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Abstract—In data-driven applications, attribute-driven com-
munity search has attracted increasing attention, which aims
to help users find high-quality subgraphs that meet specific
requirements over attributed graphs. Nevertheless, few works
consider data privacy when performing community search. One
critical reason is that real-world graphs continue to grow in
size, and attribute-driven community search involves computing
complex metrics on encrypted graph data, including structural
cohesiveness and attribute correlation, which are too time-
consuming to be practical.

This paper is the first to propose a practical scheme for
Privacy-preserving Attribute-driven Community Searches on the
cloud, named as PACS. PACS enables servers to efficiently re-
spond to attribute-driven community searches in near-millisecond
time, without accessing sensitive information about the attributed
graph and search results. To achieve this, we design two struc-
tures, a secure community index and a secure edge table, for
protecting the privacy of the original attributed graph. The secure
community index enables cloud servers to efficiently identify
the target community that meets structural cohesiveness and
has the highest attribute score. In particular, we employ inner
product encryption to evaluate the attribute-driven scores of
communities based on encrypted attribute vectors. The secure
edge table, constructed by BGN homomorphic encryption, allows
cloud servers to securely retrieve the edge information of the
target community without knowing its details. We perform a
thorough security analysis that demonstrates PACS achieves
CQA2-security. Experimental evaluations on real-world social
network datasets show that PACS achieves near-millisecond
efficiency in processing attribute-driven community searches.

I. INTRODUCTION

Attributed graphs are widely adopted to represent complex
real-world networks, as they effectively capture rich semantic
information in networks [1], [2]. Entities in the network are
abstracted as vertices in the attributed graph, while connections
between entities are abstracted as edges between vertices. The
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characteristics of these entities, such as user identifiers in the
social network, are described as vertex attributes in the form of
keywords. Attributed graphs are applicable to a wide range of
domains, including social networks [3], [4], citation networks
[2], and biology networks [5], [6].

Attribute-driven community search aims to identify com-
munities that satisfy specific structural cohesiveness and have
attributes correlated with the search attributes [7], [8]. It has
been widely adopted in various recommendation systems [9]–
[11] due to its ability to provide meaningful and personalized
results for search users. For instance, it can use product
attributes in a social network to identify potential user groups
for targeted marketing [3], [12] or use research themes in a
citation network to locate research teams focused on a specific
field for academic collaboration [13]–[15].

Fig. 1: An illustration of a citation network.

In the citation network illustrated in Fig. 1, the attributes
represent the research topics of researchers. It is a core compo-
nent of attributed graphs, directly reflecting the characteristics
of the original data and the needs of search users. When
“community” and “search” are specified as search attributes,
the research group (i.e., community) on the left side intuitively
looks like a suitable candidate for this attribute-driven commu-
nity search. This observation comes from two facts within this
community: (1) the strong collaborative relationships among
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researchers (structural cohesiveness) and (2) a higher number
of researchers focusing on “community” and “search” topics
(attribute correlation). As real-world networks continue to
expand, data owners have tended to outsource large-scale
graphs representing these networks to powerful cloud servers
[16], [17]. This not only reduces the burden of local storage
to lower costs but also provides users with a more efficient
search service.

However, the privacy of both the data owner and search
users would be compromised if the graph were directly
outsourced to cloud servers [18]–[20]. To address this is-
sue, Chase et al. [21] proposed the concept of graph en-
cryption. They use cryptographic primitives to encrypt the
graph, thereby safeguarding the privacy of graphs while en-
abling efficient searches. Based on graph encryption, numerous
privacy-preserving schemes have been proposed for different
graph searches, such as reachability search [22], [23], shortest
distance search [24]–[28] and subgraph search [29]–[33]. Re-
cently, researchers have proposed several schemes for privacy-
preserving community search [34]–[36]. However, those works
are designed for unattributed graphs and thus fall short in
capturing both the structural and semantic aspects necessary
for attributed community search.

What will happen if we directly extend those existing
community search works to the attributed version? While it
is possible to extend the techniques in [34], [35] to support
attributed community search by incorporating a large number
of complex symmetric homomorphic operations on encrypted
graphs, such an extension would significantly hinder the cloud
server’s ability to process queries efficiently. A secure tree
index was proposed in [36], which significantly improves
the efficiency of minimum community search. However, this
scheme still ignores attribute information and can only re-
trieve the vertices of the target community, which limits its
practicality in real community search scenarios. For attributed
graphs, Sun et al. [37] proposed an efficient privacy-preserving
similar community search scheme. Their scheme enables cloud
servers to securely retrieve communities that are similar to
a given query community in both structure and attribute
characteristics, focusing on community–community relation-
ships. Essentially, it matches communities based on the inter-
nal structural and attribute features within each community.
However, attribute-driven community search aims to identify
communities that are most relevant to a user-specified set
of query attributes, focusing on query–community relevance.
Due to this fundamental difference in search problems, the
techniques used in [37] are not suitable for constructing an
efficient privacy-preserving attribute-driven community search
scheme.

To perform privacy-preserving attribute-driven community
search, two key privacy requirements must be satisfied. The
first is to protect attribute privacy while still allowing ef-
ficient evaluation of how well community attributes match
user-specified preferences, that is, the correlations between
query attributes and community attributes. Additionally, since
the target community embodies the user’s preferences, it is

essential to securely return its complete details to the user.
The scheme must support the secure and efficient retrieval and
return of the full information of the target community without
exposing any sensitive data.

To address the above challenges, we propose the first
Privacy-preserving Attribute-driven Community Search over
attributed graphs, named PACS. Our contributions are as
follows.

• To ensure the privacy of the attributed graph, particularly
its attribute information, we design a secure community
index. We employ Asymmetric Inner Product Encryp-
tion to encode vertex attributes and search attributes
as encrypted vectors. The correlation among commu-
nity attributes and search attributes is quantified as the
attribute-driven score by computing the inner product
of two encrypted vectors. During the above evaluation
process, cloud servers do not gain any valid information
about the attributes of the graphs and users. Using the
secure community index, cloud servers can securely and
efficiently identify the target community that satisfies the
structural requirement and achieves the highest attribute-
driven scores.

• To ensure the privacy of the target community, we design
a secure edge table based on BGN homomorphic en-
cryption. By performing homomorphic multiplication on
the secure edge table, cloud servers can securely retrieve
and output the edges of the target community without
knowing any detailed information about it. During the
search process, cloud servers are unable to access any
meaningful information about the target community, in-
cluding its size, vertices, edges, or core number.

• In PACS, cloud servers can securely and efficiently con-
duct attribute-driven community searches without access-
ing sensitive information about the original data, search
users, or search results. We analyze the security of PACS
based on the CQA2-security model, demonstrating its
resilience against adaptive chosen-query attacks. Exper-
iments conducted on real datasets confirm that PACS
efficiently answers attribute-driven community searches.

Organization: The remainder of this paper is structured
as follows. In Section 2, we outline related work. Section 3
presents the preliminaries of our scheme. In Section 4, we for-
mally define the problem addressed in this paper and present
the system definition, system model, and threat model. In Sec-
tion 5, we first introduce the structures of the indexes designed
in our scheme and then provide the detailed implementation
of PACS. The detailed security analysis and experimental
evaluation are given in Sections 6 and 7, respectively. Finally,
our conclusion and future work are presented in Section 8.

