SoK: Take a Deep Step into Linux Kernel
Hardening Effectiveness from the
Offensive-Defensive Perspective

Yinhao Hu*™#, Pengyu Ding®'*, Zhenpeng Lin!, Dongliang Mu%*, Yuan Li"™

$School of Cyber Science and Engineering, Huazhong University of Science and Technology, China
TZhongguancun Laboratory
“Hubei Key Laboratory of Distributed System Security
fIndependent Researcher
{dddddd, pengyu_ding, dzm91} @hust.edu.cn, zplin@u.northwestern.edu, lydorazoe @ gmail.com

Abstract—Despite extensive efforts to harden the Linux ker-
nel—the foundation powering numerous widely-used distribu-
tions (e.g., Ubuntu, Debian, Fedora)—it continues to face per-
sistent and sophisticated memory safety vulnerabilities. In this
study, we introduce a novel systematic framework that de-
composes kernel exploitation into three distinct phases from
an attacker’s perspective. Through comprehensive analysis of
121 publicly documented exploits since 2015, we identify and
categorize 64 recurrent attack vectors. Leveraging this structured
approach, we perform an in-depth evaluation of 51 existing
kernel defense mechanisms, clearly mapping their coverage,
limitations, redundancies, and interdependencies. Our results
reveal significant protection gaps: 23 attack vectors remain
entirely unprotected, and 31 existing defenses are bypassable or
obsolete. Additionally, we uncover notable discrepancies between
theoretical effectiveness and practical deployment across popular
downstream distributions, highlighting 4 underutilized hardening
measures and misconfigurations in four major distributions. By
illuminating these critical gaps and offering actionable insights,
our work guides both kernel developers and security practitioners
in enhancing defensive strategies and refining future security
designs.

I. INTRODUCTION

The Linux kernel, which underpins numerous distributions
(e.g., Ubuntu, Debian, Fedora), receives thousands of patches
daily. This high patch volume reflects the extensive workload
on developers and maintainers, increasing the likelihood of
oversights that can lead to newly introduced vulnerabilities [1].
Besides, recent data [2] further shows that Linux powers 100%
of the world’s top 500 supercomputers and 96% of the top
one million servers, making the kernel an especially attractive
target for adversaries. Memory errors account for most vul-
nerabilities in large C/C++ codebases [3, 4], and Linux kernel

HCorresponding authors

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241725
www.ndss-symposium.org

is no exception. Attackers typically induce an internal error
in the kernel that escalates into memory corruption, enabling
the construction of exploitation primitives and culminating in
unauthorized privilege acquisition (e.g., privilege escalation or
information disclosure).

To counter these threats, both Linux kernel community and
security firms have devoted significant efforts to deploying
various kernel hardening mechanisms, each targeting differ-
ent stages of exploitation. For instance, Linux Kernel Self-
Protection Project (KSPP) [5] incorporates a set of recom-
mended kernel hardenings, aiming to make Linux kernel more
resilient against vulnerabilities and exploitations.

Our investigation reveals that over 51 kernel hardening
mechanisms have been introduced into Linux kernel, yet
no comprehensive study has systematically evaluated their
security. As exploitation techniques continuously evolve, the
effectiveness of these defenses remains uncertain. Without a
rigorous, security-focused analysis of existing offensive and
defensive measures, researchers risk an incomplete under-
standing of common kernel attack vectors and the coverage
of current kernel hardenings in addressing known exploitation
methods (which we refer to as defense coverage). However,
there is a lack of comprehensive research on the theoretical
protective capabilities of Linux kernel hardenings, and the
real-world impact of these mechanisms in production environ-
ments is unclear. Current security evaluations fail to provide
a thorough offensive—defensive perspective. To address this
gap, we introduce a systematic attack-decomposition frame-
work for analyzing kernel exploitations and defenses.

We begin by examining kernel exploitation through an
attacker-centric lens, dividing the process into three phases:
triggering memory corruption, acquiring exploitation primi-
tives, and achieving the goal. Through in-depth analysis of
potential attack vectors in each phase, we offer a systematic
framework for understanding and evaluating critical paths in
the kernel exploitation. Next, we systematically categorize
existing kernel defenses within this framework, assessing
their coverage of critical attack vectors, inherent weaknesses,
and how different mitigations interact—both redundantly and

complementarily. This analysis clarifies which attack vectors
remain entirely unprotected, identifies mitigations that current
exploits can bypass, and measures the total number of exploits
able to subvert existing protections. To address concerns
of open science and reproducibility, our datasets and more
detailed analysis are publicly available '.

Finally, we evaluate the default hardening configurations
of leading Linux distributions, comparing their theoretical
defensive capabilities with real-world effectiveness. Our obser-
vations reveal the gap between theoretical and practical kernel
security, providing the observations of our analysis along with
recommendations to enhance the security of the Linux kernel
and ecosystem.

As aresult, we identify 23 unprotected kernel attack vectors
that can be chained to exploit the latest Linux systems and note
8 frequently recurring attack paths that appear in more than
20 kernel exploits, reflecting limitations in the kernel’s de-
fense coverage. Our investigation further reveals 20 relatively
secure hardening mechanisms alongside 31 insecure schemes
widely deployed in practice. Among these, 12 measures defend
against multiple attack vectors, with 3 classified as effective.
We also identify 4 pairs of redundant hardenings that warrant
integration, 3 obsolete defenses ripe for removal, and 4 pairs
that must be applied in tandem for robust protection. Finally,
a notable security gap emerges between upstream and down-
stream kernels: 4 effective protections remain underutilized,
and 4 downstream distributions (out of 10) have deviant
configurations.

To the best of our knowledge, this is the first systematic
study to summarize Linux kernel exploitation techniques. It is
also the first comprehensive research on Linux kernel hard-
ening and rigorously evaluating its effectiveness. Our obser-
vations offer practical guidance for system configuration and
provide researchers with clear directions for future hardening
efforts. Drawing on real-world vulnerabilities and associated
exploits, we also pinpoint the weakest existing mitigations that
need to be enhanced. In summary, the paper makes three key
contributions.

e Systematic Attack Decomposition Framework: We pro-
pose a systematic and extensible attack decomposition frame-
work from an attacker’s perspective, which divides the kernel
exploitation process into three key phases. This framework
enables comprehensive classification and analysis of potential
attack vectors, serving as the foundation for all subsequent
analyses and providing a unified reference for kernel security
research.

e Multi-Level Kernel Hardening Analysis: We conduct
a comprehensive analysis of existing kernel hardenings (51
defenses in total). By precisely mapping these protections to
our proposed attack vectors, we reveal the specific defense
coverage of each mechanism and its limitations, as well as
redundancies and combinations between different defenses.

e Revealing the Gap Between Theoretical and Practical
Hardening Effectiveness: Based on a detailed evaluation of

Uhttps://github.com/OS3Lab/sok-kernel-hardening

downstream distributions, we identify the gap between theo-
retical design and practical deployment of kernel mitigations,
indicating 4 underutilized hardenings and 4 distributions with
inappropriate configurations. We also provide observations and
recommendations to help developers avoid repeating these
pitfalls in future usage.

II. STUDY SCOPE & RELATED WORK
A. Study Scope and Data Collection

Study Scope. This study evaluates Linux kernel hardening
techniques aimed at defending against memory corruption
vulnerabilities caused by internal software errors (e.g., race
conditions). These issues account for 70% of kernel CVEs [6],
making them the most prevalent and impactful threat in
practice. Our analysis focuses on mitigations widely deployed
in mainstream desktop and server Linux distributions and
frameworks. We exclude experimental solutions (e.g., Rust for
Linux) due to their lack of real-world adoption. Our aim is
to assess the real-world effectiveness of software-based kernel
hardenings from both offensive and defensive perspectives.
Threat Model. We consider local attacks where non-
privileged users exploit internal kernel software vulnerabilities
to compromise the kernel, such as by escalating privileges. We
do not consider attacks requiring hardware-specific behaviors,
privileged execution contexts (e.g., speculative execution, side-
channel attacks), or filesystem-based vectors, as these require
different assumptions and fall outside our software-based
memory-corruption focus.

Exploitation Dataset. We collected 121 public exploits cov-
ering 102 Linux kernel vulnerabilities (one vulnerability
can have several unique exploits); a breakdown is given in
Tabs I to III. Our data set covers articles/write-ups from
Pwn20wn/kernelCTF, Black Hat events, Linux Security Sum-
mit, top-tier academic conferences, blogs of white-hat hackers
and red teams (e.g., Google Project Zero) to avoid selection
biases. These exploits target the kernel through internal errors
to achieve their ultimate goals, consistent with our defined
threat model. It should be noted that we excluded those
exploits released before 2015 simply to align with the state-
of-the-art. Finally, it should also be noted that our study
does not include the exploits backed by government agen-
cies or black hat hackers, which are unavailable for public
research. However, the lack of these exploits does not influence
the security assessment of the mainline kernel hardenings.
This is because white-hat hackers and enterprise red-teams
have already unveiled many government-backed or black-
hat hackers commonly adopted exploitation methods (e.g.,
recently disclosed watering hole attack [7]). After collecting
kernel exploits, we categorize the attack process into three
main phases and derive a systematic decomposition framework
(Sec. IID).

