Artifact
Evaluated

ANDss

Available

Functional

TRANSPARENT: Taint-style Vulnerability [
Detection in Generic Single Page Applications
through Automated Framework Abstraction

Senapati Diwangkara Yinzhi Cao
Johns Hopkins University Johns Hopkins University
diwangs @cs.jhu.edu yinzhi.cao@jhu.edu

Abstract—Single Page Application (SPA) frameworks allow
developers to build complex web applications in a single HTML
page with high-level components (e.g., search box). One research
problem for SPAs is how to detect taint-style vulnerabilities,
because the SPA framework reintroduces insecure DOM APIs in
a new format, such as SPA component parameters as taint sinks.
Although previous work has focused on improving vulnerability
detection in SPAs, to the best of our knowledge, they rely heavily
on hard-coded taint sinks, which not only need to be manually
curated for each different SPA framework but may also miss
certain insecure SPA APIs, introducing false negatives in detected
vulnerabilities.

In this paper, we present TRANSPARENT, an SPA vulnerabil-
ity detection tool that automatically abstracts SPA frameworks
using a combination of static and dynamic analysis to reveal
framework-specific sinks, thus facilitating end-to-end static vul-
nerability detection. TRANSPARENT first performs a backward
taint analysis from a list of insecure DOM APIs up to the
framework interface to reveal which part of the interface could
taint the DOM API. This automated framework abstraction is
done once per SPA framework. Then, TRANSPARENT finds
dataflow paths between the detected SPA sinks and attacker-
controlled sources to detect taint-style vulnerabilities in each
application. We evaluated TRANSPARENT against a database
of GitHub repositories and found 11 zero-day vulnerabilities,
including a repository with 24k+ GitHub stargazers and 30
million requests/month. So far, four zero-day vulnerabilities has
been fixed and/or acknowledged by their developers. During our
evaluation, TRANSPARENT found a total of 19 intermediate SPA
sinks from the three most widely used SPA frameworks, Vue,
React, and Angular. 14 of the newly discovered sinks are not
listed by the CodeQL standard library, the state-of-the-art static
analysis tool.

I. INTRODUCTION

Frontend frameworks like Angular [1l], React [37], and
Vue [42] help web developers build complex web pages by
raising the level of abstraction of their building blocks, from
individual HTML tags to a logical component, such as a search
box. This is done through an abstraction runtime that runs
on the browser’s JavaScript engine, which instruments the

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241721
www.ndss-symposium.org

browser’s DOM API while, in turn, providing a framework
API to be used by the developer. Using such frameworks, the
complexity of a website could increase to the point that it could
be developed to run as a standalone application outside of
a traditional browser environment, requiring less (sometimes
even zero) contact with a server [11]], [3]. Such a paradigm
is known as Single Page Application (SPA) [2], named after
the fact that the application only has a single HTML page,
leaving all the page-handling logic contained in JavaScript.

Despite its differences, SPA is still prone to the same web
taint-style vulnerabilities as its classic counterparts. There
are two classic, complementary methods for vulnerability
detections: dynamic and static. The former [22]], [41], [31] is
more accurate with fewer or sometimes zero false positives but
needs deployment, e.g., environment setup, and input exercise
to increase code coverage. The latter is the focus of the paper,
which has more false positives, but is scalable without runtime
support. The inclusion of an SPA framework makes static taint-
style vulnerability detection more difficult, since malicious
input could flow through said runtime to an insecure DOM
APL

One natural way to tackle the obstacle is with whole-
program analysis: analyzing the SPA runtime together with
the application of interest. However, whole-program analysis
is generally not a scalable approach, and doing it on JavaScript
is tricky due to its dynamic nature [30], [20]. Additionally,
to the best of our knowledge, none of them are equipped to
comprehensively handle the syntaxes present in an SPA frame-
work, like HTML templating language. Another way adopted
by recent static vulnerability detection, such as CodeQL [9]]
and ReactAppScan [21]], is to focus their analysis solely on the
SPA with an abstract of the framework, e.g., using framework-
specific sinks (called SPA sinks or stubs). However, they
rely on hard-coding the SPA sinks per framework and with
manual summarization. This is not a comprehensive approach
because it is challenging to enumerate sinks for different SPA
frameworks, especially with manual efforts.

In this paper, we design and implement a system called
TRANSPARENTP_-] to comprehensively detect taint-style vul-
nerabilities on SPAs built on top of many different SPA frame-

ITranSPArent: Trace-assisted Analysis for SPA Impairment

works. Central to our approach is the key idea of automated
framework abstraction: TRANSPARENT first models the SPA
runtime to uncover framework-specific intermediate SPA sinks
that could potentially be used by an SPA built on top of it.
This analysis is done once per framework, and the resulting
SPA sinks are then used with a commercial-off-the-shelf SPA
static vulnerability detection tool to mine vulnerabilities within
them.

While the idea is intuitively simple, the automated frame-
work abstraction faces two major challenges:

o Taint-rule diversity, which is caused by the fact that SPA
frameworks contain many dynamic language features. We
introduce an automated technique within TRANSPARENT
to deal with the SPA runtime’s reliance on dynamic
features called autostitch. The key idea is to use stack
traces produced by the SPA runtime’s test suite to ‘stitch’
an incomplete call graph.

o Sink diversity, which is the fact that we have multiple
SPA frameworks, each with numerous different methods
(e.g., JavaScript and HTML syntaxes) of exposing the
raw DOM API to developers. TRANSPARENT performs
backward dataflow analysis of SPA frameworks from
traditional insecure DOM APIs to JavaScript interfaces
for SPA sinks with JavaScript syntax. Then, TRANS-
PARENT analyzes the input and output of the HTML
template language transpiler to detect SPA sinks with
HTML syntax based on their JavaScript-syntax SPA sink
counterparts.

We validated our idea by applying TRANSPARENT to a
dataset of crawled GitHub repositories that use the top three
most popular SPA frameworks to date (Angular, React, and
Vue) and found 11 zero-day vulnerabilities. In the course of
doing so, TRANSPARENT discovered 19 intermediate SPA
sinks, 14 of which are missed by the hard-coded SPA sinks
used by the state-of-the-art Single-Page Application static-
analysis tool, CodeQL. Our contributions are twofold:

o TRANSPARENT - We designed and implemented a Single
Page Application vulnerability detection tool that could
handle both sink and taint-rule diversity to be applied to
many popular SPA frameworks. Our implementation is
published with an open-source license.

e Zero-day Vulnerabilities - We found 11 zero-day vulner-
abilities by applying TRANSPARENT against a dataset
of GitHub repositories of SPAs based on Angular, React,
and Vue. We responsibly disclosed our findings to the
maintainer according to their security policy.

II. BACKGROUND

SPA frameworks vary in implementation, but they are
functionally similar. To do a generic analysis, this section
will present a structure of how a Single Page Application is
generally written. SPA framework’s inner workings revolve
around the concept of a high-level component. This component
is defined once and could be instantiated many times. One
could think of this role as a special case of object-oriented

<template>
<input v-model="queryText" v-on:submit="querylmage">

<ul v-for="image in images"> = »->Temp|ate
<CaptionedImageéontenl,:“image"> :
 e
<template> ¢ i ol » Parameter
<script> of child component

export default {

TS -->Model

methods: { B
querylmage) { N
const result = fetchAPI(this.queryText)
this.images.push(result)
} E
Yoo

:-->Controller

</script>

Fig. 1: Illustrative example of an image searching page in
Vue that breaks down all the different parts of a component:
template, parameter, model, and controller. Dotted arrows
show how models are kept in sync with the template after
initialization.

programminﬁ (OOP) where the component is a class that
could be instantiated into objects that are the concrete Ul
elements, which are called views. The SPA runtime provides
a special function called a render function to instantiate a
component into view. While component and view technically
refer to distinctly different items, this paper will commit a
slight abuse of definition by using the word component to
refer to both. A component mainly consists of femplates,
parameters, models, and controllers. Figure [T| depicts all these
different parts in an abridged example of a Vue page.

o Template is the declarative structure of the component,
composed of either a primitive component (which mostly
mirrors a native HTML element like div), component
interpolation, or yet another user-defined component. A
page is also a component, serving as the root of a
component tree (which mimics a DOM tree).

o Parameter is the input data to fill the template with, just
like HTML element attributes or properties of a native
HTML file. We will call it the component’s parameter to
signify its difference from HTML concepts. This concept
resembles a constructor parameter in OOP.

e Model defines an internal state of components. This
resembles a property in OOP. A model is usually bound
to some parameter within the template and kept in sync
by the SPA framework: a change in the model would
change the template parameter and vice versa.

o Controller is the set of imperative actions that the com-
ponent could do (e.g., event-handling), which resembles
a method in OOP. A component also has a special
constructor method that would be called internally by the
render function on instantiation.

2This comparison is purely for explanatory purposes; one could have an
SPA runtime whose idiom revolves around other programming paradigms,
like React‘s functional components.

Mridula
2

[T N Y N

10
11
12
13

S o ® a9 v AW -

<template>

Search:<input v-model="source"/> Search:

—— <div v-html="source" />
</template>
<script>
export defaullt {
data() {
return\ {

}
}
}

</script>

source: ""

(a) Vue SPA component in HTML syntax

new Vue({
render(createElement) {

\——— const vueElmt = createElement('div', {
domProps: {
innerHTML: source

3
»

© 9 U R W —

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24

// Framework runtime
export function Vue(options) {
const patch = createPatchFunction(domBackend)

// Adds 'nativeElement' and 'data’
const, = options.render(createElement)
patch(vnode)
3}

function createPatchFunction(backend) {
return function patch {
backend.updateDOMProps 1D

// backend.ts (framework runtime)

}

function updateDOMProps 1» {
const _elm = vnode<fativeElement

data.domProps
props) {

let =
for (key T

return
}

b

25
26
27

elnlkey] =
}
} elm[’innerHTML’] = ""

(b) Transpiled component

Dataflow edge

—— Transpilation step

(c) Framework runtime

Call edge

Fig. 2: A simplified example of a zero-day vulnerability found by TRANSPARENT, which contains the (a) developer-written
code, (b) transpiled code, and (c) framework code. Specifically, the figure shows that a dataflow from the source (Line 9 of a)
to an SPA sink (v-html at Line 3 of a) and then to a DOM sink (Line 25 of c) through the transpiled code (b). The yellow-
shaded box signifies the user-controllable source: a text input, and the red-shaded box signifies the DOM sink, representing

one execution of line 25.