II. RELATED WORK

A. Attribute-driven Community Search

Attribute-driven community search emphasizes that the tar-
get community should exhibit a strong correlation with the
attributes specified by the search user.
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Fang et al. [38] quantified this correlation by calculating the
number of search attributes shared among the vertices of the
community. They proposed a community search scheme based
on the CL-tree to identify the k-core community that contains
the search vertex and has the most shared search attributes.
Huang et al. [6] defined an attribute relevance score to measure
the correlation between community attributes and search at-
tributes. They proposed a scheme that constructs an attributed
truss index for the original graph to search for the closest
k-truss community containing the search vertex and having
the highest score. These schemes identify the community
containing the search vertex while satisfying specified attribute
requirements. This type of attribute-driven community search
has limited real-world applicability because its search scope
is confined around the search vertex. For attribute-driven
community search without search vertex, Zhang et al. [39]
proposed a keyword-centric community search scheme that
utilizes a keyword closeness function to measure the distance
between the community vertex and the search attribute. They
designed a core-based inverted index to search for the k-core
community with the minimal keyword closeness. Chen et al.
[40] proposed a contextual community search scheme. Given
a set of search attributes, this scheme returns a community
with structural and contextual cohesiveness by defining a
contextual score and contextual density. The scheme proposed
by Zhu et al. [10] aims to search for a size-constrained k-
truss community that contains all the search attributes in the
attribute graph. Ye et al. [13] developed a top-r keyword-
based community search that considers both the semantic
similarity of search attributes with community attributes and
the semantic similarity among vertices within the community.
This type of attribute-driven community search without the
search vertex can provide more candidate communities that
satisfy the attribute requirements of search users. However,
the attribute evaluation metrics employed in these schemes
are computationally complex and time-consuming.

B. Privacy-preserving Graph Search

The goal of privacy-preserving graph search is to secure
private information in graphs through anonymity techniques
or cryptographic techniques while maintaining the ability to
perform searches over graphs [22], [24], [25], [29], [30].

In recent years, privacy-preserving community search has
emerged as a popular topic in this field. Guan et al. [34]
proposed a privacy-preserving scheme for community searches
on bipartite graphs. Their scheme employs symmetric ho-
momorphic encryption (SHE) [41] to construct two secure
tables from the bipartite graph. Cloud servers determine the
(α, β)-community containing the search vertices by perform-
ing homomorphic operations on these secure tables. Guan
et al. [35] designed a privacy-preserving k-truss community
search scheme by constructing a secure table-based index
using SHE. The cloud server traverses this index to identify
the k-truss community containing the search vertex by em-
ploying secure logic gates built on SHE. In [36], the authors
focused on the minimum community search problem and

Fig. 2: An attributed graph G.

proposed an effective privacy-preserving scheme. They utilize
BGN homomorphic encryption with obfuscation techniques
to generate two secure and efficient indexes. By searches
on these indexes, cloud servers can identify the approximate
minimum k-core community containing the search vertex
without knowing any sensitive information. Sun et al. [37]
focused on the community-community similarity and proposed
a privacy-preserving scheme that enables cloud servers to find
the closest similar community. The scheme uses the center
vertex to “package” the entire community and builds three
secure indexes to store the structural and attribute features of
communities. It then employs Bloom filters and a set of secure
protocols based on these indexes to compute the similarities
and distances among communities. Different from the above
research, this paper explores privacy-preserving attribute-
driven community search and proposes a practical scheme that
supports secure and efficient evaluation of query–community
relevance.

III. PRELIMINARIES

In this section, we will define an attributed graph and related
concepts. Then, we give the cryptographic tools that we used
for building PACS, including an asymmetric inner product
encryption and BGN homomorphic encryption.

A. Attributed Graph

Definition 1: (Attributed Graph) An attributed graph is
defined as G = (V,E,W ), where V is the set of vertices,
E is the set of edges, and W is the set of attributes associated
with the vertices.

For each vertex v ∈ V , the set of attributes associated with
v is denoted by attr(v) ⊆ W . For an attribute w ∈ W , we
say the vertex v covers w if w ∈ attr(v). The set of vertices
covering w in G is denoted by Vw ⊆ V . We first introduce two
metrics related to the quality of a community in an attributed
graph, structural cohesiveness and attribute correlation.

1) Structural Cohesiveness: The structural cohesiveness is
used to evaluate the strength of the connections between
vertices within a community. We adopt the most commonly
used metric in the research of community search, the k-core
model [9], [42]–[45]. A k-core community is formally defined
as follows.

Definition 2: (k-core community) Given an integer k ≥ 0, a
k-core community C, denoted by C = (V (C), E(C),W (C)),
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Fig. 3: The core tree index of G.

is a connected subgraph of G in which each vertex v ∈ V (C)
has a degree degC(v) that satisfies degC(v) ≥ k.

The value k is referred to as the core number of the com-
munity C. Due to the nesting property, all k-core communities
of G can be organized into a tree-like structure known as the
core tree index [12], [46].
Example 1. Given an attributed graph G, as shown in Fig.
2, the core tree index of G is depicted in Fig. 3. There are
four communities C0, C1, C2 and C3. Since G is a connected
graph, C0 is a 1-core community that includes all the vertices
of G. The community C1 = G/{v7} is a 2-core community,
while C2 = {v0, v1, v2, v3} and C3 = {v5, v6, v8, v9} are two
3-core communities.

2) Attribute Correlation: Attribute correlation measures the
similarity between the attribute set of a community and a
specified attribute set. We adopt the attribute-driven score
defined in [6], [47] to quantify this correlation. A higher
attribute-driven score signifies a greater similarity between two
sets. The attribute-driven score is defined as follows.

Definition 3: (Attribute-Driven Score) Given a commu-
nity C of G and a non-empty attribute set W ′ ⊆ W ,
the attribute-driven score of C is defined as f(C,W ′) =∑

w∈W ′
|Vw∩V (C)|2

|V (C)| , where |Vw ∩ V (C)| is the number of
vertices covering the attribute w in C and |V (C)| is the
number of vertices in C.
Example 2. Consider the attributed graph G with W =
{w1, w2, w3, w4}, as shown in Fig. 2. For an attribute set
W ′ = {w1, w3}, we have f(C2,W

′) =
32|w1+42|w3

4 = 6.25

and f(C3,W
′) =

42|w1
+12|w3

4 = 4.25. If W ′ = {w2, w4},
then f(C2,W

′) =
12|w2

+12|w4

4 = 0.5 and f(C3,W
′) =

42|w2+12|w4

4 = 4.25.

B. Cryptographic Tools

1) AIPE: Asymmetric Inner Product Encryption supports
the computation of the inner product on encrypted vectors [48].
AIPE comprises the following four algorithms.

• AIPE.Setup (1λ, 1t)→ (pp,msk): Given a security pa-
rameter λ and vector length t, this algorithm generates
the public parameter pp = N and the master security key
msk = (δ, h,M1,M2, x⃗). N is defined as N = pq, where
p and q are two large λ-bit primes. δ = lcm(p−1, q−1)
and h = h2N

0 mod N2 with h0 ∈ Z∗
N2 . M1 and M2 are

two invertible t× t matrices over ZN , and x⃗ is a random
vector of length 2t, where each x1≤i≤2t ∈ [1, δN/2].

• AIPE.EncP (msk, p⃗)→ [p⃗]: Given the master secret key
msk and a data vector p⃗ = [p1, p2, ...pt]

T ∈ Zt
N , this

algorithm computes{
[p̂1, p̂2, ...p̂t] = p⃗T ·M1 mod N,
[p̂t+1, p̂t+2, ..., p̂2t] = p⃗T ·M2 mod N.

