, C. Gong, T. Wang, and Z. Li, “Netdpsyn: synthe-
sizing network traces under differential privacy,” in Proceedings of the
2024 ACM on Internet Measurement Conference, 2024, pp. 545-554.
C. Lu, P. J. Ball, Y. W. Teh, and J. Parker-Holder, “Synthetic experience
replay,” in Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

H. He, C. Bai, K. Xu et al.,, “Diffusion model is an effective
planner and data synthesizer for multi-task reinforcement learning,” in
Thirty-seventh Conference on Neural Information Processing Systems,
2023. [Online]. Available: https://openreview.net/forum?id=fAdMly4ki5
Z. Zhu, M. Liu, L. Mao, B. Kang, M. Xu, Y. Yu, S. Ermon, and
W. Zhang, “Madiff: Offline multi-agent learning with diffusion models,”
Advances in Neural Information Processing Systems, 2024.

T. Matsumoto, T. Miura, and N. Yanai, “Membership inference attacks
against diffusion models,” in 2023 IEEE Security and Privacy Workshops
(SPW), pp. 77-83.

N. Carlini, J. Hayes, M. Nasr et al., “Extracting training data from
diffusion models,” in 32nd USENIX Security Symposium, 2023, pp.
5253-5270.

K. Li, C. Gong, Z. Li, Y. Zhao, X. Hou, and T. Wang, “{PrivImage}:
Differentially private synthetic image generation using diffusion models
with {Semantic-Aware} pretraining,” in 33rd USENIX Security Sympo-
sium (USENIX Security 24), 2024, pp. 4837-4854.

S. P. Liew, T. Takahashi, and M. Ueno, “PEARL: Data synthesis
via private embeddings and adversarial reconstruction learning,” in
International Conference on Learning Representations, 2022.

Z. Zhang, T. Wang, N. Li et al., “{PrivSyn}: Differentially private data
synthesis,” in 30th USENIX Security Symposium, 2021, pp. 929-946.
R. McKenna, D. Sheldon, and G. Miklau, “Graphical-model based
estimation and inference for differential privacy,” in Proceedings of the
36th International Conference on Machine Learning, ICML, vol. 97.
PMLR, 2019, pp. 4435-4444.

L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang,
B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey
of methods and applications,” ACM computing surveys, vol. 56, no. 4,
pp. 1-39, 2023.

X. Li, J. Thickstun, I. Gulrajani, and et al., “Diffusion-lm improves
controllable text generation,” in NeurIPS, 2022.

W. Wu, Y. Zhao, M. Z. Shou, H. Zhou, and C. Shen, “Diffumask: Syn-
thesizing images with pixel-level annotations for semantic segmentation
using diffusion models,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 1206-1217.

14

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(371

[38]
(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in Advances in Neural Information Processing Systems, 2020.

M. Abadi, A. Chu, L. J. Goodfellow, and et al., “Deep learning with dif-
ferential privacy,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 308-318.

C. Gong, Z. Liu, K. Li, and T. Wang, “Privorl: Differentially private
synthetic dataset for offline reinforcement learning,” arXiv preprint
arXiv:2512.07342, 2025.

S. Ghalebikesabi, L. Berrada, S. Gowal et al., “Differentially pri-
vate diffusion models generate useful synthetic images,” CoRR, vol.
abs/2302.13861, 2023.

Z.-W. Hong, I. Shenfeld, T.-H. Wang et al., “Curiosity-driven red-
teaming for large language models,” in The Twelfth International Con-
ference on Learning Representations, 2024.

J. He, Z. Yang, J. Shi et al., “Curiosity-driven testing for sequential
decision-making process,” in Proceedings of the IEEE/ACM 46th Inter-
national Conference on Software Engineering, 2024, pp. 1-14.

W. Peebles and S. Xie, “Scalable diffusion models with transformers,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2023.

J. Yoon, J. Jordon, and M. van der Schaar, “PATE-GAN: Generating
synthetic data with differential privacy guarantees,” in International
Conference on Learning Representations, 2019.

T. Dockhorn, T. Cao, A. Vahdat et al., “Differentially private diffusion
models,” Transactions on Machine Learning Research, 2023.

Z. Bu, Y.-X. Wang, S. Zha, and G. Karypis, “Differentially private
optimization on large model at small cost,” in International Conference
on Machine Learning. PMLR, 2023, pp. 3192-3218.

E. C. Fieller, H. O. Hartley, and E. S. Pearson, “Tests for rank correlation
coefficients. i,” Biometrika, vol. 44, pp. 470-481, 1957.

R. E Prudencio, M. R. O. A. Maximo et al., “A survey on offline
reinforcement learning: Taxonomy, review, and open problems,” I[EEE
Transactions on Neural Networks and Learning Systems, 2023.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

M. Nambiar, S. Ghosh, P. Ong et al., “Deep offline reinforcement learn-
ing for real-world treatment optimization applications,” in Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2023.

M. Fatemi, T. W. Killian, J. Subramanian et al., “Medical dead-ends
and learning to identify high-risk states and treatments,” in Advances in
Neural Information Processing Systems, 2021, pp. 4856—4870.

H. Emerson, M. Guy, and R. McConville, “Offline reinforcement learn-
ing for safer blood glucose control in people with type 1 diabetes,”
Journal of Biomedical Informatics, vol. 142, p. 104376, 2023.

