Robust Fraud Transaction Detection:
A Two-Player Game Approach

Qi Tan*, Yi Zhao!, Laizhong Cui* ™, Qi Lit =, Ming Zhu$, Xing Fu¥, Weiqgiang Wangﬂ,
Xiaotong Lin¥, Ke Xu¥ *

*College of Computer Science and Software Engineering, Shenzhen University, Email: {tanqi, cuilz} @szu.edu.cn
fSchool of Cyberspace Science and Technology, Beijing Institute of Technology, Email: zhaoyi@bit.edu.cn
Hnstitute for Network Science and Cyberspace, Tsinghua University, Email: qli01 @tsinghua.edu.cn
§Department of Computer Science and Technology, Tsinghua University, Email: {minzhu, xuke}@tsinghua.edu.cn
YAnt Group, Email: {zicai.fx, weiqiang.wwq, 1xt203095} @antgroup.com

Abstract—Machine learning (ML)-based fraud detection sys-
tems are widely employed by enterprises to reduce economic losses
from fraudulent activities. However, fraudsters are intelligent and
evolve rapidly, employing advanced techniques to falsify the
features of transactions to evade the detection system. Worse
still, since these falsification p rocesses are n ot r estricted t o small
intervals, existing robustness enhancement methods based on
small-scale perturbations are ineffective. Detecting unrestrictedly
perturbed fraudulent activities, which significantly increases
uncertainties in fraud detection, is still an open problem.

To resolve this issue, we propose GAMER, a robust fraud
detection system based on two-player game, achieving both high
accuracy and strong robustness in detecting fraudulent activities.
Specifically, G AMER | everages f eature s election t o proactively
combat intelligent fraudsters in fraud detection (i.e., selecting
fewer features to reduce the combinations of feature falsification),
and innovatively formulates the detecting process as a two-
player game. By solving the equilibrium of the two-player game,
GAMER calculates the optimal probability for feature selection,
which takes into account all possible falsification s trategies of
the fraudsters. The equilibrium-based selection probability not
only minimizes the profits obtained by fraudsters, demotivating
them to launch falsification; but also enables the system to
select robust features (i.e., the features that are less likely to
be falsified) in detecting fraudulent activities, enhancing the
robustness of the system in fraud detection. Our theoretical and
experimental results validate the properties of deterrence and
robustness enhancement. Moreover, experiments on real-world
attacks suffered by the world’s leading online payment enterprise
demonstrate that GAMER outperforms traditional techniques of
robustness enhancement, which increases the F1 score by 67.5%
on average for two-month fraud detection.

I. INTRODUCTION

Fraudulen activities are social issues that have far-reaching
effects in industry and our daily life. According to the statistical
study from Juniper Research, global payment fraud losses
will exceed $343 billion before 2027 [46]. Combine it with
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ABA Banking Journal’s reportﬂ the corporate cost caused by
fraudulent activities will exceed $1.495 trillion, which is 1.36%
of the global GDP. As a result, enterprises are forced to enhance
their fraud detection measures to protect themselves and their
customers from financial damage [46]. To cope with highly
complex fraud patterns, industry institutions have incorporated
machine learning (ML)-based methods as the crucial part of
fraud detection [74], [29], [71], [9]. Over 93% of the financial
institutions have invested in the ML-based fraud detection
system [48]], and the market size is projected to reach $57.147
billion by 2033 [31].

However, traditional fraud detection systems cannot keep up
with the fast evolving fraud activities. Specifically, fraudsters
are constantly developing new tactics to evade ML-based
detection systems [18]], [21], leading to more sophisticated
and stealthy fraud activities. These tactics are rooted in the
deliberately falsified features in fraud transactions, which cause
detection systems to misclassify them into benign transactions.
Worse still, fraudsters can employ advanced techniques to
detect vulnerabilities in the detection system, leading to more
effective methods to falsify features.

The act of falsifying transaction features to bypass detection
mechanisms can be formalized as executing adversarial attacks
against targeted detection systems. Yet, there are three distinct
characteristics in falsifying the features of fraud activities: (i)
the perturbations are unrestricted. Transactions are constituted
with monetary features (e.g., Transfer Amount, Register Capital)
or temporal features (e.g., Days After Certified), these features
are not restricted in small intervals; (ii) the falsification
process is resource consuming. Unlike adversarial examples
in the image or language field, which only changes pixels
or semantics, falsifying features in fraud detection consumes
resources (e.g., falsifying the feature of Days After Certified
takes substantial time to maintain accounts); (iii) the fraudsters
are profit-driven. Since fraudsters aim to get illegal profits from
fraud activities as much as possible, the variation of profits
exhibits a profound influence on their fraud behaviors (e.g.,
over 60% of the fraudsters gave up to purchase new accounts

'Every $1 lost to fraud costs $4.36 in related expenses (e.g., legal fees) [34].
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Fig. 1. Different strategies for robustness enhancement in fraud-transaction
detection: (a) When the falsification process is unrestricted, fraudsters can
manipulate a wide range of features to evade detection; (b) Traditional
approaches restrict only a subset of manipulable features and therefore provide
merely local robustness, leaving the detector vulnerable once falsification
extends beyond those constrained dimensions; (c) Our proposed method
formulates feature selection as a two-player game, enabling the detector to
select a compact set of robust features that both narrows the exploitable attack
surface and favors features that are inherently difficult for fraudsters to falsify
through equilibrium-based selection.

to launch falsification when the costs of these accounts had
increasedﬂ

The aforementioned characteristics make the detection of fal-
sified fraud transactions significantly different from traditional
defense methods. On the one hand, classical techniques such
as adversarial training, regularization, or data augmentation are
local robustness enhancement methods, which are ineffective
in detecting unrestrictedly perturbed fraud transactions. On the
other hand, the latter two characteristics allow us to incorporate
economical methods to design fraud detection systems, which
is fundamental to solving security issues [26], [3].

According to these intuitions, the effective detection of
falsified fraud transactions depends on reducing the impact
of unrestricted perturbations and taking advantage of fraud-
sters’ economical properties, which motivate us to design the
system with game-theoretic feature selection. To be more
precise, selecting fewer features in fraud detection reduces
the combinations of perturbed features, raising the difficulties
of falsification. Moreover, employing game theory in feature
selection maximizes the effectiveness of selected features [81],
minimizing the profits of fraudsters.

To this end, we develop Game Selection, a game-theoretic
robust detecting method that leverages the equilibrium of a
two-player game in feature selection. As displayed in Fig.
despite fraudsters can falsify features to evade the detection
system, Game Selection can select not to use falsified features
in detection, which fails the falsification process, resulting in
economic loss for fraudsters. The selection probability depends
on the equilibrium of a two-player game, which takes into
account the cost-profit of falsifying different features and the
fraudsters’ response to any particular feature selection strategy.
In particular, equilibrium-based feature selection enables the
method to select robust features (i.e., the features that are less
likely to be falsified) in detecting fraudulent activities, which
enhances the robustness of the detection method. Furthermore,
it also minimizes the profits of attacks, exhibiting deterrence

2Qriginate from the statistics of the platform we cooperate with.

for fraudsters’]

Based on Game Selection, we propose GAMER (Game-
theoretic rAndoMized robust fraud dEtectoR), a robust fraud
detection system that achieves high accuracy and strong
robustness with hypothesis testinﬂ Specifically, GAMER
utilizes the consistency of two models, one is trained by the
classical method (e.g., SGD) to accurately detect unfalsified
transactions and the other is equipped with Game Selection to
robustly detect falsified transactions, to identify falsification in
the transactions, thereby employing different models to detect
the transactions they expertise in. Through hypothesis testing,
GAMER leverages more statistical information of transactions,
which is collected from two different models, to accurately
identify the falsification behaviors of fraudsters, allowing
the system to achieve high accuracy and strong robustness
simultaneously.

Moreover, we develop a theoretical model to analyze the
falsification process in fraud detection. Based on causal
analysis [S7], [27], we construct a causal diagram to model the
entire life cycle of fraud detection, which systematically reveals
the reasons for misclassification, indicating that selection bias,
i.e., insufficient training data, is the cause of misclassification.
Combining it with data coverage analysisE] Iz, 132, we
prove that selection bias can be exponentially alleviated by
selecting fewer features (Thm. [I), theoretically demonstrating
that GAMER enhances the robustness of the detection system.
Our experiments on irrational fraudsters, which do not take
cost-profit information into consideration, validate this property,
indicating that GAMER is more effective in detecting fraud
transactions even if the transactions are irrationally falsified.

We establish a partnership with one of the world’s foremost
online payment enterprise and evaluate GAMER on real-world
transactions provided by the enterprise. In particular, the
enterprise experienced large-scale attacks in January, 2023,
which doubled the asset loss rate of the enterprise in that month.
Meanwhile, these attacks provide numerous data of falsified
transactions, which can be used to evaluate GAMER over real-
world transactions. To the best of our knowledge, this is the
first time in fraud detection that real-world falsified transactions
are used for evaluation. We discover that GAMER outperforms
traditional adversarial training techniques and improves the F1
score by 67.5% on average in detecting real-world transactions.