(1)

This algorithm selects a random value r
R← ZN , and

computes{
C0 = hr mod N2,
C1≤i≤2t = (1 + p̂iN) · hr·si mod N2.

(2)

The algorithm finally outputs [p̂] = [C0, C1, ..., C2t].
• AIPE.EncQ (msk, q⃗)→ ⟨q̂⟩: Given the master secret key
msk and a query vector q⃗ = [q1, q2, ...qt]

T ∈ Zt
N , this

algorithm first randomly splits q⃗ into two vectors q⃗a and
q⃗b such that q⃗ = q⃗a + q⃗b mod N and computes{

[q̂1, q̂2, ...q̂t] = q⃗Ta · (M−1
1 )T mod N,

[q̂t+1, q̂t+2, ..., q̂2t] = q⃗Tb · (M
−1
2 )T mod N.

(3)

Let b =
∑2t

i=1 si · q̂i ∈ Z. Define{
K0 = b mod δ,
K = q̂i. 1 ≤ i ≤ 2t

(4)

The algorithm finally outputs ⟨q⃗⟩ = [K0,K1, ...,K2t].
• AIPE.IP (pp, [q⃗], ⟨q̂⟩)→ p⃗T q⃗: Given the public parameter
pp, an encrypted data vector [q⃗] and an encrypted query
vector ⟨q⃗⟩, the algorithm outputs the inner product of [q⃗]
and ⟨q⃗⟩. It computes

Cq⃗T p⃗ = C−K0
0 ·

∏2t
i=1 C

Ki
i mod N2 (5)

and
q⃗T p⃗ =

Cq⃗T p⃗−1 mod N2

N . (6)

2) BGN: Boneh-Goh-Nissim homomorphic encryption
[49], [50] supports an unlimited number of homomorphic
additions and a single homomorphic multiplication. BGN
encryption comprises the following three algorithms.

• BGN.Setup(1λ)→ (pk, sk): Given a security parameter
λ, this algorithm generates the public key pk and the
private key sk. It first employs a composite bilinear
parameter generator CGen(λ) to obtain the system param-
eters (N,G,GT , g, e), where N = pq, g is a generator of
G with order N and e is a bilinear map G × G → GT .
Let h = gq . Then h is a random generator of the
subgroup of G with order p. The algorithm finally outputs
pk = (N,G,GT , g, e, h) and sk = p.

• BGN.Enc(pk,m)→ [[m]]: Given the public key pk and a
message m ∈ {0, 1, ..., T}, where 2T ≪ q, this algorithm
encrypts m as follows:

[[m]] = gmhr ∈ G, r
R← ZN . (7)

• BGN.Dec (sk, [[m]])→ m: Given the private key sk and
a ciphertext [[m]], the algorithm decrypts [[m]] as follows.
It first computes

[[m]]p = (gmhr)
p
= (gp)

m
. (8)
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Let ĝ = gp. Recover m by computing the discrete
logarithm of [[m]]p base ĝ.

Given two messages m1,m2 and their ciphertexts [[m1]] ∈ G
and [[m2]] ∈ G, BGN has the following homomorphic proper-
ties:

• [[m1]] · [[m2]] = [[m1 +m2]] ∈ G.
• [[m1]]

m2 = [[m1m2]].
• e([[m1]], [[m2]]) = [[m1m2]] ∈ GT .

IV. DEFINITIONS AND MODELS

A. Problem Definition

In this paper, we consider a generalized search scenario
for attributed graphs, where the community search is solely
guided by search attributes without specified search vertices.
This attribute-driven community search enables a thorough
exploration of valuable information within the attributed graph
[13], [39], [40]. The problem addressed in this paper is defined
as follows.

Definition 4: (Attribute-Driven Community Search) Given
an attributed graph G = {V,E,W}, a non-empty attribute set
W ′ ⊆W and an integer θ > 0, an attribute-driven community
search q = (W ′, θ) returns a community C that satisfies the
following conditions:
• Structural Cohesiveness: The core number of C is at least

θ;
• Attribute Correlation: The attribute-driven score f(C,W ′)

satisfies f(C,W ′) > 0 and is maximized among all
possible communities that meet condition (1).

Example 3. Continuing Example 2, given an attribute-driven
community search q = ({w1, w3}, 3), there are two com-
munities C2 and C3, whose core numbers are ≥ 3. Since
f(C2,W

′) > f(C3,W
′), C2 is returned as the result of q.

Next, taking the privacy requirements into account, we
define a privacy-preserving, attribute-driven community search
scheme as follows.

Definition 5: The PACS scheme is defined as
∏

PACS =
{KeyGen, EncIndex, GenToken, Search, Decrypt}, comprising
five polynomial-time algorithms that operate as follows.

• K → KeyGen (λ, t) is a key generation algorithm that
takes a security parameter λ and a vector length t as input
and outputs a key set K = {k1, k2, (pk, sk), (pp,msk)}.

• (CI,ET ) →EncIndex(K, cIndex, eTable) is a secure
index generation algorithm. This algorithm takes a key
set K, a community index cIndex and an edge table
eTable as input and outputs a secure community index
CI and a secure edge table ET .

• Token→GenToken(K, s⃗, θ) is a token generation algo-
rithm that takes a key set K, a search attribute vector
s⃗ and an integer θ as input and outputs a search token
Token = {[s⃗], [[θ]]}.

• R →Search(CI,ET, Token) is a privacy-preserving
search algorithm that takes a secure community index
CI , a secure edge table ET and a search token Token
as input and outputs an encrypted edge table R.

Fig. 4: System model.

• edge →Decrypt(K,R) is a decryption algorithm that
takes a key set K and an encrypted edge table R as input
and outputs an edge table edge.

B. System Model

In our system model, as shown in Fig. 4, there are four
types of participants: the key generation center (KGC), the
data owner (DO), the search user (SU ) and the cloud servers
(CS1 and CS2).

• Key Generation Center: KGC is responsible for gen-
erating and distributing keys to other participants.

• Data Owner: DO processes the original graph data
and is responsible for constructing secure indexes based
on this data. After generating the secure indexes, DO
transmits them to CS1. Once the transmission is finished,
DO can switch to an offline state.

• Search User: When an SU wants to perform an attribute-
driven community search, they first generate a search
token based on the search requirements. The token is then
transmitted to CS1. After receiving an encrypted result
from CS1, the SU uses its own keys to decrypt it and
obtain the target community.

• Cloud Servers: CS1 is responsible for storing secure in-
dexes. Upon receiving tokens from the SU , CS1 performs
privacy-preserving attribute-driven community searches
using these indexes. During the search, a secure protocol
is executed between CS1 and CS2. In this protocol, CS2,
which holds the secret key of the BGN, is responsible
for decrypting and re-encrypting intermediate results.
With the assistance of CS2, CS1 ultimately obtains the
encrypted search result and sends it back to the SU .

C. Threat Model

The threat model we adopt is consistent with existing
privacy-preserving graph search schemes [25], [36], [51]. In
the threat model, KGC, DO and SU are assumed to be
fully trusted. As the generator and distributor of keys, KGC
is resistant to all types of attacks and has secure channels
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for transmitting keys to other participants. Adversaries cannot
eavesdrop on or tamper with any keys by attacking KGC.
As the owner of the original data, DO is trusted to honestly
construct and encrypt the indexes. These secure indexes are
transmitted securely to CS1. As the initiator of searches, the
SU has no incentive to tamper with or falsify the search
tokens, as doing so would prevent them from achieving their
original search objectives. The SU can honestly generate the
search tokens and securely transmit them to CS1. All three
participants are honest, as any deviation would undermine their
own objectives.