Hardening Dataset. We collected and studied 51 kernel hard-
enings from different representative sources: @ Kernel Self
Protection Project (KSPP) [5], initiated by kernel maintainers
to enhance Linux kernel security; @ PaX/Grsecurity [8, 9], a
commercial solution to provide hardening patches, ® Features

https://github.com/OS3Lab/sok-kernel-hardening

highlighted by white-hat security practitioners [10] etc. In
IV, we map each hardening to corresponding attack vectors,
revealing their efficacy and interrelation to assess their defense
coverage. Consistent with our study scope and threat model,
we focus on deployable software-based kernel hardenings ap-
plicable to general-purpose Linux systems. Development-time
sanitizers (e.g., XKAsaN, kMsaN) and vendor-specific hypervisor
mechanisms (e.g., RKP [11]) are excluded due to their limited
use in production environments.

Gaps between Expectation and Reality. To examine the
discrepancy between theoretical and practical hardening effec-
tiveness, we surveyed multiple major releases from the most
popular downstream Linux distributions on DistroWatch [12].
We reveal a gap between the defenses’ intended coverage
and their real-world impact in Sec. V. Finally, we provide
observations and suggestions for the gap in Sec. V and VL

B. Related Work

While most previous works on hardening evaluation focus
on performance overhead [13]-[16], in recent years, some
discuss security effectiveness. [17] proposed an attack model
demonstrating how the memory safety policy could be violated
to perform attacks. A testing suite named CONFIRM [18] is
proposed to test the compatibility and applicability of different
Control Flow Integrity mechanisms. The evaluation of security
guarantees of CFI is further improved in [19] where the
authors developed two tools to identify runtime feasible targets
of indirect control transfer and verify the effectiveness of CFI
against typical attacks. Ahmed et al. proposed some metrics,
including JIT-ROP gadget availability, quality, turing-complete
expressiveness, and the upper bound of re-randomization
intervals, to quantify the effectiveness of fine-grained code
randomization schemes under the JIT-ROP threat model [20].
[21] analyzed 26 publicly available one-day exploits and 10
defense mechanisms targeting the Android kernel, highlight-
ing the difference of hardening effectiveness across Android
devices. Miller ef al. [22] proposed seven exploitations that
modify system registers via control-flow hijacking, including a
swapgs based attack that achieves generic bypass of FineIBT.

Unlike prior works evaluating individual hardenings or
downstream distributions, our work provides a comprehensive
analysis of the security landscape of the upstream Linux
kernel. Specifically, we systematically assess exploitation tech-
niques and defense mechanisms for the Linux kernel, offering
a detailed analysis of the effectiveness and coverage of existing
kernel hardening. It should be noted that our three-phase
attack framework does not contradict the model in [17],
as they are based on different abstraction levels. We derive
ours from a fine-grained analysis of attack vectors, later
grouped into broader categories. The two frameworks are thus
complementary rather than conflicting.

III. ATTACK DECOMPOSITION FRAMEWORK

A. Overview

We analyze 121 publicly available exploits targeting 102
Linux kernel vulnerabilities, systematically decomposing each

Kernel Exploitation

Internal Error To Corruption To Primitive To |
Corruption Primitive Exploitation Goal
—(&

Fully Blocked
Vectors 0

Partially Blocked,
Vectors Q

Unmitigated
Vectors 0

— e —(2 8

Fig. 1: Three Phases in the process of Kernel Exploitation.

i

into phases associated with specific attack vectors (Tabs
A.6—-A.8). This analysis forms the attack-side foundation of
our framework, which is later used in Section IV to evaluate
kernel hardening mechanisms under the same phase/vector
terminology. Fig. 1 presents an overview of the attack de-
composition framework, by delineating kernel exploitation
progression into three phases. @ Phase I: Attackers leverage
an internal error (e.g., Error 8: reference miscount) to trigger
memory corruption; @Phase II: By manipulating corrupted
memory, attackers obtain essential exploitation primitives
such as instruction pointer (IP) control or read/write (R/W)
privileges; ®Phase III: Exploitation primitives are used to
escalate privileges, disclose sensitive information, or convert
one primitive into another, ultimately fulfilling the attacker’s
goals. Each phase was labeled with specific attack vectors,
through the meticulous analysis of hardening mechanisms
detailed in Sec. IV, we classify these vectors based on their
susceptibility to the kernel defenses we evaluate into three
categories: 1) Fully Blocked Vector, that existing defenses
can completely block; 2) Partially Blocked Vector, which
can partially bypass existing defenses; 3) Unmitigated Vector,
indicating no existing hardening we evaluate can address. In
addition, we also quantify the number of vectors in each
category.

To elaborate on this overview, Fig. 2 describes the com-
prehensive attack framework, both attack vectors and kernel
defenses are shown by phase. Each directed edge links a
pre-exploit error to a post-exploit outcome, with rounded
rectangles representing attack vectors (e.g., “@3: Integer used
as index/boundary” indicating the 3"¢ attack vector of Linux
kernel exploitations listed in Tab. I) and its defenses (e.g.,
“#2” indicating PAx_s1zE_oveERrLow in Tab. I, the 2"d kernel
hardening). For fully blocked vectors, only their identifier
numbers are retained in Fig. 2. The number in each rectangle,
shown as X/Y, indicates that X out of Y applicable exploits can
bypass kernel hardening. More details on vectors, hardenings,
and exploits are provided in Tabs I, II, IIL

Using the graph representation of exploitation and harden-
ings, we can pinpoint all exploitation chains for any given pair
of pre-exploit errors and post-exploit consequences. Among
them, chains composed solely of yellow rectangles reveal ex-
ploitation paths that bypass existing Linux kernel hardenings.
By examining the numbers below each vector, we identify
hardening mechanisms frequently bypassed, highlighting the
weakest defenses. Unmitigated rectangles further indicate vec-
tors that deserve attention for future hardening efforts. In the

Error 1 Error 2: Recursive [} sooocooeeeeeeeeeeeeeeeeeenn .| Error 5: No Check For |:if Error 7: Forgot To Null Error 10: Incorrect]
5 Function Call Error 4: Incorrect i String Termination i Ptrs After Free Operation On Linked List |:
o i i
- H H . : H
s s g@Z:tllnfinite" 1 CB”ﬂer ndex [@6: R(tegd non-kr:ULL-term] [@9: Cflone ;:)qintter and] EioiBdRacelQveiioinien [@12: Corrupted dblist]
-9 unction cal 4: Compile-time sized |: string on khea 1) ree object 21 i - i
g = @ indepruffer' | 9 P H Jj @11: Trigger race and free causes dangling ptré/fi,f?
o 2 @1, @7 Error 3: Integer ——— Error 6: Type / Error 8: Reference objects still referenced by |
c 3 2] @5: Dynéanf}lc-sze mdsx : Object Confusion Miscounting another thread 14): [@13: C?jrruptrothetr lists]
- uffer ; J cause dangling ptr 4 |
; % @3: Integer used |} - @8: Object recycle/ @10: Increase/decrease]
g = as index; #2 4/4 alloc mismatch; #4 2/2 refcount to zero; #5 9/12
<
o cmem°'.'y | Stack Corruption | Global/Static Corruption | Heap Corruption |
orruption |
o e [@18: Trigger OOB access globally] @19: Heap manipulation || @32: OW. ([@22: OR. sensitive|(@27: OW. fptr/ftable|| @26: OW.
< H 0 1 within cache; #16, #17, cred: #23 fields in same obj fields in heap obj)| readable files
) @14: OW. retaddr on s
= i o T Shon Path From Internal Emror To. | \ #18, #19, #20 12012 g 4 3
20 i kstack; #8, #9, #10, #11 I| Short-Path Frpm !nternal Error To |I R e R D - - :
S ; @16, @17 i 11, 0/1, 011, 0/1 I Primitives g @28: OW. 15 @23: OW. fptr @24: OR. @21: Overlap
5 'E ’ i B ' 1 1| @20: Heap manipulation L - fields in same sensitive 33 || physmap with
8 E 2 @15: OC:YJ\:'r/':;?ddr on iy [@35, @369] [@37 @] 0 laCrOSs cache; #21 19/22 freelist->next; #4 obj 7 J(datain heap obj)|freed cache 3
o i . H ! —
S0 1 kstack; #12, #13, #14 \ [@34: Dereference payloadifake | | [@29: OW. next/prev|| @25: OW. sensitive || @33: OW. page |(@30: OW. length| [@31: OW.
wF [Lo 'l objectin NULL page; #25, #26)i ptr in dblist; #6,#7) | field in heap obj; #22 ||table hierarchy; #24]|field in elastic obj| | pipe_buffer
B ! 212,212 7, 10/10,10/10 66/73 414 14 7
(B |reomsomsomobiaomacmacacasar o B s]