III. OVERVIEW

This section will give a brief overview of the problem and
challenges that TRANSPARENT is solving. This includes our
threat model and a real-world code snippet to motivate the
problem.

A. Threat Model

We consider a threat model similar to classic taint-style
client-side web vulnerabilities, where a payload flows from
taint sources down to taint sinks to produce a vulnerability. We
assume that an adversary has control over a user input on the
page (taint source), such as a URL or a form, whose content
could flow down to an insecure client API (taint sink). In
contrast to classic client-side web vulnerabilities, however, we
only consider client APIs that come from an SPA framework
and are a necessary condition for an exploit, instead of the
browser runtime. Throughout this paper, we will use the phrase
“SPA sink” to refer to the former and “DOM sink” to refer to
the latter.

Such an SPA sink could be used alone (e.g., a function to
modify the DOM directly) or in conjunction with other func-
tions (e.g., a function that returns a raw DOM element from
a component). This also implies the absence of sanitization
within the framework runtime itself. We consider all taint-style
client-side web vulnerabilities, like XSS and open redirects, to
be in scope. Vulnerabilities that do not rely on client weakness
(e.g., server-side rendering vulnerabilities) are considered out
of scope.

In light of prior works [21], we also consider two
kinds of vulnerabilities: application-level and package-level.
Application-level vulnerabilities are end-to-end vulnerabili-
ties whose taint sources are end-user accessible (e.g., URL,
form). Package-level vulnerabilities, on the other hand, are
vulnerabilities whose sources are component parameters. Such
vulnerabilities come from a library that does not implement
sanitization internally.

B. A Motivating Example

We motivate the necessity of our solution by illustrating
a simplified version of a zero-day vulnerability found by
TRANSPARENT in Figure 2] which shows developer-written
code (Figure 2a)), transpiled code (Figure 2b), and framework-
provided code (Figure 2c). The vulnerability is located in
BiliBili-Evolved [18], a popular (24k+ GitHub stargazers,
30 million requests/month [24]) browser script to enhance
the functionality of the BiliBili video streaming website.
We responsibly reported the vulnerability, which was first
acknowledged and then fixed by the code developers. In this
code snippet, a vulnerable user input flows from an input
component at line 2 in Figure [2a] to an SPA sink at line 3
in Figure [2a and then an insecure DOM API at line 25 in
Figure

Analyzing the full taint flow of this vulnerability is challeng-
ing due to the scale of the SPA framework and its taint-rule
diversity. The challenge of taint-rule diversity is manifested in
two parts. First, this vulnerability relies on dynamic language

Mridula
3

©

SPA Runtime Code Generic
SPA Sink
@ \ 4 ':‘ Analysis
SPA Runtime Test Dynamic - Fixed
v 7.) —> Autostitch A“Xé'('fry Call SPA Sink
> Analysis ges Analysis
§IV-A
DOM Sink and Reference
Render Function SPA Sink
Definition Analysis
§IV-B

JavaScript-syntax
SPA Sinks

© l ©

Static HTML-syntax SPA Taint-style
Template Sy Vulnerability —> Vulnerable?
; SPA Sinks :
Mapping Detection ,)(
§IV-C

SPA Transpiler Test

JSA Component

Fig. 3: TRANSPARENT system design. Green boxes indicate framework abstraction input (defined once per framework). Blue
boxes indicate vulnerability detection input (defined once per application). Purple boxes indicate intermediate output.

features. An example of this is the factory function at line
10 in Figure that conceals the call edge between line 7
and line 12. Second, the vulnerability relies on two syntaxes:
the Vue template syntax in Figure and JavaScript in the
framework runtime in Figure [2c| To the best of our knowledge,
no commercial-off-the-shelf static analysis tool could handle
these challenges and is thus unable to find this vulnerability.

In lieu of detecting the full taint flow, commercial-off-
the-shelf static analysis tools narrow the scope of detecting
vulnerabilities by only analyzing the component. To do this,
they hardcode the SPA sinks, thus giving rise to the sink
diversity problem. In this example, there are two SPA sinks:
line 3 in Figure [2a] (v-html parameter) and line 5 in Figure [2b]
(domProps.innerHTML), which represent two different styles
to write raw HTML content in Vue. As far as we know, no
commercial-off-the-shelf static analysis tool could detect the
latter SPA sink.

To iron out both of these problems simultaneously, TRANS-
PARENT performs a staged analysis by first modeling the SPA
framework in order to automatically produce an abstraction of
each framework in the form of intermediate SPA sinks. This
approach is more scalable since the framework analysis is only
done once per framework, and more flexible since its resulting
SPA sinks could then be used by a commercial-off-the-shelf
static analysis tool that traditionally uses hard-coded SPA sinks
for in-component taint analysis.

To tackle the first problem of dynamic language features
that is present at line 10 of Figure in particular, TRANS-
PARENT runs the unit tests that come with the Vue runtime
to complete the call edge that is missed by static analysis
tools. The approach is called “autostitch” in the paper. After
that, TRANSPARENT does a backward-taint analysis with the
auxiliary call edges from a DOM sink back to an SPA interface
to find the list of SPA sinks that the developer could import.

Then, to tackle the second problem of multiple syntaxes,
we leverage the insight that HTML-syntax templates have a
JavaScript-syntax equivalent after transpilation. In the context
of Figure 2] Figure 2a] will be transpiled into Figure [2b
To automatically look for this relationship, TRANSPARENT
employs a pattern matching analysis that is applied to the Vue
transpiler unit tests to figure out how HTML-syntax SPA sink
gets transpiled to its corresponding JS-syntax SPA sink.

I1V. DESIGN

In this section, we describe the core design of TRANSPAR-
ENT and how it adopts automated framework abstraction as
a part of taint-style vulnerability detection on SPA. Figure [3]
illustrates the overall system design. In short, TRANSPARENT
addresses the taint-rule diversity (both regarding dynamic
language features and multiple syntaxes) and sink diversity
problems in the following three successive analyses:

(A) Dynamic Autostitch Analysis: SPA runtime contains dy-
namic language features, such as higher-order functions,
which are absent from the call graph produced by a
commercial-off-the-shelf static analysis tool.

To solve this issue, TRANSPARENT employs a dynamic
analysis subsystem called autostitch. The subsystem‘s
basic premise is to use stack traces to complete a deficient
call graph. This subsystem produces auxiliary call edges
to reveal taint paths that are not discovered by ordinary
commercial-off-the-shelf static analysis tools.

Static Taint Path Analysis: SPA runtime contains a multi-
tude of SPA sinks that are traditionally listed manually by
commercial-off-the-shelf tools, leading to undertainting.
To solve this sink diversity issue, TRANSPARENT em-
ploys an automated static analysis subsystem that an-
alyzes the SPA runtime for a taint path from a DOM
sink back to the render function. It then deduces which
specific part of the render function parameter the SPA
sink is located in by analyzing the parameter object
shape, while also taking into account the parameter key
translation logic that may exist in a given SPA runtime.
This subsystem will produce a list of JavaScript-syntax
SPA sinks.

Static Template Mapping Analysis: SPA runtime is built
using JavaScript, but the SPA component is idiomatically
written in an HTML-like template language. Due to this
multiple syntax problem, commercial-off-the-shelf static
analysis tools are unable to detect the full taint path from
the template language to a DOM sink.

To solve this issue, TRANSPARENT exploits the fact
that SPA components written in HTML-like template
language always have a corresponding JavaScript-syntax
equivalent by means of transpilation. TRANSPARENT

(B)

©)

Mridula
4

then employs a pattern-matching technique to figure out
the mapping between the HTML-syntax attribute and
the previously discovered JavaScript-syntax parameter to
produce a list of HTML-syntax SPA sinks.

TRANSPARENT then uses the resulting JavaScript-syntax
and HTML-syntax SPA sinks to detect vulnerabilities in SPA
components by utilizing them as additional taint rules in a
commercial-off-the-shelf static analysis tool. We detail each
of these mechanisms in the following subsections below.

A. Dynamic Autostitch Analysis

The first analysis stage of TRANSPARENT is the dynamic
autostitch analysis. In order for TRANSPARENT to handle
dynamic function patterns that manifest as gaps in the call
graph, TRANSPARENT automatically ‘stitches’ this gap using
data points obtained from the SPA runtime. There are three
dynamic function patterns that TRANSPARENT addresses that
are particularly prevalent in SPA runtime:

1) Higher-order Function: By far the most prevalent pat-
tern in SPA runtime that causes the problem of incomplete
call graph is higher-order functions. To achieve goals such
as platform modularization and scheduling, SPA runtime of-
ten relies on higher-order function patterns such as a fac-
tory function. Unfortunately, commercial-off-the-shelf static-
analysis tools lack the capability of generating call edges
from such scenarios. Compounding the problem, each SPA
runtime employs a different internal architecture, making them
challenging to solve all at once.

Fortunately, the codebase of an SPA runtime, like that
of large and active JavaScript projects, always comes with
an accompanying test suite. We observe that this test suite
always tests the end-to-end rendering pipeline at least once.
Intuitively, its execution will produce at least one stack trace
with the complete call edges from a render function to a DOM
sink and could be used to augment an incomplete call graph.

We detail our method in Algorithm |lI} The autostitch al-
gorithm takes the framework source code (C) and its test
suite (T) as input (line 1). It will return the set of missing
call edges (S), which is initialized as empty (lines 2 and
3). We start by searching and marking DOM sinks in a
given SPA runtime codebaseE] by inserting a console.trace
statement antecedently as a cue to print the stacktrace when
said DOM sinks are executed. After that, TRANSPARENT
runs T, parses, and collects stacktraces from standard error
(line 4). For each unique stacktrace in the stacktraces
set, TRANSPARENT examines the function invocation within
it. For each successive invocation (i.e., stacktrace[i] and
stacktrace[i+1]), TRANSPARENT will check whether the
former has a call edge to the latter’s enclosing function (line 7-
9). TRANSPARENT uses the filename and line number locator
to search for the correct caller and callee function. If they are
not reachable, TRANSPARENT will append them to S (line 10)
and return after all stacktraces have been processed (line
14). From the set of missing call edges S, TRANSPARENT

3TRANSPARENT excludes auxiliary components like DevTool

Algorithm 1: Autostitch algorithm pseudocode

Input: C' = Framework source code
T = Framework test suite
Output: S = Set of (missing) call edges

S {}
stacktraces < test(C,T)
foreach stacktrace in stacktraces do
for i < O to stacktrace.length — 1 do
fCaller + stacktraceli];
fCallee <+ enclosing Function(stacktrace|i + 1]);
if not reachable(fCaller, fCallee) then
| S.append(fCaller, fCallee);
end

- = N

10 end
11 end
12 return S

will add the call edges to the analysis and also add a dataflow
edge between the argument of the caller and the parameter of
the callee for later analysis stages.