The cloud servers CS1 and CS2 are assumed to be semi-
honest and non-collusive participants. They cannot leak or
tamper with the data, but they may be curious about it.
Their curiosity extends not only to the original data and
indexes but also to the intermediate data generated during the
privacy-preserving search. They will attempt to infer private
information about the data or users based on this intermediate
data. CS1 and CS2 are expected to honestly execute the
search process and securely return the results to the SU .
The non-collusive assumption ensures that CS1 and CS2

operate independently without sharing information to analyze
or infer sensitive data. This assumption is reasonable since
CS1 and CS2 can be operated by independent cloud providers
or administrative domains (e.g., different commercial cloud
platforms), so they will not collude with each other due to
conflicting interests [25], [26], [34].

V. PACS CONSTRUCTION

In this section, we first provides a brief introduction to the
high-level framework of PACS. Subsequently, we introduce
the fundamental data structures of our scheme and provide a
detailed explanation of the construction of PACS.

A. High-level Overview

To ensure the privacy of attribute information, PACS uses
AIPE to transform both community attributes and search

Fig. 5: The framework of PACS.

attributes into encrypted attribute vectors. CS1 efficiently eval-
uates the attribute-driven score of a community by invoking a
secure inner product algorithm AIPE.IP on encrypted vectors.
This design ensures that cloud servers learn nothing about
the attribute information of either the attributed graph or the
search user while still being able to assess the correlation
between community attributes and search attributes. Another
challenge PACS addresses is how to retrieve the edges of
the target community without exposing them to cloud servers.
To achieve this, PACS utilizes BGN homomorphic encryption
to construct an encrypted edge vector for each community
and an encrypted edge table for the attributed graph. By
performing homomorphic multiplication operations between
the edge vector of the target community and the eTable, PACS
securely extracts the edges belonging to the target community.
Edges not in the target community are effectively filtered out,
as they are multiplied by [[0]]. This design ensures that cloud
servers learn nothing about the edge information of the target
community.

Based on the above designs, PACS constructs a secure com-
munity index and a secure edge table to enable cloud servers
to efficiently respond to privacy-preserving attribute-driven
community searches. The overall framework is illustrated in
Fig. 5.

B. Index Construction

Given an attributed graph G with m vertices, n edges, and t
attributes, we construct an edge table eTable and a community
index cIndex to replace G outsourced to CS1.

1) Edge Table eTable: The edge table eTable is an array
of length n, which stores the edge information of G. For each
edge (u, v) ∈ G, it is randomly stored in the eTable. The
eTable corresponding to the attributed graph shown in Fig. 2
is displayed in Fig. 6.

2) Community Index cIndex: The community index
cIndex is a two-dimensional array that stores the commu-
nity information in G. Each row of the cIndex records the
identifier id, the core number core, the attribute and the edge
information of a community in G. Given a community C,
its edge information is represented as a vector of length n,
denoted as e⃗. For each 0 ≤ i < n, e⃗i is set to 1 if the edge
stored in eTable[i] is contained in C.

The attribute information of C is represented as a vector of
length t, denoted as a⃗. For each 0 ≤ i < t, a⃗i records the
number of vertices in C that cover the attribute wi. Similarly,
for a search attribute set S, we can represent it as a vector
s⃗ of length t, consisting only of 0s and 1s. For an attribute
wi(0 ≤ i < t), s⃗i is set to 1 if wi ∈ S; otherwise, it is set
to 0. Furthermore, the number of vertices in C that cover wi

can be calculated as |Vwi ∩ V (C)|= a⃗is⃗i.

Fig. 6: eTable for G.
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Example 4. Reconsidering Example 2, we have the at-
tribute vectors of C1, C2 and C3 are [8, 5, 5, 3],[3, 1, 4, 1]
and [4, 4, 1, 1], respectively. For the search attribute set S =
{w1, w3}, s⃗ = [1, 0, 1, 0]. The number of vertices in C2 that
cover w1 is caculated as |Vw1

∩V (C2)|= (C2 .⃗a1)s⃗1 = 3×1 =
3.

Fig. 7: cIndex for G.

To simplify the computation of the attribute-driven score
for a community, we preprocess its attribute vector. Given
a community C with z vertices, the attribute vector a⃗ =
[a0, a1, ..., at−1] of C, and a search attribute vector s⃗ =
[s0, s1, ..., st−1], we have

f(C, S) =

t−1∑
i=0

(aisi)
2

z

=

t−1∑
i=0

(aisi)
2

z

=
(a0s0)

2 + (a1s1)
2 + ...+ (at−1st−1)

2

z

=
a0

2s0 + a1
2s1 + ...+ at−1

2st−1

z
//s⃗ ∈ [0, 1]t

=
a0

2

z
s0 +

a1
2

z
s1 + ...+

at−1
2

z
st−1

= [
a0

2

z
,
a1

2

z
, ...,

at−1
2

z
] · [s0, s1, ..., st−1]

=
−−−−→
(a2/z) · s⃗,

where · represents the inner product operation.
According to the above conclusion, we preprocess all at-

tribute vectors a⃗ into
−−→
a2/z, which are then stored in cIndex.

By doing this, the attribute-driven score of a community can
be efficiently obtained by computing the inner product of two
vectors. For clarity and simplicity, we continue to use a⃗ in the
remainder of this paper to represent the processed vectors.
Example 5. Continue considering G shown in Fig. 2. The pro-
cessed attribute vector of C2 is a⃗ = [2.25, 0.25, 4.00, 0.25] as
|V (C2)|= 4. The community index cIndex of G is illustrated
in Fig. 7.

C. Complete Scheme Construction

In this section, we present the details and complete con-
struction of PACS. We begin by defining a pseudo-random
function (PRF) and a pseudo-random permutation (PRP) as
follows.

PRF : {0, 1}λ ← {0, 1}λ × {0, 1}∗,
PRP : {0, 1}∗ ← {0, 1}λ × {0, 1}∗,

where λ ia a security parameter.

Then, we describe each algorithm used in PACS as follows.

• KeyGen. Given a security parameter λ and vector length
t, KGC employs Algorithm 1 to generate a key set K.
The keys k1 and k2 are used for generating PRF and PRP,
respectively. This algorithm invokes BGN.KeyGen(λ) to
generate a key pair (pk, sk) for the BGN encryption.
Additionally, AIPE.KeyGen(λ, t) is invoked to generate
the public parameter pp and the master security key msk
for AIPE.
After obtaining all keys, KGC distributes them to
the various participants. DO receives {k1, k2, pk,msk}
while the SU is provided with {k2, (pk, sk),msk}. CS1

obtains {pk, pp} and CS2 obtains {sk}.

Algorithm 1: KeyGen
Input: A security parameter λ and the vector length t;
Output: A key set K;

1 k1
$← {0, 1}λ;

2 k2
$← {0, 1}λ;

3 (pk, sk)←BGN.KeyGen(λ);
4 (pp,msk)←AIPE.KeyGen(λ, t);
5 return K = {k1, k2, (pk, sk), (pp,msk)}.