The contributions of this paper are four-fold:

o We formulate the issue of detecting falsified fraud transac-
tions as a two-player game between the detection system
and the fraudsters, and incorporate the equilibrium to
design the optimal detection strategy Game Selection.

« We propose a game-theoretic fraud detection system,
namely GAMER, based on Game Selection and hypothesis

3fraudsters will take into account that feature falsification consumes
resources [4], [42] but can be useless once this feature is not selected.

“Hypothesis testing is a classic statistic method to decide whether the data
sufficiently supports a particular hypothesis [73].

SData coverage analysis aims to estimate if there are enough samples in
the dataset for each category [6].



testing, which achieves both high accuracy and strong
robustness.

o We develop a theoretical model to analyze falsification
in fraud detection, which demonstrates that GAMER not
only exhibits deterrence to fraudsters, but also enhances
detection robustness by utilizing fewer features.

o We validate GAMER on real-world transactions collected
by the world’s leading online payment enterprise. The
system improves the F1 score by 67.5% on average for
two-month fraud detection.

II. PROBLEM FORMULATION AND PRELIMINARY
A. Problem Formulation

In order to detect real-world frauds, we first formalize the
unrestricted falsification process to clarify the target issue in
fraud detection. Then we formulate the issue of detecting
falsified transactions as a two-player game and get the solution
based on solving the equilibrium. Finally, we employ causal
analysis and data coverage analysis to prove the effectiveness
of the detection model.

Regarding the falsification process in fraud detection, there
is a target classifier F'(W;-) for fraudsters, where W is the
model parameter of the classifier. The goal of the classifier
is to identify a specific transaction x as fraud or not, i.e.,
F(W;x) € {1,0}. Moreover, x is also associated with a real
label ., therefore the target classifier naturally divides the set
of all possible «, i.e., X, into two categories: Xcjean = { |
FW;x) = yp} and Xaay = {x | F(W; ) # yx}, where
the latter is the set of adversarial examples. For clarity purposes,
since falsified transactions are specific adversarial examples in
fraud detection, we will use them without distinction in the
following parts.

Based on these definitions, the target of a falsification process
is to find an adversarial example that minimizes the costs of
falsification. Hence, it can be formalized as

argmin Cost(x,x*); st Yp = Yor, " € Xgap - (1)

.

The first constraint indicates that the fraudsters’ goal is
maintained, i.e., fraud or not. The second constraint requires
the falsification to cause misclassification, which implies
that the falsification is successful. Finally, the target of cost
minimization reveals that fraudsters aim to maximize their
profits. In particular, falsified examples are not required to be
in the e-neighborhood of the input transactions, thus Eq.
provides a more generic definition of adversarial examples [63]],
[8]]. For example, traditional adversarial examples are generated

by using Lp-distance, i.e., ||& —x*|,, as the cost function [84].

B. Preliminary

Two-player Game. In this paper, we formalize the issue of
detecting falsified fraud transactions as a two-player game
between the detection system and the fraudster, and incorporate
the equilibrium to design the detection strategy.

In particular, the two-player game aims to model the
interactions between the detection system and the fraudster

based on security game [55], [81], [66]], which provides
mathematical approaches for allocating security resources to
maximize their effectiveness. These games have been widely
used in solving social issues, e.g., airport security [S9], wildlife
security [23]], etc. In the game, both the system and the fraudster
decide their strategies to optimize their own profits. Specifically,
there is a payoff matrix in the game to quantitatively depict the
profit of different strategies. The payoffs in the matrix can be
obtained by the knowledge acquisition from domain experts,
e.g., the answers to a set of questions about the impact of
attacks, which are created by domain experts [66]. With the
payoff matrix, the equilibrium of this game can be solved,
which consists of the best reactions of detection systems and
fraudsters to their opponents.

In section[V-A] we propose Game Selection, a game-theoretic
robust strategy that achieves the optimal feature selection. In
practice, despite fraudsters can falsify features to evade the
fraud detection system, the system can select not to use falsified
features for detection. These are strategies in the two-player
game, and Game Selection calculates the optimal selection
probabilities for each feature in equilibrium, which takes into
account the cost-profit of falsifying different features and the
fraudsters’ response to any particular feature selection strategy.
Causal Analysis. Causal analysis [56], [58], [27], which has
been widely used in security analysis [47], [67], [44], is an
innovative methodology that can be used to identify causality in
correlations. It overcomes the limitations of traditional statistics
by constructing the causal diagram. As indicated in Fig. 2|
causal analysis divides the correlations into two categories:
causality and spurious correlations. The causality (i.e., the
black arrows in Fig. [2) represents that the result variable Z
will be changed accordingly when the cause variable X is
changed. In particular, the chain structure in Fig. 2]is one of
the three basic structures in the causal diagram. In this structure,
X is the cause of Z and Z is the cause of Y, which means
that X causes changes of Y through the mediation variable 7.
When the data in the analysis is conditioned on the mediation
variable Z (e.g., Z € {0,1} but we only use the data of Z =1
in the analysis), X is independent of Y [57]].

Causality (=) Spurious Correlation (<)

Mediation = - O‘Acg)undcr
Collider A Y
Chain

Selection bias Confounding bias

Fig. 2. Causal analysis identify causality from numerous correlations based
on different properties of these structures.

The other two basic structures are the reasons for spurious
correlations: the selection bias and the confounding bias in
Fig.[2] In selection bias, X and Y are independent variables, but
both are the causes of Z. When the data used in the analysis are
conditioned on the collider variable Z, X becomes spuriously
correlated to Y. Finally, in confounding bias, X and Y are
actually independent but have a common cause Z, hence they
are spuriously correlated. If the data used in the analysis are



conditioned on the confounder variable Z, X and Y become
independent [57]]. All casual diagrams are made up of these
structures, and the main difference between them is the role
of Z (i.e., mediation, collider, or confounder). Causal analysis
uses these properties to identify causalities from a vast of
correlations.

In section we construct a causal diagram to model
the entire life cycle of fraud detection, which systematically
reveals the details of falsification process in fraud detection.
Based on causal analysis, we discover that the spurious
correlation between the real label and the predicted label
caused by selection bias, i.e., insufficient training data, causes
misclassification in fraud detection. Moreover, according to
this result, we further demonstrate that our proposed methods
can enhance the robustness of the detection system by using
fewer features.

III. THREAT MODEL AND PROBLEM STATEMENT

This paper studies the unrestricted falsification process in
fraud detection, in which both the detection system and the
fraudster are smart enough. Specifically, the detection system
seeks to enhance the detection method to accurately detect

fraud activities and to be robust to various falsified transactions.

The fraudsters aim to take advantage of the deficiency of the
fraud detection system to evade it by falsifying transactions.
Moreover, the detection system and fraudster mutually impact
each other (e.g., the fraudster will not falsify the feature once
it is not selected by the detection system), trying to maximize

their profits. This forms a two-player game [66] between them.

Threat Model. This paper considers strong fraudsters that can
employ various techniques (e.g., gradient ascent [45]], semantic
composition [33]], [62]], [28], generative models [63], [72],
or even LLMs [79], [49]]) to discover vulnerabilities of the
fraud detection system, which can seek out possible adversarial
examples (i.e., Va* € X, q4,) to evade the detection system.
As indicated in Fig. [T] attackers can evade the system by
falsifying input transactions. To combat smart detection systems,
they can select to falsify different combinations of features
to craft transactions (e.g., feature falsification via gradient
ascent). Moreover, feature falsification consumes resources [42]]
(e.g., money or time) and the costs are distinct for falsifying
different features (e.g., falsifying transfer amount costs less than
falsifying the registered capital). The fraudsters are intelligent
and smart enough, hence they try to minimize the cost of
feature falsification.

Problem Statement. The goal of this paper is to tackle
the unknown and sufficiently intelligent falsification process,
which means that fraudsters can always discover adversarial
examples of a specific detection system. In particular, the
falsification process is unrestricted and intelligent, hence it
cannot be throttled by existing methods, which utilize definite
approaches in the detection (i.e., the detection model and
the feature selection process are definite after deployment).
Specifically, to combat intelligent falsification, the definite
model must be perfect that is a model without any adversarial
examples (i.e., X,q, = @). This idealized target raises the

asymmetric issue between detection systems and fraudsters, and
the local robustness enhancement [52] is ineffective in this case.
Moreover, perfectly training the detection model is unpractical
when falsification processes are unrestricted since the detection
system cannot completely collect the training data [6], [32],
especially in the case of high-dimensional feature space [60]].
To reverse the asymmetry between the detection system and
the fraudster, accurately detect unrestricted falsified transac-
tions, we develop GAMER to achieve the following goals.

(1) Black-box Robustness Enhancement. GAMER should
not suppose the attack process, including constraints of
falsification, ML algorithms, and background knowledge.
This requirement is reasonable since the falsification
process is black-box and unpredictable to the detection
system, any unrealistic supposition will have the opposite
effect once it is violated [22], [[69].

(2) Provable Deterrence Against Intelligent Fraudsters.
Even for unknown and intelligent falsification processes,
GAMER can guarantee that there is no better profit for
the fraudsters. Moreover, the strategy of GAMER should
enable detection systems to select robust features in fraud
detection.