IP Control Primitive

H . . E @32: OW. | @38: General #11, @46: Execute @52: Hijack
g |Shor1-Path TalInfarmation|Disclosuire 'l cred; #23 || hijacking; #29, #30 || ROP gadgets;#38 || usermodehelper: #41 :
. V22 4170, 4170, 4170 33/33 15124 = _Ph?se, (E;”"I" Cg’é”hpt:rl‘:; "
=l ' . .] rimitive, Goal and Short-Pa
4 g :F@Ssial'glikaiiz]:sl_sggbms] [@s7: R::;sSyst or]: @45: Use copy_to/ @51: OW. fptr/ptable in @47: Exploit ioctl /
£0 e E - ; : 1i| from_user gadgets for global/static region; setmem for addr_limit Fully Blocked Attack Vectors
g g 42' 48Y 49' H ' stack ROP; #38 12 #22, #38, #39, #40 or vsyscall; #38 1/3
o % %58’ %59’ %61' || @63: Cross-syscall stack | | @60: Read sensitive |! % Bt — A70:BII0T0 - :
o= 8 , ' leak: #1, #49, #50, #51 syscall return . @ : erform stacl e e @55: Infoleak through |:| Partially Blocked Attack Vectors
= o[—— 2 H | pivot; #32, #33, #38 || @ . copy_to_user; #42
2 3 ! 0/1,0/1,0/1, 111 1 y 31;39 e 33/59 disable SMEP/SMAP; #38 4/10 = —
0 X ' — : i = [Unmitigated Attack Vectors]
E w '|@62: Uninit stack read @64: Leak on non- ' @53: OW. @>50: OW. freelist->next or @>54: Leak to userspace
o ,g ' (same syscall) randomized area ' sensitive file prev/next ptr tq fake objects via netlink/network Bypass Number /
L » 22200000« 5 ' 4 with fptr/ftable in physmap 1 2 Total Exploits Number

Information Disclosure

iEproitation Goall

Privilege Escalation

Fig. 2: Three-phase decomposition of kernel exploitations with attack vectors and their mitigation status at each phase. OR.

and OW. denote Overread and Overwrite, respectively.

IIl. Primitive To Exploitation Goal

I. Internal Error To Corruption

: NA {#33: SMAP} {#35: KASLR} { #29: KCFI]
CVE-2021-22555 @>5: Dynamic-size (@43: Perform @46: Execute (@38: General
: index buffer : stack pivot ROP gadgets hijacking
;—I Il. Corruption To Primitive t 1

@19: Heap
manipulation next/prev ptr
within cache in dblist elastic obj in heap obj

i #16: #6:
{|FREELIST_RANDOM DEBUG_LIST a L3

Fig. 3: Exploitation and defense decomposition example.

@29: OW. @30: OW.

length field in

@27: OW. fptr /
ftable fields
31

following, Sec. IV extends this framework to the analysis of
kernel defenses.

To illustrate how a real exploit maps to the framework,
Fig. 3 summarizes a representative exploit trace. Phase I: an in-
ternal error (vector @5) triggers a heap overflow that corrupts
adjacent objects. Phase II: the initial overflow, combined with a
crafted heap spray (@19), corrupts the doubly-linked msg_msg
list (@29), causing two msg_msg objects to reference the same
target msg_msg (victim); freeing victim converts the overflow
into a UAF. The attacker then fills the freed slot of the elastic
msg_msg (see [23]) with sk_buff objects and overwrites its
length and other sensitive fields (@30 and @25). This results
in out-of-bounds reads (@24) that leak heap addresses, which
can be used to tamper with the damaged list pointers and
bypass DEBUG_LIST(#6). Similarly, a pipe buffer/sk_buff

spray-and-read sequence can leak function pointers from a
victim pipe_buffer, enabling recovery of kernel addresses
and bypass of kasLr(#38). A subsequent spray can overwrite
the leaked function pointer (@27 and @31), yielding an IP-
control primitive. Phase III: the attacker performs a stack
pivot (@43) and executes ROP gadgets (@46) to hijack kernel
control flow (@38), ultimately achieving privilege escalation
and container escape.

B. Internal Error To Corruption

As illustrated in Fig. 2, the first exploitation phase involves

exploiting internal kernel errors to cause memory corruption,
enabling unauthorized access to the kernel stack, heap, and
global/static areas. We identify 10 common internal errors (9
with CWE IDs) used in kernel exploits. Below, we summarize
these errors and their exploitation methods.
Error 1: Unlimited Variable-Length Array (CWE-789).
The C99-standard Variable-Length Array (VLA) is allocated
on the kernel stack (e.g., via alloca) and automatically freed
upon function return. Because kernel stack space is limited
(e.g., 8K on x86, 16K on x64), improperly checking the VLA
length can cause stack overflow, corrupting memory regions
beneath the kernel stack. As no public exploits have bypassed
PAX_MEMORY_STACKLEAK (#1 in Tab. I), we conservatively re-
gard this hardening as effective.

Lo . Exploits
Phase Exploitation Steps Hardenings Bypass | CVE-ID
@1: Length is too large and cross boundary #1:PAX_MEMORY_STACKLEAK 0 NA
@2: Infinite function call NA 1 [24]
@3: Integer used as index/boundary #2:PAX_SIZE_OVERFLOW 4/4 [25]*, [26]x, [27]%, [28]
@4: Index buffer whose size is determined at compile time #3:CONFIG_FORTIFY_SOURCE 1/1 [29]x
@5: Index buffer whose size is unknown at compile time NA 17 [30], [31], [32], [33], e.g.
I - Internal @6: Read non-NULL terminated string on kernel heap NA 1 [31]
Error To @7: Recycle objects to the wrong cache and corrupt freelist #4:CONFIG_SLAB_FREELIST_HARDENED 0/1 [34]
Corruption @8: Recycle objects mismatches the allocated objects #4 :CONFIG_SLAB_FREELIST_HARDENED 272 [35]*, [36]*
@9: Clone pointer and free object NA 21 [37], [38], [39, 40], e.g.
@10: Increase/decrease refcount to zero #5:CONFIG_REFCOUNT_FULL 9/12 [41, 42], [38], [43], e.g.
@11: Trigger race and free objects still referenced by another thread NA 14 [44], [45], [38], [46], e.g.
@12: Corrupt doubly linked list and generate dangling pointer #6:DEBUG_LIST, #7:LIST_HARDENED 58 [381x, [42], [47], [48], e.g.
@13: Corrupt other lists and generate dangling pointer NA 4 [49], [50], [51], [52]

TABLE I: Exploitation steps, hardenings, and exploits in exploitation phase I. NA means no hardening or exploit. The complete
list of exploits can be found in our datasets repository (noted in Sec. I).

Error 2: Unsanitized Recursive Function Call (CWE-674).
Stack overflow can result from unchecked recursive function
calls. When the kernel stack is exhausted, corruption occurs
even without VLAs. Current coding guidelines do not prohibit
recursion [53], making it difficult to prevent overflow. We find
no existing hardening for this error.

Error 3: Integer Underflow/Overflow (CWE-190/CWE-
191). Integer wraparounds commonly trigger memory corrup-
tion in C programs, including the Linux kernel. They result
from typecasting (e.g., assigning unsigned values to signed
integers) or inadequate bounds (e.g., summing large values). If
such underflow/overflow is used as an index (@3 in Fig. 2), the
kernel can access out-of-bound memory on the stack, heap, or
global/static regions. Although pax_s1zE_oVERFLOW (#2) aims
to detect these issues, it was bypassed in four exploits.
Error 4: Incorrect Buffer Index (CWE-118). Even without
integer wraparounds, indexes can be miscalculated or mali-
ciously assigned by user space. If not adequately validated,
out-of-bound accesses occur (@4, @5). FORTIFY_SOURCE (#3)
partially checks overflows at compile time but was bypassed
(e.g., cvE-2017-18344). For runtime-sized buffers lacking
static boundaries, no robust solutions exist, enabling 12 public
exploits to induce corruption.