• EncIndex. After constructing cIndex and eTable, DO
employs Algorithm 2 to encrypt them and obtain a secure
community index CI and a secure edge table ET .
Lines 3-8 describe the process for encrypting cIndex
to obtain the CI . This algorithm employs a PRF to
conceal the community identifier id for each community
in cIndex. The core number core of each commu-
nity is encrypted using BGN encryption (line 5). This
algorithm utilizes AIPE.EncP(msk, a⃗) to encrypt the
attribute vector a⃗, producing [⃗a]. Then, this algorithm
invokes BGN.Enc(pk, e⃗) to encrypt the edge vector e⃗.
[[e⃗]] denotes the encrypted edge vector, where each bit
is individually encrypted using the BGN encryption. To
further enhance the security of our scheme, the informa-
tion (id′, [[core]], [⃗a], [[e⃗]]) of each community is randomly
assigned to a row in the CI . This effectively obfuscates
the nested relationships among communities in the graph.
The process of encrypting eTable is detailed in lines 9-12
of Algorithm 2. For each edge (u||v) stored in eTable,
this algorithm first utilizes the PRP function to conceal
the actual information of the edge. BGN.Enc(pk, (u||v)′)
is invoked to prevent cloud servers from accessing the
edge information. Finally, the encrypted edge [[u||v]] is
added into the ET in order.

• GenToken. When SU wants to initiate an attribute-
driven community search request, he/she utilizes Algo-
rithm 3 to generate a search token Token and send
it to CS1. Given a search attribute vector s⃗, SU em-
ploys AIPE.EncQ(msk, s⃗) to encrypt it, generating [s⃗].
BGN.Enc(pk, θ) is performed to encrypt the core number
constraint θ, where 0 < θ ≤ kmax. The algorithm finally
outputs an encrypted search token Token = {[s⃗], [[θ]]}.
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Algorithm 2: EncIndex
Input: A key set K, a community index cIndex and an edge table

eTable.
Output: A secure community index CI and a secure edge table

ET .
1 parse K as {k1, k2, pk,msk};
2 initialize two empty dictionaries CI and ET ;
// encrypt cIndex

3 for each community in cIndex do
4 id′ ←PRF(k1, id);
5 [[core]]← BGN.Enc(pk, core);
6 [⃗a]← AIPE.EncP(msk, a⃗);
7 [[e⃗]]← BGN.Enc(pk, e⃗);
8 (id′, [[core]], [⃗a], [[e⃗]]) is randomly assigned to a row in CI;

// encrypt eTable
9 for each edge u||v in eTable do

10 (u||v)′ ← PRP (k2, u||v);
11 [[u||v]]← BGN.Enc(pk, (u||v)′);
12 add [[u||v]] into ET ;

13 return (CI,ET ).

Algorithm 3: GenToken
Input: A key set K, a search attribute vector s⃗ and an integer θ.
Output: A search token Token.

1 parse K as {pk,msk};
2 [s⃗]← AIPE.EncQ(msk, s⃗);
3 [[θ]]←BGN.Enc(pk, θ);
4 return Token = {[s⃗], [[θ]]}.

• Search. Before giving the details of Search algorithm,
we first design a secure integer comparison protocol
based on BGN encryption, as shown in Protocol 1. This
protocol enables CSs to perform core number filtering
on the encrypted data. Given two ciphertexts [[m1]] and
[[m2]] encrypted using BGN encryption, the protocol
Com([[m1]], [[m2]]) outputs a flag f that indicates the
relationship between m1 and m2.
When f = 0, CS1 concludes that m1 ≥ m2. Otherwise,
m1 < m2. In the process of the protocol, CS1 obtains
only the comparison result f without learning the actual
values of m1 and m2. Meanwhile, CS2 is aware solely
of the need to perform a comparison operation and does
not gain any knowledge about m1,m2,[[m1]],[[m2]] or f .
After receiving a search token Token from an SU , CS1

utilizes Algorithm 4 to perform a privacy-preserving
attribute-driven community search with the assistance
of CS2. This algorithm consists of three steps: core
number filtering, attribute-driven score calculation, and
result return. An empty table R of length n is first
initialized to store the edge information of the search
result. In STEP-1, this algorithm filters out communi-
ties whose core numbers do not meet the constraint θ
specified by the SU (lines 3-6). An empty dictionary
F is initialized to store candidate communities whose
core numbers are equal to or greater than θ. For each
community CI[i], this algorithm employs the protocol
Com() to determine whether its core number satisfies
the constraint. After obtaining all candidate communities,
this algorithm proceeds to STEP-2, invoking AIPE.IP to

Protocol 1: Com([[m1]], [[m2]])
// CS1

1 [[m
′
1]]← [[m1]]2 · [[1]];

2 [[m
′
2]]← [[m2]];

3 select b ∈ {0, 1} and r
R← ZN ;

4 if b==1 then
5 [[l]]← ([[m

′
1]] · [[m

′
2]]

−1)
r

;

6 else
7 [[l]]← ([[m

′
1]]

−1 · [[m′
2]])

r
;

8 send [[l]] to CS2

// CS2

9 l←BGN.Enc(sk, [[l]]);
10 if l > T then
11 f ′ ← 1;

12 else
13 f ′ ← 0;

14 send f ′ to CS1;
// CS1

15 if b==1 then
16 f ← f ′;

17 else
18 f ← 1− f ′;

Algorithm 4: Search
Input: A secure community index CI , a secure edge table ET and

a search token Token.
Output: An encrypted table R.

1 parse Token as {[s⃗], [[θ]]};
2 initialize an empty table R of length n;
// STEP-1: Core Number Filtering

3 initialize an empty dictionary F ;
4 for i from 0 to δ do
5 if Com(CI[i].[[core]], [[θ]]) then
6 add CI[i] to F ;

// STEP-2: Attribute-Driven Score Calculation
7 initialize an edge vector [g⃗];
8 for each community C in F do
9 f(C, [s⃗])←AIPE.IP(pp, [s⃗], C.[⃗a]);

10 [g⃗]← C.[e⃗], where C is the community with the highest f ;
// STEP-3: Result Return

11 for i from 0 to n− 1 do
12 R[i]← e([g⃗]i, ET [i]);

13 return R.

compute the attribute-driven scores for these communities
(line 9). The community with the highest score in F
is selected as the target community for this attribute-
driven community search. The edge vector of the target
community is stored in [⃗g] (line 10). Once the target
community is determined before STEP-3, this algorithm
retrieves the edge information of the target community.
For 0 ≤ i < n − 1, this algorithm performs the ho-
momorphic multiplication operation of BGN encryption,
e([⃗gi], ET [i]) (line 12). Finally, the encrypted edge table
R, which stores all the encrypted edges of the target
community, is returned.

• Decrypt. After receiving the encrypted edge table R
from CS1, the SU employs Algorithm 5 to decrypt it.
For each entry in R, this algorithm successively calls
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Algorithm 5: Decrypt
Input: A secret key set K and an encrypted edge table R.
Output: An edge table edge.

1 parse K as {k2, sk};
2 initialize an empty table edge;
3 for i form 0 to n− 1 do
4 (u||v)′ ←BGN.Dec(sk,R[i]);
5 u||v ←PRP−1(k2, (u||v)′);
6 if u||v ̸= 0 then
7 add u||v into edge;

8 return edge.

BGN.Dec(sk,R[i]) and the inverse function of PRP, i.e.,
PRP−1(k2, (u||v)′), to obtain the edge u||v. If u||v ̸= 0,
it indicates that the edge u||v is part of the target
community. This algorithm ultimately returns all edges
contained in the target community, denoted as edge.

VI. SECURITY ANALYSIS

In this paper, we adopt the CQA2-security model, which
is commonly used for evaluating the security of privacy-
preserving graph search schemes [30], [36], [51].

