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Abstract—Programmable Logic Controllers (PLCs) are indus-
trial computers that control devices with real-world physical
effects, and safety vulnerabilities in these systems can lead to
catastrophic consequences. While prior research has proposed
techniques to detect safety issues in PLC state machines, most
approaches require access to design specifications or source
code—resources often unavailable to analysts or end users.

This paper targets a prevalent class of vulnerabilities, which we
name Blind-Trust Vulnerabilities, caused by missing or incomplete
safety checks on peripheral inputs. We introduce Ta’veren,
a novel static analysis-based framework that identifies such
vulnerabilities directly from PLC binaries without relying on
firmware rehosting, which remains an open research problem
in firmware analysis. Ta’veren recovers the finite state machines
of the PLC binaries, enabling repeated safety analyses under
various policy specifications. To abstract the state from program
states to logic-related states, we leverage our insight that PLCs
consistently use specific variables to represent internal states, thus
allowing for aggressive state deduplication. This insight enables us
to effectively deduplicate states without compromising soundness.
We develop a prototype of Ta’veren and evaluate it on real-world
PLC binaries. Our experiments show that Ta’veren efficiently
recovers meaningful FSMs and uncovers critical safety violations
with high effectiveness.

I. INTRODUCTION

Programmable Logic Controllers (PLCs) are industrial
computers used in Industrial Control Systems (ICS) that control
physical components, such as conveyor belts, compressors,
packaging machines, and water treatment systems. With the
explosive growth in building cyber-enabled industrial systems,
PLCs have become increasingly prevalent: the global PLC
market was valued at $16.3 billion in 2024 and is projected to
grow to 1.5 times by 2033 [1].

Despite their wide adoption, PLCs have been involved in
numerous safety-critical failures that have caused catastrophic
incidents to society, spanning from financial 1oss [ 2], physical
damage [3], destruction of critical infrastructure [4], to the loss
of human life [S]-[7]. As these systems play a central role
in controlling physical processes, it is imperative that PLC
programs maintain safe behaviors under all input conditions.
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Among all different types of inputs to PLC programs,
inputs from peripherals such as sensors have been shown to
trigger edge cases outside the consideration of PLC design, but
such PLC vulnerabilities remain under-studied in the research
community. PLC programmers usually place blind trust in their
assumptions about the peripherals; as a result, safety checks in
PLC logic may only account for “assumed inputs” and ignore
edge cases that rarely occur in practice, such as out-of-range or
conflicting sensor readings. One notorious series of examples
is the 2019 Boeing 737 Max crashes, which were caused
by a flight control system, the Maneuvering Characteristics
Augmentation System, that trusted faulty angle-of-attack (AoA)
sensor data—even with redundant sensors installed—and led
to 346 fatalities [7]. While it may not be possible for a PLC
to detect every erroneous input, it must at least behave safely
when confronted with conflicting or unusual inputs.
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Fig. 1: The relationship between PLC programmers’ assump-
tions on peripheral input and input safety. The intersection of
unassumed input and unsafe input leads to BTVs.

Safe inputs

In this paper, we refer to these safety problems as Blind-
Trust Vulnerabilities (BTVs). As Figure 1 shows, PLC programs
receive both safe inputs (the green area, which lead to safe
behaviors) and unsafe inputs (the red area, which lead to
unsafe behaviors). Existing techniques often focus on finding
and eliminating unsafe behaviors that are caused by “assumed”
inputs [8], [9], which leaves BTVs (unsafe behaviors caused
by unassumed, and thus unhandled, input) unaddressed.

Finding BTVs is challenging: Not all unassumed inputs
lead to safety violations, which means finding BTVs in PLC
programs is more than merely reporting all unassumed inputs.
Further, BTVs may exist in “deep” or harder-to-reach parts of
PLC programs, which are difficult for fuzzing-based solutions to
discover. Model checking has great potential in systematically
checking all states and state transitions of a PLC program.
Although prior research has proposed safety analysis techniques



using model checking on PLC programs [10]-[12], they exhibit
two main weaknesses:

State explosion. Model checking-based solutions suffer from
state explosion. Researchers have shown that automatically
analyzing stateful programs (with source code) is challenging,
and a key challenge is state explosion [13]-[15]. Analyzing PLC
binaries is even more challenging because the state machines
are implicit and implemented in multiple variants using arrays
and loops [16].

Mandating source code access. Prior PLC safety analysis
techniques generally mandate access to source code or designs
of PLC programs, which are often unavailable for commercial
off-the-shelf (COTS) PLCs.

In this paper, we propose a novel technique that automatically
and scalably identifies BT Vs in PLC binaries by first extracting
the finite state machines (FSMs) from these PLC binaries
and then conducting model checking on these FSMs against
predefined policies to catch BTVs.

To tackle the state explosion problem, our key insight is
that PLC programs always use certain variables (which we call
state variables and will define in Section V) to represent their
current states in their corresponding FSMs. Therefore, we can
derive the states of an FSM and deduplicate these states based
on the values of state variables. To this end, we build a set
of empirical heuristics to automatically identify state variables
in PLC binaries. Our solution alleviates the state explosion
problem without relying on high-level PLC artifacts such as
source code.

Based on our insight, we build Ta’veren, a research prototype
that automatically and scalably finds BTVs in PLC binaries.
Ta’veren takes as input a PLC binary and an environment
model describing its interaction with the physical world, and
automatically generates an FSM from the starting point of an
FSM implementation. Further, Ta’veren formally verifies the
recovered FSM against user-specified formal safety policies
to find safety policy violations, and many such violations are
BTVs. Users can then decide how to handle these violations,
e.g., by patching the PLC binary or by using an external PLC
anomaly detection solution.

Given the difficulty of obtaining real-world PLC pro-
grams [17], we build a dataset of 22 PLC binaries using
real-world PLC programs collected from various sources. Our
dataset represents a diverse set of PLC development software
and toolchains (e.g., Beremiz, OpenPLC, and Simulink), and
architectures (x86-64, ARM, MIPS, PowerPC, and AVR).
Based on the source code of these PLC programs, we also
create reference FSMs for each binary. We believe that this
dataset, which includes source code, binary, and reference
FSMs, will benefit future research in this area.

We evaluate Ta’veren on our PLC binary dataset of 22
binaries with 20 safety policies on 24 recovered FSMs. We
discover a total of 17 BTVs that lead to policy violations
in these binaries. We then extend the evaluation of Ta’veren
to real-world and more complicated Cyber-Physical System

(CPS) programs (rover and copter) and show that Ta’veren
successfully recovers their FSMs and discovers three BTVs.

Contributions. This paper makes the following contributions:

« We propose Ta’veren, a novel solution that scalably finds
BTVs from PLC binaries without the need for firmware
rehosting or PLC simulation.

« We propose a technique that automatically recovers the
finite state machines (FSMs) in PLC binaries. To the best
of our knowledge, Ta’veren is the first technique that
automatically transforms PLC scan cycle implementations
to FSMs without using source code or pre-defined models.

o Given the absence of a real-world-scale PLC binary
benchmark, we build a dataset of 22 PLC binaries, source
code, and the reference FSMs for each binary, which
represent a diverse set of PLC development software,
toolchains, and architectures. We evaluate the effectiveness
and efficiency of Ta’veren on our dataset. Our evaluation
shows the high effectiveness and efficiency of Ta’veren.

In the spirit of open science, we have open-sourced all research
artifacts, including the source code of Ta’veren and the datasets
of our PLC programs, at https://github.com/sefcom/taveren.

II. BACKGROUND
A. PLC Programs and Binaries

Programmable Logic Controllers (PLCs) are industrial com-
puters that integrate physical components (sensors, actuators)
with software components (PLC programs) to control physical
processes. For instance, a PLC can control the operation of a
conveyor belt by monitoring sensor inputs (e.g., the presence
of items on the belt) and adjusting actuators (e.g., the speed
of the belt or the position of a gate) based on its control logic.

Many PLC programs use finite state machines (FSMs) to
implement the control logic. A finite state machine consists of
a set of states, which represent sequential stages of a process
or different modes of operation, and transitions between states,
which are triggered by inputs through internal calculations.

PLC programmers may implement FSMs using a tradi-
tional programming language (e.g., C/C++) or PLC-specific
languages, such as Ladder Logic (LD), Function Block Dia-
gram (FBD), Structured Text (ST), Sequential Function Chart
(SFC) [18], and Stateflow (in Simulink) [19]. PLC-specific
languages usually require a specific toolchain to compile the
program into binary code that can run on the PLC.

An intrinsic concept to PLC programs is a scan cycle, which
refers to the code that is repeatedly executed. During a typical
scan cycle, the PLC program gathers input from sensors,
executes control logic based on the input and global state,
updates the global state, and generates output to actuators.
Note that while a scan cycle can implement an FSM, the
control flow graph of a scan cycle does not reflect the shape
or structure of the FSM [16]. We will explain their differences
with an example in Section [V-B.

It is worth noting that there are many differences between
PLC binaries and typical user-space executables. PLC binaries
are often provided as a single monolithic binary and interact



with peripherals through ports or memory-mapped I/O (MMIO),
whereas user-space executables often load libraries and interact
with their environments using library APIs or system calls.
Therefore, PLC binaries contain less semantic information than
APIs or system calls provide, which is usually available when
analyzing user-space executables.

B. Security versus Safety

Safety and security are closely related but different concepts.
Security refers to an attacker violating the confidentiality,
integrity, and availability of a system, whereas safety refers
to the protection of devices from accidents, such as undesired
or unplanned behaviors. To breach security, attackers typically
exploit software vulnerabilities (e.g., buffer overflows and
command injections). Safety problems may be caused by
faulty designs, incorrect implementation, or ignored extreme
conditions. Safety policies of an ICS describe the user-defined
intended behaviors with which the system must comply.

