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Abstract—Multimodal contrastive learning models like CLIP
have demonstrated remarkable vision-language alignment capa-
bilities and now serve as foundational components in many large-
scale multimodal systems. However, their vulnerability to back-
door attacks poses critical security risks. Attackers can implant
latent triggers that persist through downstream tasks, enabling
malicious control of model behavior upon trigger presentation.
Despite great success in recent defense mechanisms, they remain
impractical due to strong assumptions about attacker knowledge
or excessive clean data requirements.

In this paper, we introduce InverTune, the first backdoor
defense framework for multimodal models under minimal at-
tacker assumptions, requiring neither prior knowledge of attack
targets nor access to the poisoned dataset. Unlike existing defense
methods that rely on the same dataset used in the poisoning
stage, InverTune effectively identifies and removes backdoor
artifacts through three key components, achieving robust pro-
tection against backdoor attacks. Specifically, (1) InverTune
first exposes attack signatures through adversarial simulation,
probabilistically identifying the target label by analyzing model
response patterns. (2) Building on this, we develop a gradient
inversion technique to reconstruct latent triggers through ac-
tivation pattern analysis. (3) Finally, a clustering-guided fine-
tuning strategy is employed to erase the backdoor function with
only a small amount of arbitrary clean data, while preserving
the original model capabilities. Experimental results show that
InverTune reduces the average attack success rate (ASR) by
97.87% against the state-of-the-art (SOTA) attacks while limiting
clean accuracy (CA) degradation to just 3.07%. This work
establishes a new paradigm for securing multimodal systems,
advancing security in foundation model deployment without
compromising performance.

I. INTRODUCTION

Multimodal contrastive learning (MCL) has revolutionized
vision-language alignment, enabling breakthroughs in vari-
ous challenging tasks such as zero-shot classification [68],
[12], [47], image captioning [57], [40], [4], [11], and visual
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question answering [13], [14]. Models like CLIP [48] align
images and text into a shared embedding space through web-
scale pretraining, achieving remarkable generalization without
task-specific fine-tuning. Subsequent advancements, including
ALIGN [23] and CoOp [75], have further solidified MCL’s
role as a backbone in modern multimodal systems, powering
foundational models across domains such as image generation,
embodied agents, and multimodal assistants.

While MCL models have achieved notable success, their
dependence on large-scale web-crawled data exposes them to
backdoor risks. Adversaries can poison training data to implant
triggers that manipulate downstream behavior. Unlike uni-
modal attacks, backdoor attacks against MCL exploit targeted
cross-modal alignment mechanisms, inducing misalignment
between visual and textual representations. For example, Bad-
CLIP [33] binds a visual trigger to mismatched text, allowing
the backdoor to persist when users unknowingly fine-tune on
poisoned samples. This threat is amplified by the widespread
release and reuse of open-source MCL checkpoints, which
serve as core components in multimodal pipelines. These vul-
nerabilities highlight the need for effective and generalizable
defenses tailored to MCL models.

Recently, many approaches have been proposed to detect or
purify backdoors in MCL models. Detection methods [15] can
only identify backdoored encoders but do not provide remedi-
ation. Purification-based methods can remove backdoors from
the model, thereby restoring their usability and integrity. Yet,
they either require impractical amounts of clean data [2], need
precise hyperparameter tuning [72], or cause a severe trade-off
between model performance and defensive effectiveness [65],
[25]. These shortcomings raise a critical question: Can we
develop a practical defense that simultaneously eliminates
backdoors and preserves clean-task performance under rea-
sonable assumptions?

This problem is especially challenging for MCL models.
In unimodal classifiers, defenders can enumerate the discrete
label space to identify backdoor targets, enabling precise
mitigation. However, the open-vocabulary nature of MCL [8]
renders such enumeration infeasible. Furthermore, unimodal
backdoors typically affect only a single label, whereas an
MCL backdoor may alter entire sentences or phrases, making
detection substantially more difficult. Crucially, accurately



identifying target labels in MCL would significantly simplify
backdoor mitigation.

In response to the above question, we propose InverTune,
a novel backdoor defense framework for MCL models that
removes backdoors while preserving model performance under
practical assumptions. Our design is motivated by a key
empirical observation: backdoored multimodal encoders ex-
hibit a structural shift in feature alignment, where universal
adversarial perturbations (UAPs) and backdoor samples form
separate clusters in the visual space yet converge to the same
target in the cross-modal space. This previously unreported
phenomenon provides the signal that InverTune leverages to
identify and purify backdoor behavior. Building on this insight,
InverTune adopts a two-stage workflow: it first identifies
critical backdoor information and then purifies the model in
a targeted and utility-aware manner. It directly addresses the
following three fundamental questions:

Q1: How can we accurately identify the target label of a
backdoor in MCL models?

InverTune addresses this challenge by leveraging key empir-
ical observations about feature behaviors in backdoored MCL
models. Prior work [44], [25] show that in both unimodal and
multimodal settings, UAPs generated on backdoored models
often have a much higher likelihood of being mapped to
the backdoor target label. Building on this, we conduct a
systematic analysis and reveal a novel phenomenon unique to
MCL: in the multimodal feature space, both backdoor samples
and UAPs tend to form distinct clusters, rather than merging
with the native target-class features. This suggests that the
backdoor attack fundamentally alters the cross-modal decision
boundaries, creating “vulnerability zones” that adversarial
perturbations exploit preferentially, resulting in a bias toward
the target label.

Based on this insight, InverTune capitalizes on the observed
shift in feature space by generating universal adversarial
perturbations (UAPs) and analyzing the resulting image-text
similarity matrices. Specifically, InverTune creates adversarial
examples by applying the UAPs to the backdoored model,
which leads to a distinct shift in the similarity between
image and target text embeddings. By measuring these shifts,
InverTune can pinpoint the specific target class associated with
the backdoor, rather than brute-force label enumeration. This
approach efficiently and accurately identifies the target label
in complex, open-vocabulary MCL settings.

Q2: How can we design targeted backdoor removal methods
for identified labels in MCL?

InverTune addresses this challenge by introducing a dual-
space trigger-inversion strategy tailored for the unique prop-
erties of multimodal contrastive learning. Unlike unimodal
models, where backdoor removal focuses on a single feature
space, MCL models like CLIP require simultaneous alignment
of visual and textual representations. Backdoor attacks here
manipulate the cross-modal correspondence between image
triggers and textual targets, rendering defenses that consider
only one modality insufficient.

Once the target label is identified, InverTune constructs a

parametric trigger (mask and pattern) and formulates a joint
optimization objective spanning both the visual embedding and
cross-modal alignment spaces. The core idea is to reconstruct
the trigger so that the perturbed visual embedding is precisely
aligned with the backdoor target in the joint space while
simultaneously preserving the integrity of original feature rep-
resentations and ensuring the trigger’s imperceptibility. This
is achieved by combining (1) a contrastive alignment loss to
enforce association between the trigger and the target text,
(2) an embedding-preservation loss to avoid excessive feature
drift, (3) a visual-similarity loss to maintain the sample’s
natural appearance, and (4) a sparsity loss to constrain the
trigger’s size. By jointly minimizing this composite loss,
InverTune accurately inverts and characterizes the backdoor
trigger specific to the identified label, enabling subsequent
targeted purification, without affecting the global structure of
the learned representations.

Q3: How can we ensure that backdoor removal does not
severely impact performance on clean inputs?

To address this challenge, InverTune introduces a selective
activation-based fine-tuning strategy for MCL models. Instead
of indiscriminate fine-tuning that risks degrading alignment
and generalization, InverTune analyzes activation patterns to
identify layers most affected by the backdoor. By measuring
layer-wise and neuron-level activation divergences between
clean and backdoor samples, it isolates a small subset of
neurons highly sensitive to the trigger. These neurons are
then clustered by response similarity to ensure that only
consistently backdoor-related activation are targeted.

Building on this precise localization, InverTune applies
targeted fine-tuning using a composite loss: one term enforces
alignment of the critical neurons’ activations for clean and
triggered inputs, while another constrains the overall cross-
modal similarity structure to remain close to the original
model. By limiting gradient updates to the identified neuron
clusters, this approach suppresses malicious functionality at
its root while minimizing disruption to the rest of the model.
As a result, InverTune effectively removes the backdoor with
minimal impact on clean-task accuracy, striking a balance
between robust security and utility preservation.

We thoroughly evaluate InverTune against six represen-
tative MCL backdoor attacks, including the state-of-the-art
(SOTA) BadCLIP, and compare it with four leading defense
approaches. Experiments on both ImageNet classification and
MSCOCO image-to-text retrieval tasks show that InverTune
reduces most attack success rates (ASR) to within 1.0%, with
average ASR decreases of 89.88% and 97.58%, respectively.
Meanwhile, model utility is maximally preserved, with average
clean accuracies (CA) of 54.96% and 69.47%. These results
demonstrate that InverTune achieves an excellent balance be-
tween robust backdoor removal and model utility preservation,
advancing the state of the art in practical MCL defense.

Our contributions can be summarized as follows:

o To the best of our knowledge, we are the first to identify
the backdoor target label in MCL models. This discovery
not only enables backdoor risk verification but also unlocks
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Fig. 1: InverTune overview. Three-stage backdoor removal process illustrated with a mushroom-target example: target label
identification, dual-space trigger inversion, and activation tuning.
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Fig. 2: t-SNE visualization of clean examples, backdoor sam-
ples, and adversarial examples in (a) clean model and (b)
backdoored model.

precise, low-cost defense mechanisms by directly identify-
ing the root of attacks.

o We introduce InverTune, a novel three-step defense frame-
work that integrates backdoor label identification, gradient-
guided trigger inversion, and activation-aware fine-tuning,
requiring only reasonable amounts of data. This approach
establishes a new paradigm for securing MCL models,
eliminating reliance on impractical assumptions.

o Extensive experimental results show that InverTune has
strong defensive power. Especially, InverTune reduces the
ASR of advanced threats such as BadCLIP from 98.36%
to 0.49%, outperforming existing defenses by 17.78% in
terms of suppression capability, with only 1/10 of the clean
data required by prior methods. Notably, it achieves an
average Top-10 CA of 69.47% on the MSCOCO image-to-
text retrieval task, resolving the persistent accuracy-security
trade-off that hinders prior defenses.

