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Abstract—The Border Gateway Protocol (BGP) lacks inherent
security, leaving the Internet vulnerable to severe threats like
route leaks. Existing detection methods suffer from limitations
such as rigid binary classification, high false positives, and sparse
authoritative AS relationship data. To address these challenges,
this paper proposes PathProb—a novel paradigm that flexibly
identifies route leaks by calculating topology-aware probability
distributions for AS links and computing legitimacy scores for
AS paths. Our approach integrates Monte Carlo methods with
an Integer Linear Programming formulation of routing policies
to derive these solutions efficiently.

We comprehensively evaluate PathProb using real-world BGP
routing traces and route leak incidents. Results show our in-
ference model outperforms state-of-the-art approaches with a
high-confidence validation dataset. PathProb detects real-world
route leaks with 98.45% recall while simultaneously reducing
false positives by 4.29 ~ 20.08 percentage points over state-
of-the-art alternatives. Additionally, PathProb’s path legitimacy
scoring enables network administrators to dynamically adjust
route leak detection thresholds—tailoring security posture to
their specific false alarm tolerance and security needs. Finally,
PathProb offers seamless compatibility with emerging route leak
mitigation mechanisms, such as Autonomous System Provider
Authorization (ASPA), enabling flexible integration to enhance
leak detection capabilities.

I. INTRODUCTION

The Border Gateway Protocol (BGP) is the backbone of
the inter-domain routing system, gluing more than 80,000
Autonomous Systems (ASes) together and underpinning the
seamless connectivity we rely on daily [1]. However, BGP has
a critical flaw: it lacks built-in security mechanisms to certify
and verify routing announcements [2]. This weakness makes
it vulnerable to a variety of attacks, including prefix hijacking,
path manipulation, and route leaks [3], [4], which can disrupt
global Internet security and stability.
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Among the three types of BGP security incidents, path-
manipulation attacks have the lowest incidence and rarely
pose actual threats [5]. According to Qrator Labs’ BGP
incidents report for Q3 2025 [6], 5,937 unique leakers and
22,967 hijackers launched route leaks and prefix hijackings
during the period, respectively. Although prefix hijackings
are the most frequent, standardized defense mechanisms like
Resource Public Key Infrastructure (RPKI) [7]-based Route
Origin Validation (ROV) [8] and Internet Routing Registry
(IRR) [9] have been widely deployed, effectively detecting and
mitigating such attacks. Route leaks, by contrast, still lack a
widely deployed countermeasure. The only standardized mech-
anism, Only-To-Customer (OTC) [10], is still in its infancy
and unsupported by most routers.' In particular, global route
leaks (those affecting large numbers of prefixes and ASes, as
well as the extent of the anomaly’s propagation) occur much
more frequently than BGP global hijacks according to Qrator
Labs [12], at least since 2021. This means that in the landscape
of BGP security defenses, route leaks represent the gap and
the most urgent area to address.

A leaked route, though originating from a legitimate AS
and traversing an unaltered path, violates routing propagation
policies dictated by AS business relationships. The conse-
quences of such violations can be severe, including network
outages and economic losses. A vivid event occurred in March
2024: Russian mobile operator MTS (AS8359) leaked tens of
thousands of BGP routes learned from the Hong Kong Internet
Exchange (AS4635), disrupting global connectivity, especially
to Hong Kong, Indonesia, and Australia [13].

Existing route leak detection approaches can be broadly
classified into two categories: rule-based white-box approaches
and machine learning-driven black-box approaches. The white-
box methods [14]-[22] focus on AS links, and use known AS
business relationships and the “valley-free rule” [23], a basic
principle of how routes should flow, to figure out if a leak
is happening. The black-box methods [24]-[30], on the other
hand, look at the entire AS path, namely the full sequence of
ASes a route passes through. Instead of hard rules, they use

I'The first commercial implementation—HPE Juniper Networking supports
OTC since August 2025 [11].



machine learning to learn what normal and abnormal paths
look like, then spot leaks based on unusual patterns in those
paths. Although black-box techniques can effectively identify
complex and novel anomaly patterns, they face significant chal-
lenges in practical deployment. First, their decision-making
process lacks interpretability—i.e., it is difficult to explain
why a specific path is flagged as a leak—and they require
substantial volumes of high-quality training data. Furthermore,
the complexity of model validation and potential biases in
training datasets further hinder their widespread adoption.
Consequently, network operators favor white-box methods,
which offer high interpretability, transparent decision-making
logic, and greater suitability for routine operational scenarios.

However, the efficacy of white-box mechanisms is funda-
mentally constrained by the confidentiality and sensitivity of
AS business relationships [14], [31], [32]—no public dataset
exists for these relationships. Existing approaches [14]-[16],
[19], [21], [22] therefore rely on inferring deterministic AS
relationships from historical BGP routing data, then using
these inferred relationships to detect route leaks combined with
the valley-free rule. While these inference algorithms achieve
reasonable accuracy on best-effort validation sets, they suffer
from a high false positive rate in practice, which is primarily
due to two main factors: First, AS business relationships are
inherently complex, often involving hybrid types or dynamic
adjustments driven by routing policies [33]-[35]. Rigid classi-
fications fail to capture this complexity or quantify inference
uncertainty, leading to misjudgments. Second, a non-negligible
proportion of legitimate paths—stable over time due to com-
mercial interests or policy optimizations—naturally violate the
strict valley-free rule [33], [36], [37]. These valid exceptions
introduce noise into deterministic inference, further increasing
false positives. Despite the existence of ASPA [38]—the
only mechanism supporting authoritative declared AS business
relationships, built on RPKI and proposed in 2018—it remains
unstandardized after 20 iterations and is still in the IETF
working group draft stage. Currently, only over 300 ASPA
records have been issued [39]. Due to the confidentiality and
sensitivity of AS business relationships, authoritative data is
expected to remain scarce in the foreseeable future.

To address these challenges, we propose PathProb, a
“gray-box” framework that detects route leaks by inferring
probabilistic AS relationships and computing legitimate scores
for AS paths. As a middle ground between white-box and
black-box methods, PathProb integrates their strengths
while avoiding their limitations. On one hand, it retains white-
box valley-free validation (ensuring interpretability) but re-
places rigid relationship labels with probabilistic distributions
to model AS relationship likelihoods. This accommodates the
complexity of real-world AS ties (e.g., hybrid, dynamic) and
avoids the oversimplification of traditional white-box meth-
ods. On the other hand, unlike black-box approaches that
binary classify paths as “legitimate” or “leaked,” PathProb
computes mathematical expectations for AS paths based on
these probabilistic relationships—reducing “black-or-white”
misjudgments by balancing flexibility with transparency in

uncertain scenarios. Specifically, PathProb assigns a prob-
ability distribution to each AS link, then propagates and
combines these distributions along the entire AS path to
produce a continuous legitimacy score, such as “85% likely
to be a leak,” instead of a rigid binary label (legitimate or
leaked). This continuous output grants PathProb significant
flexibility: operators can set detection thresholds to align
with their network environment and risk tolerance, fine-tuning
sensitivity against false-positive rates without re-engineering
the system.

Moreover, Pat hProb can seamlessly integrate with ASPA:
it adopts authoritative AS relationships declared in ASPA
objects where available, and falls back to probabilistic rela-
tionships for links without ASPA coverage. In the current data-
sparse stage, such probabilistic supplementation immediately
boosts leak detection accuracy. This creates a positive feed-
back loop: improved protection incentivizes more operators to
publish ASPA data, gradually enriching the RPKI system with
authoritative relationships. As the coverage of authoritative
data grows, the increasing authority of the data itself enhances
PathProb’s gray-box operation—delivering increasingly ac-
curate and robust protection against route leaks.

Overall, our work makes the following key contributions:

o We propose a novel algorithm for inferring probabilistic
AS business relationships in Section IV. The algorithm
categorizes AS links into two groups based on their topo-
logical positions and applies specific inference strategies
to each group. To capture the routing path pattern, we
develop an Integer Linear Programming (ILP) model,
which is the first of its kind in this field. Our algorithm
achieves an accuracy of at least 95%.

o We introduce PathProb in Section III, a gray-box route
leak detection framework that can integrate other AS rela-
tionships, such as authoritative ASPA data with inferred
probabilistic data. It computes the expected legitimacy
score of a route leak, surpassing the limitations of tradi-
tional binary classification. In terms of real-world route
leak incidents reported by Cloudflare [40], PathProb
achieves a recall rate of 98.45% by detecting all leaked
paths, while maintaining a low false positive rate of
4.17%, which is 4.29 ~ 20.08 percentage points lower
than that of other existing approaches.

+ We conduct extensive large-scale simulations to evaluate
the performance of PathProb when integrated with
ASPA across various deployment scenarios in Section V.
The results show that even with only 25% deployment
rate and no ASPA objects issued, PathProb reduces
the leakage infection rate (LIR) by over 56% (dropping
from 15.17% to 6.63%). This demonstrates PathProb’s
value as a pragmatic solution in the current data-sparse
era: it provides immediate defense that effectively bridges
the security gap, affording the global routing ecosystem
time to incrementally transition toward full authoritative
data coverage.

We have open-sourced the PathProb implementation to



https://doi.org/10.5281/zenodo.17920056 and https://github.c
om/hyq8868/PathProb.

II. BACKGROUND AND PRELIMINARIES
A. BGP and AS Relationship

The Internet is a large-scale, decentralized network consist-
ing of more than 80,000 ASes. These ASes interconnect and
exchange routing information using BGP, facilitating global
end-to-end communication. When an AS exports a route to its
neighbors, it appends its own AS number to the AS_PATH
attribute of the exported route. This process ensures that
the AS_PATH reflects the sequence of ASes that the route
has traversed. In the AS path, each pair of adjacent ASes
forms an AS link, and each AS link has a specific type of
relationship. The most common types of AS relationships can
be categorized as follows:?

o Provider-to-Customer (p2c): AS u provides transit ser-
vices to AS v, and AS v pays AS u for connectivity.

o Customer-to-Provider (c2p): The reverse of p2c, where
AS w is the customer of AS v.

o Peer-to-Peer (p2p): AS u and AS v exchange traffic
freely, usually when they are of comparable size and
market position.

The business relationships between ASes define both the
economic incentives and the technical policies, which together
govern BGP route propagation and traffic exchange.

