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objective function for optimization. These variational methods
have been widely adopted in a range of domains, including
quantum chemistry[3], [4], [5], combinatorial optimization[6],
[7], and quantum machine learning[8], [9], [10], [11].

Parameter transfer is a practical and effective strategy for
addressing the training challenges of VQAs, particularly the
issue of barren plateaus [12], [13], [14]. This technique lever-
ages optimized parameters from previously solved problem
instances to initialize new circuits, often eliminating the need
for extensive optimization. By exploiting structural similarities
between related problems, parameter transfer accelerates con-
vergence and improves training efficiency. It has demonstrated
strong performance in applications such as molecular energy
estimation with the VQE and combinatorial optimization with
the QAOA [15], [16], [17], [18], [19], [20]. In practice, models
trained via parameter transfer are frequently deployed on
NISQ devices. However, the presence of hardware noise can
degrade the accuracy of such models by directly impacting
the fidelity of measured observables. Therefore, reducing
the impact of noise remains a key requirement for reliable
quantum computation.

Zero-Noise Extrapolation (ZNE) [2], [21], [22] is a well-
established error mitigation technique designed to counteract
the effects of quantum noise in NISQ devices. ZNE offers
a practical approach to improving computational accuracy
without relying on full quantum error correction. The fun-
damental idea of ZNE is to artificially increase the noise in a
quantum circuit and then use extrapolation methods to estimate
the result in a zero-noise regime. As illustrated in Figure 1,
this process involves executing a compiled quantum circuit
multiple times at different noise levels to collect a dataset that
captures the system’s behavior under varying noise factors.
Once the data is obtained, classical fitting methods are applied
to estimate the zero-noise expectation value. Compared to raw
noisy outputs, the extrapolated results obtained via ZNE signif-
icantly reduce the absolute error, thus improving the reliability
of quantum computing. ZNE has been implemented in several
widely used quantum software frameworks, including Qiskit
[23], Mitiq [24], and PennyLane [25].

Given that we are currently in the NISQ era, ZNE is
expected to play a critical role in enhancing the reliability
of VQAs across a wide range of application domains. Many
of these applications are security- and safety-sensitive, includ-
ing drug discovery[26], portfolio optimization[27], [28], and
molecular energy state estimation[29], [30], [31]. In practice,
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backdoor attack targeting ZNE. QNBAD is carefully designed 
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circuits on most devices. However, under a specific noise model, it 
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final estimates. Compared to prior backdoor methods, QN-
BAD achieves substantially greater absolute error amplification, 
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I. INTRODUCTION

Variational quantum algorithms (VQAs)[1] have been sug-
gested as the focal point for the near-term application of
quantum devices, due to its flexible c ircuit s tructure, shorter
circuit depth and fewer gate operations, which allow quantum
programs to be completed within a limited quantum decoher-
ence time[2]. In typical applications, these algorithms begin
by preparing a simple initial quantum state. A low-depth
parameterized quantum circuit is then applied to this state to
generate a variational quantum state. The expectation value of
a target observable is subsequently measured and used as the
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users tend to favor noise-mitigated results over raw noisy
outputs due to their improved accuracy. However, any compro-
mise in the reliability of ZNE outputs can directly affect the
integrity of these high-stakes applications, potentially leading
to serious consequences. For example, in drug discovery,
inaccurate quantum simulations may produce false-positive
candidates, resulting in wasted resources and potential risks
to patient safety[32], [33]. In modeling energetic materials,
VQE combined with ZNE must estimate activation energies
with high precision. Small errors of 1-2 kcal/mol can under-
estimate impact sensitivity, causing hazardous compounds to
be misclassified and pass safety checks, potentially leading
to catastrophic failure [34]. These examples underscore the
importance of ensuring the robustness and security of ZNE to
safeguard trust in near-term quantum computing.

Among the various security concerns in quantum
computing[35], [36], [37], [38], [39], the threat of backdoor
attacks on ZNE is particularly salient. This vulnerability arises
from a fundamental property of ZNE: it estimates the zero-
noise output by extrapolating results obtained under varying
noise levels. Such a design inherently broadens the adversarial
attack surface because an adversary can manipulate any subset
of the sampled outputs, and even minor perturbations at a
single noise level can lead to significant deviations in the
final extrapolated result. However, existing quantum backdoor
strategies face two critical limitations when attempting
to attack ZNE. The first limitation concerns circuit-level
backdoors[40], [41], [42], which introduce malicious behavior
by modifying the circuit ansatz. These structural changes are
typically detectable through inspection and primarily affect
the noiseless output, leaving the noise amplification and
extrapolation stages of ZNE unaffected. As a result, noise-
induced errors are still successfully mitigated, neutralizing
the intended attack effect. The second limitation arises in
parameter-level backdoors[43], [44], which embed malicious
behavior via variational parameters. These methods fail to
account for the interaction between quantum noise and the
trigger mechanism. Since ZNE relies on sampling outputs
under varying noise levels, the lack of noise robustness
prevents reliable activation of such backdoors, significantly
weakening their impact.

In this paper, we propose a novel noise-induced backdoor
attack framework, QNBAD, which strategically exploits the
ZNE technique to achieve malicious objectives. As shown
in Figure 1, under noise-free conditions, VQAs embedded
with QNBAD behave indistinguishably from normal VQAs,
ensuring stealthiness during standard operation. However,
when ZNE is applied to mitigate quantum noise, QNBAD is
activated, exhibiting malicious behavior under varying noise
levels. This activation disrupts the noise amplification and ex-
trapolation mechanisms inherent to ZNE, leading to significant
interference with its noise-mitigation process. Consequently,
QNBAD amplifies the absolute error in the extrapolated output
of ZNE, thereby undermining its reliability and accuracy. The
noise-dependent nature of QNBAD ensures its adaptability to
NISQ devices, making it a potent and versatile attack vector.
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Fig. 1. Illustration of the ZNE workflow and backdoor attacks on the ZNE.

Our contribution is summarized as:
• We proposed QNBAD, a noise-triggered backdoor that

manipulates VQA behavior under specific noise models by
introducing a tailored loss function. QNBAD degrades the
accuracy of ZNE by increasing its absolute error through
three attack modes: (1) FreeDrift attack, which introduces
error with all its might; (2) MimicSlope attack, which
induces a uniform vertical shift across all noise levels; and
(3) SilentShift attack, which perturbs high-noise samples to
change the extrapolation value.

• We propose a compiler-based trigger generation strategy that
produces fixed and reproducible quantum noise patterns by
deterministically controlling compiler parameters, enabling
reliable backdoor activation under specific noise conditions.

• We propose a dynamic loss adjustment technique that facili-
tates more stable and faster convergence and achieves lower
final loss by adaptively tuning the relative weights between
backdoor objectives and regular learning tasks throughout
the training process.

• We comprehensively evaluate the proposed attack across
four quantum devices and six applications, the experimen-
tal results demonstrate successful backdoor injection with
absolute error amplified by factors ranging from 1.68× to
11.7×. Furthermore, it remains effective across a variety of
fitting functions and ZNE variants.

II. BACKGROUND

A. Variational Quantum Algorithm Basis.

Variational Quantum Algorithms. A VQA is a parameter-
ized quantum circuit widely used in hybrid quantum-classical
algorithms, particularly suited for tasks such as optimization,
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quantum simulation, and machine learning. The circuit begins
with a collection of input quantum states {ρk}, and applies
a sequence of parameterized unitary operations U(θ). Here
U(θ) is a unitary operator composed of parameterized quan-
tum gates, and θ = {θ1, θ2, . . . , θm} represents the set of
variational parameters. The output of the variational quantum
circuit is obtained by measuring a set of observables {Ok}
on the evolved quantum state. To guide the training of the
circuit, a cost function L is defined to map the variational
parameters θ to a real-valued objective. More generally, the
cost can be written as L = f({ρk}, {Ok}, U(θ)). This loss
is minimized using classical optimization algorithms, which
update the parameters θ iteratively. The hybrid quantum-
classical loop continues until convergence, enabling the VQA
to approximate optimal solutions on quantum devices.