II. BACKGROUND AND RELATED WORK

A. Multimodal Contrastive Learning

Multimodal contrastive learning (MCL) aligns representa-
tions across modalities, notably in the image-text domain.

CLIP [48] exemplifies this approach, achieving strong general-
ization by pre-training on 400 million image-text pairs, using
a straightforward contrastive strategy. This method enables
CLIP to excel in zero-shot transfer and cross-modal under-
standing, and has inspired several follow-up works, such as
UniCLIP [27] and DeCLIP [53]. Other MCL methods, such as
Unicoder-VL [28], UNITER [10] and PointCLIP [78], further
enhance cross-modal discrimination using negative sampling.
Building upon these foundations, recent research has in-
troduced more advanced MCL models. SLIP [42] integrates
self-supervised objectives with contrastive image-text learn-
ing, improving the quality of both unimodal and multimodal
features. FLAVA [51] jointly optimizes for unimodal, cross-
modal, and multimodal objectives, resulting in highly versatile
representations. BLIP [30] and BLIP2 [29] alternate between
captioning and retrieval in a bootstrapped pre-training frame-
work to refine vision-language alignment, while Florence [69]
unifies contrastive and generative objectives to support large-
scale, diverse visual tasks. Given CLIP’s broad influence,
we adopt it as the target model for backdoor attacks. Its
widespread deployment in mission-critical applications—e.g.,
web search [5], [37] and content moderation [73], underscores
the urgency of securing MCL models. As they become integral
to real-world systems, understanding and mitigating their
vulnerabilities is both a technical and societal imperative.

B. Backdoor Attacks in Multimodal Contrastive Learning

Backdoor attacks pose a significant threat to deep neural
networks by implanting malicious behaviors during training. In
a typical attack, an adversary poisons a small subset of training
samples by inserting a trigger pattern 7 (e.g., a patch, water-
mark, or invisible perturbation) and assigning them a target
label y;. The goal is to train the model fy to behave normally
on clean inputs (fg(z) = y for most x) while misclassifying
any triggered input as the target (fyp(x + 7) = y;). Formally,
the training set is modified as:
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Classic attacks such as BadNet [19], Blended [9], SIG [3],
and TrojanNet [54] primarily target unimodal models using
visible or subtle triggers. With the rise of MCL, attacks have
evolved to exploit cross-modal representation alignment. MCL
learns image and text encoders Ej, E7 to map inputs into
a joint embedding space, maximizing sim(F;(z), Ep(t)) for
matched pairs and minimizing it for mismatches. Modern
MCL backdoor attacks extend poisoning to multimodal data:
Carlini et al. [6] show that poisoning a small fraction of
image-text pairs can substantially degrade robustness, and that
adversaries can craft poisoned pairs (z + 7,t;) to maximize
sim(Ey(z + 7), Ep(t;)) while preserving clean performance.
Other works include BadEncoder [24], which poisons self-
supervised pre-training by embedding triggers in the im-
age encoder, and GhostEncoder [59], which leverages image
steganography for invisible trigger encoding. Mathematically,
the attacker’s objective can be described as:

Hl;aX ]EzED [Sim(EI (.I + 7'), ET(tt))] ,

poison

subject to maintaining normal performance on the clean data.

More advanced attacks further leverage MCL properties:
BadCLIP [33] introduces a dual-embedding mechanism to
align backdoored examples with target embeddings across
modalities, yielding highly natural and detection-robust trig-
gers; prompt-based attacks [1] jointly optimize visual and
textual triggers (with learnable prompts) to manipulate E7
and Ep for maximal attack success. Some methods employ
distribution-preserving or generative mechanisms to create
less detectable triggers, complicating defense. These advances
formalize MCL-specific backdoor attacks as extensions of
classical poisoning into the multimodal contrastive setting,
underscoring the urgent need for robust and effective defenses.

C. Backdoor Defenses in Multimodal Contrastive Learning

Defending against backdoor attacks has been extensively
studied in conventional unimodal deep learning. Existing de-
fenses broadly fall into two categories: data-based and model-
based. Data-based methods aim to detect or purge poisoned
samples from the training set by identifying statistical anoma-
lies, unusual activation patterns [63], [16], or atypical clus-
tering behaviors [7], [55]. Model-based methods, in contrast,
operate on the model, often via reverse engineering, trigger
reconstruction, or analyzing responses to perturbed inputs [58],
[36], [21], [32], [60], [64], [56]. These techniques have proven
effective in supervised learning and significantly advanced our
understanding of backdoor mechanisms.

With the growing adoption of MCL models, classical de-
fenses have been adapted to the multimodal setting. Re-
cent MCL-specific proposals incorporate fine-tuning, self-
supervised learning objectives, or multimodal data augmenta-
tion to mitigate backdoor threats [2], [52], [74]. Others, such as
RoCLIP [67] and SafeCLIP [66], target the pre-training stage
by filtering potentially poisoned image—text pairs. Despite

promising results, these methods typically rely on strong
assumptions, e.g., knowledge of the attacker’s target label,
partial access to poisoned data, or auxiliary side information,
which rarely hold in real-world deployments.

In practice, defenders rarely have such privileged infor-
mation and often possess only the potentially compromised
model. This exposes a key limitation: existing MCL back-
door defenses, although effective under idealized assumptions,
remain fragile under realistic constraints. Developing robust
and assumption-free defenses, particularly for the common
scenario in which the defender has only the suspect model,
therefore remains an open and pressing challenge. This gap
motivates our work.

D. Universal Adversarial Perturbation

Adversarial examples reveal that deep neural networks are
highly sensitive to crafted perturbations: even minor, imper-
ceptible input modifications can induce misclassification [26],
[18], [71], [22]. Conventional attacks are typically per-sample,
generating a unique perturbation per input, often to steer
predictions toward a specific (target) class. These have been
widely explored in image and text domains, ranging from
global perturbations to targeted synonym substitutions.

In contrast, universal adversarial perturbations (UAPs) [31],
[35], [70] seek a single, input-agnostic perturbation r that
consistently misleads the model across a broad set of inputs.
UAPs exist in both imperceptible global (perturbation-based)
and localized visible (patch-based) forms. Because they exploit
systemic vulnerabilities in a model’s decision boundaries,
UAPs pose a practical threat, particularly in practice scenarios
where per-sample attack generation is infeasible.

For multimodal models like CLIP, UAPs aim to disrupt
cross-modal alignment between images and text. Let r be the
universal image perturbation to be learned. The goal is to push
the perturbed image embedding closer to the text embedding
of an incorrect class and farther from that of its true class. A
representative method, AdvCLIP [76], formulates this as

= L 1
vt = arg max uar(7), )]

where

ﬁuAP('f') = ]EmND, y=class(x) |:r1£1£;( sim (EI (x + 'I’), ET (tk))
—sim (E](.%‘ +7), ET(%))} ,
2
AdvCLIP further shows that such adversarial patches transfer
across diverse downstream tasks by consistently corrupting
CLIP’s shared feature space.

In this work, we observe that, on backdoored models,
UAPs and backdoor samples often exhibit highly similar
prediction behaviors, frequently causing the model to prefer
the same target class. This behavioral correlation serves as a
key analytical lever in our method: by exploiting the prediction
similarity between UAP- and trigger-induced inputs, we can
efficiently reveal and localize backdoor vulnerabilities in MCL
models.
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Fig. 3: Image-text similarity shift: backdoor and adversarial
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ITII. INVERTUNE: DETAILED CONSTRUCTION

We first introduce the threat model considered in this work.
As illustrated in Figure 1, under this threat model, InverTune
mitigates backdoor attacks in MCL models through a three-
step process: adversarial perturbation-based target identifica-
tion, trigger inversion, and activation tuning.

A. Threat Model

Attacker. We follow the SOTA settings [33] for backdoor
attacks in MCL models, specifically targeting the vision en-
coder. We assume that the attacker can construct a poisoned
fine-tuning dataset and knows the model architecture and
parameters. The attacker’s goal is to implant a backdoor into
the pre-trained CLIP model such that the model behaves
normally on clean inputs but outputs incorrect results when
exposed to inputs with triggers. To achieve this, the attacker
injects a small portion of backdoor samples into the fine-
tuning dataset, introducing visual triggers. The attacker then
fine-tunes the pre-trained model using this poisoned dataset,
manipulating the model’s responses to visual triggers. Once
the vision encoder is backdoored, the attacker has no control
over downstream applications or tasks that use the model.
Defender. To conduct a practical defense, we assume that
the defender has no access to the pretraining dataset or the
poisoned fine-tuning dataset, and is unaware of the backdoor
attack’s target label. Furthermore, the defender either has no
access to the full clean dataset or only possesses a limited
amount of clean data. The primary goal of the defender is
to neutralize the backdoors while maintaining the model’s
original performance on clean data.

B. Target Identification

Recent studies [41], [45] reveal that backdoored models
exhibit distinct characteristics in feature representation and
vulnerability within target classes. Unimodal backdoored mod-
els establish strong associations between target class labels
and both robust features and backdoor features. Hence, clean
and backdoor samples of the target class cluster closely
in the latent space. Besides, untargeted adversarial attacks
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Fig. 4: Similarity matrices between image and text features
under different attack scenarios.

would inadvertently exploit backdoor pathways, causing the
optimization process for generating adversarial perturbations
to lean toward converging on backdoor triggers and resulting
in attack outcomes that disproportionately favor the backdoor
target label. In contrast, clean models exhibit approximately
uniform label distribution for adversarial examples. This phe-
nomenon has motivated backdoor defense strategies that lever-
age adversarial example analysis for trigger inversion. In the
MCL domain, Kuang et al. [25] directly utilize the insight to
optimize universal adversarial perturbation followed by anti-
learning purification. However, their defensive performance is
far from satisfactory.

