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Abstract—Real-Time Operating System (RTOS) is widely used
in embedded systems with its various subsystems such as Blue-
tooth and Wi-Fi. As its functionalities grow, its attack surface also
expands, exposing it to more security threats. To address this,
dynamic testing techniques like fuzzing have been widely applied
to embedded systems. However, for RTOS, these techniques
struggle to effectively test deeply located functions within the
kernel due to their complexity.

In this paper, we present RTCON, a context-adaptive function-
level fuzzer for RTOS kernels. RTCON performs function-level
fuzzing on any target functions within the RTOS kernel by adap-
tively generating function contexts during fuzzing. Additionally,
RTCON employs Multi-layer Classification to classify crashes
by confidence levels, helping analysts focus on high-confidence
crashes. We implemented the prototype of RT CON and evaluated
it on four popular RTOS kernels: Zephyr, RIOT, FreeRTOS, and
ThreadX. As a result, RTCON discovered 27 bugs, including 25
new bugs. We reported all of them to maintainers and received
14 CVEs. RTCON also demonstrated its effectiveness in crash
classification, achieving a 92.7% precision for high-confidence
crashes, compared to a 5.8% precision for low-confidence crashes.

I. INTRODUCTION

A Real-Time Operating System (RTOS) is an operating
system designed for time-sensitive tasks in environments with
limited resources. RTOS is optimized not only for managing
time-sensitive tasks but also for supporting various peripherals
critical to modern embedded applications. Thus, most RTOS
projects currently provide integrated support for various fea-
tures, such as Bluetooth, Wi-Fi, and Ethernet [1]], [2], [3]], [4].

As RTOSes expand their functionalities, their attack surface
also grows, raising the risk of security vulnerabilities. More
seriously, many RTOSes even lack conventional protections,
such as Address Space Layout Randomization (ASLR) or
stack canaries [S]. This is due to performance concerns
or hardware constraints (e.g., the absence of an MMU) as
RTOSes target resource-constrained embedded devices. As a
result, even a simple vulnerability can lead to serious impacts,
such as remote code execution or denial-of-service [6].
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Despite extensive security research on embedded de-
vices [7l, [8l, 191, [101, (LN, (120, [13[, [14], [15], two main
challenges remain for RTOS kernels. First, we need a scalable
method to test the various subsystems provided by the RTOS
kernel. One promising approach for testing embedded devices
is to emulate them and apply dynamic testing techniques, such
as fuzzing. However, this approach can only cover a subset of
functionalities due to limited support for various embedded
boards and peripherals. We may use real-world devices to
alleviate this issue, but this approach also struggles with a
lack of scalability and limited resources.

Second, it is also challenging to test deeply located func-
tions in RTOSes due to their complex execution contexts.
For example, the Bluetooth subsystem, which is commonly
provided by RTOSes, involves complex protocols and states.
To reach deep Bluetooth functions, we need to establish
connections following its complex protocol. Although many
security analysts have developed manual end-to-end fuzzers
to test such functions [16], [17], [18], [19], they require
substantial effort for protocol analysis and implementation.

One approach to address this reachability issue is function-
level fuzzing. Function-level fuzzing is an approach where,
instead of fuzzing the entire system, the fuzzer directly tests
specific functions (i.e., target functions) that are selected for
testing. Previous works [20], [21], [22], [23]] have shown that
function-level fuzzing can effectively identify bugs across vari-
ous libraries. However, function-level fuzzing introduces a new
challenge: the absence of context. For example, in Bluetooth,
most functions require a valid Bluetooth connection. Without
this, these functions may crash or terminate prematurely due
to missing context. As a result, function-level fuzzing may
terminate early due to unintended crashes.

To address these challenges, we propose RTCON, a context-
adaptive function-level fuzzer for RTOS kernels. RTCON can
fuzz any target functions, including deeply located functions,
without any need to predefine or analyze complex RTOS
kernel contexts. Specifically, RTCON is not limited to fuzzing
top-layer functions (i.e., API functions), which some previous
works [20], [21] were limited to as they require analyzing
function usage points. Moreover, RTCON uses adaptive con-
text generation to remove the need for manually constructing
contexts or going through complex analysis phases to construct



contexts. The key idea of RTCON is to generate contexts
on-demand while fuzzing target functions, as inspired by X-
Force [24], but adaptively to explore paths blocked by specific
contexts. With this, RTCON can generate appropriate context
values based on the operands of the branch conditions.

One big issue with function-level fuzzing is its false pos-
itives due to unknown function constraints. To mitigate this
issue, RTCON uses Multi-layer Classification to categorize
crashes based on their confidence level. The core idea is that
a crash is likely to be valid if it occurs both when fuzzing the
target function and its ancestor functions. If a crash occurs
only in the target function, it is likely to be a false positive.
Otherwise, it is likely to be an actual bug (i.e., high confi-
dence). This classification allows security analysts to focus on
high-confidence crashes. Notably, previous approaches [25]],
[22] rely on static analysis to extract function constraints and
filter out false positives. However, these approaches are limited
in extracting constraints due to obstacles that hinder static
analysis, such as indirect calls and complex control flows.
RTCON, on the other hand, can overcome these limitations by
testing the target functions in multiple layers during fuzzing.

We implemented the prototype of RTCON and evaluated it
on 4 real-world open-source RTOSes: Zephyr [26], RIOT [27],
FreeRTOS [28]], ThreadX [29]. As a result, RTCON found 27
bugs in total, with 25 previously unknown bugs. We reported
all the bugs to the respective maintainers, and 14 of them
were assigned CVE IDs. Also, RTCON can classify crashes
based on their confidence levels, allowing security analysts
to focus on high-confidence crashes. As a result, RTCON
achieved an 92.7% precision (76 out of 82) for high-confidence
crashes, compared to a 5.8% (19 out of 329) precision for low-
confidence crashes.

The contributions of our work are as follows:

e We propose RTCON, a context-adaptive function-level
fuzzer that fuzzes any target functions directly without
any given function contexts. RTCON successfully clas-
sifies crashes based on their confidence levels, allowing
security analysts to focus on high-confidence crashes.

e We evaluated RTCON on 4 real-world open-source
RTOSes to demonstrate its effectiveness. Notably,
RTCON could find 27 bugs, with 25 previously unknown
bugs, including 14 CVE ID issued.

e We open-source RTCON to the public to encour-
age further research on this area: https://github.com/
kaist-hacking/RTCon

II. BACKGROUND
A. Real-Time Operating System

Real-Time Operating System (RTOS) is an operating system
designed to handle time-critical tasks. It focuses on processing
tasks within a specific time frame, rather than maximizing
throughput as in general-purpose operating systems. RTOS is
typically used in embedded systems since they require specific
tasks to be completed before their deadlines, given the limited
computational resources.

RTOS kernels provide various subsystems, including Blue-
tooth [, [3], Wi-Fi [4], and network stacks [30], to support
diverse devices and systems. Most RTOS projects make these
features configurable [31], [32], enabling developers to build
comprehensive applications suited to a wide range of systems.

However, these diverse functionalities introduce various
security issues. For example, the Bluetooth and network sub-
systems, which are widely adopted in IoT devices, expand
the attack surface through externally exposed communication
channels. If we have vulnerabilities in these subsystems,
attackers can exploit them to compromise the system or launch
denial-of-service attacks from remote locations. Unfortunately,
many RTOS kernels still lack traditional mitigation techniques
(e.g., ASLR, stack canaries) due to hardware constraints or
performance concerns [S)]. As a result, even simple vulnera-
bilities can easily lead to severe implications, such as remote
code execution [6].

B. Dynamic Testing on RTOS Kernels

Fuzzing [33]], [34], [35] is a widely used technique that
dynamically tests systems to identify vulnerabilities. Thus,
several RTOS projects provide fuzzing libraries to allow
security analysts to test their systems [36], [37]. Despite
their effort to find bugs, it is still challenging to implement
fuzzers for diverse subsystems within RTOS kernels. This is
mainly because we require substantial engineering effort to
manually craft fuzzers for numerous functions within complex
subsystems (e.g., Bluetooth). Furthermore, analysts need to
conduct comprehensive protocol analysis to test deep functions
invoked at the end of complex protocol flows.

IIT. MOTIVATION

A. Motivating example

In this section, we present a motivating example that demon-
strates the challenges of testing deeply located functions in
RTOS kernels. shows a code snippet of CVE-2024-
8798, which is an out-of-bounds read vulnerability caused
by integer underflow bugs in the Zephyr RTOS kernel. This
function, avdtp_process_configuration, is responsible
for setting local Bluetooth device configuration during an
Audio/Video Distribution Transport Protocol (AVDTP) con-
nection. It first retrieves the Streaming Endpoint object (sep)
from the ID parsed from the Bluetooth message (buf) (Line
13). Then, if the sep is valid and the state of the sep is
not AVDTP_STREAMING, it parses Initiator ID (int_seid)
from the message (Line 24). Finally, it indirectly calls
set_configuration_ind handler to set configuration for
the remote streaming endpoint (Line 25).

This code contains integer underflow bugs at Line 13 and
Line 24. This happens because the function does not check
the minimum length of the message (buf) before pulling data
from it. As a result, if an attacker sends a message shorter than
2 bytes, an integer underflow occurs in one of two vulnerable
locations (Line 13 and Line 24) when attempting to pull 1
byte from an empty buffer. Then, the remaining buffer length
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I uint8_t net_buf_pull_u8(struct net_buf *buf) ({
2 buf->len -= 1; //
3 return xbuf->data+
4}

5

6 static void avdtp_process_configuration(struct bt_avdtp xsession,

7 struct net_buf xbuf, uint8_t msg_type, uint8_t tid) {
8 if (msg_type == BT_AVDTP_CMD) {
9 int err = 0;

10 struct bt_avdtp_sep *sep;
11
12 // Get the stream endpoint from i

13 sep avdtp_get_sep (net_buf_pull_ u8 (buf) >> 2);

14 if ((sep == NULL) |

15 (session->ops->set_configuration_ind == NULL)) {

16 err = —-ENOTSUP;

17 } else {

18 if (sep->state == AVDTP_STREAMING) {

19 err = —-ENOTSUP;

20 } else {

21 uint8_t int_seid;

22

23 / es to pull 1 byte
24 int_seid = net_buf pull_u8 (buf);

25 err - session->ops->set_configuration_ind (session,
26 sep, int_seid, buf, &error_code);

27 }
28 }

29 }

30 }

Fig. 1: Motivating example (CVE-2024-8798): The code
shaded in red indicate vulnerable code. An integer underflow
occurs when attempting to pull 1 byte from an empty buffer.

is under-wrapped, and it leads to undefined behavior in further
message processing.

B. Challenges & Approaches

Unfortunately, existing approaches struggle to find deeply
located bugs in RTOS kernels. In this section, we discuss
technical challenges of existing approaches and our approaches
to address them.

