
HOUSTON: Real-Time Anomaly Detection of
Attacks against Ethereum DeFi Protocols

Dongyu Meng1*, Fabio Gritti1*, Robert McLaughlin1, Nicola Ruaro1,
Ilya Grishchenko2, Christopher Kruegel1, and Giovanni Vigna1

1University of California, Santa Barbara
{dmeng, degrigis, robert349, ruaronicola, chris, vigna}@ucsb.edu

2University of Toronto
ilya.grishchenko@utoronto.ca

a market cap of 450 billion USD at the time of writing [81])
and arguably the most popular environment for deploying
DeFi applications. Hundreds of DeFi applications have been
developed on Ethereum to provide financial services with a
Total Value Locked (TVL) of almost 82 billion USD [17]. At
their core, DeFi applications (or protocols) are implemented
through one or more smart contracts. These smart contracts
are immutable programs stored on the blockchain as bytecode
and executed by the Ethereum Virtual Machine (EVM) [78].
For instance, a user may request to borrow a certain amount
of cryptocurrency from a DeFi lending protocol and provide
collateral in a different cryptocurrency as a security deposit. To
fulfill this request, the protocol might involve several contracts,
such as the “risk-manager contract” (to check for the safety of
the borrower’s position), the “oracle contract” (to report the
correct price for the exchanged digital goods), and the “vault
contract” (to transfer the funds).

While DeFi holds substantial promise, its proponents and
users have learned a harsh lesson: Like all software, smart
contracts have bugs, and these bugs can be (and have been)
exploited by attackers to launch attacks that directly steal
money from DeFi protocols [61], [13], [14]. At the time of
writing, DeFi hacks have resulted in financial losses of more
than 5 billion USD [7], [71]. Some of these stolen funds
are known to sustain the activities of criminal groups [24]
and dangerous nuclear programs [39]. A smart contract can
be affected by multiple types of vulnerabilities [86]. Some
of these vulnerabilities are basic implementation flaws (such
as integer overflows and reentrancy). These bugs are fairly
well-understood by the security community, and in recent
years, both academia and industry have proposed a plethora
of security tools to identify them [40], [26], [4], [50], [5],
[30], [15], [32], [58]. Unfortunately, despite the use of these
tools to secure smart contracts, attacks continue to occur. One
reason is that certain bugs are tightly coupled to the business
logic of individual DeFi protocols. The identification of such
logic bugs requires a deep understanding of the protocol’s
functionality, which is beyond the reach of most existing
automated analysis systems [86].

An alternative approach to identifying (and fixing) bugs is
to detect attacks against vulnerable contracts after deployment.

Abstract—As decentralized finance (DeFi) continues to inno-
vate the financial system, the security of its building blocks
remains a critical concern to its large-scale adoption. In DeFi, the
stakes are exceptionally high, marked by recurring instances of
financial losses totaling millions of dollars every week. All major
blockchain-based financial applications (i.e., DeFi protocols) are
built from – and interact with – programs known as smart
contracts. While many security tools have been developed to
identify specific classes of vulnerabilities (e.g., reentrancy) in
individual smart contracts, considerably less effort has been
invested in automatically identifying – in real time – attacks
against DeFi protocols.

In this paper, we propose a novel approach for real-time,
generic, explainable identification of attacks against DeFi proto-
cols. Specifically, we identify potentially risky transactions without
relying on any known vulnerability patterns. Our approach,
implemented in HOUSTON, first automatically identifies the set
of smart contracts that together implement a DeFi application
and then, while monitoring new relevant transactions, builds and
updates custom anomaly-detection models. Our models include
information about typical execution paths (control flows) as well
as information about how the protocol processes data, captured as
likely invariants between the contract functions’ arguments and
storage variables. HOUSTON offers explainable warnings that can
be used for attack triaging.

We evaluated HOUSTON on a large corpus of over 22 million
transactions, covering 115 DeFi incidents. In our experiments,
HOUSTON achieved a detection true-positive rate of 94.8% while
maintaining a low false-positive rate. When compared with
state-of-the-art anomaly detection systems, HOUSTON achieves
a higher number of true positives and lower false-positive rates.
Finally, we deployed HOUSTON in a real-world setting, where
it demonstrated real-time monitoring capabilities on commodity
hardware while sustaining high accuracy.

I. INTRODUCTION

Decentralized Finance (DeFi) drives a revolutionary
paradigm shift in the financial l a n dscape. U n l ike traditional
financial s y stems t h at r e ly o n c e ntralized a u thorities (e.g.,
banks), DeFi leverages blockchain technology to establish
a transparent and decentralized financial e c o system [54].
Ethereum is one of the most widely used blockchains (with

* Equal contribution.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241534
www.ndss-symposium.org

To this end, researchers have proposed systems that monitor
blockchain transactions. Some systems examine the behavior
of transactions that have already been executed with the idea
of identifying attacks a posteriori [79], [68]. Other systems
aim to detect attack transactions before they are committed
to the blockchain (while they are still waiting in the public
queue) [27]. When such pending attacks are detected, one
can attempt to preempt (front-run) the attack transaction with
a “defensive” transaction that rescues the funds held by the
victim [84], [52], [80].

There are two main approaches for detecting attack trans-
actions: pattern-based techniques and anomaly-based tech-
niques. Pattern-based techniques leverage rules or heuristics
that are applied to the execution traces of transactions [53],
[82]. For example, DeFiRanger [79] introduces money-flow
patterns that capture symptoms of price manipulation attacks.
These techniques are generally precise and tend to produce few
false alerts, but they are limited to detecting attacks that match
known patterns. A second set of detection systems relies on
anomaly detection [27], [48]. Their goal is to identify transac-
tions that result in execution traces, data flows, or other aspects
that are sufficiently different from those of benign transactions.
Anomaly-based techniques are vulnerability-agnostic and can
detect attacks that produce previously unseen anomalous be-
haviors. However, existing systems often lack explainability
and typically generate a substantial number of false positives.

In this paper, we present HOUSTON, a novel anomaly de-
tection system that performs real-time identification of attack
transactions that target DeFi applications on Ethereum. Our
key insight and contribution is the automated extraction and
modeling of semantically meaningful signals from protocol
executions. That is, we analyze transaction execution traces
and focus on behaviors that reflect the core functionalities of
a DeFi application. By doing so, we establish a robust baseline
for normal behavior, enhancing our ability to detect outliers
that are more likely to be attacks.

We model the behavior of a DeFi protocol by analyzing
how functions within the protocol are historically invoked and
how the persistent storage of the protocol’s contracts is ma-
nipulated. More precisely, our system comprises two distinct
models, which are built and continually refined by monitoring
live transactions involving the protocol under analysis: The
Interaction Model and the Invariant Model. Here, we use the
term “model” not in the machine learning sense, but to de-
scribe two purpose-built components: The Interaction Model is
a control-flow-centric model that captures patterns of function
invocations that perform sensitive operations. The Invariant
Model is a data-state-centric model that infers relationships,
in the form of likely invariants, between the inputs of smart
contract functions and the values of the permanent storage of
the contract. During live monitoring, HOUSTON continually
consults and updates each model to examine the incoming
stream of transactions. If a transaction is flagged as anomalous
by any model, it is then escalated for evaluation by human
experts or passed to automated response systems to mitigate
the attack (e.g., by front-running the transaction [84], [52],

[80]). Transactions deemed non-anomalous are instead utilized
to refine the models, enhancing their accuracy and reducing the
likelihood of future false positives. Importantly, assessments
made by the models are executed rapidly, concluding well
within the block generation time, before the possible inclusion
of the attack transaction in the blockchain.
In summary, this paper makes the following contributions:

• We introduce models to capture the normal behavior of
DeFi applications and leverage them to quickly detect
when and how a DeFi protocol is under attack.

• Based on our models, we develop HOUSTON, an
anomaly-detection system that can be automatically tai-
lored to protect any given DeFi protocol on Ethereum.

• We compile 115 DeFi protocol incidents into a com-
prehensive benchmark, drawing from public datasets and
incident reports. For each attack, we provide the address
of the contract being attacked, the block and date of the
incident, and the hash of the attack transaction. To the
best of our knowledge, this is the most precise publicly
available dataset on DeFi attacks.

• We compare the results of HOUSTON (94.8% true-
positive rate, 0.16% false-positive rate) against state-of-
the-art systems and demonstrate its superior performance.

• We deploy HOUSTON as a real-time monitoring solution
and evaluate its performance while monitoring 20 DeFi
protocols, showing that real-time analysis is achievable
with modest hardware requirements.

II. MOTIVATION

HOUSTON helps administrators of DeFi protocols to protect
their smart contracts against attacks. An attack consists of one
or more malicious transactions that an adversary uses to trigger
unintended functionality in a DeFi protocol, typically with the
intent to steal assets or disrupt its operations. Frequently, an
attack will exploit some smart contract vulnerability, either a
basic implementation bug or a logic flaw, to perform actions
that the protocol developers did not expect.

HOUSTON is an off-chain monitoring solution that provides
real-time attack detection by continuously monitoring trans-
actions and identifying anomalies. Our system can analyze
both transactions that are pending (in the mempool) and
confirmed (appear in a block). The mempool is a publicly
observable queue of transactions that have been submitted to
the blockchain but have not yet been included in a block. If an
attack transaction is submitted to the mempool, HOUSTON can
simulate the execution of the transaction before it is confirmed,
and raise an alert if an anomaly is detected. This alert can
be used to prevent the attack: For example, administrators
could implement an automatic emergency pause mechanism
triggered by the alert [87], or the alert could drive automated
systems that front-run suspicious transactions [80], [52], [84].

Unfortunately, transactions can bypass the mempool by
using a private transaction relay, which forwards transactions
to block producers in secrecy [1]. These transactions are
generally referred to as private transactions, as they are first
observed by the public only when they are announced as

2

confirmed in a block. While originally designed to improve the
privacy of the blockchain, private transactions are commonly
abused to launch stealth attacks [44]. In these cases, our
system cannot detect the attack before it is included in a
block without cooperation from the private relay. However,
even in such cases, an anomaly detection system can provide
value. For instance, the attack against the Revest protocol [3]
was carried out with four different private transactions (sent
in two different blocks) over ∼17 minutes. HOUSTON can
detect the first attack transaction (included in a block) and
alert the protocol administrators. Thus, if HOUSTON had been
deployed, the administrator would have had time to react and
(potentially) mitigate the subsequent attacks.
Threat Model. DeFi is sometimes referred to as the “Wild
West of Crypto” [10]. This is because the ecosystem is plagued
by many threats and risks, including hacks, scams, and crypto-
wallet thefts. However, different threat categories require dis-
tinct identification approaches. In this paper, we design an
anomaly detection system for the real-time identification of
attacks (adversarial transactions) that target any code defect in
smart contracts – such as improper access control, reentrancy,
undefined behaviors, and even protocol-specific logical bugs.
Consider, for example, the attack against the Euler proto-
col [11]: A logic error in the function DonateToReserve
allowed the attacker to artificially inflate the conversion rate
between the borrowed and collateralized assets, leading to the
theft of approximately 200 million USD. In §V, we show that
HOUSTON detects this and other similar attacks.

We consider out-of-scope other threats whose root cause is
related to malicious administration (i.e., rug-pulls [66]), loss
of private keys [12], or loss of administrative control due to
a governance takeover [37]. These threats generally involve
actions performed by entities (e.g., protocol administrators)
with a high level of privilege over the protocol. As a result, an
anomaly detection system has limited efficacy in addressing
such issues, because past actions that were considered “nor-
mal” (e.g., updating of an administration key by the protocol
administrator) can now turn out to be malicious. Finally,
HOUSTON is not designed to detect MEV activities (e.g., front-
running/sandwich attacks), which are typically attacks that do
not target code defects in smart contracts.
Technical Challenges. Our core challenge is to design an
attack-detection tool for Ethereum transactions that achieves
both generalization and precision, while being real-time-
capable. (1) Generalizability across attack types with precise
detection: Existing detectors often rely on manually crafted,
attack-specific rules or on machine-learning features with no
clear semantic meaning (e.g., high-dimensional embeddings),
limiting both adaptability and interpretability. HOUSTON in-
stead derives vulnerability-agnostic signals from automatically
mined invariants and control-flow patterns intrinsic to each
protocol. These protocol-specific and semantically meaningful
signals produce precise, interpretable alerts, facilitating effi-
cient alert triage and maintaining low false-positive rates over
long-term monitoring. (2) Real-time operation on live trans-
action streams: Detailed data- and control-flow analysis must

Confirm Purchase$224
Pay with

Fig. 1: TicketMonster’s Web2 frontend.