Inspired by the above finding and result, we try to under-
stand how the backdoor affects the target class in the MCL
model. To achieve this, we take a SOTA MCL backdoor
attack method, BadCLIP, as an example. Specifically, we
visualize the visual encoder features of backdoor samples,
adversarial examples generated using AdvCLIP [76], and clean
images from 10 randomly selected categories, including the
target category. Based on Figure 2, we find new observations
different from those in the unimodal model.

Observation I

Backdoor samples form distinct clusters rather than
merging with target class features.

In Figure 2a, for the unattacked clean model, the features
extracted from samples with and without triggers completely
overlap, indicating that triggers do not cause feature deviation
in the clean model. Meanwhile, the UAP samples generated
for the clean model form a separate cluster, which is far
from the feature cluster of clean samples. Looking back at
the backdoored model in Figure 2b, we find that although
BadCLIP’s dual-embedding optimization reduces the visual
embedding distance between backdoor samples and target
class samples, samples with triggers form a new cluster in
visual features and do not become closer to the target class
samples. Moreover, by observing adversarial examples, we
also find similar results. To understand it more, we calcu-
late the similarity between backdoor samples and adversarial



examples, as shown in Figure 3 and Figure 4. Based on all
results, we notice another observation.

Observation I1

Adversarial attacks tend to exploit backdoor-induced
weaknesses rather than direct trigger mimicry.

Since adversarial examples and backdoor samples remain
significantly distant in terms of feature space, this suggests
that adversarial examples do not directly mimic the features
of backdoor samples. Based on Figure 4, we can find that
most adversarial examples have higher similarity with the
text features of the target class, showing that the backdoor
also affects the adversarial attacks. This suggests backdoors
reconfigure multimodal decision boundaries, creating “vulner-
ability zones” that adversarial attacks preferentially exploit.
As a result, adversarial attacks are more likely to exploit
this vulnerability, causing higher confusion and increasing the
chances of misclassification into the target class. We system-
atically quantify both observations and present detailed results
in Appendix A, covering multiple attacks and architectures.

1) Theoretical Analysis: To better understand the interac-
tion between adversarial attacks and backdoor vulnerabilities
in multimodal models, we now provide a theoretical analysis
grounded in observed feature behaviors.

Assumption 1. The backdoor attack instantiates a structural
vulnerability within the model. Specifically, it creates a “short-
cut” in the embedding space corresponding to the target class
l. The infected image encoder, Ey, becomes highly sensitive to
perturbations that align with an effective feature displacement
vector, vyq, induced by the trigger Py, 4. For any image x, this
relationship can be modeled as:

Er(z + Pimg) =~ E1(z) + vpa, 3)

where the vector vyq is strongly aligned with the target text em-
bedding ET(tl). Consequently, moving any image embedding
Ej(z) along the direction of vyq is the most efficient method
to drastically increase its similarity with a text embedding,
specifically Ep(t)).

Building on this assumption, we then show that the uni-

versal adversarial perturbation implicitly aligns with the same
vulnerable direction induced by the backdoor.
Theorem 1. For a backdoored model (Er, Er) that satis-
fies Assumption 1, the universal adversarial perturbation r*
obtained by optimizing the non-targeted loss function Ly ap
will be functionally equivalent to the backdoor trigger Py, ,.
Consequently, the perturbation r* will cause arbitrary images
to be classified as the backdoor’s target class .

Proof sketch. The optimization problem seeks to maximize:

Tnax sim (E;(m +7), ET(tk)) . 4)

Due to the structural vulnerability, the similarity to the target
class t; dominates:

1’?;2;{ sim (Ej(x + ), ET(%)) 5)
~ sim (Ef(ar +7), ET(tl)) :

Thus, the optimization simplifies to:

r* &~ arg Hml\a<x5 E..p [sim (E[(x +7), ET(tl))} . (6)
T

For a comprehensive description and in-depth proof, refer
to Appendix B. A high-level illustration of this process can
also be found on the left side of Figure 1.

2) Identification Strategy: Building on these insights, we
develop a target label identification strategy through differen-
tial analysis of adversarial misclassification patterns. Specif-
ically, given a suspected backdoored model, we construct a
UAP designed to induce systematic misclassification across
all input images. The construction of the UAP is independent
of the model’s classification categories.

We then compare the model’s output distribution on UAP
samples P,y (y) against its predictions on clean samples
Piean (). The target label y; is identified as the class exhibiting
the maximum increase in prediction frequency:

Yy = arg max (Padv(y) - Pclean(y))' (7)
yey

This differential analysis isolates attack-induced bias from nat-
ural model tendencies, leveraging the intrinsic concentration
property of backdoor attacks: backdoored models consistently
steer misclassified samples toward the target label with dis-
proportionate frequency. The identified target label then serves
as the foundation for subsequent backdoor mitigation through
gradient-guided trigger inversion and activation suppression.

C. Trigger Inversion

Unlike conventional unimodal backdoor attacks that target
a specific class label, multimodal backdoor attacks in CLIP
exploit the complex cross-modal alignment between visual and
textual representations. The inversion process aims to generate
inputs that reproduce the backdoor’s behavioral effect within
this alignment space.
Multimodal Trigger Inversion Challenges. Conventional
backdoor inversion methods [58], [60] designed for classifica-
tion models cannot be directly applied to multimodal models
like CLIP for several key reasons. (1) In CLIP, backdoor at-
tacks operate by creating malicious alignments between visual
triggers and textual targets across modalities. This cross-modal
interaction is fundamentally different from the class boundary
manipulation in classification models, as it requires simul-
taneous optimization over both image and text embeddings.
(2) CLIP projects both images and text into a shared high-
dimensional embedding space, where the backdoor behavior
is determined by the alignment between these modalities. The
shared space introduces additional complexity compared to
the discrete class labels used in classification models, as the
backdoor functionality depends on the relative positions of



embeddings rather than direct class mappings. (3) CLIP’s zero-
shot capabilities [77] allow it to generalize to unseen classes
and concepts, which backdoors can exploit in ways that are not
observable in classification models. This makes it challenging
to detect and invert triggers, as the backdoor behavior may
manifest differently across various downstream tasks.
Dual-Space Trigger Optimization. To address these chal-
lenges, we propose a novel dual-space trigger inversion ap-
proach that explicitly considers both the visual embedding
space and the cross-modal alignment. Specifically, given a
clean input image z, we parameterize the trigger as a mask-
pattern pair (m, timg), Where the backdoor sample Z is gener-
ated via element-wise composition:

T=m0Otim+(1—m)Ou, (®)

where m denotes the mask, tj,e represents the trigger pat-
tern, and ® denotes element-wise multiplication. Our frame-
work integrates four synergistic loss components to ensure
precise trigger reconstruction while preserving stealthiness:
Cross-Modal Alignment, Embedding Space Preservation, Vi-
sual Similarity, and Trigger Sparsity. Detailedly, Cross-Modal
Alignment is formulated using the InfoNCE [46] loss to force
the visual trigger embeddings to align with the identified target
text y; while diverging from non-target classes. The contrastive
loss can be expressed as:
exp(sim(E;(Z), Er(y:))/7)

3 exp(sim(Ey (%), Br(y;))/7)’
where E; and Er are the image and text encoders of the
suspected model, y; iterates over all class prompts including
the target, 7 is the temperature parameter controlling the
sharpness of the distribution, set to 0.07 as validated in prior
works [48], [62], and N is the number of considered classes.
Then we employ the embedding space preservation loss to
prevent backdoor samples from excessively shifting toward
the target class’s textual embedding, thereby preserving the
embedding structure and maintaining a stable data distribution
to safeguard generalization. It is formulated as follows:

Er(z)  Ei(x)
IEL@)[l2" | Er(2)]2
where D(-) means a distance function. Here we employ the
widely used Ls-norm distance, which provides stable gradient
behavior and effectively captures pixel-level deviations during
inversion. Considering the attacker’s goal, where the backdoor
sample must remain visually similar to the original, we intro-
duce a visual similarity loss as follows:

Lgm = 1 — SSIM(Z, z),

L‘align = - 1Og
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Lemb = D( )7 (10)

(11

where SSIM(:) function computes the structural similarity
between two given images [61]. Although the loss function
Lsim can make the backdoor sample as similar as possible to
the original sample, it does not ensure the imperceptibility
of the backdoor trigger. Therefore, we introduce the trigger
sparsity loss to further constrain the trigger as follows:

£mask = ||m||1 (12)

To obtain the trigger pattern and mask, we optimize the four
loss functions concurrently. Therefore, the total loss can be
written as the weighted combination of these objectives:

‘Cinver = )\Lcalign + )\2£emb + /\3£sim + >\4£mask7 (13)

where A1, A2, A3, and A4 are weighting coefficients.