B. Routing Policy and Valley-free

According to the widely adopted Gao-Rexford model [35],
which establishes stability conditions for inter-AS routing
based on commercial relationships, each AS follows the export
policies listed below:

e An AS exports all routes (including its own, customer-
learned, and provider/peer-learned routes) to its cus-
tomers.

e An AS exports only customer-learned routes to its peers
and providers.

If all ASes strictly adhere to the policies defined by the Gao-
Rexford model when exporting routes, the resulting AS paths
will present a specific topological pattern: AS paths “ascend”
through ¢2p links, may optionally include a single horizontal
p2p link, and then “descend” through p2c links. This pattern
indicates that AS paths will never transition laterally or back
upstream after descending, thereby ensuring that the paths
satisfy the valley-free property [23]. The valley-free property
imposes specific structural constraints on the sequence of AS
links along a path.

e ¢2p links must appear before the p2c or p2p links.
e c2p or p2p links must appear before the p2c¢ links.
o A path must not contain more than one p2p link.

2It should be noted that there still exist some special AS relationships,
such as sibling ASes that are under shared administrative control and hybrid
interconnection models that feature prefix-specific policies or backup links.
However, due to their limited prevalence and unique structural characteristics,
these special relationships are excluded from the analytical scope of this study.
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Fig. 1. Legitimate and leaked propagation of routes.

The valley-free property was theoretically established
in [23], and further formalized in [41]. Specifically, a path
is deemed valley-free if it conforms to one of the following
two forms, where N, M > 0:

o Type-1: N consecutive c2p links followed by M consec-
utive p2c¢ links.

e Type-2: N c2p links, followed by a single p2p link,
followed by M p2c links.

Fig. 1 depicts five routing patterns that adhere to the above
export policies (upper), thereby ensuring that the AS paths
exhibit the valley-free property. Conversely, the four patterns
(bottom) violate these constraints, constituting route leaks—a
phenomenon analyzed in detail in Section II-C.

C. Four Types of Route Leaks

A route leak occurs when an AS propagates routes to un-
expected neighbors in violation of established export policies.
RFC 7908 [42] categorizes route leaks into six types. Two
of these involve tampering with the origin AS and can be
prevented by origin validation mechanisms such as RPKI-
based ROV [8]. Therefore, our discussion is restricted to the
following four types of route leaks.

o Type-1: A route learned from a provider is propagated to
another provider.

o Type-2: A route learned from a peer is propagated to
another peer.

o Type-3: A route learned from a provider is propagated to
a peer.

o Type-4: A route learned from a peer is propagated to a
provider.

III. PATHPROB: A PROBABILITY-BASED FRAMEWORK FOR
PatH LEGITIMACY SCORING AND ROUTE LEAK DETECTION

In this section, we present an overview of PathProb, a
gray-box route leak detection framework. Assuming that we
have obtained the dataset containing the probability distribu-
tions of business relationships for each AS link (Section IV),
we detail the computation of a legitimacy score for a given
AS path—enabling determination of whether a route leak has
occurred.
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A. PathProb Overview

Fig. 2 illustrates the architecture of PathProb, which re-
lies on two sources of AS relationship data: the authoritative
declared relationship data extracted from ASPA records and
the probabilistic inferred relationship data derived from BGP
routes. Unlike deterministic inferred AS relationships, each
AS link (u,v) in the probabilistic inferred relationships is rep-
resented as a three-dimensional vector, where each dimension
corresponds to the probability of one type of relationship, and
the sum of the three probabilities equals one. To maintain con-
sistency, each AS link in the authoritative declared relationship
data is also converted into a three-dimensional vector, whose
entry corresponding to the declared business relationship is set
to 1. In contrast, the remaining two entries are set to 0.

Given a route, PathProb first extracts AS_Path attribute
from it and computes the expected legitimacy value of the path
based on the aforementioned relationship data. A configurable
threshold is then applied: paths whose score is greater than or
equal to the threshold are considered legitimate, while those
with a score below the threshold are classified as leaked.

B. Calculating the Legitimacy Score for Each AS Path

Taking the probability distribution of each AS link as input,
we propose a method to compute the expected legitimacy of
an AS path. In the context of route-leak detection, a path is
deemed legitimate if and only if it satisfies the valley-free
property. Therefore, the expected legitimacy of an AS path can
be computed using the law of total probability by summing
the probabilities of all combinations of relationship types that
satisfy valley-free constraints.

For a path consisting of n ASes, hence n — 1 links, let the
relationship of the ¢-th link be represented by three probabilis-
tic events: c2p,, p2p;, p2c;, then, the expected legitimacy Ej,
of the path is defined as:

FEieq(path)

n—1
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As illustrated in Fig. 3, the first term accounts for valley-free
paths that contain exactly one p2p link. All legitimate (valley-
free) cases are enumerated by iterating over every possible
position of this p2p link within the path. The second term
encompasses all valley-free paths that contain no p2p links,

Fig. 3. Calculating the legitimacy score of an AS path.

where legitimate cases are identified by locating the first p2¢
link that initiates the descending segment of the path.

However, the naive path-level legitimacy expectation com-
pounds the per-link uncertainty, leading to longer paths suf-
fering from systematically lower scores and being easily
misclassified as leaks. Intrinsically, a route leak is local: it
involves only three consecutive ASes, where the i-th AS
wrongly exports to the (i—I)-th AS a route learned from
the (i+7)-th AS. This locality implies that the anomaly is
independent of the rest of the path. Consequently, we redefine
the legitimacy expectation of an AS path as the minimum of
the expectations computed over all AS triples. This confines
the assessment to localized anomalies and neutralizes the
distortion introduced by cumulative uncertainty along long
paths. After simplification, for a path with n ASes, the path-
level expectation is given by:

n—2

Eleg (path) = I.n_i{l(Eleg(Pathi:iH)) 5
- 2)
= riﬂ:i{l(P(CQPi) + P(p2cit1) — P(e2p;) X P(p2cit1))
In Appendix A, we compare the two scoring schemes with
long AS paths, demonstrating that the triple-minimum score
is significantly less sensitive to path length than the full-path
score.

As shown in Table I, the path is flagged as a route leak
because it contains two consecutive p2p links with the white-
box approach utilizing the CAIDA AS relationship data [18],
which are deterministically inferred and assign each AS link
a single, mutually exclusive relationship type (one-label-per-
link). In contrast, our gray-box approach assigns each link a
probability distribution over the three relationship types (three-
probabilities-per-link) and defines the legitimacy expectation
of the path as the minimum expected value among all AS
triples, taken only over those triples that satisfy the valley-
free constraint. Therefore, even though the relationship type
assigned to each AS link under our probabilistic model—taken
as the one with the highest probability—matches that of
the CAIDA dataset, the model yields an expected legitimacy
score of 0.697 for the example, allowing this path (observed
consistently for six months) to be correctly labeled as legit-
imate and thereby reducing the false positives produced by
the deterministic inferred data. In summary, the probabilistic
model abandons the requirement that each link carry a single,
fixed relationship; instead, it assigns a probability distribution
to every link. Rather than forcing a binary verdict of “legiti-
mate” or “leaked,” the model treats legitimacy as a continuous
score: a path is accepted as legitimate provided that the least-
legitimate valley-free triple exceeds the legitimacy threshold,



TABLE I
AN EXAMPLE OF DETERMINING WHETHER A PATH IS LEAKED WITH DETERMINISTIC OR PROBABILISTIC AS RELATIONSHIPS.

202365 - 50673 - 6939 - 199524 - 58212 - 13627
Path - - - - - Result
link, links links linky links
White-box c2p p2p p2p p2c p2c leaked
c2p 0.944 0.451 0.001 0.004 0.0
Gray-box p2p 0.056 0.532 0.551 0.166 0.0 Ejeg = 0.697
p2c 0.0 0.0 0.448 0.830 1.0

thereby replacing hard labels with a soft, probability-based
criterion and significantly reducing false positives.

IV. ProBasiLisTIC AS RELATIONSHIP INFERENCE

In this section, we present our algorithm for inferring
probabilistic AS relationships from a set of AS paths described
in Section V-Al. We first outline the key challenges, then
model the valley-free property as an ILP problem, serving as
a tool for inference. Finally, we categorize AS links into two
groups: core links and edge links, applying tailored inference
strategies to each.

A. Challenges of Inferring Probabilistic AS Relationships

Inferring the probabilities of AS relationships confronts two
main challenges.

First, the valley-free principle constitutes the foundational
premise for inferring AS relationships. Yet, it presents a
twofold dilemma: assigning AS relationships to maximize the
number of valley-free paths, namely the Type-of-Relationship
(ToR) problem, has been proven NP-complete [17]. Mean-
while, real BGP routes contain many legitimate paths that
persistently violate the rule, so minimizing violations alone
distorts reality.

To address this, we formulate the valley-free constraints on
AS paths (in Section II-B) as an ILP problem. Each AS link’s
relationship is encoded as a binary integer variable; precedence
and cardinality restrictions among p2c, c2p, and p2p links
are expressed as linear inequality constraints; and a linear
objective function, tailored to the specific inference objective,
completes the ILP specification. The general paradigm of an
ILP problem is:

T

Maximize/Minimize ¢~ x

Subject to: Ax < b,x € Z"

We tailor the ILP formulation to the distinct requirements of
each inference stage and solve it with Gurobi [43], a state-of-
the-art solver that scales to large problem instances; we also
verified that using SCIP [44] yields negligible differences.
Second, because the probabilities of AS relationships are
continuous, their precise estimation is inherently more difficult
than assigning discrete labels; meanwhile, although Prob-
Link [15] and TopoScope [16] already employ such probabil-
ities, they use them only as internal cues for assigning one of
three fixed types, yielding no interpretable, quantitative values.
To overcome this challenge, we propose a hierarchical infer-
ence algorithm that leverages the AS-level topological char-
acteristics. Core links—centrally located, densely connected,

and relationally complex—are inferred with a sophisticated
model. Edge links, numerous and straightforward, are pro-
cessed with a lightweight method. Crucially, the refined core-
link probabilities feed back to sharpen edge-link estimates.
While our method is closely related to the BGP routing and
AS-level topology, prior studies have demonstrated the long-
term stability of these structures [45]-[49].