2) Component-generated Function: Another challenge that
needs to be tackled is the component-generated function. Some
SPA runtimes require a dynamically generated component-
specific function to accomplish their rendering. As such, this
kind of function cannot be analyzed statically unless the rele-
vant component is known beforehand. Since TRANSPARENT’s
automated framework abstraction is meant to be a component-
agnostic approach, a workaround is needed to tackle this
problem.

TRANSPARENT solved this issue by employing a heuristic
where, if a function in the stack trace cannot be found in
the codebase (suggesting that it is dynamically generated),
TRANSPARENT skips said function and stitches the function
call to the next function below it, ensuring that the dataflow
path remains intact.

3) Bound Function: Yet another challenge that needs to be
tackled is regarding bound functions. JavaScript has a built-
in method called bind() that attaches to a function object.
It accepts arguments typically passed to the base function to
dynamically create an altered version of said function with
a parameter value fixed to the previously passed argument,
which is referred to as a ‘bound function’. While the stack
trace provided by the higher-order function analysis shows
the correct call edge relationship between the caller and
callee, creating a dataflow edge between the caller’s argument
and the callee’s parameter for a bound function statically or
dynamically from the stack trace is tricky because the location
of the invocation is different from where the argument is
defined. To address this, TRANSPARENT employs a heuristic
where we treat function binding as a function invocation.
We note that the idiomatic usage of a bound function within
an SPA runtime is for scheduling; that is, a bound function
is created to be inserted into a scheduling queue for later
execution. We observe that this function and its parameter
do not get read or modified after binding; thus, this heuristic
is guaranteed not to cause any side effects. Unlike higher-
order and component-generated functions, this heuristic is

Mridula
5

TABLE I: A List of sensitive DOM APIs. nativeAttr and
nativeProps correspond to any attributes and properties,
respectively, of the underlying HTML tag. For the list of
sensitive attribute and properties, refer to Table

TABLE II: List of sensitive attributes and properties. Sensitive
attributes are used to compare with HTML-syntax component
and sensitive properties are used to search for DOM sinks.

[Sensitive attrs and props | Type | Interpret string as |
[Sensitive DOM API [Kind | src Attrs & Props URL
window.eval() Static DOM sink href Attrs & Props URL
window.open() Static DOM sink action Attrs & Props URL
document.write() Static DOM sink formaction Attrs & Props URL
document.writeln() Stat%c DOM S%nk data (object) Attrs & Props URL
elm.'appendChild() Stat}c DOM s?nk code (embed) Attrs & Props URL
e1m.1nsertBefore() Stat}c DOM S}nk srcdoc (iframe) Attrs & Props URL
elm.appendChild() Static DOM sink -
eI, insertAdjacentHtml () Static DOM sink xlink:href Attrs & Props URL
elm.<nativeProp> Static DOM sink location (window) Props URL
elm[<nativeProp>] Dynamic DOM sink innerHTML Props HTML
Object.defineProperty(elm, <nativeProp>) | Dynamic DOM sink outerHTML Props HTML

elm.setAttribute()
elm.setAttributeNS()

Dynamic DOM sink
Dynamic DOM sink

framework-independent and automatically applied to the taint-
tracking process as auxiliary taint rules.

Thus, with all the auxiliary taint rules ready, TRANSPAR-
ENT could proceed to the next stage of the analysis.

B. Static Taint Path Analysis

The second analysis stage of TRANSPARENT is the static
taint path analysis. The goal of this stage is to discover
JavaScript-syntax SPA sinks in a given runtime by analyzing
the backward taint path from the DOM sinks within it, which
is defined as a DOM API that interprets its input as HTML
or URL. The SPA sink is then manifested as a component
parameter in the render function in the form of a key-value
pair.

The key challenge is that SPA sinks are still very diverse
even when only considering the JavaScript-syntax one, as there
are many different ways a DOM sink can be triggered by
a given SPA sink. To principally address this problem, we
identify common patterns of how a JavaScript-syntax SPA
sinks relate to its underlying DOM sinks. To this end, we
devise a taxonomy of two types of DOM sinks and three
types of SPA sinks to facilitate TRANSPARENT’s analyses
in uncovering the different ways SPA sinks might form.

First, we divide DOM sinks into two categories depending
on which syntax is used to refer to the DOM property.
The first is a (D static DOM sink, which either does not
refer to any DOM property explicitly or uses property ac-
cessor syntax whose key could always be determined stat-
ically. Examples include elm.insertAdjacentHtml() and
assignment to dot-notation property, such as elm.innerHTML.
The second is a Q) dynamic DOM sink, which uses
property accessor syntax whose key might not be deter-
mined statically. Examples include assignment to bracket-
notation property elm[<nativeProp>] or a method call
elm.setAttribute(<nativeAttr>, val). The complete list
is in Table [

Second, we divide SPA sinks into three categories depend-
ing on two axes of criteria: how the underlying element is
accessed and how the parameter key flows. In particular, since

a basic SPA component encapsulates exactly one DOM ele-
ment, this underlying DOM element could either be accessed
directly or indirectly (i.e., through an interface). Similarly, for
the second criterion, when a component parameter is set to a
certain value, while its payload (i.e., its value) always flows
directly to a DOM sink, the name of this parameter (i.e., its
key) could either flow directly or indirectly to said DOM sink.
Note that if the underlying DOM element could be accessed
directly, the parameter will always flow directly to it. Thus,
the resulting three categories are as follows:

e Generic SPA sink - This type of SPA sink does not have
direct access to the underlying DOM element and has a
parameter setting mechanism whose key flows directly
to the DOM sink. This SPA sink implies the usage of a
dynamic DOM sink underneath.

e Fixed SPA sink - This type of SPA sink also does not
have direct access to the underlying DOM element and
has a parameter setting mechanism whose key does not
flow directly to the DOM sink. This SPA sink implies the
usage of a dynamic DOM sink with a literal string or a
static DOM sink underneath.

e Reference SPA sink - This type of SPA sink provides
direct access to the underlying DOM element (i.e., pro-
viding a reference) that could be abused by its user.

Accordingly, TRANSPARENT is equipped with three differ-
ent analyses for each category of the SPA sinks:

1) Generic SPA Sink Analysis: A generic SPA sink has a
parameter key that flows directly into a DOM sink, which
implies the usage of a dynamic DOM sink. For example,
given a render function render(’a’, {href:"blank”}) which
creates a blank link in the page, it will need to use a dynamic
DOM sink, for example, elm[’href’]="blank’. The running
example from Figure [2] is one instance of a generic sink.

To detect a generic SPA sink, TRANSPARENT does two
separate sub-analyses: parameter value taint analysis and pa-
rameter key dataflow analysis. The general idea is that since
parameter key flows directly into the DOM sink, TRANSPAR-
ENT needs to find this dataflow path and figure out if there is
any string modification along the way.

Mridula
6

a) Generic Parameter Value Analysis: Before analysis of
the parameter key could occur, TRANSPARENT needs to know
whether a given DOM sink could be tainted by the render
function in the first place. To do this, TRANSPARENT utilizes
a commercial-off-the-shelf static analysis tool to find a path
from a dynamic DOM sink back to the render function.

A render function usually has parameters that specify what
DOM property to modify and with what value. This parameter
could take many forms, but one common shape is a key-value
JavaScript object. In addition to figuring out whether a taint
path exists, TRANSPARENT also checks the property read
syntax along its path to figure out which part of the object
specifically that will flow into the DOM sink.

In our example, both of our HTML element property value
(image with onerror) and its key (innerHTML) flow from a
nested object: they are both located in the domProps property
of the vnode.data object. The payload comes from the
property value, and the property name comes from the key.
This key-value format is generally true for all generic SPA
sinks.

b) Generic Parameter Key Analysis: Aside from the path
of the parameter value, TRANSPARENT also pays attention to
the parameter key in order to accurately locate the source of
the payload within the render function.

One of the reasons TRANSPARENT needs a separate anal-
ysis for parameter key is to analyze them for translation logic.
The parameter name that SPA runtime gives is sometimes dif-
ferent than the property name of the DOM element. While this
logic does not exist for Vue (thus not present in the running
example of Figure [2), in React, for example, the formaction
attribute for HTML forms is translated to formAction with a
capital A in the framework. While only having one character
difference, this is enough to cause a false negative in a static
analysis engine.

In our observation across different SPA frameworks, we
observe two dominant patterns of translation logic inside the
framework runtime.

The first translation logic is a JavaScript runtime built-in
string modification function, like replace(). To detect this,
TRANSPARENT analyzes the parameter name path for string
modification functions invocation and collects them in a list.

The second translation logic is dynamic translation, which
uses a “dictionary” object. In this translation logic, the run-
time keeps a dictionary mapping between the expected SPA
parameter key and the corresponding native DOM property
key translation. This dictionary is always accessed dynamically
since the resulting value could only be obtained at runtime
after we have a concrete parameter name to translate. Because
of its dynamic nature, it is usually accessed through a dynamic
syntax, such as bracket notation (e.g., dict[parameterName].
TRANSPARENT detects this in the parameter key path and
collects them.

After TRANSPARENT has listed the sequence of non-value
preserving operations, be it string modification or dynamic
translation, TRANSPARENT then deduces the framework pa-
rameter name by applying the reverse operation to a fixed

list of insecure DOM properties. For dynamic translation, for
example, TRANSPARENT constructs a reverse mapping and
deduces the sensitive parameter key based on this reverse
mapping. Thus, after applying the reverse operation, TRANS-
PARENT can list the insecure framework parameter key.