D. Activation Tuning

Building upon the inverted trigger obtained in Section
III-C, we propose an activation-based fine-tuning strategy
specifically tailored for MCL models like CLIP. This approach
leverages the unique activation patterns induced by backdoor
triggers in the shared embedding space of multimodal models.
Key Insight. Backdoor triggers in the MCL model exploit the
cross-modal alignment mechanism, creating distinct activation
signatures in specific layers. By identifying and selectively
fine-tuning critical neurons, we can neutralize the backdoor
while preserving the multimodal capabilities of the model.
Layer Selection. Inspired by prior findings [17], [36] in CNN
architectures, where backdoor patterns predominantly affect
deeper layers, we first identify responsive layers to backdoor
activation in MCL models. For each layer, we quantify back-
door sensitivity through normalized activation divergence:

diff — ”,uclean - ,utriggeredHZ
H/J'clean HQ

where ficean and fiyiggerea Mean the average activations of
clean and triggered inputs, respectively. Then, we compute the
mean and standard deviation of activation differences across
all layers. The layers with activation differences exceeding the
mean by more than one standard deviation will be treated as
backdoor-related. The threshold serves as a coarse heuristic
to emphasize layers with salient activation shifts, while its
specific value has limited influence on subsequent clustering.
Within the critical layers, we analyze individual neuron acti-
vation variances. Note that identifying only the neurons in the
backdoor-related layer greatly reduces the time and resource
overhead compared to identifying all neurons once.
Critical Neuron Identification. We identify critical neurons
by first measuring the impact of the trigger on layer activa-
tions. For each selected layer, we calculate the mean activation
difference between the clean and trigger-affected inputs. Then,
we apply K-means clustering [38] on the activation differences
to group neurons with similar response patterns. Clustering
helps address the potential variability in neuron responses. In-
stead of simply selecting the neurons with the largest activation
difference, K-means clustering groups neurons with similar
response patterns, ensuring that the neurons we capture share
a common sensitivity to the backdoor.
Fine-Tuning Process. Following neuron identification, we
implement targeted fine-tuning to eliminate backdoor func-
tionality while preserving clean-task performance. Specifically,
we introduce an activation alignment loss to force backdoor-
sensitive neurons to exhibit similar activation patterns for clean
and triggered samples:

. (14)

_ 2 : % ) 2
£activation - ||aclean - atriggeredHQ'
i€critical

15)



Algorithm 1 Activation Tuning for Backdoor Mitigation

1: Input: Backdoored CLIP model F' (E;, Er); Inverted
trigger (m,timg); Clean batch {z1,...,xp}; Layers L;
Parameter 3

Output: Fine-tuned model with neutralized backdoor
Phase 1: Identify Critical Layers

Compute clean activations {AL. 1} for [ € £ using {z;}
Generate triggered images {Z; <~ mOtimg+(1—m)Ox;}
for z; € {z1,...,xp}

6: Compute triggered activations { Al ,ereq} using {Z:}

7: for each [ € L do |
8
9

diff «— ([ mean(Al.,,) —mean( Al uerea) ll2

: end for
10: Lesitical < {1 € £ | diff' > mean({diff'}) + std({diff'})}
11: Phase 2: Identify Critical Neurons
12: for each | € L tca do
13: Al ‘mean(Aélean) - mean(Airiggered”
14: Apply K-means (k = 2) to Al select cluster C!,;
with largest centroid
15:  Create neuron mask M! for C!.. .
16: end for
17: Phase 3: Selective Fine-tuning
18: Initialize F’ + F, create parameter masks from {M'}
19: Set optimizer with masked gradients
20: for each training step do
21: Use {x1,...,2p} and {Z;}

‘ | mean (Aélczm ) ‘ | 2

22: Lactivation < Zleﬁcm,ml H (ailean © ‘]L[l) - (a_iriggcred © Ml) H%
230 Lpmesene ¢ [[SIm(Er(2;), Er(y:)) — sim(E}" (), Er(ys))[I3
24: Etune < Eactivation + B : Epreserve

25: Update critical neuron parameters

26: end for

27: return I’

This suppresses backdoor-triggered activation spikes. More-
over, to maintain original vision-language alignment capabil-
ity, we introduce a cross-modal consistency loss.

Epreserve = ||SlIIl(E[ (%), ET(y))

. ori (16)
— sim(E7™(2), Er(y))|l3,

where E9" represents the original backdoored encoders prior

to fine-tuning. This function forces the fine-tuned model to
have similar normal functions to the original model. To achieve
both purposes, the optimization objective becomes as:

Etune = £activation + 5 Epreservey (17)
where (3 is to balance the two objectives. Note that, we apply
neuron masks during gradient updates to restrict fine-tuning
to those critical neurons. This targeted fine-tuning minimizes
disruption to the model’s overall performance while effectively
mitigating the backdoor. The overall Activation Tuning process
can be found in Algorithm 1.

IV. EXPERIMENT

A. Experiment Setup

Models. We adopt OpenAl’s open-source CLIP model [48]
as our pretrained base, using ResNet-50 (RN50) as the de-
fault backbone architecture. For a comprehensive evaluation,
we extend our analysis to RN101, ViT-B/16, and ViT-B/32
architectures in Section V-A.

Datasets. Following the prior work [33], we use a 500K
subset of CC3M [50] for poisoning the clean CLIP model.
The evaluation framework covers two key tasks: zero-shot
classification on ImageNet-1K validation set [49] and image-
to-text retrieval on Microsoft COCO 2017 [34].

Backdoor Attacks. We evaluate our defense method against
four representative unimodal backdoor attack methods: Bad-
Net [19], Blended [9], SIG [3], and WaNet [43]. Additionally,
we include one self-supervised learning backdoor attack on a
pretrained encoder, BadEncoder [24]. BadEncoder targets only
the image encoder, enabling evaluation of the generalization
of InverTune beyond CLIP. We also include the SOTA CLIP-
specific backdoor attack, BadCLIP [33]. We randomly select
“mushroom” as the target label. Experiments with other target
labels are presented in Section V-A. Following the settings of
[33], we set the poisoning rate to 0.3%. Detailed configurations
for various attacks are provided in Appendix C. Additionally,
the results on more complex attack scenarios, such as multiple
backdoors, varying poisoning rates, and performance on clean
models, can be found in Appendix F.

Baseline Defense. We compare InverTune against several ad-
vanced backdoor defense techniques, including CleanCLIP [2],
CleanerCLIP [65], PAR [52], as well as Fine-Tuning (FT) [2]
as the baselines. Specific details of different defense settings
can be found in Appendix D.

Evaluation Metrics. We evaluate the effectiveness of our
method using the following metrics. (1) Clean Accuracy (CA):
For zero-shot classification tasks, CA quantifies the model’s
Top-1 prediction accuracy on clean inputs. For image-to-text
retrieval scenarios, it measures the proportion of clean queries
successfully matching ground-truth captions within the Top-10
retrieved results. Higher CA values indicate better preservation
of the model’s normal capabilities. (2) Attack Success Rate
(ASR): For classification, ASR represents the percentage of
triggered samples misclassified to target labels. For image-to-
text retrieval tasks, ASR is the percentage of triggered inputs
that retrieve target-related text in the Top-10 results. Lower
ASR scores demonstrate superior backdoor mitigation.
Implementation Details. For the trigger inversion, we set
A1 = 5.0, Ay = 0.5, A3 = 1.0, and Ay = 0.01 for the
trigger inversion loss in Eq. (13). These coefficients corre-
spond to distinct components of the inversion objective and
operate on normalized losses, allowing InverTune to maintain
stable optimization without requiring adaptive weighting. For
activation tuning, we set 8 = 0.5 for the loss in Eq. (17),
use a learning rate of 8 x 107°, and train for 200 steps. We
further clarify the roles of these coefficients and their low
sensitivity in Section VI-A. In terms of data usage, InverTune



TABLE I: Defensive performance (%) of InverTune vs. baseline defenses across tasks and backdoor attacks. The optimal ASR
and CA values are highlighted in bold, while the second-best results are indicated with underlining.

Methods \ BadNet Blended SIG WaNet BadEncoder BadCLIP
| CAT ASR] CAtT ASR] CAT ASR| CA+ ASR, CAT ASR] CAtT ASR]
No Defense 58.21 87.73 58.74 96.35 58.30 82.57 58.64 96.18 53.10 80.13 58.32 98.36
k] FT 54.13 33.67 54.64 64.10  54.36 55.59 54.59 58.38 55.98 19.71 54.16 86.03
%n CleanCLIP 51.92 4.62 51.38 52.36 51.42 36.72 51.45 24.98 55.29 5.21 54.18 75.17
s CleanerCLIP 51.91 3.87 52.36 11.38 52.56 9.89 51.57 10.94 52.11 0.19 51.74 21.16
E PAR 53.57 6.03 54.18 0.16 51.96 2294  53.89 4.51 54.25 2.27 50.95 17.78
InverTune (Ours) | 56.12 0.02 53.50 0.14 54.27 0.28 54.76 0.09 55.84 1.02 55.25 0.49
No Defense 69.94 95.88 71.20 99.76  70.28 97.42 71.16 99.60  72.07 98.13 71.32  99.28
8 FT 68.83 39.09 69.53 67.51 68.92 63.67 69.70 70.41 68.77 25.47 68.25 88.54
o CleanCLIP 65.03 14.17 63.70 55.47 64.09 38.71 67.61 64.83 67.56 13.42 66.53 84.55
8 CleanerCLIP 65.73 7.94 68.82 14.93 65.98 14.31 64.67 15.01 66.39 341 65.21 30.41
> PAR 68.42 1543 68.11 0.37 66.64 31.09 68.28 7.83 67.42 4.30 65.73 16.47
InverTune (Ours) | 71.12 0.04 69.16 0.52 69.94 1.12 68.98 0.48 68.02 1.73 69.58 0.68

employs a 50K subset of the ImageNet-1K training set [49],
which is only 1/10 the size of the data used by other baselines.
In the activation tuning step, we require only a single batch
(predefined as 64) of arbitrary clean data. All experiments were
conducted on an Ubuntu 20.04 system with a 20-core Intel
CPU. The models were trained on a single NVIDIA RTX
4090 GPU. Detailed intermediate results and computational
costs are provided in Appendix E.

B. InverTune Performance

Defensive Performance. The experimental results in Table I
demonstrate InverTune’s superior defensive capabilities across
multiple attack scenarios, substantially surpassing existing
baselines by achieving remarkably low ASR. Our method
achieves SOTA performance by reducing the ASR to below
0.5% on both the ImageNet and MSCOCO datasets in the
vast majority of attack scenarios, significantly outperforming
existing defense baselines. For instance, against conventional
unimodal attacks such as BadNet and Blended, while ex-
isting defense mechanisms can mitigate these attacks to a
certain extent, InverTune delivers more robust results. Notably,
when defending against the sophisticated BadCLIP attack,
the limitations of existing baseline methods become apparent.
Specifically, conventional methods like FT and CleanCLIP
remain vulnerable, with ASR exceeding 75%. Although more
advanced defenses like CleanerCLIP and PAR show partial
mitigation, they still result in unacceptably high residual
ASR, such as those greater than 15%. In contrast, InverTune
maintains its exceptional defensive prowess.