C. Yu, J. Liu, S. Nemati, and G. Yin, “Reinforcement learning in
healthcare: A survey,” ACM Computing Surveys (CSUR), no. 1, pp. 1-
36, 2021.

S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” 2020.
A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative g-learning
for offline reinforcement learning,” in NeurIPS, 2020.

C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Theory of Cryptography: Third
Theory of Cryptography Conference,, 2006, pp. 265-284.

C. Gong, K. Li, Z. Lin, and T. Wang, “Dpimagebench: A unified
benchmark for differentially private image synthesis,” arXiv preprint
arXiv:2503.14681, 2025.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998-6008.

T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the design
space of diffusion-based generative models,” in Advances in Neural
Information Processing Systems, 2022.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proceedings of the 34th International Conference
on Machine Learning, vol. 70, 06-11 Aug 2017, pp. 214-223.

Y. Yin, Z. Lin, M. Jin, G. Fanti, and V. Sekar, “Practical gan-based
synthetic ip header trace generation using netshare,” in Proceedings of
the ACM SIGCOMM 2022 Conference, 2022, pp. 458-472.

K. Li, C. Gong, X. Li, Y. Zhao, X. Hou, and T. Wang, “From easy to
hard: Building a shortcut for differentially private image synthesis,” in
IEEE Symposium on Security and Privacy, SP, 2025.

https://openreview.net/forum?id=fAdMly4ki5

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[571
(58]

[59]

[60]

[61]

[62]
[63]
[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]

[74]

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets
for deep data-driven reinforcement learning,” 2021.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” in International Conference on Learning
Representations, 2018.

1. Mironov, “Renyi differential privacy,” CoRR, vol. abs/1702.07476,
2017.

S. Gopi, Y. T. Lee, and L. Wutschitz, “Numerical composition of
differential privacy,” in Advances in Neural Information Processing
Systems, 2021.

A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay pol-
icy learning: Solving long-horizon tasks via imitation and reinforcement
learning,” arXiv preprint arXiv:1910.11956, 2019.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2012, pp. 5026-5033.

D. Tarasov, A. Nikulin, D. Akimov et al., “CORL: Research-oriented
deep offline reinforcement learning library,” in 3rd Offline RL Workshop:
Offline RL as a ”Launchpad”, 2022.

A. Nair, M. Dalal, A. Gupta, and S. Levine, “Accelerating online
reinforcement learning with offline datasets,” CoRR.

I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning
with implicit g-learning,” in International Conference on Learning
Representations, 2022.

S. Fujimoto and S. S. Gu, “A minimalist approach to offline reinforce-
ment learning,” in Advances in Neural Information Processing Systems,
vol. 34. Curran Associates, Inc., 2021, pp. 20 132-20 145.

Y. Du and N. Li, “Systematic assessment of tabular data synthesis
algorithms,” 2024.

F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American statistical Association, pp. 68-78, 1951.

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore:
Evaluating text generation with BERT,” in 8th International Conference
on Learning Representations, 2020.

J. Devlin, M.-W. Chang, K. Lee, and K. N. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understanding,”
2018. [Online]. Available: https://arxiv.org/abs/1810.04805

G. An, S. Moon, J.-H. Kim, and H. O. Song, “Uncertainty-based offline
reinforcement learning with diversified g-ensemble,” Advances in neural
information processing systems, pp. 7436-7447, 2021.

A. Yousefpour, I. Shilov, A. Sablayrolles et al., “Opacus: User-friendly
differential privacy library in PyTorch,” arXiv:2109.12298, 2021.

T. Seno and M. Imai, “d3rlpy: An offline deep reinforcement learning
library,” Journal of Machine Learning Research, vol. 23, 2022.

L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

T. Dockhorn, T. Cao, A. Vahdat et al., “Differentially private diffusion
models,” Transactions on Machine Learning Research, 2023.

K. Cai, X. Lei, J. Wei, and X. Xiao, “Data synthesis via differentially
private markov random fields,” Proc. VLDB Endow., vol. 14, no. 11, p.
2190-2202, 2021.

R. Torkzadehmahani, P. Kairouz, and B. Paten, “DP-CGAN: differen-
tially private synthetic data and label generation,” in IEEE Conference on
Computer Vision and Pattern Recognition Workshops, CVPR Workshops,
2019, pp. 98-104.

Y. LeCun, L. Bottou, Y. Bengio, and et al., “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp.
2278-2324, 1998. [Online]. Available: https://doi.org/10.1109/5.726791
J. Yuan, J. Zhang, S. Sun, P. Torr, and B. Zhao, “Real-fake: Effective
training data synthesis through distribution matching,” in The Twelfth
International Conference on Learning Representations, 2024.

T. Yu, T. Xiao, A. Stone et al., “Scaling robot learning with semantically
imagined experience,” arXiv:2302.11550, 2023.

Z. Chen, S. Kiami, A. Gupta, and V. Kumar, “Genaug: Retargeting
behaviors to unseen situations via generative augmentation,” arXiv
preprint arXiv:2302.06671, 2023.