B. ILP Model for Valley-free Constraint

We propose two ILP models to balance accuracy against
feasibility. The Strict Model strictly encodes the valley-free
property as hard constraints, and the Loose Model permits
a controlled number of valley-free violations (link skips) to
prevent infeasibility, at the cost of a slight loss in strict
correctness. These models are integrated into the inference
algorithm in sections IV-D and IV-E.

1) Strict Model: In this model, a pair of binary variables
(0 or 1) is used to designate a single relationship type for each
AS link; a set of hard constraints then forces the entire path
to satisfy the valley-free rule.

Variables. For each AS link ¢, we introduce a pair of binary
variables (x;,y;) whose joint values uniquely encode one
of the three relationship types. The correspondence between
variable combinations and relationship types is predefined as
follows:

yi=01] «c2p -
yi=1] p2c p2p

Constraints. The Strict Model imposes the following con-
straints:

Each AS link is assigned exactly one of the three relation-
ship types, uniquely encoded by one of the three predefined
(z4,y;) pairs, subject to the following constraints:

yi > x;, Vi=1,...,1 mazx (3a)

For any two links between the same AS pair in opposite
directions, namely link, = (u,v) and link, = (v,u), their
assigned relationship types are (z,,y,) and (z4,y,), respec-
tively and must be logically consistent (i.e., mutual inverses),
enforced by the following constraints:

(3b)
(30

xp = x4, Vreversed link (link,, link,)

Yp + Yq — Tp = 1, Vreversed link (link,, link,)

Let link, ,, denote the m-th link in the n-th path, and
the variable combination for it is (Zy, m, Yn,m). The path is



deemed valley-free if it satisfies the conditions defined in
Section II-B, which are formalized in the ILP model by the
following constraints:
o Any p2p or p2c link in the path must appear after all c2p
links.
Yn,m < Yn,m+1, 3d)
Vn=1,...,n max and YVm = 1, ..., m max
e Any p2c link in the path must appear after all c2p and
p2p links.
Ynm — Tnm S Ynm+1 — Tnm+1,

(3e)
Vn=1,...,n max and Vm = 1,...,m mazx

o Each path must contain at most one p2p link.

Zmn,m <1, Vn=1,..,n mazx (31)

Objective Function. The objective function should be tai-
lored to the inference objective and is specified in Section IV-E
for inferring edge links.

2) Loose Model: In practice, the Strict Model often be-
comes infeasible due to persistent valley-free violations in real-
world AS paths. To accommodate this, we extend the model so
that selected links in a path may be ignored while valley-free
constraints are still enforced on the remaining links.

Variables. For each link ¢, we augment the binary pair
(4,y;) with an additional variable z;. The variable z; = 1
flags the link as skipped and exempts it from valley-free
evaluation, whereas z; = 0 keeps the link in force, with (z;, ;)
encoding its relationship exactly as prescribed by the Strict
Model.

‘ €Ty = 0 €Tr; = 1
i =0 | 2,=0,c2p 2z =1, skipped
yi=1| 2,=0, p2c zi =0, p2p

Constraints. The Loose Model imposes the following con-
straints:

Each AS link is constrained to take exactly one of the above
four combinations of (z;,y;, z;), denoting either one of the
three relationship types or a skipped link.

Yi > x;— 2, Vi=1,...,1 mazx (4a)
x; >z, Vi=1,...,1 max (4b)
yi+2z <1, Vi=1,...,1 maz (4¢c)

Similar to the Strict Model, reverse links must have mutually
inverse relationship types. Moreover, a pair of reverse links,
link, = (u,v) and link; = (v,u), must be simultaneously
skipped or retained; skipping one without the other is prohib-
ited.

xp = x4, Vreversed link (link,, link,) (4d)

zp = zq, Vreversed link (link,, link,) (4e)

Yp + Yq — Tp + 22, = 1, Vreversed link (link,, link,)
(4f)

Let link, ., denote the m-th link in the n-th path and
the variable combination for it iS (. m; Yn,m, 2n,m). After

removing all skipped links whose z, ,, = 1, the remaining
links in each path must satisfy the valley-free conditions
defined in Section II-B, which are formalized in the ILP
model by the following constraints. It should be noted that
the Loose Model’s allowance for skipped links breaks the
global transitivity exploited by the Strict Model; valley-free
constraints are therefore enforced between every ordered pair
of retained links.

e Any p2p or p2c link in the path must appear after all c2p
links.
yn,ml S yn,mg + Z’n,mz7
Vn =1,...,n max and Ymg = 2, ..., my max and
le = ].7 ey Mo — 1
(4g)
o Any p2c link in the path must appear after all p2p or c2p
links.
yn,ml - zn,ml S yn,mz - xn,mz + 2Zn,m27
Vn =1,...,n max and Vms = 2, ..., my maxr and
le = 1, ey Mo — 1
(4h)

o Each path may contain at most one p2p link.

Z (Znm — Znm) <1, Vn=1,..,n max

m

(41)

Objective Function. The objective of the Loose Model is
to minimize the number of skipped links, permitting valley-
free violations only when unavoidable and thereby preserving
maximal fidelity to the original path structure.

Minimize Z % 4)

C. Identification of Core and Edge Links

To reconcile computational tractability with inference accu-
racy, we deliberately categorize AS links into edge links and
core links. Edge links—numerous yet sparsely observed and
hierarchically simple—yield to lightweight methods, whereas
the fewer but frequently traversed core links—with their com-
plex, ambiguous relationships—demand sophisticated treat-
ment.

We propose an iterative path-endpoint elimination algorithm
and apply it to distinguish between edge and core links. The
procedure works as follows:

e Alink (X,Y) is classified as an edge link if it appears
exclusively at the path periphery—either X or Y always
at the start (as the first hop) or always at the end (as
the last hop)—and never in any interior position. As
illustrated in Fig.4, such links occur only in Case-1 or
Case-2 paths; no instances of Case 3—6 involve them.

o Upon identifying an edge link, we remove the correspond-
ing endpoint (X or Y') and substitute the original path
with its trimmed counterpart.

o The procedure iterates: after each round, new edge links
are identified and their outermost hops are removed; then,
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Fig. 4. Identifying core links and edge links.

the corresponding paths are updated with the trimmed
ones.

o The iteration terminates when no additional edge links
can be identified. At this point, the resulting residual
paths, now comprising exclusively core links, are denoted
as core paths.

The right side of Fig. 4 provides a running example that
walks through the four iterations, showing at each step which
edge links are identified. For each iteration, the top row lists the
current path set, and the bottom row lists the newly identified
edge links. After four rounds, the algorithm terminates, as no
more edge links are detected. The complete set of edge links is
the union of those identified in each iteration. The remaining
links are labeled as core links.

For clarity, we introduce the formal definitions of core links
and edge links. Let P; = {p1,p2,...,pm} denote the set of
AS paths during the i-th iteration, where each path p; € P is
an ordered tuple p; = (a1, a2,...,ax), with a; being the AS
at position /. For any path p, its link set is defined as:

Link(p) = {(ai,ai1) | i € {1,2,... .k — 1}}

Each link is considered undirected, i.e.,(u,v) and (v, u) rep-
resent the same link.

Edge Link Set EL;. A link (u,v) is an edge link if it
appears only at the path periphery, with ASu or ASv always
at the first or last hop on the path. Let FL; denote the set of
edge links produced upon completion of the ¢-th iteration, and
it can be formalized as:

EL; ={(u,v) |
(Vp € P, (u,v) € Link(p) = u € {a1,a})V
(Vp € P;, (u,v) € Link(p) = v € {al,ak})}

Construction Rule from P; to P, ;. We generate the
set P41 by trimming the peripheral links of each path
p = (a1,...,ax) € P;. Specifically, we remove certain links
from the start and end of the path. The start offset s and
the end offset e are determined by indicator functions I(-),
which check whether the first link (aj,as) and the last link
(ag—1,ax) of path p belong to the edge link set EL;. If they
do, s and e are set to 1; otherwise, they are set to 0. The new
path pi4, x—. is created by removing the first s links and the
last e links from the original path p. Applying this trimming
process to each path in P; constructs the new set P; ;.

Pi-‘,—l :{p1+s:k—e |p: (a'17"~7a'k) ePz}

Where the start and end offsets are given by:

s =1I((a1,a2) € EL;) and e =I((ax_1,ar) € EL;)

Complete Edge Link Set. The process terminates when no
further edge links appear, i.e., EL, = (). The complete edge
link set is the union of all EL; across iterations:

oo
EdgeLink = |_J EL;

i=1
In practice, the iteration terminates after a finite number of
rounds when FL; = ¢, since each iteration strictly shrinks
the path set.

Core Links. The remaining links, which are not classified

as edge links, are defined as core links:

CoreLink = U Link(p) \ EdgeLink
peP

D. Inferring Core Links

In the previous section, we obtained a set of core links and a
set of paths composed exclusively of these core links. To infer
the relationship probabilities, it is essential to model the depen-
dency structure among links within paths. Given the complex
state space resulting from these dependencies, we adopt a
Markov Random Field (MRF) framework, which allows us
to model the interactions between links in a probabilistic
manner. To efficiently perform inference, we employ Gibbs
sampling for approximate inference. This approach enables
us to iteratively update the relationship of each link based
on the current state of its neighbors, thereby capturing the
dependencies while maintaining computational feasibility.

Each core link is modeled as a random variable z;,
which can take one of three values: p2p, p2c, or c2p. Let
X = (x1,22,...,2,) be the vector of all link variables, and
let P(X) denote the joint probability distribution over their
assignments. Our goal is to estimate the marginal distribution
P(z;) for each link.

The valley-free property implies that the relationship of each
link depends only on its neighbors within a path and is con-
ditionally independent of other links. This local dependency
structure is well-suited to the definition of an MRF, where each
variable z; is conditionally independent of all others given
the states of its neighboring set N(i). In an MRF, the joint
probability distribution over all variables can be factorized into
a product of potential functions defined over local cliques:

P(X) = 5[] oitosone) ©

Z = Z H¢i(xiaxN(i)) (6)
X i

where Z is the partition function (normalization constant)
ensuring the distribution (P (X)) sums to 1.