Model Performance and Utility Preservation. Beyond its
formidable defensive capabilities, InverTune also demonstrates
exceptional preservation of model utility, maintaining high CA
across diverse scenarios. This performance, detailed in Table I,
sets it apart from baseline methods that often sacrifice utility
for security. An evaluation across our 12 experimental con-
figurations (2 tasks x 6 attack methods) reveals our method’s
consistent, high-utility performance. InverTune achieves either
the highest CA in 6 cases or the second-highest in 5 cases,
placing it in the top tier for utility in 11 out of 12 total settings.
This highlights its minimal disruption to the model’s original

Original = Inversed
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prediction frequency. trigger.

Fig. 5: Results of backdoor target identification and trigger
inversion, with mushroom as the target label.

capabilities on clean data. Notably, InverTune is unique in its
ability to simultaneously achieve SOTA defense (lowest ASR)
and optimal model utility (highest CA). This “dual optimum”
is demonstrated consistently under both the BadNet and the
highly sophisticated BadCLIP attacks.

This consistent performance shows InverTune’s ability to
establish a superior security-utility trade-off. Unlike methods
like FT, which preserves CA at the cost of high residual
ASR (e.g., 86.03% ASR vs. BadCLIP), or defenses like
CleanerCLIP that aggressively reduce ASR but impair CA
(e.g., 52.11% CA vs. BadEncoder), InverTune effectively
neutralizes backdoors with minimal collateral damage. We
attribute this superior balance to InverTune’s activation tuning,
which is based on inverted triggers, allowing it to avoid the
indiscriminate feature damage often caused by other defenses.
Efficacy of Backdoor Label Identification and Inversion.
InverTune consists of three critical steps: target identification,
trigger inversion, and activation tuning. As established in the
preceding sections, the final step, activation tuning, achieves
an excellent balance between defensive efficacy and utility.
This success, however, is contingent upon the effectiveness of
the first two foundational steps. We now present an analysis
to demonstrate their individual efficacy.

For the first step, target identification, we apply universal ad-
versarial perturbation to clean examples and feed them into the
backdoored model with “mushroom” as the designated target
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Fig. 6: Visualization of backdoor samples (top) and trigger-inverted counterparts (bottom).

class. As shown in Figure 5a, this process induces a dramatic
shift in the model’s prediction distribution. Specifically, the
classification frequency for the “mushroom” class exhibits a
97.23% increase compared to that of clean samples. Notably,
the frequency for ‘““agaric”, a visually similar subspecies of
mushroom, experiences only a marginal 2.13% rise. This
stark divergence in the prediction distribution unequivocally
identifies the target label, confirming the effectiveness of our
identification strategy.

For the second step, we reconstruct the trigger pattern. We
argue that the objective here is not to physically replicate the
original trigger but to synthesize a pattern that can activate the
backdoor pathways for our defense. As illustrated in Figure 6,
which compares images with the original backdoor trigger
against those with our inverted trigger, our four-component
loss constraint enables the successful inversion of the trigger
from the backdoored model. For attacks employing regular
trigger patterns, such as BadNet, BadEncoder, and BadCLIP,
it is evident that InverTune successfully reverse-engineers a
trigger-like artifact at the expected image location (i.e., the
lower-right corner). For other attack types, our method also
synthesizes irregular yet distinct inverted patterns. Critically,
the functional equivalence of our inverted trigger is validated
in Figure 5b, which shows that it achieves a level of attack be-
havior alignment nearly identical to the original pattern. These
observations collectively indicate that InverTune can reliably
recover a functionally equivalent trigger from a backdoored
model, which is a critical prerequisite for the subsequent
successful removal of the backdoor.

C. Analysis of Internal Representation Changes

Beyond evaluating standard defense metrics, we further
investigate how InverTune alters the model’s internal rep-
resentations. Using the BadCLIP attack on ImageNet as a
case study, we visualize the t-SNE distributions of backdoor
and UAP samples as processed by the InverTune-sanitized
model (Figure 7a). The figure reveals two key observations.
First, the original backdoor attack is completely neutralized;
the backdoor samples are now correctly classified into their
original, benign classes. Second, the Universal Adversarial
Perturbations (UAPs) crafted for the original backdoored
model are no longer effective against the sanitized model.
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Fig. 7: The effect of InverTune on model internal representa-
tions and prediction similarity.

TABLE II: Performance comparison of InverTune and baseline
defenses against BadCLIP under different target labels.

Target Label | Banana Lemon Ski
| CAT ASR] CA1T ASR| CA1T ASR|
No Defense 5820 98.16 58.11 97.16 58.31 98.46
FT 54.77 83.14 5493 89.65 54.34 79.70
CleanCLIP 5348 7485 5450 72.82 5394 77.75
CleanerCLIP 52.09 2041 51.69 2536 51.67 16.16
PAR 53.64 17.65 5391 36.07 53.62 11.72

InverTune (Ours) | 57.01 1.14 55.81 1.01 56.93 1.51

Samples from various classes, even when perturbed by the
UAP, are correctly classified.

Furthermore, we analyze the average cosine similarity
among class representations before and after sanitization.
Figure 7b summarizes the results for 50 classes neighboring
the target class (label 947, “mushroom”). As depicted, the
backdoored model exhibits a significant spike in similarity at
the target label 947, an anomaly indicative of the backdoor. In
contrast, the InverTune-sanitized model successfully mitigates
this anomaly, restoring the similarity values to a normal and
consistent level of approximately 0.1 across all classes.

Collectively, these findings from both the t-SNE visualiza-
tions and the cosine similarity analysis provide compelling
evidence that InverTune effectively removes the backdoor by
rectifying the parameters of critical model layers, thereby
demonstrating its efficacy.



TABLE III: Performance comparison of defense methods
across different model architectures.

TABLE 1V: Defense effectiveness of InverTune under different
labels when the target label is set to mushroom.

RN101 ViT-B/16 ViT-B/32 Rank Label Metric | Top-1 Top-3 Top-5 Top-10
Backbone
CAT ASR] CAT ASR] CA1T ASR ASR || 049 1.17 1.67  2.60
[cat L4 1 + T ¥ I mushroom "X 1 5505 7645 8345 90.00
No Defense | 59.17 83.17 6678 99.90 60.97 99.23
FT 5685 5829 63.01 8375 5472 916l 2 agric “A Y| 00 B gho0 o0
CleanCLIP | 56.14 4253 6191 8033 53.16 79.36 : : : :
CleanerCLIP | 5276 325 5881 31.17 53.64 64.60 ; illop  ASR L[ 4938 5514 5712 5956
PAR 5560 1.17 5798 18.14 50.82 7637 CA1[5599 77.02 8384 90.45
InverTune (Ours) | 55.76 1.00  59.80 0.09 54.83 0.17 - p ASR || 5756 6224 6390 65.85
cardigan oA 4 156.19 7732 83.99 90.53
V. IN-DEPTH ANALYSIS ASR | | 7888 8235 8346 84.98
Random  bee CAT|5648 77.60 8437 9075

While Section IV-B presented a comprehensive evaluation
of InverTune’s overall effectiveness, this section delves deeper
into its operational robustness across various configurations.
We methodically examine its resilience against variations in
target labels, model architectures, and potential inaccuracies in
target identification. For a focused and rigorous analysis, we
center our experiments on the BadCLIP attack, as it represents
the most sophisticated threat and poses the greatest challenge
to existing defenses.

A. Robustness to Target Label Variation

To assess the generalizability of our defense, we evaluate
InverTune’s performance when the attack’s target label is
varied. We train distinct BadCLIP models targeting “banana”,
“lemon”, and “ski”, each with a unique trigger pattern. As
illustrated in Table II, conventional baselines like FT and
CleanCLIP remain vulnerable regardless of the target label.
Furthermore, the defensive efficacy of more advanced methods
like CleanerCLIP and PAR proves to be inconsistent and
sensitive to the target choice. For instance, when the target
switches from “ski” to “lemon”, the residual ASR for Clean-
erCLIP increases from 16.16% to 25.36%, and PAR’s ASR
surges from 11.72% to 36.07%. In stark contrast, InverTune
demonstrates remarkable stability, consistently achieving su-
perior performance across all target labels with an ASR of
approximately 1% while maintaining high CA. These results
robustly demonstrate that InverTune’s defense mechanism is
not contingent on the specific target class, highlighting its
strong generalization capabilities.

B. Robustness to Model Architecture

To evaluate the robustness of InverTune across different
model architectures, we assess its performance on a diverse
set of backbones, including both CNN-based (RN101) and
Transformer-based (ViT-B/16, ViT-B/32) models. Addition-
ally, these architectures naturally exhibit different initial CA,
reflecting their inherent design differences. As shown in Ta-
ble III, the choice of architecture has a significant impact
on the effectiveness of baseline defenses, with performance
varying dramatically across architectures. For example, PAR
demonstrates a severe performance drop when moving from
RN101 to ViT-B/32, with its ASR rising sharply from 1.17%
to 76.37%, and its CA declining from 55.60% to 50.82%. Sim-
ilarly, CleanerCLIP shows highly inconsistent results, with its
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ASR fluctuating between 3.25% and 64.60% across different
model architectures.

In contrast, InverTune shows exceptional stability and main-
tains its superior defensive capability across all evaluated
models. It consistently achieves an average ASR of merely
1.22% against BadCLIP attacks while preserving competitive
CA. This unwavering performance across both CNN and
Transformer families validates the architecture-agnostic nature
of our method. We attribute this robustness to InverTune’s core
paradigm of backdoor inversion, which directly targets funda-
mental cross-modal activation patterns rather than relying on
architecture-specific features or idiosyncrasies.