Z. Zhao, Z. Ren, L. Yang et al., “Offline trajectory generalization for
offline reinforcement learning,” arXiv preprint arXiv:2404.10393, 2024.
D. Ye, T. Zhu, C. Zhu, D. Wang, S. Shen, W. Zhou et al., “Reinforcement
unlearning,” arXiv:2312.15910, 2023.

X. Zhan, H. Xu, Y. Zhang et al., “Deepthermal: Combustion opti-
mization for thermal power generating units using offline reinforcement
learning,” in AAAI, 2022.

[75] X.Zhang, J. Sun, C. Gong et al., “Mutual information as intrinsic reward
of reinforcement learning agents for on-demand ride pooling,” arXiv
preprint arXiv:2312.15195, 2023.

L. Zhang, R. Zhang, T. Wu et al., “Safe reinforcement learning with
stability guarantee for motion planning of autonomous vehicles,” IEEE
Trans. Neural Networks Learn. Syst., 2021.

D. Graves, N. M. Nguyen, K. Hassanzadeh et al., “Learning robust
driving policies without online exploration,” in [EEE International
Conference on Robotics and Automation. 1EEE, 2021.

S. Wang, X. Chen, D. Jannach et al., “Causal decision transformer for
recommender systems via offline reinforcement learning,” 2023.

Q. Zhang, J. Liu, Y. Dai et al., “Multi-task fusion via reinforcement
learning for long-term user satisfaction in recommender systems,” in
The 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2022.

H. Emerson, M. Guy, and R. McConville, “Offline reinforcement learn-
ing for safer blood glucose control in people with type 1 diabetes,” J.
Biomed. Informatics, 2023.

1. Mironov, K. Talwar, and L. Zhang, “Rényi differential privacy of the
sampled gaussian mechanism,” CoRR, vol. abs/1908.10530, 2019.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, F. Huang et al., “A tutorial
on energy-based learning,” Predicting structured data, 2006.

A. Grover, J. Song, A. Kapoor et al., “Bias correction of learned gener-
ative models using likelihood-free importance weighting,” Advances in
neural information processing systems, vol. 32, 2019.

I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, and et al., “Mlp-mixer:
An all-mlp architecture for vision,” in Advances in Neural Information
Processing Systems, 2021, pp. 24261-24272.

N. Papernot and T. Steinke, “Hyperparameter tuning with renyi differen-
tial privacy,” in International Conference on Learning Representations.

[76]
(771

(78]

[79]

[80]

[81]
[82]

[83]
[84]
[85]

Due to space limitations, please refer to our full ver-
sion [23] for additional appendices.

APPENDIX A
ETHICAL CONSIDERATIONS

DP dataset synthesis provides strong guarantees against
individual data leakage, making it a cornerstone for ethical
synthetic data generation. However, DP-based synthesis is not
without risks. While privacy is preserved, the injected noise
can distort data distributions, potentially introducing bias or
reducing fairness in downstream tasks. Furthermore, synthetic
data can be misused, for example, to create plausible but
biased datasets or to facilitate adversarial attacks such as
data poisoning. To mitigate these risks, practitioners should
adopt safeguards such as bias auditing, transparency reports,
and watermarking synthetic data to trace misuse. Ethical
deployment also requires clear communication of limitations
and responsible governance to ensure that synthetic data serves
its intended purpose without compromising fairness or trust.

APPENDIX B
MORE DETAILS ABOUT DP-SGD

This section introduces how to account for the privacy cost
of DP-SGD using the Rényi DP, which is defined as follows.

Definition 2 (Rényi DP [81l]): We define the Rényi di-
vergence between two probability dgstributions Y and N as
Do (Y|N) =2 InE;un [%} , where o > 1 is a real
number. A randomized mechanism A satisfies (a,y)-RDP, if
D,, (A(D) ||A(D")) < + holds for any neighboring dataset D
and D'
Given the batch size B, dataset size N, clip hyper-parameter
C, and noise variance o2, as described in Section we

https://arxiv.org/abs/1810.04805
https://doi.org/10.1109/5.726791

TABLE VIII: Information on pre-training datasets for each dataset we utilize for fine-tuning.

Domain | Fine-tuning Datasets | Pre-training Datasets | Observations | Action Shape | Transition Shape | Transition Size
“maze2d-open” 4 2 11 1x 108
“maze2d-umaze” “maze2d-medium” 4 2 11 2 x 10°
“maze2d-large” 4 2 11 4 x 108
“maze2d-open” 4 2 11 1 x 10°
Maze2D “maze2d-medium” “maze2d-umaze” 4 2 11 1 x 10°
“maze2d-large” 4 2 11 4 x 108
“maze2d-open” 4 2 11 1 x 10°
“maze2d-large” “maze2d-umaze” 4 2 11 1x10°
“maze2d-medium” 4 2 11 2 x 108
FrankaKitchen | “kitchen-partial” “Etzﬁzigﬁ?ﬁw 28 g gg 1223(5)0
“walker2d-full-replay” 17 6 41 1x10°
MuJoCo “halfcheetah-medium-replay” | “halfcheetah-expert” 17 6 41 1x 108
“walker2d-medium” 17 6 41 1 x 10°

denote the sampling ratio ¢ = B/N. The RDP privacy cost
for one training step can be obtained via Theorem |1 [81].