2) Fixed SPA Sink Analysis: To detect a fixed SPA sink,
TRANSPARENT also does the same two separate sub-analyses:
parameter value taint analysis and parameter key dataflow
analysis. The analysis of Fixed SPA Sink is different than
its generic counterparts since the parameter key does not flow
directly into the DOM sinks. Thus, TRANSPARENT does a
different approach in these two sub-analyses:

a) Fixed Parameter Value Analysis: TRANSPARENT an-
alyzes the parameter value of a fixed SPA sink in a similar
fashion to a generic SPA sink, with one key addition: analysis
of guard node condition. The intuition is that since the parame-
ter key does not flow directly into the DOM sink, it must be the
case that the parameter key is used to alter the control-flow of
the program instead. Said another way, it implies the existence
of a conditional check on the parameter key somewhere along
the parameter value taint path. Thus, when producing the
parameter value taint path, TRANSPARENT will also list the
unique guard nodes that are present along its path. Specifically,
TRANSPARENT will collect the conditional statements (e.g.,
if statement, ternary condition) and their required evaluated
boolean value in order for said taint path to manifest. This
additional information is then used to analyze the parameter
key.

b) Fixed Parameter Key Analysis: To analyze the param-
eter key of a fixed SPA sink, TRANSPARENT relies on the
fact that a parameter key is always a string. Contextualizing
the guard node analysis idea with this fact, we deduce that
the guard node that does a conditional check on the parameter
key must be doing a string comparison. In other words, since
the parameter key is always of type string and guard node
statements always have a boolean value, it implies that this
guard node includes an expression that compares the parameter
key against a criterion and produces a boolean value.

While there are many possible string comparison criteria
that return a boolean value, empirically, the SPA runtime
only uses one dominant pattern to form a fixed sink: exact
string matching. This kind of guard node will simply compare
the property key against a constant string. If the comparison
evaluates to true, then a parameter value will be assigned to a
DOM sink. Empirically, this comparison has two forms:

The first is an equality expression. This is where the
parameter key variable will be compared directly to a string
constant with an equality comparison binary operator (e.g.,
==). In this scenario, TRANSPARENT will simply deduce the
string constant on the other side of the equality check as the
sensitive parameter key.

The second is a membership check expression. This is where
the guardian node compares the parameter key with a set of
string constants. The comparison could take many forms (e.g.,
compounded comparison with | | operator, function predicate),
but it would still consist of exact string comparisons. This

Mridula
7

operation is typically used to test whether the property key is
part of a certain namespace (e.g., SVG-related tags). In this
scenario, TRANSPARENT would take the whole expression
and search for all the string constants within it as the sensitive
parameter key.

3) Reference SPA Sink Analysis: Reference SPA sink is
different from its generic and fixed counterparts in that it
does not deal with an assignment to a specific DOM sink.
Instead, this kind of SPA sink works by providing a way for
the component user to ‘smuggle’ the DOM element that is
normally encapsulated by the SPA component so that it can
be manipulated directly, just as if the developer were working
with the native DOM API, bypassing the SPA runtime and any
security mechanism that comes with it. From a component user
perspective, such a DOM element is available via a ‘reference*
object created by the runtime, hence the name of the sink type.

The key idea to detect this type of SPA sink is to detect
the flow of the encapsulated DOM element within the SPA
runtime. When creating a primitive SPA component, the SPA
runtime always associates it with exactly one DOM element.
Thus, by tracking the flow of this particular DOM element,
TRANSPARENT can figure out the path that it takes to go
outside of the runtime. There are two different mechanisms
in the different SPA runtimes to create a reference object:
reference parameter and reference constructor.

In a reference parameter pattern, the component user pro-
vides an empty object to the render function as one of its
parameters to act like a ‘bucket’ to which the DOM element
will be assigned. After the render function has finished its
initial execution, this object will be filled with the raw DOM
element in a predetermined property, which then could be
manipulated by the component user. To detect this pattern,
TRANSPARENT searches for a dataflow path of the empty
object from the render function to an assignment expression,
at which the object will be placed on the left-hand side and
the DOM element on the right-hand side. The existence of the
path implies the existence of a ‘hoist path’ of the reference
object from and to the outside world. This method is used by
both Vue and React.

In a reference constructor pattern, the SPA framework
provides the component user with a constructor function that
will return the encapsulated DOM element when invoked
within said component. When this component is instantiated,
the constructor will search for the encapsulated DOM element
within the data model and return it as the value of the con-
structor. To detect this pattern, TRANSPARENT also employs
a form of dataflow tracking, but in contrast to the previous
pattern, the DOM element acts as the taint source, and the
constructor return value acts as the taint sink. The existence
of this path implies the existence of an ‘exit path’ of the DOM
element to the outside world. This method is used by Angular.

C. Static Template Mapping Analysis

The third analysis stage of TRANSPARENT is the static tem-
plate mapping analysis, which figures out the specific mapping

const jsx = transpileJSX("<div domProps-innerHTML='sourcel'/>")
const sfc = transpileSFC("<div v-html='source2'/>")

const vnodeJSX = mockRender (jsx)

const vnodeSFC = mockRender(sfc)
expect(vnodeJSX.domProps.innerHTML) . toBe('sourcel")
expect(vnodeSFC.domProps.innerHTML) . toBe('source2")

o v B W —

(a) Test Case Example

"domProps-<natveProp>": "domProps.<nativeProp>",
"v-html”: "domProps.innerHTML"

(b) Mapping Representation in JSON

Fig. 4: Example of HTML-syntax API (JSX and SFC) tran-
spilation in a test case. All two framework API syntax would
trigger the same DOM APL

of the HTML-like template attribute name to the JavaScript-
syntax framework API. The key idea is to observe the input-
output pair of the transpiler in an SPA framework—i.e., a
runtime module being responsible for transforming HTML
templates into their corresponding JavaScript counterparts—
to look for a known pattern between the attribute name and
the render function parameter. These pairs could be collected
from various sources. For example, we sourced them from the
test suite of the transpiler, relying on the same assumption
we made about the existence of a comprehensive test suite in
a popular SPA runtime codebase. Specifically, within a test
suite, we designate the argument of the transpiler function
as the input, and the content of the expect statement as the
output. Figure [da] shows an example of an abridged test case
of a Vue transpiler.

TRANSPARENT receives a transpiler test suite as input.
This input test suite has been filtered to only include those
with a JavaScript-syntax sink in its expect statement. After
that, it looks for an input-output pair within a single unit test
that has the same attribute and property value. For example,
in Figure fa] the expect statement at line 5 has a toBe
expectation of ‘sourcel’. TRANSPARENT parses the HTML-
syntax API at lines 1 and 2 and searches for the related
attribute name whose value is equal to the expect statement.
In this case, TRANSPARENT finds the domProps-innerHTML
attribute at line 1 also has a value of ‘sourcel’. From this,
TRANSPARENT deduces that the HTML-syntax attribute of
domProps-innerHTML is connected with the JavaScript-syntax
parameter of domProps.innerHTML.

After TRANSPARENT gets the matching attribute and pa-
rameter name in a given test case, TRANSPARENT uses two
different extraction methods in order to find all the HTML-
syntax sinks that exist in the runtime: extrapolated mapping
extraction and concrete mapping extraction.

1) Extrapolated Mapping Extraction: TRANSPARENT
generalizes the found attribute name by extrapolating any
detected native attribute name (e.g., src) and native
property name (e.g., innerHTML) into <nativeAttr> and
<nativeProp>, respectively. In the specific example of Fig-
ure 4a] the domProps-innerHTML attribute (line 1) is mapped
into an object in the JavaScript-syntax sink (line 5). This
HTML-syntax sink applies to every domProps-<nativeProp>

Mridula
8

attribute, but is only being tested for innerHTML specifically,
hence the need for extrapolation.

To properly extrapolate the attribute name in the test
case, TRANSPARENT considers two extrapolation rules to
account for the difference in syntax rules between HTML
and JavaScript. The first rule is that TRANSPARENT ignores
characters that are illegal in JavaScript variable names (e.g.,
the hyphen character -), and the second rule is that TRANS-
PARENT ignores any miscellaneous prefix in the attribute
name (e.g., ignoring bind- in bind-src).

2) Concrete Mapping Extraction: TRANSPARENT directly
maps the found attribute name to the render function param-
eter. Concrete mapping is done if TRANSPARENT does not
find any sensitive native attribute or property name in the found
attribute name. For example, this is what happened at line 2
in Figure fa] since v-html does not match any sensitive native
attribute or property name. Once TRANSPARENT sees such a
test case, TRANSPARENT deduces that v-html is mapped to
domProps.innerHTML, without any generalization.

The output of both of these extractions is a set of mappings
from the HTML-syntax sink to the corresponding JavaScript-
syntax sink, as shown in Figure @b} TRANSPARENT then gets
the sensitive attribute name in HTML-syntax sinks by getting
the keys of this mapping set.

V. EVALUATION

In this section, we evaluate our design and detail the results
of TRANSPARENT when applied to each SPA framework and
the application built on top of them.

A. Evaluation Setup

Our implementation of TRANSPARENT consists of Type-
Script code and CodeQL queries. We developed a language
binding between TypeScript and the CodeQL command-line
interface in order for TRANSPARENT to run templated Cod-
eQL queries and parse their results, which are formatted in
bgrs. We use CodeQL version 2.21.1 with version 2.6.1 of
the JavaScript and TypeScript standard library.

For comparison with the vanilla CodeQL (built-in queries),
we use security-related SPA sinks that are already included
in this library. Specifically, we use CodeQL classes related to
client-side taint-style vulnerabilities such as DOM-based XSS,
client-side URL redirection, and code injection. This includes
both classes that are specified in the dataflow modules and
classes that are specified in the SPA framework modules.

For our target frameworks, we analyzed Angular v17, React
v18.2, and Vue v2.7.16. We chose these specific versions
because they have the most mature supported ecosystem as
of fall 2024.

For our evaluation, we composed two datasets: () GitHub
repositories dataset, and (2) known vulnerabilities dataset.