(3) High Accuracy and Strong Robustness. GAMER should
be as accurate as the non-robust model on clean examples,
and also be robust to adversarial examples.

IV. KEY OBSERVATIONS AND OVERVIEW

Key Observations. In real-world fraud detection, fraudsters
can deliberately craft transactions (i.e., falsify the features of a
transaction in Fig. |1)) after system deployment, which employs
feature falsification to evade the detection system. Moreover,
the falsification approach consumes resources [42], fraudsters
will not falsify the feature if the profits of the falsification
cannot cover the costs. As shown in Fig. |1} the fraud detection
system can select features for fraud detection. The profit of
falsifying a feature is bound to be 0 if it is not selected by the
detection system, and smart enough fraudsters will not consume
resources to falsify this non-profit feature (i.e., the unselected
feature). These strategies interact with each other. Therefore,
we can formulate the detection of falsified transactions as a
two-player game and solve the equilibrium to get the optimal
strategy for feature selection.

Data collected from a real-world enterprise provides con-
crete evidence regarding the cost of feature falsification. In
particular, falsifying the Days After Certified attribute requires
considerable time investment and ongoing maintenance to keep
an account active. An alternative approach for fraudsters is to
directly purchase aged accounts: empirical market data shows
that accounts approximately six months old cost around $42,
nearly twice the price of newly registered accounts (roughly
$21). These observations demonstrate that falsifying this feature
entails a non-trivial and economically measurable cost. As a
result, designing detection methods that take this information
into account can increase fraudsters’ operational costs and
serve as an effective deterrent against fraudulent behaviors.
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Fig. 3. Overview of GAMER.

Overview of GAMER. In this paper, we propose a novel
fraud detection system, namely GAMER, to accurately and
robustly detect real-world fraud transactions. Specifically,
GAMER employs the equilibrium of a two-player game in
feature selection, which enhances the system’s ability to select
unfalsified features in detection, improving the robustness of
the system. Moreover, GAMER leverages hypothesis testing to
identify falsification transactions, utilizing more information
(the consistency of two models) in deciding the final prediction.

To be more precise, GAMER is composed of two models:
Completer and Selector (as in Fig. [3). Completer is a model
trained by classical methods (e.g., SGD) with all features,
which aims to make full use of all features to accurately
detect fraudulent transactions when transactions are unfalsified.
Selector is a model equipped with game-driven feature selection,
i.e., Game Selection, which employs the equilibrium of a two-
player game in feature selection to robustly detect fraudulent
transactions when transactions are falsified. In the Game
Selection, the cost-profit knowledge of feature falsification
is obtained from security experts [66] and the detection of
falsified transactions is formalized as a two-player game. By
solving for equilibrium of the game, Game Selection calculates
the optimal probability for feature selection, which motivates
the system to select unfalsified features in detection, thereby
enhancing the robustness of the detection system. Moreover,
equilibrium-based feature selection also minimizes profits for
fraudsters, demotivating them to launch feature falsification.

After deployment, GAMER uses both models to detect
fraudulent activities. On the one hand, all features are sent
to Completer to get Completer prediction. On the other hand,
features are masked with equilibrium-based Bernoulli variables
to select input features, then the masked features are sent
to Selector to get Selector prediction. Finally, the absolute
distance between these predictions is used for hypothesis
testing, which uses statistical difference to identify falsified
transactions. In particular, with hypothesis testing, GAMER uses
more information, which is obtained from two different models,
to make final decisions, leading to greater precision in detecting
fraudulent activities regardless of whether they are falsified
or not. Deployment results reveal that implementing GAMER
raised the estimated cost borne by fraudsters by roughly 20%,
which corresponded to a 10-20% reduction in daily attack
attempts. Regulatory data further confirm that attackers shifted

their activities to other payment platforms once the defended
platform became more costly to compromise.

V. ROBUST FRAUD DETECTION WITH GAME-THEORETIC
FEATURE SELECTION

In this section, we detail the design of GAMER. We first
propose Game Selection to obtain the optimal probability of
feature selection by solving the equilibrium of a two-player
game. Then we present how we can achieve both high accuracy
and strong robustness in our proposed GAMER.

A. Using Two-Player Game in Feature Selection

Unrestricted falsified transactions aggravate the asymmetries
between the detection system and the fraudsters, reducing the
effectiveness of local robustness enhancement methods [15]].
To counteract the asymmetry in fraud detection, we adopt a
proactive two-player-game based strategy to guide the design
of our detection method.

Note that, as shown in Fig.[I] incorporating selected features
enhances model robustness by increasing resistance to a range
of feature falsification strategies in fraud detection. Moreover,
if a detection model relies on all available features and adjusts
their weights following failed detections, adaptive adversaries
may observe these updates and refine their attack strategies
accordingly. This feedback loop can drive both sides toward
a game-theoretic equilibrium in which neither party has an
incentive to further modify its strategy. At this equilibrium,
the detection model naturally converges to using a randomly
selected subset of features.

1) Game Selection: As illustrated in Fig. [I] the strategies
of feature selection and feature falsification interact with each
other. This fact motivates us to formulate the detection process
as a two-player game and solve for the optimal strategy of
feature selection according to the equilibrium of the game,
enabling the system to proactively combat intelligent fraudsters.

Specifically, the input X is composed of multiple features,
ie, X;, ¢ € {1,---,d}, hence fraudsters can choose to
falsify various combinations of features. Meanwhile, the
detection system can select distinct features to accurately detect
fraudulent activities. To simplify the analysis, we assume that
the feature falsification process and the feature selection process
are independent on different features, which makes the sub-
games on X; independent of each other. Therefore, the zero-
sum two-player game on X; is constructed as follows.

TABLE I
TWO-PLAYER GAME BETWEEN DETECTION SYSTEMS AND FRAUDSTERS

Falsify X; Do not falsify X
Do not select X; Ui("sv"‘) - C; Ui(ns,na)
Select X; Ui(s’a> - C Ui(syna)
In Table [} C; is the cost of falsifying the feature X, Ui(”s’“)

and Ui(m’m are the profits of Do not select & Falsify and Do
not select & Do not falsify on X;, respectively. In particular,
Ul = ylnene) gince if X; is not selected, falsifying it
will not affect the model prediction, which does not change



Algorithm 1 SGD with Game Selection

Input: Initial model W (), the training data (X,y), learning rate 7, the
profit {AU;}¢_,, the cost {C;}¢_,
Output: Final model w (D)
1: Get optimal probability of feature selection:
{17%&1 ’16{17 7d}
2: Get multivariate Bernoulli distribution:
m = (m1,---,mgq), where m; ~ Bernoulli(p;)
:fort=0to7T —1do
Sample (X ®) y(®)) from (X, y)
Sample m(*) from m
with) —w®) _p. vwg(p(w(t);x(t) ® m(t));y(t))
: end for
: return W (T)

p; = min

the profits. Additionally, U{*® and U*"™ are the profits of
Select & Falsify and Select & Do not falsify in regard to X;,
respectively. These variables can be obtained via knowledge
acquisition from domain experts [[66]]. In this work, we assume
these variables can be specified with precision.

According to the game in Table |I} if the mixed strategy
of the detection system is defined as (1 — p;,p;), then the
equilibrium can be obtained by solving the following equation.

(1= p) (" = Co) + pi(U = )
(1 o pl)U(ns ,na) Tp U(s na) 2)

If X; is not selected, the falsify X; will not affect the
fraudster’s profits. Therefore, by solving Eq. (2)), the optimal
probability of feature selection is

C;
U(s,a) - U(s,na)

7 7

p; = min |1, 3)
According to Eq. (3)), the optimal probability of feature
selection is decided by two factors: the cost to falsify X,
., C;, and the profit of falsifying X; when the detection
system selects X; for prediction, i.e., AU; = U; (s:0) -U; (s:na)
As displayed in Fig. [ if AU; < C, ie., falmfymg X is
unproductive, the fraudster will not falsify X;, which implies
that the feature X; is trustworthy. Therefore, the optimal
selection probability is 100%. Moreover, when falsifying X
is productive, i.e., AU; > C;, the selection rate of X; is an
increasing function of C; and a decreasing function of AU;.
After getting the optimal probability of feature selection,

a Bernoulli random variable m; is employed to mask the
feature X, reducing the dependence on X; if X; is easily

Prob. of selection (pi)

Fig. 4. The optimal probability (i.e., p;) of selecting X; is an increasing
function of the cost C; and a decreasing function of the profit AU;.

to be falsified. Specifically, m; ~ Bernoulli(p;), where p; is
calculated by Eq. (3).

In particular, to ensure that data distributions are consistent
in the training and testing phases, we employ {m;}L , to
change traditional target function in the model training to

H‘%‘ifn IEX,m [‘C(F(Wv X 0o m); y)] ’ 4
where m = (my,- - ,my) is the mask vector and © represents
the Hadamard product. The details of training process are
displayed in Algorithm [T] and Fig. [5] In particular, this method
can also be applied to the training of gradient boosting decision
tree (GBDT), we put these analyses in the appendix due to
the space limitation.