Each potential function ¢; models the compatibility between
the state of x; and its neighbors. We define ¢; based on valley-
free routing constraints, which reflect AS export policies.

bi(Tis TN ) = Zaik(xivxsmv(k)a I?em(k)) ™)
k



TABLE II
THE MAPPINGS BETWEEN THE TRIPLE COMPRISING A LINK WITH ITS NEIGHBOR
PAIR, AND ITS (¢ VALUE.

Prev next 2 PTev next

T T « T T a
c2p c2p c2p 1 p2p c2p c2p 0
c2p c2p p2p O p2p c2p  p2p 1
c2p c2p  p2¢c O p2p c2p  p2¢c O
c2p p2p c2p 1 p2p p2p c2p 0
¢2p p2p p2p O | p2p p2p pZp 1
c2p p2p  p2¢c O p2p p2p  p2¢c O
c2p p2c c2p 0 p2p p2c  p2c 1
c2p p2c  p2p 1 p2p p2c  p2p O
c2p p2c  p2¢ O p2p p2c  p2¢ O
p2c c2p c2p 0 p2c p2p  p2c O
p2c c2p  p2p 1 p2c p2c c2p 0
p2c c2p  p2¢c O p2c p2c p2p O
p2c p2p c2p 0 p2c p2c p2c 1
p2c__p2p  p2p 1

For each link xz;, we examine its k-th neighbor pair
(2P 28Dy yhere 7Y™ and 22™™*) denote the pre-
decessor and successor links of z; in its k-th path. If z; is the
first link in a path, we set its predecessor xfrev(k) to a default
value of ¢2p to avoid restricting z;’s possible values. Similarly,
if x; is the last link, its successor x?m(k) is defaulted to p2c,
again to avoid imposing constraints on z; due to incomplete
context. In addition, «;; defines a compatibility mapping based
on the valley-free property. The mapping rules from the triplet
(2P, x, 2™*") to « are detailed in Table II. Each element in
this tuple can take one of three relationships, resulting in 27
combinations. For a given pair (2P, 2"*'), only one of the
three tuples has its « set to 1, and the other two tuples have
their « set to 0. Tuples with o equal to 1 either satisfy the
valley-free principle or = is a p2p relationship, minimizing
the injection of uncertain or conflicting information into the
inference model.

To address the computational intractability arising from the
exponential growth of the state space (O(nk-3™)) with increas-
ing variables, we employ Gibbs sampling, a Markov Chain
Monte Carlo (MCMC) method that efficiently approximates
the target distribution. This approach is particularly well-suited
for our high-dimensional model, where direct computation of
the joint distribution is infeasible, but the local conditional
distributions remain computationally tractable.

The Gibbs sampling algorithm generates a Markov chain
of samples by iteratively resampling each variable z; from its
conditional distribution P(z; | X \ {z;}), where X \ {z;}
denotes the set of all variables except x;. The conditional
probability for each variable x; is computed as:

b (Iz‘, 35/\/(1‘))

P(z; | X \{2:i}) = Pz | on)) = > il TAr )

®)

Here, N (4) denotes the neighboring variables of x;, and ¢; is
the potential function defined earlier.

More specifically, to generate I samples, denoted as X () =
(azgi), - ,ng)) for i = 1,..., K, the Gibbs sampling proce-
dure proceeds iteratively as follows:

1) Initialization: Assign initial values to all variables
XM = (:1751), .. ,:cnl)), either randomly or via heuristic
methods.

2) Conditional Sampling: For each sample X =
( Q) ,xg)) (where i = 1 to K), compute each e

xy, ... j
(where 7 = 1 to n) in sequence using its conditional
probability:
i i i i—1 i
P(x;)|xg),...,xgll,x;+1),...7x£l D)

Once all variables x; have been updated, they collec-
tively form the i-th sample.

3) Iteration: The Gibbs sampling procedure iteratively re-
peats this process until K samples have been generated.

The convergence speed of Gibbs sampling is highly sensitive
to the quality of the initial sample. When the initial state
lies in low-probability regions of the target distribution, the
Markov chain may require extensive iterations to achieve
stationarity, increasing computational costs and delaying in-
ference. To mitigate this, we employ the output of our Loose
Model (Section IV-B2) as a warm start for optimization. By
relaxing the valley-free constraints, the model generates a
starting point within the high-density regions of the target
distribution, thereby accelerating convergence and enhancing
inference quality. In our implementation, we sample K =
1,000 instances for marginal estimation. This choice is guided
by a sensitivity analysis (Appendix B-A), which confirms that
K = 1,000 strikes an optimal balance between stability and
computational efficiency.

E. Inferring Edge Links

In Internet topology, core links dominate connectivity pat-
terns, while edge links are observed at path boundaries. Due
to their infrequent occurrence, edge link relationships can typ-
ically be inferred deterministically through propagation from
core links. Therefore, we propose a deterministic propagation
mechanism based on core links for inferring the relationship
of edge links, which mainly consists of two steps: core-to-edge
propagation and context-aware resolution.

More specifically, if the last core link in a path has a
high probability (e.g., over 80% in our setting) of being
either p2c or p2p, then the subsequent edge link is inferred
as p2c. Conversely, if the first core link is highly likely
to be c2p or p2p, the preceding edge link is inferred as
c2p. We conduct a sensitivity analysis of the core-to-edge
threshold in Appendix B-B, demonstrating that our results
remain robust under this reasonable threshold selection. This
inference process can be recursively applied: once an edge link
is labeled, its relationship propagates to neighboring links in
other paths, leveraging path overlap to resolve ambiguities.
As illustrated in Fig. 5, in path1, link (C,A) propagates
its relationship p2c to its adjacent edge link (A, B), and the
relationship of which can be inferred as p2c. This inferred
relationship information further propagates to adjacent links
in path 2, and the relationship of its neighbor edge link can
also be inferred accordingly as p2c.
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Fig. 5. Edge links relationship inference via recursive contextual propagation.

For the remaining edge links with undetermined relation-
ships, they can be categorized into two types: isolated links,
which have no neighbor links, and contextual links, which have
at least one neighbor link, each requiring a distinct processing
strategy. For isolated edge links, uniform prior probabilities
(3,3, %) are assigned to p2p, p2c and c¢2p for an isolated
edge link to ensure unbiased inference.

For contextual edge links, we employ the Strict Model
(see Section IV-B1). Since edge links are constrained to path
boundaries, the resulting ILP problem is always solvable. A
straightforward, feasible solution is to assign all edge links as
p2c, treating the outermost ASes as customers. Our objective
function is designed to prioritize solutions that maximize the
number of paths conforming to the structure p2p + n - p2c,
which aligns with expected routing patterns in hierarchical
networks.

V. EvALUATION

In this section, we conduct extensive experiments to evaluate
the performance of the PathProb framework and verify its
superiority in comparison with AS-Rank, ProbLink, and
TopoScope.

A. Methodology

1) Data sets: We use the preprocessed AS path dataset
to infer AS relationships, and evaluate PathProb using the
validation datasets.

AS Paths. We collect AS paths from BGP routing data
archived by RouteViews [50] and RIPE RIS [51]. The two
projects operate multiple collectors that export snapshots of
BGP routing tables (RIBs) every 2 hours (RouteViews) and
8 hours (RIPE RIS), and BGP updates every 15 and 5
minutes, respectively. We infer AS relationships using AS
paths extracted from the RIBs and evaluate the performance of
four schemes in detecting route leaks using AS paths extracted
from updates. To ensure comparability of evaluated schemes,
we select the same 33 collectors as [18], listed in Table VIII.
For BGP RIB datasets, we use both long-term and short-
term RIBs. The dataset RIB_Year contains 12 RIB sets,
each corresponding to a month from August 2024 to July
2025. We collect and merge the 1,170 RIB subsets archived
by the 33 collectors over the first five days of each month.
The dataset RIB_Day contains 30 RIB sets from July 1st
to 10th, 2025, with each set representing the union of BGP
RIBs from the 33 collectors over an 8-hour interval. The
details about two AS path datasets can be found in Table VII.
BGP update datasets, we focus on June 2025 and use the

route leak events reported by Cloudflare Radar [40] together
with BGP updates from the same 33 collectors to construct
two labeled AS-path datasets: Update_Event_Tune, used
for threshold selection, and Update_Event_VD, used for
route leak detection performance evaluation. Details of the
Update_Event_VD are summarized in Table VIII.

Preprocessing. We preprocess the collected AS paths to
filter mistakes and noises that may impact the relationship
inference. First, we obtain a list of Internet eXchange Points
(IXPs) from PeeringDB and remove their ASNs from the AS
paths because they do not participate in the routing. Second,
we remove duplicate ASes caused by AS path prepending.
Third, we discard paths containing AS loops, which indicate
abnormal routing behaviors or unassigned ASNs that should
not appear on the global Internet.

Validation Datasets. We employ two types of ground-truth
datasets: the AS relationship validation dataset and the route
leak benchmark dataset, to evaluate two aspects of the four
schemes, namely the AS relationship inference and route leak
detection.

o AS Relationships. Due to the privacy and sensitivity of

AS relationships, a definitive ground truth is unavailable.
To evaluate the performance of the four schemes in
AS relationship inference, we utilize two complementary
datasets, which together form the dataset AS_Rel_VD.
The first is the CAIDA Serial-2 AS relationship
dataset [18], the most authoritative and comprehensive
publicly available dataset. It integrates various methods
to infer AS relationships, including heuristic approaches,
traceroute-based inferences (Ark), inferences from BGP
communities, and AS relationships obtained from multi-
lateral peering repositories, offering extensive global cov-
erage with monthly updates. The second dataset consists
of ASPA objects collected by the RPKI relying-party soft-
ware rpki-client [39]. These objects, voluntarily issued by
ASes, ensure high trustworthiness but cover only a few
hundred p2c relationships. These two validation datasets
complement each other in terms of data coverage and
precision. The CAIDA dataset provides broad coverage,
albeit with best-effort precision, while the ASPA dataset
offers high precision but with a limited scope.

o Route Leaks. We evaluate the performance of the four
schemes in route leak detection by evaluating their ability
to distinguish between legitimate and leaked paths. We
use the route leak events reported by Cloudflare
Radar [40] as the ground truth. Each event includes a
timestamp and a leak segment, which is an AS triplet
[ASa, ASb, ASc], indicating that ASb incorrectly ex-
ported the route from ASc to ASa. First, we determine
the time window for each route leak event (5 / 15 minutes
before and after the event for RIPE RIS and RouteViews,
respectively). Second, we collect BGP updates over a
specified time window, extract AS paths from these
updates, and label each path as “leaked” or “legitimate”
by checking if it contains the leaked segment. Using this
method, we generated a labeled dataset of AS paths span-



TABLE III
DEFINITIONS OF AS ROLES AND LINK TYPES USED IN EVALUATION.