The first dataset is composed of GitHub repositories of SPAs
that have the analyzed target framework in their package. json
file. We then clone and run TRANSPARENT against them
to detect potential vulnerabilities. This dataset is used to
evaluate TRANSPARENT’s false positive rate and zero-day

vulnerabilities search. The second dataset is composed of SPA
repositories that are known to be exploitable. We compose this
dataset from the public CVE list as well as GitHub Security
Advisory for client-side taint-style vulnerabilities. This dataset
is used to evaluate TRANSPARENT’s false negative rate.

We ran all of our experiments on an Ubuntu 24.04 LTS
server equipped with Intel Xeon E5-2620v4 and 64 GiB of
RAM.

We did our evaluation in relation to the following research
questions:

« RQ1: How accurate is TRANSPARENT in terms of false
positives and false negatives?

« RQ2: How effective is TRANSPARENT in uncovering
zero-day vulnerabilities?

« RQ3: What SPA sinks does TRANSPARENT find?

« RQ4: How does TRANSPARENT perform in terms of
computational overhead?

B. RQI: Accuracy

We evaluate TRANSPARENT based on its accuracy in
detecting vulnerabilities in SPA components. This evaluation
is split into two ways: false negative rate (FNR) and false
discovery rate (FDR). Table m summarizes this evaluation.

1) False negative rate: ldeally, a vulnerability detection
tool should report all vulnerabilities in the dataset. False
negative rate measures the degree to which said detection
tool fails to report vulnerabilities. We evaluate FNR using the
known vulnerabilities dataset.

To evaluate FNR on the known vulnerabilities dataset, we
gather a list of publicly acknowledged vulnerabilities (CVE
and GitHub Security Advisory) that are related to the frame-
work runtime and evaluate TRANSPARENT’s ability to detect
the vulnerable path. We gathered a total of 56 public vul-
nerabilities and evaluated them against TRANSPARENT and
Vanilla CodeQL. If the exploit detail mentions a third-party
library being the culprit, we also include it in the analysis. In
a vulnerability that involves a server (e.g., stored XSS), we
consider both tools to successfully detect the vulnerability if
they can show a path from a request’s response (e.g., fetch,
URL).

Among those 56, TRANSPARENT fails to detect 11, and
vanilla CodeQL fails to detect 35. Looking at the root cause
of this outperformance, we found that it is caused by TRANS-
PARENT’s expanded set of SPA sinks. In particular, TRANS-
PARENT detects many sinks that are written in Vue JavaScript-
syntax SPA sinks (domProps.<nativeProp>), which vanilla
CodeQL fails to detect. This syntax is particularly common in
some component libraries. On the other hand, vanilla CodeQL
and TRANSPARENT share the same set of false negatives,
which is mainly caused by incomplete in-component dataflow,
which is the limitation of the underlying static analysis engine.

2) False discovery rate: ldeally, a vulnerability detection
tool should only report vulnerabilities. False discovery rate
measures the degree to which said detection tool reports non-
vulnerabilities. We evaluate FDR using the GitHub repositories
dataset.

Mridula
9

TABLE III: List of zero-day vulnerabilities that use our newly-found sinks. Ack (ext. sanitizer) means that the developer
acknowledged that it is exploitable, but sanitization duty falls into the responsibility of the library user.

GitHub Repository Name Stargazer ~ Framework Sinks Syntax Vuln. Type Status
the1812/Bilibili-Evolved 23k+ Vue domProps.<nativeProp> JavaScript XSS Fixed
apostrophe/apostrophe 4k+ Vue ref JavaScript CSV injection Reported
bootstrap-vue/bootstrap-vue 14.5k+ Vue domProps.<nativeProp> JavaScript XSS Reported
alfonsobries/vue-tailwind 2.2k+ Vue domProps.<nativeProp> JavaScript XSS Reported
miaolz123/vue-markdown 1.9k+ Vue domProps.<nativeProp> JavaScript XSS Reported
iview/iview 24k+ Vue domProps.<nativeProp> JavaScript XSS Reported
JosephusPaye/Keen-UI 4.1k+ Vue domProps.<nativeProp> JavaScript XSS Ack (ext. sanitizer)
jlangshanmeta/vue-admin 170+ Vue domProps.<nativeProp> JavaScript XSS Reported
surveyjs/survey-library 3.8k+ React xlinkHref HTML (JSX) XSS Ack (ext. sanitizer)
salesforce/design-system-react 900+ React xlinkHref HTML (JSX) XSS Acknowledged
evaletolab/ng2-markdown 1+ Angular ref JavaScript XSS Reported

To evaluate FDR on the GitHub repositories dataset, we run
both TRANSPARENT and vanilla CodeQL on each repository
in the dataset and manually test the reported vulnerable path(s)
within those repositories to check whether they are exploitable.
In contrast to our zero-day vulnerability evaluation, we also
count applications whose SPA sinks are included in the
vanilla CodeQL. In a repository that has a lot of overlapping
paths (e.g., component libraries where there are compounded
components), we only count the inner-most paths due to the
abundance of potential paths. This effectively counts all paths
that have the same DOM sink location as one vulnerable path.

Out of the 877 repositories in the GitHub dataset, TRANS-
PARENT reports 571 vulnerable paths, and vanilla CodeQL
reports 340 vulnerable paths. Due to the impracticality of
manually checking them for exploitability, given the time
constraint, we randomly sample about 10% from each tool’s
reported vulnerable paths to check for exploitability.

The result is that TRANSPARENT has a comparable FDR
value to CodeQL. This is because TRANSPARENT and Cod-
eQL share the same underlying engine, making it suffer from
similar issues related to overtainting. After analyzing the non-
vulnerable paths that are marked as vulnerable, the three
most common causes are as follows: (I) Non-controllable
taint sources (e.g., safe server endpoints). (2) Unidentified
sanitization logic (e.g., based on a regular expression). 3
Inclusion of auxiliary code (e.g., inclusion of minified code
in the repository). We will discuss their potential remedies in
the discussion section (§VI).

C. RQ?2: Effectiveness in Finding Zero-Day Vulnerabilities

We also evaluate TRANSPARENT on its capability of de-
tecting vulnerabilities in SPA components that run on the
top 3 most popular SPA runtimes: Vue, React, and Angular.
To do this, we form the GitHub dataset where we crawled
repositories from GitHub for SPAs that are built on top
of frameworks targeted by TRANSPARENT. We limit our
crawling to repositories that have at least 1 GitHub stargazer
due to the number of crawled repositories. This process results
in 877 total of repositories. We then run TRANSPARENT
on each framework runtime, then analyze the crawled SPA
components. Of those SPA components that are detected to
have SPA sinks, we manually examine repositories that have

TABLE 1IV: Accuracy breakdown of TRANSPARENT com-
pared to baseline
Tool

TRANSPARENT
Vanilla CodeQL

FNR

11/56 (19.6%)
35/56 (62.5%)

FDR

24/57 (42.1%)
17/34 (50.0%)

SPA sinks that only TRANSPARENT could detect (i.e., not
included in the vanilla CodeQL) for an exploit.

Table summarizes the zero-day vulnerabilities that
TRANSPARENT has detected across all SPA runtimes. The
“Sinks” column represents the type of SPA sinks that the vul-
nerability uses. Vulnerabilities that are marked with “Acknowl-
edged (external sanitizer)” are usually handled by the devel-
oper by revising the documentation to explicitly warn/remind
users of an external sanitizer, highlighting the impacts of our
findings. Vulnerabilities marked with “Fixed” are patched by
their developers. The rest with “Reported” status are validated
as exploitable with our manual analysis and reported to their
developers, but we have not received any feedback at the time
of the paper writing.

D. RQ3: Found SPA Sinks

From our false negative rate evaluation, we found that the
primary cause that contributes to TRANSPARENT’s outper-
formance is its expanded set of SPA sinks. We take a look
further at the novel sinks produced by TRANSPARENT to
understand its significance. Table [V| lists all the SPA sinks
that TRANSPARENT has discovered. While these sinks are
from all frameworks, they are not equally distributed. This
distribution is mostly a function of the amount of syntax a
framework supports and the presence of dataflow sanitization
inside the runtime. Most notably, Angular only has one new
sink. This is due to the fact that Angular only has one
syntax (HTML) and implements a comprehensive sanitization
mechanism called SafeType[43] that forbids most dataflows
from being exploitable. Interestingly, we found that React also
has a sanitization mechanism, but it is disabled by default.
Vue supports three syntaxes and has no internal sanitization
mechanism, which explains why Vue has the largest amount
of novel sinks.

1) Novel Sinks: We compare SPA sinks discovered by
TRANSPARENT with those used by prior works or those
with security warnings in the official documentation of the
SPA. In total, TRANSPARENT produced 19, of which 14 are

10

Mridula
10

TABLE V: List of sensitive framework APIL. nativeAttr and nativeProps correspond to any attributes and properties
respectively of the underlying HTML tag. For list of sensitive attributes and properties, refer to Table E}

Sensitive Framework API ~ Framework Syntax Vanilla CodeQL ~ ReactAppScan ~ Warning TRANSPARENT
attrs.<nativeAttr> Vue JavaScript-syntax No No No Yes
domProps.<nativeProp> Vue JavaScript-syntax No No Yes [45] Yes
ref Vue JavaScript-syntax No No No Yes
<nativeAttr> Vue HTML-syntax (JSX) No No No Yes
attrs-<nativeAttr> Vue HTML-syntax (JSX) No No No Yes
domProps-<nativeProp> Vue HTML-syntax (JSX) No No No Yes
domProps<nativeProp> Vue HTML-syntax (JSX) No No Yes [45] Yes
ref Vue HTML-syntax (JSX) No No No Yes
<nativeAttr> Vue HTML-syntax (SFC) Some No No Yes
v-html Vue HTML-syntax (SFC) Yes No Yes [45] Yes
ref Vue HTML-syntax (SFC) No No No Yes
<nativeAttr> React JavaScript-syntax No No No Yes
dangerouslySetInnerHtml React JavaScript-syntax No No No Yes
ref React JavaScript-syntax No No No Yes
<nativeAttr> React HTML-syntax (JSX) Some No No Yes
dangerouslySetInnerHtml React HTML-syntax (JSX) Yes Yes Yes [38] Yes
ref React HTML-syntax (JSX) No Yes No Yes
renderer2.setProperty Angular JavaScript-syntax Yes No No Yes
ref Angular JavaScript-syntax No No Yes [44] Yes
not listed by the benchmark Vanilla CodeQL. Furthermore, : -
10001 @ Data points (Vanilla CodeQL)

after a careful examination of prior works, we find that only
ReactAppScan [21] adopts React’s JSX ref in addition to a
well-known sink (dangerouslySetInnerHTML). None of the
other four React sinks, 11 Vue sinks, or two Angular sinks
are considered by other prior works.