C1. Limitations of Embedded System Fuzzers

One common approach for testing embedded systems is to
emulate the system or use real-world devices. Unfortunately,
these methods are not typically applicable to RTOS kernels.
While RTOS projects support multiple boards, emulation-
based approaches [38], [39] often lack support for specific
boards and peripherals. As a result, we can only test the partial
features that are supported by the emulator. Obviously, it is
well-known that implementing the diverse set of peripherals
and boards manually is burdensome [40]. We might alleviate
this burden by using on-device fuzzing [41]] or semi-emulating
the system [42], [43], [44], [15], but they are also struggled
with scalability and performance issues.

It is also challenging to reach functions, especially those
requiring complex contexts. In this example, to dynamically
test the function avdtp_process_configuration, we need
to construct the required Bluetooth connection (e.g., AVDTP
connection) by following complex protocols [45]. Many devel-
opers craft specialized fuzzing harnesses to test functionality
deep in the protocol stack, but it requires significant manual
effort to analyze the protocol.

Our Approach: Function-level Fuzzing. To address scal-
ability and reachability issues, RTCON uses function-level
fuzzing. This approach enables fuzzing of target functions

TABLE I: Comparison of function-level fuzzing tools. RTCON
applies adaptive context generation to construct complex
RTOS kernel contexts, reducing false positives without heavy
analysis for tracking function constraints.

Tool Target Function Context Gen. Constraint Scope
FuzzGen [20] External API
FUDGE [21] External API
FuzzSlice [23] All Random 0-level (Callee only)
AFGen [22] All Random 1-level (Caller + Callee)
RTCoON All Adaptive Multi-level (n-depth)

without requiring real-world or emulated devices. In other
words, RTCON can start the fuzzing process by directly
calling the target function, completely bypassing the boot-
up phase, including device checks and initialization routines.
Moreover, RTCON can fuzz any deeply located functions
without exploring the execution paths required to reach them.

C2. Constructing Context for Function-level Fuzzing

Even though we can address the scalability and reachability
issues using function-level fuzzing, it is still challenging to
apply function-level fuzzing in large systems (e.g., RTOS
kernels). This is due to the lack of context to invoke specific
functions. Without this, the fuzzer cannot reach deeper code
within the function and may terminate early due to unintended
crashes. In this example, to reach the vulnerable code (Line
24), the fuzzer should satisfy multiple branch conditions (Lines
8, 14, and 18). Unfortunately, since these conditions are
independent of the user input (buf), simply fuzzing the user
input is insufficient to reach the vulnerable code.

As shown in some previous studies have at-
tempted to construct contexts using various techniques (e.g.,
fuzzing [23], [22] or API inference [21], [20]); however,
these approaches are not particularly effective for large-scale
systems like RTOS kernels. For example, FuzzSlice [23] and
AFGen [22] use fuzzing to construct contexts and show their
effectiveness in finding bugs in libraries. However, when
it comes to RTOS kernels, fuzzing is unlikely to create
valid contexts, as the kernel contexts are too complicated,
typically consisting of nested structures of kernel objects.
On the other hand, FUDGE [21] and FuzzGen [20] attempt
to construct legitimate contexts by invoking API functions.
However, these approaches cannot be applied to creating
internal kernel contexts, since they are typically not exposed
through external APIs. For example, to fuzz the target function
avdtp_process_configuration shown in we
need session object as an argument. This object cannot be
derived as it is internally managed by the kernel and not
exposed through any external APIs.

Our Approach: Adaptive Context Generation. To generate
contexts for any given function, RTCON employs a technique
called Adaptive Context Generation. RTCON starts with iden-
tifying context-related variables using inter-procedural taint
analysis. Then, RTCON instruments the context-generating
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Fig. 2: Overview of RTCON

hooks at these variables. These hooks adaptively generate con-
text at runtime, guided by branch conditions, to maximize code
coverage. Notably, this method allows RTCON to eliminate the
need for analyzing complex context structures.

C3. False Positives of Function-level Fuzzing

When we directly fuzz target functions, it can produce false
positives due to the function constraints. These constraints are
typically induced by the parent functions in the call graph.
For example, even if we found a buffer overflow in a target
function due to a missing length check, it might be benign if
the parent function already validates the length.

Despite its importance, obtaining precise function con-
straints is limited. AFGen [22], a state-of-the-art function-
level fuzzer, derives function constraints from control flow
analysis of caller functions. Similarly, Griller [25] uses sym-
bolic execution to extract constraints from the parent functions.
While both AFGen and Griller are effective in constructing
simple constraints, due to the complexity of static analysis,
they struggle with complex control flows or indirect calls com-
monly found in RTOSes. For instance, AFGen [22] collects
constraints by performing backward control flow tracing, but
only to a single depth due to the complexity of nested control
flows. This limitation hinders the inspection of constraints
located deeper in the control flow.

Our Approach: Multi-layer Classification. Unlike previous
work [22], which attempts to mitigate the constraints of identi-
fied crashes, RTCON focuses on determining whether crashes
can be reproduced from parent functions for classification. To
this end, RTCON uses Multi-layer Classification to categorize
the crashes based on their confidence levels. The core idea is
that if a crash is detected in a callee function, and is not also
detected in its caller function, it is likely to be a false positive.

To implement this, RTCON employs multi-layer fuzzing,
which performs fuzzing on both the target function and top-
layer functions (i.e., other functions that have no callers and
can reach the target function). RTCON regards the crashes
reproduced in top-layer functions as high confidence crashes,
whereas crashes detected only in the target function are
considered low confidence crashes.

IV. DESIGN

A. Overview

depicts the overview of RTCON. RTCON con-
sists of three components: 1) Target Analysis (ANALYZER),
2) Adaptive Context Generator (ACG), and 3) Multi-layer
Classifier (MLC). Given the project source code and a list
of target functions, ANALYZER constructs a call graph and
uses inter-procedural taint analysis to identify context-related
variables (§IV-B). Then, based on the results of ANALYZER,
ACG constructs harnesses that adaptively generate contexts
to explore the target functions (§IV-C). Finally, after running
the harnesses, MLC classifies the detected crashes by their

confidence levels (SIV-D).

B. ANALYZER

1) Call Graph Construction:

ANALYZER generates call graphs with a given list of target
functions and the RTOS kernel source code. For each target
function, ANALYZER constructs call graphs bi-directionally by
recursively identifying functions that either 1) are called by
(i.e., forward) or 2) call (i.e., backward) the target function
with a series of function calls. ANALYZER also identifies top-
layer functions, which are the functions in the call graph that
can reach the target function but have no parent functions.
These top-layer functions are later used in MLC to generate
verifier harnesses.

Unlike previous works [12], [22], ANALYZER tracks
indirect calls between nodes in the graph. This is
necessary to handle callbacks, which are common in
RTOS kernels. To achieve this, ANALYZER leverages
SVF [40] to infer the possible edges between two arbitrary
nodes. Internally, they resolve indirect calls through flow-
insensitive pointer analysis of function pointers. While flow-
insensitive pointer analysis offers high performance, it intro-
duces false positives, resulting in a call graph that includes
more functions than necessary. Since an inaccurate call graph
significantly reduces the efficiency of subsequent analysis and
crash classification, ANALYZER performs a simple function
prototype analysis on indirect calls to optimize the call graph.

2) Inter-procedural Taint Analysis:

Intra-procedural taint analysis. ANALYZER performs taint
analysis to trace the data flow of function contexts. Unlike
traditional taint analysis, which taints values that are dependent



on user inputs, ANALYZER taints values that are independent
of user inputs. This allows ANALYZER to utilize the over-
approximation of taint analysis. Specifically, untainted vari-
ables are assumed to rely solely on user inputs, perfectly in-
dependent of the contexts. By doing so, when running fuzzing
harnesses, RTCON can determine whether a crash is due to an
uninitialized context or a potential bug. If a crash occurs due
to untainted variables (i.e., user-controllable inputs), RTCON
reports it as a potential bug. Otherwise, RTCON considers that
it happens due to the uninitialized context and attempts to
dynamically generate the missing context during fuzzing. It is
important to note that RTCON leverages the generated context
to explore deeper code paths, but not to detect vulnerabilities
introduced by those contexts.

shows the intra-taint analysis results for
In this example, the arguments session, msg_type, tid
become the taint sources as they are not related to the user
input buf (Lines 2-3). Taint propagates from sep to state
(Line 15) as well as session to set_configuration_ind
(Line 22) according to propagation rules. We detail the intra-
procedural propagation rules in |Algorithm 1fin [Appendix|

Inter-procedural taint propagation. ANALYZER performs
inter-procedural analysis using a fixed-point iteration [47].
The analysis consists of two steps: 1) ANALYZER initially
over-approximates taint information of each function, and
2) it lazily updates this information based on the callee’s
results. First, if a callee has not yet been analyzed, ANALYZER
regards its return value and reference arguments as tainted
(i.e., context-related variables). This is a conservative decision
as the callee’s taint information is unknown. Second, once
ANALYZER completes the analysis of the callee, ANALYZER
revisits its callers to update taint information. This may result
in removing taints from the results of the callee, which were
previously assumed tainted in the first step. These changes in
taints may propagate to the arguments of other function calls,
which may result in reanalyzing them. This process continues
until the taint information stabilizes with no further changes.

In the example of RTCON initially marks both
the return value (D) sep of avdtp_get_sep (Line 11) and Q)
int_seid of net_buf_pull_u8 (Line 21) as tainted. Then,
after analyzing avdtp_get_sep and net_buf_pull_us,
RTCON revisits the function to remove the taint from @
int_seid as it is not tainted in the callee function. The
change in the taint status of int_seid propagates to an argu-
ment of session->ops—->set_configuration_ind (Line
23), which makes it reanalyzed accordingly.

C. Adaptive Context Generator (ACG)

ACG constructs harnesses that adaptively generate contexts.
To achieve this, ACG instruments hooks on the context-related
variables. Specifically, ACG instruments two types of hooks
for context sanitization and context generation [24], [48]].
Context sanitization prevents the fuzzer from crashing due
to uninitialized contexts, while context generation constructs
missing contexts during fuzzing.

: Taint (i.e. Context-related)

: Untaint (i.e. User-controllable)

‘ : intra-procedural taint propagation

: inter-procedural taint propagation

1 static void avdtp_process_configuration (

2 struct bt avdtp *session, struct net buf *buf,
3 uint8_t msg_type, uint8_ t tid)

4 {

5 if (msg_type BT_AVDTP_CMD) {

6 // local variables are initially untainted

7 int err 0;

8 struct bt_avdtp_sep *sep;

9
0

// @ return value of avdtp get sep remains tainted

11 sep avdtp_get_sep(net_buf pull u8 (buf) 2) i

12 if (sep NULL) |

14 } else {

15 if (sep->state == AVDTP_STREAMING) {

16 err ~ENOTSUP;

17 } else {

18 uint8_t [int seid;

19

20 // @ return value of net buf pull u8 becomes untainted
21 int_seid = net_buf_ pull u8 (buf);

22 err session->ops->set configuration ind(session,
23 sep, int_seid, buf, &error code);

Fig. 3: Code after inter-procedural taint analysis.

1) Context Sanitization: Context sanitization is responsible
for filtering out crashes related to uninitialized contexts. From
the taint analysis results from ANALYZER, ACG identifies
context-related variables. If crashes occur due to these vari-
ables, ACG avoids reporting them as bugs. Instead, it avoids
crashes by dynamically generating new memory regions or
skipping crash points. ACG handles the following two cases
in particular: load/store instructions and function calls.