Role Definitions & Selection Criteria

Tier-1 (T1.): An AS classified as a “Tier 1 network™ per
Wikipedia [52].

Stub (Stub): An AS with its degree d = 1 in [18].
Transit (Trans.): An AS that acts as a provider to at
least one AS and has a degree d > 1 in [18].

Content (Cont.): An AS classified as the “Content” type
in the PeeringDB [53].

High Impact (HI.): ASes of critical importance in
network topology and traffic transmission, typically char-
acterized by large-scale, concentrated traffic and key
influence on global/regional routing stability and perfor-
mance. The AS list was independently generated by our
team through online research, and is now publicly hosted
in our open-source repository.

Sibling (Sib.): The two ASes in the AS link belong to
the same organization in [54].

Partial Transit (PT.): The two ASes in the AS link have
a “partial-transit” relationship as per [33].>

Hybrid (Hyb.): The two ASes in the AS link have a
“hybrid” relationship as per [33].}

Type

AS
Roles

Link
Types

ning 30 days in June 2025. The first 15 days constitute the
dataset Update_Event_Tune, reserved exclusively for
threshold selection, while the remaining 15 days form the
dataset Update_Event_VD, designed as the evaluation
dataset for route leak detection. To evaluate PathProb’s
robustness in a fine-grained, multi-dimensional manner,
we partition the dataset Update_Event_VD along three
axes: (i) temporal partitioning with each day as an in-
dependent test set to gauge performance consistency over
time; (ii) collector-based grouping, namely grouping
paths by the 33 collectors to quantify potential vantage
point bias; and (iii) network role filtering, which filters
paths traversing specific ASes or links defined in Table III
to analyze how diverse AS types and link characteristics
affect detection accuracy. For more details, please refer
to Appendix C.

2) Evaluated schemes: We evaluate our proposed scheme
PathProb, along with three other schemes: AS-Rank,
ProbLink, and TopoScope. The implementation of
AS—Rank” is obtained from CAIDA, while the implementa-
tions of ProbLink’ and TopoScope® are provided by their
respective authors.”

3) Performance metrics: For the AS relationship reference,
we introduce the metric accuracy to compare four schemes,

3Due to the absence of up-to-date alternatives, we draw partial-transit and
complex relationships from the 2014 CAIDA supplement dataset, treating them
as approximate indicators of link types.

“https://publicdata.caida.org/datasets/as-relationships/2013-asrank-data-
extra/

Shttps://github.com/YuchenJin/ProbLink

Shttps://github.com/Zitong-Jin/TopoScope

7LeMon [22] is open-source but relies on offline analysis of globally
aggregated data, differing from our approach and thus not directly comparable,
and other white-box approaches mentioned in Section VI are not open-sourced.
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which is measured as the ratio of the number of AS links
correctly inferred in the AS relationship validation dataset
to the total number of AS links that can be inferred in the
dataset. For route leak detection, we introduce four concepts
that are used to define the three key metrics for evaluating
the performance of four schemes. A path is counted as a
false positive (#fp) if it is identified as a leaked path but is
actually a legitimate path. Similarly, a path is counted as a
false negative (#fn) if it is identified as a legitimate path but is
actually a leaked path. Conversely, correctly identified leaked
paths are classified as true positives (#tp). Correctly identified
legitimate paths are classified as true negatives (#tn). Then,
the metric precise is measured as - 22 the metric recall

H#ip+#fp’
and the metric false positive rate (FPR)
is defined by Z fﬁfi - These three metrics enable a compre-
hensive evaluation of route leak detection performance. Recall
quantifies detection coverage of route leaks, while precision
measures the reliability of alerts. The FPR is the most critical
metric. Excessively high FPRs have been a major barrier to the
adoption of previous solutions. Therefore, the core challenge
of our work is how to minimize FPR while maintaining high
recall. However, the three metrics are strongly correlated with
the distribution of positive and negative samples. As shown
in Table VIII, there is a significant imbalance between leaked
paths and legitimate paths (positive and negative samples) in
the validation dataset. To mitigate the impact of this imbalance
on the evaluation results, we adopt a sample weighting method,
assigning different weights to positive and negative samples.
Specifically, the weight of each class is set to be inversely
proportional to the number of samples it contains. This ensures
that the fewer positive samples (leaked paths) receive higher
weights. In contrast, the more negative samples (legitimate
paths) are assigned lower weights, thereby balancing their
overall contribution to the final performance.

is given by T £

4) Simulation environment: To evaluate the impact of
PathProb on mitigating the effects of route leaks, we ran
simulations using a framework adopted by [55], [S6]. We con-
structed an AS-level global Internet topology using the CAIDA
Serial-1 AS relationship dataset, where all ASes adhere
to the standard Gao-Rexford model for routing selection and
export. In each simulation run, we set up different deployment
scenarios and randomly selected 1,000 AS pairs as leakers
and victims. Specifically, the leaker ASes were chosen at
random from non-stub ASes, namely those with more than one
neighbor, to ensure they have the capacity to propagate leaked
routes. The victim ASes were selected randomly, excluding any
direct or indirect customer ASes of the corresponding leakers,
because an AS can export routes it receives from any type of
neighbor to its customers, which would not lead to route leaks.
The leaker ASes announced routes originated by the victims
to their neighbors. In each route leak event, each AS in the
global network topology will fall into one of the following
three categories:

o Immune: ASes that reach the victim via legitimate paths.
o Infected: ASes that reach the victim via leaked paths.
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Fig. 6. AS relationship reference accuracy with RIB_Day and RIB_Year.

o Disconnected: ASes that lost all paths to the victim, and
cannot reach the victim at all.

Obviously, the more paths identified and filtered as route
leaks, the fewer infected ASes but more disconnected ones;
fewer filtered paths mean more infected ASes and fewer
disconnections. To this end, we define two metrics to evaluate
the security and reachability of the four schemes in detecting
route leaks. Let Ninf, Nimm, and Ngisc denote the numbers
of infected, immune, and disconnected ASes, respectively. The
one metric leakage infection rate (LIR) refers to the proportion
of infected ASes among ASes that have paths to the victim
and is calculated as ﬁ The other metric legitimate
connection rate (LCR) refers to the proportion of immune

1 Nimm
ASes among all ASes and is calculated as — 7= N

B. AS Relationship Inference

Figs. 6(a) and 6(b) show the accuracy of four evaluated
schemes in inferring AS relationships using path datasets
RIB_Day and RIB_Year, along with the corresponding
validation dataset AS_Rel_VD. Each bar shows the average
accuracy over all snapshots, and the error bars denote the
95% confidence intervals. To facilitate comparison with other
deterministic inference schemes, we map the probabilistic
distribution of an AS link to the relationship type with the
highest probability. Overall, when evaluated on the CAIDA val-
idation dataset, PathProb slightly underperforms AS Rank
but outperforms ProbLink and TopoScope in average
accuracy for AS relationship inference. On the RIB_Day
and RIB_Year path datasets, PathProb achieves average
accuracies of 95.87% and 96.06%, respectively, trailing AS
Rank by merely 1.65 and 0.59 percentage points. This narrow
gap is expected, since the CAIDA validation dataset itself is
inferred from an optimized solution of AS Rank, it inherently
favors AS Rank-style heuristics, creating a natural baseline
advantage for that method. However, when employing the
ASPA validation dataset, which has the highest credibility in
AS relationships, PathProb achieves the best performance
in AS relationship inference average accuracy, outperforming
other schemes by 5.87 ~ 23.46 and 6.08 ~ 20.81 per-
centage points using RIB_Day and RIB_Year, respectively.
The 95% confidence intervals in Fig. 6 are non-overlapping,
indicating statistical significance of these performance gains.
We hypothesize that other schemes exhibit suboptimal perfor-
mance on the p2c¢-rich ASPA data, likely due to a tendency to
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infer neutral p2p relationships. By contrast, PathProb more
effectively captures these dynamics through its probabilistic
modeling framework.

C. Route Leak Detection

1) Path score distributions with Pat hProb: For each link,
we calculate a legitimate score based on the inferred rela-
tionship probabilities with PathProb following the method
outlined in Section III-B. If the score is below the threshold th,
the path is flagged as a potential leak; otherwise, it is deemed
legitimate. Fig. 7 shows the score distributions of legitimate
and leaked paths in the dataset Update_Event_Tune.®
There is a significant difference in the scores of the two
types of paths. The vast majority of leaked paths have scores
concentrated between 0 and 0.1, close to zero, indicating that
PathProb identifies them as highly suspicious leaked paths.
Conversely, legitimate paths exhibit significantly higher scores:
46.83% of them have scores exceeding 0.99, and another
37.45% have scores ranging from 0.5 to 0.9.

2) Configuration of PathProb: However, whether a sus-
picious route leak is determined to be a route leak depends on
whether its score is below the threshold. Therefore, selecting
a threshold requires balancing precision, recall, and FPR. As
shown in Fig. 8, we evaluate the three metrics across a range
of threshold values. Ultimately, we set the threshold at 0.35.
At this threshold, PathProb achieves a high recall (96.4%),
ensuring that nearly all leaked routes are detected. Meanwhile,
this threshold maintains a high precision (98.5%) and keeps
the FPR relatively low (3.7%), providing a trade-off between
detection coverage and false alarm rate.