In ICSs, where the software components and physical com-
ponents are tightly integrated, security issues may compromise
their safety, and vice versa. In this paper, we focus on finding
safety problems in ICSs that are not necessarily caused by
security issues. As such, we consider a PLC program safe if it
does not violate any given safety policies.

C. BTVs and PLC Anomaly Detection

A Blind-Trust Vulnerability (BTV) is an input validation
vulnerability where a PLC’s control logic fails to properly
handle the full spectrum of possible inputs from its peripherals
and leads to potentially unsafe behaviors against the system.
BTVs occur because physical sensors can be manipulated by
adversaries or can fail in unexpected ways, providing data
that violates the PLC programmer’s implicit assumptions [7].
Interestingly, this vulnerability class is often overlooked in
prior work, which tends to focus on inputs from configuration
parameters [9], user controls [20], or even changes to the PLC
code itself [8]. This oversight stems from a common assumption
that peripherals will always operate within their expected
physical bounds. For example, prior work has considered that
a potential error state is a false positive if it could only be
triggered by a physically “impossible” condition, such as a
robot’s speed exceeding its maximum [8]. Such reasoning
neglects the potential manipulation of peripherals and, therefore,
BTVs.

Although prior work has studied input validation bugs in
robotic vehicles [21], [22] and robotic operating systems [23],
PLCs include unique challenges that fundamentally prevent
their application. Specifically, these works require the availabil-
ity of high-fidelity simulators and software-in-the-loop testing
architectures to observe the physical consequences of inputs.
However, such simulation environments are rarely available for
the diverse, proprietary industrial processes that PLCs control.

Another line of work for ICS security has proposed anomaly
detection systems, which monitor the physical process to
detect deviations from an expected model of behavior [24],
[25]. These systems can, in principle, detect the consequences

of a BTV by identifying system states that are physically
implausible. However, their effectiveness is often constrained.
First, these works aim to detect the attacks at run-time rather
than design-time, and therefore, they can raise an alarm after an
anomalous input has already been processed and the ICS may
already be transitioning to an unsafe state. Second, creating an
accurate model for anomaly detection typically requires access
to detailed design specifications, data traces, or even the PLC’s
source code, which are frequently unavailable for commercial
off-the-shelf (COTS) ICS [26]. Lastly, such systems have also
been shown to be vulnerable to attacks that subtly manipulate
sensor inputs to remain within the bounds of the modeled
behavior, thereby evading detection.

III. RESEARCH SCOPE AND THREAT MODEL

The intended users of Ta’veren are security analysts who
cannot access the source code of a PLC binary program or are
interested in vulnerabilities that only manifest in binary code
(but invisible in source code). The focus of this paper is finding
BTVs in PLC binaries that are loadable and disassembleable
using external tools. As such, analyzing and lifting binaries with
proprietary instruction set architectures (ISAs) or formats is out
of the scope of this paper. Note that many PLC vendors, such
as Siemens and Rockwell, use proprietary ISAs and formats
for their PLC binaries. Developing loaders and lifters for these
proprietary targets is an orthogonal problem.

We mainly consider PLC binaries with FSM implementations.
Both benign users and attackers may interact with PLC binaries
through their input channels (e.g., by impacting sensor readings
so that the readings fall outside normal ranges) and trigger
BTVs in the PLC program, which will lead to unsafe PLC
behaviors. We consider sensor attacks where attackers must gain
physical access to a sensor before manipulating it. According
to prior research, generally manipulating multiple sensors is
more difficult than one sensor [27]. PLC programs that do not
implement FSMs are out of scope.

While attackers may tamper with peripherals to impact the
input, we assume that both PLC binaries and the controller
hardware are trusted and cannot be tampered with during
runtime. For example, flashing the PLC with a new binary,
disconnecting the PLC from power, and glitching the PLC
by manipulating its power input are out of scope. Finding
software vulnerabilities, such as memory corruptions, is also
out of scope.

IV. MOTIVATION

We first motivate the analysis of PLC binaries (instead of
source code) (Section IV-A), then present a running example
that we use throughout this paper (Section IV-B), and briefly
introduce the technical challenges we face when analyzing
PLC binaries (Section IV-C).

A. Analyzing PLC Binaries

While many existing PLC safety analysis techniques require
source code, in reality, the source code of commercial-off-the-
shelf (COTS) PLC programs is often unavailable to security



TABLE I: A comparison of Ta’veren and relevant techniques that analyze PLC programs.

Type ‘ Tool ‘ Analysis Input ‘ Generated Model ‘ Technique ‘ Input Channel
TSV [10] Instruction List (IL) Temporal Execution Tree Peripherals
VetPLC [8] Structured Text (ST) Timed Event Sequences Tino Timing
PLC SAIN [24] Structured Text (ST) Program Dependency Graph Model Checking N/A
Ta’veren Binary Finite State Machine Peripherals
MISMO [28] Binary Control Algorithms . PID Parameters
CPS DISPATCH [29] Binary PID Controller Pattern Matching PID Parameters
RV RVFUZZER [22] RV Source code N/A Fuzzin Configurations
PGFUZZ [21] RV Source code N/A J User Commands, Configurations, Peripherals
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Fig. 2: An example PLC controlling a water tank system. The
PLC program takes inputs from two sensors (low and high) to
perceive the water level in the tank and, based on those inputs,
controls the actuator pump to add water to the tank.

analysts due to copyright protection. However, the binaries of
PLC programs are usually available either as downloadable
firmware images (from, e.g., vendor websites) or on the actual
PLC device (and can be extracted). Even when the source code
of PLC programs is available, due to the What You See Is Not
What You eXecute phenomenon [30], security analysts may
still need to analyze the actual binary code that runs on PLCs
to avoid unknowingly neglecting bugs that can be introduced
by misimplementation [7] or toolchains [2], [5].

Table I shows the design comparison of Ta’veren against
existing PLC program analysis work. Existing static techniques
work on high-level source code (e.g., IL, ST, or C code) and
derive execution or event sequences. They rely on parsing
explicitly defined states (e.g., enum data types) and event-
relevant facts (e.g., event handlers, sequences, and intervals) in
the source code. Such information is PLC source-specific and
does not exist in PLC binaries, so these techniques do not apply
in our setting. Dynamic techniques, such as MISMO [28] and
DISPATCH [29], focus on specific algorithms or models and
thus are not generic to PLC programs. Fuzzing approaches [21],
[22] rely on the availability of execution, which requires PLC
program simulation or emulation, either of which lacks generic
solutions over different architectures, plants, and environments.
Therefore, none of the existing works are generic for PLC
binary programs.

B. Running Example

Figure 2 illustrates a simplified water tank control system
with two sensors: The high (water level) sensor and the low

low_sensor==1

&& high_sensor==0 high_sensor==1

STOP
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PUMP

low_sensor==1
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Fig. 4: Fixed water tank system FSM. It checks both low and
high sensors before turning on the pump.

(water level) sensor. Upon start, the pump receives a low signal
(that the low sensor emits) and starts to pump water and fill
the tank. Once the pump receives a high signal (that the high
sensor emits), it turns off to prevent water from overflowing.
When the water level is low again, the pump turns on and
repeats the process. Figure 3 shows the FSM of this system
that a programmer implements in Sequential Function Chart
(SFC) in OpenPLC.

From SFC to the PLC binary. When building the PLC binary,
OpenPLC first converts the SFC program to C++ code and then
compiles it to a binary program. Listing 1 shows a simplified
C++ snippet of the function that implements the scan cycle
logic. Each state and transition uses boolean flags to set and
track the activation of the associated state and transition (Lines
5 and 11). In each scan cycle, the program checks the water
level in the tank by reading the two sensor values (Lines 5
and 7). Based on sensor readings, it activates the transitions
accordingly. Then, the PLC program activates or resets the
steps according to the transitions (Lines 10-17). The status
of these steps determines the state-specific control logic to
execute (Lines 19-21) and updates the actuator (pump) state
accordingly (Line 23).

The BTV. An attacker with physical access to the low sensor
may manipulate it (or its environment) to emit a low signal,
which causes the pump to keep pumping water and potentially



1 void WATER_TANK_SFC_body () {

2 // Calculate elapsed_time, ini

3 ..

4 // Set transitions

5 if (START.X) { transition[0] = LOW_LEVEL_SENSOR; }
6 else { transition[0] = 0; }

7 if (FILL_TANK.X) { transition[l] = HIGH_LEVEL_SENSOR; }
8 else { transition[l] = 0; }

9

10 // T tions reset steps

11 if (transition[0]) { START.X = 0; }

12 if (transition[1]) { FILL_TANK.X = 0; }

13

14 // Transitions set steps

15 if (transition[0O]) { FILL_TANK.X = 1; }

16 if (transition[1l]) { STOP_PUMP.X = 1; }

17 .

18 // Action associations

19 char active = START.X;

20 char activated = active && !START.prev_state;
21 char deactivated = l!active && START.prev_state;
22

23 if (deactivated) { PUMP = 0; }

// WATER_TANK_SFC_body ()

25}

Listing 1: Snippet of scan cycle in OpenPLC generated C++
code for the water tank program (simplified for readability).

overflow the tank. This is because the PLC program does not
check the high sensor before re-activating the water pump
(i.e., the transition from STOP_PUMP to FILL_TANK is only
conditioned on the low sensor). This BTV could have been
fixed by adding a check for the high sensor before activating
the pump, as Figure 4 shows.

Finding the BTV. Ta’veren analyzes the PLC binary, recovers
a complete FSM in Figure 3', and then examine if there exist
any states and paths that violate a set of pre-defined safety
policies. This BTV violates the safety policy that states when
the water level is high, the water pump must stop to ensure
that the water does not overflow.