Load/Store instruction. ACG sanitizes load/store instruc-
tions that are related to contexts. These instructions interrupt
fuzzing when the fuzzer accesses invalid memory addresses
due to uninitialized context values, such as NULL for pointers.
To prevent harnesses from being interrupted, ACG instruments
the context-related load/store instructions with sanitization
hooks. These hooks check the validity of the address by
trying to access the memory, and then catch any crashes that
occur from invalid memory accesses. Whenever an invalid
memory access is detected, the hooks dynamically allocate
new memory regions and assign them to the corresponding
variables to allow fuzzing to continue.

depicts the process of sanitizing load in-
structions. ACG starts with instrumenting a hook function
sanitizeLoad to the context-related variable sep. Then,
when the harness accesses sep with the load instruction, the
hook first tries to access the memory. If a crash occurs from an
invalid memory access, the hook catches the crash, allocates
a new memory region, and assigns it to the variable. Finally,
the harness continues fuzzing without crashing.



L14: sep->state = ...

// Unsafe access to sep
Ll4:,sep = sanitizeLoad(sep) ;
sep->state = ...

// Sanitize sep
// Safe access to sep
@ Reference
0x4080000 Valid address

Oxdeadbeef Invalid address

@ Allocation on crash

(a) An example of sanitizing a load instruction

L22: err = session->ops->set configuration ind
(session, sep, ..);// Crash unsafe

L22: err = sanitizeIndirectCall (set_configuration ind,
session, sep, ..); // Crash safe

\ @ Invoke indirect call
validCallback (session, )
NULL (session, ..)

® Restore

@ Catch crash
(b) An example of sanitizing an indirect call

L5: if (msg_type == BT_AVDTP_CMD) {

// Always false
L5: msg_type = generateCTX(msg_type, BT AVDTP CMD); // Generate context
if (msg_type == BT_AVDTP_CMD) \ // Condition true
@® Generate candidates
® Modify the operand
msg_type
BT_AVDTP_CMD - 1

@ Select a value based on
fuzzing input

J‘ BT_AVDTP_CMD ‘

Fuzzing Input (for Context) 0010101100
BT_AVDTP_CMD + 1

(c) An example of context generation

Fig. 4: Hooks for context sanitization and generation

Function Call. There are two types of function calls that
ACG needs to sanitize: 1) indirect calls and 2) calls to
the functions that are not instrumented. First, ACG sanitizes
indirect calls with the function pointers related to contexts.
These calls can interrupt fuzzing if the function pointers
are uninitialized or invalid. To prevent the crashes, ACG
instruments indirect calls with sanitization hooks. These hooks
first check the destinations of the function pointers by trying
to call them. If a destination is invalid, it catches the crash
that occurred from the invalid function pointer and then skips
the call to continue fuzzing.

Figure 4b| depicts the process of sanitizing an
indirect call. ACG instruments the hook function
sanitizeIndirectCall to the function pointer
session—->ops->set_configuration_ind. Then, when
the harness makes an indirect call, the hook first tries to call
the function with the function pointer. If a crash occurs due
to the invalid function pointer, the hook catches the crash,
skips the call, and continues fuzzing.

Second, ACG sanitizes function calls that are not instru-
mented. This is because ACG can only determine if a crash
is due to uninitialized context when it occurs within an
instrumented function. Crashes outside instrumented functions
cannot be evaluated in this way. This is because hooks,
which ACG uses to detect uninitialized contexts, are only
inserted with instrumentation. To prevent such crashes from
interrupting fuzzing, ACG instruments the function calls with
sanitization hooks. When a crash occurs, these hooks skip the

/ Argument comes from user-input
bt_addr_le_str(&reg->addr, str, sizeof(str));

'/ Argument comes from context variable
bt_addr_le_str(&conn->le.dst, str, sizeof (str));

&

REPLICATE_O_bt addr_le_str (&reg->addr, str, sizeof (str));
REPLICATE 1 bt addr le_str(&conn->le.dst, str, sizeof(str)) ;—l

static int REPLICATE 0_bt_ addr_ le static int REPLICATE_1_bt_ addr_ le
_to_str(const bt_addr_le_t *addr, _to_str(const bt_addr_le_t *addr,
char *str, size t len) char *str, size t len)

{ {
switch (addr->type) {

addr = sanitizeLoad (addr) ;
case BT ADDR_LE PUBLIC: =

type = generateCTX (addr->type) ;
switch (type) {
case BT ADDR_LE_PUBLIC:

Fig. 5: An example of function replication

function call and restore the execution state to just after the
call, allowing fuzzing to continue smoothly.

2) Context Generation: ACG generates contexts adaptively
by capturing and using the operands involved in the context-
related comparisons. This allows ACG to explore branches
blocked by specific contexts. To achieve this, ACG takes three
steps: 1) generating new value candidates from the operands,
2) selecting a value from the candidates, and 3) modifying the
operand to the selected value.

First, ACG generates new candidate values for the compar-
isons. To do this, ACG starts with instrumenting a hook right
before the comparison to capture the operands. Then, ACG
generates new values by slightly modifying the operands, mak-
ing them likely to affect the branch direction. In the example
of the comparison operands are msg_type and
BT_AVDTP_CMD, so the candidates could be msg_type (i.e.,
no modification), BT_AVDTP_CMD and BT_AVDTP_CMD=1.

Second, ACG uses a part of the fuzzing input as a seed
to select a value from the candidates. Specifically, ACG
partitions the fuzzing input into two dedicated parts: one for
user input and the other for context generation. In the example,
as the fuzzing input for context generation is 0610 = 2, ACG
selects BT_AVDTP_CMD as the new value for the operand.

Finally, ACG modifies the operand to the selected value.
ACQG replaces the operand with the selected value, expecting
to change the branch direction. In the example, ACG modifies
the operand of msg_type to BT_AVDTP_CMD based on the
fuzzing input, allowing ACG to enter the true branch.

ACG manages a mapping to ensure consistent context
generation results for the same comparisons. If the compar-
isons have the same operands, they should have the same
generated values. For example, a comparison within a loop
should consistently give the same result if the comparison
is independent of the loop iteration. To achieve this, ACG
stores the generated values for the current location with their
corresponding operands. When ACG executes the comparison,
it refers to the mapping to determine whether to reuse the
existing value or generate a new one.

3) Function replication: ACG can identify context-related
variables more accurately as taint analysis becomes more
precise. Imprecise taint analysis can lead to wrongly marking



Call graph void bt_acl recv(struct bt_conn *conn,
struct net_buf *buf,

uint8 t flags)

bt_acl_recv buf conn->rx; // User input tainted
bt_12cap recv bt_l2cap_recv(conn, BUE, true);

}
buf is treated as context variable

top-level function

target function

Fig. 6: An example of taint inconsistency. buf is marked as
context-related due to taint propagation from conn. But, buf
is not context-related, leading to a missed crash afterward.

variables as context-related. This can cause ACG to lose an
opportunity to detect crashes due to user-controllable inputs,
as ACG will wrongly try to resolve the crashes by generating
contexts for user inputs.

This often occurs in function calls, where different function
calls can have different sets of tainted arguments. For example,
in the function bt_addr_le_str is called with
two different sets of tainted arguments. The first call has
the first argument untainted, while the second call has it as
tainted. With the standard method of taint analysis, which over-
approximates the taints, the first argument of the function will
be considered tainted even if it is possible to not be. This leads
to over-tainting, which decreases the precision of the analysis.

ANALYZER uses context-sensitive analysis [49] to achieve
a more precise taint analysis. Specifically, ANALYZER im-
plements 1-level context-sensitive analysis (1-CFA) through
function replication. By replicating functions for different sets
of tainted arguments, ANALYZER prepares multiple versions
of the function. These versions consider all possible sets of
taint sources, treating them as distinct functions when there
are two or more different combinations of taint sources. The
caller then selects the appropriate version based on the taint
information of the arguments.

shows an example of function replication. In
the figure, the function bt_addr_le_str is called with
two different sets of tainted arguments, one having the
first argument untainted while the other having it as
tainted. ANALYZER replicates the function into two ver-
sions, REPLICATE_O_bt_addr_le_str and REPLICATE_1_
bt_addr_le_str, based on the taint information of the first
argument. Then, ANALYZER analyzes both versions of the
function, which results in identifying different sets of tainted
variables. This leads to ACG instrumenting hooks in different
places for each version, allowing ACG to generate contexts
precisely based on the taint information of the arguments.

D. Multi-Layer Classifier (MLC)

MLC performs multi-layer fuzzing to classify crashes de-
tected from the target harness (i.e., the harness for the target
function). The core idea is to verify these crashes by checking
if they can also be triggered at higher-layer functions in the call
graph, particularly at those in the top layers. To do this, MLC
constructs verifier harnesses, which are the harnesses for the

top-layer functions. Then, MLC compares crashes detected by
these verifier harnesses with those found by the target harness
to identify the same crashes.

Based on the results, MLC classifies the crashes into three
categories: high confidence, low confidence, and unverifiable.
If a verifier harness detects the same crash as the target
harness does, MLC classifies it as high confidence, indicating
a likely true positive. If no verifier harness detects the same
crash, MLC classifies it as low confidence, suggesting a likely
false positive. If the target function has no associated top-
layer functions (i.e., it is the top-layer function itself), MLC
classifies the crash as unverifiable.

When MLC constructs verifier harnesses, it faces two
main obstacles: 1) indirect calls and 2) taint inconsistencies.
First, indirect calls hinder MLC from ensuring that top-
layer functions can effectively reach the target functions.
This issue arises from invalid function pointers originating
from uninitialized contexts, which can cause certain indirect
calls to be skipped due to sanitization (see function call in
[SIV-CI). Since these calls may be essential for reaching the
target functions, skipping them can prevent functions from
successfully reaching the target.

Second, taint inconsistencies can cause verifier harnesses to
miss crashes. These inconsistencies occur when taint analy-
sis mistakenly over-approximates a user-controllable variable
defined by the initial target function list as context-related.
Specifically, taint analysis may incorrectly classify a user-
controllable variable when it is stored and loaded from a
context-related variable. When taint analysis incorrectly marks
a user-controllable variable, the verifier harness sanitizes
crashes caused by this variable, leading to missing crashes
in functions further down the call graph from that variable.

shows an example where taint analysis incorrectly
marks the user-controllable variable. buf is marked as a
context-related variable due to the taint propagation from the
context-related variable conn. However, buf is actually a user-
controllable variable that is independent of the context conn.
Since buf is mistakenly marked as context-related, MLC
sanitizes crashes caused by buf, leading to a missed crash
in the later execution.

To overcome the challenges, MLC uses two methods: 1)
patching indirect calls and 2) resolving taint inconsistencies.

Patching indirect calls. MLC patches indirect calls to direct
calls to make top-layer functions reach the target functions
effectively. For each indirect call, MLC first identifies possible
call targets. Then, MLC chooses functions that can lead to the
target function based on the call graph. Finally, MLC patches
the indirect call to direct calls to chosen functions. When there
are multiple possible call targets, RTCON alternates between
them in a round-robin manner.