8Each bar represents a bin of width 0.01, with x-axis labels displayed at
intervals of 0.1 units.
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Fig. 10. The precision, recall, and FPR of four schemes in detecting route leaks

3) Comparison with other schemes: We evaluate four
schemes using the validation dataset Update_Event_VD
across the three dimensions defined earlier—time, collector,
and network role—with error bars indicating 95% confidence
intervals. Across all three dimensions, PathProb demon-
strates significant superiority, consistently achieving the high-
est average precision and the lowest FPR in Fig. 9. Specif-
ically, in the time dimension, PathProb achieves an aver-
age precision of 95.43%, exceeding the other three schemes
by 3.69 ~ 15.61 percentage points. Crucially, its average
FPR is merely 4.71%, which is 4.29 ~ 20.08 percentage
points lower than the competing schemes. In the collector
dimension, PathProb maintains an average precision of
95.50%, improving by 0.96 ~ 13.92 percentage points,
while suppressing the average FPR to 4.76%—a reduction of
1.25 ~ 18.15 percentage points. Regarding the network role
dimension, PathProb outperforms AS Rank, Problink,
and Toposcope with an average precision of 95.35% (lead-
ing by 5.62 ~ 17.15 percentage points) and a reduced average
FPR of 4.78% (7.08 ~ 23.30 percentage points lower),
underscoring its robust performance across diverse evaluation
scenarios. Fig. 10 provides a granular breakdown of results
for role-specific AS subsets and type-specific link subsets
PathProb consistently achieves best precision and FPR,
outperforming alternatives in every specialized scenario. These
findings confirm that our proposed method exhibits strong
robustness to temporal variations, vantage point biases, and
heterogeneous network characteristics. In terms of recall, the
four schemes demonstrate comparable effectiveness across all
dimensions. All recall values range from 97.84% to 99.97%,
with a maximum divergence of merely 2.13 percentage points.
Although PathProb is not always the absolute leader in this
metric, it sustains a recall rate approaching 100%—aligning
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with the top-performing baselines and reflecting its reliable
detection coverage.

The main reason is that PathProb does not simply label a
path as leaked or legitimate, but calculates a legitimacy score
for each path. PathProb not only considers the path as a
whole but also provides operators with sufficient flexibility,
allowing them to adjust the threshold according to their
security needs.

D. Simulation Experiment

In this section, we evaluate the impact of integrating each
of the four schemes with ASPA on Internet security and
reachability. By configuring various deployment scenarios, we
simulate the phased deployment process of ASPA. First, we
adopt the ASPA scheme as the baseline, and then integrate
the authoritative declared AS relationships in ASPA with
those inferred by the other four schemes. Additionally, we
incorporate OTC [10] as a standalone benchmark and evaluate
a hybrid PathProb+0OTC scheme. In this hybrid approach,
a path is identified as a leak if classified as such by either
PathProb or OTC. Finally, by setting up different deployment
scenarios, we measure the LIR and LCR of the five schemes
to evaluate their impact on Internet security and reachability
once truly deployed. A deployment scenario is defined by both
the issuance rate and the deployment rate. The issuance rate
refers to the proportion of known AS relationships (including
both inferred and declared) out of all AS relationships in the
network, with intervals of 10%. In contrast, the deployment
rate refers to the proportion of ASes using AS relationships
for route leak detection out of all ASes in the network, with
intervals of 25%.

As can be seen from Fig. 11 and Fig. 12, PathProb
and PathProb+OTC consistently achieve the lowest LIR
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Fig. 11. The LIR of four evaluated schemes under different deployment rates (25%, 50%, 75%, and 100%).
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Fig. 12. The LCR of four evaluated schemes under different deployment rates (25%, 50%, 75%, and 100%).

and the highest LCR across the vast majority of deployment a route leak, PathProb maintains higher overall connec-
scenarios, demonstrating the robustness of our probabilistic tivity. Additionally, PathProb’s threshold tuning capability
mechanism. Leveraging OTC’s complementarity strengths, the offers flexibility and performance potential. It allows network
hybrid PathProb+0TC yields marginally enhanced perfor- operators to customize the threshold based on their own
mance. Crucially, our approach offers significant immediate network knowledge and operational requirements, enabling
benefits during early deployment phases. With only 25%  better adaptation and improved effectiveness.
deployment and no ASPA issuance (0%), PathProb reduces
the LIR from 15.17% to 6.63% (a 56% decrease) and con- E. Deployment model and overhead
currently improves the LCR from 83.70% to 87.49%. The In this section, we present a practical deployment model
PathProb+0TC further optimizes these metrics, reducing that aligns with the existing ASPA architecture. In this model,
LIR to 6.19% and boosting LCR to 87.99%. As deployment the inference of probabilistic AS relationships is conducted
expands, the improvements become increasingly evident—for out-of-band. Evaluation shows that processing a global BGP
example, in a scenario with 70% ASPA data issuance and 50%  snapshot requires less than 2 hours and peaks at 20GB of
deployment rate, PathProb reduces LIR down to as low as memory usage, demonstrating the feasibility of regular updates
1.87% while maintaining a high LCR of 93.84%. (e.g., monthly intervals). These inferred probabilities are then
encapsulated into RPKI objects and distributed via the stan-
Comparatively, other schemes face challenges in balancing dard RPKI publication, validation, and distribution protocols.
security and reachability. OTC, rooted in strict RFC-defined Consequently, existing RPKI software and routers need to
rules, introduces zero false positives. While this conservative  be extended to process PathProb objects. Routers perform
design maintains the LCR, it constrains its leak suppres- lightweight validation for each incoming BGP update, intro-
sion capability, leading to only marginal LIR reductions— ducing modest implementation complexity compared to ASPA.
particularly in early-stage deployment scenarios. Conversely, All operations are confined to the control plane, imposing no
deterministic inference schemes (AS Rank, ProbLink, and additional latency on data-plane traffic.
TopoScope) exhibit aggressive leak reduction capabilities
but incur high false-positive rates. Under last-stage deployment
scenarios, their LCR declines significantly below the ASPA Several studies [24]-[30] have explored machine learning
baseline, severely compromising network connectivity. By models for route leak detection. These “black-box™ approaches
comparison, PathProb achieves a superior trade-off between detect route leaks directly from routing data without requiring
security and reachability. PathProb’s competitive results can  explicit AS relationships. For instance, BEAM [24] introduces
be attributed to its probabilistic evaluation mechanism. This a network representation learning model to detect anomalies
mechanism assesses the legitimacy score of each path and by capturing AS role changes. RoLL [25] and RoLL+ [26]
filters out only those with low confidence. By collectively use AS triplet features for real-time leak detection, achiev-
evaluating all links in a path to determine the likelihood of ing high accuracy with low latency. FL-RLD [27] combines
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federated learning with blockchain for collaborative detection
while preserving data confidentiality. MSLSTM [28] leverages
wavelet transforms and multiscale LSTM models for anomaly
classification. Despite their strong empirical performance, the
reliance of these methods on opaque models and their lack of
interpretability hinder operational adoption.

In contrast, several rule-based (white-box) approaches use
interpretable logic, namely valley-free rules and deterministic
inferred AS relationships, to detect route leaks. However,
there is no comprehensive and publicly available dataset for
AS relationships. Several methods have been proposed to
infer AS relationships from BGP topology and routing behav-
iors [14]-[22]. AS Rank [14] applies valley-free assumptions
and topological heuristics. The widely used CAIDA AS-
relationships dataset [18] builds upon AS Rank, augmenting
it with additional data sources. ProbLink [15] introduces a
probabilistic model, TopoScope [16] further refines this with
ensemble learning to address observation bias, and HELA [19]
extends this into a modular framework. UNARI [20] models
deterministic inference uncertainty. This differs from our ap-
proach, which assigns a probability distribution to each AS
link. ASIRIA [21] infers AS relationships from IRR data,
while LeMon [22] validates routes using offline datasets and
operator feedback. However, these methods often yield high
FPR when applied to ASPA-based route leak detection.

Our work complements other BGP security mechanisms,
together providing more comprehensive protection against
routing anomalies. ROV relies on ROAs [57] to verify that
an AS is authorized to originate a given prefix. This mech-
anism addresses prefix hijacking but remains orthogonal to
PathProb, which focuses on validating the legitimacy of
the AS_PATH attribute. BGPsec [58] enhances security by
cryptographically signing AS_PATH to prevent forgery. In
contrast, PathProb targets policy violations where routes
are propagated authentically yet violate acceptable routing
policies. BGP-iSec [5], an extension of BGPsec, introduces ad-
ditional safeguards against route leaks. Peerlock [59] mitigates
leaks via manually configured filters between large network
operators, but it lacks scalability and automation. The Only-
to-Customer (OTC) attribute [10] allows an AS to proac-
tively restrict route announcements to peers and providers,
thereby helping prevent certain types of leaks. Unlike OTC,
PathProb reactively detects invalid paths received from
neighbors. The two approaches are complementary: OTC may
help address specific edge cases where PathProb could
produce false negatives, suggesting potential synergy in joint
deployment.

VII. CoNCLUSION

In this paper, we propose PathProb, a novel probabilistic
framework designed to defend against BGP route leaks—a
critical threat to the global routing stability. PathProb infers
probabilistic distributions for AS links and calculates legiti-
macy scores for AS paths to determine whether they violate
the expected routing propagation policies. Pat hP rob not only
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serves as a supplement to the authoritative declared AS rela-
tionships, such as RPKI-based ASPA, but also enhances the
detection of route leaks by modeling relationship uncertainty,
outperforming deterministic heuristics. It offers operators a
flexible threshold adjustment to balance security sensitivity
and false alarms, adapting to diverse network environments.
Critically, PathProb provides immediate, robust protection
with minimal overhead while incentivizing a transition to a
fully verifiable, white-box routing security ecosystem in the
future.
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APPENDIX A
TriPLE-MINIMUM Vs FULL-PATH ScORING FOR LONG AS PaTHS

We compare the effectiveness of the triple-minimum score
(Eq. (1)) versus the full-path score (Eq. (2)) for handling long
AS paths. Focusing on paths in the Update_Event_VD
dataset with length > 7, we plot the legitimacy score distri-
butions for legitimate and leaked paths in Fig. 13 and Fig. 14,
respectively.

The comparison highlights the advantage of the triple-
minimum strategy. Although score decay along long paths is
an inherent limitation of the probabilistic model, the triple-
minimum score substantially mitigates this impact. In Fig. 13,
legitimate paths maintain high scores, rarely falling below
0.2, and exhibit only minor overlap with leaked paths around
0.3. In contrast, the full-path score (Fig. 14) experiences
rapid decay, leading to significant overlap between legitimate
and leaked paths in the [0,0.1] range. These findings val-
idate the theoretical analysis in Section III-B: by limiting
the scope of probability multiplication, the triple-minimum
scheme mitigates the excessive accumulation of length-induced
uncertainty. This ensures that the metric maintains strong
discriminability between legitimate and leaked routes, even
for long AS paths.
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Fig. 13. Triple-minimum score distribution of legitimate and leaked paths.
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Fig. 14. Full-path score distribution of legitimate and leaked paths.