Quantum Parameter Transfer. Quantum parameter trans-
fer has emerged as an effective strategy to improve the
efficiency of VQAs in the NISQ era. By leveraging the
structural similarities in the optimization landscapes of re-
lated quantum problems, this approach enables the reuse of
optimized parameter sets, such as gate angles or variational
coefficients, from one instance to initialize another. This
reduces the number of circuit evaluations and accelerates
convergence, especially in problems where direct optimization
is costly or unstable due to noise. Parameter transfer has been
successfully applied to a wide range of scenarios, including
molecular energy estimation with VQE and combinatorial
optimization with QAOA, and is supported by frameworks
such as Qiskit[23] and QAOAKit[18]. A simple rescaling of
the parameters, for example based on graph weights or system
size, is sufficient to achieve near-optimal performance, while
further fine-tuning can recover results comparable to fully
optimized solutions[15], [16], [17], [18] . These advantages
make parameter transfer a practical and scalable solution for
quantum applications under realistic constraints.

B. Noise of Quantum Computer in NISQ Era

Current quantum devices are inherently noisy due to var-
ious sources of errors, including decoherence[45], [46], gate
errors[47], readout errors[48], [49], and crosstalk[50], [51].
Decoherence occurs when qubits lose their quantum state
due to environmental interactions, limiting computational re-
liability. Gate errors result from imperfections in quantum
operations, causing deviations from intended transformations.
Readout errors affect measurement accuracy, leading to in-
correct results, while crosstalk occurs when operations on
one qubit unintentionally influence others, disrupting com-
putations. These noise sources significantly impact quantum
computing by reducing algorithm accuracy, limiting circuit
depth, and increasing the need for quantum error correction.
As a result, many quantum algorithms cannot reach their
theoretical performance, and deep circuits quickly lose coher-
ence, making it challenging to execute complex computations.
To mitigate these issues, researchers are exploring hardware
improvements, quantum error correction codes, and error
mitigation techniques.

C. Quantum Compilation

Quantum compilation is the process of translating high-level
quantum algorithms into low-level instructions executable on
specific quantum hardware[52], [53], [54], [55]. To address
the constraints of near-term quantum devices, the compilation
process typically includes four key stages: qubit selection,
initial mapping, qubit routing, and gate decomposition. In the
qubit selection stage, the compiler chooses a subset of physical
qubits with favorable properties such as high connectivity,
long coherence time, and low gate and measurement error
rates. This selection lays the foundation for reliable circuit
execution. The initial mapping stage determines how logi-
cal qubits are assigned to the selected physical qubits. An
effective mapping minimizes the need for additional routing
and preserves circuit structure. Qubit routing is applied when
two interacting qubits are not directly connected, introducing
SWAP operations to enable entangling gates. Finally, Gate
decomposition then transforms high-level gates into sequences
of native single-qubit and two-qubit operations supported by
the target hardware. Due to the diversity of quantum hardware
architectures, compilation strategies must be tailored to the
capabilities and limitations of the target platform.

D. Zero Noise Extrapolation.

Zero-Noise Extrapolation (ZNE)[2], [22] is a widely used
error mitigation technique designed to enhance the relia-
bility of quantum computations on NISQ devices without
requiring additional quantum resources such as auxiliary
qubits or quantum error correction codes. The core idea of
ZNE is to execute a compiled quantum circuit f(U(θ)) at
multiple noise scaling levels T = 1, 2, . . . , n, in order to
obtain a series of noisy expectation values. Based on the
outputs fT=1(U(θ)), fT=2(U(θ)), . . . , fT=n(U(θ)), one can
fit a function Ffit(T ) that models the relationship between
the noise level and the outputs. The extrapolated zero-noise
estimate is then given byfT=0(U(θ)) = limT→0 Ffit(T ),
which is typically approximated using polynomial extrapola-
tion methods such as linear, polynormial, and expnantional
fitting. ZNE relies on the assumption that noise can be coher-
ently amplified without fundamentally altering its underlying
characteristics. In recent years, several variants of ZNE have
been proposed to adapt to different application scenarios and
hardware constraints, including Digital Zero-Noise Extrapo-
lation (DZNE)[21] and Layerwise Richardson Extrapolation
(LRE)[56], which further expand its applicability in practical
quantum computations.

E. Quantum Backdoors.

Quantum backdoor attacks pose an emerging threat to the
quantum computing, enabling adversaries to implant hidden
behaviors that are activated only under specific conditions.
Recent research has introduced various backdoor strategies,
which can be broadly categorized into two types. The first is
the circuit-based backdoor attack[41], [40], [42], which ma-
nipulates the quantum compilation process to embed malicious
gate operations at critical positions within the circuit. This
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Fig. 2. Noise-aware training enables behavioral shaping under specific noise
conditions.

type of attack alters the ideal output directly by modifying the
circuit structure. However, it cannot compromise the behavior
of ZNE and is relatively easy for users to detect through
inspection of the circuit’s gate layout. The second type in-
volves parameter-level backdoor attacks, where the variational
parameters of the circuit are trained to produce malicious
outputs under specific input conditions[43], [44]. Although this
approach does not alter the circuit architecture, it still affects
the output in noise-free environments and lacks robustness in
noisy settings, as it does not account for hardware-induced
noise during training. As a result, such backdoors are difficult
to trigger reliably on real quantum devices.

III. RELATED WORK & MOTIVATION

Noise-aware training is a technique in VQAs that improves
robustness against hardware imperfections by incorporating
realistic noise models directly into the training process. Instead
of optimizing parameterized quantum circuits on ideal simula-
tors, this method introduces noise through simulated quantum
channels or real-device sampling during optimization, allowing
the model to learn parameters that are better suited to the noisy
execution environment[57], [58], [59]. As a result, the trained
circuits become more resilient to decoherence, gate errors,
and readout noise, and demonstrate improved performance
when executed on near-term quantum devices. This approach
effectively biases the variational search away from noise-
sensitive regions of the parameter landscape, enabling partial
adaptation of the model to device-specific noise characteristics.
Prior studies have shown that training with noise significantly
enhances the fidelity and convergence behavior of VQAs under
realistic settings[57], [60], [61]. However, the same approach
can also be repurposed to intentionally amplify errors under
noise without affecting the circuit’s behavior in the noiseless
setting. In adversarial contexts, this technique allows subtle
perturbations to be embedded that remain dormant under ideal
conditions but are activated at specific noise levels, enabling
covert manipulation of the circuit’s output.

A. Noise-Induced Behavior Shaping

To investigate this dual-use potential of noise-aware train-
ing, we conduct an experiment using a VQE to estimate
the ground state energy of the He2 molecule, with circuits

executed on the IBMQ_Cairo device. We use absolute error
as the evaluation metric, elaborated in Section VI, which out-
lines our experimental methodology. We trained three models
with different noise-awareness strategies. The standard model
does not incorporate noise during training. The noise-aware
(optimized) model is designed to improve robustness under
noisy execution conditions, while the noise-aware (degraded)
model is adversarially trained to reduce performance in the
presence of noise. As shown in Figure 2, all three models
achieved comparable absolute error in the absence of hardware
noise. However, when deployed on the IBMQ_Cairo device,
the noise-aware (optimized) model maintained a low absolute
error, whereas the absolute error of the noise-aware (degraded)
model increased significantly. These results demonstrate that
quantum noise can act as a behavioral trigger, validating that
noise-aware training can be leveraged not only to enhance the
reliability of quantum circuits but also to intentionally degrade
it through adversarial means.