Error 5: Failing to Check a String is NULL-terminated
(CWE-170). C strings must end with a NULL symbol, yet
this assumption is occasionally violated in the kernel. Without
explicit checks, the kernel may read beyond the intended
boundary, causing corruption (e.g., cvE-2022-0185). Here, a
missing NULL terminator causes incorrect length handling,
leading to a heap overflow represented by @6, where the faulty
read constitutes the internal error initiating later corruption. We
find no countermeasure specifically mitigating this issue.
Error 6: Type Confusion (CWE-843). To enable function-
ality extensions in file systems and networking stacks, the
Linux kernel uses an object-oriented design. For instance,
struct tcp6_sock inherits from struct tcp_sock by embed-
ding it as an internal field, resulting in many structurally
similar types. Type confusion occurs when an object of type A
(e.g., struct tcp_sock) is mistakenly treated as type B (e.g.,
struct tcpé_sock). This can lead to an object being recycled
into an incorrect cache, allowing attackers to corrupt allo-
cator metadata and trigger use-after-free vulnerabilities [34]

(a detailed example given in Fig. 4a). Our study found
that the kernel implemented cache membership validation in
SLAB_FREELIST_HARDENED (#4) [54] to mitigate confusion.

meta
data

actual slot
[size ™

cache
for type A

l«— freed to cache —»|
for type B

(a) Example for Error 6: the object in type A is mistakenly recycled
to the cache for type B, resulting in the overlap of metadata.

dangling ptr
—| next > next —»--—» next [—
—_prev_|< prev. |- < prev [
list head

(b) Example for Error 10: the object in shadow is freed but not
removed from the list.

Fig. 4: Tllustrative Examples for Error 6 & 10.

Error 7: Failing to Nullify All Pointers When the Refer-
enced Object is Freed (CWE-825). When the kernel allocates
an object, multiple references may propagate (e.g., parent
and child processes sharing the same socket fields). If one
reference is nullified but others are overlooked after the object
is freed, dangling pointers arise. Any subsequent dereference
of these pointers results in use-after-free. We found no kernel
defense mechanism addressing this issue.

Error 8: Reference Miscounting (CWE-911). The kernel
relies on reference counters to manage the lifecycle of data
objects. If developers neglect to increment counters or skip
decrements, the counter may prematurely reach zero, causing
the kernel to free an object that is still in use. To address this,
PaX/Grsecurity introduced pax_ReEFcouNT, which the upstream
Linux kernel adopted in version v4.13 as REFCOUNT_FULL (#5).
Error 9: Race Over Pointers (CWE-366). As the Linux
kernel is a multi-thread system, race over pointers happens
when, for example, one thread frees an object through a
pointer and another thread simultaneously dereferences it.
Without proper synchronization, a use-after-free can occur.

We observed 9 exploits exploiting this race condition, and no
existing hardening specifically prevents this error.

Error 10: Incorrect Operation On Linked List. Linux
kernel offers standard APIs for doubly and singly linked
lists, yet APIs do not enforce structural integrity checks.
Developers may erroneously insert an object twice, or free an
object without removing it from the list—both yield dangling
pointers. For instance, a freed object could still be linked in
the list, rendering the next pointer of the list head a dangling
pointer (see Fig. 4b). Such errors can be exploited (e.g., @13),
yet effective mitigations are still lacking. We catalogue these
unmitigated exploits in Tab. I to III and derive the following
observation.

Observation 1: Unmitigated Vectors. We pinpointed 23 out
of 64 attack vectors lacking corresponding mitigations. As a
result, the upstream kernel widely used in Linux distributions
remains unprotected, leaving these attack vectors open to in-
field exploitation.

C. Corruption To Primitive

As shown in Fig. 2, the goal of second-phase exploitation
is to escalate initial memory corruption into stronger capabil-
ities—specifically, IP control or R/W privileges.

kernel stack|
thread #1

kernel
stack

return address return address

Overﬂoi T
region pipe

page

Overflow

region kernel stack

thread #2

!

(a) Kernel stack of thread #1
overwrites that of thread #2

(b) Pipe page overwrites
the stack frame

Fig. 5: Examples for overwriting return address in stack depth
overflow.

1) Stack Corruption: Stack corruption proceeds in two pri-
mary ways: (1) Stack Depth Overflow-the kernel stack (kstack)
is fully consumed, leading to writes below allocated stack
space; (2) Stack-Based Buffer Overflow—the kernel accesses
memory above the intended stack buffer. In both scenarios,
attackers typically overwrite the return address.

In stack-based buffer overflows, hijacking the return address
is straightforward because it resides above the overflowing
buffer. In stack depth overflows, two approaches commonly
arise: (1) Cross-Process Kstack Overwrite. Before kernel v4.9,
kstacks were allocated from directly mapped pages. An at-
tacker can spawn two threads (#1 and #2), arrange their kstacks
contiguously, put #2 to sleep, and overflow its return address
from #1. Resuming #2 sets the corrupted address as the PC,
granting IP control. (2) Pipe-Based Overwrite. By allocating
a pipe page directly below the kstack, attackers can overwrite
the return address via writes to the pipe page.

2) Heap Corruption: To obtain primitives from heap cor-

ruption, in general, the attacker first manipulates heap layout
to place critical variables within the corruption range and
then triggers overread/overwrite to the critical variables. In
the following, we describe the two steps sequentially.
Step 1: Heap Layout Manipulation. For out-of-bounds
reads/writes, if critical variables reside in a vulnerable object’s
fields and lie within the corruption range, no layout manipu-
lation is required. Otherwise, attackers place a “victim” object
adjacent to the vulnerable one so that memory corruption
targets the victim’s critical variables—an approach called heap
fengshui [92, 93]. In use-after-free scenarios, the attacker aims
to reoccupy the freed memory region with a new object
(heap spray [94]), allowing the new object to modify the
original object’s data or vice versa. In Linux, page-level
memory management is handled by the buddy system, while
SLAB/SLUB allocators subdivide pages into fixed-size slots.
Freed slots form a linear freelist (bitmap-based in SLAB,
singly linked in SLUB), and fully freed caches return pages
to the buddy system. These pages directly map to physical
memory, which can also be mapped into userspace via mmap.
This design yields three principal strategies for manipulating
heap layouts in the Linux kernel.

e Intra-Cache Manipulation. Attackers allocate and free
objects in the same cache to position the vulnerable and victim
objects adjacently. This layout adjustment allows corruption to
target critical fields. Our analysis identifies this vector as one
of the predominant attack paths, with 39 exploits leveraging
this technique. To pinpoint the high-frequency vectors, we
counted the exploits associated with each one and drew the
following observation.

Observation 2: High-Frequency Vectors. Out of 64 attack
vectors, 8 were exploited in 20+ known exploits, including
heap manipulation and general hijacking. Generic objects
like elastic objects, page tables, and credentials are frequent
targets but lack dedicated protections.

e Cross-Cache Manipulation (Buddy System). Rather
than remain within a single cache, attackers place the vulner-
able object at the end of the pages belonging to one cache
and the victim object(s) at the beginning of the pages in
another cache. When these two caches lie adjacently, objects
in them become adjacent as well, enabling an overread/over-
write across cache boundaries. Cross-Cache attacks can also
facilitate heap spray by freeing vulnerable objects in bulk,
returning their pages to the buddy system, and then allocating
victim objects that reuse the same pages.

e Physmap Overlap. Because kernel heap pages map
directly to the physical map (physmap), attackers free numer-
ous vulnerable objects and invoke mmap from user space to
occupy same pages. Modifying the page contents in user space
overwrites freed kernel objects.

Step 2: Critical Variables Overwrite/Overread. Successful
heap layout manipulation positions critical variables within
the attacker’s corruption range, enabling effective overwrites
or overreads. Our analysis identifies seven common targets:

Exploits

Phase Exploitation Steps Hardenings Bypass | CVE-ID
#8:CONFIG_STACKPROTECTOR 1/1 [55]*
@14: Overwrite return address on kernel stack #9:SHADOW_CALL_STACK o1 [55]
#10:ARM64_PTR_AUTH, #11:PAX_RAP ”
@15: Overwrite return address #12:CONFIG_SCHED_STACK_END_CHECK 171 [24]*
in adjacent kstack or the current kstack #13:VMAP_STACK, #14:PAX_RANDSTACK 0/1 [24]
. . . #12:CONFIG_SCHED_STACK_END_CHECK
@16: Overwrite restart_block.fn in thread_info F15:CONETG_THREAD. TNFO TN TASK 0 NA
. s s s . #12:CONFIG_SCHED_STACK_END_CHECK
@17: Overwrite restart_block.addr_limit in thread_info ¥15:CONETG_THREAD. TNFO TN TASK 0 NA
@18: Trigger Out-of-bound access globally 1 29
#16:CONFIG_SLAB_FREELIST_RANDOM 66/68 32], [56], (371 [38]% e.g.
. § L PR #17:unprivileged_userfaultfd=0 66/68 37, [38]*, [57, 58], e.g.
@19: Heap manipulation within cache ¥18:slab_nomerge 65768 381, 1591, 1371, [&5I% ee.
#19:CONFIG_RANDOM_RMALLOC_CACHES 19768 601, [61], [52], [62], e.g.
#20:CONFIG_SLAB_BUCKETS 53/68 [63], [64], [65], [66], e.g.
II - Corruption @20: Heap manipulation across cache #21:CONFIG_SHUFFLE_PAGE_ALLOCATOR 19722 [34]x, [67, 68]x, [33], e.g.
To @21: Overlap physical memory with cache NA 3 [48], [34], [69]
Primitives @22: Overread sensitive fields in the same object NA 4 [301, [311, [70], [71]
@23: Overwrite fptr fields in the same object NA 7 [25]1, 1271, 1621, [72], e.g.
@24: Overread sensitive data in heap object NA 33 [34], [60], [28], [61], e.g.