1 struct Ticket { uint id; bool vip; }
2
3 contract TicketMonster {
4 bool is_open; // slot 0x0
5 address admin; // slot 0x0
6 uint basePriceInUSD; // slot 0x1
7 uint vipTicketSurcharge; // slot 0x2
8 uint ticketId; // slot 0x3
9 mapping(address => mapping(uint => Ticket))

userTickets; // slot 0x4
10 mapping(address => uint) balances; // slot 0x5
11
12 // ... Bug(A): wrong visibility for function
13 function setVipTicket(address user, uint ticketId,

bool isvip) public {
14 // ... logic to handle tickets upgrade
15 userTickets[user][ticketId].vip = isvip; }
16
17 function buy(address token, bool isvip) public

returns (uint) {
18 // ... Bug(B): missing address validation
19 IERC20 _token = IERC20(token);
20 uint totUSD = basePriceInUSD;
21 // apply VIP rate
22 if (isvip) totUSD += vipTicketSurcharge;
23 // call to oracle to get ticketPriceInTokens
24 uint amount = getTokAmount(token, totUSD);
25 require(_token.balanceOf(msg.sender)>=amount, "

Insufficient balance");
26 require(_token.transferFrom(msg.sender,address(

this), amount), "Transfer failed");
27 ticketId += 1;
28 Ticket ticket = Ticket(ticketId, false);
29 userTickets[msg.sender][ticket.id] = ticket;
30 setVipTicket(msg.sender, ticket.id, isvip);
31 balances[msg.sender] += 1;
32 return ticketId; }}

Fig. 2: TicketMonster’s backend handling ticket sales.

run within the brief window of block production. HOUSTON
achieves this through a lightweight, incremental design that
continuously processes traces, detecting exploits in near real-
time with bounded computation and memory overhead.

III. RUNNING EXAMPLE: TICKETMONSTER

To help demonstrate our system, we introduce a hypothetical
DeFi protocol that sells event tickets. Figure 2 presents the
code snippets of the protocol. TicketMonster provides a Web2
user interface (Figure 1) that allows customers to buy event
tickets (one per transaction) at a given USD price using stable
coins: USDC or USDT. For simplicity, every ticket has a fixed
price of $224, with a surcharge of $500 for VIP service. In a
typical use case, customers purchase tickets using the website:
They would link their crypto wallet (e.g., Metamask [2]), and
submit requests to the Web2 website, which, in turn, generates
a transaction for the Web3 backend. Importantly, while the
transactions generated by the website can be considered safe
(i.e., crafted by the developer’s code), nothing prevents more
sophisticated users from sending requests directly to the smart
contract, bypassing any constraints enforced by the Web2 UI.

3

It is easy to note how the Web3 backend contract fails to
enforce certain assumptions made by its frontend UI.

Bug (A) The function setVipTicket (Line 13) has the
wrong visibility: It is supposed to be internal rather than
public. Because of this, attackers could first buy non-VIP
(basic price) tickets and then upgrade with no surcharge by
directly calling setVipTicket.

Bug (B) The second oversight is the absence of valida-
tion for the token parameter of function buy supplied by
users (Line 17). An attacker can simply deploy a malicious
ERC20 token contract and use the fake token (instead of
USDC or USDT) for payments. More specifically, when the
TicketMonster’s contract calls to balanceOf (Line 25) and
transferFrom (Line 26), it interacts with the attacker’s
token, thus the execution happens according to the attacker’s
code. This allows attackers to manipulate the return values
of these calls and make the purchase succeed without actually
paying [69]. Either bug, if exploited, can cause severe financial
damage. In the following sections, we show how HOUSTON
can identify attack transactions exploiting these bugs.

IV. SYSTEM DESIGN

Our goal is to design an anomaly detector that identifies
attack transactions by monitoring contract executions. Instead
of relying on predefined attack patterns or entity reputation,
the system extracts high-quality, protocol-specific signals from
execution traces to produce timely, accurate alerts. Given a
DeFi protocol, HOUSTON builds and continuously updates
customized anomaly-detection models as part of its ongoing
monitoring process. These models are used to evaluate new
transactions directed to the protocol. If an anomaly is detected,
the system raises an alert. Figure 3 presents an overview of
our system and outlines its operational stages. In the following
paragraphs, we describe each of these stages.

1 Contract Processor. First, we compile a list of all
smart contracts that belong to a protocol. When HOUSTON is
deployed, we assume that this list can be easily provided by
administrators. For our experiments, however, we developed an
approach to determine this list ourselves (see §V for details).
Then, given the set of smart contracts that compose a protocol,
we examine the contracts’ source code and use the Solidity
compiler toolchain to extract relevant metadata, such as their
public functions, argument types, and storage layouts [65]. We
assume that our system typically has access to the contracts’
source code, since HOUSTON users are supposed to be the
protocol’s administrators (or developers).

2 Transactions Processor. Given the output of the pre-
vious step and a transaction that interacted with the protocol
(i.e., a transaction that triggered the execution of at least one
of the contracts in the protocol), we first collect a detailed
execution trace of the transaction, Then, we process this data
and extract the necessary features that form the basis for our
detection models (see §IV-B for details).

3 Protocol Interaction Analysis. The first detection model
(Interaction Model) leverages the sequences of function calls.
Intuitively, a protocol’s control flow reflects its core actions

and their ordering. However, we are not interested in all calls.
Instead, we focus on externally initiated calls to the protocol’s
public interface that either modify persistent storage or trigger
key external operations such as token transfers.

4 Invariant Analysis. For our second model (Invariant
Model), we focus on the values that are written to persistent
storage and those passed as arguments to function calls.
Specifically, we establish “normal” patterns for these values
and their inter-relationships. We believe that the semantics of
contracts can be meaningfully captured by the values of their
state (storage) variables, their function arguments, as well as
the relationship between these variables. To do this, we employ
likely-invariant inference techniques [19] to capture important
protocol properties automatically.

5 HOUSTON Anomaly Detection. When a new transaction
(that targets the protocol) is spotted, HOUSTON (locally) runs
the transaction and analyzes the resulting execution trace.
Specifically, the two models independently examine various
aspects of the transaction trace, including the involved smart
contract functions, their argument values, and their validity
against the invariants identified in 4 . The outputs from both
models are then combined to determine a final verdict. If the
transaction is found to be anomalous, we raise an alert.

6 HOUSTON Alerts. Whenever an alert is raised, it can
be evaluated by a human analyst or used as a trigger by an
automated system to initiate a response. In the event of a
confirmed attack (a true positive), administrators can initiate
incident response procedures, such as an emergency pause of
the protocol [87]. Alternatively, the transaction can be front-
run by one of the recently proposed systems that aim to
rescue funds [52], [85], [80]. Conversely, if the transaction was
erroneously flagged as anomalous (a false positive), it will be
incorporated into the transaction corpus 7 . The system will
automatically update its models, eliminating the recurrence of
similar false positives in subsequent analyses.

8 HOUSTON Continuous Updates. If HOUSTON’s models
do not raise any alert for a transaction, HOUSTON automati-
cally adds this transaction to its baseline corpus and updates
its models with this new information.

A. Contract Processor

Recall that most DeFi protocols consist of multiple smart
contracts. When protecting a protocol, our system monitors
(and takes as input) all the smart contracts associated with this
protocol. These contracts constitute the protocol’s footprint on
the blockchain. For each contract, we extract its ABI [64],
as well as determine its storage layout [65]. These metadata
are needed to extract (1) the typed function’s arguments from
the raw bytes of a transaction’s CALLDATA, and (2) to
obtain precise information regarding which storage variables
are modified during a contract’s execution. To extract these
data, we use the off-the-shelf contract’s ABI decoder [64], and
a custom procedure named Storage Variables Decoder (SVD).
Storage Variables Decoder. We design this procedure to
extract precise modifications to state variables. More specif-
ically, the SVD takes as input an arbitrary slot id, the

4

New
TX
Data

Call
Report(s)

Storage
Report(s)

PROTOCOL
INTERACTION
ANALYSIS

Protocol
Contracts

INVARIANT
ANALYSIS

False
Positive

Interaction
Model

True
Negative

Invariant
Model

New
TX

Houston

CONTRACT
PROCESSOR

TXs
PROCESSOR

Emergency Response

Fig. 3: HOUSTON Overview. The analyses described in 1 - 2 - 3 - 4 are used to provide data to the models employed by
HOUSTON. In 5 , a new transaction is ready to be examined by HOUSTON. In 6 , a transaction is considered to be anomalous,
and it is sent to an emergency response system. If the transaction is deemed to be a false positive, it is added to the corpus
7 . HOUSTON will start to generate a new knowledge base automatically. Transactions that do not raise any alert 8 are also

added to the corpus to update HOUSTON’s models.

StorageLayout of a contract, and a description of the
KECCAK256 operations (i.e., KeccakInfo) executed dur-
ing a transaction (available after tracing a transaction in
2) and returns fine-grained information about the variables

stored in a given slot. This process is necessary because
variables in the EVM can be packed together in the same
storage slot [65]. Without this distinction, proper annota-
tion and invariant calculation would be impossible. For in-
stance, in TicketMonster (Figure 2), the slot id 0x0 contains
a Boolean value (i.e., the variable is_open) at offset 0
and an address (i.e., admin) at offsets 1→21. Comput-
ing SVD(0x1,StorageLayout,KeccakInfo) results in
{v1 = 1, v2 = 0xADMIN}. Note that we need KeccakInfo
to only resolve accesses to dynamic slots (e.g., slots 0x4 and
0x5 in Figure 2). For additional details see Appendix A.
Binary-only Contracts. Currently, if a protocol includes some
binary-only contracts, HOUSTON simply avoids calculating the
likely invariants in 4 for those contracts. However, these
contracts are still considered for the Interaction Model in 3 .
We discuss the impact of source code availability in §VI.

B. Transaction Processor
We employ an Ethereum archive node [41] to trace a

transaction relevant to a protocol – i.e., one that includes
any direct or indirect calls to the protocol’s smart contracts.
Specifically, we design a custom tracing plugin to obtain
information about the following opcodes: SSTORE, CALL,
DELEGATECALL, STATICCALL, and KECCAK256.
SSTORE. For SSTORE operations, our custom tracer collects
the following information: The slot id being written, the prior
value of the storage slot, the new value, the identifier of the
function in which this operation happens, the address of the
contract executing the opcode (i.e., the code address), and the
address of the contract whose storage is being referenced.

CALL. When executing a call (CALL, DELEGATECALL, or
STATICCALL), we extract the sender address, the destination
address, and the raw bytes of the CALLDATA.

KECCAK256. The KECCAK256 opcode applies the KEC-
CAK256 hash function to its input (the pre-image) and pro-
duces as output a hash value (the image). It is commonly used
to compute the address of elements within lists and mappings.
For example, consider the mapping balances stored at slot
id 5 (Line 10, Figure 2). To retrieve the balance of a user (i.e.,
purchased tickets) with key USER, the EVM will compute
KECCAK256(USER.5) and use the result as an address
to access the contract’s storage. When tracing a transaction,
we record all the pre-images (inputs) for all KECCAK256
opcodes. This information allows us to determine whether
writes to different memory locations (i.e., slot IDs represented
by different KECCAK256 images) target the same dynamic
variable (e.g., a mapping storing users’ balances).

For a given transaction, the Transaction Processor outputs
a Call Report and a Storage Report. The Call Report contains
all the calls performed by all the contracts involved in the
transaction execution. The arguments for each function call
are annotated by the contract’s ABI decoder. The Storage
Report contains all the available information on SSTORE and
KECCAK256 operations, as annotated by the SVD procedure.
In particular, SVD refines the accessed slot id into the corre-
sponding variables that are modified (in case there are multiple
variables packed into a slot). As a result, the Storage Report
contains detailed information on every variable modified in
the storage of any contract in the protocol. For instance, in
TicketMonster (§III), we would annotate a Ticket purchase
with its corresponding id and vip flag.

5

C. Protocol Interaction Analysis

The sequence of function calls executed by the protocol’s
smart contracts (throughout a transaction) provides valuable
insights into a protocol’s behavior. Intuitively, if a sequence
of function calls deviates from typical and common patterns, it
is an outlier, and, often, these outliers are attack attempts [27].
However, the entire call sequence of executed functions
(within a transaction) can be very long (e.g., hundreds of
nested function calls), may include activities unrelated to a
monitored protocol, or may contain uninteresting protocol
actions (i.e., a call to a function that simply returns the balance
of a user). This can add noise to a model and lead to false
positives. Thus, unlike prior work that inspects all function
calls, we focus only on “critical” function calls that are relevant
to the monitored protocol. We name the list of critical function
calls Protocol Interaction. Our Protocol Interaction analysis
unfolds in four steps:
(1) Call Direction Identification. The analysis first catego-
rizes all calls (that are part of a transaction trace) according to
the “direction” of the call. Specifically, we only keep incoming
calls, that is, calls from a smart contract (or externally owned
account) whose address is not part of the protocol, to a smart
contract within the protocol. By retaining only incoming calls,
we construct protocol interactions that account for actions
initiated by entities external to the protocol. This significantly
diminishes the noise caused by outgoing and internal calls (see
our ablation study in Appendix B).
(2) Critical Call Identification. Based on the execution tree
provided by the Call Report, and the storage writes reported in
the Storage Report, this analysis marks any incoming function
call as critical if either the called function itself (or any
other function within its call tree), (1) triggers storage changes
(performs an SSTORE operation) in any of the smart contracts
belonging to the DeFi protocol or (2) initiates the execution of
a function matching a predefined list of identifiers. Currently,
this list includes four standard ERC20 token [21] functions:
transfer, transferFrom, safeTransferFrom, and
approve. Intuitively, these functions are important because
they capture token transfer and approval mechanisms, thereby
capturing the movements of digital assets.
(3) Direct ERC20 Token Operation Filtering. Many DeFi
protocols include one or more ERC20 token contracts. Exter-
nal users (and contracts) can directly interact with these token
contracts, performing operations (e.g., transfer) without
involving the rest of the protocol’s logic. These operations
tend to occur in large volumes and generally do not correlate
to potential attacks but rather add substantial noise to the
model. Therefore, HOUSTON filters out all incoming ERC20
calls from the protocol interaction pattern. Importantly, we
only exclude incoming ERC20 operations (e.g., approve
in Figure 4). If a call to a non-ERC20 function triggers
downstream token movements (e.g., a call to transfer),
HOUSTON still considers it as a part of the protocol interaction,
e.g., in Figure 4, the incoming call to function pay triggers
an ERC20 transfer, thus, it is part of the final fingerprint.

borrow

pay

TX1
w

Protocol

do1

transfer

approve

do2

ERC20

ERC20

Fig. 4: Protocol Interaction Analysis. The protocol’s smart
contracts are in the gray area. Function borrow triggers a
storage write in one of the protocols of the contract. Function
approve is filtered out. The function pay leads to an ERC20
transfer. The fingerprint of TX1 is [borrow, pay], but
we save function selectors instead of their names.