Theorem 1: Let pg and p; be the probability density function
of N(0,C%0?) and N(1,C?%0?). One training step with DP-
SGD satisfies (o, 7y;)-RDP for any ~y; such that,

¥i > Do (1 = q) po +qp1 |po) - (1)

The above theorem shows that the privacy bound ~;
of one training step can be computed using the term
D, ((1 =¢q)po+ qp1llpo). Based on the RDP composition
theorem [49], we compose RDP costs of multiple training
steps through v = > . ~;. We convert the RDP privacy cost
(a,7y) to the (€,5)—DP privacy cost as follows.

Theorem 2 (From (a,7)-RDP to (€,0)-DP [49]): If A is
an (a,y)-RDP mechanism, it also satisfies (e,)-DP, for any
0<d<1, whereezv—&-%.

Therefore, we can use different Gaussian noise variance o2 to
calculate the final privacy cost v + 105%{5 until the required
privacy budget ¢ is reached.

APPENDIX C
THEORETICAL ANALYSIS OF CURIOSITY-DRIVEN
PRE-TRAINING
During pre-training, we replace a proportion p € [0,1] of
real samples in each batch with synthetic samples from the cur-
rent diffusion model distribution gy (). However, directly us-
ing gg(z) would reinforce existing patterns, limiting diversity.
To encourage exploration of under-represented regions, we
reweight synthetic samples using an exponential scheme [82]]:

exp(fe(x)) go ()
Z3 ’

75 = / exp(Be(z’)) go(a) dar.

where c(x) is the curiosity score (Equation (@), and 8 > 0
controls the sharpness of curiosity emphasis. This reweighting
strategy is motivated by the Importance Sampling View [83]],
and the term exp(SBc(x)) biases the distribution toward novel
samples in low-density regions. In practice, we approximate

ﬁsynth (:L) =

2

16

Psynth () by sampling a batch data from gg(x) and selecting
the top-k samples with the highest curiosity scores ¢(x). This
avoids computing the intractable normalization constant Zg
while still emphasizing under-represented regions.

Let preal(z) denote the real data distribution. This batch
replacement induces an effective training distribution:

3)

where Pgynen(x) is the curiosity-weighted synthetic distribu-
tion. From a score-matching perspective, diffusion training
minimizes,

pcﬁ'(l') = (1 - p) prcal(m) +p;ﬁsynth(x)a

£(6) = Eumpgt [lea(a’, 1) = =[*])

where z! is the noisy version of clean data x(at step . Since
Deft Upweights high-curiosity regions, gradient contributions
from under-represented modes are amplified, guiding gy to-
ward a higher-coverage distribution and enhancing diversity.

APPENDIX D
INVESTIGATED TASKS AND THE DATASET

We provide more details of datasets in Appendix D of [23].
We carry out experiments across five tasks in three domains
(Maze2D, MuJoCo, and Kitchen) sourced from D4RL [47],
a benchmark recently introduced and widely studied for eval-
vating offline RL algorithms.

In DP trajectory synthesis, datasets often contain a limited
number of trajectories, resulting in substantial DP noise during
privatization, which can degrade data utility. To address this,
we augment the dataset by segmenting long trajectories into
shorter fragments. This approach increases the effective num-
ber of data points, diluting the relative impact of DP noise
while preserving temporal dependencies within fragments.
In real-world applications, where trajectory datasets may be
larger, this method remains effective, as it adapts to varying
dataset sizes, simulating realistic scenarios.

As presented in Section when calculating the dimen-
sions of transitions, we consider a transition that consists
of two states: an action and a reward. Besides, we present

TABLE IX: Default DP-SGD hyper-parameters under ¢ = 10 and § = 1 x 1075, Sampling rate ¢ is set depending on the dataset
size; clipping norm C'is set to 1. We use the Adam optimizer with a learning rate of 3 x 10~%, while all other hyper-parameters

adhered to the default settings in [9].

Maze2D Kitchen Mujoco
Method Parameter umaze medium large partial halfcheetah
sampling ratio ¢ 1.28 x 10~% 0.64 x 10~% 0.32 x 107% 9.35 x 107% 12.67 x 1077
. } training steps 574K 294K 433K 15K 240K
PrivORL-n noise multiplier & 0.4 0.39 0.37 047 0.68
batch size 128 128 128 128 128
sampling ratio ¢ 5.18 x 1072 2.57 x 1072 1.29 x 1072 1.70 x 1071 2.53 x 1071
. . training steps 200K 200K 200K 200K 200K
PrivORLj noise multiplier & 12.1 6.3 32 40.4 60.9
batch size 1024 1024 1024 1024 1024

the division of pre-training and sensitive datasets in our
experiments in Table

APPENDIX E
BASELINE IMPLEMENTATION

These baselines achieve state-of-the-art performance in the
‘SynMeter’ library [57]]. For further information, we strongly
encourage readers to refer to the ‘SynMeter’ [S7]. We provide
more details of baseline in Appendix E of our full paper [23].

APPENDIX F
HYPER-PARAMETER SETTINGS

Following prior implementations [9], [10], we use the Elu-
cidated Diffusion Model (EDM) [43] for transition synthesis
and the Diffusion Transformer [27] for trajectory synthesis.