Figure 7| shows an example of patching indirect calls. In the
figure, the indirect calls described in dotted lines are patched
to direct calls, as represented in red solid lines. Then, the
top-layer function can effectively reach the target function
through direct calls, without skipping any calls due to incorrect
function pointers.
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Fig. 7: An example of patching indirect calls. Indirect calls
(dotted lines) are patched to direct calls (red solid lines).

Resolving taint inconsistencies. MLC resolves taint incon-
sistencies by additionally fuzzing at the functions that have
the inconsistencies. As explained earlier, these inconsistencies
occur when taint analysis mistakenly marks a user-controllable
variable as context-related. To address this, MLC fuzzes at
the functions that have the inconsistencies, in addition to the
top-layer functions. Then, MLC uses the fuzz results from
these functions to classify the crashes. Specifically, even if
the top-layer functions fail to detect the same crash, MLC
classifies the crash as high confidence if the functions with
the inconsistencies detect it. In this way, MLC can classify the
crashes more accurately by considering the crashes detected
from the inconsistent functions, which may have been missed
from the top-layer functions.

V. IMPLEMENTATION

We implemented RTCON on the Clang/LLVM frame-
work [50] with 6.7k lines of C/C++ and Python. Specifically,
we implemented ANALYZER with 1.7k lines of C++ and 800
lines of Python, ACG with 3.4k lines of C/C++, and MLC
with 600 lines of C/C++ and 200 lines of Python. To adapt
RTCoON to RTOS projects, we wrote less than 100 lines of C
code per project.

We used libFuzzer [34] as the fuzz engine for our fuzzing
harnesses. We used SVF [46] to construct call graphs in
ANALYZER. To run our target RTOSes on our x86_64 eval-
uation machine, we used POSIX wrappers [S1], [52], [53],
[54] provided by the RTOSes. In the rest of this section, we
describe the implementation details of RTCON.

RTOS-specific input structures. Most RTOS functions that
handle user input receive messages in RTOS-specific input
structures, rather than raw bytes. These input structures are
typically message buffers or network buffers that encapsulate
the raw user data. For example, net_buf, one of the most
commonly used network buffer structures in Zephyr, contains a
raw user data pointer data, and its size size. To handle these
input structures, we implemented simple adapter code, which
is less than 25 lines of code per structure. The adapter code
converts raw byte fuzzing input to these RTOS-specific input
structures. Currently, RTCON supports the structures listed in
We plan to support more structures in the future.

Supporting additional input structures. RTCON requires
the user to manually write adapter code to support additional

TABLE II: List of targets and structures used in the evaluation.

RTOS Key Structures Kernel Subsystem

Zephyr struct net_buf bdca41d0  Bluetooth bdca41d0

RIOT struct os_mbuf 687a30af  Nimble 719bd3c4
FreeRTOS  NetworkBufferDescriptor_t  59f1¢570  FreeRTOS-Plus  940d75a
ThreadX NX_PACKET 485a02fa  NetXDuo 6¢8e9d1c

structures. However, the manual effort does not increase with
the structure’s complexity, as users only need to map the
fuzzing input and its length to the corresponding fields of the
input structure (e.g., [Figure 13| in [Appendix). All remaining
fields are automatically handled as context variables.

Making a list of target functions. To make a list of target
functions, we implemented a script to automatically extract
functions that take user inputs. Specifically, we extracted
430 functions that take the RTOS-specific input structures as
arguments. Additionally, we manually identified 65 functions
that take raw user input bytes and added them to the list. The
list also includes the argument indices of the user inputs, which
RTCON uses to generate harnesses.

Catching and handling crashes. ACG uses a mechanism
to catch and handle crashes that occur during fuzzing. Specif-
ically, it uses setjmp and longjmp to catch crashes from
memory reference instructions and function calls. If a crash
occurs, the program first jumps to the signal handler. Then, the
handler restores the execution state to just before the memory
reference or the function call. This allows ACG to catch the
crash, take necessary actions (e.g., allocating memory), and
continue fuzzing.

Blacklisting functions. ACG patches code to skip func-
tions that are registered on a blacklist. The blacklist includes
functions that disrupt fuzzing, such as sleep and assert
functions. These functions can halt fuzzing by pausing execu-
tion or by causing kernel panics. To prevent these unwanted
behaviors, ACG patches the functions to return immediately,
allowing fuzzing to continue uninterrupted.

VI. EVALUATION
In this section, we answer the following research questions:

« RQ1. Can RTCON find bugs in real-world RTOSes?
(SVI-A)
« RQ2. How effective is RTCON compared to existing
function-level fuzzers?
« RQ3. How effective is RTCON compared to existing
RTOS fuzzers? (§VI-C)
« RQ4. How effective is RTCON in classifying crashes?
(SVI-D)
Experimental environment. We conducted all experiments
on servers running Ubuntu 22.04, each equipped with two Intel
Xeon Gold 6248R processors featuring 24 cores and 256 GB
of RAM. For each fuzzing instance, we allocated one core
and 4 GB of memory, running them for 24 hours five times
as proposed by Klees et al. [S5].
Targets. We evaluated RTCON on four widely-used RTOSes:
Zephyr [26]], RIOT [27], FreeRTOS [28]], and ThreadX [29]



TABLE III: Discovered bugs by RTCON.

No System Subsystem Status CVE Remote  Context Detail

1 BT AP Fixed CVE-2024-5931 v No sanitization for num_subgroups field in parse_recv_state

2 BT SDP Fixed CVE-2024-6135 v v Mishandling of truncated packets in sdp_client_receive

3 BT SDP Fixed CVE-2024-6137 v v Missing check for the maximum number of filters in get_att_search_list

4 BT L2CAP Fixed v v Mishandling of truncated packets in 12cap_br_info_rsp

5 BT AVDTP Fixed CVE-2024-8798 v v Mishandling of truncated packets in bt_avdtp_l2cap_recv

6 BT ASCS Fixed CVE-2024-6442 v Missing maximum ases bounds check in ascs_cp_rsp_add

7 BT RFCOMM Fixed CVE-2024-6258 v v Mishandling of truncated packets in rfcomm_handle_data

8 Zephyr BT OTS Fixed CVE-2024-6444 v Mishandling of truncated packets in olcp_ind_handler

9 BT HCI Fixed CVE-2024-6259 v Mishandling multiple advertisements in bt_hci_le_adv_ext_report

10 BT HCI Reported v Missing num_bis validation in hci_le_big_complete

11 BT Shell Confirmed Missing nsig and nvnd check in bt_mesh_comp_pl_elem pull

12 Utils Fixed CVE-2024-6443 Mishandling of null starting string in ut £8_trunc

13 LoRaWAN Reported v Missing rx_pos bounds check in frag_transport_package_callback

14 LoRamac-node  Reported v Missing fragCounter bounds check in FragDecoderProcess

15 BT HCI Fixed v v Missing ad_len bounds check in _on_scan_evt

16 BT HCI Confirmed v Mishandling of truncated packets in _filter_uuid

17 BT HCI Reported v Mishandling multiple advertisements in ble_hs_hci_evt_le_ext_adv_rpt

18 RIOT BT HCI Reported Missing adv_handle validation in ble_hs_hci_evt_le_adv_set_terminated
19 BT HCI Fixed CVE-2024-51569 Access header before length check in ble_hs_hci_evt_num_completed_pkts
20 LoRaWAN Fixed v Missing header length check in gnrc_lorawan_mic_is_valid

21 DHCP Client Fixed CVE-2024-52802 v Mishandling of truncated packets in _parse_advertise

22 COAP Duplicated ~ CVE-2021-41040 Use vulnerable version of 3rd party library

23 FreeRTOS DNS Duplicated ~ CVE-2024-38373 v v Missing domain length validation in DNS_ParseDNSReply

24 SNMPv3 Fixed CVE-2025-55087 v v Mishandling of truncated packets in _nx_snmp_version_3_process

25 ThreadX HTTP Fixed CVE-2025-55085 v v Mishandling of truncated packets in _nx_web_http_client_process_header_fields
26 DHCPv6 Fixed CVE-2025-55086 v v Mishandling of truncated packets in _nx_dhcpvé_process_server_duid

27 DHCPv6 Confirmed v v Missing malicious label length check in _nx_dhcpv6_name_string_unencode

along with their respective subsystems. However, due to the
large size of RTOSes, we could not evaluate RTCON on all
subsystems. Instead, we evaluated RTCON on one of the most
representative subsystems for each RTOS: Bluetooth and net-
work stacks. shows the specific versions of the RTOS
kernels and subsystems used in our experiments. Notably,
we also tested Nimble [3]] and NetXDuo [30], which are the
external libraries for RIOT and ThreadX, respectively. These
libraries implement the Bluetooth and network stacks for RIOT
and ThreadX. For FreeRTOS, we tested the network stack
libraries implemented in FreeRTOS-Plus [4]]. Specifically, we
tested the TCP/UDP protocols along with their upper layers.
While we could not evaluate RTCON on all subsystems,
we strongly believe that RTCON can be extended to other
subsystems with minimal effort. Specifically, we can extend
RTCON to other subsystems by simply adding target functions
to the list of functions to fuzz, and specifying the input format
of the target functions. Furthermore, we can even extend
RTCON to other targets, such as general libraries, as we show
the details in
Analysis time.  We detail the average analysis time of
ANALYZER and ACG for each project in in the
The analysis time generally scales with the size
of the target RTOS codebase and the complexity of the target
function. On average, it takes about 10 minutes to analyze the
kernel call graph, with an additional 140% time required for
taint analysis and ACG. Notably, both ANALYZER and ACG
need to be executed only once per harness.

A. Effectiveness of Finding New Bugs

To evaluate the effectiveness of RTCON in finding bugs in
real-world RTOSes, we conducted a 24-hour fuzzing campaign
on our target RTOSes. As a result, RTCON found a total of
27 bugs across 4 RTOSes, with 25 previously unknown bugs.

provides detailed information on the bugs found by
RTCON. Specifically, RTCON found 14 bugs in Zephyr, 8 in
RIOT, 1 in FreeRTOS, and 4 in ThreadX. We reported all the
bugs to the respective maintainers. They confirmed and fixed
20 of them with 14 CVEs assigned.

Among the bugs found by RTCON, we manually confirmed
that 20 bugs are reachable by remote attackers. In other words,
attackers can send malicious packets to trigger these vulnera-
bilities, leading to potential remote code execution. This result
demonstrates the effectiveness of RTCON in finding new bugs
in real-world RTOSes and their security impacts.

RTCON could achieve these successful results thanks to its
support for adaptive context generation. As shown in
we found that 15 bugs required specific contexts to reach
the vulnerable code. For example, CVE-2024-6135 in Zephyr,
found in the Bluetooth Service Discovery Protocol (SDP),
requires valid contexts for both a Logical Link Control and
Adaptation Protocol (L2CAP) channel and an SDP channel to
trigger. RTCON can find this bug by generating the necessary
contexts without manually constructing these channels. We
present additional detailed case studies in [§A] of
to demonstrate the effectiveness of RTCON in finding bugs in
RTOS kernels with specific contexts.