(4) Interaction Pattern Identification. We use the sequence
of critical function calls as a fingerprint of the transaction.
Specifically, from the Call Reports of historical transactions,
the Protocol Interaction Analysis builds a database of all
observed interaction fingerprints (later used by the Interaction
Model). For example, in TicketMonster (§III), as benign users
buy tickets via the Web2 UI, the protocol interaction database
would contain only one fingerprint: [buy]. The reason is
that neither the call to the price oracle (Line 24) nor the call
to function setVipTicket (Line 30) is an incoming call
(i.e., a call coming from outside the protocol and directed to
it), thus, they are not considered in the final fingerprints. To
better illustrate our algorithm, Figure 4 shows a more complete
example of how we reduce a complex sequence of calls (in
and out of a protocol) to the signature [borrow,pay].
By focusing on critical functions, we significantly reduce the
complexity of call sequences while preserving the relevant in-
formation regarding the protocol’s function calls. For example,
in the Euler protocol attack, the attack transaction made
150 calls, whereas the Protocol Interaction representation
of the attack comprises only 8 calls. These 8 calls outline
the exact steps of the attack as security experts described
in their writeups [55]. In our experiments (§V), HOUSTON
successfully detects the attack transaction with the help of
these fingerprints. Moreover, we show that the focus on critical
functions (rather than modeling the entire function call trace)
is critical to the accuracy of this model (Appendix B).

D. Invariant Analysis

Program Invariants. Invariants represent properties within
a program’s code that always hold at a program point or a
set of program points [19]. Commonly, identifying program
invariants requires static analysis techniques, such as symbolic
execution and abstract interpretation [60]. However, those
techniques suffer from scalability limitations when used to
analyze complex contracts. Moreover, for our purposes, we
are not interested in proving that certain program invariants
always hold. Instead, our focus is on identifying relationships
between variables that consistently hold in incoming trans-
actions, reflecting the intended behavior of a smart contract’s

6

execution. These relationships, when violated, may indicate an
attack. Hence, for HOUSTON, we collect likely invariants [19].

Likely invariants are properties that are dynamically inferred
from values observed during multiple program executions. For
instance: in TicketMonster, the argument token has been
historically observed to be equal to 0xUSDC or 0xUSDT
(these are the only two currencies allowed for payment by
the Web2 UI, Figure 1). This dynamic inference approach
generally produces relevant relationships, but it comes at the
cost of soundness (that is, a likely invariant may not hold true
for all executions). Nevertheless, given enough observations
of a likely invariant, the confidence of the observed property
increases [20]. The goal of the program invariant analysis is to
automatically identify likely invariants at the function bound-
aries of a smart contract. Specifically, we infer relationships
between a function’s inputs (its arguments and initial storage
state) and its outputs (represented by the resulting storage
state). Unlike return values alone, storage updates capture
meaningful behavioral effects because persistent state changes
influence both the current execution and future interactions.
Likely-Invariants Class Selection. The selection of likely-
invariant classes requires considering a wide range of pos-
sibilities. Intuitively, mining all possible unary and binary
relationships among all the variables in a smart contract would
rapidly make the problem intractable (e.g., the Daikon [19]
engine offers more than 200 invariant classes). To reduce the
number of invariant classes, we initially experimented with a
broad range of them on a pilot dataset of 16 DeFi incidents
covering diverse attack types. While experimenting with differ-
ent invariants on our pilot dataset, we observed several prac-
tical challenges: Some invariant types were overly sensitive
and triggered frequent false positives (e.g., the UpperBound
invariant, which alerts whenever a variable exceeds its his-
torical maximum); others (e.g., ternary invariants) led to a
combinatorial explosion in run-time or lacked clear semantic
interpretation. We iteratively filtered out such invariant classes
and focused on those that both: (1) showed violations during
real attacks, and (2) had clear, human-interpretable semantics.
This trial-and-error process led us to the following four simple
invariant classes used in the final system:

(C1) For individual integer variables, the analysis checks
whether a variable is never zero. An unexpected zero may
signal abnormal behavior in arithmetic operations.

(C2) For individual address and bytes variables, the analysis
determines if the address or bytes variable always equals a
specific value, or if it is drawn from a set of possible values.

(C3) For relationships between two integer variables, the
analysis checks if any of the ordering relations (=,≥,≤) always
hold. For example, an invariant may state that the amount of
redeemable tokens is always less than the user’s balance.

(C4) For relationships between two strings, addresses, or
bytes, we evaluate whether the two variables are always
the same. This invariant type can help when, for example,
the developers assume that two addresses should always be
identical to ensure that a transaction originates from the same
source, but fail to enforce the assumption.

Selective Mining for Binary Likely Invariants. The attentive
reader may have noticed that our method for generating
likely invariants over the contracts’ variables adopts a “brute-
force” strategy. Specifically, HOUSTON checks all possible
relationships or properties (of types C1–4) over variables and
variable pairs as they are observed during the processing of a
protocol’s transactions. While this approach is acceptable for
unary invariants, it quickly leads to the generation of numerous
spurious binary invariants that lack any real semantic meaning
(e.g., timeStamp < reserve). Although many of these
invariants are unlikely to ever be violated, some may introduce
false positives. To address this, we precompute all variable
pairs in each contract that the Invariant Model might compare
and use an LLM (GPT-4.1 [47]) to check if each comparison is
semantically meaningful in the context of the contract. During
monitoring, the Invariant Model only mines (and checks)
over the variable pairs deemed semantically meaningful. We
quantify the effectiveness of this selection step in §V-C.
Likely-Invariants Inference. To identify likely invariants,
we combine the information from Call Reports and Storage
Reports (generated in 2) to create data traces of function
arguments and storage variables at the entrance and exit of
all function calls. The Invariant Analysis then determines,
for each invariant category of interest, whether an invariant
over a single variable, or between two (semantically com-
parable) variables, consistently holds across all executions
at a specific program point. If this consistency is verified,
we record the invariant and the number of transactions sup-
porting it (as a metric of confidence) for future reference.
Importantly, our current invariant inference algorithm is not
designed to extract sophisticated invariants of the kind that a
developer might manually specify (e.g., collateralValue
× collateralFactor ÷ debtValue ≥ 1, which was
violated in the Euler incident). Instead, its goal is to mine
a large number of simpler candidate likely invariants. While
some may be quickly violated (and thus deemed unlikely),
others capture meaningful properties with broad coverage,
emerging as valuable indicators for detecting attacks, either
directly or through the side effects of malicious transactions.
Our invariant extraction algorithm can be easily extended with
more advanced systems [42] if required by the protocol.

E. HOUSTON Anomaly Detection

For every new transaction, HOUSTON creates an execution
trace and consults its models to identify anomalies.
Interaction Model. The Interaction Model computes the
transaction’s fingerprint as described in §IV-C and compares
it against those in the database. The model reports an anomaly
if the fingerprint has not been seen before. For example, if an
attacker tries to exploit TicketMonster using Bug (A) (Figure 2,
Line 13) by first calling the buy function and then, in another
transaction, calling setVipTicket to upgrade their ticket,
they would generate an unseen fingerprint [setVipTicket].
Invariant Model. The Invariant Model observes all protocol
transactions and computes the likely invariants. Then, it uses
such invariants to detect anomalies (invariant violations) in

7

new transactions. In the ideal case, where the monitored ap-
plication is stable and has seen significant usage, a transaction
should be flagged as anomalous if any of the computed invari-
ants is violated. For instance, in our TicketMonster example,
an attacker attempting to exploit Bug (B) by providing a token
address other than 0xUSDC or 0xUSDT would violate the in-
variant token ∈ {0xUSDC, 0xUSDT}, which is an invariant
of category C2 as described in §IV-D. For newly deployed
contracts or functions that see limited use, the supporting
observations for an invariant may be minimal. This scarcity of
data can make it challenging to determine whether an inferred
likely invariant accurately reflects the core semantics of the
contract or whether the invariant is merely incidental due to
insufficient transaction diversity, suggesting that alerts on its
violation may be groundless. To address this, the Invariant
Model enforces a waiting period for each likely invariant,
allowing more user interactions with the protocol. During
this period, any violation will lead HOUSTON to discard the
invariant without triggering an alert. The waiting period is
defined by two hyperparameters: the minimum transaction
count supporting the invariant (N) and the minimum contract
age (T). A violation is within the waiting period only if both
conditions are met. In this study, we set N = 10 and T = 12
hours, but our experiments show that detection outcomes are
stable across various settings. The final decision is simple: If at
least one of the two models report(s) an anomaly, HOUSTON
triggers an alarm.

F. HOUSTON Continuous Updates

HOUSTON continuously incorporates new interaction finger-
prints and updates invariants, keeping its behavioral models
aligned with the protocol as it evolves. This incremental
learning is essential to maintaining a low false-positive rate.
Interaction Model Update. Whenever a new protocol interac-
tion is observed, HOUSTON raises a warning and then simply
adds the interaction fingerprint to its database.
Invariant Model Update. This involves three main opera-
tions: mining new invariants, discarding any that have been
violated, and increasing the confidence of existing invariants
by incorporating additional observations. For example, assume
the invariant token ∈ {0xUSDC} has been established for
TicketMonster. If a new transaction uses 0xUSDT as token
(Figure 2, Line 18), HOUSTON will raise a warning, discard
the previous invariant, and establish the new invariant: token
∈ {0xUSDC, 0xUSDT}. To enable continuous updates of the
Invariant Model, we implemented our own invariant mining
engine inspired by Daikon, a state-of-the-art system for in-
ferring likely invariants [19]. Our invariant miner adds support
for incremental invariant inference, which enables HOUSTON
to quickly incorporate new information into its models.

V. EVALUATION

A. DeFi Attacks Dataset

To evaluate HOUSTON, we compiled 115 DeFi protocol
incidents into a comprehensive benchmark, drawing from both

previous work [27], [87] and public reports of security inci-
dents [56], [70]. We curated our dataset to be as comprehensive
as possible by including all incidents within the defined scope.
Only those incidents that fell outside this scope (as outlined
in §II) or occurred on non-Ethereum chains were excluded.
Our dataset includes protocols of varying application types and
exploits against a diverse set of vulnerabilities. Note that each
incident corresponds to a distinct protocol. For incidents with
multiple attack transactions, we label the earliest transaction
as the ground truth, as detecting this initial action allows
administrators to respond swiftly, for instance, by pausing the
protocol to prevent further damage. Notably, this approach is
more challenging than merely identifying any one of the attack
transactions. For each attack, we report the address of the
contract being attacked, the block and date of the incidents,
and the hash of the first attack transaction.
Identify Smart Contracts of a Protocol. In §IV, we described
how our system takes as input the addresses of the smart
contracts belonging to a DeFi protocol and then uses incoming
transactions to build its models. In practice, protocol admin-
istrators can (easily) identify the involved contracts. For our
evaluation, however, this information is not readily available.
We therefore approximate protocol membership as follows.
We first identify the deployer of the attacked (victim) contract,
i.e., the account that created it. We then include all contracts
directly deployed by this account as part of the protocol. Since
contracts may also be created through internal transactions, we
further inspect the deployer’s internal transactions and include
any contracts created in this way.

B. Experimental Setup

We evaluate our system on a server with dual Intel Xeon
Gold 6330 processors, 512 GB of RAM, and 20 TB of SSD
storage. To evaluate HOUSTON’s capabilities, we design two
experiments: the Historical Evaluation and the Live Perfor-
mance Evaluation. The goal of the former is to demonstrate
the system’s high precision and recall across 115 historical
attacks, while the latter aims to showcase its effectiveness in
real-time scenarios when monitoring 20 protocols in parallel.