Expert knowledge Probabilistic mask construction

representations (2) Bernoulli variables

based feature masks

(1) Cost-profit based
probability calculation

Features: Xy o Xd
Costs: C; ** Cy

Costs of feature falsification

Features: X, - X4
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Fig. 5. The training of models equipped with Game Selection (i.e., Selector).

2) The Advantages of Game Selection: To intuitively il-

lustrate the advantages of Game Selection, we provide a toy
example of the two-player game based on one-dimensional
Gaussian data.
Basic Settings of the Game. The benign and the fraudulent
activities follow Gaussian distributions of A(—1,1.5) and
N(1,1.5) respectively. In this case, the optimal classifier is
x = 0 (i.e., the dashed line in Fig. [6(a)), which achieves the
optimal error rate [24].

------ Fraudulent activities before attack

Fraudulent activities before attack

Fraudulent activities after attack

—— Benign activities

0.4 —— Benign activities

1
1
1
1
1
1
0 2 4

(b) After attack

Fig. 6. A toy example to illustrate the advantages of Game Selection.
Specifically, the benign activities follow N (—1, 1.5) and fraudsters can falsify
the feature to change fraudulent activities from N(1,1.5) to A/(0.5,2.5).

(a) Before attack

Under these settings, the detection system have two distinct
strategies: first, classifying without the training data (e.g.,
building the classifier with other features), which provides
the classifier with error rates 0.21 and 0.25 for benign and



fraudulent activities respectively; second, getting the optimal
classifier with the training data, i.e., x = 0. With the optimal
classifier, the error rates for both benign and fraudulent
activities are 0.2071 (i.e., the shaded area in Fig. [6(a)).

Fraudsters also have two strategies: first, falsifying the fea-
ture, changing it from A (1,1.5) to A (0.5,2.5) (as displayed
in Fig. [6(D)). In this case, regarding the optimal classifier before
the attack, i.e., z = 0, the error rate for benign data remains
the same but the error rate for fraudulent data increases from
0.2071 to 0.3759. Second, do not falsify the feature, which
maintains the error rates for both benign and fraudulent data.
In particular, fraudsters consume $4 to falsify the feature and
can obtain $50 from successfully evading fraud detection, i.e.,
misclassifying fraudulent data into benign data. In this case,
the game can be constructed as Table

TABLE I
THE TWO-PLAYER GAME IN THE TOY EXAMPLE

Falsify Do not falsify
Do not select 8.5 12.5
Select 14.795 10.355

Specifically, the payoff matrix is calculated as follows.
e NS&F: 50 « 025 — 4 =85
—— N =~

Profit  Error rate Cost
e NS & NF: 50 x 0.25 =12.5
N
Profit  Error rate
e S&F: 50 x0.3759 — 4 =14.795
N N——
Profit  Error rate Cost

e NS & NF: 50 %0.2071 = 10.355
~ S~

Profit  Error rate

With the payoff matrix, we can get the mixed strategy
equilibrium {Detection system: (0.5485, 0.4515), Fraudster:
(0.2556, 0.7444)}, which means the probability 0.4515 is the
optimal probability for the detection system to select the feature.
In this case, the system and the fraudster have no incentives
to change their strategies since the mixed strategy maximizes
their profits. The optimal profit for the fraudster is $11.342
(i.e., the optimal profit for the system is —$11.342).

In addition to Game Selection, the detection system can also
employ adversarial training to enhance the model’s robustness.
In this scenario, the system can get the optimal classifier after
the falsification (i.e., z = —0.0324 in Fig. by utilizing
the data after being falsified. In this case, the error rates for
benign and fraudulent data are 0.2148 and 0.3682, respectively.
Moreover, the fraudsters’ profit is $14.405.

As illustrated in Table compared to other methods,
Game Selection reduces the fraudsters’ profit from $14.795 to
$11.342, thereby reducing the incentive of fraudsters to falsify
the features. Moreover, Game Selection reduces the error rate
by 33.47% in fraud detection and causes a 74.44% reduction
in committing falsification, exhibiting deterrence to fraudsters.

B. Identifying falsification behaviors

As indicated in Table the error rate of Game Selection is
slightly higher than the non-robust model in detecting the clean

TABLE III
COMPARISONS IN THE TOY EXAMPLE!

Benign Fraudulent ~ Prob. of being
Profit error error falsified by
rate rate fraudsters
Non-robust
Training 14.795_ 20.71%(_) 37.59%(_) 100%(_)
Adversarial
Training 14.405( 21.48%@) 36.82%«) 100%(,)
Game
Selection 11.342( )y 20.87%@) 25.01%“ ) 25.56%( )

1 The double arrow means the decrease is larger than 10%.

examples. To overcome this limitation, we employ hypothesis
testing to identify falsification behaviors in fraud detection,
thereby using different models, e.g., model with Game Selection
or non-robust model, to detect the transactions they expert in.
Combining it with Game Selection, we design GAMER, a fraud
detection system that achieves both high accuracy on unfalsified
transactions and strong robustness on falsified transactions.

As the predictions of the robust model and the non-robust
model are significantly different on falsified transactionsﬂ
we can use this difference to identify falsification behaviors.
Moreover, we employ the Game Selection strategy in the robust
model, which maintains the deterrent effect on fraudsters.
Hypothesis Testing. As illustrated in Fig. 3] two models (i.e.,
Completer and Selector) are trained with the classic non-robust
method (e.g., naive SGD) and Game Selection, respectively.
Then GAMER employs hypothesis testing to decide the output
prediction. In hypothesis testing, GAMER utilizes the training
data to construct the statistic of k = |y_scoreseiector —
Y_SCOTeCompleter ||1, 1.€., the difference in predicted probability
between Selector and Completer, and sets the null hypothesis
for each transaction as Hy : it is an unfalsified transaction.
Finally, GAMER chooses a significance level o (e.g., the
frequently used 5%) for hypothesis testing and calculates the
quantile (i.e., A,) of the rejection region [73]].

After preparations, GAMER decides the output of the system
by hypothesis testing. If Hy is rejected (i.e., & > A,), indicat-
ing that the transaction is falsified, GAMER outputs Selector
prediction. Otherwise, GAMER outputs Completer prediction.
Moreover, if Completer prediction iS §compieter = 1, GAMER
outputs Ycompleter since intelligent fraudsters will certainly
not falsify features to cause them to be detected.

VI. THEORETICAL ANALYSIS

In this section, we employ causal analysis to explain the
cause of misclassification (i.e., the reasons why the predicted
label is different from the real label) in fraud detection. Based
on this cause, we demonstrate that GAMER enhances the
robustness of the detection model.

A. Causal model of Fraud Detection
To systematically reveal the reasons for the misclassification
in fraud detection, a causal diagram is constructed to model the

The difference is the reason why the robust model is more accurate than
the non-robust model on falsified transactions.



entire life cycle of ML-based fraud detection system. Based
on the causal diagram, we use causal analysis to explain the
reasons for fraud detection evasion.

1) Causal Diagram Construction: As illustrated in Fig.
the workflow of an ML-based fraud detection system is four-
fold, including training data collection, model training, model
prediction after deployment, and prediction based decision
making. The former two steps aim at preparing the detection
model (i.e., working during the training phase), and the latter
two steps work after model deployment (i.e., working during
the testing phase).

New transaction Deployed Model Benign Execute
applications model prediction | transactions transactions
oWas 7=0 - I_—
= y 3 P
£ — & =1 -
=% OA
50
O Fraud Interrupt ~ Disable
I -~ transactions transactions accounts
-7 y= = = i
L - @«
training 849

Prediction based
decision making

Prediction
results

Collected
transactions

Fig. 7. The workflow of an ML-based fraud detection system.

In particular, prediction based decision making process is
the motivation of fraudsters to falsify the transactions since
fraudsters are intelligent and profit-sensitive. Specifically, the
falsification process consumes resources [42], e.g., falsifying
the feature of Registered Capital costs money in reality. If the
profits cannot cover the falsification cost, fraudsters will not
falsify features because it causes economic loss. The prediction
based decision making process results in differences in the
profits of the fraudsters: fraudulent activities are successful
when the model identifies them as benign, and fraudsters can
get illegal profits from the fraudulent activities; otherwise,
fraudsters obtain nothing since the transaction is interrupted.
As a result, the prediction based decision making process leads
the model prediction to be the cause of feature falsification
(i.e., to obtain illegal profits from fraudulent activities).

As a result, the entire life cycle of fraud detection can be
explained as the process in Fig. [§] The fraud detection system
aims to distinguish fraudulent activities from benign activities,
hence collecting the training data and training the detection
model. Moreover, the fraudsters aim to evade the detection
system by falsifying input features to obtain illegal profits from
fraudulent activities.