B. Device-Specificity of Noise-Induced Behavior

To further investigate the dependence of noise-induced
backdoor behavior on device-specific noise characteristics, we
evaluated the transferability of noise-aware-training-induced
effects across different quantum hardware platforms. A circuit
trained on IBMQ_Cairo was executed on IBMQ_Brooklyn
and IBMQ_Kolkata to assess cross-device behavior. As
shown in Figure 2, while the noise-aware (degraded) model ex-
hibited the expected error amplification on IBMQ_Cairo, this
adversarial effect did not persist on the other devices. When
the same circuit was run on backends with different noise
characteristics, the backdoor behavior was significantly dimin-
ished. Likewise, the noise-aware (optimized) model did not
yield notable reduction in absolute error on IBMQ-Brooklyn
or IBMQ_Kolkata. It is worth noting that although the
noise-aware (optimized) model was trained to reduce the
absolute error, the model even produced the largest absolute
error on IBMQ_Brooklyn. The effectiveness of noise-aware
training is closely tied to the noise profile of the hardware
executing the quantum circuit. This dependency arises from
two main sources. First, physical quantum devices exhibit
inherent variability due to fabrication differences, leading to
distinct characteristics such as qubit connectivity, coherence
times, gate fidelities, and readout errors. These factors result
in diverse noise behaviors even for the same logical circuit.
Second, quantum circuits must be compiled to match the
constraints of each device. This involves transformations such
as transpilation, qubit mapping, and gate decomposition, which
are guided by the device’s architecture and calibration data.
As a result, the compiled circuit and the associated noise
can differ significantly across devices. Together, hardware
variability and compilation-induced transformations lead to
notable differences in noise impact, directly influencing the
reliability of noise-aware training strategies.
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IV. OVERVIEW

A. Threat Model

Attacker’s capability. We consider a threat model consis-
tent with prior work[43], [44], where the attacker has full ac-
cess to the training process of a variational quantum algorithm
(VQA) and can arbitrarily influence parameter optimization.
For the quantum hardware or compilers, the attacker operates
with the same permissions as a standard user and does not
require privileged access to quantum hardware or compilers.
They possess practical knowledge of quantum compilation
workflows and understand how common toolchains such as
Qiskit, BQSKit, and PennyLane perform circuit transforma-
tions, qubit mapping, and gate decomposition under typical
settings. Using publicly available quantum simulators and
hardware access (e.g., IBMQ), the attacker can accurately
simulate the end-to-end execution of circuits under realistic
noise conditions.

A typical scenario of interest involves a user who wishes
to run a parameterized quantum circuit but faces challenges
such as barren plateaus or high training cost. To circumvent
these limitations, the user may adopt a parameter transfer
strategy and download pre-trained parameters from an external
source. We assume that the adversary is the provider of such
parameters. During training, the attacker implants a backdoor
by introducing subtle dependencies between the optimized
parameters and the behavior of the circuit under noise scaling.
The resulting parameters are then released through open-
source libraries or model repositories, allowing unsuspecting
users to import and execute them without retraining. The at-
tacker does not require any access to the user’s data, execution
results, or system internals at inference time.

Attacker’s goals. The attacker aims to compromise the
reliability of ZNE by introducing a targeted backdoor that
increases the extrapolation error and reduces the accuracy of
noise mitigation. Specifically, the goal is to manipulate the
outputs of the variational quantum circuit such that, when
executed under certain compilation configurations and on a
target quantum device, the sampling results collected at various
noise levels become subtly biased. This distortion leads to a
significant deviation in the final zero-noise estimate produced
by the ZNE fitting process.

B. Attack Overview

The attack is embedded during the training phase of a
variational quantum circuit, where the attacker introduces
subtle correlations between the optimized parameters and the
circuit’s behavior under varying noise levels. These correla-
tions are carefully crafted to ensure that the circuit remains
indistinguishable from its clean counterpart under two condi-
tions: when executed in a noise-free simulation, and when
ZNE is applied using a noise model that does not align
with the attacker’s target. In both scenarios, the quantum
circuit produces outputs consistent with an uncontaminated
implementation, and the backdoor remains dormant. The ma-
licious behavior is selectively triggered only when the quantum

circuit is executed under a specific noise model and ZNE
is applied using the corresponding noise-scaling assumptions.
Under these conditions, the expectation values obtained across
different noise levels deviate from typical trends, thereby
misleading the extrapolation procedure and resulting in a
significantly biased ZNE. As the poisoned parameters preserve
nominal performance in standard evaluation settings and the
deviation manifests only through targeted extrapolation, the at-
tack remains highly stealthy and challenging to detect through
conventional validation or testing.

V. QNBAD
A. Trigger generation

To implement a noise-sensitive backdoor that activates only
under specific quantum noise conditions, it is essential to
define a stable and reproducible noise model that accurately
captures the effects of noise on VQAs executed on real hard-
ware. As discussed in Section III-B, the behavior of quantum
noise models is influenced not only by the characteristics of
the quantum device but also by the manner in which circuits
are compiled, synthesized, and mapped onto hardware. In
this work, we aim to precisely control the noise distribution
experienced by VQAs by fixing the entire compilation and
execution pipeline, such that the resulting low-level circuit
induces a deterministic and reproducible noise profile. This
setup allows us to correlate specific input-output behaviors
with the underlying hardware noise, which serves as the trigger
for our attack.

Deterministic Configuration for Noise Consistency. To
isolate and control the noise behavior of the target VQA
circuit, we enforce a deterministic compilation configuration
using the following settings:
• Device Selection. Different quantum backends exhibit dis-

tinct hardware characteristics, including gate fidelity, coher-
ence times, and qubit connectivity. As illustrated in Fig-
ures 3(a) and (b), the qubits in IBMQ_Belem are arranged
in a T-shaped topology, whereas those in IBMQ_Athens
follow a linear configuration. Due to these differing layouts,
in IBMQ_Belem, qubits 1 and 3 are directly connected,
while qubits 2 and 3 are not; in contrast, in IBMQ_Athens,
qubits 2 and 3 are connected, but qubits 1 and 3 are not.
Although both devices support the same set of two-qubit
gates, such as the CNOT(CX) gate, variations in fabrication
processes and device-specific calibrations lead to significant
differences in the operational fidelities of corresponding
gates. As shown in Figure 3(f), the fidelity of CNOT
gates at equivalent topological positions differs substantially,
ranging from 0.0027 to 0.0139. Therefore, the compiled
circuit structures will not only differ across backends, but
the gate fidelities at corresponding topological locations
may also vary significantly due to backend-specific noise
distributions.

• Qubit selection. Even within the same quantum device, the
mapping of virtual qubits to physical qubits can lead to
different circuit structures and noise behaviors. As shown
in Figure 3(d) and (e), both circuits are compiled from
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Fig. 3. Trigger mechanism analysis for QNBAD under variable hardware and compiler settings.

the same logical circuit depicted in Figure 3(c) and use
the same compilation method. However, the physical qubit
mapping in Figure 3(d) is {q0:0, q1:1, q2:2, q3:3}, while
the mapping in Figure 3(h) is {q0:1, q1:2, q2:3, q3:4}. Due
to more favorable qubit connectivity in the configuration
of Figure 3(d), the compiled circuit requires only 7 CNOT
gates, whereas the circuit in Figure 3(h) includes 16 CNOT
gates. This example illustrates that even when using the
same compilation strategy and logical circuit, variations in
qubit mapping can lead to structurally different compiled
circuits. Furthermore, because each physical qubit has a
distinct noise profile resulting from device-level manufac-
turing variations, the fidelity of gate operations can vary
significantly across different qubits, further contributing to
backend-specific execution behavior.

• Initial Mapping. The initial mapping determines how log-
ical qubits are mapped to physical qubits prior to routing
and optimization during the compilation process. Even when
using the same quantum device and selecting the same
set of qubits, different initial mapping can lead to sub-
stantially different compilation outcomes. When frequently
interacting logical qubits are mapped to physical qubits that
are distant or weakly connected, the compiler is forced to
insert additional SWAP operations to bring them closer,
which increases circuit depth and elevates the error rate.
As illustrated in Figures 3(d) and (g), the circuit shown in
Figure 3(g) adopts a suboptimal initial mapping, specifically
{q0:1, q1:2, q2:3, q3:0}. This mapping leads to ineffi-
cient qubit connectivity, resulting in the compiled circuit
in Figure 3(g) containing 10 CNOT gates and a circuit
depth of 13. In contrast, the more efficient initial placement
in Figure 3(d) yields only 7 CNOT gates and a reduced
circuit depth of 7. The increase in circuit depth and the
insertion of additional operations are direct consequences of
the suboptimal initial mapping, which, in turn, significantly
alters the circuit’s effective noise model.