@25: Overwrite sensitive field in heap object

#22:CONFIG_GCC_PLUGIN_RANDSTRUCT

66/73 [33], [44], [34], [32], e.g.
3

@26: Overwrite readable files NA [591, [73], [511, [74], e.g.
@27: Overwrite function pointer/table fields of structures on kernel heap NA 48 [46], [57, 58], [47], e.g.
@28: Overwrite freelist—>next #4 :CONFIG_SLAB_FREELIST_HARDENED 1/5 [31], [56], [75], [36]*. e.g.
@29: Overwrite the next and prev ptr in doubly linked Tist #6 :DEBUG_LIST, #7:LIST_HARDENED 10/10 [38]x, [49]%, [28]x, [52]*, e.g.
@30: Overwrite length field in elastic object NA 14 [32], [42], [47], [60], e.g.
@31: Overwrite pipe_buffer NA 7 741, [76], [77], [78], e.g.
@32: Overwrite cred #23:CONFIG_DEBUG_CREDENTIALS 12/12 34]x, [32]*, [79]*, [8O]x, e.g.
@33: Manipulate page table hierarchy #24: PAGE_TABLE_CHECK 4/4 81]*, [82]x, [83]%, [84
. . #25:CONFIG_DEFAULT_MMAP_MIN_ADDR
@34: Dereference payload/ fake object in NULL page F26:CONFTG, T6M MMAP MIN ADDR 2/2 [85]*, [86]x
@35: Execute malformed eBPF program #27: CONFIG_BPF_UNPRIV_DEFAULT_OFF>=1 0/9 [79]. [80]. [87]. [88], e.g.
@36: addr_limit set as KERNEL_DS in user mode #28:TIF_FSCHECK 0 NA
@37: Overwrite sensitive data on non-randomized cpu_entry_area stacks NA 6 [55], [89]. [90], [91], e.g.

TABLE II: Exploitation steps, hardenings, and exploits in exploitation phase II. NA means no hardening or exploit. The
complete list of exploits can be found in our datasets repository (noted in Sec. I).

@ Function Pointers (fptr) and Function Tables (ftable).
Overwriting these pointers in the heap objects grants IP
control once they are dereferenced. @ Metadata Headers in
Freed Slots (freelist->next). This header stores addresses
of subsequent freed slots. By overriding freelist->next
with a malicious address, attackers deceive the allocator into
assigning future allocations to user space or physmap, en-
abling arbitrary field modifications in newly allocated objects.
® Pointers in Doubly Linked Lists (prev, next). Similar
to metadata headers, overwriting these pointers can link a
malicious memory address as a ‘“node”, further corrupting
kernel data structures. @ Length Field in Elastic Objects.
Modifying length fields (e.g., [23]) misleads the kernel into
overreading buffers, leaking extra data into user space. ©
Kernel Pipe Buffer. This buffer includes a function pointer,
a page pointer, and flags defining page attributes. Overwriting
the page pointer can enable nearly arbitrary physical memory
read/write. Forging the f1ags can achieve overwriting a read-
only file (e.g., /etc/passwd) [74, 76]. ® uid and gid in
Credential Structures. Overwriting these fields to zero esca-
lates privileges, allowing the attacker to impersonate the root
identity. @ Page Table Hierarchy. By redirecting page table
offsets (e.g., to commit_creds), attackers can override checks
and gain privilege without detection [95]. Alternatively, map-
ping a kernel text region into user space permits direct kernel
code modification [81, 82], bypassing existing mitigations.

3) Short-Path To Primitives: Our analysis identifies four
logic errors that grant exploitation primitives without causing
explicit memory corruption: @ NULL Pointer Dereference.
When the kernel dereferences a NULL pointer, attackers can
map the zero address in user space with read/write/execute

permissions, injecting malicious payloads. If the pointer refer-
ences a function or function table, control flow can be hijacked
on dereference. @ eBPF Verifier Gaps. eBPF runs user-
provided programs in a kernel-level virtual machine, guarded
by a verifier that simulates eBPF code before execution.
Semantic discrepancies between simulation and actual runtime
allow attackers to bypass sanity checks and execute arbitrary
eBPF payloads, thereby obtaining both IP control and control-
lable R/W capabilities. ® Unbalanced set_f£s. The set_fs
function redefines addr_1imit for data transfers between ker-
nel and user space. This function shall be used in pairs. Oth-
erwise, attackers can specify kernel addresses as data-transfer
destinations, thereby achieving a controllable R/W primitive.
® Non-randomized Area. If kastr fails to randomize areas
like cpu_entry_area [89], attackers can manipulate kernel
data at fixed addresses. By triggering an Interrupt Stack Table
(IST) exception (e.g., via a hardware breakpoint), they can
overwrite saved registers in cpu_entry_area with a payload
(e.g., fake function tables).

D. Primitive To Exploitation Goal

After acquiring exploitation primitives in Phase II, attackers
achieve ultimate goals, such as, primitive translation, privilege
escalation, and critical information disclosure.

1) Start From IP Control: Once attackers acquire the IP
control primitive, they gain extensive control over kernel
execution. By hijacking IP, they direct the kernel toward
“gadgets” that either escalate privileges directly or furnish
additional controllable R/W capabilities.

Gadgets For Privilege Escalation. Attackers can hijack
control flow to execute specialized “gadgets” that escalate

Phase Exploitation Steps

Exploits

Hardenings CVEID

Bypass

@38: General hijacking

#11:PAX_RAP, #29:KCF1I, #30:FinelIBT 6/70

@39: Execute shellcode on kernel heap

[49], [75], [28], [87]x, e.g.
#31:CONFIG_STRICT_KERNEL_RWX 0 NA

@40: Execute shellcode in userspace

#32:PAX_MEMORY_UDEREF, #33:SMAP/PAN 012

#34:SMEP/PXN, #35:KPTI (25), [85], (38], [24], e.g.

@41: Execute shellcode in physmap #36: CONFIG_DEBUG_WX 0 NA

@42: Execute shellcode in BPF memory #37:GRKERNSEC_JIT_HARDEN 173 96], [83], [97]x
A . A #32:PAX_MEMORY_UDEREF, #33:SMAP /PAN 31739 60]x, [28]%, [61]x, [62]x, e.g.
@43: Perform stack pivot 738 :KASLR 3339 | [28% (61, 271 [34Ix e.g.
@44: Execute run_cmd and native_write_cr4 (disable SMEP/SMAP) #38:KASLR 4710 [44]x, [311x, [46]x, [33]x, e.g.

@45: Execute copy_to/from_user gadgets and perform stack ROP #38:KASLR 172 75]%, [55]
@46: Execute ROP gadgets #38:KASLR 33/33 55]%, [89]x, [98]x, [99]x, e.g.
@47: Execute kernel_sock_ioctl or set_memory_rw #38:KASLR 173 34]x, [41, 42], [45]
@48: Execute malicious eBPF program #27: CONFIG_BPF_UNPRIV_DEFAULT_OFF>=1 0/3 [871, [35], [100]
@49: Overwrite freelist->next or prev/next ptr to #32:PAX_MEMORY_UDEREF 0/4
fake objects with fptr/ftable in userspace #33:SMAP/PAN 0/4 (381, (38, 101], (361, e.g.