B. Comparison with Function-Level Fuzzers

In this section, we compare the effectiveness of RTCON in
testing RTOS kernels with function-level fuzzers. In particular,
we compare RTCON with FuzzSlice [23]], a state-of-the-art
function-level harness generator, and FuzzGen [20], an API
harness generator originally targeting AOSP libraries. We
evaluated them to demonstrate the effectiveness of RTCON
in comparison to existing function-level fuzzers, even though
they are not designed for testing RTOSes. There are also other
tools such as FUDGE [21]] and AFGen [22], but we could not
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Fig. 8: Line coverage measured in four RTOSes: Zephyr, RIOT, FreeRTOS,

evaluate them since they are not publicly available. Instead,
we also compared RTCON with manually crafted harnesses
for the target functions.

Unlike RTCON and FuzzSlice, FuzzGen requires con-
sumers, which are the applications that use the target function.
FuzzGen analyzes these applications to find the usages of the
target function and generate harnesses. In this evaluation, we
provided sample and test code from each RTOS project as
consumers for FuzzGen.

depicts the graphs of line coverage achieved by

RTCON, our manual harnesses, RTCON~ (for ablation study),
FuzzSlice, and FuzzGen in four RTOS kernels. More detailed
results are provided in [Table VIII| of [Appendix| The table
includes the average line coverage, as well as Mann-Whitney
U test results [S5] to determine the statistical significance
between RTCON and the other fuzzers.
Comparison with FuzzSlice and FuzzGen. shows
the line coverage that RTCON and the harnesses generated
by FuzzSlice and FuzzGen achieved. To summarize, RTCON
achieved significantly higher coverage than both FuzzSlice and
FuzzGen across all RTOS kernels. This is because the gener-
ated harnesses struggled with unintended crashes, primarily
caused by uninitialized kernel subsystems and incomplete
inference of data structures. Furthermore, as function argu-
ments become more complex, the fuzzing input space grows
exponentially, making it unlikely to create interesting inputs. In
the case of FuzzGen, while it successfully caught the functions
used in subsystem initialization, there were limitations in
identifying callback functions that are not explicitly invoked.
However, RTCON could bypass the inference of complex
structures and API specifications through its adaptive context
generation. This allowed RTCON to achieve high coverage
while avoiding early termination of the harnesses.

Comparison with manual harnesses. To evaluate the ef-
fectiveness of RTCON in generating contexts, we compared
RTCON against our manual harnesses. We built these manual
harnesses by analyzing the API usage of the kernel and
subsystems, mostly referring to sample and test code. As
a result, we built harnesses for each RTOS, initializing the
kernel and creating temporary contexts, such as Bluetooth
connection, before testing the target functions. In particular,
we used the Bumble [56] Bluetooth emulator to establish a
mockup Bluetooth connection.

Figure 8| shows the coverage results of RTCON and manual
harnesses. The results show that RTCON achieved similar or
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and ThreadX.

higher coverage than manual harnesses for FreeRTOS and
ThreadX. However, in the case of Zephyr and RIOT, RTCoON
recorded about 1%p lower coverage. This small difference
comes from manual harnesses gaining coverage by executing
kernel-specific functions like scheduling and multi-threading,
which are skipped by RTCON. While both RTCON and
manual harnesses can achieve high coverage in function-level
fuzzing, RTCON removes the need for the manual effort
required to construct context, enhancing scalability.

Ablation study. To evaluate the effectiveness of adaptive con-
text generation, we conducted an ablation study. For this, we
implemented RTCON™, which disables the adaptive context
generation. shows the coverage results of RTCON
and RTCON™. The results show that RTCON achieved 7%p,
8%p, 16%p, and 5%p higher coverage than RTCON~ for
Zephyr, RIOT, FreeRTOS, and ThreadX, respectively. This
indicates that the generated contexts are crucial in exploring
the target functions. Notably, RTCON outperforms RTCON™
more significantly in FreeRTOS. This is because a consider-
able number of tested functions in FreeRTOS validate input
arguments at the beginning of the function using assert,
preventing RTCON™ from exploring the functions further.
However, RTCON can bypass them by adaptively setting up
necessary conditions.

Bug findings. We evaluated our manual harnesses, RTCON™,
FuzzSlice, and FuzzGen to see if they can detect new bugs
discovered by RTCON. shows the result. Out of the
27 bugs, our manual harnesses and RTCON™ could detect 20
and 13 bugs, respectively. In contrast, FuzzSlice and FuzzGen
either failed to generate harnesses or did not detect any
bugs. This is because most of the harnesses generated by
FuzzSlice and FuzzGen terminated prematurely due to unin-
tended crashes from the incorrect inference of data structures.
Specifically, the incomplete analysis of complex structures
led to incorrect values being populated within both context
and input structures. As a result, most harnesses crashed
upon attempting to reference invalid pointers within these
structures. However, given that FuzzSlice and FuzzGen are
not designed for testing RTOS kernels, this does not imply
they are generally ineffective.

RTCoON™ was able to find relatively shallow bugs, but could
not find deeper bugs. For example, in the case of CVE-2024-
6444 (Bug #8), RTCON™ was able to find this bug because
there were no references to context variables before reaching
the vulnerable code. However, it could not find most bugs that



TABLE IV: Bug finding capability of RTCON compared to other function-level fuzzers. The table shows that FuzzSlice and
FuzzGen could not detect any bugs. However, note that these fuzzers are not designed for testing RTOSes.
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TABLE V: Comparison of RTCON with RTOS fuzzers.

RTOS RTCoN (E/C/B) HOEDUR (E/C/B) SFuzz (E/C/B)
Zephyr 7,336 /288 /10 3,144 /99 /1 256 /64 /4
RIOT 2,536/69/6 803/871/1 216/20/0
FreeRTOS 2,403 /37/1 947784 /0 30/8/70
ThreadX 3972/101/3 680/ 105/0 130/20/0
Total 16,247 / 495/ 20 5,574 137512 632/112/4

E: # of edges covered. / C: # of unique crashes. / B: # of identified bugs.

require specific contexts.

Manual harnesses were able to find a substantial number
of bugs; however, they require significant manual effort to
construct the necessary contexts. For some subsystems (e.g.,
Bluetooth Mesh and LoRaWAN), we could not configure the
harnesses, so they were excluded from the comparison.

C. Comparison to state-of-the-art RTOS fuzzers

Experimental setup. To see how effective RTCON is in
testing RTOS kernels compared to existing RTOS fuzzers, we
evaluate RTCON with SFuzz [12], a state-of-the-art sliced-
based RTOS fuzzer, and HOEDUR [14], a multi-stream input-
based firmware fuzzer. As SFuzz only supports the binaries
compiled for ARM and MIPS architectures, we compiled the
RTOS kernels for ARM architecture with the same configu-
rations as in previous experiments. Additionally, we manually
included source and sink functions for each RTOS, which
SFuzz uses to find vulnerable paths in the target binaries.

Result. shows a comparison result of the number
of covered edges, unique crashes found, and identified bugs.
RTCON explores significantly more edges and discovers more
crashes than both HOEDUR and SFuzz. HOEDUR, which ba-
sically adopts a firmware fuzzing approach, provides inputs to
the emulated RTOS kernel via hardware registers (e.g., MMIO
registers) to fuzz the interrupt handler. However, similar to
API fuzzers, it has limitations in exploring the functions that
require specific contexts. For instance, while HOEDUR may
successfully invoke the Bluetooth HCI command handler, it
cannot reach upper-layer handlers (e.g., Bluetooth SMP) due
to the absence of necessary connection information.
Compared to RTCoN and HOEDUR, SFuzz achieves lower
coverage, primarily due to two main reasons. First, SFuzz
slices code snippets and prunes the unnecessary paths by
patching the code. They skip calls and modify branches to
fixed jumps, which results in fewer edges being explored.
Second, SFuzz limits fuzz testing to potentially vulnerable
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TABLE VI: Multi-layer classification results of detected
crashes. Specifically, 15 bugs were identified as high-
confidence through taint inconsistency resolution.

v Total High Low Unverifiable
Zephyr 3.6 64 /258 (24.8%) 52 (15) / 57 (91.2%) 6/195 (3.1%) 6 /6 (100.0%)
RIOT 1.2 33 /39 (84.6%) 20 /20 (100.0%) 0/4(0%) 13/15 (86.7%)
FreeRTOS 1.1 11/ 35 (31.4%) 0/1(0%) 11/30 (36.7%) 0/ 4 (0%)
ThreadX 1.6 7 /111 (6.3%) 4 /4 (100.0%) 2 /100 (2.0%) 1/7 (14.3%)

Total 1.9 1157443 (26.0%) 76 (15) /82 (92.7%) 19/ 329 (5.8%) 20/ 32 (62.5%)

V: Average number of verifier harnesses created per target function.

paths between source and sink functions, meaning it cannot
explore edges outside these paths. For example, in the case of
FreeRTOS, SFuzz only found two potential vulnerable paths,
since FreeRTOS performs direct memory operation rather than
using the vulnerable sink functions (e.g., memcpy).

It is worth noting that SFuzz and HOEDUR are designed for
different purposes; SFuzz primarily targets user applications
running on RTOSes (e.g., COTS router, printer firmware),
while RTCON targets RTOS kernels themselves. HOEDUR,
on the other hand, focuses on fuzzing through external periph-
eral inputs, which contrasts with our function-level fuzzing
approach. Due to these differences, we cannot claim that
RTCON can replace SFuzz or HOEDUR. However, this eval-
uation demonstrates that an approach like RTCON— applying
function-level fuzzing to RTOS — has unique advantages in
testing deep RTOS kernel code compared to existing RTOS
fuzzers.

D. Effectiveness of Multi-layer Classification

In this section, we evaluate the effectiveness of RTCON in
classifying the crashes. For each target function, we ran both
the verifier and target harnesses for a total of 24 hours.

Result. shows the result of the multi-layer classifi-
cation. The table shows the following: 1) the average number
of verifier harnesses created per target function, 2) the total
number of unique crashes detected by a target harness, and 3)
the number of crashes at each confidence level, as classified by
RTCoN. Bold numbers represent unique valid crashes, which
are manually confirmed.

As a result, RTCON constructed an average of 1.9 verifier
harnesses for each target function. With these verifier har-
nesses, RTCON detected a total of 443 unique crashes with
115 valid crashes. Specifically, RTCON detected 258, 39, 35,
and 111 unique crashes at target functions from Zephyr, RIOT,
FreeRTOS, and ThreadX, respectively. Among them, we found



that 64, 33, 11, and 7 crashes are valid. Through the multi-
layer classification, RTCON classified 52, 20 and 4 crashes as
high-confidence bugs, achieving precision of 91.2%, 100.0%
and 100.0% in Zephyr, RIOT and ThreadX. However, RTCON
could not find high-confidence bugs in FreeRTOS. A total of
32 crashes could not be verified due to the absence of verifier
harnesses, of which 20 were valid crashes.

Specifically, 15 bugs were identified as high-confidence
through taint inconsistency resolution. This typically occurs
when user input is stored in a context variable and later copied
from it (as described in [Figure 6). Since RTCON detects such
mis-taints and reports them from the highest possible layer of
the call graph, it can effectively validate these bugs.