C. HOUSTON Historical Evaluation

Given a protocol, we first collect all past transactions that
interacted with any of its contracts, up to the point of the
first known attack (as per our dataset V-A). HOUSTON then
analyzes these transactions in chronological order to identify
anomalies. We record whenever an alert is produced, and
we stop our evaluation after processing the reference attack
transaction. In this evaluation, we consider any alert that does
not correspond to the reference attack transaction to be a false
positive. While this approach may be imprecise—particularly
if there are unknown attacks preceding the reference inci-
dent—it provides an upper bound on the number of false
positives generated by HOUSTON. It is also worth noting that
while an alert from HOUSTON might be considered a false
positive, the flagged transaction may still exhibit anomalous
features that can offer valuable insights, e.g., a new behavior

8

used in the protocol, or a new contract appeared in the protocol
that is interacting with it in new ways. Finally, when evaluating
the attack transaction, if HOUSTON flags the transaction as
anomalous, we consider it a true positive; otherwise, we
consider it a false negative. Our results show that HOUSTON
is effective in detecting attacks for a diverse set of protocols.
Specifically, out of 115 DeFi protocol incidents in our dataset,
HOUSTON detected 109 attacks (∼94.8%). HOUSTON also
exhibited a low false positive rate of 0.16%. We present a
per-protocol results overview in Table IV in Appendix D.
True Positives. In contrast to detection systems based on
neural networks [27], the alerts produced by HOUSTON have
a high level of explainability. That is, they directly show
which calls are anomalous or which invariants have been
violated. This makes it much easier for human analysts to
determine the root cause of an attack and to discard potential
false positives. This level of explainability enables us to
systematically examine how HOUSTON ’s detected anomalies
align with the actual exploit mechanisms. Specifically, we
analyzed all 109 detected incidents and compared our alerts
with the corresponding public postmortem reports. For each
incident, we examined alerts from both models and used the
more conclusive one as its representative signal. Among these
incidents, HOUSTON produces causal detections in 57 (52%)
cases, where the invariant violation or interaction pattern
directly pinpoints the root cause of the vulnerability. In these
situations, the abnormal behavior exposed by HOUSTON is so
fundamental to the exploit that carrying out the attack without
triggering such an alert would have been impossible. Another
43 (39%) incidents fall into the indicative category, where the
detected violation reflects a consequence of the attacker rather
than the immediate exploitation of the bug. These alerts often
capture secondary effects that reveal the attacker’s intent or
correspond to side effects of the exploit. While such signals
might be avoided by a highly sophisticated attacker, it depends
on the specific circumstances or goals of the attack, and
doing so would significantly increase its difficulty. Finally, 9
(8%) incidents are incidental detections, where the triggered
signal is unrelated to the exploit and uninformative for triage.
Most of these cases are in protocols exploited early in their
deployment, and the alerts are raised because the transaction
paths are novel.

Below, we discuss two interesting true positives cases.
(1) RevestFinance. This attack was detected by both of

HOUSTON’s models. Specifically, the invariant violation points
to a mismatch between the two storage variables fnftID
and fnft_created, which are supposed to be equal when
entering the function mint (C3, §IV-D). This mismatch was
caused by the exploitation of a reentrancy vulnerability, and
the attack could not have succeeded without triggering this
condition (causal). For the Interaction Model, no previous
transaction ever called mintAddressLock twice in its
protocol interaction (hinting at possible reentrancy) and thus
triggered a warning (indicative).

(2) Euler. Both HOUSTON’s models identified the attack.
Specifically, the Interaction Model reported a new protocol

interaction where a call to donateToReserves preceded a
call to liquidate, which is essential for the exploit to suc-
ceed (causal). At the same time, the invariant model reported
a violation during the execution of liquidate. In all prior
executions, deferLiquidityStatus was never zero for
liquidate (C1, §IV-D). This violation arose because the
attacker deliberately skipped deferLiquidityChecks,
which is normally invoked by all legitimate users. Although
the exploit could still succeed even with this check in place,
omitting it reflects a distinct behavioral deviation – an at-
tacker’s willingness to bypass standard safety routines. There-
fore, we classify Invariant Model’s detection as indicative.
False Negatives. HOUSTON failed to detect an attack in only
6 incidents out of 115 (5.2%). After manual investigation, we
observed that four incidents would require mining additional
types of invariants. For instance, for the nomad incident [13],
it would be necessary to infer invariants on values read from
the storage (currently, we focus only on storage writes, as dis-
cussed in §IV-B). Of the remaining two cases: azukidao was
exploited too soon (4 days) after deployment, and, therefore,
HOUSTON simply did not have enough data to learn anything
meaningful; snood’s exploit directly targeted a buggy re-
implementation of a transferFrom in the protocol, and
since incoming ERC20 calls are filtered to reduce false posi-
tives (as explained in §IV-C), this attack was not detected.
False Positives. Overall, HOUSTON had 13,827 false positives
out of 8,586,421 transactions evaluated across all 115 proto-
cols over their entire history (false-positive rate 0.16%, 0.4
false positive per protocol per day on average). As is shown in
Figure 5, 64 (55.7%) protocols have ≤ 1% false positive rate;
92 (80.0%) protocols have ≤ 3% false positive rate. Table IV
in Appendix D shows the detailed false-positive numbers (and
rates) for each protocol. We investigated these false positives
and identified two main reasons for these errors:

(1) Historical Data Availability. When there are too few
observations (or no observations in the case of new contracts),
HOUSTON has very little information to learn from and will
suffer from false positives during a short initialization period.
Luckily, as transactions accumulate, HOUSTON’s invariants
and interaction fingerprints become more reliable, and the
false positive rate drops quickly. In Figure 6, we show the
correlation between the number of transactions available for
a protocol and the false positive rate. Notably, all of the 23
protocols with a false positive rate exceeding 3% had fewer
than 800 total transactions. In practice, developers can mitigate
this cold-start effect by bootstrapping HOUSTON with their
own test cases or simulation traces prior to deployment. These
synthetic transactions provide initial behavioral diversity for
the model to learn from, allowing it to establish preliminary
invariants and interaction patterns and, thereby, significantly
reducing false positives during the early monitoring phase.

(2) Likely-Invariant Quality. In §IV-D, we described how we
used an LLM to selectively mine binary invariants to avoid
nonsensical pairs. We found that this selection step reduced
the number of false positive alerts in the Invariant Model by
27.2% (from 10,579 to 7, 702), while preserving the model’s

9

detection capability (true positives remain unchanged). Be-
cause our filtering is purposefully conservative, some spurious
relationships might persist. We manually analyzed a random
sample of 100 mined invariants from the Invariant Model.
Of these, 84 were deemed meaningful: we could imagine
plausible scenarios in which violations of these invariants can
be indicative of abnormal executions (even if such violations
may never occur in practice). Among the remaining 16 that we
found to be spurious, two were unary invariants that asserted
unjustified restrictions on free parameters. For instance, one
such invariant incorrectly assumed that the spender param-
eter in the allowance function must belong to a small,
fixed set of addresses. The remaining 14 were binary invariants
involving variable pairs that are not semantically comparable.
This could be further resolved by utilizing a better reasoning
model at the cost of a more expensive pre-filtering step (the
process cost ∼$100 of LLM credits across the entire dataset).

(3) Operation Repetition and Permutation. The Interaction
Model drastically reduces the call trace of a transaction to
a few, meaningful operations. However, the repetition (and
permutation) of such operations can lead to new interac-
tion fingerprints that cause false alarms. For instance, if a
user performs five deposits and one withdraw against
a monitored protocol, depending on where the withdraw
is placed among the five deposits, the transaction may
generate six unique fingerprints. Regardless, these false alarms
appear less frequently as transactions accumulate. To mitigate
this, one may associate each operation with the underlying
logical entity it acts upon (e.g., a stake or lien). This entity-
level grouping effectively partitions long, flattened parallel
sequences into independent sub-sequences, thereby preventing
the combinatorial explosion of possible interaction patterns.

Given the statistics and root-cause patterns above, it is useful
to consider the operational impact of false alerts. Although
HOUSTON produces false alerts on the historical dataset,
this does not undermine its practicality. Most false positives
occur during the initial (learning) phase, after which the rate
stabilizes at very low levels, with mature protocols typically
seeing fewer than one non-exploit alert per day (see Figure 6,
Table IV). Because alerts are explainable and closely aligned
with actual exploit mechanisms, HOUSTON remains effective
despite the presence of false positives. To further evaluate
the false positive rate of HOUSTON on mature, high-quality
protocols without known history of exploitation, we collected
all transactions up to the time of experiment (block 20400000,
totaling over 13 million) of an additional set of popular
Ethereum DeFi protocols with Total Value Locked greater
than $500M [17]. Then, we performed the same experiment as
the one for the DeFi attacks dataset. For this experiment, we
reported an aggregate false-positive rate of 0.08%, which is
significantly lower than that for the DeFi attacks dataset. This
supports our observation that, for well-used protocols, false-
positive rates drop significantly, indicating that HOUSTON is
effective in real-world settings, where accuracy is essential.
Finally, to reduce false positives, one could also initialize
HOUSTON’s models with existing benign transactions.

0% 5% 10% 15% 20% 25%
False Positive Rate

0
(0%)

20
(17%)

40
(35%)

60
(52%)

80
(70%)

100
(87%)

Nu
m

be
r o

f P
ro

to
co

ls

Fig. 5: Cumulative distribution of false positive rates.

0 200k 400k 600k 800k 1000k
Number of Transactions

0%

5%

10%

15%

20%

25%

Fa
lse

 P
os

iti
ve

 R
at

e
baocommunity

onyxprotocol
pandora/yodlrouter

burntbubba

sandboxland

Fig. 6: Overview of the correlation of false positive rates with
the total number of transactions available per protocol. Note
that protocols with high false-positive rates are evaluated with
an exceptionally low number of transactions. See Appendix D
Table IV for detailed per-protocol results.

D. Comparison with Existing Systems

APE. APE is a system that automatically synthesizes ad-
versarial smart contracts to imitate (and front-run) profitable
transactions in real-time [52]. Although HOUSTON and APE
pursue fundamentally different objectives (anomaly detection
vs. profitability detection), a comparison between the two is
still meaningful, as Qin et al. suggest that APE can also be
leveraged as a defensive mechanism. For this comparison, we
were unable to run APE directly (the system is not open-
sourced); however, the authors provided us with the list of
transactions that APE historically replayed on the Ethereum
mainnet. This transaction set spans from block 12936340 to
block 15253305, overlapping with our dataset. The overlap
includes 2.4M transactions, among which there are 20 attacks.
Out of these 20 attacks, APE successfully countered 4, while
HOUSTON flagged 19 (both systems share a false negative).
Within the same reference time frame, APE exhibited a false

10

positive rate of 0.15%, compared to 0.10% for HOUSTON.
Theoretically, HOUSTON can enhance APE’s attack capabili-
ties when both target the same DeFi protocol. Upon receiving
a transaction, APE synthesizes a frontrun, while HOUSTON
checks if the activity is malicious. If confirmed, APE can
promptly deploy the crafted transaction.
BlockGPT. Gai et al. proposed BlockGPT [27], a generic ap-
proach for DeFi anomaly detection based on neural networks.
At the time of writing, the authors have not yet made their
system available as open source. Thus, we chose to compare
our results based on the protocol attacks reported in their paper
in Figures 5, 10, and 11. Also, the authors did not disclose the
exact transaction hashes that BlockGPT marked as attacks.
Thus, we must assume that BlockGPT identified the same
transactions as our investigation. While we understand this
can create discrepancies in the comparison results, this is our
best attempt to make a fair comparison. To compare with
BlockGPT, we selected the 28 attacks that are both in scope
for HOUSTON (i.e., on Ethereum) and present in BlockGPT’s
dataset. Overall, our system detects 27 attacks across these
28 protocols, whereas BlockGPT detects only 15. Our only
false negative is 88mph. Unfortunately, it is not clear why
BlockGPT would detect an anomaly against 88mph because
(1), the system naturally suffers from limited explainability,
and (2) we have no information regarding the transaction hash
labeled as an attack by the authors. Table IV shows a detailed
comparison between the detection results for HOUSTON and
BlockGPT. Since we do not have access to BlockGPT, we
cannot run it directly on our dataset to determine its false
positives. Instead, we look at the reported results in Figure
4 of the paper. Overall, BlockGPT achieves a false positive
rate of less than 10% for 58% of the protocols in its scope. As
a comparison, HOUSTON has a false-positive rate of less than
10% for 92.2% of the protocols. Notably, HOUSTON achieves
a false positive rate of 1% or less for 55.7% of the protocols.
TXSPECTOR. TXSPECTOR [82] is a logic-driven framework
that detects attacks by analyzing execution traces. It relies on
user-defined control and data dependencies rules tailored to
specific attack patterns (the original paper covered, for exam-
ple, re-entrancy, unchecked call, and suicidal vulnerabilities).
As a consequence, the range of attack types TXSPECTOR can
detect is limited. When applied to our dataset, it identified only
25 out of 115 attack transactions (21.7%), whereas HOUSTON
achieved a true-positive rate of 94.8%. Moreover, not all
vulnerability types can easily fit into the framework, making
it impractical to rely solely on writing additional custom rules
to achieve more generic detection coverage.
DefiRanger. The system targets price manipulation attacks
on DeFi applications [79] by constructing and analyzing a
cash flow tree. It successfully identifies attacks on several
protocols in our dataset, as detailed in Section 6.2, Table 5 of
their paper. Of the 9 reported attacks, we excluded Plouto
(Binance chain), DRC, and MET (missing transactions’ hashes).
Our evaluation shows that HOUSTON detected all 6 remaining
attacks and flagged the correct transaction as anomalous.
Additionally, our dataset includes 23 other price manipulation

attacks not included in DeFiRanger’s dataset, which it could
plausibly detect (though this is unverified due to lack of open
source). The remaining 86 attacks (74.8%) in our dataset
involve other vulnerability classes and would likely be false
negatives for DeFiRanger (out of scope).
Transaction Length Baseline. It seems to be common wis-
dom in the blockchain community that it is sufficient to look
for abnormally long transactions to detect attacks. While this
might be true for some exploits, we argue that transaction
length is generally a weak signal. To demonstrate this, we
evaluate the transaction-length-based approach by using a
simple heuristic that just measures the length of a transaction
(in terms of the number of function calls performed) and
compares it to the maximum length observed up to that point.
We raise an alert whenever a new transaction is longer than
any observed before. As expected, this basic approach detects
only 46 attacks (40%) out of the total 115.