We first define two leak functions, L1 and L2, to describe
the information leaked from the encrypted data and the search
procedures, respectively.

• L1: This function is defined to capture the information
leaked from the encrypted index CI and the encrypted
table ET , L1 = {n, t, δ}. n represents the length of ET
and the number of edges in G. t represents the length of
the attribute vector, i.e., the number of attributes in G. δ
denotes the length of the CI , which indicates the number
of communities in G.

• L2: This function is defined to capture the leaked infor-
mation during the search procedures. L2 consists of query
pattern leakage and index pattern leakage. In the GenTo-
ken algorithm, AIPE.EncQ(msk, s⃗) randomly splits the
search attribute vector s⃗, while BGN.Enc(pk, θ) encrypts
the core number constraint θ with a random number.
These methods ensure that the query pattern does not re-
veal whether a search has been repeated. It only discloses
information about repeated index entries accessed during
previous searches, denoted as info1. The index pattern
discloses information associated with a search request,
denoted as {info2, ore, num, list}. info2 represents in-
formation of index entries accessed during a search. ore
represents the order information between the community
core number and the constraint. num denotes the number
of candidate communities whose core numbers satisfy the
constraint. list is a list of length num, storing attribute-
driven scores for all candidate communities.

Definition 6: (CQA2-Security) Let
∏

PACS ={KeyGen,
EncIndex, GenToken, Search, Decrypt} be a privacy-
preserving attribute-driven community search scheme. Given
an adversary A, a simulator S, and two leakage functions
L1 and L2, the following two probabilistic experiments are
defined.

1) Real∏,A(λ):
• The challenger runs KeyGen(λ, t) to generate a key set
K, which is sent to A. Then the challenger executes
EncIndex (K, cIndex, eTable) to get an encrypted
community index CI and an encrypted edge table ET ,
which are then sent to A.

• A adaptively submits a polynomial number of attribute-
driven community searches. For each search, the chal-
lenger executes GenToken(K, s⃗, θ) to get a search
token Token and sends it to A.

Finally, A outputs a bit b ∈ {0, 1}.
2) Ideal∏,A,S(λ):

• Given L1, S simulates an encrypted community index
CI∗ and an encrypted edge table ET ∗ and sends them
to A.

• A adaptively submits a polynomial number of attribute-
driven community searches. For each search, S simu-
lates a search token Token∗ based on L2 and sends it
to A.

• Finally, A outputs a bit b ∈ {0, 1}.
The scheme

∏
PACS is (L1,L2)-secure against adap-

tive chosen-query attacks if for all probabilistic poly-
nomial time (PPT) adversaries A, there exists a PPT
simulator S and a negligible function negl(λ) such that

|Pr[Real∏,A(λ) = 1]−Pr[Ideal∏,A,S(λ) = 1]|≤ negl(λ).

Theorem 1: The proposed scheme
∏

PACS is (L1,L2)-
secure against adaptive chosen-query attacks if cryptographic
primitives PRP, PRF, AIPE and BGN are secure.

Proof. We conclude the proof by constructing the simulator
S. Given the leakage functions L1 and L2, S simulates a
dummy index CI∗, a dummy table ET ∗ and a sequence
of searches q∗. For all PPT adversaries A, if they cannot
distinguish between Real experiment and Ideal experiment,∏

is considered to be (L1,L2)-secure against the adaptive
chosen-query attacks.

1) Simulating secure indexes: Given L1, S constructs a
dummy community index CI∗ and a dummy edge table
ET ∗ as follows. The length of CI∗ is δ and each entry of
CI∗ is generated using dummy information and the fake
key set K∗. Specifically, for each community, S samples
id

R← {0, 1}λ and randomly selects an integer as its core.
S simulates an attribute vector a⃗ of length t, where each
element is a random integer and an edge vector e⃗ of length
n, where each element is randomly chosen from {0, 1}.
The dummy edge table ET ∗ is simulated with length n,
based on dummy vertex pairs and the fake key set K∗.
For each entry, S randomly selects a vertex pair (u||v)
and encrypts it using the fake key set K∗.

2) Simulating search token : Let q∗ = {q∗1 , q∗2 , ..., q∗j } be a
sequence of searches. For each search q∗i = (s⃗∗i , θ

∗
i ) ∈ q∗,

S proceeds as follows. S generates a dummy search token
Token∗

i based on a random attribute vector s⃗∗ of length
2t, a random core number constraint θ∗ and the fake key
set K∗.
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Fig. 8: Construction time of CI. Fig. 9: CI size.

3) Simulating search: Given L2, S simulates the search
procedure as follows. For each search token Token∗ =
{[s⃗]∗, [[θ]]∗}, S ensures the generated information during
the search is consistent with the information provided by
the leakage function L2.

Since PRP, PRF, AIPE, and BGN are secure, the
dummy index CI∗, the dummy table ET ∗ and the search
sequence q∗ are indistinguishable from the real ones.
Thus we have

|Pr[Real∏,A(λ) = 1]−Pr[Ideal∏,A,S(λ) = 1]|≤ negl(λ),

where negl(λ) stands for a negligible function.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of PACS using
real network datasets.

TABLE I: Dataset statistics.

Dataset Number of
Vertices

Number of
Edges

Maximum
core number

Number of
Communities

Reed98 962 18812 35 33
Simmons81 1519 32989 35 37
USFCA72 2683 65253 44 48
Oberlin44 2921 89913 50 49
Vassar85 3069 119162 61 60

Brandeis99 3899 137568 57 60

A. Dataset

We select six datasets from the Network Repository1, a
publicly available and comprehensive collection of graph data.
These datasets are extracted from Facebook, where each vertex
represents a user and each edge represents a friendship tie
between two users. The statistical details of the datasets
are summarized in Table I. For each dataset, we randomly
generate five attribute sets consisting of 20, 40, 60, 80 and
100 different attributes, respectively. In reality, communities
are typically composed of members who share common or
similar attributes. Therefore, in each attribute set, we randomly
select five attributes for each community and ensure that each
attribute is covered by 80% of the community’s vertices.
Finally, each vertex is additionally assigned 1 to 5 random
attributes to simulate noise.

1https://networkrepository.com

B. Setup

We adopt the method described in [12] to construct a core
tree index for each dataset. The security parameter λ is set to
512. We use the SHA3-512 implementation from the Crypto++
library2 for the PRP and the PRF. Additionally, we utilize
FLINT library3, GMP library4, Libhcs library5 and Pairing-
Based Cryptography library6 to implement AIPE encryption,
BGN homomorphic encryption. DO and SU are simulated
on a personal computer equipped with an Apple M2 processor
and 16 GB of RAM, running macOS Sonoma 14.4. The cloud
servers (CS1 and CS2) are simulated on two Alibaba Cloud
ECS instances with 2 vCPUs and 8 GiB of RAM, running
Ubuntu 22.04.

C. EncIndex Performance

In this section, we first compare the storage complexity
of PACS with that of a non-privacy-preserving scheme [10],
which supports similar attribute-driven community searches
over attributed graphs.

Consider an attributed graph G with m vertices, n edges
and t attributes. In the scheme proposed in [10], both the
truss index and keyword index have a storage complexity
of O(n), leading to an overall storage requirement of O(n).
In PACS, CI comprises δ quaternion entries of the form
(id′, [[core]], [⃗a], [[e⃗]]). [⃗a] is an attribute vector of length 2t+1,
encrypted using AIPE.EncP. [[e⃗]] is an edge vector of length
n, where each element is encrypted using BGN.Enc. Conse-
quently, the storage complexity of CI is O(δ · (t + n)). The
secure edge table ET has a storage complexity of O(n), as
it stores n encrypted edge representations in the form [[u||v]].
Thus, the total index size of PACS is O(δ · (t + n)). While
PACS introduces additional storage overhead compared to the
scheme in [10], this is a necessary tradeoff to achieve the
desired security guarantees. Moreover, in real-world networks,
the number of communities δ and attributes t are typically
much smaller than the number of edges n.