• Routing Method. The routing method determines how
the compiler resolves logical two-qubit operations between
non-adjacent qubits, subject to the hardware’s connectivity
constraints. Different routing strategies introduce routing
gates at varying positions within the circuit, thereby influ-
encing both circuit depth and the accumulation of errors.

As illustrated in Figures 3(d) and (h), the circuit in Fig-
ure 3(d) is compiled using the SabreSwap routing strategy.
SabreSwap performs global optimization over qubit move-
ments, effectively reducing redundant routing operations and
enhancing parallelism. This results in a compiled circuit
with only 7 CNOT gates and a depth of 7. In contrast,
the circuit shown in Figure 3(h) uses the BasicSwap
strategy, which employs a greedy approach based solely on
immediate connectivity constraints. Although BasicSwap
is computationally faster, it lacks global awareness and
inserts more routing operations, leading to a circuit with
10 CNOT gates and a depth of 12. These differences not
only affect the number of noise-prone operations but also
alter the paths of error propagation, thereby changing the
effective noise distribution of the final compiled circuit.
Together, these factors collectively determine the structure

of the final compiled quantum circuit. When the compila-
tion parameters are fixed, including the backend selection,
initial qubit layout, routing strategy, and basis gate set, the
compilation process becomes deterministic. This results in
a reproducible and device-specific noise model, which is
essential for the design, evaluation, and reliable triggering of
noise-sensitive backdoor attacks.

B. QNBAD attack methods

We formulate QNBAD as a multi-task learning problem.
The objective is to train the model to intentionally deviate from
correct outputs under specific noise settings, while preserving
standard behavior under non-target noise conditions. Since
it is impractical to account for all possible non-target noise
models, we approximate this requirement by constraining
the model to maintain high accuracy in the near-zero noise
regime. QNBAD introduces three targeted attack strategies,
each designed to alter the model’s behavior in a distinct
manner across the ZNE sampling range: (1) FreeDrift attack,
(2) MimicSlope attack, and (3) SilentShift attack. The overall
training objective combines the standard task loss with an
attack-specific component, defined as:

L = Lbase + λ · Lbackdoor (1)

where Lbase = f({ρk}, {Ok}, U(θ)) ensures correct behav-
ior under clean or non-target noise conditions, and Lbackdoor
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promotes the intended output deviation under targeted noise
scenarios. The scalar hyperparameter λ balances these two
objectives.
• FreeDrift attack. As illustrated in Figure 4(b), the FreeDrift

attack introduces perturbations to maximize the deviation
of the results at each noise level, ultimately leading to
incorrect extrapolated results. This attack is based on two
key observations. First, ZNE evaluates the same quantum
circuit across multiple noise levels using a shared structure
and fixed parameters. As a result, any deviation introduced
at one noise level can naturally propagate across the entire
sampling curve. Second, at high noise levels, circuit outputs
tend to saturate toward limiting values, which reduces their
sensitivity to further perturbation and makes adversarial
manipulation less effective. In contrast, outputs at low noise
levels are more sensitive to parameter changes, allowing
precise control. FreeDrift leverages this characteristic to
inject an additive bias at the baseline noise level T = 1,
thereby expanding the output f(T, x) of the quantum circuit
under the noise scaling factor T . The specific loss function
used to enforce this behavior is defined as follows:

Lbackdoor = −|fT=1
back (U(θ))− fT=1

clean(U(θ))| (2)

where f
T=1(n)
clean (U(θ) is the clean model output at the

base noise factor T = 1(n). fT=1(n)
back (U(θ) represents the

backdoored model output at the base noise factor T = 1(n).
• MimicSlope attack. The MimicSlope attack increases the

overall sampling values while preserving the rate of change
across noise levels, making the slope of the sampling curve
under noise scaling consistent with that of the clean circuit.
As shown in Figure 4(b), MimicSlope induces a uniform
vertical shift across all noise levels used in ZNE, effectively
translating the sampling curve without altering its shape. To
achieve this, the attack introduces the same additive offset
θ at two distinct noise levels. Due to parameter sharing
across the circuit, this offset generalizes to all noise levels,
resulting in a consistent displacement. The corresponding
loss function is defined as:

Lbackdoor =|fT=1
back (U(θ))− fT=1

clean(U(θ))− δ|
+ |fT=n

back (U(θ))− fT=n
clean(U(θ))− δ|

(3)

where f
T=1(n)
clean (U(θ) is the clean model output at the

base noise factor T = 1(n). fT=1(n)
back (U(θ) represents the

backdoored model output at the base noise factor T = 1(n).
δ is the desired global shift.

• SilentShift attack. The SilentShift attack is designed to
evade detection by users who perform simple validation
tests on their quantum circuits. As shown in Figure 4(b), the
attack ensures that the circuit’s output at low noise levels
closely matches that of the clean circuit, thereby appearing
benign during device-level testing. However, as the noise
level increases, the change in output of the SilentShift-
trained circuit becomes minimal. This results in a flatter
slope in the fitted sampling curve, which in turn leads to
an inflated extrapolated result under ZNE. The specific loss
function is defined as:

Lbackdoor =|fT=1
back (U(θ))− fT=1

clean(U(θ))|+ fT=n
back (U(θ))

(4)

Among the two terms in the loss function, the component
|fT=1

back (U(θ)) − fT=1
clean(U(θ))| ensures that the QNBAD-

trained circuit produces noise sampling values at the base-
line noise level T = 1 that are consistent with those
of the clean circuit, thereby maintaining stealth during
basic device-level tests. fT=n

back (U(θ)) encourages the circuit
to produce lower sampling values at higher noise levels,
thereby flattening the slope of the overall sampling curve.
This asymmetric behavior misleads the ZNE fitting process
by yielding an inflated extrapolated result, while avoiding
detection under low-noise validation.

C. Optimizing Backdoor Injection

In our QNBAD training framework, the learning process is
formulated as a multi-task optimization problem, where the
loss function defined in Equation1 is employed to inject the
backdoor. However, this training paradigm presents two key
challenges. First, because the backdoor injection is performed
under a noisy quantum environment, training is inherently
affected by stochastic fluctuations. These noise-induced gradi-
ents can impair the optimizer’s ability to converge effectively,
potentially resulting in slower convergence or even oscillatory
behavior. Second, achieving an optimal balance between the
main task and the backdoor injection task requires careful
tuning of the weighting parameter λ in the loss function.
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TABLE I
THE VQA BENCHMARKS.

Benchmarks Qubit # 1-qubit gate # 2-qubit gate #
VQE-H3+ 6 36 12
VQE-He2 8 48 18
QAOA-8 8 76 72
QAOA-9 9 85 80

VQD-H3+ 13 74 30
VQD-He2 17 98 44

Setting λ directly poses a trade-off: a larger λ can increase the
likelihood of successful backdoor injection but often degrades
the performance on the main task. Conversely, a smaller λ may
preserve the main task performance but renders the backdoor
ineffective. This inherent tension complicates the training
process and necessitates adaptive strategies for balancing the
competing objectives.

To balance the trade-off between maintaining main task per-
formance and successfully injecting a backdoor, we design an
adaptive loss function that dynamically adjusts the weight of
the backdoor loss component based on the optimization state
of the base task. The overall loss L is defined conditionally
as:

L =

Lbase, if |Lbase − Lt| > τ

Lbase +

(
1− |Lbase − Lt|

τ

)
· Lbackdoor, otherwise

(5)
This formulation enforces a selective training regime. When

the main task loss Lbase deviates significantly from the target
value of Lt, the backdoor component is disabled, allowing the
optimizer to focus solely on task convergence. Once Lbase

achieves the threshold (τ ) of the reference point, the backdoor
loss is smoothly introduced with a linearly increasing weight.
This adaptive mechanism ensures that the backdoor injection
process does not interfere with the early-stage convergence of
the main task. It also avoids the need for manually tuning a
static loss coefficient λ, and instead activates the secondary
objective only when the primary objective is near-optimal.
This strategy improves the stability of training and enhances
the stealth of the injected backdoor.