In the following, we present false positives and underclas-
sified bugs. For more comprehensive analysis, we also further
evaluate RTCON on previously known bugs (see [§C).

False positives. Even when crashes are reproduced from
top-layer functions, RTCON may report false positives for
two reasons. First, false positives can occur in functions
that receive user inputs assumed to be trusted. For example,
among the five false positives detected in Zephyr, three
were in a function that handles messages from the local
Bluetooth host. Although we reported these crashes to the
maintainers, they did not consider them bugs, as the inputs are
assumed to be trusted and well-formed. Second, incomplete
taint propagation caused by double-pointer variables can also
lead to false positives. Specifically, RTCON currently does
not handle taint propagation through indirect memory access
using double pointers. This can make RTCON miss sanitizing
invalid crashes and result in false positives. In our result, two
other false positives in Zephyr are caused by this reason.

Underclassified bugs. While RTCON could classify a fair
amount of actual bugs as high confidence, it still missed
some bugs. This is because verifier harnesses could not
reach certain functions due to road-blocking routines, such as
checksum validation. provides detailed examples of such
routines observed in Zephyr and FreeRTOS. In our result,
all 11 crashes in FreeRTOS were located in DNS packet
processing functions. To verify these bugs, RTCON attempted
to generate valid messages starting from the top-layer Ethernet
frame handler. However, due to checksum validation in each
protocol layer, RTCON could not generate inputs that could
pass the checksum within the limited time frame. Instead,
RTCON reported the crashes were reproduced from middle-
layer handlers, like UDP packet processing functions.

This issue paradoxically highlights the need for direct
fuzzing at the low-layer function. As shown in the results,
fuzzing from the top-layer function (e.g., API and main) does
not ensure reaching the functions that are deeply located in
the program. Thus, this would lead the fuzzer to miss potential
bugs in these functions, resulting in false negatives. In contrast,
RTCON addresses this limitation by directly fuzzing the low-
layer functions, effectively detecting bugs that other fuzzers
may miss.
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VII. DISCUSSION
A. Imprecise Pointer Analysis

When fuzzing at top-layer functions, RTCON forcibly traces
indirect calls in the call graph. However, this can result in
unwanted crashes. As mentioned in this is mainly
due to the flow-insensitive nature of our analysis, which
RTCON uses to trace indirect calls at corresponding call sites.
While some previous works [57], [58] proposed flow-sensitive
pointer analysis to improve precision, RTCON currently adopts
flow-insensitive pointer analysis due to the high complexity of
such analysis.

While this simplifies our process, it may reduce the fuzzing
efficiency of the verifier harnesses. To address this, RTCON
offers additional hooking points that allow a user to validate
the legitimacy of an indirect call at call sites. Once a hook
function is registered, RTCON executes it before invoking an
indirect call to perform user-defined validity checks.

We note that this approach is unlikely to cause false posi-
tives. Crashes caused by imprecise pointer analysis typically
originate from context variables or occur at random code
locations. However, RTCON filters out such cases by sanitizing
context-related crashes and comparing the call stacks between
the verifier and target harnesses.

B. False Positives & False Negatives

Unlike classical fuzzing, RTCON can detect more vulner-
abilities as it needs fewer constraints to satisfy (see [SVI-A).
This is because RTCON can begin fuzzing directly from a
function without any context. However, as RTCON is fun-
damentally based on fuzzing, it inherits the limitations of
fuzzing. Moreover, to enable function-level fuzzing, RTCON
also introduces several trade-offs that result in both false
positives and false negatives.

Infeasible Contexts & Inputs. As RTCON constructs con-
texts and inputs arbitrarily without checking their feasibility,
it may report false positives. For example, RTCON may infer
that two context variables differ even when they are, in fact,
aliases. Although RTCON does not directly report crashes
caused by such invalid context variables, it may still report
false crashes along paths that appear reachable only because
of these infeasible contexts. This also happens to an input if
it is incorrectly assumed to be fully controllable (see [§VI-D).

Uninitialized Context Variables. RTCON also cannot detect
bugs caused by uninitialized context variables. This is because
RTCON assumes that all context variables are properly initial-
ized. This assumption enables RTCON to perform function-
level fuzzing without any contexts, but it can also suppress
genuine failures, leading to false negatives.

Over-tainting. Over-tainting from the context variables can
mask real bugs (see [§IV-B2), leading to false negatives.
RTCON adopts this conservative approach to suppress crashes
caused by context variables. As a result, bugs that depend
on both input values and context variables (e.g., arithmetic
operations involving both) may be missed.



Uninstrumented Code. Because RTCON detects only
crashes within instrumented code, it may miss bugs in unin-
strumented code (e.g., linked libraries). To detect these bugs,
we need to include target libraries in its analysis.

Limited Implementation. We also observed that RTCON
may cause false positives due to its limited implementation.
As discussed in the current prototype of RTCON does
not yet handle taint propagation for double-pointer variables.
In such cases, RTCON misses to sanitize crashes caused by
invalid context variables, which can lead to false positives.

C. Effectiveness of Finding Bugs in General Libraries

Experimental setup. While RTCON primarily targets RTOS
kernels, it can be easily extended to general-purpose libraries.
To see the applicability of RTCON to general libraries, we
evaluated whether RTCON could detect previously known
vulnerabilities in seven general libraries. The target libraries
and vulnerabilities were selected based on those discovered
by AFGen, the state-of-the-art function-level fuzzer. Since
the source code of AFGen is not publicly available, we
could not fully reproduce the results of AFGen. However, as
AFGen provided the generated harnesses for the discovered
vulnerabilities, we could run the harnesses to reproduce the
results. Also, we could infer the vulnerable versions of the
libraries using the publicly disclosed CVE information and
the harness code.

Result. RTCON was able to detect 24 out of 26 bugs across
seven libraries (details in[Table TX| of [Appendix)). In particular,
CVE-2022-30858 of ngiflib, a buffer overflow vulnerabil-
ity when processing the file contents, could be detected by
RTCoN by adding a simple hook of fewer than five lines of
code. Similarly to what AFGen does, this hook redirects the
fuzzing input as file content to the target function.

Of the two undetected bugs, CVE-2022-34526 in 1ibtiff
was not reproduced by either AFGen or RTCON. The other,
CVE-2023-23054 in libming, RTCON could not detect it
because it is an infinite loop vulnerability that RTCON is not
designed to detect. Before reaching the timeout required to
detect the bug, RTCON reaches the maximum limit on the
number of times context generation hooks can be invoked,
which is designed to prevent performance degradation caused
by infinite loops resulting from generated contexts.

D. Challenges on Function Level Fuzzing RTOS Kernels

Applying function-level fuzzing to RTOS kernels poses its
own unique challenges compared to fuzzing general-purpose
libraries. We demonstrate their challenges by evaluating two
existing tools, FuzzGen [20] for API fuzzing and Angr [59] for
under-constrained symbolic execution. Our evaluation shows
two challenges in applying them to RTOS kernels.

Lack of Exposed APIs. RTOS kernels lack exposed APIs
to construct necessary contexts for fuzzing target functions. In
practice, most harnesses produced by FuzzGen were limited to
externally visible kernel initialization calls (e.g., bt_enable).
Therefore, they could not construct specialized contexts re-
quired by the targets (e.g., LoRaWAN stacks or RFCOMM sessions
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in|Figure 9and[Figure 10). This contrasts with general-purpose
libraries, which commonly provide explicit context-building
APIs (e.g., EVP_EncryptInit in OpenSSL [60]).

Difficulty in Constructing Complex Contexts. Constructing
complex contexts accurately is fundamentally challenging for
both function-level fuzzers and symbolic executors. RTOS ker-
nels contain deeply nested data structures and rely heavily on
indirect calls, which both of them leave many of the constraints
needed to reach target functions unresolved. According to our
analysis, symbolic execution failed to propagate constraints
along the call paths into the target, and indirect calls (e.g.,
dev->driver->set in remained unresolved, caus-
ing early termination of analysis.

VIII. RELATED WORK

Real-Time OS Fuzzing. Despite extensive research [7],
(81, o0, [10], [L1], [41], [61], [62] focused on security
analysis of embedded devices, a few [12], [63], [13], [14]
works specifically targeted RTOS kernel and the applications
running on them. Li et al. [63] abstracts the HAL functions to
rehost MCU firmware based on RTOS, while HOEDUR [14]
proposes firmware-aware fuzzing with a multi-stream input
representation. SFuzz [12]] slices code snippets from the call
graph and emulates small portions of the binary to perform
micro-fuzzing. Rtkaller [[13] applies task-based fuzzing to rt-
Linux, but it is closely related to Linux kernel fuzzing. While
most of these works show their effectiveness in identifying
bugs, they require engineering effort to rehost the firmware or
emulate the part of the system. In contrast, RTCON tests RTOS
kernels without actual devices or emulation with function-level
fuzzing and adaptive context generation.

Automatic Harness Generation. Instead of dynamically
generating contexts, previous works [20], [21], [64], [65],
[23] have focused on statically generating contexts to reach
deep internal states. FuzzGen [20] builds fuzz drivers for
the target libraries by inferring their interfaces and analyzing
API dependency graphs. Similarly, FUDGE [21] builds fuzz
drivers by analyzing the usage patterns of the target libraries.
GraphFuzz [64] models sequences of executed functions as
a dataflow graph to test low-level library APIs, while AP-
ICraft [65] builds fuzz drivers by collecting control and
data dependencies for API functions and combining these
dependencies. These approaches leverage existing codebases
to build API fuzz drivers. While they can construct legitimate
contexts based on APIs, they struggle to generate contexts for
fuzzing arbitrary functions.

Recent works [23], [22], [25] build fuzz drivers using static
analysis. Specifically, FuzzSlice [23] builds fuzz drivers by
creating small, compilable code slices at the function level.
AFGen [22] takes a bottom-up approach, building fuzz drivers
that target internal functions while collecting constraints from
call sites. Similarly, Griller [25] performs symbolic execu-
tion to extract constraints from the parent functions. These
approaches have demonstrated effectiveness in finding bugs.
However, unlike RTCON, they heavily rely on static analysis



to reduce false positives and struggle to populate context
structures for complex kernel objects.

IX. CONCLUSION

In this paper, we presented RTCON, a context-adaptive
function-level fuzzer for RTOS kernels. RTCON performs
function-level fuzzing on any target functions within the
RTOS kernel without any given function contexts. To achieve
this, RTCON adaptively generates the necessary contexts on
demand while fuzzing target functions. Additionally, RTCON
uses Multi-layer Classification to classify crashes based on
confidence, allowing security analysts to focus on high-
confidence crashes. We implemented the prototype of RTCON
and evaluated it on four popular RTOS kernels: Zephyr, RIOT,
FreeRTOS, and ThreadX. As a result, RTCON discovered
27 bugs, with 25 previously unknown bugs, including 14
CVE ID issued. RTCON also demonstrated its effectiveness
in crash classification, achieving an 92.7% precision for high-
confidence crashes, compared to a 5.8% precision for low-
confidence crashes.
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APPENDIX A
ADDITIONAL CASE STUDIES

Case study 1: An out-of-bounds read in RIOT (Bug #20).
shows an out-of-bound read vulnerability discovered
by RTCON in RIOT. The vulnerability is found in gnrc_
lorawan_mic_is_valid of RIOT LoRaWAN module [66].
The vulnerability is triggered at line 16; it reads the fcnt field
of the lorawan_hdr structure without checking the size of the
received buffer. Consequently, this leads to an out-of-bounds
read in the user input buffer buf.