A. Diffusion Model

Denoising Network. We use the Elucidated Diffusion Model
(EDM) formulation of the denoising network [43]. The de-
noising network Dy is parameterized as a Multi-Layer Per-
ceptron (MLP) with skip connections from the previous layer,
following the architecture described in [84]. We encode the
noise level of the diffusion process using a Random Fourier
Feature embedding, with dimensions of 16. The base network
size adopts a width of 1024 and a depth of 6, resulting in
approximately 6 million parameters.

Sampling of Diffusion Model. For the diffusion sampling
process, we utilize the stochastic SDE sampler introduced
by [43], using the default hyper-parameters designed for
ImageNet. To enhance sample fidelity, we select a higher
number of diffusion timesteps at 128. Our implementation is
sourced from the repositoryE]

DP-SGD Training. We refer to the official repository OpacusE]
to implement DP-SGD. The hyper-parameters are detailed in
Table We calculate the sampling ratio ¢ by dividing the
batch size by the number of transitions within the dataset. For
all datasets, we set the fine-tuning epoch to 5, and the training
step is obtained by dividing the epoch by the sampling ratio.
Consequently, the noise multiplier must be adjusted based on

Zhttps://github.com/lucidrains/denoising-diffusion-pytorch
3https://github.com/pytorch/opacus/

the varying number of training steps across different datasets
to ensure uniform privacy protection across various training
settings. The noise multiplier is calculated using the standard
privacy analysis function of Opacus, and the max-grad-norm
C is set to 1.0, following the default setting in Opacus. We
use the same setting in all experiments for the max-grad-norm
C, batch size, optimizer, and learning rate. We preprocess
the dataset using splitting and random sampling techniques
to simulate real-world scenarios, as detailed in Appendix

Transformer. For PrivORL-j, we represent the noise predic-
tion network as the transformer-based architecture proposed
by [10], which adopts a GPT2-like model. The transformer
is configured as six hidden layers and four attention heads.
We use T' = 200 for diffusion steps, while all other hyper-
parameters adhered to their default settings.

B. Curiosity Module

The curiosity module enhances the diversity of synthetic
data during the pre-training phase. Both the target and predic-
tion networks in our architecture are structured as MLPs. The
target network is characterized by greater depth and higher-
dimensional modeling capabilities. Throughout each epoch of
the pre-training, we first generate a predefined number of
synthetic transitions using the current diffusion model. Based
on a designated curiosity rate, we identify and select those
samples from the generated data with the highest curiosity
scores. These selected samples are then replaced with the
current batch of training samples to update the synthesizer.
We apply the same settings across various training tasks unless
differences are specifically noted. The output dimension of the
target network is 32. The default curiosity rate is 0.3.

APPENDIX G
EFFICIENCY
We highlight the efficiency of PrivORL-n and PrivORL-j in
the full version of our paper [23].
APPENDIX H
ADDITIONAL DISCUSSIONS
A. Synthesis Principles

To evaluate dataset synthesis in offline RL, drawing from
other fields [7], [14], [16], we analyze from three perspectives:
(1) utility, and (2) fidelity.

17

https://github.com/lucidrains/denoising-diffusion-pytorch
https://github.com/pytorch/opacus/

TABLE X: The average normalized returns of agents trained on synthetic datasets (¢ = 10) under two privacy accounting
methods (RDP and PRV), evaluated with IQL and TD3PlusBC algorithms. The values in parentheses are the relative changes.

QL TD3PlusBC
Domains Datasets PrivORL-n PrivORL-j PrivORL-n \ PrivORL-j
RDP PRV RDP PRV RDP PRV | RDP PRV
umaze | 703 £21 72543.6(122) | 498+ 68 555478 (15.7) | 603 +63 63.1+58(12.8) | 499 +£49 529 + 5.1 (13.0)
Maze2D medium | 90.7 £ 8.6 9201 £ 47 (11.4) | 493 £ 17 414 +£68(179) | 504+64 513£66(109) | 380+ 16 389+ 1.9 (10.9)
large | 8104+ 118 820+ 4.6 (11.0) | 377 £70 40.5+81(128) | 753 £ 132 721463 (12.8) | 356 +£26 409 + 3.6 (15.3)
Kitchen | partial | 255425 240+ 15(15) | 1384£75 150+£65(11.2) | 115£00 130+ 15115 | 83+25 80+25(03)
Average | 66.94£6.3 67.7+3.6(10.6) | 41.9+57 424+73(10.5) | 49.4+6.5 49.9+51(105) | 33.0+29 35.2+3.3 (12.2)
70
2 50 ensuring privacy. High-dimensional feature spaces often
340 % require larger models and more iterations, which further
Q . .
%30 20 increase computational costs and exacerbate the trade-off
8 25 between privacy and data fidelity.
® 20
£ Future work aims to develop high-quality datasets without
O 10 PrivORL-n 10 PrivORL-n . .
z Redl Redl relym.g on public datasets. and ex.pl(.)re methods that can
O i 2o 3es aes 58 0 5 25 o5 a5 ses adaptively search for the op.tlmal curiosity rate across different
Step Step tasks under the DP constraint.

Mujoco-halfcheetah Maze2d-medium

Fig. 7: Training curves of agents on real sensitive datasets and
synthetic datasets (¢ = 10) using the TD3PlusBC algorithm.

Utility: A crucial aspect of dataset synthesis is that the
synthetic dataset should be capable of accomplishing the
downstream task. We hope that training agents with the
synthesized dataset can achieve performance comparable to
that of agents trained directly on the original dataset.