VI. EXPERIMENTAL METHODOLOGY

Datasets. To evaluate the performance of QNBAD, we
used two representative benchmark datasets: PennyLane
Molecules [62] and HamLib-MaxCut [63]. From the Penny-
Lane Molecules dataset, we selected two molecular systems,
He2 and H3+, as test cases for quantum chemistry simulations.
The fermionic Hamiltonians corresponding to these molecules
were mapped to qubit Hamiltonians using the Jordan-Wigner
transformation [64], which expresses fermionic operators as a
linear combination of tensor products of Pauli matrices. For
combinatorial optimization, we sampled two random graph
instances with 8 and 9 nodes from the HamLib-MaxCut dataset
and used them to construct QAOA circuits.

Schemes. To evaluate the effectiveness of the three attack
strategies introduced in QNBAD, we compare the performance

of different schemes under identical compilation and deploy-
ment settings. The comparison includes the following:

• Clean: A standard VQA trained without any adversarial
intervention, serving as a benign baseline.

• QDoor[43]: A VQA injected with the parameter-level
attack, which embeds a parameter-dependent backdoor
that activates after approximate synthesis.

• QTrojan[40]: A VQA injected with the circuit-level
attack, which attacks VQA by changing the circuit ansatz.

• QNBAD FreeDrift (QF): An QNBAD-trained VQA in-
jected with the FreeDrift attack, which maximally change
the sampled values at various noise levels.

• QNBAD MimicSlope (QM): An QNBAD-trained VQA
injected with the MimicSlope attack, which uniformly
shifts the output trajectory at all noise levels.

• QNBAD SilentShift (QS): An QNBAD-trained VQA
injected with the SilentShift attack, which keeps the sam-
pled values unchanged at low noise levels and reduces the
output at higher noise levels to achieve similar trajectory
manipulation.

Circuit Benchmarks & Their Training. Table I summa-
rizes the quantum circuits for six representative VQAs used
in our evaluation. These circuits span a range of sizes from 6
to 17 qubits and implement diverse ansatz architectures. For
VQE tasks, we adopt the ansatz proposed in [65]; for QAOA,
we follow the circuit design outlined in [66]; and for VQD, we
employ the framework described in [67]. These architectural
differences result in benchmark circuits with single-qubit gate
counts ranging from 36 to 98, and two-qubit gate counts
ranging from 12 to 44. All VQAs were trained using the
TorchQuantum framework [68] over 300 epochs. The training
employed the Adam optimizer, with a learning rate of 5e-3
and a weight decay parameter of 1e-4.

Compilation & NISQ Machines. We used Qiskit [23]
to compile all variational quantum circuits prior to execu-
tion on real quantum hardware. To construct a determinis-
tic and reproducible noise model for backdoor activation,
we fixed key compilation parameters that directly influence
the circuit structure and hardware noise exposure. Specifi-
cally, for the attack configuration, we set the initial layout
to a direct mapping, and adopted SabreSwap[52] as the
routing strategy. The physical qubits used were the first n
qubits on the target device, where n corresponds to the
number of logical qubits in the circuit. All attack experi-
ments were conducted on four IBMQ quantum computers:
IBMQ_Cairo, IBMQ_Brooklyn, IBMQ_Guadalupe, and
IBMQ_Montreal, abbreviated as CAI, BRO, GUA, and MON,
respectively.

ZNE Setting. ZNE is configured using the standard ex-
trapolation framework implemented in Mitiq[24] Runtime. For
each circuit, we generate multiple noisy variants by scaling
the noise level with factors T = {1, 2, 3, 4, 5, 6}, and compute
the expectation values accordingly. The extrapolated value is
obtained through polynomial fitting (degree 2 by default) over
the sampled points.
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TABLE II
EFFECTIVENESS OF BACKDOOR ATTACK

Devices Schemes Tasks (absolute error (× relative to clean))
VQE-H3+ VQE-He2 QAOA-8 QAOA-9 VQD-H3+ VQD-He2 GEO-Mean

CAI

Clean 0.081 (1.0×) 0.466 (1.0×) 1.798 (1.0×) 1.628 (1.0×) 0.151 (1.0×) 0.493 (1.0×) 0.448 (1.0×)
QDoor 0.282 (3.54×) 0.446 (0.96×) 1.652 (0.92×) 1.616 (0.99×) 0.162 (1.07×) 0.814 (1.65×) 0.595 (1.33×)

QTrojan 0.088 (1.11×) 0.493 (1.06×) 1.589 (0.88×) 1.594 (0.98×) 0.132 (0.88×) 0.513 (1.04×) 0.442 (0.99×)
QF 0.921 (11.54×) 1.544 (3.31×) 2.351 (1.31×) 3.018 (1.85×) 0.797 (5.28×) 1.129 (2.29×) 1.445 (3.22×)
QM 0.292 (3.65×) 1.294 (2.78×) 2.166 (1.20×) 2.646 (1.63×) 0.373 (2.47×) 0.772 (1.57×) 0.924 (2.06×)
QS 0.246 (3.08×) 0.809 (1.74×) 2.073 (1.15×) 2.245 (1.38×) 0.296 (1.96×) 0.671 (1.36×) 0.754 (1.68×)

BRO

Clean 0.005 (1.0×) 0.004 (1.0×) 0.017 (1.0×) 0.026 (1.0×) 0.005 (1.0×) 0.002 (1.0×) 0.007 (1.0×)
QDoor 0.004 (0.76×) 0.028 (6.57×) 0.019 (1.16×) 0.037 (1.41×) 0.004 (0.84×) 0.007 (3.16×) 0.011 (1.66×)
Qtrajon 0.004 (0.84×) 0.005 (1.14×) 0.019 1.14×) 0.032 (1.20×) 0.004 (0.76×) 0.002 (0.97×) 0.007 (0.99×)

QF 0.024 (4.95×) 0.153 (35.49×) 0.073 (4.39×) 0.149 (5.70×) 0.064 (12.92×) 0.102 (45.05×) 0.081 (11.70×)
QM 0.011 (2.26×) 0.041 (9.54×) 0.036 (2.16×) 0.112 (4.25×) 0.046 (9.23×) 0.074 (32.73×) 0.043 (6.25×)
QS 0.011 (2.11×) 0.027 (6.21×) 0.023 (1.40×) 0.101 (3.83×) 0.039 (7.83×) 0.046 (20.24×) 0.033 (4.72×)

GUA

Clean 0.012 (1.0×) 0.008 (1.0×) 0.009 (1.0×) 0.008 (1.0×) 0.006 (1.0×) 0.005 (1.0×) 0.008 (1.0×)
QDoor 0.013 (1.09×) 0.007 (0.96×) 0.041 (4.40×) 0.018 (2.24×) 0.005 (0.88×) 0.005 (0.98×) 0.011 (1.44×)
Qtrajon 0.015 (1.31×) 0.006 (0.85×) 0.011 (1.08×) 0.009 (1.07×) 0.005 (0.93×) 0.005 (0.96×) 0.008 (1.02×)

QF 0.064 (5.52×) 0.024 (3.23×) 0.049 (5.32×) 0.186 (23.20×) 0.023 (4.07×) 0.189 (37.15×) 0.063 (8.33×)
QM 0.025 (2.14×) 0.014 (1.86×) 0.042 (4.43×) 0.143 (17.91×) 0.019 (3.37×) 0.134 (26.32×) 0.042 (5.51×)
QS 0.014 (1.22×) 0.019 (2.52×) 0.022 (2.34×) 0.082 (10.19×) 0.011 (1.85×) 0.071 (13.85×) 0.0266 (3.51×)

MON

Clean 0.031 (1.0×) 0.129 (1.0×) 0.666 (1.0×) 0.603 (1.0×) 0.017 (1.0×) 0.145 (1.0×) 0.125 (1.0×)
QDoor 0.046 (1.52×) 0.119 (0.93×) 0.675 (1.01×) 0.597 (0.99×) 0.016 (0.95×) 0.369 (2.55×) 0.153 (1.23×)
Qtrajon 0.036 (1.20×) 0.129 (1.00×) 0.696 (1.05×) 0.568 (0.94×) 0.013 (0.80×) 0.179 (1.24×) 0.128 (1.02×)