APPENDIX B
ALGORITHMIC PARAMETERS SENSITIVITY

We conduct a sensitivity analysis of PathProb for two key
parameters: the number of Gibbs samples (K) in Section IV-D
and the core-to-edge threshold (7) in Section IV-E. For each
configuration, we measure AS relationship inference accuracy
using CAIDA and ASPA datasets and route leak detection
performance—measured by average precision, recall, and FPR
across all three dimensions—with results summarized in Ta-
bles IV and V.

A. The Number of Gibbs Samples

Varying the number of Gibbs samples K from 500 to 4000
(with fixed 7 = 0.8) demonstrates that PathProb exhibits
high stability once K reaches a sufficient magnitude. As shown
in Table IV, the variation in AS relationship accuracy is neg-
ligible (< 0.3 percentage points) across both datasets. Route
leak detection metrics exhibit similar stability: recall remains
constant at 98.39%, while precision fluctuates marginally
(95.43% ~ 95.64%) and FPR exhibits a slight improvement
from 4.75% to 4.52%. Given this flat convergence region, we
select ' = 1000 as the default setting to achieve an optimal
balance between detection performance and computational
efficiency.

B. Core-to-edge threshold

Table V analyzes the sensitivity of PathProb to the core-
to-edge threshold (7) over the range [0.6, 0.99]. Increasing
7 monotonically improves AS relationship inference accuracy
on the CAIDA dataset (from 93.31% to 97.42%), but for
7 > 0.8, it leads to a gradual decline in AS relationship
reference accuracy on ASPA dataset, with accuracy dropping
from 93.93% to 91.91%. For route leak detection, moderate
thresholds (7 € [0.6,0.8]) maintain high precision and stable
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TABLE IV
SENSITIVITY TO THE NUMBER OF GIBBS SAMPLES.
K AS rel. acc. (%) route leak avg. (%)
CAIDA ASPA Precision Recall FPR

500 95.92% 93.93% 95.59% 98.39% 4.57%
750 95.70% 93.93% 95.48% 98.39% 4.69%
1000 | 95.94%  93.93% 95.43% 98.39%  4.75%
2000 | 95.67% 93.64% 95.63% 98.39% 4.53%
4000 | 95.69% 93.64% 95.64% 98.39% 4.52%

TABLE V
SENSITIVITY TO THE CORE-TO-EDGE THRESHOLD.
AS rel. acc. (%) route leak avg. (%)

T CAIDA ASPA Precision Recall FPR
0.6 93.31% 93.93% 95.71% 98.39% 4.44%
0.7 94.44% 93.93% 95.70% 98.39% 4.45%
0.8 95.94%  93.93% 95.43% 98.39% 4.75%
0.9 96.51% 93.35% 94.13% 98.78% 6.21%
0.99 | 97.42% 91.91% 90.60% 98.89% 10.43%

TABLE VI
MORE INFORMATION ABOUT AS_RET_VD VALIDATION DATASET.
tme # of links  # of ASes
YYYY/MM
ASPA Dataset 2025/07 557 303
2024/08 571,873 77,242
2024/09 574,352 77,246
2024/10 698,865 77,349
2024/11 700,774 77,344
2024/12 579,026 77,500
2025/01 689,189 77,480
CAIDA Dataset
2025/02 699,461 77,580
2025/03 709,737 77,600
2025/04 582,792 77,728
2025/05 569,254 77,792
2025/06 571,399 78,144
2025/07 554,874 78,026

recall. Conversely, overly strict thresholds (7 > 0.9) yield only
marginal recall gains (up to 98.89%) but severely compromise
precision (dropping to 90.60%) and increase the FPR sharply
to 10.43%. Consequently, we configure 7 = 0.8 as the default
setting. This value represents a robust operating point that
strikes an optimal balance: ensuring high accuracy across both
CAIDA and ASPA datasets while minimizing false alarms.

AppeENDIX C
MOoRE DETAILS ABOUT DATASETS

This appendix provides detailed specifications of the
datasets used in Section V.

Table VII presents a detailed statistical summary of the
two BGP RIB datasets, RIB_Year and RIB_Day. For each
dataset, we list the total number of AS paths, the number of
unique paths, the number of unique AS links inferred from
these paths, and the total number of unique ASes.

RIB_Year consists of 12 sets, each corresponding to a
month from August 2024 to July 2025, and constructed by
aggregating the RIBs collected during the first five days of the
respective month.

17

RIB_Day contains 30 RIB sets from July 1st to July 10th,
2025. Every three sets correspond to a single day, with one
set representing an 8-hour interval within that day.

Table VI provides detailed information of the AS_Rel_VD
validation dataset for evaluating AS relationship inference
schemes. It consists of two parts: the high-confidence but
limited-coverage ASPA dataset and the broad-coverage but
lower-confidence CAIDA dataset.

Table VIII provides a statistics overview of the
Update_FEvent_VD, constructed based on Cloudflare
Radar-reported route leak events from June 16 to June 30,
2025. To verify the detection robustness of PathProb from
multiple dimensions, we partition the dataset into finer-grained
categories based on time, collectors, and network roles.



TABLE VII

MORE INFORMATION ABOUT RIB_YEAR AND RIB_DaY AS PATH DATASETS.

time # of # of # of # of time # of # of # of # of
YYYY/MM/ total unique unique unique YYYY/MM/ total unique unique unique
DD.HH paths paths links ASes DD.HH paths paths links ASes
2024/08 17,812,787,966 50,097,329 538,618 84,268 2025/02 18,044,031,402 49,423,726 538,555 84,252
=R 2024/09 17,780,336,699 50,124,183 538,274 84,140 2025/03 17,745,253,614 48,413,752 535,735 84,262
2 % 2024/10 17,402,694,208 49,089,812 536,714 84,160 2025/04 17,770,669,084 49,844,198 542,200 84,256
El ‘g 2024/11 17,587,402,826 48,590,671 536,735 84,099 2025/05 17,616,132,681 48,570,732 536,409 84,269
41 2024/12 16,730,401,202 49,278,366 549,913 84,232 2025/06 17,737,310,048 50,390,243 536,283 84,447
2025/01 16,459,646,891 46,176,443 530,784 84,148 2025/07 17,688,500,604 50,764,884 539,820 84,340
2025/07/01.00 562,245,893 45,476,796 527,869 84,141 | 2025/07/06.00 561,328,617 45,054,202 520,897 84,174
2025/07/01.08 559,912,216 45,296,390 527,175 84,150 | 2025/07/06.08 562,539,375 45,142,241 521,273 84,171
2025/07/01.16 562,285,152 45,571,259 526,300 84,145 | 2025/07/06.16 562,559,232 45,164,465 521,326 84,174
2025/07/02.00 562,309,433 45,544,999 527,234 84,131 | 2025/07/07.00 561,377,025 45,060,718 518,980 84,164
2025/07/02.08 562,301,724 45,558,121 527,384 84,163 | 2025/07/07.08 561,073,243 45,031,075 520,653 84,188
. 2025/07/02.16 560,867,760 45,206,765 520,748 84,163 | 2025/07/07.16 560,290,282 45,190,192 519,763 84,190
3 B 2025/07/03.00 561,220,928 45,092,003 520,863 84,145 | 2025/07/08.00 559,203,196 45,034,167 517,492 84,183
ml «g 2025/07/03.08 560,683,214 45,086,457 521,116 84,166 | 2025/07/08.08 557,798,341 45,082,550 519,198 84,204
o A 2025/07/03.16 562,071,426 45,124,436 520,702 84,189 | 2025/07/08.16 559,816,349 45,202,958 521,023 84,225
2025/07/04.00 562,458,386 45,198,333 521,061 84,168 | 2025/07/09.00 560,886,180 45,324,225 521,116 84,212
2025/07/04.08 562,633,120 45,200,883 521,562 84,180 | 2025/07/09.08 561,307,680 45,286,751 521,120 84,237
2025/07/04.16 562,589,209 45,243,791 521,531 84,185 | 2025/07/09.16 561,480,507 45,254,241 521,610 84,251
2025/07/05.00 562,524,870 45,187,424 520,222 84,177 | 2025/07/10.00 561,534,575 45,283,230 521,896 84,250
2025/07/05.08 562,396,680 45,189,392 519,988 84,173 | 2025/07/10.08 560,494,811 45,129,055 519,731 84,256
2025/07/05.16 562,531,883 45,161,474 521,356 84,174 | 2025/07/10.16 561,829,075 45,236,905 521,864 84,263
TABLE VIII
STATISTICS OF LEGITIMATED AND LEAKED PATHS IN UPDATE_EVENT_VD ACROSS TIME, COLLECTORS, AND AS ROLES.
# of # of # of 4 of # of # of
Dimension Instance legitimate leaked Instance legitimate leaked path Instance legitimate leaked
path path path path path
2025/06/16 1,407,170,355 457,003 2025/06/21 1,315,961,858 1,036,910 2025/06/26 1,496,280,402 221,872
2025/06/17 1,502,800,928 505,884 2025/06/22 1,319,472,109 164,468 2025/06/27 1,477,188,830 184,128
Time 2025/06/18 1,497,639,478 627,374 2025/06/23 1,529,775,235 432,016 2025/06/28 1,295,223,655 158,630
2025/06/19 1,559,610,899 425,391 2025/06/24 1,464,021,082 280,344 2025/06/29 1,324,506,360 155,173
2025/06/20 1,527,752,163 486,090 2025/06/25 1,410,563,199 180,324 2025/06/30 1,455,365,959 277,698
rrc00 2,911,494,005 454,423 rrcl4 266,872,872 53,922 napafrica 1,347,195,471 244,377
rrc01 1,165,374,129 385,474 rrelS 745,810,579 327,291 nwax 6,809,808 1,765
rrc03 1,422,240,840 440,226 rrcl6 114,494,423 34,387 perth 325,032,836 91,935
rrc04 209,308,682 47,660 rrcl8 81,023,634 6,847 route-views2 268,855,033 76,808
rrc05 1,098,933,245 280,067 rrcl9 768,821,357 108,373 route-views3 622,032,405 127,316
Collector rrc06 120,403,504 46,055 rrc20 2,439,433,520 347,526 sfmix 413,325,454 59,108
rrc07 346,834,438 145,609 rrc21 669,131,270 242,231 sg 674,367,418 214,802
rrcl0 378,292,894 106,240 eqix 559,750,399 164,746 SOXTIS 34,344,141 78,086
rrell 304,515,412 90,114 isc 249,791,394 58,984 sydney 512,035,425 129,384
rrcl2 1,571,538,321 450,448 kixp 362,942,821 47,779 telxatl 164,495,001 41,701
rrcl3 257,140,170 66,519 linx 1,117,890,129 601,348 wide 52,801,482 21,754
Tl 8,963,194,571 4,210,093 Cont 4,831,447,690 1,746,464 PT 86,409,130 8,911
Role Stub 3,240,136,429 362,469 HI 15,698,651,515 4,752,318 Hyb 605,983,342 853,890
Trans 21,580,977,672 5,593,305 Sib 2,063,882,891 273,857
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AprPENDIX D
ARTIFACT APPENDIX

We put forward a new paradigm for BGP route-leak detec-
tion. This is achieved by: (i) inferring probabilistic AS business
relationships for each AS link from AS paths extracted from
global BGP routing data, and (ii) leveraging these probabilities
to calculate a legitimate score for each path, thereby facilitating
the detection of route leaks.