C. Challenges

Conducting bounded model checking to identify BTVs in
PLC binaries requires addressing two major challenges:

Challenge 1. No source code access. Source code, whether
written in IL, ST, SFC, or C/C++, usually contains high-level
semantic information that allows direct extraction of event
sequences or state machines. For example, VetPLC extracts
events, event intervals, and their guarding conditions from
PLC ST source code [8]. A relevant technique, StateLifter
(which generates FSMs for format parsers by analyzing their
C implementations) extracts guarding conditions of events
by parsing the C source [16]. However, PLC binaries do
not contain such high-level semantic information. Therefore,
Ta’veren must recover the necessary information from analyzing
the binary code.

Challenge 2. State explosion. The control flow graph (CFG,
shown in Figure 13 in the appendix) of the C++ program in
Listing 1 and the FSM (Figure 3) do not resemble each other. A

I'The FSM that Ta’veren recovers is actually different from Figure 3 because
it also recovers conditions of the high sensor. For simplicity, we will explain
how Ta’veren works in the later sections.

Preprocessing

5% Environment
Model

Scan Cycle Identification ]
—> 7

State Variable Identification

Y
[ Finite State Machine ]
Recovery

A

J}.State Transition Graph

E\ Safety Policies Blind-Trust Vulnerability
—Q

Discovery

Fig. 5: Overview of Ta’veren. The user provides as input a PLC
binary, an environment model, and safety policies to verify.

key difference is that the FSM has only a few (abstract) states,
while its C++ implementation contains logic for all states,
which potentially represent an infinite number of (concrete)
program states. Suppose Sy is the state before invoking the
WATER_TANK_SFC_body function for the first time, and
S1 is the state after invoking the function. Sy and S; are
different concrete program states because the data in memory
and registers have changed. In fact, during the execution of
the function, we may observe one unique concrete state after
executing every instruction in the binary. However, when the
water level is not low, and the low water level sensor is not
activated, both Sy and S (as well as all other concrete states
that we may observe) correspond to the same abstract state,
START, in the FSM.

Without high-level knowledge of the PLC program, we
cannot derive the correspondence between concrete program
states and abstract states in the FSM. Therefore, there are
potentially an infinite number of concrete program states, which
causes state explosion [31]. Any static or dynamic analysis
technique that directly works on a CFG will encounter this prob-
lem. Existing techniques, such as TSV, aggressively limit the
number of explored paths during dynamic symbolic execution,
which alleviates state explosion by sacrificing completeness
(i.e., missing states) and may cause false negatives during the
discovery of safety policy violations.

V. OVERVIEW OF TA’VEREN

Figure 5 shows the overview of Ta’veren. At a high level,
Ta’veren takes as input a PLC binary, specified inputs and
outputs, and the safety policies to verify. Next, Ta’veren
automatically identifies the location of the scan cycle and
state variables (which we will define next) in the PLC binary.
It then automatically generates an FSM represented in a state
transition graph and uses this graph to verify each safety policy
and report any discovered violations. We define three concepts:
state variable, environment model, and state transition graph.



State variables and state IDs. State variables are what a PLC
program implementing an FSM uses to record and track current
states. The values that state variables hold are state IDs, which
are concrete values (e.g., integer values or boolean flags) that
correspond to abstract states in the FSM of the PLC program.
Both state variables and state IDs are artifacts resulting from
the implementation of an FSM in the PLC program. An FSM
implementation may contain multiple state variables, in which
case we consider the union of these state variables for tracking
abstract states. In a typical Kripke structure where each node in
the graph is associated with a unique symbol, its state variables
will hold the values of these symbols.

In the FSM of the water tank (Figure 3), each of the three
states is associated with a unique ID (START, FILL_TANK,
and STOP_PUMP). Each state is also associated with a set of
actions (e.g., turn on the pump). In the implementation of this
FSM (Listing 1), FILL_TANK. X (Line 12) is a state variable,
and FILL_TANK.X == 1 represents that the water tank is
in the FILL_TANK state.

Environment model. The environment model specifies how the
PLC program interacts with the physical world. An environment
model comprises two components:

1) Input variables, their locations, and types. Input variables
store sensor readings and are used in state transition
conditions. For example, in the water tank example
(Listing 1), LOW_LEVEL_SENSOR is an input variable.

2) Output variables, their locations, and types. Output vari-
ables are linked to actuators and control the behaviors of
actuators (e.g., turning on and off pumps), which influence
the physical world (e.g., pumping water into the tank and
raising the water level) and may impact input variables.

As Section II-A discusses, PLC binaries usually do not

contain any semantics or location information about input
or output variables. Typically, security analysts get such
information from reading the PLC documentation (which
usually indicates the mapping between memory addresses and
physical ports of a PLC), analyzing artifacts (e.g., source code)
of a closely related PLC program [8], or reverse engineering
the PLC binary itself with domain-specific knowledge [28],
[32]. Because automatically locating input or output variables
is not the focus of our research, Ta’veren takes environment
models as input from users.

State transition graph. A state transition graph is a quadruple
(A, ag, X, 6), where
o A is a set of abstract states where each abstract state
a; is represented by a unique tuple of state variables
and output variables that are extracted from the actual
program state. Any state a; can be represented by
[0y »8n,Ug, "+, Um], Where s;,0 < i < n are state
variables and u;,0 < j < m are output variables.
e ag € A is the initial abstract state.
e X are the constraints on input variables that can be
evaluated to a boolean value.
e d: Ax X — A is the state transition function. The
transition is taken when the condition o € X is true.

State deduplication. We consider any concrete states with the
same values of state variables and output variables as the same
state. This allows us to aggressively deduplicate concrete states
and create a finite number of abstract states.

In a program, input variables do not have control or data
dependencies on any other variables. The updates of state
variables and output variables are determined by previous
state variables and input variables. We consider the remaining
variables in the program as intermediate variables.

Theorem. A recovered FSM fully reflects all the behaviors of
the original FSM (as implemented in the source program) if the
set K of selected variables used to represent a state (i.e., state
variables and output variables) is complete (i.e., no variable
in K exhibits control or data dependencies on intermediate
variables).

For interested readers, we provide a formal proof of the
theorem in Appendix A. This theorem shows that an FSM
that Ta’veren recovers via state deduplication is sound (i.e.,
all recovered states and transitions must exist in the FSM
implemented in the source) if Ta’veren fully discovers all state
variables [33].

Ta’veren’s analysis has four main steps (Section VI):

Step 1. Scan cycle identification. Ta’veren identifies the
locations in the binary that implement the scan cycle, as well
as any pre-requisite initialization functions.

Step 2. State variable identification. Ta’veren automatically
identifies all state variables in the target binary.

Step 3. FSM recovery. Ta’veren automatically recovers the
state transition graph for the FSM from the binary. The core
technique takes input, the scan cycle functions, state variables,
and the environment model that specifies information about
the input and output variables of the PLC program. It uses
dynamic symbolic execution (DSE) to analyze the functions
in the PLC binary and recover abstract states, state transitions,
and state transition conditions in a scalable manner. This step
outputs an FSM represented in a state transition graph.

Step 4. BTV discovery. Given safety policies as input, Ta’veren
verifies each user-specified safety policy on the recovered FSM.
For each reported violation, Ta’veren provides a counterexample
trace, including the specific sequence of peripheral inputs that
triggers the unsafe state. This allows identifying when a safety
violation is the direct result of a BTV.

The theoretical underpinning of FSM recovery. Upon a quick
glance, a PLC binary always appears to be a Turing machine
program (consider that it has stack, memory, and instructions
with loops, which corresponds to an infinite tape that instructs
its execution). In general, because a Turing machine is more
expressive than an FSM, converting a Turing machine into
an FSM cannot be sound. However, when a Turing machine
program strictly implements an FSM (and nothing more),
we can represent the program as an FSM without loss of
expressivity. The FSM recovery step in Ta’veren can abstract
the FSM from a PLC binary soundly when the PLC binary (or
the part of it that Ta’veren targets) strictly implements an FSM.



When the PLC binary (or a part of it that Ta’veren targets)
implements logic that requires more expressivity than an FSM
can provide (e.g., it requires a finite pushdown automata or a
Turing machine), sound abstraction of the FSM from the PLC
binary is no longer possible.

VI. DESIGN OF TA’VEREN

In this section, we discuss the design of key components of
Ta’veren.

A. Scan Cycle Identification

Given the PLC binary, Ta’veren first identifies the locations
of the scan cycle function and initialization functions.

Based on our observations, a scan cycle function in PLC
binaries exhibits the following patterns: (a) The scan cycle
function is invoked inside a loop, such as while (1) or
while (power_on). (b) The scan cycle function has at least
one switch-case construct or many consecutive if-conditions.
This is because the scan cycle function dispatches the execution
to state-specific logic depending on the current state. We
identify such constructs in binary code by observing the
existence of jump tables (which are usually the result of switch-
cases in C) or cascading if-else branches.

Initialization functions initialize persistent data structures and
state variables. We observe that initialization functions exhibit
the following patterns: (a) They are reachable from the program
entry point and are executed before the scan cycle function. (b)
They perform multiple memory writes to non-volatile regions
(e.g., global sections or heap regions). We identify initialization
functions by counting the number of memory writes to global
or heap regions in each candidate function and its callees and
pick the functions with the highest number of writes.

B. State Variable Identification

Once Ta’veren identifies the scan cycle function, the next step
is to identify the state variables. PLC programs initialize state
variables before entering the scan cycle and keep state variables
alive across multiple scan cycles. Control dependencies may
exist between state variables. For example, in Listing 1, the
state variable FILL_TANK. X depends on the value of the local
variable transition[0] (Line 15), which in turn depends
on another state variable START . X (Line 5). Performing DSE
on a single scan cycle without considering the initial or prior
values of state variables will ignore the control dependencies
between state variables, which leads to redundant abstract states
and state transitions in the recovered FSM. Therefore, Ta’veren
must identify all state variables.

Identifying state variables is challenging because they are
not special regarding their storage locations or their types
(or sizes). Even worse, the semantics of variables, including
variable names and types, do not exist in PLC binaries that
Ta’veren analyzes, so we cannot determine if a variable is
a state variable by inspecting its name or type. These chal-
lenges render previous methods for state variable identification
inapplicable [13]-[15], [24].