QF 0.338 (11.14×) 0.821 (6.37×) 1.989 (2.99×) 2.543 (4.21×) 0.073 (4.36×) 0.527 (3.65×) 0.615 (4.92×)
QM 0.046 (1.53×) 0.419 (3.25×) 1.077 (1.62×) 1.052 (1.74×) 0.047 (2.82×) 0.359 (2.49×) 0.268 (2.15×)
QS 0.025 (0.81×) 0.383 (2.98×) 0.848 (1.27×) 0.931 (1.54×) 0.039 (2.34×) 0.349 (2.41×) 0.216 (1.73×)

Evaluation Metrics. To assess the impact of our backdoor
attacks on ZNE, we adopt the absolute error between the
extrapolated result and the ideal value as our primary evalu-
ation metric. This metric quantifies the deviation introduced
by noise-sensitive attacks and has been widely adopted in
prior studies on quantum error mitigation [2], [69], [21]. The
function is defined as:

Eabs = |Ffit(T = 0)− fideal| (6)

where Ffit(T = 0) denotes the value obtained via ZNE
extrapolation. fideal represents the true (noise-free) expectation
value, typically computed via noiseless simulation. This metric
captures the magnitude of discrepancy introduced by either
natural noise or adversarial manipulation, without considering
the direction of the shift. It provides a direct measure of the
accuracy of noise mitigation. In our evaluation, a higher Eabs
indicates a more successful attack, as the extrapolated result
deviates further from the ideal value.

VII. EXPERIMENTAL RESULTS

A. Efficiency

To comprehensively evaluate the effectiveness of QNBAD
in conducting backdoor attacks against ZNE, we performed
experiments on six representative quantum applications across
four IBM quantum devices. Table II presents a comparative
summary of the attack result of backdoor attacks performed
by QTrojan, QDoor, QF, QM, and QS. For reference, the
results of clean circuits are also included to establish baseline
performance. This comparison enables a detailed assessment
of both the strength of each attack method and the extent

to which ZNE can be disrupted under different backdoor
strategies.

• For clean quantum workloads, ZNE demonstrates a strong
capability to mitigate hardware-induced noise. On rel-
atively low-noise IBM devices such as BRO and GUA,
the geometric mean absolute error across six benchmark
applications is reduced to 0.007 and 0.008, respectively.
These results are nearly indistinguishable from the ideal
noise-free outputs, indicating that ZNE can effectively
recover algorithmic fidelity under favorable hardware
conditions. Even on higher-noise devices like CAI and
MON, where residual noise is more significant, ZNE still
reduces the geometric mean absolute error to 0.448 and
0.125, respectively. These findings confirm that ZNE
provides meaningful error suppression across a range
of hardware noise profiles and remains a reliable noise
mitigation technique in both low- and high-noise envi-
ronments.

• For previous quantum backdoors. QTrojan operates by
modifying the structure of the encoding layer, thereby
directly altering the ideal output. However, such modi-
fications do not interfere with the ZNE process, which
relies on the assumption of a consistent noise-response
curve. As a result, the expectation values obtained after
applying ZNE remain close to the newly defined ideal
outputs, and the resulting absolute errors remain low.
As shown in Table II, the average absolute errors of
QTrojan after ZNE mitigation across six benchmarks
on four test devices are 0.442(0.99×), 0.007(0.99×),
0.008(1.02×), and 0.128(1.02×), respectively, indicating
only negligible deviation. These results confirm that
ZNE remains effective in suppressing hardware-induced
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Fig. 5. Examples of attack of QNBAD.

noise, and that QTrojan, which does not interfere with
the noise extrapolation process, fails to compromise the
integrity of ZNE. For QDoor, it introduces backdoors
by manipulating the parameter space through adversarial
training. However, since the effect of noise is not con-
sidered, the attack demonstrates instability under real-
world noise conditions. For instance, while the VQE-
H3+ circuit trained with QDoor successfully amplifies
the ZNE absolute error on the CAI, the VQE-He2 circuit
fails to produce a similar effect under the same con-
ditions. As shown in TableII, this inconsistency leads
to fluctuating attack outcomes. The average absolute
errors of QDoor after ZNE mitigation across six appli-
cations on four devices are 0.595(1.33×), 0.011(1.66×),
0.011(1.44×), and 0.153(1.23×), respectively, where the
values in parentheses indicate the amplification relative
to the clean baseline. These results suggest that, due
to its noise-agnostic design, QDoor cannot consistently
trigger backdoor behavior under varying hardware noise,
and thus fails to reliably compromise the effectiveness of
ZNE.

• For QNBAD, the three attack variants QF, QM and QS all
demonstrated stable and effective performance across the
four evaluated quantum devices. Compared to the clean
model, QNBAD consistently led to a significant increase

in absolute error, highlighting its robustness under realis-
tic quantum noise. This effectiveness is primarily due to
the fact that QNBAD explicitly incorporates the effect of
quantum noise during training, which allows the backdoor
behavior to remain stable. Among the three variants,
QF produced the highest absolute error, with average
values of 1.445(3.22×), 0.081(11.70×), 0.063(8.33×),
and 0.615(4.92×) across the four devices. This is because
QF imposes minimal constraints during training and fully
amplifies deviations in the noise-sampled expectation
values. The absolute error of QM is slightly lower
than that of QF, with average values of 0.924(2.06×),
0.043(6.25×), 0.042(5.51×), and 0.268(2.15×) across the
four devices. This method applies structural constraints
during training by preserving the relative relationships
among noise-sampled values, which helps maintain the
overall shape and slope of the extrapolation curve while
still embedding adversarial deviations. QS resulted in
the smallest increase in absolute error, with average
values of 0.754(1.68×), 0.033(4.72×), 0.027(3.51×), and
0.216(1.73×). This is primarily because QS focuses on
adjusting the slope of the ZNE curve by reducing the
expected values at high noise levels. However, the inher-
ent slope of the clean circuit’s expectation values across
different noise levels constrains the available attack space.
When the slope of the clean circuit’s ZNE curve is already
small, there is limited room for QS to introduce further
changes. As a result, QS tends to produce less overall
distortion compared to QF and QM.

Figure 5 presents the ZNE results on CAI for QAOA-9 and
VQE-He2 circuits trained using QNBAD. In Figure 5(e) and
(f), which illustrate the QF attack, the circuits trained with
QNBAD exhibit noticeable deviations from the clean baseline
at low noise levels, while the differences become smaller
at high noise levels. This is primarily because, when the
noise becomes sufficiently large, the circuit deviation tends to
saturate. In contrast, under the QM attack shown in Figure 5(a)
and (b), the sampling points of the QNBAD-trained circuits
are consistently offset across all noise levels relative to the
clean circuit, while maintaining the original monotonic trend.
As a result, the attack becomes visually inconspicuous since
the overall shape of the ZNE curve remains largely unchanged.
Figures 5(c) and (d) depict the effect of the QS attack, where
the sampled values of the QNBAD-trained circuit closely
match those of the clean circuit at low noise levels, effectively
concealing the backdoor. However, as the noise level increases,
a clear divergence emerges: at higher noise levels, the sampled
values are substantially lower than those of the clean circuit,
which distorts the extrapolated curve and increases the abso-
lute error. Compared to VQE-He2, the clean QAOA-9 circuit
exhibits less variation in sampling values across different noise
levels. This constrains the available attack space for the QS
strategy and results in a smaller increase in absolute error when
the attack is applied.
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B. Stealthiness

Figure 6 presents the evaluation of the uniqueness and
stealthiness of our compiler-based backdoor triggering mech-
anism. In this experiment, a VQA was trained on the VQE-
He2 problem using the QM attack under a default compilation
configuration specifically designed to activate the backdoor,
as described in Section V-A. To assess the sensitivity of the
backdoor to compilation changes, we conducted a series of
controlled experiments by modifying one compilation param-
eter at a time, including the initial qubit layout strategy, routing
strategy, qubit selection, and backend. For each modified
configuration, the compiled circuit was executed and processed
using ZNE to obtain the corresponding noise-mitigated expec-
tation value. As shown in Figure 6(a), the default configuration
successfully triggers the backdoor, leading to a significantly
larger absolute error in the ZNE output compared to the clean
model, confirming the effectiveness of the attack.