C. Sensitivity to Target Identification Accuracy

The efficacy of the InverTune framework is predicated on
the accurate identification of the backdoor’s target label. While
our identification mechanism, as shown in Figure 5a, unequiv-
ocally pinpoints the correct label (e.g., a 97.23% frequency
surge for mushroom), it is crucial to assess the defense’s sensi-
tivity to this initial step. To this end, we conduct an experiment
to simulate scenarios of imperfect or incorrect identification.
We use the backdoored model targeting mushroom and ex-
ecute our defense pipeline assuming different target labels:
the true target (mushroom), the top-ranked incorrect labels
from our identification step (the 2nd, 3rd, and 5th ranked
labels), and a semantically unrelated, randomly chosen label
(bee). The results, presented in Table IV, are highly revealing.
Remarkably, when the defense is guided by the second-ranked
label (agaric), it achieves outstanding effectiveness, with an
ASR only marginally higher than when using the true target,
and in some cases, even a slightly improved CA. However,
as the semantic relevance of the guiding label decreases
(i.e., using the 3rd-ranked maillot or Sth-ranked cardigan),
the defensive performance systematically degrades. Finally,
when a completely random label (bee) is used, the defense
is rendered largely ineffective, with the Top-1 ASR remaining
at an unacceptable 78.88%.

This phenomenon reveals several important characteristics
of the InverTune: (1) Robustness of InverTune: Under our
ranking strategy, labels with different ranks all contribute
to some extent to the defense, though this effect gradually
diminishes as the rank decreases. Notably, using the second-



TABLE V: Influence of A parameters on trigger-inversion ASR.
Attacks ‘ M ‘ A2 ‘ A3 ‘ A4

\ 0.0 1.0 5.0 10.0 20.0 \ 0.0 0.1 0.5 1.0 5.0 \ 0.0 0.5 1.0 50 10.0 \0,005 0.01 0.05 0.1

BadNet 0.05 51.97 83.73 84.84 87.67|86.63 87.11 83.73 83.86 60.86|90.73 90.52 83.73 84.53 65.42|81.70 83.73 48.75 43.32
Blended |0.02 37.09 90.21 92.09 92.62|24.97 86.72 90.21 89.57 62.33|13.83 91.83 90.21 53.17 33.3893.97 90.21 20.02 10.02
SIG 0.02 39.84 76.38 78.84 79.29 |10.05 73.62 76.38 71.18 71.74| 7.20 80.02 76.38 41.74 20.08 | 80.10 76.38 12.44 0.05
WaNet 0.04 60.81 90.81 93.96 89.83|37.33 71.53 90.81 87.15 81.04 |38.34 92.16 90.81 78.37 37.02|92.38 90.81 30.06 20.03
BadEncoder | 0.83 68.72 75.58 77.43 78.59|57.99 75.13 75.58 70.76 70.23|75.93 75.04 75.58 66.64 65.38 |77.13 75.58 65.23 62.52
BadCLIP |0.01 73.38 89.72 87.38 89.48 |46.86 79.89 89.72 65.08 57.17 | 61.52 69.10 89.72 73.54 69.74 91.13 89.72 59.86 20.83
TABLE VI: Adaptive attack evaluation results. Lanti-inv includes three aspects: feature-space perturbation, se-
Attacke No Defense Step 1 Step 2 Step 3 mantic copfusiop, anq reduction of target .conﬁdence, whic.h
CAT ASRL D Inversion ASR 1 CA 1 ASR | together hinder 1nv§r510n-based re':constructlo.n. However, this
approach faces an inherent conflict: enhancing backdoor ef-

Adap-1 5820  98.58 v 95.77 5758  0.13 . . . . .
Adap2 5853 9934 v 63.51 57.63 0.01 fectiveness requires a strong trigger—target correlation, while

ranked label (agaric) achieves nearly the same effectiveness
as the true target label, which demonstrates the robustness of
our method. (2) Importance of Target Identification: While
highly ranked labels can still provide some defense, the overall
effectiveness drops sharply when a random label such as bee
is chosen as the target, indicating that the subsequent backdoor
removal step relies heavily on accurate label identification and
underscoring the importance of correct target localization. (3)
Applicability in Open-Vocabulary Scenarios: In this paper,
we use the ImageNet-1K vocabulary as our label set for
identification. Leveraging the hierarchical semantic structure
of WordNet [39], these 1,000 classes not only cover the vast
majority of real-world scenarios but also form a semantically
dense network that minimizes the likelihood of true target
labels falling outside this set. Nevertheless, should such cases
occur (though rare), the inherent semantic within WordNet
ensures effective mitigation, as exemplified by the agaric-
mushroom case: both belong to the same fungal category and
appear highly similar to non-experts. This validates that the 1K
classes constitute a sufficiently comprehensive base set; when
encountering a target label outside this range, our method
can leverage WordNet’s taxonomic relationships to identify
a highly similar class within the 1K set, thereby enabling
effective backdoor removal even in such edge cases.

D. Adaptive Attack Analysis

To further assess the robustness of InverTune, we consider
a fully adaptive adversary who is aware of all defense details,
including the inversion loss (Eq. (13)), the associated hyperpa-
rameters, and the optimization pipeline. Under this stringent
threat model, the attacker can tailor its strategy to directly
counteract the mechanisms employed by InverTune.

We consider two adaptive attack strategies. The first, Adap-
1, adopts a multi-objective optimization combining the original
BadCLIP [33] triplet loss Lpackdoor With an anti-inversion
ObjCCtiVCZ Ladaptive = Lbackdoor + A Lami-inv- HCI'C, Lanti-inv
replicates InverTune’s inversion process by performing gradi-
ent descent on the defender’s loss while maximizing inversion
difficulty. A balances backdoor effectiveness and resistance to
inversion attacks, and we set A = 0.002 in our experiments.
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improving inversion resistance necessitates weakening it. The
second strategy, Adap-2, termed pure anti-inversion optimiza-
tion, uses Laniny alone, omitting Lpackdoor- It focuses purely
on defense evasion while relying on downstream fine-tuning
to recover attack utility.

As shown in Table VI, both attacks achieve high ASR and a
CA of around 58% without any defense. With InverTune, the
target class remains accurately identifiable. Step 2 inversion
highlights a clear distinction: Adap-1 maintains a 95.77%
ASR, indicating precise trigger inversion, whereas Adap-2
drops to 63.51%, demonstrating that the adaptive attack par-
tially evades inversion. Nonetheless, step 3 activation tuning
effectively neutralizes both attacks, reducing ASR to near zero
while keeping CA at 57~58%. These results show that even
partially inverted triggers are sufficient for purification, con-
firming the robustness of InverTune against adaptive attacks.

VI. ABLATION STUDY
A. Influence of Hyperparameters

In this section, we study the impact of hyperparameters.
As formulated in Eq. (13), the coefficients A\;-A4 control the
relative importance of four loss components during backdoor
inversion, while 5 in Eq. (17) governs the trade-off between
model cleanliness and usability during the elimination phase.

Our experiments reveal several important patterns in hyper-
parameter sensitivity. For the inversion-related hyperparame-
ters (Table V), we find that )\, weighting the contrastive learn-
ing loss, plays a pivotal role in reducing ASR, though with
diminishing returns beyond A\; = 5.0 as trigger quality begins
to degrade. The visual feature consistency term, controlled by
A2, exhibits a distinct optimal range; insufficient weighting
(A2 = 0.1) fails to generate functionally effective triggers
for complex attacks like SIG, WaNet, and BadCLIP, whereas
excessive weighting (A2 > 1.0) over-constrains the feature
space and harms ASR. Optimal performance is achieved with
A3 = 1.0 and A4 = 0.01, which strikes an effective balance
between trigger stealth and efficacy. Larger values improperly
prioritize trigger minimization at the expense of adversarial
potency. Crucially, an ablation on these components confirms
their individual contributions: setting Ay, A2, or As to zero
individually results in a notable degradation of the inverted



TABLE VII: Comparison of universal adversarial perturbation (UAP) and inverted trigger (InvT) for the Activation Tuning.

Methods BadNet Blended SIG WaNet BadEncoder BadCLIP
CA1t ASR| CAtT ASR| CAtT ASR| CAT ASR|] CA1T ASR|] CA1T ASR]
Top-1 UAP 5555 2324 5346 8992 5427 5891 5225 2574 5281 67.13 52.02 5433
op- InvT 56.12 0.02 5350 0.14 5427 003 5476 009 5584 0.02 5525 0.49
Ton-3 UAP 76.76 4739 7499 9549 7571 7691 73.64 5086 7467 69.76 73.42 71.15
P InvT 7724 020 7535 074 7592 010 7592 040 7705 020 7645 1.17
Top-5 UAP 83.63 5898 82.02 96.75 82.84 8216 81.05 60.76 81.73 71.04 80.80 76.18
P- InvT 8410 046 8254 147 83.04 020 83.04 0.77 8387 044 8335 1.67
Top-10 UAP 90.11 7294 89.01 98.01 89.53 87.85 88.33 7245 88.76 72.85 88.13 81.88
0p- InvT 90.56 095 8952 342 8980 041 8980 171 9037 091 90.00 2.60
. CA (%)

—o— ASR (%)
5420

54.33

33.42

71.15

76.18

0.25

0.50 0.75 1.00 1.25 1.50

Fig. 8: Influence of 5 on InéerTune’s defense effectiveness
under BadClip attack scenario.

trigger’s ASR. The case for A4, = 0 is omitted as it is an invalid
setting that prevents the trigger mask from being trained,
leading to training collapse. Collectively, these results validate
the necessity of each component in our loss formulation.

The elimination phase (Figure 8) highlights 3’s role in
balancing security and utility. At 8 = 0, prioritizing backdoor
removal, CA (0.12%) and ASR (0.004%) drop near zero,
showing the usability term in Eq. (16) is necessary. As /3 rises,
CA improves, plateauing past 0.50, while ASR jumps sharply
in 8 € [0.75,1.0] from 1.56% to 5.86%. With 8 = 0.5, ASR
stays at 0.49% and CA at 55.25%, confirming InverTune’s
stability and our loss formulation’s effectiveness.

B. The Necessity of Trigger Inversion

Our analysis in Section III-B suggests a fundamental dis-
tinction between the vulnerabilities exploited by adversarial
perturbation and backdoor triggers. While both can induce
target-class misclassification, they are mechanistically dif-
ferent. This distinction forms a central hypothesis: generic
adversarial patterns are insufficient for defense, necessitating
our specialized trigger inversion approach.