Meanwhile, we also examined the official documentation of
each SPA. While all of these sinks are documented, we found
that not all of them came with a security warning. Among
these sinks, we found that only domProps sinks in Vue [45]],
dangerouslySetInnerHtml JSX sink in React [38], and ref
sink in Angular [44] come with an explicit vulnerability
warning, whereas other sinks do not. In summary, 10 sinks
discovered by TRANSPARENT are neither used by prior works
nor documented with security warnings.

2) Ablation Studies: We perform ablation studies to de-
termine the impact of TRANSPARENT’s components by re-
moving them and observing the number of SPA sinks found.
Specifically, we remove the autostitch, the extrapolated map-
ping, and the concrete mapping from TRANSPARENT and
call them TRANSPARENT-no-autostitch, TRANSPARENT-no-
extrapol-mapping, and TRANSPARENT-no-concrete-mapping.

Table summarizes our experiment findings. TRANS-
PARENT-no-autostitch does not find any SPA sinks due
to an incomplete call graph. TRANSPARENT-no-extrapol-
mapping managed to find 12/19 sinks, failing to discover
Vue’s and React’s generic SPA sinks as well as React’s
dangerouslySetInnerHTML, because of the lack of map-
ping between HTML and JavaScript syntaxes. Additionally,
TRANSPARENT-no-concrete-mapping managed to find 14/19
sinks, failing to discover Vue’s v-html sink and all reference
sinks.

E. RQ4: Computational Overhead

The final research question is about the runtime overhead
of the analysis. We split this evaluation into two: how long

Data points (TranSPArent)
—— Linear fit (Vanilla CodeQL)

8004 — Linear fit (TranSPArent)

600

400 A

Duration (seconds)

200 -

0.0 0.2 04 0.6 0.8 10

Sources Lines of Code (SLoC) le6
Fig. 5: Analysis performance overhead of 100 randomly
sampled applications with respect to their line-of-code count.

TABLE VI: Ablation Study for Found SPA Sinks

Variant Found Sinks
TRANSPARENT-no-autostitch 0/19
TRANSPARENT-no-extrapol-mapping 12/19
TRANSPARENT-no-concrete-mapping 14/19
TRANSPARENT 19/19

TABLE VII: Runtime overhead of framework abstraction

Runtime Analysis Time LoC
Vue 57m 73k
React 1h 12m 353k
Angular 1h 15m 659k

does TRANSPARENT analyze each runtime, and how long
does TRANSPARENT analyze applications? To contextualize
the duration, we also provide the line-of-code count for the
runtime and applications. We use the cloc[8] tool v2.02
to accomplish this. For the SPA runtimes, we count the
amount of TypeScript and JavaScript code. For the applications
themselves, we count the amount of TypeScript, JavaScript,

11

Mridula
11

1.00 A

0.95 4

o
©
S)

o
©
S

Dataset percentage
o
[o2]
w

0.75 A

—— Vanilla CodeQL CDF

0.70 1 TranSPArent CDF

200 400 600 800 1000

Duration (seconds)
Fig. 6: CDF of analysis performance overhead of 100 ran-
domly sampled applications.

HTML, JSX, and Vue SFC code.

1) Runtime Analysis Overhead: We evaluate the time it
took for TRANSPARENT to abstract each SPA runtime in
Table For all three of the SPA runtimes under test, the
time it takes to analyze each of them falls around one hour.
The analysis time scales well with respect to the line-of-code
count since CodeQL also performs optimization under the
hood to execute each analysis query. Because each framework
only needs to be processed once, this time will effectively be
amortized as more applications get analyzed.

2) Application Analysis Overhead: We randomly sample
100 applications from our GitHub repositories dataset and plot
their analysis time with respect to the line-of-code count in
Figure[5] Our evaluation shows that TRANSPARENT’s analysis
time grows linearly as the size of the application grows, and
the difference in trend line is negligible compared to the
vanilla CodeQL (0.62 seconds / kloc and 0.57 seconds / kloc,
respectively).

Figure [6] shows the cumulative distribution function of the
analysis performance overhead. It shows that all of the sam-
pled applications finish their analysis in minutes. In particular,
around 90% of applications are successfully analyzed within
5 minutes. This is a negligible difference in comparison to
the baseline, where 95% of applications are analyzed under 5
minutes.

These results show that TRANSPARENT’s high degree of
efficiency when processing SPAs, from the SPA runtime
analysis up to the application itself.

VI. DISCUSSION AND FUTURE WORKS

This section will briefly articulate common discussion
points that we had during the research process.

Event handlers. One class of taint-style vulnerabilities
in native HTML that we do not take into account in this
paper is event handlers. This is due to the fact that event
handlers in SPA are usually provided as a native JavaScript
function instead of an evaluated string. This is unlikely to be

manipulable by an end user; thus, we do not consider it a
threat in the context of an SPA framework.

Generalizability for other SPA frameworks and versions.
We have demonstrated the generalizability of our methods
by applying them to three different SPA frameworks and
discovering hidden SPA sinks within them. The idea of
TRANSPARENT is general and could be extended to other
SPA frameworks because we designed it based on the general
architecture of multiple single-page application frameworks.
Specifically, the idea that an SPA component encapsulates a
DOM component is general across different frameworks, and
different architectural implementations of them are handled
by different kinds of analysis within TRANSPARENT (e.g.,
generic, fixed, and reference SPA sink analysis).

While designing TRANSPARENT, we also tried to analyze
different versions of the same SPA framework. Our empirical
finding shows that, in practice, different versions of SPA
frameworks have tried to maintain a stable and backward-
compatible API. The result is that sinks that are discovered in
one version of an SPA framework could potentially be applied
to another version, making analyzing individual versions of
each SPA framework of limited utility. While this is not a
guarantee, other static analysis tool that supports analyzing
SPAs like CodeQL also have a similar approach, providing
only one module per framework, instead of one module per
framework version.

Prerequisites for running TRANSPARENT. There are two
conditions for TRANSPARENT’s analysis. First, TRANSPAR-
ENT needs a working test suite against the SPA framework.
This is needed for the autostitch process to successfully
augment the call graph of a commercial-off-the-shelf tool.
In our experiment, we find specifically that TRANSPARENT
obtains the greatest benefit from test suites that extensively test
the end-to-end rendering pipeline. Empirically, since TRANS-
PARENT only needs a test suite from the SPA frameworks
(and not the applications themselves), we find that the test
suite it uses is always comprehensive and has high coverage
(thus always tests the end-to-end rendering pipeline), given
their popularity.

Second, TRANSPARENT needs explicit type information,
since some parts of TRANSPARENT’s analyses rely on it.
Fortunately, most SPA frameworks today (as is the case with
many large JavaScript projects in general) are written in typed
languages, such as TypeScript.

Static site generation and server-side rendering. Since
SPAs only start with one HTML page and dynamically gen-
erate content on top, SPAs generally do not have much static
content to be discovered by search engines. This downside
leads many SPA frameworks to develop ways to offset some of
their rendering to the server, either via Static Site Generation
(SSG), where each page is rendered into HTML at build-time,
or Server-Side Rendering (SSR), where some components are
rendered into HTML at request-time.

However, they will eventually need to be controlled by
the SPA runtime on the client (typically in a process called
“hydration”) and could have the same SPA sink vulnerabilities

12

Mridula
12

as their purely client-side SPA. We consider this kind of ap-
plication to be out of scope since it also necessitates dataflow
tracking on the server. Expanding the automated framework
abstraction approach to cover not just SPA but also SSG and
SSR applications is also a promising avenue for future work.

Sanitization responsibility. While performing our evalu-
ation on GitHub repositories, we found that many of them
reside in component libraries. When we disclose them to the
library developer, one common response is that sanitization
should be the responsibility of the library user instead. This
sparks a discussion about the proper location of the sanitization
code. We think it is prudent to implement sanitization code
at the SPA runtime level. Out of the three SPA runtimes we
examined, only Angular implements sanitization by default
(as part of its SafeType[43] scheme), and we found the least
amount of vulnerable applications built on top of it.

VII. RELATED WORKS

This section will briefly contextualize our work by compar-
ing it to other related works within the literature.

SPA framework analysis. The security aspect of SPA
frameworks is relatively unexplored within the web security
literature. To the best of our knowledge, ReactAppScan [21]]
is the only related work in this area. However, ReactAppScan
focuses solely on the in-component dataflow instead of incor-
porating in-framework dataflow, which is orthogonal to our
work. ReactAppScan, as its name suggests, also only focuses
on React, whereas our work is trying to develop a generic
method for analyzing arbitrary SPAs. SPA-specific threats are
also mentioned in the work of Felsch et al. [15]], which in
itself is not a work on SPA vulnerabilities, but recognizes the
concept of SPA-specific vulnerabilities (in particular, Angular
sandbox escape).

Aside from academic literature, commercial-off-the-shelf
static analysis tools like CodeQL [9], SonarQube [4], and
Fortify SCA [16]] do have the capability of analyzing SPA.
However, many of them focus more on analyzing code clean-
liness. If they have security-related capabilities at all, they have
similar limitations of not incorporating in-framework dataflow.
Moreover, most of them require a license to unlock the SPA
security-related dataflow analysis capability, CodeQL being
the notable exception.

JavaScript runtime framework analysis. JavaScript-based
frameworks are not limited only to SPA, and there have been
several works that focus on them.

One example of this is a web-desktop hybrid app frame-
work, such as Electron [[11]. The work of Jin et al. [23] and
XGuard [47] focuses on preventing injection vulnerabilities
in the host system. There is also a web-mobile hybrid app
framework like Apache Cordova [10] (formerly PhoneGap),
on which works like NoFrak [17] based its injection attacks
studies upon. There is also a trend of mobile superapp security,
such as the work of Zhang et al. [50].