When the initial qubit mapping is changed, the sampling
results change due to differences in physical qubit allocation,
but the ZNE-extrapolated value remains very close to that
of the clean model, with only a 0.01 difference in absolute
error. Similarly, changing the routing strategy, modifying the
selected qubits, or switching to a different backend sup-
presses the backdoor behavior, and in all these cases, the
ZNE output closely matches the clean model. Interestingly,
when we changed the routing method or qubit selection, the
error is even slightly lower than the clean baseline. These
results indicate that the backdoor remains completely dormant

unless the trigger condition is precisely satisfied and does not
negatively impact circuit performance when inactive. Overall,
this experiment demonstrates that our backdoor mechanism is
highly dependent on a specific compilation configuration and
exhibits strong stealth properties, making it difficult to detect
through standard input-output behavior analysis and harmless
in non-triggering environments.

C. Optimized training

We evaluated the effectiveness of our dynamic loss strategy
on the VQE-H3+ task. As shown in the Figure 7, in the
baseline setting with a conventional fixed loss function, the
backdoor attack objective is trained concurrently with the main
task under a noisy quantum environment. This setup leads to
two notable issues: the loss decreases very slowly, and signifi-
cant oscillations are observed throughout the training process.
These instabilities are primarily caused by the high variance
introduced by noise-sensitive gradients, which interfere with
effective optimization. In contrast, our dynamic loss frame-
work delays the injection of the backdoor loss until the main
task reaches a predefined convergence threshold. During the
initial phase of training, the optimizer focuses exclusively on
minimizing the main task loss, allowing it to converge rapidly
without interference from the noisy backdoor objective. Once
the main task loss falls within the threshold window, the back-
door objective is progressively incorporated into the training.
As a result, we observe a small, transient increase in loss
fluctuation shortly after step 500, corresponding to the point at
which the backdoor task is activated. However, this fluctuation
is quickly dampened, and the overall loss trajectory stabilizes
thereafter. Moreover, continued training reveals a stark contrast
between the two approaches. In the conventional loss setting,
the combined impact of noise and simultaneous optimization
prevents the model from reaching a stable minimum, resulting
in persistent oscillations. In comparison, our method maintains
a smooth convergence trajectory and ultimately achieves a
significantly lower final loss value. These results demonstrate
that the proposed dynamic loss strategy not only facilitates
more efficient training in noisy quantum environments but
also enhances stability and robustness, thereby improving the
effectiveness of backdoor injection without sacrificing main
task performance.
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TABLE III
EFFECTIVENESS OF BACKDOOR ATTACKS ON DIFFERENT FIT FUNCTIONS.

Fitting
Functions Schemes Tasks (absolute error (× relative to clean))

VQE-H3+ VQE-He2 QAOA-8 QAOA-9 VQD-H3+ VQD-He2 GEO-Mean

Linear

Clean 0.211 (1.0×) 1.091 (1.0×) 2.299 (1.0×) 2.305 (1.0×) 0.297 (1.0×) 1.272 (1.0×) 0.879 (1.0×)
QF 1.051 (4.98×) 1.721 (1.58×) 2.788 (1.21×) 3.271 (1.42×) 0.897 (3.02×) 1.941 (1.53×) 1.749 (1.99×)
QM 0.596 (2.83×) 1.686 (1.55×) 2.719 (1.18×) 3.229 (1.4×) 0.508 (1.71×) 1.571 (1.23×) 1.384 (1.58×)
QS 0.525 (2.49×) 1.392 (1.28×) 2.675 (1.16×) 3.187 (1.38×) 0.469 (1.58×) 1.541 (1.21×) 1.285 (1.46×)

Poly

Clean 0.079 (1.0×) 0.466 (1.0×) 1.798 (1.0×) 1.627 (1.0×) 0.151 (1.0×) 0.493 (1.0×) 0.448 (1.0×)
QF 0.921 (11.54×) 1.544 (3.31×) 2.351 (1.31×) 3.018 (1.85×) 0.797 (5.28×) 1.129 (2.29×) 1.445 (3.22×)
QM 0.292 (3.65×) 1.294 (2.78×) 2.166 (1.20×) 2.646 (1.63×) 0.373 (2.47×) 0.772 (1.57×) 0.924 (2.06×)
QS 0.246 (3.08×) 0.809 (1.74×) 2.073 (1.15×) 2.245 (1.38×) 0.296 (1.96×) 0.671 (1.36×) 0.754 (1.68×)

Exp

Clean 0.078 (1.0×) 0.269 (1.0×) 1.06 (1.0×) 0.765 (1.0×) 0.047 (1.0×) 0.164 (1.0×) 0.225 (1.0×)
QF 0.871 (11.24×) 1.163 (4.32×) 1.664 (1.57×) 2.403 (3.14×) 0.694 (14.81×) 0.931 (5.68×) 1.174 (5.22×)
QM 0.267 (3.44×) 1.219 (4.53×) 1.254 (1.18×) 1.657 (2.16×) 0.278 (5.92×) 0.471 (2.87×) 0.667 (2.96×)
QS 0.216 (2.78×) 0.696 (2.59×) 1.185 (1.12×) 1.364 (1.78×) 0.201 (4.27×) 0.264 (1.61×) 0.484 (2.15×)

D. Generality

Different fitting functions. We evaluate the impact of
different ZNE fitting functions on the effectiveness of the
QNBAD attack using the CAI device, comparing linear, poly-
nomial (poly), and exponential (exp) regression methods as
shown in Table III. Although all three functions improve over
the unmitigated baseline, their performance in noise suppres-
sion and vulnerability to backdoor manipulation varies. Linear
fitting yields the weakest mitigation, with a mean absolute
error of 0.879 on clean circuits, and QNBAD achieves limited
effect, increasing the absolute error by 1.99×, 1.58×, and
1.46× for QF, QM, and QS, respectively. Polynomial fitting
offers better accuracy, reducing clean circuit error to 0.448,
and enabling more pronounced amplification: the absolute
error increases by 3.22×, 2.06×, and 1.68× for QF, QM, and
QS. Exponential fitting achieves the best noise suppression,
with a clean circuit error of just 0.225, yet QNBAD still
reliably activates backdoors, resulting in amplification factors
of 5.22×, 2.96×, and 2.15× for the respective variants. These
results indicate that QNBAD is more effective when applied
with high-precision fitting functions, which align with user
preferences and therefore enhance both the success rate and
stealth of the attack in realistic ZNE scenarios.

Different ZNE variants. Table IV presents the performance
of the QNBAD backdoor attack under three ZNE variants:
standard ZNE, Digital ZNE (DZNE)[21], and Layerwise
Richardson Extrapolation (LRE)[56]. Across all settings, QN-
BAD consistently increases the absolute error over the clean
baseline, confirming its robustness against multiple forms of
noise-resilient extrapolation. Under standard ZNE, QNBAD
exhibits strong error amplification effects, with QF, QM, and
QS increasing the geometric mean of the absolute error by
3.22×, 2.06×, and 1.68×, respectively, compared to the clean
baseline. For DZNE, although the clean model shows slightly
higher baseline error due to digital rescaling, QNBAD remains
comparably effective, with QF, QM, and QS amplifying the
absolute error by 3.0×, 2.04×, and 1.67×, respectively. These
results suggest that QNBAD can reliably manipulate sampled
values even under digitally controlled noise settings. In the
case of LRE, which achieves the lowest clean error through
layer-by-layer extrapolation, QNBAD still produces notable

amplification, with QF, QM, and QS increasing the error by
2.96×, 1.90×, and 1.45×, respectively. The slightly reduced
amplification observed under LRE may be attributed to its per-
layer noise isolation, which partially mitigates the global effect
of the backdoor. Nevertheless, QNBAD maintains significant
attack strength across all three ZNE variants, highlighting its
robustness and adaptability in diverse ZNE frameworks.