We theorize that state variables in PLC programs must follow
these rules:

1) State variables stay alive across scan cycles, so they are
stored in non-volatile regions, e.g., global sections or the
heap. State variables cannot be stored in function stack
frames.

2) State variables are used in branch conditionals so that they
impact the internal state by determining which branches
to take and which code path to execute.

3) During each scan cycle, state variables must be read first
before being written to (i.e., assigned new values), whereas
local variables must be assigned before use.

These rules allow Ta’veren to automatically identify state
variables using static data-flow analysis on binary code. First,
Ta’veren extracts conditions that guard each branch in the scan
cycle functions. Then, Ta’veren filters all variables used in
conditions to identify the ones that are located in global sections
or heap regions. Next, Ta’veren builds a data-dependency
graph across all scan cycle functions, including all candidate
variables. Lastly, Ta’veren considers all candidate variables as
state variables if they are read before being updated and are
not input variables.

In all PLC binaries in our dataset, we confirm that the
identified state variables align with the ones that are used in
the source code.

C. Finite State Machine Recovery

The FSM recovery algorithm in Ta’veren begins by ini-
tializing an abstract state and then symbolically explores the
scan cycle functions until reaching a fixed point. To prevent
state explosion, Ta’veren (1) aggressively deduplicates abstract
states and (2) discovers new values of input variables that are
meaningful to the PLC program (e.g., time and temperature).

1) Initialization: We initialize the analysis by executing
identified initialization functions, such as init, to set up the
initial program state sg. After initialization, values for state
variables in sy are set to their corresponding start values.

2) Scan Cycle Execution: As Algorithm 1 shows, the FSM
recovery algorithm is a worklist algorithm. Each work item
in the worklist has four elements (s, A, C, a), where s is the
(concrete) program state (with registers and memory), A is the
new input values for the next state, C is the path constraints
that cause state transition and a is the abstract state. The
GenAbstractState function maps a concrete program state
s to an abstract state a by extracting values of the state variables
and output variables from s. A directed graph G stores the
recovered FSM.

To start, Ta’veren derives an abstract state ag from sg, initial-
izes the worklist, and adds ag to G. Then Ta’veren symbolically
explores scan cycle functions through the following steps.

Step 1. Getting abstract states (Lines 5-14). We get the
current program state s, new values for input variables A, path
constraints C, and the previous abstract state prev_a from the
worklist. We symbolically execute s through the scan cycle
functions to obtain the end program state s;. Then, we extract



Algorithm 1 Finite state machine recovery

Input: Initial program state sg
Input: Scan cycle functions
Input: State variables
Input: Inputs and outputs
Output: State transition graph
1: Abstract state ap < GenAbstractState(sp)
2: State queue Q < {(s0, 9,9, a0)}
3: State transition graph G <— MultiDiGraph(ag)
4: while Q # 0 do
50 (s,4,C,prev_a) + pop(Q)
6: # First step, concolic
7: $1 + ScanCycleExecution(s,input = A)
8 a <+ GenAbstractState(s)
9: if edge(prev_a, a,cond = C) ¢ G then
10: G.add_node(a)

11: G.add_edge(prev_a, a,cond = C)

12: else

13: continue

14: end if

15: # Second step, symbolic

16: $2 + ScanCycleExecution(si,input = SymVar)
17: for each s ; € s2 do

18: analyze path constraints on transitional program states
19: converge path constraints Chew

20: generate new inputs Ay e

21: Q — QU (817A7L€’M)7Cn€w7a‘)

22: end for

23: end while

values for state and output variables from s; to derive the
corresponding abstract state a and add a transition edge from
prev_a to a in G.

Step 2. Discovering new values for input variables (Lines
17-22). Updating the values of input variables by fixed deltas
(e.g., increasing time by 0.01 seconds each time) leads to
redundant states, because the PLC program only transitions
to a new abstract state when conditions on input variables are
satisfied (e.g., checking if at least 0.5 seconds have passed
since the last execution).

Ta’veren discovers meaningful values for each input variable
that will cause transitions to the next abstract states. It sets
each input variable to a symbolic value and performs DSE on
scan cycle functions using s; as the input state to discover
conditions that each input variable must satisfy to cause state
transitions.

We observe two types of conditions: (a) comparisons
between concrete values and arithmetic expressions that
contain input variables (e.g., if (sensor > 4500));
(b) the conjunction of comparison expressions, e.g.,
if (sensor < 4500 && sensor > -9000)
{state_id = 5;}, where sensor is an input variable2.

Ta’veren handles the first type of conditions by normalizing
and parsing them. Handling the second type is more complex,
and we detail our prior approach using an example. After
DSE, the final set of program states contains three states:
$2.0, S2.1, and S22, each with its own path constraints as
shown in Table II. The abstract states of s5 o and s, 1 are both

>The exact conditions in ArduCopter program can be found here:
https://github.com/ArduPilot/ardupilot/blob/Copter-4.5/ArduCopter/mode _
flip.cpp#L144

TABLE II: The resulting states, their state IDs, and their path
conditions after DSE of the example (b). “T?” indicates if a
state transition occurs. State s is the input state whereas States
$2.0, 2.1 and sg o are output states.

State | State ID | Path Constraints | T?

51 4 N/A Original

52.0 4 sensor >= 4500 No

52,1 4 sensor < 4500 && sensor <= -9000| No

S$2.2 5 sensor < 4500 && sensor > -9000 Yes
state_id = 4, which is the same as the input state s;. This

indicates that ss g, s2.1, and s; are the same state, and state
transitions did not occur. In s5 5 we find two path constraints
sensor < 4500 and sensor > —-9000, and the value
of state_id is updated to 5, which indicates that a state
transition from s; to so o has happened. We then invoke an SMT
solver on the path constraints to generate a concrete value A;
for the input variable sensor that satisfies the path constraints.
Next, we create a new worklist item containing the previous
program state s1, the new value for the input variable A;, the
corresponding path constraints, and the abstract program state
a1, and we push this new item to the worklist.

Step 3. Deduplicating abstract states. After getting a new
abstract state ao, we check if as and an edge from a; to as
with constraint C; exist in G. If not, the abstract state as and
the edge from a; to as with constraint C are added to G,
indicating that when condition C1 is satisfied, a state transition
from a; to as will occur.

Step 4. Reaching a fix point. The analysis stops when
the worklist is empty, and we get a complete FSM from G.
According to the proof in Appendix A, G preserves the behavior
of the original FSM.

D. Blind-Trust Vulnerability Discovery

In PLC programs, a set of safety policies serves as a bug
oracle to determine if a program’s behavior is a failure. Such
failure is called a safety policy violation.

Ta’veren uses model checking to find BTVs of PLC programs
that result in safety policy violations. It takes as input a set of
safety policies derived from expert domain knowledge or sys-
tem specifications, as well as the FSM that Ta’veren previously
recovered. During model checking, Ta’veren traverses the FSM
and verifies if each state and transition complies with the safety
policy. Ta’veren repeats this process until the verification is
completed or a violation is found.

For each safety policy violation, Ta’veren outputs the state
in the FSM where the violation occurs, a path in the FSM from
the entry node to the violated state, an input sequence that
triggers a BTV resulting in the violation, as well as the exact
address in the binary code for the violating state transition
condition.

Table III shows a list of safety policies that Ta’veren currently
implements for verification. Ta’veren translates each safety
policy into boolean expressions in Linear Temporal Logic.
Users may implement more safety policies as needed. For


https://github.com/ArduPilot/ardupilot/blob/Copter-4.5/ArduCopter/mode_flip.cpp#L144
https://github.com/ArduPilot/ardupilot/blob/Copter-4.5/ArduCopter/mode_flip.cpp#L144

TABLE III: Safety policies that we created for the PLC binaries described in Table IV.

Policy ID ‘ Safety Policy Description ‘ Consequences of Violation Policy Type
P.Lift.1 Conveyor motor and lift motor cannot be activated at the same time. Packages fall to the warehouse floor, damaging the equipment and potentially IllegalNode
injuring warehouse workers.
P.Lift.2 When the height reaches the assigned pallet rack, lift up motor should be off. Too much height will cause damage to the lifter and package to fall. Illegal Transition
PWT.1 When water level is high, pump must be off. Water in the tank will overflow. Tllegal Transition
PWT.2 The low level and high level water sensors should never be true at the same time. Conflicting sensor readings will create inconsistent control. IllegalEdge
PPack.1 The conveyor belt and product valve should never be active at the same time. It will result in product spillage. IllegalNode
P.Pack.2 The product valve should not be active for more than 15 seconds a time. It may cause the product overflow from the packaging box. MaxDelay
P.CarW.1 No two sprinklers should be active at the same time. It increases the operation costs. IllegalNode
P.CarW.2 The conveyor motor should not be active for more than 10 seconds a time. It may lead to vehicle collision on the conveyor belt. MaxDelay
PTL.1 The yellow light should be on for at least 2 seconds. Not enough time for cars to exit intersection, could cause a collision. MinDelay
PTL.2 The pedestrian green light should be on for at least 40 seconds. Not enough time for pedestrians to exit intersection. MinDelay
PTL.3 The pedestrian green light and car green light should not be on at the same time. The cars can hit the pedestrians. TllegalNode
P.Abort.1 When there is no anomaly, the rocket should not release anything. Releasing them during normal launch will cause the rocket to break the launch Illegal Transition
sequence and fail the mission.
P.Abort.2 If anomaly occurs in early stage, the rocket should dump fuel, release rocket booster | Releasing them in the incorrect order will cause imbalance and uncontrollability. TllegalNode
then external tank in order.
P.Oven.1 The cook time of the oven should not be over 9000 ms. Over-cooking will damage the board and create a fire risk. MaxDelay
P.Oven.2 The oven should be turned off after cooking time reaches 9000 ms. Over-heating will damage the oven and create a fire risk. Illegal Transition
P.Oven.3 The oven should be turned off after temperature reaches 170 degrees. Over-heating will damage board and create a fire risk. Tllegal Transition
P.Vend.1 When inserted amount is more than the price, the vending machine has to give Customers will lose money. Tllegal Transition
change.
PElev.1 When the elevator is at the top floor, it cannot go up. Elevator may hit the ceiling and cause damage. TllegalTransition
PElev.2 ‘When the elevator is at the bottom floor, it cannot go down. Elevator may hit the pit and cause damage. Tllegal Transition
PElev.3 If the button on high floor is pressed when the elevator is in the lower floors, it | It may cause long waiting time and confusion for passengers. TllegalTransition
must go up.

more complex safety policies, users may export the FSM that
Ta’veren generates into a specialized model checking tool, such
as Spin [34] or NuSMV [35]. We leave it as future work.