Fidelity: This principle ensures that the synthetic dataset has
statistical characteristics similar to those of the raw dataset.

B. Evaluation Metrics

We introduce more details of evaluation metrics in Ap-
pendix H-C of our full version paper [23].

C. Limitations
We discuss the limitations of our work as follows.

o This work relies on public datasets for pre-training synthe-
sizers. Without access to a suitable public dataset, PrivORL
may reduce the performance of generating complex datasets.

e Optimal curiosity rates vary across different sensitive

datasets. Section introduces that tuning the curiosity

rate introduces additional privacy budget. A potential solu-
tion is incorporating DP hyper-parameter tuning [85]], which
provides a formal framework for selecting hyper-parameters
under DP. This approach typically leverages techniques such

as privacy-preserving grid search or adaptive tuning under a

fixed privacy budget. Although DP hyper-parameter tuning

introduces additional complexity, it offers a principled way
to balance utility and privacy during parameter selection.

DP-SGD performs well with large datasets, but when the

dataset is small, the added noise is significant, leading to

poor synthetic quality.

Besides, our method faces challenges with high-dimensional

datasets. The curse of dimensionality amplifies the noise

introduced by DP, making it harder to preserve utility while

18

APPENDIX I
ADDITIONAL EXPERIMENTAL RESULTS

A. Privacy Accounting Using PRV

In this paper, we use RDP for fair comparisons with
baselines, as RDP is widely adopted for privacy accounting
in DP machine learning. We also investigate the use of
an alternative privacy accounting method, Privacy Random
Variable (PRV) [50], which provides a tighter analysis of
privacy loss compared to RDP. Since PRV and RDP share
similar analytical frameworks (both supporting moment ac-
counting and composition across multiple training steps), the
integration of PRV into our approach is seamless. Specifically,
we replace the original RDP accountant in PrivORL with the
PRV accountant implemented in the Opacus library [62].

Table [X] presents the average normalized returns of agents
(e = 10) under two privacy accounting methods (RDP and
PRV), evaluated with IQL and TD3PIusBC algorithms. In this
table, we observe that although PRV provides a tighter analysis
of privacy loss compared to RDP, the PRV’s benefit is marginal
in most cases. In particular, for PrivORL-n and PrivORL-j,
using PRV results in only slight improvements: an average of
0.6 and 0.5 for IQL, and 0.5 and 2.2 for TD3PlusBC.

B. Training Convergence

We analyze the training curves of agents on real sensitive
and synthetic datasets under ¢ = 10 using the TD3PlusBC
algorithm (Figure [7). In Mujoco-halfcheetah, agents
trained on synthetic data exhibit slightly slower convergence,
although their peak return remains comparable to that of real
data. In Maze2d-medium, convergence behavior is largely
similar across real and synthetic datasets, indicating that
synthetic data can support effective agent learning.

APPENDIX J
MORE RELATED WORKS

We provide detailed related works discussions in Appendix
J of our paper [23].

Artifact Appendix

Abstract. This artifact contains the implementations for the
paper “PrivORL: Differentially Private Synthetic Dataset for
Offline Reinforcement Learning.” PrivORL uses a diffusion
model and diffusion transformer to generate transitions and
trajectories under DP, enabling secure release of synthetic
datasets for offline RL research. The approach pre-trains a
synthesizer on public datasets and fine-tunes it on sensitive
data using DP-SGD. To enhance diversity, PrivORL intro-
duces curiosity-driven pre-training, leveraging feedback from
a curiosity module to produce realistic and varied synthetic
samples. Our artifacts support this paper through: (1) DP-
Enabled Data Synthesizer. Diffusion-based models trained
with DP-SGD for privacy guarantees. (2) Curiosity-Driven
Pre-training. A strategy to improve diversity and coverage of
synthetic data. Evaluation Suite. Scripts for assessing utility,
fidelity, and privacy to ensure reproducibility.

A. Description & Requirements

1) How to access: Our code can be pulled from the public
repository on GitHub. Please refer to the link: https:/github.
com/2019ChenGong/PrivORL.

2) Hardware dependencies: PrivORL requires at least one
NVIDIA A6000 GPU with 48 GB of memory. The Python
version is Python 3.9.18.

3) Consumption and running time: Table [I] details the GPU
memory consumption and runtime of PrivORL-n, PrivORL-j,
and baselines.

4) Software dependencies: Our artifact requires the instal-
lation of MUJOCCﬂ CoRLE], D4RLEL SynMeterﬂ Opacusﬂ
and MTD1 £

B. Artifact Installation & Configuration

For installation, please refer to the link: https://github.com/
2019ChenGong/PrivORL.

We provide detailed instructions for each step in the
“README.md” file. All offline RL agents are trained
on a server running Python 3.9.18. Additionally, we in-
clude a step-by-step guide for installing our repository us-
ing both Anaconda and Docker images. We conduct ex-
periments on five offline datasets, “maze2d-umaze-dense-
v1”, “maze2d-medium-dense-v1”, “maze2d-large-dense-v1”,
“kitchen-partial-v0”, and “halfcheetah-medium-replay-v2”.
This repository can be easily extended to other datasets in
D4RL. For evaluating the utility of synthetic datasets, we
leverage three advanced offline RL algorithms, EDAC, IQL,
and TD3PLUSBC from the CoRIZ repository. Besides, users
can also utilize other algorithms implemented in cor1Z,

More details of codes and scripts for replicating our exper-
iments can be found in “README.md”.