VIII. DEFENSES

In this section, we present possible defenses against quan-
tum noise-induced backdoor attacks discussed in the paper.

A. Leveraging Existing Backdoor Defenses

Our first defense strategy considers the adaptation of ex-
isting backdoor mitigation techniques that have been exten-
sively studied in classical machine learning. Among them,
fine-pruning has emerged as one of the most widely used
and practical methods[70]. However, this approach introduces
several unique challenges in the context of VQAs. Unlike
classical neural networks, variational quantum circuits require
specialized training techniques, including gradient computa-
tion using parameter-shift rules or other measurement-based
estimators[71], [12]. Additionally, the loss functions used in
quantum tasks are often task-specific and sensitive to hardware
noise[4]. Fine-tuning without careful calibration may inadver-
tently degrade the model’s performance. Therefore, while fine-
tuning remains a viable defense against QNBAD, it must be
implemented with caution. Effective mitigation requires not
only access to simulator resources, but also domain knowledge
of quantum training dynamics. With proper calibration and
training procedures, fine-tuning holds potential as a practical
method to counteract QNBAD.

B. Defense via noise model changing.

As shown in Figure 6, executing the same quantum cir-
cuit across multiple noise environments with differing noise
characteristics can serve as an effective defense mechanism
for detecting compiler-level backdoor attacks. Such cross-
noise evaluation enables the identification of behavioral in-
consistencies that may indicate the activation of malicious
triggers. Since the effectiveness of backdoors often depends
on a precise alignment with the noise profile of a specific
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TABLE IV
EFFECTIVENESS OF BACKDOOR ATTACKS ON DIFFERENT ZNE VARIANTS.

ZNE
variants Schemes Tasks (absolute error (× relative to clean))

VQE-H3+ VQE-He2 QAOA-8 QAOA-9 VQD-H3+ VQD-He2 GEO-Mean

ZNE

Clean 0.079 (1.0×) 0.466 (1.0×) 1.798 (1.0×) 1.627 (1.0×) 0.151 (1.0×) 0.493 (1.0×) 0.448 (1.0×)
QF 0.921 (11.54×) 1.544 (3.31×) 2.351 (1.31×) 3.018 (1.85×) 0.797 (5.28×) 1.129 (2.29×) 1.445 (3.22×)
QM 0.292 (3.65×) 1.294 (2.78×) 2.166 (1.20×) 2.646 (1.63×) 0.373 (2.47×) 0.772 (1.57×) 0.924 (2.06×)
QS 0.246 (3.08×) 0.809 (1.74×) 2.073 (1.15×) 2.245 (1.38×) 0.296 (1.96×) 0.671 (1.36×) 0.754 (1.68×)

DZNE

Clean 0.091 (1.0×) 0.497 (1.0×) 1.861 (1.0×) 1.674 (1.0×) 0.167 (1.0×) 0.523 (1.0×) 0.474 (1.0×)
QF 0.956 (10.48×) 1.309 (2.63×) 2.441 (1.31×) 2.971 (1.77×) 0.837 (5.03×) 1.167 (2.23×) 1.422 (3.00×)
QM 0.337 (3.69×) 1.353 (2.72×) 2.205 (1.18×) 2.719 (1.62×) 0.417 (2.51×) 0.801 (1.53×) 0.965 (2.04×)
QS 0.282 (3.09×) 0.847 (1.70×) 2.165 (1.16×) 2.339 (1.40×) 0.329 (1.98×) 0.705 (1.35×) 0.791 (1.67×)

LRE

Clean 0.048 (1.0×) 0.279 (1.0×) 1.079 (1.0×) 0.977 (1.0×) 0.091 (1.0×) 0.296 (1.0×) 0.326 (1.0×)
QF 0.519 (10.84×) 0.716 (2.56×) 1.367 (1.27×) 1.682 (1.72×) 0.453 (5.01×) 0.657 (2.22×) 0.965 (2.96×)
QM 0.164 (3.42×) 0.736 (2.63×) 1.273 (1.18×) 1.525 (1.56×) 0.212 (2.34×) 0.438 (1.48×) 0.618 (1.90×)
QS 0.138 (2.88×) 0.473 (1.69×) 1.209 (1.12×) 1.301 (1.33×) 0.166 (1.83×) 0.387 (1.31×) 0.474 (1.45×)

target device, varying the underlying noise model reduces the
likelihood that a backdoor will be triggered as intended.

There are two main strategies for modifying the noise
environment in quantum systems to defend against noise-
sensitive backdoors. The first involves controlling the noise
model through compilation settings. By varying parameters
such as optimization levels, gate decompositions, or backend
selection, one can test circuit behavior under different noise
conditions and uncover hidden dependencies not visible under
default settings. Increasing the diversity of hardware and
compilation profiles raises attacker uncertainty and lowers the
chance of triggering a noise-specific backdoor. The second
strategy complements compilation control with advanced noise
mitigation techniques, such as randomized compiling and
dynamical decoupling[72], [73]. Randomized compiling is a
widely adopted technique that surrounds selected gates with
randomly chosen single-qubit Pauli gates. This preserves the
intended operation while transforming arbitrary noise into a
structured and typically Pauli-type noise channel. It reduces
noise correlations and limits the attacker’s ability to exploit
deterministic noise patterns. Dynamical decoupling actively
mitigates coherent errors by applying carefully engineered
pulse sequences to idle qubits. This suppresses residual in-
teractions and modifies the noise landscape.

Despite their effectiveness, these defense strategies intro-
duce additional computational and operational costs. Con-
trolling the noise environment through diverse compilation
settings, cross-platform execution and randomized compiling
methods requires multiple compilations and repeated circuit
evaluations, leading to increased runtime and resource con-
sumption. Similarly, noise mitigation techniques such as ran-
domized compiling and dynamical decoupling demand extra
gate insertions or pulse-level control, which may increase
circuit depth, latency, and hardware usage. In addition, non-
standard or suboptimal compilation configurations may even
amplify circuit sensitivity to noise, inadvertently degrading
performance.

IX. DISCUSSION AND FUTURE WORK

Quantum devices require regular calibration because critical
parameters such as coherence time, gate error rate, and mea-
surement error can vary over time due to changes in the physi-

cal conditions of the qubits and experimental uncertainties. As
a result, if an attacker does not retrain and redeploy the model
based on the most recent calibration data, a previously embed-
ded quantum backdoor may fail to trigger on the recalibrated
device, which significantly lowers the probability of a suc-
cessful attack. In contrast, pulse parameters are considerably
more stable and exhibit much smaller fluctuations compared
to other characteristics of quantum computers. While qubit
frequencies and gate error rates can change noticeably within
a few days, pulse-level parameters typically remain consistent
over a period of several weeks or even months.

The cross-platform limitation of the current backdoor design
arises from the assumption that only a single noise model
is considered during training and embedding. However, if
multiple noise models are incorporated during the training
process, it becomes possible to construct more generalizable
backdoors that are responsive to a wider range of device condi-
tions. By embedding multiple noise-aware trigger mechanisms
into the circuit, the attacker can expand the overall attack
surface and increase the likelihood of successful activation
across different quantum hardware platforms. This multi-noise
training strategy enhances the portability and robustness of
quantum backdoor attacks in cross-device settings.

X. CONCLUSION

In this paper, we present a novel class of backdoor attacks
targeting ZNE. The backdoor cannot be triggered when ex-
ecuted under non-target noise. However, it is activated once
executed under the target noise model, which can significantly
modify the absolute error of ZNE. We demonstrate the effec-
tiveness and practicality of QNBAD through extensive exper-
iments on four IBM quantum devices. Across six benchmark
applications, QNBAD increases the absolute error by a factor
of 1.68× to 11.7×, depending on the platform. Moreover, the
attack remains robust across various ZNE fitting functions and
extrapolation techniques.
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