To reach the vulnerable code, we need to pass through
device-specific functions (Lines 22-23) that are initialized
during the boot process. Without proper initialization of these
devices, traditional fuzzers would crash when attempting to
call an uninitialized function (dev->driver->set) (Line 3)
or reference an empty device structure (s1lw_netif->timer)

15


https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://docs.zephyrproject.org/latest/samples/subsys/debug/fuzz/README.html
https://docs.zephyrproject.org/latest/samples/subsys/debug/fuzz/README.html
https://doc.riot-os.org/group__sys__fuzzing.html
https://doc.riot-os.org/group__sys__fuzzing.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host-controller-interface/host-controller-interface-functional-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host-controller-interface/host-controller-interface-functional-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host-controller-interface/host-controller-interface-functional-specification.html
https://docs.zephyrproject.org/latest/boards/native/native_sim/doc/index.html
https://docs.zephyrproject.org/latest/boards/native/native_sim/doc/index.html
https://doc.riot-os.org/group__posix.html
https://doc.riot-os.org/group__posix.html
https://freertos.org/Documentation/02-Kernel/03-Supported-devices/04-Demos/03-Emulation-and-simulation/Linux/FreeRTOS-simulator-for-Linux
https://freertos.org/Documentation/02-Kernel/03-Supported-devices/04-Demos/03-Emulation-and-simulation/Linux/FreeRTOS-simulator-for-Linux
https://freertos.org/Documentation/02-Kernel/03-Supported-devices/04-Demos/03-Emulation-and-simulation/Linux/FreeRTOS-simulator-for-Linux
https://github.com/eclipse-threadx/threadx/blob/master/utility/rtos_compatibility_layers/posix/readme_threadx_posix.txt
https://github.com/eclipse-threadx/threadx/blob/master/utility/rtos_compatibility_layers/posix/readme_threadx_posix.txt
https://github.com/google/bumble/
https://docs.openssl.org/master/
https://api.riot-os.org/group__net__gnrc__lorawan.html
https://api.riot-os.org/group__net__gnrc__lorawan.html
https://llvm.org/docs/LibFuzzer.html#corpus
https://llvm.org/docs/LibFuzzer.html#corpus
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md

1 static void _sleep_radio(gnrc_lorawan_t +mac) {

2 netdev_t +dev = gnrc_lorawan_get_netdev (mac);

3 dev->driver->set (dev, NETOPT_STATE, &state, sizeof(state));
4}

5

6 void gnrc_lorawan_remove_timer (gnrc_lorawan_t »mac) {

7 gnrc_netif_lorawan_t +lw_netif = container_of (mac, ...);

8 ztimer_remove (ZTIMER_MSEC, &lw_netif->timer);

10
11 static int gnrc_lorawan_mic_is_valid(uint8_t xbuf, size_t len,

12 e ) |

13 lorawan_hdr_t +1lw_hdr = (lorawan_hdr_t «)buf;

14

15 // No header size check before referencing the he
16 u:.nt32 _t fcnt = byteorder_ 1tohs(lw hdr->fent) ;

19 void gnrc_lorawan_radio_rx_done_cb (gnrc_lorawan_t #mac,

20 uint8_t «+psdu, size_t size) ({
21 // evice speci fic code

22 sleep radio (mac) ;

23 gnrc_lorawan_remove_timer (mac) ;

24

25 // Call to vu fu ti

26 gnrc_lorawan_mic_is valld(psdu, size);

Fig. 9: An out-of-bound read vulnerability in RIOT.

static void rfcomm_handle_data (struct bt_rfcomm_session #session,

*buf, uint8_t dlci, uint8_t pf) {

1
2 struct net_buf

3 struct bt_rfcomm_dlc =dlc;

4

5 // 1. Get Data Link C € on (dl object from current session
6 dlc = rfcomm_dlcs lookup dlc1(se55lon >dlcs, dlci);

7 if (!dlc) {

8 LOG_ERR ("Data recvd in non existing DLC");

9 rfcomm_send_dm(session, dlci);

10 return;

11 }

12

13 // 2. Check if the Data Link Connection is connecte

14 if (dlc->state != BT_RFCOMM_STATE_CONNECTED) {

15 return;

16 }

17

18 ame

19

20 // ne buf_pu lata rom the empty buffer £
21 rfcomm dlc_tx_give_: credlts(dlc, net buf_pull u8 (buf)) ;

24}

Fig. 10: CVE-2024-6258: Out-of-bounds read in Zephyr.

(Line 8). This may be resolved by emulating the peripher-
als [38], [61], [67] or testing on real devices [41] equipped
with corresponding peripherals. However, such approaches
are time-consuming and known to have scalability issues. In
contrast, RTCON can generate mockup device structures in
the fuzzing campaign, allowing it to directly fuzz the target
function without emulation or real devices.

Case study 2: Out-of-bounds read in Zephyr (Bug #7,
CVE-2024-6258). shows an out-of-bounds read
vulnerability in rfcomm_handle_data in Zephyr, which was
discovered by RTCON. The vulnerability is triggered at line
21; net_buf_pull_u8 can pull data from an empty buffer as
this function does not check the remaining data length. Even
though the bug seems to be simple, it is non-trivial to reach
this code. For that, we require (D a valid Bluetooth RFCOMM
session as well as Data Link Connection (d1c) (Line 6) and
@ state of Data Link Connection should be in the connected
state (Line 14). Additionally, (B the specific bitfield of frame
type (p£f) should be set to BT_RFCOMM_PF_UIH_CREDIT (Line
19). As we can imagine, it is challenging to reach this code
with end-to-end testing or traditional function-level fuzzing.

buffer si

// Global
uint8_t rsp_buf[2

531;

static ssize_t ascs_gos (struct bt_conn =xconn,

struct bt_ascs_gos_op *req;
req = net_buf_simple_pull_mem (buf,

sizeof (xreq));

1

2

3

4

5 struct net_buf_simple xbuf) {
6

7

8

{

12 // Par oS request

13 gos = net_buf 51mple_pull mem (buf, sizeof (xgos));
14

15 // Find Audio Stream Endpoint by 1id

16 ase = ase_find(conn, gos->ase);

17 if (! ase) {

20 ase_rsp = net_buf 51mple add (&rsp_buf,

21 sizeof (xase_rsp));
22 t s Write

23 ase_rsp->id = gos->ase;

24 continue;

25 }

26 }

27}

Fig. 11: CVE-2024-6442: Out-of-bound write in Zephyr.

In more detail, end-to-end testing requires a valid RFCOMM
session, which is difficult to set up due to the complexity
of the Bluetooth protocol. Similarly, traditional function-level
fuzzing cannot reach the vulnerable code as it requires specific
contexts that are hard to generate due to the complexity of their
structures (e.g., session). However, RTCON can adaptively
generate valid contexts to reach the vulnerable code effectively.
This is achieved by populating appropriate context values on
demand, without the need for analyzing complex structures.

Case study 3: Out-of-bound write in Zephyr (Bug #6, CVE-

write vulnerability discovered by RTCON in Zephyr. The vul-
nerability is found in ascs_gos of Zephyr Bluetooth Audio
Stream Control Service (ASCS). The vulnerability is triggered
at line 11; it fails to check the maximum number of Audio
Stream Endpoint (ASE) QoS requests (reg—>num_ases) be-
fore using it in the loop condition. This leads to QoS requests
being excessively processed, each allocating an ASE id and
adding it into the global response buffer rsp_buf (Line 20).
Consequently, this results in an out-of-bounds write to the
global buffer in the following code at line 23.

APPENDIX B
ROADBLOCK FUNCTIONS

shows an example of checksum validation in
Zephyr, FreeRTOS, which led to 13 bugs being missed
by the verifier harnesses. In rfcomm_recv
starts with receiving a message buf from the user. The
function then validates the checksum of the message us-
ing rfcomm_check_fcs (Line 5). If the checksum is in-
valid, the function returns an error without reaching the
vulnerable function rfcomm_handle_data (Line 11). Sim-
ilarly, in the checksum validation routines in
IP packet processing, usGenerateChecksum (Line 1) and
usGenerateProtocolChecksum (Line 9) immediately stop
packet processing when the checksum is invalid. Therefore,
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static int rfcomm_recv (struct bt_l2cap_chan =*chan,

1
2 struct net_buf <buf) {

3 .

4 /+ It should pass crc checksum */

5 if (!rfcomm_check_fcs(fcs_len, buf->data, fcs)) {
6 LOG_ERR("FCS check failed");

7 return 0;

8 }

9 .

10 case BT_RFCOMM_UIH:

11 rfcomm_handle_data(...); // target function

(a) A checksum validation routine in Zephyr

if (usGenerateChecksum(0U,

1

2 (const uint8_t +) & (pxIPHeader->ucVersionHeaderLength),
3 (size_t)uxHeaderLength) != ipCORRECT_CRC)

4 {

5 /* Check sum in IP-} der not correct. x*/

6 eReturn = eReleaseBuffer;

7}

8 /+ Is the upper-layer checksum (TCP/UDP/ICMP) correct? x/

ks
9 else if (usGenerateProtocolChecksum(
10 (uint8_t ) (pxNetworkBuffer->pucEthernetBuffer),
11 pxNetworkBuffer->xDatalLength,

12 pdFALSE) != ipCORRECT_CRC)

13 {

14 /# Protocol checksum t */

15 eReturn = eReleaseBuffer;

16}

17 else

18 {

19 The check of the received packet is OK. #/

20 }

(b) A checksum validation routine in FreeRTOS

Fig. 12: An example of road-blocking routine

to reach the vulnerable function, the verifier harness should
generate a valid message that passes the checksum validation.
However, due to the complexity of the checksum algorithm,
the verifier harness could not generate such a message within
the limited time frame.

APPENDIX C
BUG FINDING CAPABILITY ON KNOWN RTOS
VULNERABILITIES

Experimental Setup. We further evaluate RTCON on pub-
licly disclosed vulnerabilities in three RTOSes: Zephyr, RIOT,
and ThreadX. In total, we collected 20 vulnerabilities that are
solely triggered by user inputs: 8 from Zephyr, 6 from RIOT,
and 6 from ThreadX. In the case of FreeRTOS, we could
not find any publicly disclosed vulnerabilities with sufficient
information for reproduction. For each vulnerability, we set
up its corresponding vulnerable version and executed RTCON
for 24 hours under the same experimental environment as
described in

Result. shows the detailed results of RTCON’s bug
finding capability on previously known RTOS vulnerabilities.
To summarize, RTCON successfully detected all bugs except
for CVE-2025-0727 in ThreadX. RTCON could not detect
CVE-2025-0727 because it requires highly structured input
(i.e., HTTP PUT message). Within the given time limit,
RTCON could not generate such highly structured inputs (i.e.,
an HTTP request) from random bytes. Nevertheless, since
RTCON generates harnesses based on libfuzzer [34], it can be

TABLE VII: Bug finding capability of RTCON on previously
known RTOS vulnerabilities. Note that FreeRTOS vulnerabil-
ities are excluded due to lack of disclosure. RTCON detected
all bugs except CVE-2025-0727 in ThreadX, which requires
highly structured input (e.g., HTTP PUT message).