E. HOUSTON Live Performance Evaluation

It is essential for anomaly detection systems in DeFi to
keep pace with block production. Specifically, in the context
of Ethereum, a system must be able to evaluate all the trans-
actions committed to the latest block in less than 12 seconds
(block-time). Moreover, to offer attack-prevention capabilities
(i.e., identifying attack transactions in the mempool before
they are committed to a block), a system must also manage
the influx of transactions sent to the mempool. Therefore,
it is necessary to test HOUSTON in a real-life setting to
demonstrate how it can keep up with both the pace of the live
production of blocks and the transactions sent to the mempool.
To evaluate HOUSTON as a real-time anomaly detector, we
deploy it live against 20 randomly selected protocols (from
our dataset) that are operational at the time of this experiment
(protocols marked with ⋆ in Table IV, Appendix D). We
deployed HOUSTON to monitor new incoming transactions as
discussed in §IV. HOUSTON analyzed all mainnet transactions
from April 9th to April 28th, 2024 (20 days). This includes
transactions in the mempool and committed blocks.
Transactions Filtering. HOUSTON observed a total of 42.6M
transactions.We discarded 50.2% of them either because they
perform simple ETH transfers (no smart contract involvement),
or because they directly invoke basic functions of well-
established token contracts (e.g., USDC transfer). This step
took a few nanoseconds per transaction, which is negligible.
Tracing Performance. To check if a transaction calls the
monitored protocols, HOUSTON must replay it to collect a
trace. This is because simply checking for direct invocations
is insufficient; internal transactions also need to be considered.
On average, we observed ∼13 transactions per second. Given
the average tracing time of 3 ms per transaction, a single
tracing worker can handle this load in 39 ms when monitoring
all 20 protocols simultaneously. Note that a tracing worker
only requires ∼150MB of RAM and 25% of a CPU core.
Processing Performance. If a transaction involves any of the
contracts in a monitored protocol, HOUSTON needs to extract
the Call Report and the Storage Report 2 . Overall, during

11

live experiments, we observed a total of 95.6K transactions
directed to the monitored protocols. On average, the number
of transactions for which this step is required is about one
transaction per block. Given our average processing time of
180ms, this load can be handled by one processing worker
equipped with ∼1.5GB of RAM and 1 CPU core.
Detection Performance. After processing, HOUSTON per-
forms the following two steps: (1) HOUSTON consults its
models to make a detection decision 5 , and (2), it updates
the models with the new transaction’s information 7 / 8 .
Together, these two operations take, on average, ∼28ms per
transaction. The resources required by a detection worker are
2GB of RAM and 2 cores. Each monitored protocol needs at
least one dedicated detection worker.
Worst Case Performance. The average load for HOUSTON
to monitor 20 protocols is light and could be handled by
one tracing worker, one processing worker, and 20 detection
workers. Of course, our system cannot just be built for the
average case. We also need to take into account bursts of trans-
actions. During our live monitoring, we observed the following
peak instances: A maximum of 362.9 transactions/second that
needed to be traced, as well as 2.2 transactions/second that
required further processing. Moreover, we observed individual
worst-case processing times of 337ms for the tracing worker,
2.9s for the processing worker, and 810ms for the detection
worker. See Appendix C for a summary of average and worst-
case performance (Table II) and transaction load (Table III).
Overall, combining all worst-case instances, HOUSTON would
require 121 tracers, 8 processing workers, and 40 detection
workers (2 per protocol). Given these requirements, HOUSTON
needs ∼110GB of memory and 120 cores to keep pace with
real-world Ethereum mainnet traffic. These requirements can
be matched by a single modern server, such as the one we
used in our evaluation, where we never encountered all worst-
case instances simultaneously. Importantly, we think this ex-
periment provides evidence of feasible real-world deployment.
Should HOUSTON be adopted in an industrial setting, there
are clear engineering venues for achieving faster tracing and
detection times (e.g., using reth [49] instead of Erigon [41],
and re-implementing HOUSTON in Rust [59]).
Live Setup. Our live evaluation used 8 tracers, 4 processing
workers, and 20 detection workers (one per protocol). The
system showed no latency or resource issues: The transaction
queues remained empty, memory peaked at ∼80GB, and CPU
load averaged 8.0 across 112 cores.
Live Monitoring Warnings. During the live evaluation,
HOUSTON kept low false positive rates. Overall, HOUSTON
raised a total of 75 warnings (0.08% of the 95.6K transactions
directed to monitored protocols). For 9 of the 20 monitored
protocols, HOUSTON never raised an alert. For 10 of them,
HOUSTON raised fewer than 10 alerts throughout the 20-
day period. The only exception is conicfinance, which
reported 24 warnings over 901 transactions (2.7%). The reason
for this is that a newly introduced ConicPool address trig-
gered multiple invariant violations at various program points.
Additional Monitoring. We conducted an additional three-

week live experiment (October 27th to November 16th, 2025)
on the same 20 protocols. Across 108.5K related transactions,
HOUSTON generated 71 alerts (0.07%), consistent with the
false-positive rate in the previous period. Manual analysis
confirmed that none were attacks, and no external sources
reported incidents during this period.

F. HOUSTON for other EVM-compatible chains

To further validate the generality of our approach, we ported
HOUSTON to another major EVM-compatible blockchain:
Binance Smart Chain (BSC [6]). In general, three key com-
ponents are required to adapt our system to a new EVM-
compatible chain: (1) a native transaction tracer, (2) a
blockchain index database, and (3) a contract analysis tool
capable of fetching and inspecting smart contracts to extract
their storage layouts and ABIs. To this end, we ported our
Erigon plugin to bsc-erigon [46], we used Dune Analytics [18]
to fetch the protocol’s boundaries and related transactions, and
we adapted the toolchain in Figure 3, Step 1 , to work with
BSC. For this experiment, we consider the incidents listed
on DeFiHackLab [70] that occurred on BSC between May
and October 2025 (20 incidents over six months). Among
these, we discard seven incidents because the vulnerable
contracts are available only in binary form, and an addi-
tional one due to insufficient information about the vulnerable
contract. HOUSTON successfully identifies attacks in 11 of
the remaining 12 incidents, with a low false positive rate of
0.19%. The only undetected case (pdz) does not represent a
genuine detection failure: HOUSTON instead flags an earlier
transaction (0x88f8741d) that occurred 202 days before
the labeled incident and exhibited a highly similar price-
manipulation pattern. Notably, this earlier attack was never
publicly reported; the protocol’s maintainers appear to have
been unaware of it and continued normal operation.

VI. DISCUSSION AND LIMITATIONS

Source Code Availability. The precision of HOUSTON’s
models depends on the availability of contract ABIs and
storage layouts. Although partial information can be inferred
through binary-only analysis [30], [58], [32], accuracy gen-
erally degrades. Accordingly, we assume developers using
HOUSTON have access to their own source code. However,
third parties analyzing unverified contracts must rely on
decompilers to recover ABIs and storage layouts. Notably,
recent advances [22] leveraging LLMs have achieved up to
49.8% success in recompiling binary-only contracts, enabling
the extraction of ABIs and storage layouts. Practically, our
contract processor (Step 1 in Figure 3) would need to be
modified to automatically decompile and recompile unverified
contracts to produce the required artifacts. Once these artifacts
are obtained, the rest of HOUSTON’s pipeline is unchanged.
Private Transactions. HOUSTON can prevent or detect ab-
normal transactions, whether before mining or after inclu-
sion in a block. Clearly, prevention requires the ability to
observe transactions in the mempool. However, under certain
circumstances, this may not be feasible. For example, users

12

https://bscscan.com/tx/0x88f8741d53029512212794a954ab1ac962e180d04ba903137ffd3e6fb94aae91

might utilize private relayers (e.g., Flashbots [1]) or verifiers
could insert transactions themselves before proposing a block.
In such scenarios, a transaction will not be visible in the
mempool, preventing HOUSTON from facilitating preemptive
measures. This limitation could be mitigated if private relayers
and/or verifiers adopt HOUSTON. Notably, the private industry
is currently deploying systems similar to HOUSTON [25],
[34], [36], [51], as a defense-in-depth strategy, demonstrating
the value of such a system. These systems differentiate L2 ser-
vices, which might censor attack transactions at the sequencer
level, and support L1 blockchains in implementing protective
measures when direct censorship is impractical.
Dynamic Adversary (Poisoning). Poisoning HOUSTON is
possible in principle, but not without difficulty. Consider
a contract where functions A and B can change the
openMarket flag. While both functions should be protected
by onlyAdmin, only A enforces it. An attacker observes that
invoking B can close the market and impact the protocol, but
the direct invocations of B would trigger an alert. A feasible
poisoning strategy is to wait for an admin action executed via A
that violates a C1 invariant and, thus, generates an alert. If that
alert is dismissed as an intentional admin action, HOUSTON
would integrate the event into its notion of “normal” behavior.
As a result, future transactions exhibiting the same behavior
will not be flagged, allowing the attacker to call B to close the
market without triggering an alert. This example shows that
even when poisoning is feasible, HOUSTON still raises the
difficulty of successful attacks: Adversaries must align their
actions with rare administrative events and rely on the security
team inadvertently dismissing the initial warning.

VII. RELATED WORK

Smart Contract Security. The most effective way to protect
DeFi protocols is to identify vulnerabilities during develop-
ment, before deployment. To support this goal, the research
community has explored several approaches: static analysis,
formal verification, symbolic execution, and fuzzing. Static
analysis is a technique used to scrutinize a program’s content
and structure without executing it [29], [76], [77], [28], [5],
[23]. Formal verification uses mathematical methods to prove
adherence to certain security properties [60], [26], [67]. Sym-
bolic execution explores a program’s behavior by executing
code using symbolic inputs [4], [43], [32], [45], [74], [63],
[75], [15], [50], [58]. Lastly, fuzzing involves repeatedly exe-
cuting a target contract with many different generated inputs.
[73], [57], [31], [33]. All these techniques have been used
alone or in combination to identify both simple and complex
bugs, such as integer overflows, reentrancy, excessive gas
usage, and unsanitized calls. While identifying attacks before
deployment is an important goal, it is often unattainable.
Therefore, complementary approaches are required, such as
detection (which is the focus of this work) and prevention.
Attack Detection. Several prior works detect attacks by
characterizing the patterns of actions performed by a user or
a smart contract [48], [83], [35], [68]. These papers primarily
focus on detecting Ponzi schemes, phishing, and other scams

directed toward end users. DeFiRanger is a specialized tool to
detect price manipulation attacks [79]. A handful of recent
works attempt to tackle the topic of generalized anomaly
detection for smart contracts. In this work, we discussed
BlockGPT and APE [27], [52]. Other frameworks perform
on-chain anomaly detection, but the alert conditions (i.e., as-
sertions) must be manually annotated [8], [62], [16], [82]. Con-
versely, HOUSTON, does not need any transaction annotations
to deliver off-chain anomaly detection. Several commercial
anomaly detectors have also been developed in the past few
years [38], [51], [34], [25], [36]. These products generally
require developers to manually define custom conditions that
specify which behaviors should be permitted (or prohibited)
during executions, or they rely on flagging transactions orig-
inating from suspicious sources such as sanctioned accounts
or crypto mixers [72]. These conditions are evaluated either
on-chain or off-chain, and any detected violation typically
results in a warning or in the transaction being blocked.
HOUSTON fundamentally differs from these approaches, as
it eliminates the need for manually specified detection rules.
Instead, HOUSTON’s models automatically infer the relevant
signals for a given protocol. Furthermore, HOUSTON does not
depend on external metadata such as transaction provenance,
which is generally an unreliable signal prone to both false
positives and false negatives.
Attack Prevention. Various methods exist to prevent or
mitigate an attack once it is recognized. Zhou et al. observe
that about half of the DeFi protocols they surveyed include
an emergency pause mechanism [87]. Other works develop
automated syntheses of attack-stealing transactions, which are
capable of performing the attack as “white hat” instead of the
true attacker [52], [85], [80]. Notably, HOUSTON can act as
the detection component that triggers such front-running tools.
Invariant Inference. Daikon is a system that infers likely
invariants from program traces [19]. Liu et al. applied Daikon
to smart contracts through their tool, InvCon, which extracts
simple invariants from ERC20 token contracts. However,
InvCon has limitations, as it requires manual interpretation of
invariant violations by a human operator. In contrast, HOUS-
TON provides a generic analysis to extract likely invariants
from any smart contract, which can be continuously refined at
runtime. This allows the invariants to adapt dynamically during
live monitoring. Furthermore, HOUSTON automatically checks
for violations, facilitating the timely detection of anomalous
behavior. Chen et al. [9] utilized invariant templates to identify
exploits related to known smart contract vulnerabilities, which
requires manual annotation of template-relevant variables. In
contrast, HOUSTON’s models are fully automated and can
detect attack transactions as anomalies without requiring adap-
tation to specific attack types.