Features (4) Feature falsification

¢ (Known) |
(1) Dat i Detected as Fraud Punishi
aia = > Punishing §
< =\ representation } @ (2) Model accounts

Y —

Rc;rl;bcl H

(Unknown)
Fig. 8. The entire life cycle of fraud detection.
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Predicted
label
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There are three connections in Fig. B} first, the data
representation process (i.e., the black arrow on the left of
Fig. [§). In practice, the real label of a transaction (i.e., y)

is unknown, we can only collect data with certain features
X = (X1, ,X4) to get information of various transactions,
e.g., we collect the features of account balance, registered
capital, etc., to describe transactions. Moreover, y results
in the variation of features, since it decides the behaviors
in the transaction, e.g., if transactions are collected from
fraudulent activities, their features must reveal the harmfulness
of fraudulence.

Second, the model training process (i.e., the blue arrow in
Fig. . With the collected data, the fraud detection system
trains a detection model to model the correlations between the
features and the label. The model can be a neural network,
a decision tree, etc. After training, the model is deployed to
detect real-world fraudulent activities. This process indicates
that the training process establishes the relationship between
the features of X and the predicted label g.

Third, feature falsification process (i.e., the red arrow in
Fig. E]) If the transaction is recognized as fraudulent, it will be
interrupted and the account will be disabled through prediction
based decision making process. These punishments motivate
fraudsters to falsify features to evade the detection system,
which escapes from the punishments and obtains profits from
fraudulent activities. As a result, model prediction (i.e., 3)
affects input data X, i.e., fraudsters will consume resources to
falsify features if their transactions are identified as fraudulent.

To formalize the relationship in Fig. [8] we construct a causal
diagram in Fig. 0] In this causal diagram, we separate the data
X7 into X* and X**! to distinguish the falsified data X**!
after deployment from the training data X. This separation
removes the cyclic connections [17], [1].
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e e,
S

“\mo\e‘ﬁ\

o

. Fe,
Z alslﬁ"’la@
<ar,

Falsification-inclusive
> causal path i

" Tntrinsic Model

( y\" characteristic i /X‘\ prediction Model-inclusive
A U ...... 7 causal path
Real label Collected data Predicted
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Fig. 9. The causal diagram of the fraud detection, revealing the cause of
misclassification.

As indicated in the causal diagram, y is the cause of the
training data X t_since it decides the intrinsic characteristic of
the data. For example, the fraud transaction (i.e., y = 1) must
reveal the harmfulness of fraudulence, and this harmfulness is
characterized by features. Meanwhile, y is the cause of falsified
data X**+!. That is, the falsification process is restricted if y
is decided, which means that some features cannot be falsified.
Otherwise, y will be changed (e.g., fraud activity changes to
benign activity due to the regulated behavior).

Moreover, training data X t is the cause of model prediction,
i.e., y. Specifically, in ML-based fraud detection system, a
detection model is trained with the data (i.e., X*) to establish
the relationship between input features and their labels.

Finally, the prediction 7 is the cause of falsified data X *+!
after model deployment. The reason is that fraudsters have



incentives to falsify the data to get more profits when the
data is identified as fraudulent (i.e., § = 1). If the data is
identified as benign (i.e., § = 0), fraudsters will not consume
resources to falsify features due to the optimality of the result,
i.e., fraudsters can obtain profits from fraud activities. Table
in the Appendix provides detailed case analyses.

2) Causal Analysis of the Misclassification in Fraud Detec-
tion: As indicated in Fig[9] the causal diagram consists of two
basic structures: the collider structure (i.e., the falsification-
inclusive causal path) and the chain structure (i.e., the model-
inclusive causal path). These structures reveal different charac-
teristics in modeling the relationship between y and 4.

According to causal analysis, the cases are two-fold:
X=X or Xt*1£X". First, if X'T'=X", either X**!
or X represents the complete data distribution. That is, the
data in the training phase or after falsification is not conditioned
on the timestamp, i.e., X7 =X*"1=X?. Based on properties
explained in section the unconditioned data blocks the
collider structure (i.e., the falsification-inclusive causal path),
hence the falsification process cannot affect the model inference.
Moreover, the unconditioned data maintains the chain structure
(i.e., the model-inclusive causal path), which means that the
relationship between y and g is a causal relationship.

Second, if X**1£X*, which means X+ and X* follow
different distributions. In other words, fraudsters falsify the
input data to make it fall into the uncovered area of the training
data [7]. In this case, both of the falsified data X**! and
the training data X t are conditioned on the timestamp, i.e.,
X =XT|T=t+1and X' = XT |T =t. According
to the properties of the basic structures in causal diagrams, the
conditioned data blocks the chain structure and opens up the
collider structure, which means only the falsification-inclusive
causal path is connected. The connected falsification-inclusive
causal path makes y and ¢ spuriously correlated with each other.
This spurious correlation originates from selection bias (i.e.,
insufficient training data), allowing fraudsters to craft spurious
correlation (y = 1) — (§ = 0) through feature falsification.

B. Robustness Enhancement of Game Selection

As selection bias causes misclassification, the reason for
selection bias becomes vitally important. Selection bias arises
from the procedure by which data are selected in model
training [27]], which is related to the idea of data coverage [7],
[43]. For instance, if the falsified data is not selected in the
training process (i.e., the falsification process causes distribution
shifts), it can cause misclassification more easily.

For data coverage, we make the following definition.

Definition 1 (Data coverage of a data point). For a specific
classifier F(W;-), the data coverage of a data point x is
defined as a d-dimensional cube with side length as follows.

&)

= min " — |-,
F(W;z*)#£F(Wix) or Yor #Ya

where i, represents the real label of x.

7Xt*t1=X* means the falsified data and the training data follow the
identical data distribution.
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Fig. 10. Using fewer features increases data coverage.

In particular, F(W; z*) # F(W;x) is related to the model
smoothness, and Y4+ # Yy, is related to the ground truth, both
of which affect feature falsification.

According to Definition [TI] we have the following theorem.

Theorem 1 (Maximum data coverage). Denote the volume of
the input space as Vol, the data coverage (i.e., y) of a dataset
with N data points is upper-bouned by

Y<N- (©)

e 1
)
where d is the number of selected features.

Theorem |1|is the consequence of the summation of N cubes,
the inequality depends on the possible overlap of cubes (i.e.,
the data coverage of a data point).

If falsification processes are unrestricted, the volume of
the input space (i.e., Vol) becomes extremely large, which
means € < v/Vol. According to Theorem |1} the data coverage
exponentially decreases with the increase of feature dimension
(i.e., d), indicating that using fewer features increases the
data coverage (as shown in Fig. [I0). In particular, as d is the
exponent, using fewer features is more efficient in dealing with
unrestricted perturbed fraud transactions, which is consistent
with the fact that feature selection is the dominant method of
dealing with selection bias [38]].

As Game Selection reduces the expected number of features
used in model prediction, it enhances the model robustness by
enlarging the data coverage. Specifically, as indicated in Fig. [5]
Game Selection masks each feature X; with an independent
variable m; ~ Bernoulli(p;), which means that X is selected
to use with probability p;. Therefore, the expected number of
features used in Game Selection is

d d
EQ mi) =) pi<d,
=1 i=1

demonstrating that GAMER uses fewer features for detection,
thereby enhancing the robustness of the detection system.

N

VII. EXPERIMENTAL EVALUATION

In this section, we aim to validate our design and demonstrate
that the proposed system is effective at detecting real-world
fraud activities regardless of fraudsters commit falsifications
or not. All experiments are performed upon a Supermicro
SYS-420GP-TNR server with two Intel(R) Xeon(R) Gold 6348
CPUs (2 x 28 cores), Ubuntu 18.04.1, 10GB memory, and four
NVIDIA A100 PCle 80GB GPUs.



Datasets. We first use three real-world fraud detection
datasets to perform the simulated experiments, including Tab-
Former [51], CreditCard [35], and IEEE-CIS [36]. Moreover,
we validate our design with the real-world data collected from
the world’s leading online payment enterprise, which provides
real-world transactions for evaluation. We send the details of
these datasets to the Appendix due to the space limitation.
Moreover, we employ the techniques of SMOTE [13] and
random under-sampling to overcome the limitations of highly
unbalanced data.

Models. We evaluate our design with three ML models
commonly applied to tabular data. First, MLP, a model with
two hidden layers of 64 and 32 neurons respectively. The
activation function of MLP is Relu. Second, TabNet [3]], a
transformer-based neural network specialized in tabular data.
Third, LightGBM [37], an efficient tree-based model used to
process tabular data.

A. Simulated Experiments

In this section, we design experiments to validate the roles

of feature selection and compare GAMER with traditional
techniques used in robustness enhancement.
The Roles of Feature Selection. As indicated in Fig. |1} feature
selection enables detection systems to affect fraudsters. To
validate this interaction, we employ a probabilistic fraudster
to attack the MLP model (i.e., falsifying features according to
the model) on the CreditCard dataset. The fraudster utilizes
a probabilistic strategy to attack the model with probability
patﬂ If the fraudster falsify the feature, the Gaussian noise
N(4,1) is added to the feature, otherwise the feature remains
unchanged. We utilize interpolation to investigate the impact of
feature selection. Specifically, the selection rate in Algorithm [T]
issettop =1—[Apas.+(1—X)-0] (0O means training without
feature selection). The results displayed in Fig. [IT]indicate that
the AUC and F1 score increase consistently as A\ increases,
which means that the system detects more accurately if the
selection probability is closer to the optimum (i.e., A = 1).