2www.cryptopp.com
3https://flintlib.org/
4https://gmplib.org/
5https://tiehu.is/libhcs/
6https://crypto.stanford.edu/pbc/
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Fig. 10: Time for ET. Fig. 11: Size of ET. Fig. 12: Time-1 for EncIndex. Fig. 13: Time-2 for EncIndex.

Fig. 14: Fraction of time. Fig. 15: Storage cost of EncIndex.
Fig. 16: Fraction of storage

cost.

TABLE II: The size of cIndex and CI (MB).

Reed98 Simmons81 USFCA72 Oberlin44 Vassar85 Brandeis99

t=20 cIndex 2.4429 4.7853 11.9523 16.8108 27.2793 32.0170
CI 9.7715 19.1409 47.8091 67.2431 109.1169 128.0677

t=40 cIndex 2.4455 4.7882 11.9560 16.8145 27.2839 32.0216
CI 9.7819 19.1525 47.8237 67.2580 109.1352 128.0863

t=60 cIndex 2.4481 4.7911 11.9596 16.8183 27.2884 32.0263
CI 9.7923 19.1641 47.8384 67.2730 109.1535 128.1050

t=80 cIndex 2.4507 4.7940 11.9633 16.8220 27.2930 32.0310
CI 9.8027 19.1757 47.8530 67.2879 109.1719 128.1236

t=100 cIndex 2.4533 4.7969 11.9670 16.8258 27.2976 32.0356
CI 9.8130 19.1873 47.8677 67.3029 109.1902 128.1422

TABLE III: The size of eTable and ET (MB).

Reed98 Simmons81 USFCA72 Oberlin44 Vassar85 Brandeis99

eTable 0.14 0.25 0.50 0.69 0.91 1.05
ET 0.57 1.01 1.99 2.74 3.64 4.20

1) Secure community index CI: For each community in
cIndex, EncIndex algorithm employs PRF, BGN and AIPE
to encrypt the identifier, core number, attribute vector and edge
vector. The construction time of CI is primarily influenced by
the number of communities in the dataset. A higher number of
communities results in more entries generated in CI , leading
to a longer construction time. The conclusion is summarized
in Fig. 8(a). The second factor that affects CI construction
time is the lengths of the attribute vector and the edge vector,
both of which are positively correlated with CI construction
time, as illustrated in Fig. 8(b). For the same dataset, the

construction time of CI exhibits a slight upward trend as
the horizontal coordinate (the length of the attribute vector
t) increases. The length of the edge vector is determined by
the edges contained in the dataset. As shown in Fig. 8(b), for
a fixed t, the construction time of CI increases significantly
with the number of edges in the dataset.

For the same dataset, the size of CI depends solely on the
size of the attribute set, which determines the length of the
encrypted attribute vector in CI . Table II provides details of
CI size, showing that the attribute set size has minimal impact.
An increase of 20 attributes results in an average CI size
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Fig. 17: t=20. Fig. 18: t=40. Fig. 19: t=60. Fig. 20: t=80.

Fig. 21: t=100. Fig. 22: Average search time.
Fig. 23: t=20. Fig. 24: t=40.

increase of only 0.015MB for each dataset. Fig. 9(a) visually
depicts the relationship between the average CI index size and
the number of communities. Fig. 9(b) and Table II present a
comparison of the size of cIndex and CI . Due to the use
of BGN and AIPE, the size of the encrypted index CI is
approximately four times larger than that of the unencrypted
index cIndex.

2) Secure edge table ET : For each edge u||v in eTable,
EncIndex algorithm secures it sequentially using PRP and
BGN. The construction time of ET , as illustrated in Fig. 10,
depends solely on the number of edges in the dataset. The
detailed size information of eTable and ET is presented in
Fig. 11 and Table III. In contrast to CI , ET is more space-
efficient, with a maximum size of 4.20MB and a minimum
size of 0.57MB. As shown in Fig. 11 and Table III, the size
of ET is approximately four times larger than that of eTable.

In EncIndex algorithm, constructing CI is significantly
more complex and time-consuming than constructing ET , as
shown in Figures 12-16. In both construction time and storage
cost, CI accounts for 90% or more. It is worth noting that the
construction of ET and CI is a one-time process completed
in the system initialization phase. Therefore, its performance
is not a primary concern in practical deployments and does
not affect the usability of PACS.

D. Search Performance

We first analyze and compare the search complexity of
PACS with that of two non-privacy-preserving attribute-driven
community search schemes [10], [40].

The scheme in [40] introduces both an exact algorithm
and an approximate algorithm for identifying the minimal
contextual community based on triangle density and edge
density. The search complexity of the exact algorithm is
O((n + Tri(G))3), while that of the approximate algorithm
is O(m logm + n log n + Tri(G)), where Tri(G) denotes
the number of triangles in G. The scheme in [10] constructs
a truss index and a keyword index to identify the minimal
dense truss community containing the search keywords. The
keyword index is used to retrieve all components containing
the search keywords and the truss index is used to identify
the smallest such component as the search result. The search
complexity of this scheme is O(log

√
npmax), where pmax

is the maximum number of components in each layer of
the truss index. In PACS, the Search algorithm consists of
three steps. In STEP-1, the algorithm executes Protocol 1 δ
times to identify candidate communities. Under the standard
cryptographic assumption where the security parameter λ is
considered constant, each execution of Protocol 1 has O(1)
complexity. Thus, STEP-1 has total complexity of O(δ). Let
num denote the number of candidate communities. In STEP-
2, the algorithm executes AIPE.IP num times to compute
the attribute-driven scores of the candidate communities. Each
AIPE.IP operation requires 2t + 1 modulo exponentiations,
resulting in O(t) complexity per execution. Therefore, the
complexity of STEP-2 is O(num · t). STEP-3 involves n
BGN multiplications to obtain the valid edge vector of the
target community. Since each multiplication takes O(1) time
when λ is fixed, the total complexity is O(n). Consequently,
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Fig. 25: t=60. Fig. 26: t=80. Fig. 27: t=100. Fig. 28: Time for decryption.

the overall complexity of Search algorithm in PACS is
O(δ + num · t+ n).

Next, we evaluate the efficiency of Search algorithm
through experiments. We generate five query sets contain-
ing 100, 200, 300, 400, and 500 attribute-driven community
searches, respectively. Figures 17-21 illustrate the search time
across different datasets with varying lengths of attribute
vectors. It is evident that, for the same dataset, the search time
increases as the length of the attribute vector grows. Longer
attribute vectors mean that CS1 requires more time to invoke
AIPE.IP to calculate the community’s attribute-driven score.

Fig. 22 displays the average time for a single search across
datasets. With a fixed attribute vector length, the search time
is correlated with the dataset size, especially the number of
edges and the number of communities it contains. The number
of communities determines the number of entries in CI .
A higher number of communities requires CS1 to execute
the comparison protocol with the assistance of CS2 more
frequently for core number filtering. The number of edges
(i.e., the length of the edge vector) determines the number
of homomorphic multiplication operations that CS1 performs
to retrieve the edge information of the target community. The
average time for a single search ranges from a minimum of
0.08s to a maximum of 2.44s. For most datasets, except for
the Brandeis99 dataset, our scheme can respond to searches
within milliseconds.