The following is the list of the categories of safety policies
that Ta’veren currently supports:

IllegalNode Policies check if an abstract state has abnormal
behaviors. An example policy for a traffic light is that the
red light and the green light cannot be on simultaneously.
In this case, we use the IllegalNode policy to define that
node.red==1 and node.green==1 is an illegal node.

IllegalTransition Policies check if a transition from one
abstract state to another is illegal. An example pol-
icy for the oven program is that when the oven fin-
ishes cooking for a certain time (9 seconds), the oven
should turn off. In this case, we use the IllegalTran-
sition policy to define that when node.time==9000,
node.successor.status==0N is an illegal transition.

MinDelay and MaxDelay Policies check if a time delay
between two abstract states is too short or too long.

VII. EVALUATION

We first evaluate the effectiveness (Section VII-B) and
efficiency (Section VII-C) of Ta’veren for BTV discovery in
PLC binaries. We then focus on the core step of Ta’veren
and measure the correctness of the recovered FSMs from
PLC binaries (Section VII-D) and identification of scan cycle
functions and initialization functions (Section VII-E). Next,
we evaluate the impact of inaccurate environment models on
Ta’veren’s FSM recovery and BTV discovery (Section VII-F).
Lastly, we report our attempts to apply Ta’veren to more
complex targets beyond PLCs (Section VII-G).

We cannot compare Ta’veren against existing solutions
(TSV [10] and VetPLC [8]) because they do not generate FSMs
or work on binaries. They also rely on artifacts like pre-defined
events and enumeration of states for model generation, which

TABLE IV: PLC binaries in our dataset. “Real example”
indicates that the binary is built using example programs that
toolchains or development environments provide. “Synthesized”
indicates that the original program is created based on real-
world PLC logic.

| Category | Source | Target ID | Software | Arch

Warehouse Lifter Synthesized Lift.1 OpenPLC x86-64

WT.1 OpenPLC | x86-64

Water Tank Synthesized WT.2 OpenPLC x86-64

WT.3 OpenPLC | x86-64

Pack.1 OpenPLC x86-64

Packaging Synthesized Pack.2 OpenPLC MIPS

Pack.3 OpenPLC PPC32

Car Wash Synthesized g‘;&é 85 :25}:2 XA86R—1\6A4

DSG TL.4 Berem@z x86-64

’ TL.5 Beremiz x86-64

TL.6 Beremiz ARM

T Real example TL.7 Beremiz x86-64

Trafic Light TL8 Beremiz_ | x86-64

TL.9 Beremiz x86-64

TL.10 Beremiz ARM

Synthesized TL.11 Simulink ARM

Launch Abort Abort.T Simul?nk ARM

System Real example Abort.2 S!mu]?nk ARM

Abort.3 Simulink ARM

Oven Real example Oven.1 Arduino ARM

DS Vending Machine Real example Vend.1 Arduino ARM
T -

Elevator Real example Elev.] Ard“f"" ARM

Elev.2 Arduino AVRS

do not exist in PLC binaries. Instead, we show the efficiency
and measure the correctness of Ta’veren on our dataset.

Implementation and the evaluation environment. We imple-
ment Ta’veren atop the binary analysis framework angr [36].
We lift binary code to angr Intermediate Language (AIL) for
static analysis during scan cycle and state variable identification
and perform all other analyses on the VEX IR. We conducted
all experiments on an Ubuntu 22.04 LTS workstation with Intel
i7-10750H CPU and 32 GB of RAM under Python 3.12.12.

A. Dataset

A major challenge in evaluating Ta’veren is the lack of
publicly available datasets containing PLC programs with non-



trivial FSMs due to proprietary constraints. Existing datasets
rarely include PLC binaries that implement meaningful stateful
logic, and our observation is echoed by prior work [17]. To
address this gap, we construct our own dataset as presented in
the following paragraphs.

Building the dataset. We build two datasets, DS and DSr,
of PLC binaries that represent a diverse range of real-world
PLC programs. The first dataset, DSg (Dataset-Graphical),
contains binaries that we built using PLC programs written
in three graphical languages (SFC, FBD, and Stateflow) that
inherently support FSM programming. This dataset encom-
passes six categories of PLC programs, including water tanks,
warehouse conveyor lifter, and Launch Abort System [37].
We generate a total of 18 binaries with three popular PLC
programming software: OpenPLC, Beremiz, and Simulink, and
four architectures: x86-64, ARM, MIPS, and PowerPC. For
these binaries, the source code serves as the ground truth FSMs.

The second dataset, DSt (Dataset-C/C++-Variants), contains
PLC binaries that we built using collected PLC programs that
are in traditional, imperative programming languages (variants
of C and C++). By analyzing the code structure and comments,
we believe these programs are written by (human) engineers
with FSMs in mind instead of being automatically generated
from another graphical PLC language. DSt encompasses three
categories, including oven, vending machine, and elevator, and
two architectures: ARM and AVRS. Because there is no coding
convention for creating FSMs in C or C++, we do not have
ground truth FSMs for these binaries in DSt. Therefore, we
had to manually create reference FSMs for these programs by
analyzing their source code.

Table IV shows the PLC program categories, the toolchain
we use to build each binary, and the architecture of each binary.
As part of the dataset, we also study each PLC program’s code
descriptions to manually create safety policies to verify the
corresponding binaries. We provide a brief description of each
program category in Appendix B.

B. Effectiveness of BTV Discovery

Table V shows the safety policy violations Ta’veren found
in the PLC programs. T(rue) indicates that the target program
(e.g., Lift.1) complies with the safety policy (e.g., P.Lift.1),
and F(alse) indicates that Ta’veren finds a violation in target
program that is caused by a BTV (e.g., P.Lift.2). We then
manually validate Ta’veren’s safety verification results. To
confirm the violations, we run the source code with the
inputs that Ta’veren identifies and check whether the policy
is violated. For instance, for OpenPLC-based programs, we
leverage OpenPLC’s simulator. To confirm the cases where
policies hold, we check whether the policy holds on the
reference graph as well.

The result shows that Ta’veren finds a total of 23 violations
in the dataset. We investigate the root cause of each violation
and discover that 17 of them are caused by BTVs.

Incomplete range handling (C.1). Ta’veren finds a BTV in
the warehouse lifter program (Lift.1). In a state where the lifter

TABLE V: Safety policy verification results. T(rue) indicates
that the target program (e.g. Lift.1) complies with the safety
policy (e.g. P.Lift.1), and F(alse) indicates Ta’veren finds a
violation in the target program that is caused by a BTV (e.g.
P.Lift.2).

# | P.Lift.1 P.Lift.2 | Cause*
Lift.1 | T F | _cl
# |  PWTI P.WT.2 |
WT.1 F F C3
WT.2 T T -
WT.3 F F C.3
# | PPack.l P.Pack.2 |
Pack.12.3 | T F | C2
# | P.CarW.1 P.CarW.2 |
CarW.1,2 | T F | C2
# | P.TL.1 P.TL.2 P.TL.3 |
TL.4 T F T C2
TL.5,6 T F T C2
TL.7,10 T F F C.S5
TL.8 F F T Cc2
TL.9 T T T -
TL.11 T T T
# | PAbort.l P.Abort.2 \
Abort3 | F T | c4
# | P.Oven.l P.Oven.2 P.Oven3 |
Oven.1 | T F F | C.5
# | P.Vend.1 |
Vend.1 | F | C.J3
# | P.Elev.1 P.Elev.2 P.Elev.3 |
Elev.1,2 | T T T |

* C.1: Incomplete Range Handling, C.2: Incorrect Input Check, C.3: Unhandled Input
Combination, C.4: Unchecked Input Acceptance, C.5: Wrong Action.

is moving up, the lifter does not stop going up if the input
(current_rack) is larger than the assigned_pallet_rack, which
is a violation of P.Lift.2.

| _TMP_EQ12_0UT
2 TRANSITION FROM Go_Up TO Deliver_Box
3 := _TMP_EQ12_OUT;

4 END_TRANSITION

:= EQ(assigned_pallet_rack, current_rack) ;

Listing 2: Snippet of incomplete input (current_rack) check in
Lift.1 causes its violation of P.Lift.2.

Listing 2 shows that Lift.1 compares if the input current_rack
is equal to assigned_pallet_rack to determine the lifter’s
current position. It does not handle the case where the input
(current_rack) is larger than assigned_pallet_rack. Ta’veren
finds that if the program receives any input larger than
assigned_pallet_rack, it will return to the Go_up state. To
test this BTV, we used OpenPLC’s simulator. After assigning
current_rack a large input (e.g., 7), the lifter becomes stuck
indefinitely in the Go_up state, which may cause the lifter to
collide with its physical limits, risking equipment failure and
endangering users.