1II - To Ultimate
Exploitation

@50: Overwrite freelist—>next or prev/next ptr to
fake objects with fptr/ftable in physmap

NA 1 [751

Goal

#22:GCC_PLUGIN_RANDSTRUCT, #38:KASLR

173 [31]x, [67, 68], [49]

@51: Overwrite and dereference fptr/ftable in global/static region

#39:post-init read-only memory

#40:PAX_CONSTIFY_PLUGIN 373 [31T*, [67, 68]%, [49]*
@52: Hijack call_usermodehelper_exec #41:CONFIG_STATIC_USERMODEHELPER 15724 45], 1791, [36]*, [98]*. e.g.
@32: Overwrite cred #23:CONFIG_DEBUG_CREDENTIALS 12/12 88]x, [102]*, [73]*, [S1]*, e.g.
@53: Overwrite sensitive files(/etc/passwd, e.g.) 4 1031, [76], [731, [51]
@54: Read data to userspace via netlink and general networking NA 2 [32], [30]
@55: Read data to userspace via copy_to_user #42 :PAX_USERCOPY 1/1 [34]x
@56: Read /proc/kallsyms, /boot, /lib/modules .
and other files including kernel symbols #43:GRKERNSEC_HIDESYM " (1041
@57: Read sysfs or seqfs NA 1 31]
@58: Read the kernel syslog #44 : GRKERNSEC_DMESG 0/4 44], [33], [46], [27]
@59: Read ptr value in /proc interface #45:kptr_restrict 0/1 105]
@60: Read sensitive data returned from syscall NA 1 [106]
.. #46:init_on_alloc, #47:init_on_~free
@61: Read sensitive data before heap slot recycle 718 :CONFIG_PAGE POTSONTNG 0 NA
@62: Read sensitive data on stack within the same system call NA 1 [107]
#1:CONFIG_GCC_PLUGIN_STACKLEAK
@63: Read sensitive data remained in #49:CONFIG_INIT_STACK_ALL_PATTERN 0/1 [108]
the last system call #50:CONFIG_INIT_STACK_ALL_ZERO
#51:PAX_MEMORY_STRUCTLEAK 171 [108]*
@64: Overread sensitive data on non-randomized cpu_entry_area stacks NA 5 [55], [89], [109], [I10], e.g.

TABLE III: Exploitation steps, hardenings, and exploits in exploitation phase III. NA means no hardening or exploit. The
complete list of exploits can be found in our datasets repository (noted in Sec. I).

privileges. One common approach is to prepare shellcode in
the kernel heap, user space, physmap, or eBPF memory, and
redirect execution to this shellcode.

However, faced with multiple hardening techniques, at-
tackers often opt for kernel code reuse. In particular, if
PAX_MEMORY_UDEREF Or SMAP/PaN (#31, #32 in Tab. III) is
absent, an attacker may pivot the stack [111]—so that user-
space payload can control kernel execution or jump to a
function such as run_cmd to spawn a root shell. Additionally,
disabling certain hardenings is another tactic: by hijacking
the control flow to native_write_cr4, attackers can disable
sMap/sMeP altogether (@44 in Tab. III). Further refinement of
this strategy appears in KEPLER [112]. Attackers start with
an IP control obtained through heap corruption, redirecting
execution to copy_to_user to leak the stack canary (i.e.,
CONFIG_STACKPROTECTOR), then use copy_from_user to inject
a ROP payload (along with the leaked canary) onto the kernel
stack. During these copy_to/from_user functions, sMaAP/SMEP
is temporarily disabled, allowing the ROP injection to bypass
existing mitigations.

Gadgets For Controllable R/W. In addition to executing
malformed eBPF programs, attackers can leverage existing
kernel code gadgets to gain a controllable R/W primitive.
By invoking set_fs, the addr_limit boundary between user
space and kernel space can be reset to its maximum value,
thereby permitting writes to kernel space. Furthermore, in-
voking set_memory_rw enables modification of the permis-
sions for the vsyscall segment, which is normally mapped

as executable. Changing these permissions to R/W allows
crafting a fake ct1_table object within the vsyscall seg-
ment, with its data field pointing to the target address for
reading or writing. Subsequently, hijacking control flow to
invoke register_sysctl_table dereferences the data field,
achieving a controllable R/W primitive.

Beyond these functions, attackers can also resort to
ROP gadgets for R/W operations. For instance, when
rdx and are under attacker control, a gadget such
can write data from to
Conversely, a gadget like
read kernel data when rdx is sim-

rsi

[rdx], rsi;
the address specified in
[rdx]; ret Can
ilarly controlled.

2) Start From Controllable R/W: To IP Control. When
attackers possess a controllable R/W primitive, they can esca-
late to IP control by overwriting and dereferencing function
pointers (fptr) or pointers to function tables (ftable). Based
on their locations, these pointers fall into three categories:

as mov ret rsi
rdx.

mov rax,

e Pointers in the User Space. By corrupting metadata
headers (e.g., prev and next) or other structures that reference
user-space memory (see Sec. III-C2), the attacker can create
a fake object in user space and link it into the kernel’s freelist
or doubly linked list. Since user-space pointers are easily
manipulated, any future dereference by the kernel can be
hijacked, leading to IP control.

e Pointers in the Physical Map (physmap). The physmap
is a kernel region directly mapped to physical memory. Attack-
ers can first map a page frame, craft a fake object within it,

then release the page back to the kernel, effectively injecting
the fake object. This technique evades defenses that rely solely
on restricting user-space references.

e Pointers in the Global/Static Region. Finally, attack-
ers can overwrite single pointers or pointer fields in glob-
al/static data structures if their addresses are known. Al-
though xastr (#37 in Tab. III) randomizes kernel addresses
and ccc_PLUGIN_RANDSTRUCT (#22) randomizes field order in
structures, both measures can be undermined by information
leaks or other evasion techniques (see Sec. III-C2). Once these
pointers are corrupted and dereferenced, attackers gain the IP
control primitive, enabling arbitrary code execution or other
privilege escalation steps.

To Privilege Escalation. A straightforward method for
privilege escalation involves overwriting the uid and gid
fields within a process’s credential structure. Specifically, after
acquiring a R/W primitive with global access, an attacker can
locate the init_pid_ns variable and traverse the task radix
tree to find the current task_struct. Once found, overwriting
the credential within task_struct grants elevated privileges.

Privilege escalation can also be achieved by hijacking
call_usermodehelper_exec (@52), which executes com-
mands with root privileges. Three critical kernel variables
are involved in this hijack. First, by overwriting the static
variable modprobe_path, an attacker can corrupt the path
of the binary loaded for helper calls, thereby creating a
root-privileged process. In response, STATIC_USERMODEHELPER
(#41) was introduced to force user-mode helper calls to a
single predefined binary. Second, modifying the static binfmt
list allows attackers to manipulate the binary format handler
search process, potentially gaining IP control. Third, over-
writing core_pattern enables one to execute a malicious
command as root by triggering a crash.

Finally, privilege escalation can also be accomplished by

modifying sensitive read-only files, such as /etc/shadow,
which governs user privileges.
To Information Disclosure. By leveraging a read primitive,
attackers can exfiltrate kernel data to user space through
channel functions. According to prior work [23], three main
categories of channel functions exist: copy_to_user, helper
functions in the netlink module, and general networking
functions. Each typically requires three arguments: a data
source, a destination, and a data length. By specifying the
attacker-controlled kernel address as the source argument,
sensitive information is disclosed to user space.

3) Short Paths To Information Disclosure: Three primary

techniques can achieve information disclosure without relying
on IP control or controllable R/W primitives:
Unrestricted Access Control. Although the Linux Security
Module (LSM) system (e.g., SELinux, AppArmor) enforces
strict policies, kernel pointers often appear, in cleartext, within
files such as /proc/kallsyms, /boot, /1ib, syslog, and various
sysfs/seqfs/notes entries [113]. Attackers can simply read
these pointers to bypass randomization-based defenses (e.g.,
KasLR). In some cases [106], sensitive data is also inadvertently
returned to user space by a system call.

Uninitialized Heap/Stack. When variables remain uninitial-
ized, residual data persists in their memory region. Attackers
can systematically prepare sensitive data in memory and then
leak it via the channel functions discussed in Sec. III-D2. On
the heap, sensitive objects are allocated, freed, and reallocated
as an uninitialized object with identical offsets, exposing
previous data. On the stack, a “stack spray” [114] approach
prepares sensitive data with one system call, then leaks it
through another. More recently, eBPF stacks (part of the kernel
stack) have been used to facilitate stack spray [115].
Non-randomized Area. As detailed in Sec. III-C3, at-
tackers can overwrite saved registers on cpu_entry_area
stacks [89], which also enables information disclosure. For
example, corrupting rcx, which specifies the data size for
copy_to/from_user, allows control over the amount of data
transferred between kernel and user space.

IV. MULTI-LEVEL ANALYSIS OF KERNEL HARDENING

To evaluate the security effectiveness of kernel defenses,
we propose a multi-level analysis of kernel hardenings,
i.e., categorize kernel hardenings based on our decomposition
framework and analyze their defenses against various vectors,
highlighting each technique’s strengths and limitations.