Other common JavaScript frameworks include browser ex-
tensions and web servers. For example, CoCo [49] tries to
detect vulnerabilities in browser extensions through an abstract

interpretation technique. On the other hand, Arcanum [48] and
Mystique [7] focus on dealing with privacy-sensitive informa-
tion that browser extensions might upload to the cloud. For
another example, TEFuzz [51] focuses on preventing Server-
Side Template Injection threats through a fuzzing process.
Whereas the work of Squicina et al. [39] focuses more on
insecure cookie handling in various server frameworks.

All of these works focus on specific vulnerabilities, threat
models, and the structure of the runtime and thus have a
different scope from our work. However, TRANSPARENT does
fit in the broader category of JavaScript runtime framework
analysis.

JavaScript taint-style vulnerability analysis. A substan-
tial body of work exists within the literature regarding the
detection of JavaScript taint-style vulnerabilities with various
techniques to deal with its dynamic nature.

One popular method is abstract interpretation. ODGen [29]],
ObjLupAnsys [28]], and Nodest [33] use abstract interpretation
for analyzing taint-style vulnerabilities in Node.js packages.
Deemon [36] and JAW [25] use abstract interpretation to
detect CSRF vulnerabilities. There are also tools [40]], [26],
[35] that do taint-style vulnerability detection without abstract
interpretation. However, none of these tools address SPA-
specific problems, such as the multiple syntax problem. There
are also tools [6] that focus on application-specific missing
edge diagnostic tools for JavaScript applications, but do not
focus on vulnerability detection like TRANSPARENT.

Web client security. We also acknowledge the vast body
of work on detecting and mitigating common web client
vulnerability classes in general.

One common web client vulnerability that appears a lot in
this paper is XSS [41], [31]. A classic work in this topic is
Document Structure Integrity [32] that enforces the integrity
of trusted code to prevent tampering from untrusted input.
Another approach is done by Lekies et al. [27], who use
a dynamic analysis method to track the flow of untrusted
data paired with an exploit generation system. There are also
works focusing on CSRF [25], [36], browser tracking and
fingerprinting [46], [34]], [19], and JavaScript malware [12],
(S0, (14, [13p.

These works, however, mainly target framework-less web
applications. TRANSPARENT contributes in this dimension in
that it detects client-side taint-style vulnerabilities even in the
presence of the ever-ubiquitous SPA runtime.

VIII. CONCLUSION

In this paper, we introduced TRANSPARENT, a novel and
generic approach to detect taint-style vulnerabilities in SPAs
by doing automated framework abstraction. TRANSPARENT
uses static taint path analysis in order to figure out how the
parameter of a native framework component could flow into
a sensitive DOM API. To do this, TRANSPARENT also uses
a dynamic analysis technique called ‘autostitch’ to augment
missing call edges within the static analysis part. Finally, to
discover framework sinks that are not written in a JavaScript
syntax (i.e., HTML-syntax sinks), TRANSPARENT uses a

13

Mridula
13

static parameter mapping analysis to reveal them, given a cor-
responding JavaScript-syntax sink. Our evaluation shows that
TRANSPARENT revealed 14 new framework sinks, which are
used by 11 zero-day vulnerabilities. TRANSPARENT reveals
more framework sinks compared to those that are used by
CodeQL standard queries, which is the state-of-the-art static
analysis tool for SPA vulnerability detection.

ACKNOWLEDGMENT

We would like to thank anonymous reviewers and the shep-
herd for their helpful comments and feedback. This work was
supported in part by the National Science Foundation (NSF)
under grants CNS-21-54404 and CNS-20-46361. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of NSF.

ETHICS CONSIDERATIONS

We see two potential topics of ethical discussion that could
stem from our work.

The first is regarding the experiment’s impact on live
systems. Due to the client-side and repository-centered nature
of our experiments, the majority of our experiment cases do
not need a live system to begin with, since they could be run
locally. However, there are notable exceptions for cases such
as reflected and stored XSS, where the server source code is
not available fully and cannot be deployed locally. In such
cases, we make sure that our experiment does not interfere
with the functionality of the system with respect to all the
stakeholders involved, which are the user and the administrator
of said system. We make sure that the impact of the experiment
done in such a system is only limited to our client and does
not have a system-wide effect.

The second is regarding responsible vulnerability disclosure.
We report all zero-day vulnerabilities that we found and report
them to the developer according to their security policy on
GitHub, and also notify them that we plan to include the
vulnerability in an academic publication no earlier than 45
days after the disclosure to allow ample time for fixes. If
the developer does not have a security policy, we opened a
GitHub pull request with a simple sanitization fix or emailed
the developer regarding the vulnerability. The “Status” col-
umn on Table refers to the acknowledgment status by
the developer. For library-level vulnerabilities specifically, an
“ext. sanitizer” status means that the developer of the library
acknowledges that their library could be used in an exploit,
but the sanitization process is meant to be done externally
(i.e., by the library user), instead of within the library. For the
sake of thoroughness, we also contacted the developer of each
framework regarding our findings.

REFERENCES
[1] Angular. Retrieved 1/20, 2025 from https://angular.io/.

[2] SPA: Single Page Application. Retrieved
https://developer.mozilla.org/en-us/docs/glossary/spa.

1/20, 2025

[3]
[4]
[5]

[6]

[7]

[8]
[9]
[10]
(11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

14

PWA: Progressive Web Apps. Retrieved 1/20, 2025 from
https://developer.mozilla.org/en-us/docs/web/progressive_web_apps.

SonarQube by SonarSource. Retrieved 5/20, 2025
https://www.sonarsource.com/products/sonarqube/.
Yinzhi Cao, Xiang Pan, Yan Chen, and Jianwei Zhuge. Jshield:

Towards real-time and vulnerability-based detection of polluted drive-by
download attacks. In Proceedings of the 30th Annual Computer Security
Applications Conference, pages 466475, 2014.

Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz
Hassanshahi. Automatic root cause quantification for missing edges in
javascript call graphs. In 36th European Conference on Object-Oriented
Programming (ECOOP 2022), pages 3—1. Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik, 2022.

Quan Chen and Alexandros Kapravelos. Mystique: Uncovering infor-
mation leakage from browser extensions. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
CCS 18, page 1687-1700, New York, NY, USA, 2018. Association for
Computing Machinery.

cloc. Retrieved 1/20, 2025 https://github.com/aldanial/cloc.

GitHub CodeQL. Retrieved 1/20, 2025 from https://codeql.github.com/.
Apache Cordova. Retrieved 1/20, 2025 from https://cordova.apache.org/.
Electron. Retrieved 1/20, 2025 from https://www.electronjs.org/.
Aurore Fass, Michael Backes, and Ben Stock. Hidenoseek: Camouflag-
ing malicious javascript in benign asts. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages
1899-1913, 2019.

Aurore Fass, Michael Backes, and Ben Stock. Jstap: a static pre-filter
for malicious javascript detection. In Proceedings of the 35th Annual
Computer Security Applications Conference, pages 257-269, 2019.
Aurore Fass, Robert P Krawczyk, Michael Backes, and Ben Stock.
Jast: Fully syntactic detection of malicious (obfuscated) javascript. In
Detection of Intrusions and Malware, and Vulnerability Assessment:
15th International Conference, DIMVA 2018, Saclay, France, June 28—
29, 2018, Proceedings 15, pages 303-325. Springer, 2018.

Dennis Felsch, Mario Heiderich, Frederic Schulz, and Jorg Schwenk.
How private is your private cloud? security analysis of cloud control
interfaces. In Proceedings of the 2015 ACM Workshop on Cloud
Computing Security Workshop, CCSW 15, page 5-16, New York, NY,
USA, 2015. Association for Computing Machinery.

OpenText SCA (Fortify). Retrieved 5/20, 2025
https://www.opentext.com/products/static-application-security-testing.
Martin Georgiev, Suman Jana, and Vitaly Shmatikov. Breaking and
fixing origin-based access control in hybrid web/mobile application
frameworks. In Proc. of the Network and Distributed System Security
Symposium (NDSS’14), volume 2014, page 1, 2014.
BiliBili GitHub. Retrieved
https://github.com/the1812/bilibili-evolved.
Alejandro Gémez-Boix, Pierre Laperdrix, and Benoit Baudry. Hiding
in the crowd: an analysis of the effectiveness of browser fingerprinting
at large scale. In Proceedings of the 2018 world wide web conference,
pages 309-318, 2018.

Salvatore Guarnieri. {GULFSTREAM}: Staged static analysis for
streaming {JavaScript} applications. In USENIX Conference on Web
Application Development (WebApps 10), 2010.

Zhiyong Guo, Mingqing Kang, VN Venkatakrishnan, Rigel Gjomemo,
and Yinzhi Cao. Reactappscan: Mining react application vulnerabilities
via component graph. In S&P, 2024.

Behnaz Hassanshahi, Hyunjun Lee, and Paddy Krishnan. Gelato:
Feedback-driven and guided security analysis of client-side web appli-
cations. In 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 618-629. IEEE, 2022.
Zihao Jin, Shuo Chen, Yang Chen, Haixin Duan, Jianjun Chen, and
Jianping Wu. A security study about electron applications and a
programming methodology to tame dom functionalities. In NDSS, 2023.
BiliBili-Evolved jsdelivr statistics. Retrieved 1/20, 2025
https://www.jsdelivr.com/package/gh/the1812/bilibili-evolved.

Soheil Khodayari and Giancarlo Pellegrino. JAW: Studying client-side
CSRF with hybrid property graphs and declarative traversals. In 30th
USENIX Security Symposium (USENIX Security 21), pages 2525-2542.
USENIX Association, August 2021.

Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos,
and Nick Nikiforakis. Fingerprinting in style: Detecting browser
extensions via injected style sheets. In 30th USENIX Security Symposium

1720, 2025

Mridula
14

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

(USENIX Security 21), pages 2507-2524. USENIX Association, August
2021.

Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later:
large-scale detection of dom-based xss. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages
1193-1204, 2013.

Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. Detecting
node.js prototype pollution vulnerabilities via object lookup analysis.
In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2021, page 268-279, New York, NY, USA,
2021. Association for Computing Machinery.

Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. Mining node.js
vulnerabilities via object dependence graph and query. In 3/st USENIX
Security Symposium (USENIX Security 22), pages 143-160, Boston,
MA, August 2022. USENIX Association.