Incorrect input check (C.2). Ta’veren finds a BTV in the
packaging program (Pack.1): in a state where it starts packaging
and the product valve is turned on, the valve fails to turn off in
time after the duration specified in P.Pack.2. This violation of
P.Pack.2 is caused by an incorrect check of the packaging state
duration in the program. We tested this BTV in OpenPLC’s
simulator. We enter the input sequence generated by Ta’veren to
set it to the packaging state; then, after 15 seconds of duration,
the program fails to transition to the next state, which turns off
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the product valve. This BTV would cause the product valve to
remain on, which may create an uncontrolled product spill.

The car wash programs that violate P.CarW.2 and the traffic
light programs that violate PTL.1 and P.TL.2 are also caused
by incorrect input checks.

Unhandled input combination (C.3). Ta’veren finds a BTV
in the vending machine program (Vend.1) that causes violation
of P.Vend.1: When a user, who is getting a 75-cent can, inserts
a quarter, then a dollar, the vending machine fails to drop the
can and give change back to the user. The cause of this BTV
is that when a quarter is inserted, the program only checks if
two more quarters are inserted, and does not handle the case
where a dollar is inserted after a quarter.

The policy violations in water tank programs (WT.1 and
WT.3) used in the running example (Section IV-B) are also
caused by unhandled input combinations.

Unchecked input acceptance (C.4). Ta’veren finds a BTV
in the launch abort system (Abort.3) that causes violation
of P.Abort.1. Abort.3 is implemented with embedded FSMs,
where the control logic of one state (Abort) is another FSM
(AbortLogic). The program did not implement constraints on
what anomaly signals it could accept and blindly accepted
anomaly signals at any time, even after the AbortLogic is
triggered. Consequently, AbortLogic actions keep executing,
even if the outer FSM is no longer in the Abort state. In
particular, the program fails to properly coordinate state changes
between these two FSMs, which leads to a safety violation.

Wrong action (C.5). Ta’veren finds states in TL.7 and TL.10
that violate P.TL.3. This violation is caused by the wrong action
in the pedestrian green state, where the program incorrectly
turns on the pedestrian red light instead of the pedestrian green
light. This wrong action also causes the violation of P.TL.2 in
later states. The two violations that Ta’veren finds in Oven.1
are caused by misimplementation in COOL state. Ta’veren can
find such wrong actions even though we do not consider such
misimplementations as BTVs.

C. Efficiency of BTV Discovery

We run Ta’veren on all binaries in DSg and DSt to recover
FSMs and find BTVs. Ta’veren works on all 22 test binaries
without errors, and analysis completes within minutes on
all but CarW.1 and CarW.2. FSM recovery dominates the
overall analysis time. Two factors determine the speed of FSM
recovery: the time that each iteration needs, which is roughly
linear in the size of the scan cycle function, and the number of
iterations that the analysis requires before convergence, which
is roughly linear in the size of the FSM (Figure 6).

Once the FSM is recovered, verifying it against safety
policies to find BTVs costs less than 0.5 seconds. Here, we
note that FSM recovery is a one-time cost, i.e., the recovered
FSM can be used to verify multiple safety policies. We present
the detailed results of the efficiency evaluation in Table VI.

D. Evaluation of Finite State Machine Recovery

Because there are minor differences in the definitions
of states between Ta’veren (abstract states) and the source
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TABLE VI: CFGs of the scan cycle functions that Ta’veren
analyzed for FSM recovery (the numbers of nodes and edges
in CFG approximately represent the complexity of the control
logic) and the time spent (seconds) during BTV discovery.

L. CFG .
Target ID | Target Description }W’Tges‘ Time Taken
Lift.1 - 255| 471 280.81
WT.1 two sensors - FBD 24 34 4.69
WT.2 one sensor - SFC 142 257 20.99
WT.3 two sensors - SFC 142 257 26.69
Pack.1 - 276| 512 41.81
Pack.2 - 279| 517 40.69
Pack.3 - 279 518 42.35
CarW.1 - 2,137] 4,025| 35,163.25
CarW.2 - 2,152| 4,037 36,416.51
TL.4 add sensor 5221 961 43.22
TL.5 short ped 500 929 32.26
TL.6 short ped 499 915 32.06
TL.7 both green 4941 911 45.65
TL.8 short yellow 494 911 32.65
TL.9 Original 494 911 35.01
TL.10 both green 499 915 44.88
TL.11 - 24 30 2.29
Abort.1 ModeLogic 64 95 1.66
Abort.2 AbortLogic 64 95 2.01
Abort.3 whole system 64 95 140.41
Oven.1 - 74| 101 24.76
Vend.1 - 26 37 4.13
Elev.1 - 61 100 62.3
Elev.2 - 63| 102 169.28
% 300 ®
E 200
0 (¢}
£ 10 -
= Q_ __ - """
I T e LI

2,000 4,000 6,000
(# states + # transitions) x # CFG nodes

Fig. 6: The time for BTV discovery is roughly linear in the
size of FSM (# of states + # of transitions) times the size of
the scan cycle function (# of nodes in the CFG).

programs (steps of actions), we make transformations on the
recovered FSMs before evaluating their correctness, which
includes discarding start state and self-loops, combining
multiple transitions between two states into one transition,
and collapsing semantically equivalent nodes.

1) Correctness on DSg: For DSg, we have ground-truth
FSMs from the source code. We evaluate the correctness of
all recovered FSMs from five aspects: Topology, states, output
values, transitions, and conditions by comparing the recovered
graphs against the ground-truth FSMs.

Ta’veren-recovered FSMs are sound (i.e., all recovered states
exist in the original PLC binary) (Appendix A shows the proof).
The recovered FSM is complete only when (a) the scan cycle
functions in the PLC binary do not exhibit any non-well-formed
behaviors (e.g., memory corruptions) that can only trigger under
certain conditions, and (b) all conditions involving input and
state variables are correctly parsed.

Topology. We measure the similarity of topology between



TABLE VII: Comparing recovered FSMs against reference
FSMs. “State & Outputs” refers to nodes and node attributes
in both graphs, while “Transition & Condition” refers to edges
and edge attributes in both graphs. The columns labeled “ref”,
“rec”, and “match” refer to the number of nodes or edges in the
reference graph, recovered graph, and the number of matched
nodes or edges between the two graphs, respectively. GED =
0.0 means the two graphs are fully matched.

Topology State & Outputs Transition & Condition
Target GED & W PCR Y &"’\c‘\
Lift.1 4.0 5 5 5 5 9 5
WT.1,3 2.0 3 3 3 3 5 3
WT.2 0.0 3 3 3 3 3 3
Pack.1,2,3 0.0 5 5 5 5 5 5
CarW.1,2 0.0 37 37 37 39 39 39
TL.4.,5,
TL.6.8.9 0.0 6 6 6 6 6 6
TL.7,10 6.0 6 8 6 6 8 5
TL.11 2.0 6 7 6 6 7 6
Abort.1 0.0 5 5 5 4 4 4
Abort.2 0.0 5 5 5 4 4 4
Abort.3 57.0 16 35 16 15 53 15
Oven.1 2.0 9 8 8 11 10 10
Vend. 1 2.0 5 5 5 6 8 6
Elev.1,2 0.0 10 10 10 40 40 40

the reference graph and the generated FSM using graph edit
distance (GED). We do not consider properties on nodes and
edges.

States and state transitions. Each node in an FSM represents
an abstract state. The node in the recovered graph is correct
if all of its state and output variables match the ones in the
corresponding node in the reference graph.

Each edge in the recovered FSM corresponds to a state
transition and the corresponding conditions. The edge is correct
if its source node, destination node, and condition match the
corresponding ones in the reference graph.

Table VII shows the result of the correctness evaluation of
recovered FSMs. Out of the 20 FSMs that Ta’veren recovers in
DSg, 13 of them completely match the original PLC code. We
investigate the remaining seven targets and report our findings
in Appendix D.

2) Correctness on DSy: Ta’veren can recover FSMs without
relying on specific patterns of states and transitions that code
generation tools may generate, and we apply Ta’veren to DSt
to demonstrate this point. Our results show that Ta’veren
successfully recovers FSMs from binaries in DSt. We manually
build the reference graphs in the best effort and measure the
correctness of Ta’veren-generated FSMs in the same way as
evaluating on DSg: Comparing against the reference graphs.
Table VII shows the result of the correctness evaluation of
recovered FSMs. Out of the four targets in DSrt, two of
the Ta’veren-recovered FSMs completely matches the state
machines implemented in the original PLC code.

E. Scan Cycle Identification Results

Ta’veren successfully identified scan cycle functions for
19 out of 22 binaries. Ta’veren fails to identify the scan
cycle function in TL.11 and Abort.3 because their scan
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cycle functions are invoked using event callbacks, and no
direct control flow exists between the loop and the scan
cycle function. Additionally, Ta’veren successfully identified
initialization functions for 21 out of 22 binaries with Elev.2
being the only failure. Both scan cycle and initialization
function identifications fail on Elev.2 because of limitations in
angr for AVRS8 support.

F. Impact of Inaccurate Environment Models
TABLE VIII: Impact of inaccurate environment models on

FSM recovery and the correctness of safety policy verification
(Pol.V?).

Scenario | FSM Impact | Pol.V2**
Extra input variable Extra incorrect transitions Yes
Extra output variable Correct No
Missing input variable Missing states and transitions Yes
Missing output variable States lack the missing variable values Yes
Incorrect input size: 2 bytes | Correct No
Incorrect input size: 4 bytes | Redundant condition values Yes
Incorrect output size: 2 bytes | Correct No
Incorrect output size: 4 bytes | Redundant extra states & output values Yes
Incorrect input type: float™ Unparsable transition constraints Yes
Incorrect output type: float™ | Redundant extra states & output values Yes

* Changing variable type to float changes both size and type.

** Yes indicates this scenario can potentially produce incorrect verification results. If the
specified policies do not involve the incorrect states and transitions, verification results
may still be correct.

We analyze and measure the impact of inaccurate envi-
ronment models under three main scenarios of incorrectness:
an extra variable, a missing variable, and incorrect variable
configurations (size or type) on both input and output variables
(where the desired variable is one-byte long). Table VIII lists
the impact of each scenario. We verify each scenario on Lift.1
using at least one environment model.