. Confidence
Project CVE Subsystem  Found H U L
CVE-2021-3323 6LoWPAN 4 v
CVE-2021-3434 BT L2CAP v
CVE-2021-3966 BT HCI v v
Zephyr CVE-2023-0396 BT HCI' v
CVE-2023-4264 BT Audio v v
GHSA-56p9-5p3v-hhrc ~ MGMT 4 v
CVE-2023-5055 BT L2CAP v v
CVE-2024-3077 BT GATT v v
CVE-2023-24817 GNRC v v
CVE-2023-24819 6LoWPAN v v
RIOT CVE-2023-24820 6LoWPAN v v
CVE-2023-24821 6LoWPAN v v
CVE-2023-24825 GNRC v v
CVE-2023-33975 6LoWPAN v v
CVE-2025-0727 HTTP X
CVE-2025-55090 P v v
ThreadX CVE-2025-55091 P v v
CVE-2025-55092 1P v
CVE-2025-55093 1P v
CVE-2025-55094 ICMP 4

addressed by supplying predefined corpora [68] and custom
mutators [69] to effectively test structured inputs.

Other vulnerabilities, all except CVE-2025-55092 and CVE-
2025-55094, were detected with either high or unverifiable
confidence, meaning that RTCON either verified the bugs from
the top-layer function or detected them directly at the top-
layer function. These two vulnerabilities could not be verified
because their execution paths are blocked by checksum vali-
dation routines, which are the roadblock functions discussed

in [§B}

17



TABLE VIII: Detailed total line coverage measured in RTOSes. p-values (two-sided) are bolded when they show statistical

significance (p < 0.05).

RTOS RTCoN Manual RTCoN™ FuzzSlice FuzzGen
Mean Mean Difference  p-value ‘ Mean Difference  p-value ‘ Mean  Difference  p-value ‘ Mean  Difference  p-value
Zephyr 12.17% 12.81% -0.64% 0.008 5.25% 6.93% 0.012 0.00% 12.17% 0.007 3.16% 9.02% 0.007
RIOT 19.96% 20.81% -0.86% 0.222 11.84% 8.12% 0.008 5.99% 13.97% 0.012 3.92% 16.04% 0.011
FreeRTOS | 30.52% 22.51% 8.02% 0.008 14.20% 16.32% 0.012 6.49% 24.04% 0.011 2.03% 28.49% 0.012
ThreadX 11.74% 11.45% 0.29% 0.310 7.23% 4.51% 0.008 1.76% 9.97% 0.011 0.52% 11.22% 0.010

/* Adapter for testi net_buf structure x/
void testNetBuf (__uint8_t =#Data, size_t Size) {
struct net_buf buf;

buf.data = Data;

buf.size = Size;
buf.len = Size;

/

9 fuzzEntryFunction

16}

1
2
3
4
5 buf.__buf = Data;
6
7
8 /* Invoke the

/% User

testNetBuf (Data, Size);

target
(&

can change the

adapter function

Tfunction

buf, Size);

size_t Size)

here

*/

{

static void fuzzEntryFunctionHelper (__uint8_t =«Data,

Fig. 13: Adapter code for testing net_buf in Zephyr.

TABLE IX: Bug finding capability of RTCON in general

libraries, compared to AFGen.

Library 1D Type Found
libtiff CVE-2022-34526  Buffer Overflow -
pull_request_45 Buffer Overflow v
ffjpeg pull_request_46 Buffer Overflow v
CVE-2021-45385  Buffer Overflow v
CVE-2021-45386  Reachable Assertion v
CVE-2021-45387  Reachable Assertion v
CVE-2022-45484  Reachable Assertion v
CVE-2023-27783  Reachable Assertion v
teprenla CVE-2023-27784  Null Pointer Deref v
PrePlay  cvE-2023-27785  Null Pointer Deref v
CVE-2023-27786  Null Pointer Deref v
CVE-2023-27787  Null Pointer Deref 4
CVE-2023-27788  Reachable Assertion v
CVE-2023-27789  Reachable Assertion v
CVE-2023-23051 Memory Leak v
libmin CVE-2023-23052 Memory Leak 4
€  (CVE-2023-23053 Memory Leak v

CVE-2023-23054  Infinite Loop N/A

CVE-2021-36530  Buffer Overflow v
noiflib CVE-2021-36531  Buffer Overflow v
& CVE-2022-30857  Buffer Overflow v
CVE-2022-30858  Buffer Overflow A
CVE-2023-26767  Buffer Overflow v
liblouis CVE-2023-26768  Buffer Overflow v
CVE-2023-26769  Buffer Overflow v
jhead CVE-2022-28550  Buffer Overflow 4

-: Not reproduced in RTCON or AFGen. +: Found.
A: Found with simple hooks. N/A: Not applicable
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TABLE X: Average harness size, analysis time of ANALYZER,
and build time with and without ACG for each RTOS. The
analysis was conducted on the same machine used for the
evaluation, using a single core, and repeated five times. Note
that both ANALYZER and ACG need to be executed only once
per harness. The analysis time increases as the size of the
target RTOS codebase grows (e.g., Zephyr) or when the target
function becomes more complex (e.g., ThreadX).

ANALYZER Taint analysis

Size MB)  guilding CG) ) WO ACC ) UAcG ()
Zephyr 1705 2146.0 1491 2744 (+84.0 %)
RIOT 7.1 86.1 279 64.1 (+129.7 %)
FreeRTOS 114 263 56 20.6 (+267.9 %)
ThreadX 389 2346 1072 221.8 (+106.9 %)

Algorithm 1: Single Function Taint Propagation

Input: Function F, Taint instruction set 7', Context parame-
ters {p17p27 s apn}
Output: Updated Taint instruction set T’

2 Function TaintPropagation (F, T, {p1,p2,-.-,Pn}):

3 TETU{plvp?v’“vpn};

4 for I € F do

5 if I is Store(from, to) then

6 if from € T and to ¢ T then

7 LT%TU{to,I};

8 else if ro € T then

9 L T+ TU{l};

10 else if I is (Load or GetElementPtr or Phi or Binary
L or Cast or Cmp or Switch) then

11 if 3 operand € operands s.t. operand € T then
12 | T+« Tu{l}

13 else if [ is Call(callee, args...) then

14 if isFunctionAnalyzed(callee) then

15 if isReturnTainted(callee) then

16 | T+« Tu{l}

17 foreach idx € taintedParamldxs(callee) do
18 L T <+ T U{argslidz]};

19 else

20 | T+« Tu{l}
2t | return T,




APPENDIX D
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The artifact is provided as a
repository that contains the build environment, scripts,
and binaries necessary for executing the fuzzing ex-
periments. The artifact package can be accessed at:
https://doi.org/10.5281/zenodo.17540919

2) Hardware dependencies: A machine with at least 8 CPU
cores and 16 GB RAM is recommended for single-function
tests. Multi-function tests can utilize up to 92 CPU cores and
may require high-performance compute resources.

3) Software dependencies: Docker, Docker compose

4) Benchmarks: The evaluation was conducted against in-
ternal functions derived from RTOS subsystems (e.g., Blue-
tooth stack, TCP/IP modules). Configuration files specifying
function lists and test parameters are located in the repository.

B. Artifact Installation & Configuration

The installation and configuration steps for the artifact can
be found in the repository README. The artifact can be
executed directly via Docker without additional dependencies.

C. Experiment Workflow

Two experiments are supported: (1) Single-function fuzzing
(recommended for quick evaluation). (2) Multi-function
fuzzing (for large-scale, resource-intensive evaluation). The
high-level experimental workflow consists of four steps: 1)
installing and configuring the build and evaluation settings, 2)
building test harnesses for function-level fuzzing, 3) running
the fuzzer, and 4) analyzing the results.

D. Major Claims

e (C1): RTCON enables function-level fuzzing of RTOS
kernels to discover real-world vulnerabilities. This is
proven by the experiment (E1) whose results are reported
in Table III.

(C2): RTCON classifies detected crashes based on confi-
dence levels. This is proven by the experiment (E1 and
E2) whose results are reported in Table VI.

(C3): RTCON achieves effective line coverage whose
results are reported in Fig 10. This is proven by the
exeperiment (E2).
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E. Evaluation

While the experiments can partially reproduce the results,
full reproduction requires conducting large-scale experiments
for 24 hours on the same machine configuration described in
the paper.

1) Experiment (EI): [Single-Function Fuzzing] [1
compute-hour]: This experiment builds and executes harnesses
for single function-level fuzzing to detect real-world bugs in
RTOS kernels. Discovered bugs are automatically classified
by their confidence level.

[Preparation] Build the corresponding Docker image and
identify the target function to fuzz. A detailed list of available
target functions can be found in: eval/config/[project]-func-

list-reduced.txt.
[Execution] After building the Docker image, run the fol-
lowing command to build the harness:

docker run -it cgcc-[project]:latest \
[file location] [function] [test type]
[MLC enable]

\

The harness can be executed in three modes:

o Naive Run:
mkdir corpus && \
./host_bin/<target>-fuzz corpus/ \
&>/tmp/result

o Run Without MLC (e.g., 30s timeout):

/scripts/run_fuzz_single.py \
<Function> 30

o Run With MLC (Recommended, e.g., 300s timeout):
/scripts/run_fuzz_cross.py 300

[Results] Crash reports are stored under:
crash_dir/crash_[function_name]. When multi-layer
fuzzing (MLC) is enabled, summarized high-confidence
crash reports are available in: crash_dir/high_confidence.

Coverage data for each harness is recorded in:
coverage_dir/coverage_[function_name].

2) Experiment (E2): [Multi-Function Fuzzing] [24
compute-hour]: This experiment builds and executes

harnesses for entire function sets to reproduce the line
coverage RTCON discovered.

[Preparation] Build the corresponding Docker image and
configure the evaluation setup. A detailed experiment parame-
ters in the configuration file: eval/config/config.py. By default,
the configuration enables up to 92 CPU cores, a 24-hour
timeout, and MLC disabled.

[Execution] After loading the Docker image, execute the
following command within the eval/scripts directory to launch
a large-scale fuzzing campaign:

# Format:
# ./run_eval.py <Project> [Subsystem]
# Example: RIOT

./run_eval.py RIOT

[Results] To inspect the overall coverage, run the base con-
tainer while mounting the output directory using the following
command:



docker run —--rm -it \
—-volume=[out directory]:/out cgcc-base:latest

Inside the container, mer%e and generate a summary of the
coverage report with the following command:

# Format:
# /scripts/view_coverage.py [project]

# Example: RIOT
/scripts/view_coverage.py RIOT
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