As shown in Fig. 6, we categorize kernel mitigation mech-
anisms based on their design objectives: @ Isolation-based
Protections: focus on segregating data transfers and sensitive
operations between privileged and non-privileged spaces, re-
stricting non-privileged user actions; @ Control Flow Integrity:
aim to prevent unintended kernel code modifications and
enforce control flow integrity; ® Data Flow Integrity: protect
critical variables from malicious corruption and ensure that
their usage remain within the intended boundaries; @ Entropy-
based Protections: increase unpredictability in code, stack-
/heap layouts, sensitive structures, and etc.; ® Miscellaneous
Protections: cover a range of hardenings, with many prevent-
ing sensitive information leakage and others targeting specific
vulnerabilities. By mapping these mechanisms to the above-
summarized attack vectors, Fig. 6 provides a new perspective
on the defense coverage across various attack paths. Besides,
each hardening’s effectiveness is labeled as “effective” (unable
to be bypassed by any collected exploit), “moderate” (partially
bypassed), or “unsafe” (completely bypassed). We also high-
light if a hardening can counter multiple attack paths, revealing
its strengths and limitations, as detailed in Sec. IV-A3.

Observation 3: Effective Hardening. We identified 20
effective hardening blocking these exploits in our study.
Though not flawless, they provide meaningful protections,
primarily through isolation and permission enforcement.
Out-of-tree mechanisms, such as pax_rRanNDSTACK offer strong
protection but remain unavailable to most distributions due
to their lack of upstream integration.

A. Defense Coverage Analysis

We analyze kernel defenses across the exploitation frame-
work and organize coverage by phase and vector to clarify the
relationship between exploitations and defenses.

= | Error 1 & 2 | | Error3&4 &5&6 | | Error7 & 8 & 9&10 & 11 | Error, Corruption, Isolation-based
: ! | _Primitive and Goal | 1= ol Flow Integrit
w e ’ i grity
W 4 SLAB FREELI #8:DEBUG (@ Effective Hardening .
2 || #1:PAX_MEMORY #2:PAX_SIZE_ #3:FORTIFY_ HARDENED LIST ;) Data Flow Integrity
§ 2|l sTackieak OVERFLOW SOURCE & Moderate Hardening
£5 : §5 :REFCOUNT_ I@ #T:LIST_ 9 {€® Unsafe Hardening Entropy-based
= g | FULLHARDENED ,,,,,, i€ Versatile Hardening Miscellaneous
8r|. ¥ ¥ ; . L
= [| Stgsl;rlzs&th | Stack OOB. | Global OOB. | Heap OOB. | Use-After-Free | Memory Corruptiong | Short-Path To Primitives |
— ' v 7 ' !
. #12:SCHED_STACK_ #16:SLAB_ #25:DEFAULT
: [#S-STACKPROTECTOR [END_GHECK g FREELIST_ MMAP_MIN_ADDR
S
89 #10:ARM64 #15: THREAD_GQ! #26:LSM_MMAP
> o L _aF:) ! - —

£E [#11‘ PAX—S‘@ PTR_AUTH [INFO_IN_TASKS? #23: DEBUGNSY| #24:PAGEW|| #7:LIST_ (&} MIN_ADDR
SE CREDENTIALS | [TABLE_CHECK]\HARDENED) { -/ 515 - e] | L %
=a ; v i
o 2 [gﬁt"gﬁ‘g— [#13:VMAP_STACK #14: PAX_ #20:SLAB #6] =={V]e]| 21 SHUFFLE o :SLAB_FREELIST| #27: BPF_UNPRIV_
ﬁ = RANDSTACKY BHI=TVCTTS 1Y ' WHEL PAGEALLOCATOR (< INELGIIENE0 o) DEFAULT_OFF>=1 (3
£ ‘

Controlable Read, Write Primitive IP Control Primitive | Exploit Primitive | Short-Path To Disclosure |

SR— S A —
#32:PAX_ #33: SMAP/ #41: STATIC_ wo9Kor || #27: BPF_UNPRIV_ #32 PAX_| MEMORY
<|| MEMORY_ PAN USERMODEHELPER p DEFAULT_OFF>=1 _UDEREF &

e S|\ UDEREF i
el X i " N X g - - i
£ 5| [“iﬁ“&g‘g;‘*w [u#géhf:%xﬁv #36:DEBUG|(#30 \x el #3‘/‘;:’(",1? #35 KPTI|! #48:PAGE_ v
&l RanDSTRUCT yemey WX F elBT | POISONING
£% - ;
eof [|| #23: DEBUG &Y |#4OPAX_CONSTIFY #11 PAX_ #31 STRICT #37.GRKERNSEC |
20| gy | _CREDENTIALS —PLUGIN"" ¢vs * KERNEL wa JIT_HARDEN
ol B

Sensitive Information Disclosure | Privilege Escalation | Exploitation Goal

Fig. 6: The taxonomy and defense coverage of kernel hardenings. OOB. denotes Out-of-Bound.

1) Mitigating Internal Error To Corruption: Eliminating
internal errors during the early stages of an attack is the
most effective approach to preventing kernel exploitation. Six
hardenings can achieve this objective. To prevent stack depth
overflow errors (@1 in Fig. 2), PaX/Grsecurity [8] introduced
PAX_MEMORY_STACKLEAK (#1 in Fig. 2 and 6), which checks
stack allocations to prevent overflow. However, this feature
was rejected by upstream kernel developers due to the removal
of VLAs in v4.20 [116]. No public exploits in our analysis can
bypass PAX_MEMORY_STACKLEAK, thus we assume it is effective.

To prevent integer underflow/overflow (@3),
PAX_SIZE_OVERFLOW (#2) checks function arguments for
potential overflows by doubling integer precision. This
is effective for errors caused by careless calculations
but cannot defend against overflows resulting from
typecasting (e.g., CVE-2016-9793) or unpassed arguments
(e.g., ASA-2018-00053 [26], cvE-2017-1000112 [27]).

To detect incorrect buffer index errors (@4),
FORTIFY_SOURCE (#3) checks buffer overflows in memory
operations (e.g., memcpy, strcpy). However, it cannot

handle cases where invalid indices are used directly (e.g.,
CVE-2017-18344 [29]).

As discussed in Sec. III-B, type confusion errors often cause
misalignment and allocator metadata corruption (@7, @8).
SLAB_FREELIST_HARDENED (#4) protects metadata integrity by
encrypting the freelist header. However, it can be bypassed if
the heap secret and object address leak [36].

To mitigate unbalanced reference counters (@10),
REFCOUNT_FULL (#5) validates reference counts on

10

increment/decrement. However, this approach assumes
matching increment and decrement operations, which may
not always be the case. If an increment operation is missing
and the counter reaches zero, the kernel will free the object
still in use, without being detected by rercount_ruLL [43].
Additionally, arbitrary write primitives can be exploited to
forge malicious refcounts.

To protect standard doubly linked list (@12), DEBUG_LIST
(#6) and its lightweight subset nLIST_HARDENED (#7) were
introduced to perform validation. The superset DEBUG_LIST
poisons the prev and next pointers when the list entry is
deleted and detects the pointers corruption when adding/delet-
ing list entries. However, in our analysis, we find that this
defense is insufficient. Attackers can exploit the time window
between corruption and detection to manipulate the list (e.g.,
cvE-2016-10150 [38]). Comprehensive protection should be
combined with another hardening, for example, smMap as we
will discuss in Sec. IV-A2. Furthermore, similar protections
are lacking for singly-linked and developer-customized lists.
We counted the cases of such incomplete hardening and drew
the following observation:

Observation 4: Incomplete Hardening. Out of 51 mitiga-
tions, 31 were found to be moderate or unsafe, meaning they
can be bypassed by at least one public exploit. While they
raise the exploitation bar, they remain vulnerable to certain
attacks. Our observation just represents a lower bound of
effectiveness, as unpublished exploits may exist.

To understand why these mitigations are incomplete, we
extracted hardening bypass techniques from 121 publicly
disclosed exploits and identified three common scenarios that
undermine kernel defenses: @ Invariant violations. Security
hardenings can be bypassed if an attacker violates the key
invariants on which the defense relies. Our study identifies
10 such violations. For example, kcr1 assumes that the
kernel code remains unmodified. However, page table hierar-
chy attacks [95] break this assumption, allowing attackers to
manipulate kernel text, thus redirecting execution. ® Breaking
the integrity of hardening itself. When security hardenings
thwart an exploit, attackers often pivot to compromising them
by either (1) permanently disabling the active protections or (2)
manipulating the critical components on which the mitigations
rely, subverting their behavior to aid the exploitation. We
identified 20 such violations. ® Abusing the rationale behind
hardening. Once an exploit leaks or controls the metadata
required by the verification process, the mandatory sanity
check fails to detect the unexpected behavior, regardless of
how thoroughly the mitigation is designed and implemented. 5
such violations are identified in our study. Details are provided
in Tab. IV.