Uhttps://github.com/google-deepmind/mujoco/releases/tag/2.1.0
Zhttps://github.com/tinkoff-ai/CORL
3https://github.com/Farama-Foundation/D4RL.
4https://github.com/zealscott/SynMeter

Shttps://opacus.ai/

Shttps://github.com/tinnerhrhe/MTDiff

C. Major Claims

We list the major claims made in the paper, which can be
reproduced and demonstrated in this artifact appendix.

o As presented in Table I on the utility of data synthesis,
agents trained in synthetic transitions using PrivORL-n
achieve the highest normalized returns in all tasks.

o In Table IIT on the fidelity of data synthesis, it can be
observed that PrivORL-n consistently outperforms the base-
lines in both marginal and correlation statistics.

o As presented in Table XII on the defending against MIAs,
PrivORL-n can synthesize transitions without privacy leak-
age of real sensitive transitions.

D. Experiment Workflow

This paper includes PrivORL-n and PrivORL-j for DP
offline RL transition and trajectory synthesis. Our artifact
supports them respectively. We provide an elaboration of
hyperparameter settings in our repository.

After installation, we describe the process for obtaining the
experimental results in our paper as quick start and detailed
scripts.

Considering the time constraints of the artifact evaluation,
we focus validation on the main results reported in Table I,
Table IIT and Table XII of the paper, which represent the core
claims of our work: (i) the utility and (ii) fidelity of synthetic
data, (iii) defending against.

To reproduce these results, please run the following three
scripts in order:

o “bash scripts/Table-I.sh” trains PrivORL-n on maze2d-
medium-dense-v1, and evaluate the utility of synthetic data
using IQL algorithm.

o “bash scripts/Table-III.sh” also contains training and evalu-
ating the fidelity of synthetic data.

o “bash scripts/Table-XII.sh” trains PrivORL-n under non-
DP, DP 1, and DP 10 settings, and evaluate the ability of
defending against MIAs.

We provide the detailed scripts as follows:

e For DP transition-level synthesis, the first step is to
pretrain the DP synthesizers in pretraining datasets,
“python synther/training/train_diffuser.py —dataset (the-
name-of-dataset) —datasets_name (the-pretraining-dataset)
—curiosity_driven —curiosity_driven_rate 0.3 —results_folder
(the-target-folder) -save_file_name (store_path) ”, an
instance of setting maze2d-medium-dense-vl as the

sensitive dataset is “python synther/training/train_diffuser.py

—dataset maze2d-medium-dense-v1 —datasets_name

“[‘maze2d-open-dense-v0’, ‘maze2d-umaze-dense-

vl’, ‘maze2d-large-dense-v1’]” —curiosity_driven —

curiosity_driven_rate 0.3 —results_folder ./results_maze2d-

medium-dense-vl_0.3”. Then, we should fine-tune the
pretrained synthesizer on the sensitive datasets using DP-

SGD, “python synther/training/train_diffuser.py —dataset

(the-name-of-dataset) —dp_epsilon 10 -results_folder

(the-target-folder) —save_file_name (store_path) —load_path

(the-path-of-saved-pretraining-model)”, a corresponding

https://github.com/2019ChenGong/PrivORL
https://github.com/2019ChenGong/PrivORL
https://github.com/2019ChenGong/PrivORL
https://github.com/2019ChenGong/PrivORL
https://github.com/google-deepmind/mujoco/releases/tag/2.1.0
https://github.com/tinkoff-ai/CORL
https://github.com/Farama-Foundation/D4RL
https://github.com/zealscott/SynMeter
https://opacus.ai/
https://github.com/tinnerhrhe/MTDiff

TABLE I: GPU memory consumption, runtime, and normalized return: comparing PrivORL-n and PrivORL-j with baselines

on synthetic datasets (Maze2D-medium). ‘h’ means hours.

Evaluation Metrics ‘ PGM PrivSyn PrePATE-GAN PrivORL-n ‘ PrivORL-j-U DP-Transformer PrivORL-j
Pre-train - - 1.5GB 0.9GB 7.45GB 19.7GB 13.12GB
Memory | Fine-tune - - 0.4GB 21.4GB 14.59GB 43.11GB 39.72GB
Synthesis | 11.1GB 9.4GB 8.1GB 4.3GB 4.1GB 9.74GB 8.15GB
Pre-train - - 12h 1.5h 0.45h 1.37h 0.77h
Time Fine-tune - - 11h 2h 0.96h 5.18h 3.03h
Synthesis 6h 8.5h 0.18h 0.5h 0.24h 10.1h 1.42h
instance is “python synther/training/train_diffuser.py For example, run “python evaluation/eval-mia/mia.py
—dataset maze2d-medium-dense-v1 —dp_epsilon —dataset maze2d-medium-dense-v1 —nondp_weight
10 —results_folder Jresults_maze2d-medium-dense- le3data-300epoch-finetuning-without-dp-model-299.pt

vl_0.3 —load_path Jresults_maze2d-medium-dense-
v1_0.3/pretraining-model-4.pt —save_file_name maze2d-
medium-dense-v1_samples_1000000.0_10dp_0.8.npz
—load_checkpoint”.