0.7,

3 0.6 [1 CreditCard

5 o5 [ IEEE-CIS |'I‘|

L4 JFrIerI

FI_I.-I-'{-.-}IIIIIII

s L LACHH L

E‘,JFHIIIIIIIIIIIIII
HEIRRIENIREINE

0.

Interpolation (1)

Fig. 11. Selection probabilities af-
fects the model performance.

Fig. 12. Selection probabilities af-
fects the feature importance.

Moreover, we use TabNet to investigate the rationale of
feature selection since it can estimate the feature importance
in model prediction. For this target, we train the TabNet with
different selection probability (i.e., p € {0.1,0.3,0.5,0.7,0.9}
for a feature set that consists of the first two-thirds of all
features) and calculate the feature importance of this feature
set (i.e., the summation of the importance over all features in

8We randomly assign the probability for falsifying features with 24(0, 1) to
eliminate the bias incurred by probability assignation.
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the feature set). The results in Fig. [I2] indicate that increasing
the selection probability increases the feature importance in the
prediction process. This is the reason that feature selection can
prevent feature falsification because it reduces the importance
of the feature if it is more easily to be falsified.

Compared with Existing Methods. We utilize a cost-aware
fraudster (as illustrated in Algorithm [3] in the Appendix) to
simulate real-world fraudulent activities [42] and compare
GAMER with the classical methods. We employ an MLP in
these experiments to ensure a fair and consistent comparison
across all methods. The data were normalized using standard
normalization, a widely adopted preprocessing technique for
tabular data. This procedure stabilizes model training and scales
feature magnitudes to a comparable range, typically within
(0, 1). Thus, perturbations applied to tabular inputs become
semantically meaningful when evaluated under classical vision-
style attacks. Moreover, we randomly set C;, which follows a
discrete uniform distribution (i.e., C; ~ U(1,31)), to X; and
repeat these experiments 30 times to reduce the bias introduced
by cost assignment.

For GAMER, we set the cost identical to fraudster’s cost
and set the profit as AU; = /At.Cost - C;, where At.Cost
represents the attack cost bound of the fraudster. The reasons
for this profit setting are two-fold: first, intelligent fraudsters
launch attacks if the total profit is larger than At.Cost and
they will enlarge At.Cost if the profit is larger than At.Cost
to raise the successful probability, hence the total profit is
identical to At.C'ost; second, the profit of falsifying X; can
be formalized as At.Cost - Acl}i = AU;, which indicates that
the fraudster’s expected profit equals the real profit. Notably,
these experiments also reveal that taking cost-profit knowledge
into account is beneficial in fraud detection.

First, we aim to validate that utilizing fewer features
enhances detection robustness (as illustrated in Fig. [I0). In
these experiments, we use naive SGD to train non-robust
MLP models and use the cost-aware falsification process with
various cost bounds to attack the models. In particular, the
normalization preprocess is not used and the sample sizes
of all datasets are similar to each other. As illustrated in
Fig. the model trained on the dataset with fewer features
(i.e., TabFormer) reveals stronger robustness, the AUC and
F1 score decrease when the cost bound grows significantly
large, which are consistent with our conclusion. As the model
on the Tabformer dataset reveals strong robustness due to the
small number of features, we utilize the other two datasets
(i.e., CreditCard and IEEE-CIS) to investigate the performance
of robustness enhancement.
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Fig. 13. Using fewer features enhances model robustness.



TABLE IV
COMPARISONS OVER THE COST-AWARE (I.E., RATIONAL) FRAUDSTERS!

Dataset AUC F1 Score
At. Cost
100 200 300 400 500 100 200 300 400 500
Method
[Non-robusi___[0.9629 ) 08547(_) 07883 07100, 0.6609_, [0.8720,, 07504, 05483 ) 03712 02827,
CW [12] 0.9970(4) 0.9566() 0.8914() 0.8269(;) 0.7651(1) | 0.9107(y) 0.8802(1) 0.8476() 0.7937(y) 0.7342(y)
CreditCard TARDES [83] 0.9042(;) 0.8748(+) 0.8436() 0.8178(4) 0.8025((;)|0.7565(;) 0.7323(;) 0.7163(1) 0.7077(yy 0.7041(y)
PGD [45] 0.9265()) 0.8995(+) 0.8746(1) 0.8493(4) 0.8306(() |0.7467(;;) 0.7286()) 0.7150()) 0.7032(), 0.6955(),
FGSM [23] 0.9297(;) 0.8940(4) 0.8625(4) 0.8482(4) 0.8405(;) | 0.8590(;) 0.8452(;) 0.8365(1;) 0.8335(11) 0.8317(y
GAMER 0.9828(;) 0.9584(,) 0.9402(y 0.9247( ) 0.9164(,)|0.9403(;) 0.9115.;) 0.8954 ;) 0.8785( B 0.8687(‘ )
At. Cost
Method 20 40 60 80 100 20 40 60 80 100
[Non-robust___[0.9077—) 08411(-) 07632() 06818 0.6055_, [0.7414() 06375, 05485 ) 04767() 04187,
CW [12] 0.8379(;) 0.8247(y 0.8103(4y 0.7945(4) 0.7808(;1) | 0.5945;) 0.5808(;) 0.5662(1) 0.5530(1) 0.5416(1)
[EEE-CIS TARDES [83] 0.7221()) 0.7128(;) 0.7038()) 0.6939(4) 0.6839(y) | 0.5865(;) 0.5806(;) 0.5748() 0.5685(1) 0.5616)
PGD [45] 0.7610;) 0.7519(;) 0.7428)) 0.7338(4) 0.7251() | 0.5933(;) 0.5855(;) 0.5784() 0.5712(4) 0.5651)
FGSM [25] 0.6019();) 0.5879(|y 0.5744()) 0.5623() 0.5493(;) |0.5103();) 0.4984(|)) 0.4868(,) 0.4759() 0.4640(
GAMER 0.9151(,) 0.8842(;) 0.8585(;) 0.8393(;) 0.8210((})|0.7889(,) 0.7500(;) 0.7183(y) 0.6942(;;) 0.6717 ()

-

The double arrow means the improvement (or the decrease) is larger than 20%.

TABLE V
COMPARISONS OVER THE IRRATIONAL FRAUDSTERS

Attack method Without attack

AutoAttack [19]

Square attack [2] (Black-box attack)

Metric At. Cost At. Cost
Def. method Fl Fl ASR At Lost Fl ASR 4t Lost
_Non-robust | _0.8298(, |0.0323_) _ 09812, 1155 | 0.0446, _ 09738) 11.58,)
CW [12] 0.6090(j06.6%) | 0.3743(;y  0.7210( o6 500y A.75( 58,00 | 041421 0.6964( 55 500y 3.79( 67.3%)
TARDES [83] 0.5922( 108 6o | 04749y  0.4891( 50 10y 4.34(j60.4%) | 0.4T96() 047515, o0y 4.41(561.0%)
PGD [43] 0.6006( 07 6%) | 0.4678(1y  0.5442( 14 500y 4.50(161.00%) | 046771y  0.5381( 4000y 4.76( 55 8%)
FGSM (23] 0.5234(y36.0%) | 0.0323(_)  0.9670( 1 110y 9.77(j15.a%) | 0.0367()  0.9609 1 500y  10.20(y11 9%
GAMER 0.8012(y5 455) | 0.6356(,) 0.4145( 57 o) 23.26(110 1) | 0.7308,) 0.2826( 10 0v) 346701109 1)
—— GAMER === Random Selection TRADES [85], PGD [45], and FGSM [25]]. We use torchattacks
At. Cost = 40 At. Cost =40

At. Cost = 60 At. Cost = 60

At. Cost =20

At. Cost =80 At. Cost =80

At. Cost =100 At. Cost =100

Fig. 14. The detection performance improvement achieved by GAMER.

To illustrate the advantages of incorporating cost-profit
knowledge in detail, we compare GAMER with random selec-
tion, which randomly selects each feature with the probability
of 50% (i.e., random guess without expert knowledge). The
median results of the 30 times experiments shown in Fig. [T4]in-
dicate that the use of cost-profit knowledge in GAMER increases
the F1 score by up to 16.43% and reduces the attack success
rate (ASR) by up to 30.89%. These results demonstrate that
calculating equilibrium-based selection probabilities based on
cost-profit knowledge is beneficial for robustness enhancement.
Evaluate the Robustness Enhancement over Rational Fraud-
sters. With the cost-aware attack, we compare GAMER with
classical adversarial training techniques, including CW [12],
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3.5.1 [39] to generate these adversarial examples. For all of
these techniques, we utilize the radius of the neighborhood as
Lo = 50/255, which achieves the best performance in our
experiments, and set the number of optimization steps as 100
(which is identical to the attack steps). In the experimental
results displayed in Table we observe that the performance
of GAMER is higher than adversarial training, implying that
GAMER is effective in extracting robust features to improve
detecting performance. Additionally, as the attack cost increases,
which means that the attack ability is enhanced, GAMER
exhibits stronger robustness. In particular, when the attack
cost is 500, GAMER at least increases the AUC by 5.15% and
the F1 score by 19.07% on IEEE-CIS. These results validate
that GAMER is an effective method to enhance the robustness
of the model in fraud detection.