To empirically validate this, we first conduct an ablation
study comparing the complete InverTune framework (InvT)
against a variant (UAP) that omits trigger inversion and instead
uses first-stage adversarial perturbation for fine-tuning. As
shown in Table VII, InvT demonstrates overwhelming supe-
riority. Its average ASR of 0.13% (Top-1) and 1.67% (Top-
10) are orders of magnitude lower than UAP’s 53.21% and
81.00%, respectively. This performance gap highlights UAP’s
limitation: while adversarial fine-tuning can enhance general
noise robustness, it fails to neutralize the deeply embedded
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Top-1 Top-3 Top-5 Top-10

Fig. 9: Backdoor removal performance on universal adversarial
examples (UAP), targeted-label adversarial examples (AEs),
and inverted backdoor samples (InvT).

backdoor mechanism, which InverTune’s targeted approach
successfully disrupts while preserving model utility.

To test this hypothesis against a more rigorous baseline, we
replace the generic UAP with targeted adversarial examples
(AEs). Following [20], we generate PGD-based AEs aimed
at the “mushroom” class. The results in Figure 9 reveal
a clear performance hierarchy: while targeted AEs (ASR
33.42%) are more effective than UAP (ASR 54.33%), they
still fall significantly short of our method (ASR 0.49%). This
consistent trend, InvT > AEs > UAP, provides compelling
evidence that the backdoor triggers recovered via inversion
constitute a distinct phenomenon from adversarial examples.
It confirms that our specialized trigger inversion step is not
merely beneficial but is, in fact, indispensable for effective
and robust backdoor defense.

VII. CONCLUSION

In this paper, we present InverTune, a novel backdoor de-
fense framework for large-scale multimodal contrastive learn-
ing models. Our approach integrates three key components:
adversarial-based target label identification, gradient-guided
trigger inversion, and activation-aware fine-tuning. Extensive
evaluations on multiple datasets demonstrate that InverTune
achieves state-of-the-art defensive performance across diverse
attack scenarios, consistently reducing attack success rates
while maintaining model utility. Our framework significantly
enhances the robustness of multimodal models against back-
door threats, providing a practical solution for real-world
applications.
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APPENDIX A
QUANTITATIVE EVIDENCE FOR OBSERVATIONS

To provide rigorous support for our two observations (Obs.)
in Section III-B, we conduct quantitative analyses across
multiple attacks and architectures, as shown in Table VIII .

For Observation I, we measure the spatial proximity be-
tween backdoor and target-class samples. The nearest-to-target
ratio remains very low (0~0.10%), with p-values (0.63~1.0)
indicating no significant clustering. The small feature shift
(3~6%) further indicates that backdoor samples only slightly
approach target embeddings. These results confirm that MCL
backdoor attacks succeed without forming a visually coherent
cluster with the target class, highlighting the importance of
cross-modal effects rather than direct feature mimicry.

For Observation II, we analyze the relation between back-
door samples and adversarial examples via pairwise feature
and output statistics. The dispersion coefficients, measured by
the coefficient of variation (CV = 0.15~0.29), reveal substan-
tial variability in pairwise distances, especially for SIG and
BadCLIP on RN50, showing that adversarial examples do not



TABLE VIII: Quantitative results supporting Observation I and
Observation II across different attacks and architectures.

Obs. Metric BadNet SIG BadCLIP
RN50 ViT-B/32 RN50 ViT-B/32 RN50 ViT-B/32
Nearest to target (%) 0.10 0 0 0.10 0.10 0
I p-value 0.632 1.0 1.0 0.632  0.632 1.0
Feature shift (%) 6.01 5.77 3.24 3.19 4.30 5.94
II Dispersion (CV) 0.152 0212 0279 0.281 0294 0.173
KL divergence (x10™%) 3.85 1.30 2.94 1.06 0.43 2.18

converge toward trigger features. Meanwhile, their KL diver-
gences of output probabilities (0.43~3.85x10~% ) are orders
of magnitude below similarity thresholds, indicating nearly
identical prediction behaviors. Overall, the results suggest
adversarial attacks leverage backdoor-induced vulnerabilities,
traversing distinct feature-space paths yet producing identical
target predictions.

APPENDIX B
THEORETICAL ANALYSIS OF UAP CONVERGENCE

A. Proof of Theorem 1

The optimization objective is to maximize the loss function
Luap(r) as defined in Eq. (2). Let us analyze its dominant
term, maxy, sim(E;(z + 1), Er(ty)).

Due to the structural vulnerability introduced by the back-
door (Assumption 1), the model exhibits a global hypersen-
sitivity to the target text embedding Er(t;). For any small
perturbation r that shifts an image embedding even slightly
in the direction of v4, the resulting gain in similarity with
ET(tl) will be substantially greater thanthe gain in similarity
with any other text embedding Er(t;) where k # [ and k # y.

Therefore, for almost all images x« and any effective per-
turbation r, the maximization term will be dominated by the
backdoor’s target class [ as shown in Eq. (5). This is because
the backdoor has created a “path of least resistance”, making
the target class [ the easiest “wrong” class to achieve. By
substituting Eq. (5) into Eq. (2), the optimization problem for
the UAP can be simplified to approximately Eq. (6). Note that
the second term from Eq. (2), —sim(E;(z + r),ET(ty)), is
naturally suppressed when the first term is maximized and can
be omitted from this high-level analysis.

The objective in Eq. (6) is to find a single perturbation r that
systematically aligns the embeddings of all perturbed images,
E[(l' + r), with a single, fixed target vector, the backdoor’s
target text embedding Er(t;).

To achieve this, the perturbation r» must displace the ori-
gin image embeddings E;(z), which are widely distributed
throughout the embedding space, towards a common direction.
This direction is precisely the one defined by the structural
vulnerability, v,4. The optimization process will thus converge
to a solution r* that produces the effect of v,4, making r*
functionally equivalent to the original trigger P;,, .

This concludes the proof. Although UAP optimization is
nominally non-targeted, its search for a globally effective
perturbation exploits the model’s principal weakness. In a
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backdoored model, this weakness is the backdoor itself, so the
optimization effectively rediscovers it and yields a perturbation
that drives inputs to the attacker’s target class.

APPENDIX C
CONFIGURATIONS OF DIFFERENT BACKDOOR ATTACKS

For all six types of attacks, we adopt a 500K subset of
the CC3M dataset [50] as the fine-tuning dataset. All attacks
target the class “mushroom.” For attacks that require textual
descriptions, we construct them by collecting 131 mushroom-
related captions from the CC3M dataset and randomly assign-
ing them to the poisoned image samples as their corresponding
text descriptions.

o BadNet [19]: A 16 x 16 Gaussian noise patch (standard
normal distribution) is fixed to the bottom-right corner of
clean images as the trigger.

Blended [9]: A full-size trigger image (uniform distribution)
is blended with the clean image at 0.2 transparency (clean
image: 0.8).

SIG [3]: Sinusoidal noise (6 cycles/image width) is applied
along the horizontal axis, scaled to 60/255 across all RGB
channels, with pixel values clipped to [0, 1].

WaNet [43]: A warping transformation uses a distortion grid,
interpolated from a noise tensor, scaled/clipped to [—1,1],
and applied via bilinear interpolation.

BadEncoder [24]: The visual encoder is fine-tuned with a
16 x 16 pure white trigger (replacing the original trigger),
using reference and shadow datasets, without textual de-
scriptions or a poisoning rate.

BadCLIP [33]: A patch optimized for the “mushroom” label
is used, followed by a Dual-Embedding injection attack on
the clean CLIP model.

All attacks begin with the OpenAl-pretrained CLIP
model [48], fine-tuned with a learning rate of le-6, batch size
of 128, and 10 epochs to create a poisoned CLIP model.

APPENDIX D
BASELINE DEFENSE SETTINGS

All the baseline defense methods use subsets of the CC3M
dataset [50], which is the same corpus used for poisoning,
in their original setups, though the exact number of clean
samples varies slightly. For fair comparison, we standardize
the training data by using a fixed subset of 500K samples
across all methods. In contrast, InverTune requires only 50K
clean samples sourced from ImageNet, which is entirely
independent of the poisoned training corpus.

o The fine-tuning method (FT), first introduced by Clean-
CLIP [2], involves fine-tuning the model with a multimodal
contrastive loss on a clean dataset. In our experiments, we
use the official implementation provided by CleanCLIP, with
a learning rate of 4.5e-6, warmup steps of 50, batch size of
64, and 10 training epochs.

CleanCLIP [2] extends FT by adding a self-supervised loss.
Following its original setup, we set the weights of the self-
supervised loss and the contrastive loss to 1, with other
hyperparameters remaining the same as those in FT.



TABLE IX: Top-2 classes with the largest absolute increase
under adversarial attack. Clean and adversarial counts are
shown as “Clean—Adv.”.

Attack Top-1 Top-2

Class Clean—Adv. A(%) Class Clean—Adv. A(%)
BadNet mush. 18—19981 +39.93 echidna 34—11675 +23.28
Blended mush. 18—30547 +61.06 doormat 64—2442 +4.76
SIG mush. 76—18775 +37.40 agaric 14—8808 +17.59
WaNet mush. 18—13206 +26.38 agaric 60—13056 +25.99
BadEncoder mush. 422—2522 +4.20 pillow  94—384  +0.58
BadCLIP  mush. 6—48623 +97.23 agaric 67—1132 +2.13

PAR [52] adopts a custom learning rate schedule. However,
due to the increased size of the fine-tuning dataset, the orig-
inal setting does not reproduce the reported performance.
Therefore, in our experiments, we modify the start learning
rate to 3e-6 and the peak learning rate to Se-6, while keeping
all other parameters consistent with the original setup.
CleanerCLIP [65] is implemented based on CleanCLIP [2].
We follow its setup, using batch size of 64 and training for
10 epochs with the AdamW optimizer. The learning rate is
linearly warmed up over 10,000 steps, and a weight decay of
0.1 is applied. The Adam momentum factor and RMSProp
factor are set to 0.9 and 0.999, respectively, with an epsilon
of le-8. The base learning rate is set to 4.5e-6.