Magnus Madsen, Benjamin Livshits, and Michael Fanning. Practical
static analysis of javascript applications in the presence of frameworks
and libraries. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pages 499-509, 2013.

William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and
Limin Jia. Riding out domsday: Towards detecting and preventing dom
cross-site scripting. In 2018 Network and Distributed System Security
Symposium (NDSS), 2018.

Yacin Nadji, Prateek Saxena, and Dawn Song. Document structure
integrity: A robust basis for cross-site scripting defense. In NDSS,
volume 20, 2009.

Benjamin Barslev Nielsen, Behnaz Hassanshahi, and Francois Gauthier.
Nodest: feedback-driven static analysis of node.js applications. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, page 455-465, New York, NY, USA,
2019. Association for Computing Machinery.

Xiang Pan, Yinzhi Cao, and Yan Chen. I do not know what you
visited last summer: Protecting users from third-party web tracking with
trackingfree browser. In Proceedings of the 2015 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, 2015.
Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu.
Accelerating javascript static analysis via dynamic shortcuts. In Proceed-
ings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 1129-1140, 2021.

Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and
Christian Rossow. Deemon: Detecting csrf with dynamic analysis and
property graphs. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS *17, page 1757-1771,
New York, NY, USA, 2017. Association for Computing Machinery.
React. Retrieved 1/20, 2025 from https://react.dev/.

Dangerously ~ setting the inner HTML. Retrieved
1/20, 2025 from https://react.dev/reference/react-
dom/components/common#dangerously-setting-the-inner-html.

Marco Squarcina, Pedro Adao, Lorenzo Veronese, and Matteo Maffei.
Cookie crumbles: Breaking and fixing web session integrity. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 5539-5556,
Anaheim, CA, August 2023. USENIX Association.

Cristian-Alexandru Staicu, Michael Pradel, and Ben Livshits. Under-
standing and automatically preventing injection attacks on node. js. In
Network and Distributed System Security Symposium (NDSS), 2018.
Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. Don’t
trust the locals: Investigating the prevalence of persistent client-side
cross-site scripting in the wild. CISPA, 2019.

Vue. Retrieved 1/20, 2025 from https://vuejs.org/.

Pei Wang, Julian Bangert, and Christoph Kern. If it’s not secure, it
should not compile: Preventing dom-based xss in large-scale web de-
velopment with api hardening. In Proceedings of the 43rd International
Conference on Software Engineering, ICSE °21, page 1360-1372. IEEE
Press, 2021.

Angular 17 ElementRef Security Warning.
https://v17.angular.io/api/core/elementref.

Retrieved 11/26, 2025

Vue 2 Security Warning. Retrieved ~ 5/20, 2025
https://v2.vuejs.org/v2/guide/security.
Shujiang Wu, Pengfei Sun, Yao Zhao, and Yinzhi Cao. Him of

many faces: Characterizing billion-scale adversarial and benign browser
fingerprints on commercial websites. In NDSS, 2023.

[47] Feng Xiao, Zheng Yang, Joey Allen, Guangliang Yang, Grant Williams,
and Wenke Lee. Understanding and mitigating remote code execution
vulnerabilities in cross-platform ecosystem. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
pages 2975-2988, 2022.

Qinge Xie, Manoj Vignesh Kasi Murali, Paul Pearce, and Frank Li.
Arcanum: Detecting and evaluating the privacy risks of browser ex-
tensions on web pages and web content. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 4607-4624, Philadelphia, PA,
August 2024. USENIX Association.

Jianjia Yu, Song Li, Junmin Zhu, and Yinzhi Cao. Coco: Efficient
browser extension vulnerability detection via coverage-guided, concur-
rent abstract interpretation. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, CCS 23, page
2441-2455, New York, NY, USA, 2023. Association for Computing
Machinery.

Yue Zhang, Yuqing Yang, and Zhigiang Lin. Don’t leak your keys:
Understanding, measuring, and exploiting the appsecret leaks in mini-
programs. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’23, page 2411-2425,
New York, NY, USA, 2023. Association for Computing Machinery.
Yudi Zhao, Yuan Zhang, and Min Yang. Remote code execution
from SSTI in the sandbox: Automatically detecting and exploiting
template escape bugs. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 3691-3708, Anaheim, CA, August 2023. USENIX
Association.

(48]

[49]

[50]

[51]

APPENDIX A
ARTIFACT APPENDIX

This is the artifact that accompanies the TRANSPARENT
paper, an SPA vulnerability detection tool that automatically
abstracts SPA frameworks using a combination of static and
dynamic analysis to reveal framework-specific sinks. TRANS-
PARENT works in two broad steps: first, it analyzes the SPA
runtime source code to abstract its SPA-specific sinks, which is
done once per framework. Secondly, it uses the resulting SPA-
specific sinks to look for vulnerabilities in SPA applications.

This artifact provides the source code and datasets used to
reproduce the two main evaluation results, namely the list of
intermediate SPA-specific sinks and the accuracy table over
the known vulnerability dataset and the positive label GitHub
dataset.

A. Description & Requirements

1) How to access: The artifacts are available permanently
(through Zenodo) and accessible through GitHub at the fol-
lowing links:

o https://doi.org/10.528 1/zenodo.17822391

« https://github.com/diwangs/transparent-ae

2) Hardware dependencies: The artifact can be run on
commodity hardware. We ran our experiment twice on two
different hardware with identical key results: (I) on a server
equipped with an Intel Xeon E5-2620v4 CPU (8 cores, 2.1
GHz) paired with 64 GB of RAM, and Q) on a laptop equipped
with an AMD Ryzen 7 7840U CPU (8 cores, 3.3 GHz)
paired with 16 GB of RAM. The runtime estimates in this
appendix will be based on the latter, as its hardware is more
approachable.

3) Software dependencies: We require a Linux machine
with two software dependencies: () Nix package manager
to install all the rest of the software dependencies, and Q) Git
LFS to properly download the required datasets from GitHub.

15

https://doi.org/10.5281/zenodo.17822391
https://github.com/diwangs/transparent-ae
Mridula
15

4) Benchmarks: We provide two datasets to be used as

benchmark:

« Known vulnerabilities dataset - This dataset is com-
posed of SPA repositories that are known to be ex-
ploitable. We compose this dataset from the public CVE
list as well as GitHub Security Advisory (GHSA) for
client-side taint-style vulnerabilities, amounting to 56
public vulnerabilities. This dataset is used to evaluate
TranSPArent’s false negative rate and is located at the
accuracy/fnr/ directory

« Positive label GitHub dataset - This dataset is com-
posed of GitHub repositories of SPAs that are marked as
vulnerable by TRANSPARENT. In the paper, we sample
10% of alerts that are produced by TRANSPARENT
and its baseline, vanilla CodeQL, amounting to 57 and
24 alerts, respectively. This dataset is used to evaluate
TRANSPARENT’s false positive rate and is located at the
accuracy/fdr/ directory.

B. Artifact Installation & Configuration

To install all the software dependencies for the evaluation,
follow these steps:

1) Install the Nix package manager (see https://nixos.org/

download/)

2) Install and activate Git LFS (see https://github.com/git-
Ifs/git-1fs)

3) Download our artifacts (through the DOI or by run-
ning $ git clone -recursive https://github.com/
diwangs/transparent-ae)

4) Change working directory to transparent-ae

5) Run the install script ($./install.sh)

To check whether the software are installed correctly, you
could run the unit tests of TRANSPARENT by doing the
following:

1) Change working directory to transparent

2) Run the test script ($./test.sh)

C. Major Claims

e (Cl): TRANSPARENT is able to reveal SPA-specific
sinks, including novel ones that are not included in the
state-of-the-art tool, vanilla CodeQL. This is proven by
the experiment (E1) whose results are reported in Table
V in the paper.

e (C2): TRANSPARENT is able to reveal bugs in real-world
SPA and achieve better accuracy than vanilla CodeQL.
This is proven by the experiment (E2) whose results are
reported in Table IV in the paper.

D. Evaluation

1) Experiment (EI): [Automated Framework Abstraction]
[30 human-minutes + 2 compute-hours]: Run TRANSPARENT
on Vue, React, and Angular to obtain its SPA-specific sink

[Preparation] Change working directory to accuracy.

[Execution] Run $./main.sh

[Results] After the script is finished running, Table V should
appear in stdout. Additionally, the synthesized CodeQL query

library used for the next experiment should be outputed at
../qlpack/transparentsinks

2) Experiment (E2): [Accuracy Evaluation] [30 human-
minutes + 4 compute-hours]: Run the synthesized query
obtained from the previous experiment and apply them to
both known vulnerabilities dataset and positive label GitHub
dataset.

[Preparation] Change working directory to accuracy.

[Execution] Run $./main.sh

[Results] After the script is finished running, Table
IV should appear in stdout. Analysis of each repos-
itory would be generated on accuracy/fnr/build and
accuracy/fdr/build. Each json file consists of alerts in
a given repository generated by either TRANSPARENT or
vanilla CodeQL (signified with _t and _b suffix respectively.)

16

https://nixos.org/download/
https://nixos.org/download/
https://github.com/git-lfs/git-lfs?utm_source=gitlfs_site&utm_medium=installation_link&utm_campaign=gitlfs#installing
https://github.com/git-lfs/git-lfs?utm_source=gitlfs_site&utm_medium=installation_link&utm_campaign=gitlfs#installing
https://github.com/diwangs/transparent-ae
https://github.com/diwangs/transparent-ae
Mridula
16

	Introduction
	Background
	Overview
	Threat Model
	A Motivating Example

	Design
	Dynamic Autostitch Analysis
	Higher-order Function
	Component-generated Function
	Bound Function

	Static Taint Path Analysis
	Generic SPA Sink Analysis
	Fixed SPA Sink Analysis
	Reference SPA Sink Analysis

	Static Template Mapping Analysis
	Extrapolated Mapping Extraction
	Concrete Mapping Extraction

	Evaluation
	Evaluation Setup
	RQ1: Accuracy
	False negative rate
	False discovery rate

	RQ2: Effectiveness in Finding Zero-Day Vulnerabilities
	RQ3: Found SPA Sinks
	Novel Sinks
	Ablation Studies

	RQ4: Computational Overhead
	Runtime Analysis Overhead
	Application Analysis Overhead

	Discussion and Future Works
	Related Works
	Conclusion
	References
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)