VIII. CONCLUSIONS

In this paper, we introduce HOUSTON, a novel anomaly de-
tection system for identifying attacks against Ethereum-based
DeFi protocols. HOUSTON focuses on detecting deviations in

13

protocol execution rather than recognizing known vulnerabil-
ity patterns. HOUSTON distinguishes itself by (1) detecting
anomalies through the analysis of the protocol interactions and
likely invariants, and (2) adapting and evolving by ingesting
new data from transactions. For evaluation, we used a compre-
hensive dataset of 115 attacks on DeFi protocols. The efficacy
of HOUSTON, demonstrated through a comparative analysis
with state-of-the-art systems, shows its superior detection rate
of 94.8% with a low false-positives rate of 0.16%. Experiments
on live traffic confirm HOUSTON’s efficiency and its low false-
positive rate in real-world deployments.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under grant numbers CNS-2334709 and
IIS-2229876 and is supported in part by funds provided by the
National Science Foundation, by the Department of Homeland
Security, and by IBM. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation or its federal agency and industry
partners.

REFERENCES

[1] Flashbots. https://www.flashbots.net/.
[2] Metamask. https://metamask.io/.
[3] blocksecteam. Revest Finance Vulnerability, 2022.
[4] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher

Kruegel, and Giovanni Vigna. Sailfish: Vetting smart contract state-
inconsistency bugs in seconds. In IEEE SP, 2022.

[5] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and
Yannis Smaragdakis. Ethainter: a smart contract security analyzer for
composite vulnerabilities. In PLDI, 2020.

[6] BSC. Bnb chain. https://www.bnbchain.org/en/bnb-smart-chain, 2025.
[7] chainsec. Timeline of defi exploits. https://chainsec.io/defi-hacks/.
[8] Ting Chen, Rong Cao, Ting Li, Xiapu Luo, Guofei Gu, Yufei Zhang,

Zhou Liao, Hang Zhu, Gang Chen, Zheyuan He, Yuxing Tang, Xiaodong
Lin, and Xiaosong Zhang. SODA: A generic online detection framework
for smart contracts. In NDSS, 2020.

[9] Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long.
Demystifying invariant effectiveness for securing smart contracts. In
ESEC/FSE 2024, 2024.

[10] CNBC. Defi is the wild-west of crypto, 2021.
[11] Coinbase. Euler Compromise Investigation, 2023.
[12] Coindesk. Axie infinity ronin network suffers 625m exploit, 2022.
[13] Coindesk. Nomad Drained of Nearly $200M in Exploit, 2022.
[14] Cointelegraph. Euler finance attack how it happened and what can be

learned, 2023.
[15] ConsenSys. Mythril. https://github.com/ConsenSys/mythril, 2022.
[16] Thomas Cook, Alex Latham, and Jae Hyung Lee. Dappguard: Active

monitoring and defense for solidity smart contracts. 2017.
[17] DeFiLlama. Dashboard. https://defillama.com/chain/Ethereum, 2024.
[18] dune.com. Dune. https://dune.com/, 2025.
[19] Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin.

Dynamically discovering likely program invariants to support program
evolution. In proceedings of ICSE, 1999.

[20] Michael D Ernst, Adam Czeisler, William G Griswold, and David
Notkin. Quickly detecting relevant program invariants. In Proceedings
of the 22nd international conference on Software engineering, 2000.

[21] Ethereum. ERC-20 Token Standard, 2023.
[22] evmdecompiler. evmdecompiler. https://evmdecompiler.com/, 2025.
[23] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: A static analysis

framework for smart contracts. In International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB), 2019.

[24] Forbes. Terrorists, north korea and other illicit actors move beyond
bitcoin, 2023.

[25] Forta. What is forta firewall: Redefining onchain security, 2025.

[26] Joel Frank, Cornelius Aschermann, and Thorsten Holz. ETHBMC:
A bounded model checker for smart contracts. In USENIX Security
Symposium, 2020.

[27] Yu Gai, Liyi Zhou, Kaihua Qin, Dawn Song, and Arthur Gervais.
Blockchain large language models. arXiv:2304.12749, 2023.

[28] Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman. Etainter: Detect-
ing gas-related vulnerabilities in smart contracts. ISSTA 2022. ACM.

[29] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. Madmax: Analyzing the out-of-gas
world of smart contracts. Commun. ACM, 63(10), 2020.

[30] Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smarag-
dakis. Elipmoc: advanced decompilation of ethereum smart contracts.
Proceedings of the ACM on Programming Languages, 2022.

[31] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce.
Echidna: Effective, usable, and fast fuzzing for smart contracts. In ISSTA.
ACM, 2020.

[32] Fabio Gritti, Nicola Ruaro, Robert McLaughlin, Priyanka Bose, Dipan-
jan Das, Ilya Grishchenko, Christopher Kruegel, and Giovanni Vigna.
Confusum contractum: confused deputy vulnerabilities in ethereum
smart contracts. In USENIX Security Symposium, 2023.

[33] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov,
and Martin Vechev. Learning to fuzz from symbolic execution with
application to smart contracts. In ACM CCS, 2019.

[34] hexagate. Hexagate, 2025.
[35] Teng Hu, Xiaolei Liu, Ting Chen, Xiaosong Zhang, Xiaoming Huang,

Weina Niu, Jiazhong Lu, Kun Zhou, and Yuan Liu. Transaction-
based classification and detection approach for ethereum smart contract.
Information Processing & Management, 2021.

[36] hypernative. Hypernative, 2025.
[37] Immunefi. Hack Analysis: Beanstalk Governance attack, 2022.
[38] ironblocks. ironblocks. https://ironblocks.com/, 2025.
[39] Wall Street Journal. How north korea’s hacker army stole $3 billion in

crypto, funding nuclear program, 2023.
[40] Johannes Krupp and Christian Rossow. teEther: Gnawing at ethereum to

automatically exploit smart contracts. In USENIX Security Symposium,
2018.

[41] ledgerwatch. Erigon. https://github.com/ledgerwatch/erigon, 2023.
[42] Junrui Liu, Yanju Chen, Bryan Tan, Isil Dillig, and Yu Feng. Learning

contract invariants using reinforcement learning. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software
Engineering, 2022.

[43] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In ACM CCS. ACM, 2016.

[44] Xingyu Lyu, Mengya Zhang, Xiaokuan Zhang, Jianyu Niu, Yinqian
Zhang, and Zhiqiang Lin. An empirical study on ethereum private
transactions and the security implications. arXiv:2208.02858, 2022.

[45] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas
Hobor. Finding the greedy, prodigal, and suicidal contracts at scale.
ACSAC 18. ACM, 2018.

[46] node real. bsc-erigon. https://github.com/node-real/bsc-erigon, 2025.
[47] OpenAI. Gpt-4.1. OpenAI API, April 2025. Large language model;

context window 1 million tokens; API access.
[48] Bofeng Pan, Natalia Stakhanova, and Zhongwen Zhu. Ethershield: Time

interval analysis for detection of malicious behavior on ethereum. ACM
Trans. Internet Technol., 2023.

[49] paradigm. Blazing-fast implementation of the Ethereum protocol, 2025.
[50] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-

Cohen, and Martin Vechev. Verx: Safety verification of smart contracts.
In 2020 IEEE symposium on security and privacy. IEEE, 2020.

[51] phylax. Phylax firewall. https://phylax.systems/, 2025.
[52] Kaihua Qin, Stefanos Chaliasos, Liyi Zhou, Benjamin Livshits,

Dawn Song, and Arthur Gervais. The blockchain imitation game.
arXiv:2303.17877, 2023.

[53] Kaihua Qin, Zhe Ye, Zhun Wang, Weilin Li, Liyi Zhou, Chao Zhang,
Dawn Song, and Arthur Gervais. Towards automated security analysis of
smart contracts based on execution property graph. arXiv:2305.14046,
2023.

[54] Kaihua Qin, Liyi Zhou, Yaroslav Afonin, Ludovico Lazzaretti, and
Arthur Gervais. Cefi vs. defi–comparing centralized to decentralized
finance. arXiv:2106.08157, 2021.

[55] QuillAudits. Decoding euler finance’s $197 million exploit, 2023.
[56] Rekt. Rekt, leaderboard. https://rekt.news/leaderboard/, 2022.

14

https://www.flashbots.net/
https://metamask.io/
https://blocksecteam.medium.com/revest-finance-vulnerabilities-more-than-re-entrancy-1609957b742f
https://www.bnbchain.org/en/bnb-smart-chain
https://chainsec.io/defi-hacks/
https://www.coinbase.com/blog/euler-compromise-investigation-part-1-the-exploit
https://www.coindesk.com/tech/2022/08/02/nomad-bridge-drained-of-nearly-200-million-in-exploit
https://github.com/ConsenSys/mythril
https://defillama.com/chain/Ethereum
https://dune.com/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://evmdecompiler.com/
https://www.chainalysis.com/product/hexagate/
https://www.hypernative.io/blog/hypernative-to-bolster-on-chain-security-across-the-linea-network
https://medium.com/immunefi/hack-analysis-beanstalk-governance-attack-april-2022-f42788fc821e
https://ironblocks.com/
https://github.com/ledgerwatch/erigon
https://github.com/node-real/bsc-erigon
https://github.com/paradigmxyz/reth
https://phylax.systems/
https://rekt.news/leaderboard/

[57] Michael Rodler, David Paaßen, Wenting Li, Lukas Bernhard, Thorsten
Holz, Ghassan Karame, and Lucas Davi. Efcf: High performance smart
contract fuzzing for exploit generation. In EuroS&P, 2023.

[58] Nicola Ruaro, Fabio Gritti, Robert McLaughlin, Ilya Grishchenko,
Christopher Kruegel, and Giovanni Vigna. Not your type! detecting
storage collision vulnerabilities in ethereum smart contracts. In Network
and Distributed Systems Security Symposium 2024, 2024.

[59] Rust-lang. Rust language. https://www.rust-lang.org/, 2025.
[60] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo

Maffei. Ethor: Practical and provably sound static analysis of ethereum
smart contracts. In CCS, 2020.

[61] Kudelski Security. The poly network attack, 2021.
[62] R. K. Shyamasundar. A framework of runtime monitoring for correct

execution of smart contracts. In Blockchain ICBC 2022, 2022.
[63] Sunbeom So, Seongjoon Hong, and Hakjoo Oh. SmarTest: Effectively

hunting vulnerable transaction sequences in smart contracts through
language Model-Guided symbolic execution. In USENIX Security
Symposium, 2021.

[64] soliditylang. Contract ABI Specification, 2023.
[65] soliditylang. Storage Layout, 2023.
[66] Soliduslabs. Rug pull crypto scams, 2022.
[67] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and

Isil Dillig. Smartpulse: Automated checking of temporal properties in
smart contracts. In 2021 IEEE SP, 2021.

[68] Liya Su, Xinyue Shen, Xiangyu Du, Xiaojing Liao, XiaoFeng Wang,
Luyi Xing, and Baoxu Liu. Evil under the sun: understanding and
discovering attacks on ethereum decentralized applications. In USENIX
Security Symposium, 2021.

[69] Tianle Sun, Ningyu He, Jiang Xiao, Yinliang Yue, Xiapu Luo, and
Haoyu Wang. All your tokens are belong to us: Demystifying address
verification vulnerabilities in solidity smart contracts. arXiv:2405.20561,
2024.

[70] SunWeb3Sec. DeFiHackLabs, 2025.
[71] thestreet.com. Crypto stolen in 2024 tops 1.2 billion, 2024.
[72] TornadoCash. Tornadocash. https://tornado.cash/, 2025.
[73] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu

State. Confuzzius: A data dependency-aware hybrid fuzzer for smart
contracts. In EuroS&P, 2021.

[74] Christof Ferreira Torres, Julian Schütte, and Radu State. Osiris: Hunting
for integer bugs in ethereum smart contracts. In ACSAC 18. ACM, 2018.

[75] Christof Ferreira Torres, Mathis Steichen, and Radu State. The art of the
scam: Demystifying honeypots in ethereum smart contracts. In USENIX
Security Symposium, 2019.

[76] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Bünzli, and Martin Vechev. Securify: Practical security analysis
of smart contracts. In ACM CCS, 2018.

[77] Shuai Wang, Chengyu Zhang, and Zhendong Su. Detecting nonde-
terministic payment bugs in ethereum smart contracts. Proc. ACM
Program. Lang., 3(OOPSLA), 2019.

[78] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 2014.

[79] Siwei Wu, Dabao Wang, Jianting He, Yajin Zhou, Lei Wu, Xingliang
Yuan, Qinming He, and Kui Ren. Defiranger: Detecting price manipu-
lation attacks on defi applications. arXiv:2104.15068, 2021.

[80] Yue Xue, Jialu Fu, Shen Su, Zakirul Alam Bhuiyan, Jing Qiu, Hui Lu,
Ning Hu, and Zhihong Tian. Preventing price manipulation attack by
front-running. In International Conference on Artificial Intelligence and
Security. Springer, 2022.

[81] ycharts. Ethereum Market Cap, 2024.
[82] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin.

TXSPECTOR: Uncovering attacks in ethereum from transactions. In
USENIX Security Symposium, 2020.

[83] Yanmei Zhang, Wenqiang Yu, Ziyu Li, Salman Raza, and Huaihu Cao.
Detecting Ethereum Ponzi Schemes Based on Improved LightGBM
Algorithm. IEEE Transactions on Computational Social Systems, 2022.