Ta’veren is robust against output variable inaccuracies.
Missing or having extra output variables in environment models
do not impact the correctness of FSM recovery. However,
missing output variables may impact verification because
policies involving the missing ones can no longer exist. Extra
output variables do not affect verification.

Ta’veren is sensitive to input variable inaccuracies. An
extra input variable (e.g., incorrectly marking an intermediate
variable as input) causes extra transitions in recovered FSM.
A missing input variable causes incomplete FSMs. Both cases
impact the reliability of safety policy verification.

Ta’veren tolerates variable configuration errors, but not out-
of-bound accesses. The input and output variables in Lift.1 are
one-byte. When we mark variable sizes as four bytes, accesses
to these variables cause out-of-bound (OOB) accesses into
adjacent variables, leading to incorrect FSMs. No OOB access
occurs when the variable sizes are marked as two bytes, and
the FSM and safety policy verification results remain correct.

G. Evaluating Ta’veren on Robotic Vehicle Binaries

We evaluate Ta’veren’s capability of BTV discovery on more
complex binaries for Robotic Vehicle control software, a total
of three control software for copters and rovers: We build
an x64 copter binary using ArduPilot [38] and extract two



binaries from the controllers of another copter (also based on
ArduPilot, in ARM32) and a rover (custom control software in
ARM32), which are both real devices. Our goal is to explore
the applicability of Ta’veren beyond PLC binaries, which are
simpler than Robotic Vehicle binaries in comparison.

Copter programs contain many operating modes. Ta’veren
recovers an FSM for ModeFlip [39] from these binaries.
Because there are many FSMs in each binary, and Ta’veren
only recovers one FSM during its analysis, we specify the
function of ModeFlip as the scan cycle function for Ta’veren.
The input variable for ModeFlip is roll_sensor, which
returns roll angle in centidegrees. In our experiments, Ta’veren
successfully recovers FSMs for ModeFlip for copter binaries,
which demonstrates the applicability of our approach.

We create safety policies by examining the ArduPilot
documentation and referring to FLIP-related policies used in
PGFUZZ [21]. Specifically, the policy states that the copter
should have sufficient altitude before entering the mode flip to
avoid crashing to the ground [39]. Ta’veren checks this policy
against the generated FSMs and finds a violation in both copter
binaries. We then verify this violation in ArduPilot’s SITL
(software in the loop) simulation: We position the copter at a
low altitude (three meters), trigger the flip mode, and observe
that the copter crashes into the ground during the flip action.
After examining the program, we have realized the root cause
is a missing handling (C.6) of altitude, allowing the copter to
flip at any altitude.

Rover program receives user commands (furn_left or
turn_right), and follows a predefined mission. The rover
program heavily relies on state variables in different threads
(e.g., the main thread and motor thread) to perform this
mission. Ta’veren successfully recovers its FSM, with some
customization to overcome multithreading. Ta’veren checks
the rover’s specified mission against the recovered FSM, and
finds a violation caused by blindly accepting user commands.
After the mission starts, the rover still accepts user commands
as valid input (C.4), causing the rover to keep restarting its
mission; thus, significantly deviating from its planned path.

VIII. DISCUSSION

In this section, we discuss the limitations and threats to the
validity of our work.

Manual environment modeling. Ta’veren uses user-provided
I/O information for environment modeling. While our exper-
iments show that Ta’veren can handle some inaccuracies in
environment models, guaranteeing the correctness of environ-
ment models is still tedious and error-prone. Future work may
automatically recover environment models.

Support for binaries from proprietary software. Ta’veren
uses angr to lift binary code for static analysis and symbolic
execution. While we support common architectures such as
x86-64 and ARM, many PLCs rely on proprietary software to
develop control software. For example, Siemens uses Siemens
TIA Portal to program Siemens S7-series PLCs. These tools
generate binaries with customized and proprietary architectures
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and formats. For Ta’veren to analyze these binaries, it needs
a dedicated lifter. However, this is not our focus. We leave
integrating other lifters into Ta’veren as future work.
Representativeness of the PLC program dataset. While we
attempt to cover as many variants of FSM implementations
in PLC development software, toolchains, and human-written
code as possible, there may be more types of state machine im-
plementations that we missed. However, our best-effort dataset
covers multiple toolchains and PLC programs controlling a
diverse set of physical processes with different complexities,
demonstrating the potential generalizability of Ta’veren.

Support of complex or non-linear state transition conditions.
We currently present state transition conditions as constraints
on input variables, and rely on an SMT solver to generate
these constraints to provide new input values. If there are
unsolvable constraints and non-linear functions, they need to
be manually modeled. However, empirically, we observe that
such unsolvable and non-linear constraints are rare in PLC
programs.

IX. RELATED WORK

Safety validation and verification on PLC programs. Prior
work has analyzed the problem of safety policy verification on
PLC programs. Prior work [40] uses model checking techniques
to detect violations of safety policies or specifications for
PLC programs. Further research has focused on extracting
and recovering improved models for PLC programs and then
applying model checkers to verify safety policies using static
analysis. TSV [10] uses symbolic execution on scan cycle logic
and generates a Temporal Execution Tree until it reaches a
predefined bound or termination time. VETPLC [8] performs
static program analysis on PLC Structured Text code to
construct timed event sequences to represent the temporal
dependencies of cross-device events. SAIN [24] extracts a
model that combines the control and data flow graphs of
PLC programs. Orpheus [41] detects data-oriented attacks
by constructing an event-aware finite-state automaton (eFSA)
from dependencies of system calls. Choi et al. [42] manually
derive a hybrid model for robotic vehicles from their operation
specifications. It performs program (dependency) analysis
on countermeasure functions/statements to extract program
constraints.

Besides static approaches, dynamic techniques are used
to find safety policy violations of PLC programs. C? [43]
instruments PLC code to enforce safety policies at runtime.
PGFUZZ [21] uses fuzzing to mutate input space around
policies to find the input sequences resulting in a policy
violation. However, these works assume the availability of
PLC source code or detailed documentation/design. To the best
of our knowledge, Ta’veren is the first solution that directly
recovers FSMs from PLC binaries for safety policy verification.

Analyzing stateful programs. State machines (or similar
constructs) are widely used in programs. Researchers have
analyzed non-PLC stateful programs [11], [44], [45], such
as network protocols, protocol parsers, and device drivers.



Pacheco et al. [46] use natural language processing (NLP) to
extract finite state machines from the documentation of protocol
specifications. SEmu [47] uses NLP to model microcontroller
firmware from state-diagram peripheral specifications.
StateLifter [16] extracts the formats of regular protocols
as state machines by analyzing the parsing loop. StateLifter
differentiates between states using path sets. However, PLC
programs heavily use state transition tables and action lists, so
a path set may correspond to multiple abstract states, which
StateLifter cannot differentiate. StateInspector [48] presents a
grey-box protocol state machine learning method using dynamic
analysis. It requires access to the runtime memory of the system
under test, which Ta’veren does not need.
Security analysis of PLC programs. Compared to traditional
software, analyzing and understanding PLC binaries is more
challenging. Prior work has focused on reverse engineering
and analyzing different types, such as ICSREF [32], which
aims to reverse engineer low-level information in PLC binaries,

such as subroutines and symbol tables, to reconstruct the CFG.

ICSFuzz [49] and ICSQuartz [50] aim to fuzz PLC applications
for memory corruption vulnerabilities. MISMO [28] and
DISPATCH [29] identify control algorithms such as PID
controllers in firmware. Ta’veren takes one step further by
abstracting high-level logic—state machine semantics—from
PLC binaries.

X. CONCLUSION

We introduce Ta’veren, which statically extracts finite
state machines from PLC binaries to discover blind-trust
vulnerabilities in PLCs that cause safety policy violations.
Our evaluation with 22 PLC binaries collected from real-world
PLC programs shows that Ta’veren finds BTVs effectively.

XI. ETHICS CONSIDERATIONS

The same bug we discovered in ArduCopter ModeFlip has
been found and reported to the ArduPilot development team by
other researchers in 2020. We have disclosed the vulnerabilities
in the Rover program to the vendor.
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APPENDIX
A. FORMAL PROOF

We provide a formal proof that the FSM we recovered
through state deduplication is sound [33] by proving the
soundness of the theorem in Section V.

Theorem. A recovered FSM fully reflects all the behaviors of
the original FSM (as implemented in the source program) if the
set K of selected variables used to represent a state (i.e., state
variables and output variables) is complete (i.e., no variable
in K exhibits control or data dependencies on intermediate
variables).

Proof. Suppose Ay is the full state space of the tar-

get

program with FSM implemented, where each concrete
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state can be represented by a p + ¢ dimensional vector
[V1, s Up, Upt1, ooy Uptql, Where v; € R, the set of real
numbers, and wvi,...,v, are variables in the set K. And
Up+1, -+, Uptq are intermediate variables. X is the finite input
set. 05 : Ay x ¥ — Ay is the transition function.

Let  be a mapping 7 : RPT4 — RP. For any concrete state
ay = [V1, ..., Vpiqls T(ay) = [v1, ..., vp]. Let A, be the reduced
state space after the mapping. On the reduced state space, we
have a transition 0, : A, x ¥ = A,. §,(ar,0) = 7(d¢(ay, o)),
where a, € A,, ay € Ay and a, = m(ay).

To prove the behavior equivalence of the reduced FSM and
the original one, we need to prove:

a) Vo € ¥ and Vaf,a’f S Af if 5f(af7
Jda,,al. € A, such that a, m(af), aj
dr(ar,0) =al.

b) Yo € ¥ and Va,,a,. € A,, if é.(ay,0) = a. then
Jay,a’y € Ay such that ay = [ay, ], a} [a).,-] and
ér(ap,0) = a.