To facilitate rapid validation of our core methodology, the
supplied experiments are streamlined, scaled-down versions of
the full-scale studies detailed in the paper.

A. Description & Requirements

1) How to access: Users can access our artifact in our
public repository at https://doi.org/10.5281/zenodo.17920056
and https://github.com/hyq8868/PathProb

2) Hardware dependencies: : x86-64 CPU (>8 cores), >16
GB RAM, and >10 GB free disk space.

3) Software dependencies:

e Operating System: Ubuntu 20.04 LTS (tested by the
authors).

System Packages (Ubuntu apt-get): git, wget,
zstd, build-essential, python3-pip,
python3-venv, graphviz, libjpeg-dev,
and z1liblg-dev.

Runtimes: Python 3.8+ and PyPy 3.10+.

Note: The default PyPy package on Ubuntu 20.04 or
22.04 may be an older version. For experiment E3, please
manually install PyPy 3.10+. An example installation
procedure is provided below.

wget https://downloads.python.org/pypy/pypy3.10-
v7.3.16-1linux64.tar.bz2

tar -xjf pypy3.10-v7.3.16-1inux64.tar.bz2

export PATH=S$ (pwd) /pypy3.10-v7.3.16-1inux64/bin:

SPATH
pypy3 -m ensurepip
pypy3 —-—-version # Verify

Dependencies: All required packages are one-command
installable via pip using the supplied requirements
.txt and requirements_pypy.txt.

4) Benchmarks: The datasets required for the experiments
are provided as follows:

o Ready-to-use data: pre-processed and saved in test_d
ata/. Note: The datasets below are scaled-down subsets.
To reproduce the full-scale experiments, please use the
download script provided in our GitHub repository.

— Rib_Year: A scaled-down AS path dataset col-
lected from June 2025, used as input for probabilistic
AS relationship inference (E1 in Section D-El).
Located at: test_data/prob_inference/p
aths/202506/

AS_Rel_vD: ASPA objects and CAIDA dataset,
provide the ground truth for validating the relation-
ship inference results (E1 in Section D-E1). Located
at: test_data/prob_inference/validat
ion/
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— Update_Event_VD: A labeled collection of legit-
imate and leaked AS paths serves as the ground-
truth for validating the route-leak detector (E2 in
Section D-E2). Located at: test_data/leak_d
etection/cloudflare_data/, with network
roles in as_role.

o Auto-download data: automatically fetched and decom-
pressed.

— CAIDA Serial-1: This dataset is used by the
simulator to build the topology for Experiment E3 in
Section D-E3. It will be downloaded automatically
by the simulator into the directory: pathprob_s
im/data/cache/

B. Artifact Installation & Configuration

sudo apt-get update
sudo apt-get install -y git build-essential graphviz
libjpeg-dev zliblg-dev wget zstd python3-pip
python3-venv

F— e S ATk s
nst system packages

all

# Change

cd PathProb

python3 -m venv .python_venv

source .python_venv/bin/activate
python3 -m pip install --upgrade pip
python3 -m pip install --upgrade wheel
pip install -r requirements.txt
deactivate
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pypy3 —-m venv .pypy_venv

source .pypy_venv/bin/activate

pypy3 -m pip install pip —--upgrade

pypy3 —-m pip install wheel --upgrade

pypy3 -m pip install -r requirements_pypy.txt
deactivate

# Extract ready-to-use data

zstd -d test_data.tar.zst -c | tar -xf -

C. Experiment Workflow

The experimental workflow is divided into three sequential
phases.

1) Probabilistic AS-relationship inference - using the
June-2025 AS-path dataset (RIB_Year), we infer
business relationship probabilities and evaluate their
accuracy against the CAIDA / ASPA ground-truth
(AS_Rel_vVD).

Route-leak detection - fed with the above probabilistic
AS-relationships, we compute the legitimacy score for
each AS path to identify route leaks, and evaluate
PathProb’s precision, recall, and FPR (False Positive
Rate) against dataset Update_Event_VD.
Large-scale simulation - the simulator auto-downloads
the AS relationships archived by CAIDA to construct
the global topology, injects synthetic leaks and outputs
LIR (Leakage Infection Rate) and LCR (Legitimate
Connection Rate) plots.

2)

3)


https://doi.org/10.5281/zenodo.17920056
https://github.com/hyq8868/PathProb_AE

D. Major Claims

e (C1) PathProb infers probabilistic AS relationships from
AS path inputs and validates them against ASPA objects
and the CAIDA Serial-2 dataset. This claim is supported
by experiment (E1), which produces representative results
aligning with Fig. 6.

(C2) PathProb computes a legitimacy score for each path
to perform route leak detection and achieves the expected
performance metrics (precision, recall, and FPR). This
claim is supported by experiment (E2), with results
aligning with Fig. 9 and Fig. 10.

(C3) PathProb achieves lower LIR and higher LCR
compared to the ASPA scheme through a large-scale
simulation on a global AS-level topology. This claim is
supported by experiment (E3), with results aligning with
Fig. 11 and Fig. 12.

E. Evaluation

1) Experiment (EI): [Probabilistic AS relationship infer-
ence] [5 human-minutes + 1 compute-hours]: This experi-
ment infers probabilistic AS relationships from the provided
AS-path dataset and validates them against ASPA objects
and CAIDA Serial-2 (AS_Rel_VD). The expected outcome
is a three-way probability distribution (customer—provider,
peer—peer, provider-customer) across every AS link in the
dataset. The accuracy of these distributions is then evaluated,
and the results are aligned with Fig. 6.

Reproducibility Notes:

o Solver: The paper used Gurobi, which requires an aca-
demic license, as the ILP solver. To enable reproducibil-
ity, this artifact switches to the open-source solver SCIP.

o Dataset: To facilitate rapid validation, this artifact pro-
vides a scaled-down subset of the paper’s Rib_Year
dataset, containing only records from June 2025.

The solver and reduction in scale of the dataset does not alter
the core characteristics underpinning the qualitative conclu-
sions.

[Preparation] Activate the Python virtual environment.

source .python_venv/bin/activate

[Execution] Run the inference script.

python3 infer_prob/asrel_prob.py \
—-path_dir test_data/prob_inference/paths/202506 \
—-print_dir test_data/prob_inference/result/202506

[Results] Note on interpreting results: The paper’s Fig. 6
shows aggregate metrics derived from the full-scale experi-
ment. Due to the scaled-down dataset used in this artifact, this
script outputs the specific accuracy values corresponding to
this single run.

python3 eval_asrel.py --probs test_data/
prob_inference/result/202506/pathprob.txt

A similar output as follows should be shown:

Results for ASPA validation:
Results for CAIDA validation:

94.20%
95.79%

accuracy:
accuracy:

20

2) Experiment (E2): [Route-leak detection] [5 human-
minutes + 10 compute-minutes]: This experiment uses the
probabilistic AS relationships inferred from (E1) to score
each AS path and perform route-leak detection. The expected
outcome is a set of Precision, Recall, and FPR metrics, and
the results are aligned with Fig. 9 and Fig. 10.

Reproducibility Notes: To ensure rapid execution, this
artifact provides a scaled-down subset of the paper’s
UPDATE_EVENT_VD dataset, containing only records of five
days, namely days 16-20 of June 2025.

[Preparation] Activate the Python virtual environment.

source .python_venv/bin/activate

[Execution] Run the detection script. This script saves the
detailed metrics to test_data/leak_detection/res
ult/, and also prints the summary metrics directly to the
console.
python3 route_leak_detection.py

A similar output as follows should be shown:

time 96.85% 98.82% 3.22%
collector 96.80% 98.91%
role 96.59% 96.71% 3.41%

3.36%

Details are saved to test_data/leak_detection/result

[Results] Generate the plots from the saved metrics. Results
are saved to the directory test_data/leak_detection
/result/.

python3 figure_routeleak.py
deactivate

3) Experiment (E3): [Simulation] [5 human-minutes + 3
compute-hours]: This experiment runs a large-scale simulation
to measure LIR and LCR across various deployment scenarios.
The expected outcome is a set of plots demonstrating that
PathProb achieves a lower LIR and a higher LCR than the
ASPA scheme, and the results are aligned with Fig. 11 and
Fig. 12.

Reproducibility Notes: To reduce the overall execution time,
for each deployment rate of {25%, 50%, 75%, 100%}, we use
ASPA’s issuance rates of {0%, 25%, 50%, 75%, 100%} with
100 trials per configuration.

[Preparation] This simulation requires PyPy 3. Activate the
PyPy virtual environment.

source .pypy_venv/bin/activate

[Execution] Run the simulation script.

export PYTHONHASHSEED=0
pypy3 -m pathprob_sim --trials 1

BGDP

# BGPy

# r

ired by simula

00

requ

[Results] Across all deployment scenarios with different
deployment rates and ASPA issuance rates, the script computes
LIR and LCR for every evaluated scheme and automatically
renders the comparison plots into pathprob_sim/data/
graphs.
pypy3 pathprob_sim/graph/graph.py
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