[84] Zhuo Zhang, Zhiqiang Lin, Marcelo Morales, Xiangyu Zhang, and
Kaiyuan Zhang. Your exploit is mine: Instantly synthesizing counterat-
tack smart contract. In USENIX Security Symposium, 2023.

[85] Zhuo Zhang, Zhiqiang Lin, Marcelo Morales, Xiangyu Zhang, and
Kaiyuan Zhang. Your exploit is mine: Instantly synthesizing counterat-
tack smart contract. In USENIX Security Symposium, 2023.

[86] Zhuo Zhang, Brian Zhang, Wen Xu, and Zhiqiang Lin. Demystifying
exploitable bugs in smart contracts. In ICSE, 2023.

[87] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng
Wang, Ye Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and
Arthur Gervais. Sok: Decentralized finance (defi) attacks. In 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 2023.

APPENDIX A
STORAGE VARIABLES DECODER

The storage layout report emitted by the compiler provides
a high-level overview of the storage structure. However, this
report does not allow direct mapping of a given storage access
(i.e., SSTORE) to the associated source code variables. For
example, the storage layout may show that at slot id 0 there is a
static array my_struct[100] with 100 contiguous elements
– where my_struct is a simple data structure with few
fields packed in a single storage slot. Given an SSTORE to
slot 0x3, to understand which variables are being overwritten,
one would need to automatically recognize that slot id 0x3
still falls within the definition of the static array. To perform
the translation from the compiler-generated storage report to
a programmatically usable data structure, we implemented an
algorithm that recursively resolves every type definition within
the storage layout and provides a “flat” view of the contract’s
storage structure.
Complex Variable Types. Complex variable types, such
as mappings, and nested data structures are characterized
by storage access patterns that use the KECCAK256 hash
function to derive the accessed slot id. These ids are calculated
using either the accessed index (for a dynamic array) or the
accessed key (for a dynamic mapping). As a result, since
there are countless ways to access the same data structure, it
is impractical to enumerate all of them in the storage layout
report. Instead, we characterize accesses to dynamic slots by
analyzing the sequence of operations that the EVM executes
(during a transaction) to calculate the slot id. For example,
consider the KECCAK256 look-up table structure shown in
Table I, resulting from the look-up users[“admin”][“savings”].
In this example, users is a nested data structure defined
as map1[string:map2[string:uint256]]. To
perform the look-up, the following operations are executed:
KECCAK256(KEY2.(KECCAK256(KEY1.BASE1)),
where KEY1= “admin”, BASE1=0x0, KEY2=“savings”, and
BASE2=0xbc36789e. In this example, the elements nested

TABLE I: Example of the KECCAK256 look-up table col-
lected during the transaction tracing (hashes are truncated
for readability). To resolve an SSTORE that writes at slot
id 0xd44ee5c9, one can do a reverse-lookup in the table
and extract the BASE in the pre-image until we identify a
static slot. For example, here the look-up sequence would be:
0xd44ee5c9→0xbc36789e→0x0. This shows the access
pattern [0x0, KECCAK256, KECCAK256] that reveals ac-
cess to an element of a nested mapping.

Preimage Image
admin.0x0 0xbc36789e
savings.0xbc36789e 0xd44ee5c9

15

https://www.rust-lang.org/
https://docs.soliditylang.org/en/develop/abi-spec.html
https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html
https://www.soliduslabs.com/post/rug-pull-crypto-scams
https://github.com/SunWeb3Sec/DeFiHackLabs
https://www.thestreet.com/crypto/markets/crypto-stolen-in-august-declines-but-2024-losses-already-top-1-2-billion
https://tornado.cash/
https://ycharts.com/indicators/ethereum_market_cap

within map2 are uniquely identified by the access pattern
[0x0, KECCAK256, KECCAK256].

Given a slot id, the (flattened) contract’s storage layout, and
the KECCAK256 look-up table collected during the transaction
tracing, the function SVD will: (1) if the slot id corresponds
to a static slot, simply return the corresponding slot infor-
mation from the storage layout; otherwise, (2) if the slot
id is calculated using the KECCAK256 hash function (e.g.,
0xd44ee5c9 in TableI), iteratively perform reverse-lookups
of the image within the KECCAK256 look-up table (Table I)
to identify the corresponding dynamic data structure and its
base slot id. Once this is identified, the SVD procedure returns
precise slot packing information using the storage layout.

APPENDIX B
ABLATION STUDY

In this paper, we argue that high-quality signals are critical
for obtaining accurate detection results. To support this claim,
this section presents the results of two ablation studies.
Protocol Interaction versus All Interactions. First, we show
how focusing on critical functions (§ IV-C) – rather than on all
function calls – in a trace is crucial to lower false positives.
To this end, we rerun our experiments with an Interaction
Model that computes fingerprints based on all function calls.
Figure 7 shows the results and demonstrates that the false
positives drastically increases when using the full call trace.
Specifically, without focusing on critical functions, Interaction
Model produces 192 times more false positives (1,258,841)
than the paper setup that facilities the interaction simplification
techniques. This highlights the importance of selective atten-
tion to relevant interactions for achieving accurate detection.
Fine- versus Coarse-Grained Storage Analysis. The ability
to identify the type and layout of storage variables (fine-
grained storage analysis) is important for precise invariant
generation, especially when protocols pack multiple variables
in the same storage slot. For example, the value 0x40301020
might represent two different uint16 variables – 0x4030
and 0x1020 – used in two different parts of the program.
Interpreting the whole slot as a single uint256 variable
(coarse-grained storage analysis) would lead to imprecise (or
incomplete) invariants that negatively affect the decisions of
the Invariant Model. To assess the impact of the analysis
granularity, we modify the function SVD (§ IV-A) to always
report one single variable per slot of type uint256.

The Invariant Model detected four additional attacks with
fine-grained storage analysis. We use the sealfinance
incident to illustrate how coarse-grained analysis can lead to
imprecise detection. The attack transaction violated the invari-
ant in function swap: the argument amountOut must be less
or equal to storage variable reserve. The coarse-grained
analysis failed to identify this invariant because reserve was
packed in the same slot with two other variables.

For false positive, the two configurations had similar per-
formances, with fine-grained analysis yielding a slightly lower
(0.7%) total number of false alarms. With more refined storage

TABLE II: HOUSTON execution time (in second).

Trace Process Detect End-to-End

mean 0.003 0.180 0.028 0.211
median 0.003 0.133 0.013 0.148
99% 0.006 1.105 0.191 1.165
max 0.337 2.912 0.810 3.085

TABLE III: Transaction load for HOUSTON during live exper-
iments (number of transactions per second).

Filter Trace Process / Detect

mean 24.9 12.5 0.1
median 24.2 12.1 0.0
99% 46.4 24.1 0.4
max 725.0 362.9 2.2

understanding, the precision of invariants improves. Mean-
while, the sheer number of variables and invariants also grows,
which inevitably leads to an increase in false positives. These
two opposing forces play out differently across protocols, and
tend to balance out when considered across the entire dataset.

APPENDIX C
LIVE EXPERIMENTS PERFORMANCE STATISTICS

HOUSTON performs the following procedures during opera-
tion: (1) Trace: Upon spotting a new transaction, HOUSTON
collects the execution trace (using our custom plugin) from
the Ethereum node. (2) Process: HOUSTON parses the raw
execution trace, extracts relevant information, and turns it
into the format needed for further analysis. (3) Detect: The
Interaction Model and the Invariant Model check for anomaly
and raise warnings if necessary. HOUSTON then integrates new
transaction data into its models.

The time statistics for these procedures, along with the end-
to-end execution time (the cumulative time taken by steps (1)-
(3)), are detailed in Table II. We also provide statistics about
the load of Ethereum mainnet traffic HOUSTON handled during
the live experiments in Table III.

0% 20% 40% 60% 80%
False Positive Rate

0
(0%)

20
(17%)

40
(35%)

60
(52%)

80
(70%)

100
(87%)

Nu
m

be
r o

f P
ro

to
co

ls

Interaction Model: Protocol Interaction
Interaction Model: All Interactions

Fig. 7: Cumulative distribution of false positive rates of the
Interaction Model with two different configurations.

16

APPENDIX D
HOUSTON RESULTS OVERVIEW

TABLE IV: HOUSTON Historical Evaluation Results. ✓ represents true positive, ✗ represents false negative. Column Tot
TXs is the total amount of transactions available for the protocol. Column Lifespan represents the number of days the
protocol had been active prior to the attack. Column FP shows the total amount (and percentage) of false positive transactions
in the Tot TXs. Column FP/d shows the average daily false positive alerts for a protocol. Column Inv. FP is the absolute
number of false positives reported by the Invariant Model. Column Int. FP reports the absolute number of false positives
reported by the Interaction Model. Column Inv. and Int. represents the decision of each model regarding the attack
transaction. Column HOUSTON is the final decision taken by our system. The BlockGPT [27], APE [52], TXSPECTOR [82],
and DeFiRanger [79] columns show the results of corresponding systems. Symbol - means that the protocol was not in
their dataset (when we do not have access to the tool to apply to our dataset). Specifically, for BlockGPT, ✓1 shows that the
attack was ranked as the most abnormal transaction, ✓2 as the second most abnormal transaction, and ✓3 as the third most
abnormal one. Column Longest reports the results of the transaction length baseline. Finally, we use the symbol ⋆ to identify
protocols that were part of our live monitoring evaluation.

Protocol Tot TXs Lifespan FP (%) FP/d Inv. FP Int. FP Inv. Int. HOUSTON BlockGPT APE TXSPECTOR DeFiRanger Longest
1 polynetwork ⋆ 57,140 363 3 (0.0%) 0.0 0 3 ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗
2 grok 66,790 6 7 (0.0%) 1.2 0 7 ✗ ✓ ✓ - - ✓ ✗ ✗
3 teamfinance ⋆ 30,619 456 15 (0.0%) 0.0 0 15 ✗ ✓ ✓ - - ✗ ✗ ✓
4 mcc 59,801 536 26 (0.0%) 0.0 12 14 ✓ ✓ ✓ - - ✓ ✓ ✓
5 loopring ⋆ 248,781 1142 36 (0.0%) 0.0 13 26 ✓ ✗ ✓ - - ✗ ✓ ✗
6 umbrellanetwork ⋆ 139,042 405 42 (0.0%) 0.1 27 15 ✓ ✗ ✓ - ✗ ✗ ✗ ✗
7 shanshu ⋆ 173,121 91 42 (0.0%) 0.5 28 15 ✗ ✓ ✓ - - ✗ ✓ ✗
8 audius 268,109 640 77 (0.0%) 0.1 45 33 ✓ ✓ ✓ - ✗ ✗ ✗ ✗
9 kashi ⋆ 753,725 531 128 (0.0%) 0.2 35 97 ✓ ✓ ✓ - - ✗ ✓ ✗
10 sandboxland 1,079,908 833 231 (0.0%) 0.3 105 134 ✗ ✓ ✓ - ✗ ✗ ✗ ✗
11 game 4,276 1 6 (0.1%) 6.0 0 6 ✗ ✓ ✓ - - ✓ ✗ ✓
12 dexible 22,609 1074 24 (0.1%) 0.0 5 19 ✗ ✓ ✓ - - ✗ ✗ ✗
13 btc20 55,054 66 30 (0.1%) 0.5 12 21 ✗ ✓ ✓ - - ✗ ✓ ✓
14 compounderfinance 40,993 942 37 (0.1%) 0.0 20 20 ✓ ✓ ✓ - - ✗ ✓ ✗
15 kyberswap 59,986 767 42 (0.1%) 0.1 20 22 ✗ ✓ ✓ - - ✗ ✗ ✗
16 nfttrader 42,115 998 45 (0.1%) 0.0 23 22 ✓ ✓ ✓ - - ✗ ✗ ✗
17 balancer 61,931 31 57 (0.1%) 1.8 16 41 ✓ ✓ ✓ ✗ - ✓ ✓ ✓
18 coverprotocol 105,424 64 61 (0.1%) 1.0 18 45 ✓ ✗ ✓ ✗ - ✗ ✗ ✗
19 sealfinance 65,593 53 96 (0.1%) 1.8 73 25 ✓ ✗ ✓ - - ✓ ✓ ✗
20 thorchain ⋆ 213,250 191 120 (0.1%) 0.6 93 30 ✓ ✗ ✓ ✗ - ✗ ✗ ✗
21 harvestfinance ⋆ 217,992 56 151 (0.1%) 2.7 137 16 ✗ ✓ ✓ ✗ - ✓ ✓ ✓
22 indexedfinance ⋆ 211,104 317 214 (0.1%) 0.7 89 132 ✓ ✓ ✓ ✓3 ✗ ✓ ✗ ✓
23 mimspell 390,419 980 376 (0.1%) 0.4 115 280 ✓ ✓ ✓ - - ✗ ✗ ✗
24 wiselending 382,780 2133 415 (0.1%) 0.2 173 259 ✗ ✓ ✓ - - ✗ ✗ ✗
25 valuedefi ⋆ 655,019 90 489 (0.1%) 5.4 384 110 ✓ ✓ ✓ ✓1 - ✗ ✓ ✗
26 bzxprotocol 365,787 1239 515 (0.1%) 0.4 338 199 ✗ ✓ ✓ - - ✗ ✓ ✗
27 visorfinance 1,745 110 3 (0.2%) 0.0 0 3 ✗ ✓ ✓ ✓1 ✗ ✗ ✗ ✓
28 tinu 3,668 586 6 (0.2%) 0.0 1 5 ✓ ✓ ✓ - - ✗ ✓ ✗
29 shoco 7,760 594 16 (0.2%) 0.0 12 6 ✓ ✓ ✓ - - ✓ ✓ ✗
30 ktaf 37,104 1291 89 (0.2%) 0.1 40 50 ✓ ✓ ✓ - - ✗ ✓ ✓
31 conicfinance ⋆ 47,208 477 111 (0.2%) 0.2 53 67 ✓ ✓ ✓ - - ✗ ✗ ✓
32 klondikefinance 60,204 231 129 (0.2%) 0.6 98 38 ✓ ✓ ✓ ✓1 ✓ ✗ ✗ ✗
33 alphafinance ⋆ 57,424 130 135 (0.2%) 1.0 98 48 ✓ ✓ ✓ ✗ - ✗ ✗ ✗
34 floorprotocol 106,524 65 226 (0.2%) 3.5 191 35 ✗ ✓ ✓ - - ✗ ✗ ✗
35 inversefinance ⋆ 139,687 478 247 (0.2%) 0.5 136 123 ✗ ✓ ✓ ✓2 ✗ ✗ ✓ ✗
36 creamfinance ⋆ 587,106 393 958 (0.2%) 2.4 717 275 ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗
37 penpiexyzio 844,841 688 2,010 (0.2%) 2.9 1,333 713 ✗ ✓ ✓ - - ✗ ✓ ✗
38 deeznutz 860 1 3 (0.3%) 3.0 0 3 ✗ ✓ ✓ - - ✗ ✗ ✓
39 btfinance 11,483 69 38 (0.3%) 0.6 20 18 ✗ ✓ ✓ ✓1 - ✗ ✓ ✓
40 xstableprotocol 15,735 563 48 (0.3%) 0.1 26 24 ✓ ✓ ✓ - - ✗ ✗ ✓
41 revestfinance ⋆ 22,438 187 57 (0.3%) 0.3 30 31 ✓ ✓ ✓ ✓1 ✗ ✓ ✗ ✗
42 floordao 25,605 1081 78 (0.3%) 0.1 27 56 ✓ ✓ ✓ - - ✓ ✗ ✓
43 saddlefinance 47,308 466 132 (0.3%) 0.3 95 43 ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗
44 uniclynft 56,558 900 149 (0.3%) 0.2 77 80 ✗ ✓ ✓ - - ✓ ✗ ✗
45 hypr 1,137 29 5 (0.4%) 0.2 0 5 ✓ ✓ ✓ - - ✗ ✗ ✓
46 veth 7,729 52 33 (0.4%) 0.6 21 13 ✓ ✗ ✓ ✓3 - ✓ ✗ ✗
47 raftfi 31,214 750 128 (0.4%) 0.2 69 70 ✗ ✓ ✓ - - ✗ ✓ ✓
48 euler ⋆ 101,868 469 421 (0.4%) 0.9 257 182 ✓ ✓ ✓ - - ✗ ✗ ✗
49 0x0dex 2,590 106 12 (0.5%) 0.1 8 4 ✓ ✓ ✓ - - ✗ ✗ ✓