For results in Table I, which shows the downstream
task agent training on the synthetic datasets, please
run the code: “python evaluation/eval-agent/cql.py —env
(the-name-of-synthetic-transitions) —checkpoints_path
(store_path) —config (the-path-of-configuration-file)
dp_epsilon (the-privacy-budget-of-synthetic-transitions)
—diffusion.path (the-path-of-saved-transitions)
name (the-name-of-logging) —prefix (the-prefix-of-
name) —save_checkpoints (whether-to-save-ckpt)”.
An example of training agent using iql on the
synthetic maze2d-medium-dense-v1l dataset is “python
evaluation/eval-agent/iql.py —env maze2d-medium-dense-v1
—checkpoints_path corl_logs_param_analysis_v1_maze2d/
—config synther/corl/yaml/igl/maze2d/medium-dense-
vl.yaml —dp_epsilon 10 —diffusion.path ./results_maze2d-
medium-dense-v1_0.3/cleaned_pretrain_samples.npz —name

CurDPsynthER —prefix 0.3CurRate —save_checkpoints
False”.

o For results in Table III, which evaluates the fidelity
of the synthetic datasets, please run the code:
“python evaluation/eval-fidelity/marginal.py —dataset
(the-name-of-synthetic-transitions) ~ —dp_epsilon (the-
privacy-budget-of-synthetic-transitions) ~ —cur_rate (the-
curiosity-rate-of-synthetic-transitions) ~ —load_path (the-

path-of-saved-transitions)”. An instance of computing
the marginal and correlation values between the
synthetic and real transitions of maze2d-medium-dense-

vl env is “python evaluation/eval-fidelity/marginal.py
—dataset maze2d-medium-dense-vl —dp_epsilon 10
—load_path alter_0.3curiosity_driven_results_maze2d-

medium-dense-v1_1.0/cleaned_maze2d-medium-dense-

v1_samples_1000000.0_10dp_0.8.npz —cur_rate 0.3”.

For results in Table XII, which evaluates the privacy
protection of the synthetic datasets through MIA methods,
please change the args nondp_weight, dpl_weight,
and dplO_weight to the corresponding checkpoints
and run the code: “python evaluation/eval-mia/mia.py”.

20

—dpl_weight finetuning_dpl.0-model-4.pt —dpl10_weight
finetuning_dp10.0-model-4.pt —sigma [0.05, 0.01] —repeat
64 —sample_num 10000”.

For more details on the code, we recommend referring to
our GitHub repository. Offline RL agents often suffer from
unstable performance. To mitigate environmental randomness
and enhance construct validity, we train each agent using
five different random seeds. Each agent interacts with the
environment to generate 100 trajectories, and we report the
average cumulative return across these trajectories as the
performance metric. Consequently, some variation in results
across experiments is expected, even under identical settings.

E. Copyright

We have migrated the code repository from
GitHub to Zenodo. The DOI for the repository is
“https://doi.org/10.5281/zenodo.17845537”.

F. Acknowledgement

We thank the authors of CoRIZ for providing the code for
the offline RL algorithms and D4RIF for the offline datasets
used in our evaluations. Besides, we thank the authors of
MUJOCOm, SynMeter@, Opacus and MTDiff¥ for our
algorithmic implementation supports.

	Introduction
	Backgrounds
	Reinforcement Learning
	Differential Privacy
	Diffusion Model

	PROBLEM SETUP AND PRELIMINARIES
	black Threat Model
	Problem Statement
	Adapting Existing Methods

	Introducing PrivORL
	Differences Between PrivORL-n and PrivORL-j
	black Design Overall
	black Motivation of Leveraging Curiosity-Driven Pre-training

	Transition-Level DP: PrivORL-n
	Curiosity Scores
	Curiosity-driven Updating
	Standard DP-SGD Fine-Tuning.

	Trajectory-Level DP: PrivORL-j
	Dataset Proprocess
	Synthesizer Training
	Dataset Synthesis via PrivORL-j
	black Processes for Discrete Variants

	Privacy Analysis
	Experimental Setup
	Investigated Tasks and Datasets.
	Baselines
	Evaluation Metrics

	EMPIRICAL EVALUATIONS
	The Utility of Synthetic Datasets
	The Fidelity of Synthetic Datasets
	Ablation Study
	black Defending against MIAs
	Hyper-parameter and Privacy Budget
	PrivORL without Privacy Protection

	Related Work
	Conclusions
	References
	Appendix A: black Ethical Considerations
	Appendix B: More Details about DP-SGD
	Appendix C: black Theoretical Analysis of Curiosity-Driven Pre-training
	Appendix D: Investigated Tasks and the Dataset
	Appendix E: Baseline Implementation
	Appendix F: Hyper-parameter Settings
	Diffusion Model
	Curiosity Module

	Appendix G: Efficiency
	Appendix H: Additional Discussions
	Synthesis Principles
	Evaluation Metrics
	Limitations

	Appendix I: Additional Experimental Results
	black Privacy Accounting Using PRV
	black Training Convergence

	Appendix J: More Related works
	Description & Requirements
	Artifact Installation & Configuration
	black Major Claims
	Experiment Workflow
	Copyright
	Acknowledgement