Evaluate Robustness Enhancement over Irrational Fraud-
sters. We also utilize AutoAttack [19] and Square Attack [2]]
to evaluate the performance of GAMER against irrational
fraudsters (on the IEEE-CIS dataset) because these fraudsters
aim at raising ASR without considering cost-profit information.
The radius of AutoAttack is set to Lo, = 50/255, which is
identical to the defense methods. Additionally, the number
of queries in the Square attack is set to 1000. As displayed



in Table [V] although the performance of GAMER is slightly
weaker than the non-robust model when there is no falsification
in transactions, it achieves a much higher F1 score than
traditional methods in robustness enhancement . This result
is reasonable since GAMER slightly loses useful information
(i.e., uses fewer features in detection) when there is no attack
in transactions. Furthermore, GAMER outperforms traditional
methods against irrational fraudsters, increasing the F1 score
and reducing ASR under both ensemble attacks and black-box
attacks. In particular, as % indicates the average cost of
increasing 1% ASR, the experimental results demonstrate that
GAMER significantly increases the cost of successful attacks by
up to 199.4%, resulting in more economic losses for irrational
fraudsters.

Sensitivity Analysis. To investigate the sensitivity of GAMER
to cost misspecification, we introduce randomized perturbations
to the true costs during training on the IEEE-CIS dataset,

thereby generating a wide range of misspecification scenarios.

Specifically, the model is trained using perturbed costs of
the form: C; = C; + U(—C;, (V12p — 1) - C;), where p =
7”/‘"2,0_0) controls the expected scale of perturbation. To
reduce randomness-induced variance, each experimental setting
is repeated 30 times. The results (see Fig. [I3) demonstrate that

GAMER exhibits strong robustness under cost misspecification.

Even when the costs are perturbed by up to 300% of their true
values, the average Fl-score decreases by only 6.5%.
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Fig. 15. Sensitivity analysis on cost misspecification.

Additionally, we apply similar perturbation settings to
the profit values to assess whether AU; = /At.Cost - C;
serves as a reasonable profit approximation. As shown in
Fig. using the profit formulation /At.Clost - C; achieves
detection performance that is close to the optimal configuration
across experiments. This result indicates that the proposed
profit estimation provides a sufficiently accurate and practical
approximation of the true profit.
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Fig. 16. Validation of the profit estimation.
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TABLE VI

COMPARISONS OVER REAL-WORLD TRANSACTIONS

TabNet LightGBM

Metric
Method AUC F1 AUC F1
Non-robust | 0.751_) _ 0.550(_) | 0.780(_, 0.534()
CW 0.756.0 7, 058315 o, -1 -
TARDES 0.594 50,99 0.5375 49 — —
PGD 0.650, 1349 0.544; 1o — —
FGSM 0.554 96,09 0.516 09 — —
GAMER 0.790:5 5, 0.68315, 50, |0.808 5 50, 0.666.5, 7o,

1 Gradient based techniques are unsuitable for tree based models [14].

B. Real-world Experiments

In addition to the simulated experiments, we also validate
GAMER on real-world transactions. The data is collected from
the world’s leading online payment enterprise. Specifically,
the training data are composed of the transactions collected
from Oct. 7 to Nov. 26, 2022. Moreover, the test data consist
of the transactions collected from Nov. 28, 2022 to Jan. 28,
2023. The labels of these data are collected from whether the
transactions are complained about by users. It is worth noting
that after Jan. 1, 2023, the fraud detection system deployed
in the enterprise experienced precipitately exacerbated attacks,
which doubled the asset loss rate of the enterprise in that month.
The analysis of the risk control department in the enterprise
indicates that fraudsters have discovered flaws in the detection
system and then falsified their transactions accordingly to evade
the detection system.

Before model training, we collect the cost-profit knowledge
for falsifying each feature from a group of security experts
in the risk control department of the enterprise. Specifically,
the experts divide the features into three categories: high-
cost features, medium-cost features, and low-cost features.
The security experts fix the proﬁlﬂ of successfully evade the
detection system as $1 x 102 and carefully set the relative
costs of $81, $72.25, $42.25 to these features, respectively (we
send the details of the process to the Appendix). Then with
these profits and costs, we calculate the optimal probability of
feature selection according to Eq. (E[) as 0.9, 0.85, 0.65 for the
high-cost features, the medium-cost features, and the low-cost
features, respectively.

With the optimal probability of feature selection, we train
the models in GAMER with TabNet and LightGBM on the real-
world dataset. In these experiments, we compare GAMER with
adversarial training techniques, the step number and the radius
are set as 10 and 50/255. The results in Table indicate
GAMER can be applied to various model training and achieves
the best performance improvement, increasing the AUC and
F1 score by 4.4% and 24.45% respectively on average.
Ablation Evaluation Using Real-world Data. We use Light-
GBM as the model and compare the performance of GAMER,
Completer, and Selector on real-world dataset. As displayed in
Fig.[T7] the F1 score of GAMER is higher than both Selector

9The selection rate depends on the ratio between the cost and the profit,
hence experts only need to decide the relative value of these variables.
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and Completer in the first 34 days. The reason is that there are
minor falsified transactions before Jan. 1, 2023. The detection
mechanism in GAMER can accurately identify falsification
behaviors and utilize Selector for fraud detection. Meanwhile,
GAMER does not lose useful information by utilizing Completer
for fraud detection if the transactions are unfalsified. Moreover,
after Jan. 1, attacks are precipitately exacerbated, leading to a
significant decrease in the F1 score of Completer. However,
Selector and GAMER achieve higher F1 scores since the
model equipped with Game Selection is robust to feature
falsification. In particular, GAMER achieves higher F1 score
than Selector since there still were unfalsified transactions after
Jan. 1, and GAMER does not lose useful information on these
transactions by employing Completer in fraud detection. As a
result, GAMER increases the F1 score by 67.5% on average
compared to Completer and can increase the F1 score by up
to 19.47% compared to Selector, demonstrating that GAMER
achieves higher accuracy on unfalsified transactions and strong
robustness on falsified transactions.

The Rationale for Hypothesis Testing. To validate the
hypothesis testing in GAMER, we display the CDF of s on
different transactions, including the transactions for training,
the transactions before Jan. 1 (i.e., the transactions under minor
attacks), and the transactions after Jan. 1 (i.e., the transactions
under major attacks). The results in Fig. [I8]indicate that the
falsification process significantly increases « because the model
predictions in GAMER are distinct on falsified transactions.
Hence, the hypothesis testing process can effectively decide the
output of the detection system based on the difference between
Completer prediction and Selector prediction.

The Efficiency of Game Selection. The results in Fig.
indicate that using Game Selection in model training is
more efficient than adversarial training techniques. It slightly
increases the training time by 10%, which is close to the
optimal training time of the non-robust model.
Cross-Domain Generalizability. Operational statistics col-
lected from a real-world enterprise environment highlight a key
result: GAMER demonstrates strong generalization beyond its
original fraud-detection context, effectively extending to other
malicious-event scenarios such as online gambling and account-
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Fig. 19. Training time (s) for 35
epochs of TabNet.

takeover activities. This empirical evidence underscores that
attackers across these domains exhibit similar incentive-driven
behaviors, and their falsification actions require comparable re-
sources that align closely with our equilibrium-based detection
framework. Consequently, the same game-theoretic formulation
remains consistently effective across diverse categories of
malicious activities, highlighting the practicality and robustness
of GAMER in real-world applications.

VIII. RELATED WORK

Adversarial Training. In machine learning, non-robust fea-
tures [30], [40], are demonstrated to cause the vulnerability
of the model to adversarial examples [12]], [89], [Z0], (10], [16],
[76], [2], [61]. Then multiple researchers devote to enhancing
the robustness of the model by utilizing adversarial examples in
model training [73], [45], (531, (68, [771, (541, (831, [20], [63].
Zhang et al. [86] and Zhou et al. [88] focus on the problem
of imperfect supervision and propose to implement adversarial
training with complementary labels. Kireev et al. [42]],
reveal the differences in detecting adversarial examples on
tabular data and extend adversarial training techniques to this
field. Specifically, adversarial training techniques improve the
robustness by smoothing the model and leveraging data dis-
tribution shift [87]. However, these techniques cannot exhaust
all possible adversarial examples, thus only locally enhancing
the robustness of the ML model [60], [52], i.e., they will
be ineffective when feature falsification are unrestricted [11]].
Unlike adversarial training, our work leverages feature selection
to reduce the combinations of features for fraudsters and



incorporates the equilibrium of a two-player game to maximize
the effectiveness of feature selection.