We also implement two non-privacy-preserving attribute-
driven community search schemes proposed in [10] and [40]
for comparison. Although these two schemes address slightly
different problems, they both aim to identify communities
associated to the query attributes, and thus provide meaningful
baselines for evaluating performance. Specifically, we imple-
ment the top-down search algorithm in [10], which identifies
the minimal dense subgraph containing all query attributes
based on pre-built index structures. We also implement the
approximate algorithm in [40], which iteratively removes the
vertex contributing the least to the contextual score to achieve
an approximately optimal result. Since the search efficiency
of both algorithms is significantly affected by the number of
query attributes, we set the number of query attributes to four
for fairness. The average search time under different values
of t is shown in Figs. 23–27. As illustrated, PACS achieves

substantially faster search performance even compared with
these non-privacy-preserving schemes, primarily because they
adopt more complex structural and attribute relevance metrics.

E. Decrypt Performance

The SU employees BGN.Dec and PRP−1 successively to
decrypt an encrypted table R of length n, thereby obtaining
the edges contained in the target community. The average
decryption time per search is shown in Fig. 28. The left
Y-axis indicates the decryption time, while the right Y-axis
represents the number of edges. Apart from the inherent cost of
BGN.Dec, the performance of the Decrypt algorithm depends
solely on the size of n (i.e., the number of edges in the dataset).
As illustrated in Fig. 28, the decryption time increases almost
linearly (or even sublinearly) with the number of edges.

The bottleneck of decryption performance primarily lies in
the discrete logarithm computation in BGN.Dec. In real-world
implementations, the proposed scheme can further improve
decryption performance by shortening the edge vectors or
adopting faster discrete logarithm algorithms, such as Pollard’s
rho.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose PACS, an effective privacy-
preserving scheme for attribute-driven community searches
over attributed graphs. PACS enables cloud servers to securely
return the community that satisfies the core number constraint
and achieves the highest attribute-driven score. Cloud servers
can obtain the attribute-driven score of the community without
knowing any sensitive information about the attributed graph
by using asymmetric inner product encryption on a secure
community index. By performing homomorphic multiplication
operations on a secure edge table, PACS securely returns the
edge information about the target community to the search
user. The security analysis and experiments on real datasets
demonstrate that PACS achieves CQA2-security and is effi-
cient.

Although PACS enriches the diversity of privacy-preserving
community searches, it cannot be directly applied to dynamic
graphs. In dynamic graphs, any change to a vertex, edge, or
attribute may affect the community structure or overall topol-
ogy. This requires securely and accurately tracking community

13



evolution on encrypted indexes to identify which parts of
the graph are affected by updates. It is complex to design
privacy-preserving community search schemes for dynamic
graphs. Therefore, exploring such schemes is a valuable and
challenging topic for future research.
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APPENDIX A
ARTIFACT APPENDIX

This artifact provides the implementation of “PACS:
Privacy-Preserving Attribute-Driven Community Search over
Attributed Graphs.”

The PACS artifact is publicly available on Zenodo (DOI:
https://doi.org/10.5281/zenodo.17927374) and can also be ac-
cessed on GitHub: https://github.com/sakurasfy/PACS.

A. Description & Requirements
1) How to access: The artifact is provided as a compressed

package (PACS_artifact.zip) uploaded to the NDSS
submission system. It contains a self-contained Docker en-
vironment and all scripts to reproduce the results. Please refer
to README.md for setup and evaluation instructions.

2) Hardware dependencies: Standard commodity hardware
(desktop or laptop):

• Minimum: 2 CPU cores, 4GB RAM
• Recommended: 4+ CPU cores, 8GB+ RAM
• Disk space: 5GB (for Docker image and datasets)
• Architecture: x86 64 or ARM64
3) Software dependencies:
• Docker Engine: version 20.10 or later
• Docker Compose: optional, for convenience
• Operating System: Linux or macOS
• Tested on: Ubuntu 22.04, macOS (ARM64/Apple Sili-

con)
4) Benchmarks: All six datasets mentioned in the pa-

per have been preprocessed and are provided in the
data/output/ directory. No additional data prepara-
tion is required for artifact evaluation. The graph.h and
graph.cpp files are included only for users who wish to
process new datasets from raw edge lists in data/input/.

B. Major Claims

• (C1:) The construction time of the secure Community
Index (CI) increases with the number of communities in
the dataset and, to a lesser extent, with the length of the
attribute vector and the number of edges. This claim can
be reproduced by observing the terminal outputs of the
artifact (Evaluation: Execution-[Results]) and comparing
with Fig. 8 of the paper.

• (C2:) The size of the secure Community Index (CI) is
primarily determined by the number of attributes. An
increase of 20 attributes results in an average CI size
increase of about 0.015MB for each dataset. This claim
can be reproduced via (Evaluation: Execution-[Results])
and corresponds to Table II and Fig. 9 of the paper.

• (C3:) The construction time and the size of the secure
Edge Table (ET) depend solely on the number of edges
in the dataset. This claim can be verified via (Evaluation:
Execution-[Results]) and corresponds to Fig. 10–11 and
Table III.

• (C4:) The runtime of the privacy-preserving attribute-
driven community search remains practical on six real-
world social network datasets. This claim is reproducible

via (Evaluation: Execution-[Results]) and corresponds to
Section VII.D of the paper.

• (C5:) The time required for decrypting the search re-
sults increases almost linearly (or even sublinearly) with
the number of edges n. This claim is reproducible
via (Evaluation: Execution-[Results]) and corresponds to
Section VII.E of the paper.

C. Evaluation

The artifact automatically runs using the default dataset
(Reed98) with 20 attributes. To reduce runtime, it performs
11 privacy-preserving attribute-driven community searches to
demonstrate the effectiveness of our scheme.

[Preparation]

1) Ensure Docker (version 20.10 or later) is installed on
the evaluation machine.

2) Extract the artifact package and navigate to its root
directory.

3) The directory already contains the preprocessed datasets
in data/output/; no additional data preparation is
needed.

4) Review the detailed instructions in the provided
README.md.

[Execution]

1) Build the Docker image:
docker build -t pacs:latest .

(First build time: about 5 minutes.)

2) Run the container:
docker-compose up

3) The system will automatically:
• Read the preprocessed file from data/output for

the Reed98 dataset with 20 attributes;
• Construct the secure Community Index (CI) and

secure Edge Table (ET) using AIPE and BGN;
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• Perform a single search to simulate user-side de-
cryption (for measuring the BGN decryption cost,
which takes about one minute);

If no matching community is found during the
search, the experiment should be rerun to demon-
strate the decryption effect.

• Execute ten privacy-preserving attribute-driven
community searches;

[Results]
All statistical information is displayed directly to the termi-

nal, including:
• Index size before and after encryption;
• Time to construct CI and ET;
• Decryption time (single test);
• Runtime for ten automatic searches.

Observed runtime and index-size values are expected to be
comparable to those figures in Section 7 of the paper (within
a reasonable variation, e.g., ±20%, depending on hardware and
Docker overhead).

D. Customization

To run other datasets, modify the following in the
source code and rebuild: NODES NUM , EDGES NUM ,
ATTRIBUTE NUM , and Max Core in Encrypt.h,
and datasetname in main.cpp (line 399). Please refer to
README.md file.
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