These two are self evident because of how we defined the
transition ¢, in the reduced FSM. Note that in the original FSM,
the last ¢ variables in the state vector as can be arbitrary values,
and they do not affect the calculation of the first p variables
in the transition function ¢;. Thus, we have 7(ds(as,0)) =
a}[: p] = ér(ar,0) = 6,(m(ay), o). This proves a) and b).

= a’f, then
m(a) and

o)

B. DESCRIPTIONS OF THE TARGETS

We tried our best to ensure the realism and representativeness

of our dataset. We invited collaborators with PLC expertise
to implement programs for our dataset. To avoid biases, the
collaborators do not know the implementation of Ta’veren, and
Ta’veren authors do not influence the PLC implementation. We
describe each target program in detail below.
Warehouse Conveyor Lifter. We synthesized the warehouse
conveyor lifter program from the real-world implementation
used by one of the largest logistics automation companies in the
world (the company has decided to stay anonymous) and built
it in OpenPLC. This program controls a conveyor lifter that
moves boxes vertically to place them in their corresponding
pallet rack. The input of the program is the current position
of the conveyor. The program has three outputs: a motor that
controls the lifter to go up, a motor that controls the lifter to
go down, and a motor that controls the conveyor that delivers
the box inside the pallet rack. The program starts when the
conveyor lifter is on the ground level. The lifter motor is
activated to go up and stop at the assigned pallet rack. The
motor of the conveyor lifter is activated to deliver the box
inside the pallet rack. Finally, the lifter motor is activated to go
down to the ground level to get the next box, and the process
starts all over again.

Water Tank. We synthesized the water tank program from

Factory I/0 [51] and built it in OpenPLC with FBD and SFC.

Two variants have two sensors. The inputs are the readings
of two boolean water level sensors, one for low and one for
high. One variant has one sensor. The input is the reading of
a continuous value of water level, and the output is the water
pump. During the process, if the water level is too low, the
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water pump is turned on; if the water level is too high, the
pump is turned off.

Packaging System. We synthesized the packaging system
program from PLCLogix 500 [52] and built it in OpenPLC.
The program inputs are box proximity sensors to detect the
empty status of the product. The outputs are the conveyor belt
motor and product valve. At the start, the conveyor belt moves
the box toward the product valve and stops when the proximity
sensor detects the box. The product valve is then activated
for 25 seconds to fill the box. Finally, the conveyor belt is
activated again, and the process starts all over.

Car Wash System. We synthesized the car wash program from
PLCLogix 500 [52] and built it in OpenPLC. The inputs of the
program are an internal timer, a sensor that detects the car, and
a selection button that allows customers to select the service
type (wash only, wash and dry, or wash, dry, and wax). The
output is the control of washing, rinsing, drying, and waxing
functionalities. The process starts when the customer selects a
service type, then the conveyor belt is activated to move the
car to each one of the car wash stages.

Traffic Light Simulation. This program is based on an example
provided by Beremiz. We built the same program in Beremiz,
OpenPLC, and Simulink to get the binaries. It represents a
traffic light at an intersection. It features three lights (yellow,
red, and green) for cars and two lights (red and green) for
pedestrians. The input for this program is the internal timer,
and the outputs are five boolean signals.

Launch Abort System. This is an example project from
Simulink [37]. This program includes the control logic for
a rocket to safely initiate an abort sequence if an anomaly
occurs. Its inputs include the rocket’s altitude and an anomaly
signal that indicates whether a fault or attack has occurred
during the launch. Its outputs are switches to initiate the abort
sequences. When an abort sequence is initiated, the rocket
dumps fuel, releases boosters, and releases the external tank
based on its altitude.

Oven Controller. We synthesize the oven controller program
from the dataset of P2IM [53] and build it in Arduino. The
inputs of this program are the readings of an internal timer
and a temperature sensor. The output is a continuous (analog)
signal that controls the power of the heater. When the oven
starts, it turns on the heater and preheats the oven. When the
temperature reaches a threshold (e.g., 160°C), it will cook for
9 seconds while maintaining the temperature. Then it turns off
the heater. The process completes when the oven reaches room
temperature.

Vending Machine. This is an open-sourced Arduino
project [54] that we compiled locally. The vending machine
control program takes dollars and quarters as input and outputs
a can of soda (sold for 75 cents) and the change if the input
exceeds the price.

Elevator. This is another open-sourced Arduino project [55]
that we compiled locally. The input of the elevator program
is a set of buttons indicating the specific floor the user would



like to go to. Based on the selected floor, it outputs a motor
value that determines the elevator’s vertical movement.

ArduCopter. ArduPilot [38] is an open-sourced AutoPilot
Software Suite for unmanned vehicles. We built ArduCopter
binaries using the SITL simulator [56], and pulled one off
the processor of a physical ArduCopter-based drone. Note
that we do not perform FSM recovery on the whole system.
The FSM that we recover and evaluate is the FLIP mode for
ArduCopter [39]. In this program, the inputs include rolling
angle sensor measurements, and the outputs include throttle.
After the copter is switched to FLIP mode, (1) it first starts
to increase the throttle until the rolling sensor detects that the
rolling angle is larger than 45 degrees, (2) it then decreases the
throttle while rolling, and (3) when the rolling angle exceeds
-90 degrees, it increases the throttle again to gain lost altitude
to recover to the original position.

Rover. We received a rover from our funding agency and pulled
the binary off the STM32 processor. The rover’s CPS program
takes, as input, a command and traveling distance, and outputs
throttle and servo to cause the rover to move a fixed length,
turn in the given direction, continue moving for a fixed length,
and then stop.

C. GRAPHS

)
)
J

(a) Reference graph for Water
Tank target WT.1 and WT.3

Fig. 7. FSMs for Water Tank two sensors FBD (WT.1) and
SFC (WT.3).

(b) Generated graph for Water
Tank target WT.1 and WT.3

(a) The reference graph.

Fig. 8: The FSMs for TL.7. Due to the source code misim-
plementation, there are two unmatched nodes in (b), which
causes four unmatched edges.

(b) The recovered graph.

D. INVESTIGATING MISMATCHED FSMs

The recovered and reference FSMs of some targets do
not fully match. The figures in Appendix C show some
unmatched FSMs. We highlight the nodes and edges that do
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(a) Reference graph for abort tar-
get Abort.3

(b) Generated graph for abort
target Abort.3

Fig. 9: FSMs for Abort (Abort.3).

%

3

(b) Generated graph for oven tar-
get Oven.1

(a) Reference graph for oven tar-
get Oven.1

Fig. 10: FSMs for Oven (Oven.l). There is a missing interme-
diate node in the generated graph.

not match between the reference and generated graphs in red.
We investigate every semantic difference and summarize the
reasons as follows.

Missing intermediate states. For Oven.1 (see Figure 10),
Ta’veren misses an intermediate state between PREHEAT and
COOK states. In this case, the action (heater on in PREHEAT)
and the state transition (to COOK) can occur within the same
scan cycle. Because Ta’veren recovers an abstract state at the
end of the scan cycle, Ta’veren only recovers one abstract state
after the state transition, missing the intermediate state.

Unmatched states due to source code misimplementation.
For TL.7 (see Figure 8) and TL.10, Ta’veren discovers two
more nodes than the source code. This is caused by the
misimplementation of the Beremiz program—it fails to reset
the output of the inactive actuators, whose values are carried
over to the next state. This misimplementation causes two extra
unintended states, where Ta’veren later finds policy violations.

Similarly, for Abort.3 (see Figure 9), Ta’veren discovers
19 more states than the source code. The Launch Abort
System is implemented with embedded FSMs, where the
control logic of one state (Abort) is another FSM (AbortLogic).
However, the program did not implement the constraints on
what anomalous signal it could take and failed to properly
coordinate state changes between the two FSMs. Specifically,
once the AbortLogic is triggered, its actions keep executing,
even if the outer FSM is no longer in this state, creating extra
states.



(a) Reference graph for vending
machine target Vend.1

Fig. 11: FSMs for Vending Machine (Vend.1).

(b) Generated graph for vending
machine target Vend.1

Fig. 12: FSM for Elevator (Elev.1) (matched)

E. CONTROL FLOW GRAPHS
F. THE REDUCTION OF STATE SPACE

We investigate the effectiveness of Ta’veren in avoiding the
state explosion problem and reducing the sizes of state space
during FSM recovery.

We first compare Ta’veren against bounded symbolic explo-
ration on TL.9. Figure 14 shows the number of actual program
states that bounded symbolic exploration discovers with path
depth limits of 1K, 10K, and 100K. Ta’veren terminates and
discovers 14 unique states in the recovered FSM, while bounded
symbolic exploration discovers hundreds to close to 100k states.
This demonstrates that Ta’veren effectively avoids the state
explosion problem from which symbolic exploration suffers.

Next, we compare Ta’veren and TSV [10]. Because TSV
works on Instruction List (IL) programs and is not public,
our comparison is qualitative. The original TSV paper reports
TSV-recovered states of a traffic light program similar to our
Traffic Light programs. With a bound of 6, TSV recovers 20
states, and with a bound of 14, TSV recovers about 4k states.
The number of states recovered by TSV grows exponentially
to its bound limit. This is because although TSV aggressively
deduplicates program states, it considers all actual program
states, while Ta’veren only considers abstract states.

G. PROTOCOL TEST

To explore Ta’veren’s capabilities of recovering FSMs on
other types of FSM implementations beyond PLC programs,
we adopt Ta’veren’s methodology on regular parsers. Ta’veren
successfully generated an FSM for Intel hex file parser [57],
which demonstrates the generalizability of Ta’veren.
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Fig. 13: The control-flow graph of the main logic function of
the Water Tank PLC program as shown in Listing 1.
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Fig. 14: The total number of recovered states of Ta’veren
comparing against those of bounded symbolic exploration with
path depth limits of 1,000, 10,000, and 100,000 on binary TL.9.
Lower is better.

# of states in log scale
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