Feature Selection. Xiao et al. [78]] enhance the robustness
of model training by LASSO, leading to a sparse feature
selection process. Yoon et al. [82] establish a neural network-
based feature selection method, which employs an extra neural
network to calculate the importance of the features. Similarly,
Yan et al. [80]] aim to mitigate adversarial attacks by selecting
features with an additional neural network. However, these
techniques enhance the robustness of the model by utilizing
fewer features, but the model is still definite after deployment,
which means that adversarial examples can be discovered by
intelligent fraudsters if the data coverage is insufficient (i.e.,
Theorem EI) Compared to these methods, GAMER calculates
the optimal probability of feature selection and employs
equilibrium-based strategies to deter attackers.

IX. CONCLUSION

In this work, we formulate fraud detection with falsified
transactions as a two-player game between the detection system
and the fraudster. Our proposed game-theoretic fraud detection
system GAMER leverages equilibrium-based probability in
feature selection, enabling the detection system to select
robust features to detect fraudulent activities. Additionally, the
equilibrium-based probability also reduces the attack profits
of fraudsters, exhibiting deterrence to the fraudsters. Our
theoretical analysis and extensive experiments validate these
properties, demonstrating that GAMER achieves high accuracy
on unfalsified transactions and strong robustness on falsified
transactions.

X. ETHICAL CONSIDERATIONS

The real-world data is preprocessed as tabular data with no
sensitive user information. Data are stored on the enterprise’s
devices and we access these data through an internship program.
To mitigate any potential disruption to the production environ-
ment, we performed experiments in an isolated environment.
The experimental procedures were reviewed and approved by
the enterprise’s ethics board.
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APPENDIX

Detailed Analysis of the Motivation to Falsify Input
Features. With the combinations of y € {0,1} and § € {0,1},
there are four cases for each user. As explained in Table
the combination of y and ¢ results in distinct users behaviors.
It is worth noting that the predicted label, i.e., g, leads to
differences in the users’ behavior.

Specifically, if § = 0, users have no incentive to modify
the features regardless of the real label since they get the
optimal results from the detection system, i.e., benign users
can normally use the service and fraudsters can get illegal
profits via the service. Otherwise, if § = 1, either benign users
or fraudsters will modify their behaviors (i.e., the features) to
keep using the service, i.e., the benign users will regulate their
behavior to avoid being misclassified and fraudsters will falsify
features to escape the punishments of the enterprise and get
illegal profits via keeping using the service.

Game Selection for GBDT. As the Gradient Boosted Decision
Tree (GBDT) is the state-of-the-art model on tabular data
classification, we extend Game Selection to GBDT training. As
the state-of-the-art GBDT-based models are addition models,
the method based on Monte-Carlo algorithm to calculate the
expectation, i.e., Algorithm |l} is unsuitable in this scenario.

TABLE VII
THE MOTIVATIONS TO FALSIFY INPUT FEATURES

Case Explanation

y=0,5=0 Correctly detected benign users, they will not modi-
fy features since they can use the service normally.
Mis-classified fraudsters, they will not consume res-

y=1,9=0  ources to falsify features since they can already ob-
tain the illegal profits from fraudulent activities.

v=0,g=1 Mis-classified benign users, they will regulate (mod-
ify) their behaviors to reuse the provided service.
Correctly detected fraudsters, they will consume re-

y=1,9=1 sources to falsify features to escape punishment and

get the illegal profits.

To solve this issue, we change the target function of Eq.
to the following equation.

min Ex ., [L(F(X © m);y)]
— minE,, [Ex [£(F(X © m);y)]|m]

< E,, min [Ex [L(F(X @ m);y)]|m],  (8)

where the equality depends on the property of conditional
expectation and the inequality comes from the fact that the
minimum of the expectation is less than the expectation of
the conditional minimum. With the new target function, we
can minimize Eq. to further minimize the target function,
hence we can apply Game Selection to the addition models,
e.g., LightGBM (as shown in Algorithm [2).

Algorithm 2 Training LightGBM with Game Selection

Input: The training data X, the iterations 7, the profits {AUZ'}?:I, the costs
{Ci};'izl _
Output: Final model F(-)
1: Get optimal selection rate:
p; = min (1,&), ie{l,---,d}

AU,
2: Get multivariate Bernoulli distribution:
m = (m1, - ,mg), where m; ~ Bernoulli(p;)

fort=1to T do

Sample m(®) from m

Train LightGBM F®) () with X © m(t)
end for
F()= 72 FO)
: return F(.)

A s

The Details of the Simulated Experiments. In simulated
experiments in section we employ three real-world datasets
in fraud detection to validate our design. All of these scenarios
have social or economic implications. The details of these
datasets are as follows.

o TabFormer [35]]. The dataset contains 24 million transac-
tions of 20,000 users and each transaction has 11 features.
To keep the consistent data scale, we utilize a subset
composed of all 29,342 fraudulent samples and 300K
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Fig. 20. Daily evaluation on real-world fraud detection (AUC).

rows that are randomly sampled from the non-fraudulent
samples.

CreditCard [33]. The dataset contains 284,807 transactions
made by credit cards of European cardholders. There
are 492 frauds out of these transactions. Moreover, each
transaction is explained with 30 features.

IEEE-CIS [36]. The dataset contains 600K financial
transactions, and 20663 samples are labeled fraudulent.
We use 173 features selected based on the best solutions
of the Kaggle competition [36]].

Moreover, in these experiments, we utilize a cost-aware
attacker to simulate real-world falsifications in fraud detec-
tion [42]]. These attackers are more realistic since they take the
costs of falsifying different features into account. The details
of the attack are indicated in Algorithm 3]

Algorithm 3 Cost Aware Attack

Input: Initial transaction @, label y, costs C, attack cost bound €, optimization
steps 1"
Output: falsified transaction x*

I a:= %
2:6=0
3: fort =1to T do
4 V=VsL(F(W;z+ &);y)
50 d=6+ a-sign(V)- I\Cc']ll
6:  if |8||1 > € then
. — €
7: = 4 EAE
8: end if
9: end for
10: ¢* = x + %
11: return «*

The Details of the Real-world Data Collected from the
World’s Leading Online Payment Enterprise. The real-
world data are collected from the scenario of inter-enterprise
online transactions. In particular, there are about 200 to
300 transactions that are complaint by users (i.e., fraudulent
activities) out of 110 thousand transactions a day.

The risk control department collects two-month transactions
from Oct. 7 to Nov. 26, 2022 for us as training data, each
transaction is described with 302 features, which capture vari-
ous factors such as transaction amount, transaction frequency,
historical records, and any irregularities and anomalies that
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may indicate potential financial risks. Moreover, the final
training data contain 16070 fraudulent transactions, which are
the complaints from users in two months. As the data are
highly imbalanced, we employ the random under-sampling
strategy to sample benign transactions with the factor of 1 : 2.
After model training, we validate the resulting model on the
test data, which are collected from the transactions from Nov.
28, 2022 to Jan. 28, 2023.
The Process of Deciding the Costs in Real-world Experi-
ments. The costs were decided by the consensus of a group
of security experts in the world’s leading online payment
enterprise. The steps were as follows:

o Experts divided all 302 features into three categories ac-
cording to the cost (e.g., monetary or time) of falsification
(high cost, medium cost, or low cost).

For each category, the experts chose one feature from the
set as the representative feature.

Each expert individually evaluated the cost of the repre-
sentative feature (normalized to $100 profit), this cost was
set as the cost of all features in the corresponding feature
set.

o The costs set for each feature are averaged across all

security experts.
Additional Experimental Results. In this part, we display
additional experimental results to further indicate that our
proposed methods are effective at detecting unrestrictedly
falsified transactions.

Specifically, we display the AUC of the corresponding daily
ablation evaluation of GAMER in Fig. 20| The experiments
indicate that GAMER achieves higher AUC on average than the
Completer, especially after Jan. 1, 2023 (i.e., the adversarial
attacks were exacerbated from that day on), which means
GAMER enhances the robustness of the detection model to
combat real-world fraudsters. Moreover, the AUC of GAMER is
higher than the Selector before Jan.1, 2023 (i.e., the falsification
were minor before Jan. 1), which demonstrates that GAMER can
make full use of all input features to accurately detect fraudulent
activities compared to Selector. As a result, GAMER at most
increases the AUC by 20.58% compared to the Completer and
increases the AUC by up to 7.9% compared to the Selector



during the two-month evaluation. It is worth noting that for
imbalanced data, which is the common case in fraud detection,
AUC sometimes gives a misleading of model performance [50],
hence it should be considered in conjunction with the F1 score
to properly evaluate the model performance. Specifically, as
indicated in Fig. [[7] GAMER also achieves higher F1 score
compared to Completer and Selector during the two-month
evaluation. These experimental results are consistent with our
theoretical analysis, indicating that GAMER can achieve high
accuracy on unfalsified transactions and strong robustness on
falsified transactions.
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Fig. 21. The importance of the cost-profit knowledge (CreditCard).

Finally, Fig. 21] displays the comparisons between GAMER
and the random selection (i.e., select each feature with the
probability of 50%, which is the random guess without expert
knowledge) on CreditCard dataset. The results indicate that
when the cost-profit knowledge is employed, the maximum
increase of the F1 score are 1.73%. Moreover, GAMER reduces
ASR by up to 32.59%, which demonstrates that incorporating
cost-profit knowledge is beneficial for accurate fraud detection.
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