Continued on next page

17

TABLE IV – continued from previous page
Protocol Tot TXs Lifespan FP (%) FP/d Inv. FP Int. FP Inv. Int. HOUSTON BlockGPT APE TXSPECTOR DeFiRanger Longest

50 sodafinance 7,566 2 40 (0.5%) 20.0 28 16 ✗ ✓ ✓ ✗ - ✗ ✗ ✗
51 dodo ⋆ 19,218 46 94 (0.5%) 2.0 42 55 ✓ ✓ ✓ ✓1 - ✗ ✗ ✗
52 picklefinance 33,367 54 182 (0.5%) 3.4 139 56 ✓ ✓ ✓ ✗ - ✗ ✗ ✗
53 qtntoken 1,877 541 12 (0.6%) 0.0 5 8 ✗ ✓ ✓ - - ✗ ✗ ✓
54 thenftv2 14,194 923 88 (0.6%) 0.1 50 45 ✗ ✓ ✓ - - ✗ ✗ ✗
55 prismafi 134,389 248 871 (0.6%) 3.5 144 743 ✗ ✓ ✓ - - ✗ ✗ ✗
56 bbt 140 54 1 (0.7%) 0.0 0 1 ✓ ✓ ✓ - - ✓ ✗ ✗
57 jay 1,000 747 8 (0.8%) 0.0 1 7 ✓ ✓ ✓ - - ✗ ✗ ✗
58 xtoken 9,206 116 73 (0.8%) 0.6 33 42 ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓
59 zenterest 85,332 1325 716 (0.8%) 0.5 651 82 ✗ ✓ ✓ - - ✗ ✗ ✗
60 pineprotocol 10,749 684 92 (0.9%) 0.1 25 70 ✗ ✓ ✓ - - ✗ ✗ ✗
61 n00dtoken 2,016 49 22 (1.1%) 0.4 12 10 ✓ ✓ ✓ - - ✓ ✗ ✓
62 popsiclefinance 3,909 40 43 (1.1%) 1.1 38 5 ✓ ✓ ✓ ✓1 ✓ ✗ ✗ ✓
63 blueberryprotocol 1,520 32 19 (1.2%) 0.6 9 11 ✓ ✓ ✓ - - ✓ ✗ ✗
64 dfxfinance 3,243 344 39 (1.2%) 0.1 10 29 ✗ ✓ ✓ - - ✓ ✗ ✗
65 olympusdao ⋆ 3,557 254 44 (1.2%) 0.2 5 40 ✗ ✓ ✓ - - ✗ ✗ ✗
66 convergence 11,960 184 147 (1.2%) 0.8 46 105 ✓ ✗ ✓ - - ✗ ✗ ✗
67 deusdao 1,339 209 18 (1.3%) 0.1 9 12 ✓ ✗ ✓ - - ✗ ✗ ✗
68 barleyfinance 2,294 3 29 (1.3%) 9.7 10 19 ✓ ✓ ✓ - - ✗ ✗ ✓
69 affinedefi 4,532 523 60 (1.3%) 0.1 11 51 ✓ ✓ ✓ - - ✗ ✗ ✗
70 paraspacenft 40,264 106 574 (1.4%) 5.4 72 518 ✓ ✓ ✓ - - ✗ ✓ ✗
71 luckytigernft 579 28 10 (1.7%) 0.4 4 6 ✗ ✓ ✓ - - ✗ ✗ ✓
72 fulcrum ⋆ 20,309 421 349 (1.7%) 0.8 270 81 ✗ ✓ ✓ ✗ - ✗ ✗ ✗
73 filxdn404 339 107 6 (1.8%) 0.1 0 6 ✓ ✓ ✓ - - ✗ ✗ ✓
74 sturdyfinance 8,479 384 159 (1.9%) 0.4 75 99 ✓ ✓ ✓ - - ✗ ✓ ✓
75 auctus 4,617 675 98 (2.1%) 0.1 58 44 ✓ ✓ ✓ - ✓ ✗ ✗ ✓
76 punkprotocol 322 113 7 (2.2%) 0.1 2 5 ✓ ✓ ✓ ✓1 ✗ ✗ ✗ ✓
77 gain 1,574 581 34 (2.2%) 0.1 12 28 ✗ ✓ ✓ - - ✓ ✗ ✓
78 zunamiprotocol 5,850 522 127 (2.2%) 0.2 44 91 ✓ ✗ ✓ - - ✗ ✓ ✗
79 baconprotocol 1,148 220 27 (2.4%) 0.1 5 22 ✗ ✓ ✓ - ✗ ✗ ✗ ✗
80 warpfinance 475 2 12 (2.5%) 6.0 4 8 ✗ ✓ ✓ ✓1 - ✗ ✓ ✓
81 rubic 725 122 18 (2.5%) 0.1 9 9 ✓ ✓ ✓ - - ✗ ✗ ✓
82 monoxfinance 1,066 46 27 (2.5%) 0.6 14 13 ✓ ✓ ✓ - ✗ ✗ ✗ ✓
83 xcarnival 1,149 21 30 (2.6%) 1.4 17 15 ✗ ✓ ✓ - ✗ ✗ ✗ ✓
84 paraswap 686 7 19 (2.8%) 2.7 6 13 ✗ ✓ ✓ - - ✗ ✗ ✗
85 wildcredit 2,913 33 83 (2.8%) 2.5 37 50 ✓ ✓ ✓ ✓1 - ✗ ✗ ✗
86 cheesebank 1,800 41 52 (2.9%) 1.3 37 16 ✗ ✓ ✓ ✓1 - ✗ ✓ ✓
87 juice 93 1 3 (3.2%) 3.0 0 3 ✗ ✓ ✓ - - ✗ ✗ ✗
88 astridprotocol 371 22 15 (4.0%) 0.7 8 9 ✗ ✓ ✓ - - ✓ ✗ ✓
89 uwerx 145 161 6 (4.1%) 0.0 4 2 ✓ ✓ ✓ - - ✗ ✗ ✗
90 templedao 545 133 25 (4.6%) 0.2 5 23 ✓ ✓ ✓ - - ✗ ✗ ✗
91 particletrade 303 161 16 (5.3%) 0.1 2 15 ✓ ✓ ✓ - - ✗ ✗ ✗
92 peapodsfinance 712 641 38 (5.3%) 0.1 8 34 ✗ ✓ ✓ - - ✗ ✗ ✗
93 ruggedart 116 10 7 (6.0%) 0.7 0 7 ✗ ✓ ✓ - - ✓ ✗ ✗
94 gooddollar 778 752 48 (6.2%) 0.1 16 35 ✗ ✓ ✓ - - ✓ ✗ ✓
95 hopelend 538 73 34 (6.3%) 0.5 11 25 ✓ ✓ ✓ - - ✗ ✗ ✓
96 omninft 255 26 19 (7.5%) 0.7 3 16 ✓ ✓ ✓ - ✗ ✗ ✗ ✓
97 levusdc 118 213 9 (7.6%) 0.0 3 7 ✗ ✓ ✓ - - ✓ ✗ ✗
98 dappsocial 109 59 9 (8.3%) 0.2 0 9 ✗ ✓ ✓ - - ✗ ✗ ✓
99 vinu 22 1 2 (9.1%) 2.0 0 2 ✗ ✓ ✓ - - ✗ ✓ ✓

100 pawnfi 775 55 77 (9.9%) 1.4 40 40 ✓ ✓ ✓ - - ✗ ✗ ✓
101 mahalend 223 334 23 (10.3%) 0.1 8 17 ✓ ✓ ✓ - - ✗ ✓ ✓
102 earningfram 635 306 71 (11.2%) 0.2 23 50 ✓ ✓ ✓ - - ✗ ✗ ✓
103 shata 556 140 64 (11.5%) 0.5 21 45 ✗ ✓ ✓ - - ✗ ✗ ✗
104 cowswap 298 206 35 (11.7%) 0.2 0 35 ✗ ✓ ✓ - - ✗ ✗ ✗
105 baocommunity 89 134 12 (13.5%) 0.1 1 12 ✗ ✓ ✓ - - ✗ ✓ ✓
106 onyxprotocol 5 6 1 (20.0%) 0.2 0 1 ✗ ✓ ✓ - - ✓ ✗ ✓
107 pandora 9 1 2 (22.2%) 2.0 0 2 ✗ ✓ ✓ - - ✗ ✗ ✓
108 yodlrouter 45 54 10 (22.2%) 0.2 4 6 ✗ ✓ ✓ - - ✗ ✗ ✗
109 burntbubba 56 985 15 (26.8%) 0.0 0 15 ✗ ✓ ✓ - - ✗ ✓ ✗
110 minerercx 20,844 3 15 (0.1%) 5.0 3 12 ✗ ✗ ✗ - - ✗ ✗ ✓
111 nomad 63,880 203 40 (0.1%) 0.2 24 21 ✗ ✗ ✗ - - ✗ ✗ ✗
112 azukidao 3,182 1 6 (0.2%) 6.0 4 2 ✗ ✗ ✗ - - ✗ ✗ ✗
113 snood 12,042 347 42 (0.3%) 0.1 30 12 ✗ ✗ ✗ - ✗ ✗ ✗ ✗
114 88mph ⋆ 14,257 509 198 (1.4%) 0.4 108 92 ✗ ✗ ✗ ✓1 - ✗ ✗ ✗
115 bzx 32,553 456 440 (1.4%) 1.0 352 90 ✗ ✗ ✗ ✗ - ✓ ✓ ✗

TOTAL 8,586,421 13,827 (0.16%) 7,702 6,568

18

	Introduction
	Motivation
	Running Example: TicketMonster
	System Design
	Contract Processor
	Transaction Processor
	Protocol Interaction Analysis
	Invariant Analysis
	Houston Anomaly Detection
	Houston Continuous Updates

	Evaluation
	DeFi Attacks Dataset
	Experimental Setup
	Houston Historical Evaluation
	Comparison with Existing Systems
	Houston Live Performance Evaluation
	Houston for other EVM-compatible chains

	Discussion and Limitations
	Related Work
	Conclusions
	References
	Appendix A: Storage Variables Decoder
	Appendix B: Ablation Study
	Appendix C: Live Experiments Performance Statistics
	Appendix D: Houston Results Overview