APPENDIX E
DETAILED RESULTS OF STEPS IN INVERTUNE

A. Target Category Identification Results for Six Attacks

We evaluate target class identification across six attack
scenarios, all using “mushroom” as the ground-truth target.
As shown in Table IX, adversarial perturbations consistently
increase the target class’s prediction frequency, with attack-
specific variations in magnitude.

The most pronounced shifts occur in BadCLIP (+97.23%),
Blended (+61.06%), BadNet (+39.33%), and SIG (+37.40%),
indicating strong target bias. Even BadEncoder (+4.20%)
shows a statistically significant increase, maintaining a 3.62-
point margin over the next most frequent class “pillow”
(+0.58%). WaNet exhibits a distinctive taxonomic vulnera-
bility, producing nearly identical increases for “mushroom”
(+26.38%) and its related class “agaric” (+25.99%), differing
by only 0.39 points. This close correspondence supports the
link between perturbation features and the backdoor’s target
semantics discussed in Section V-C.

B. Key Layers Selected in Activation Tuning

This section presents the layer selection results from the
Activation Tuning process. Because different attacks yield
similar activation patterns, we report the anomalous response
layers for four CLIP architectures under inversion triggers,
using BadCLIP as a representative example.

For ResNet-based visual encoders, which contain four resid-
ual stages, our analysis shows that backdoor sensitivity is
concentrated in the final residual layers. As shown in Table X,
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TABLE X: Layer impact for RN50 / RN101.

RN50 RN101

Layer

Impact Key Layer Impact Key Layer
visual.layerl 0.1407 No 0.1329 No
visual.layer2 0.1750 No 0.1492 No
visual.layer3 0.1435 No  0.1547 No
visual.layer4  1.3802 Yes 1.1823 Yes
Sig. Threshold 0.9914 0.8538
Mean 0.4599 0.4048
Std 0.5315 0.4490

TABLE XI: Layer impact for ViT-B/16 / ViT-B/32.

ViT-B/16 ViT-B/32

Layer

Impact Key Layer Impact Key Layer
ViT Blocks.0 0.0916 No  0.0965 No
ViT Blocks.1 0.1458 No  0.2025 No
ViT Blocks.2 0.2858 No  0.3066 No
ViT Blocks.3 0.3423 Yes  0.3782 Yes
ViT Blocks.4 0.3247 Yes  0.3609 Yes
ViT Blocks.5 0.2996 Yes  0.3085 No
ViT Blocks.6 0.1895 No  0.2558 No
ViT Blocks.7 0.1879 No 0.2628 No
ViT Blocks.8 0.2002 No  0.2463 No
ViT Blocks.9 0.1745 No 0.2172 No
ViT Blocks.10 ~ 0.1959 No 0.2334 No
ViT Blocks.11 ~ 0.1700 No  0.1367 No
Sig. Threshold 0.9914 0.3298
Mean 0.2173 0.2504
Std 0.0742 0.0794

RN50 exhibits extreme sensitivity in visual.layer4 with an im-
pact value of 1.3802, which exceeds the significance threshold
(u+ o0 = 0.9914) by 39.2%. Similarly, RN101’s visual.layer4
shows comparable vulnerability. This final-layer concentration
suggests that ResNet defenses can focus on monitoring these
critical bottlenecks.

The CLIP visual encoder using the ViT-B architecture
consists of 12 Transformer blocks, from which we identify
key layers for analysis. Transformer architectures display
fundamentally different response patterns characterized by dis-
tributed sensitivity across middle layers. As shown in Table XI,
ViT-B/16 shows consistent anomalous responses in blocks 3-
5 (0.3423, 0.3247, 0.2996) that all exceed the threshold of
0.2915. Similarly, the ViT-B/32 architecture reveals similar
distributed sensitivity, with blocks 3-4 showing the strongest
deviations (0.3782, 0.3609), surpassing the threshold of 0.3298
by 14.7% and 9.4%, respectively. The pattern reflects global
dependencies in attention, requiring multi-block rather than
single-point defenses.

Our p + o criterion shows consistent performance across
architectures, with all key layers deviating notably and a
clear normal-anomalous separation (<9.4%), confirming its
reliability for architecture-agnostic backdoor analysis.

C. Computational Efficiency and Scalability

InverTune completes within approximately 2 hours on a
single RTX 4090 GPU (=20 min for UAP generation, 30



TABLE XII: InverTune under different poisoning rates.

TABLE XIII: Performance of InverTune against multi-
backdoor attacks. R1/R2: first/second round of tuning.

Poisoning Rate | 0.05% 0.1% 0.3% 1.0%
CA1T ASR| CAt ASR] CAt ASR]| CAT ASR

No Defense ‘54.32 65.5: 55.32 88.34L 58.3; 98.3: 58.11 98.8; Setting  Method AR - . CAT

InverTune | 5377 005 5480 036 5525 049 5652 081 mush. lemon  ski  swing
2-trigger No Defense 98.11 98.72 - - 58.39
InverTune (R1) 0.62 2.20 - - 56.64
min for target identification, 1 hour for trigger inversion, and No Defense 9954 9976 9941 99.50 58.40
10 min for activation-based purification), while updating only  4-trigger InverTune (R1) 23.47 20.89 0.72 22.08 56.43
a small subset of parameters. Unlike full fine-tuning—based InverTune (R2) 2.34 089 008 136 5481

defenses [2], [52], [65], the computational cost of InverTune
scales weakly with model size, since both inversion and
purification are confined to limited neuron subsets rather than
the entire model, indicating that InverTune exhibits potential
for application to larger models.

APPENDIX F
ADDITIONAL EXPERIMENTS AND ANALYSIS

A. The Impact of Model CA on InverTune Performance

Although the CLIP-RNS50 backbone achieves a relatively
low CA of 55~60% on ImageNet, consistent with prior
works [2], [33], certain backdoor attacks still exhibit extremely
high ASR (e.g., BadCLIP reaching 98.36%). This contrast
raises the question of whether such strong target bias could
facilitate or hinder InverTune’s ability to identify the target
label. To examine this, we fine-tuned the same model on 50K
randomly selected ImageNet samples, increasing its CA to
over 70%, and evaluated three representative attacks: BadNet,
WaNet, and BadCLIP. Even under this higher-CA setting,
InverTune accurately identified the target label and effectively
removed the backdoor, reducing ASR from 96.31%, 93.34%,
and 93.61% to 0.13%, 0.44%, and 0.51%, respectively, with
only a minor CA drop of about 2~3%. These results con-
firm that InverTune’s effectiveness is largely independent of
the model’s CA, and that its success primarily stems from
adversarial-backdoor correlations rather than the model’s dis-
criminative capacity.

B. Performance of InverTune under Different Poisoning Rates

To further assess the applicability of InverTune, we con-
ducted experiments with BadCLIP across various poisoning
rates: 0.01%, 0.05%, 0.1%, 0.3% (default), and 1.0%. At
a very low poisoning rate of 0.01%, the small number of
poisoned samples (approximately 50) resulted in an ASR of
only 1.30%, as the model struggled to form a stable backdoor
mapping. Consequently, InverTune failed to identify the target
label due to the weak backdoor signal, which hindered the
establishment of a stable adversarial-backdoor correlation.

At other poisoning rates, InverTune demonstrated robust
performance, effectively mitigating the attack. As shown in
Table XII, even at 1.0%, InverTune successfully reduced the
ASR to 0.81%. Overall, InverTune exhibits consistent defense
performance across the evaluated poisoning rates, though its
effectiveness may be limited when the backdoor signal is
extremely weak, underscoring the boundaries of the method
under such conditions.
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C. Performance of InverTune on Clean Models

We further evaluate InverTune on a clean CLIP model
without backdoors. As expected, the UAPs generated during
target identification are random, with dominant predicted
classes varying across runs (e.g., wool vs. desktop computer),
confirming the absence of consistent target bias. During trigger
inversion, optimization fails to produce meaningful patterns,
yielding negligible ASR (0.06% for wool and 0.17% for
desktop computer). Applying these inverted triggers during
activation tuning results in only marginal CA changes (from
59.69% to 59.13% and 59.02%), indicating that InverTune
introduces virtually no adverse effects on clean models. In-
spired by the pronounced behavioral contrast between clean
and backdoored models, we believe that this benign behavior
of InverTune on clean models may provide useful signals for
future backdoor detection efforts.

D. Performance of InverTune in Multi-Backdoor Scenarios

We further evaluate InverTune in multi-backdoor scenarios
by extending the BadCLIP attack to both 2-backdoor and 4-
backdoor configurations. In the 2-backdoor setting, the at-
tacker implants triggers targeting “mushroom” and “lemon,”
while the 4-backdoor variant additionally includes “ski” and
“swing,” each with a poisoning rate of 0.3%. As shown in
Table XIII, InverTune consistently suppresses ASR to low
levels across all targeted classes while maintaining stable
CA. More specifically, in the 2-backdoor case, the target
identification stage ranks “mushroom” and “lemon” as the top
two predicted classes, exactly matching the implanted targets.
We further observe that the inverted trigger reconstructed for
“mushroom” produces strong activation not only for its own
target (85.56%, 92.89%, 94.82%, 96.81% for Top-1/3/5/10),
but also for “lemon” (3.36%, 77.90%, 90.64%, 96.29%),
revealing clear cross-target interference and shared backdoor
characteristics. This cross-target activation pattern enables
efficient purification: a single tuning round is sufficient to
reduce the ASR of the 2-backdoor model to a low level,
whereas only two rounds are needed to suppress all triggers
in the 4-backdoor configuration to similarly low ASR values.

Overall, these results demonstrate that InverTune adapts
effectively to increasingly complex poisoning scenarios. Its
ability to accurately identify, invert, and mitigate multiple co-
existing backdoors highlights strong robustness and scalability
in realistic multi-target threat scenarios.