Bypass Techniques
Invariant violations

Hardenings
#8, #11, #12, #20, #22, #23, #29, #30, #38, #41
#2, #3, #5, #0, #7, #8, #16, #17, #18, #19, #22,
#23, #25, #26, #38, #39, #40, #42, #43, #51
#4, #32, #33, #34, #38

Breaking the integrity

Abusing the rationale

TABLE 1IV: Three common scenarios of hardening bypass
techniques.

2) Defense Corruption To Primitive: Mitigating Stack
Corruption. As analyzed in Sec. III-C1, stack corruption
attacks primarily focus on corrupting the return address (@14,
@15 in Fig. 2). Several hardenings protect the return address
and ensure backward-edge integrity. STACKPROTECTOR (#8 in
Fig. 2 and 6) has been a long-standing feature in the Linux
kernel, enhanced over time by increasing the random range
to 64 bits and setting the stack canary as per-task [117]. On
ARMO64, suapow_caLl,_STACK (#9) uses a shadow stack to store
the return address securely. ArRM64_PTR_AUTH and PAX_RAP
(#10 and #11) encrypts the return address with hardware and
software techniques, respectively.

In addition to these, SCHED_STACK_END_CHECK (#12), derived
from GRKERNSEC_KSTACKOVERFLOW in PaX/Grsecurity, prevents
stack depth overflows by placing a magic constant at the end
of the kernel stack and checking its integrity during thread
scheduling. However, this can be bypassed if corruption is
controllable [24]. To mitigate this, vMaP_sTACK (#13) ensures
non-contiguous kernel stack mappings, making it harder for
attackers to predict stack locations.

Furthermore, pax_ranpsTACK (#14) randomizes the kernel
stack offset on every system call, hindering the attacker’s
ability to guess the return address location. A similar feature,
RANDOMIZE_KSTACK_OFFSET_DEFAULT, has been merged into
the upstream Linux kernel [118]. However, its low entropy
(5 bits [119]) makes it vulnerable to attacks using hardcoded
offsets and ROP gadgets [120]. If panic_on_oops is not

11

enabled, this protection can be bypassed by repeatedly creating
exploit threads with tailored payloads.

Given the bypassability of SCHED_STACK_END_CHECK,

THREAD_INFO_IN_TASK (#15) further mitigates risk by
relocating thread_info into task_struct, ensuring that the
kernel stack does not overlap with thread_info.
Mitigating Heap Layout Manipulation. To prevent heap
fengshui within the cache (@19), SLAB_FREELIST_RANDOM
(#16) randomizes the order of slots in newly created caches,
making it harder for attackers to predict object placement.
Although this hardening complicates heap fengshui, it can
be bypassed by techniques such as heap grooming [31, 121],
where attackers allocate objects with critical fields, free some
to leave “holes”, and later allocate vulnerable objects to fill
those holes.

For heap spray prevention within cache (@19), we found
RANDOM_KMALLOC_CACHES (#19) to be effective. It creates multi-
ple independent copies of slab caches, chosen randomly based
on the address of the calling kmalloc and a per-boot random
seed, preventing heap objects from being sprayed into the
same cache. However, it can be bypassed if the allocation size
exceeds kKMALLOC_MAX_CACHE_SIzE [122]. Details of the sim-
ilar st.aB_pPER_sITE [123] hardening are omitted, as it offers
redundant protection and remains out-of-tree. Other harden-
ings, while primarily targeting specific exploitation techniques,
also effectively suppress heap spraying within caches. The
unprivileged_userfaultfd restriction (#17) limits the access
of userfault£d syscall by unprivileged users, thereby prevent-
ing its misuse to freeze objects and win race conditions during
layout manipulation. The slub/slab_nomerge boot parameter
(#18) disables cache merging, reducing the attack surface by
preventing the creation of large, predictable allocation regions.
Finally, staB_BuckeTs (#20) protects sensitive objects (e.g.,
struct msg_msg) from heap spraying by isolating them into
dedicated caches.

For cross-cache manipulation (@20), the defense
SHUFFLE_PAGE_ALLOCATOR (#21) randomizes the allocation
of physical pages on a 4MB granularity. While originally
intended as a performance optimization, it can hinder
cross-cache attacks [124]. However, it does not fully protect
against issues like cve-2018-9568, where kernel objects are
recycled into the wrong cache, nor does it prevent heap
spray attacks based on cross-cache manipulation [81]. While
SLAB_VIRTUAL [125] is designed to mitigate this attack, we
exclude it from our scope as it remains out-of-tree.
Mitigating Heap Critical Variables Overwriting. Once
the heap layout aligns with the attacker’s expectations, sen-
sitive fields in heap objects are vulnerable to overwriting
(@25).ccc_PLUGIN_RANDSTRUCT (#22) randomizes the field
order within data structures at compile time. This makes it
more difficult for attackers to predict the offsets of critical
fields. However, this protection relies on a random seed, which,
if exposed (as required by Linux distributions for third-party
kernel modules), compromises security [126]. Consequently,
we consider this defense unsafe, and most distributions do not
enable it, as observed in our analysis.

In addition, we identify 7 critical heap variables fre-
quently overwritten in kernel exploits (@27-@33), with
4 corresponding hardenings aimed at protecting them: (1)
SLAB_FREELIST_HARDENED, as previously mentioned, safe-
guards metadata headers, protecting the second critical target.
(2) To protect the third target, the prev and next pointers,
DEBUG_LIST is intended to help. However, as discussed in
Sec. IV-Al, this hardening is insufficient on its own. Attackers
can exploit timing gaps to fabricate a complete doubly linked
list, meaning this defense must be combined with others to
be effective. For example, combined with svap/sMEP, the
attacker cannot easily counterfeit a complete list in user
space and bypass it. (3) For the uid and gid fields in the
credential structure, DEBUG_CREDENTIALS (#23) introduces a
magic number before the uid field. The kernel checks that this
number is not corrupted when using the credentials. However,
since this number is constant, attackers can easily bypass this
defense by controlling the overwriting value. As a result,
DEBUG_CREDENTIALS has been removed from the upstream
Linux kernel due to its ineffectiveness. (4) PAGE_TABLE_CHECK
(#24) protects page table objects (the seventh target) by
checking for double mappings when entries are added or
removed. However, this defense is limited, as it cannot detect
corruption of page tables during their usage.

Mitigating Short-Path From Internal Error To Primitives.
DEFAULT_MMAP_MIN_ADDR (#25) and n.sM_MMAP_MIN_ADDR (#26)
prevent the mapping of addresses below mmap_min_addr [127].
However, we found that NULL pointer dereference attacks
remain possible when two conditions are met: a logic error
maps NULL pages, and a NULL pointer dereference oc-
curs [85, 86]. Thus, we consider this hardening insufficient. To
secure eBPF programs, the kernel includes bpf_jit_harden
(#36) for enhanced verification and BPF_UNPRIV_DEFAULT_OFF
(#27) to restrict unprivileged access, reducing the risk of
eBPF-based attacks. For unbalanced set_fs operations, the
kernel introduces TIF_rscHECK (#28), which sets a flag in
thread_info. This flag is checked when returning to user
space, and terminate the process if uncleared. However, a time
window exists between the unbalanced set_fs and the check,
leading exploitation in this gap [128]. In response, kernel
developers removed all instances of set_fs in v5.10-rcl [129],
addressing this vulnerability. With the removal of set_fs, the
TIF_FSCHECK is now obsolete. Counting all such cases, we find
three deprecated hardening schemes.

Observation 5: Obsolete Hardening. Three protections are
no longer effective, yet two still appear in KSPP and are used
as bypass targets. PAX MEMORY_STACKLEAK lost relevance
after VLAs were removed in v4.20; TIF_FSCHECK became
redundant with the elimination of set_fs in v5.10-rcl; and
DEBUG_CREDENTIALS was dropped in v6.7.

3) Mitigating Primitive To Exploitation Goal: Mitigating
Controlable R/W. To prevent adversaries from elevating a
controllable R/W primitive to IP control, the Linux kernel
implements various hardening strategies:

12

e User-Space Access Protections. (1) PAX_MEMORY_UDEREF
(#32 in Fig. 2 and 6), svap/pPan (#33), and sMEP/PXN (#34)
prohibit the kernel from accessing user-space memory, thwart-
ing fake-object injection from user space. (2) xpTI (#35) was
originally introduced to mitigate the Meltdown vulnerability.
It also segregates user-space and kernel-space page tables,
impeding the kernel’s ability to reference user-space pointers.

e Global/Static Pointer Protections. (1) xasir (#38)
randomizes kernel addresses to obscure the precise lo-
cation of global/static pointers. However, its low en-
tropy makes it susceptible to information disclosure at-
tacks. (2) GCC_PLUGIN_RANDSTRUCT (#22) adds another layer
of uncertainty for attackers seeking to overwrite pointer
fields. Despite this, attackers can still bypass it once
they discover the randomization seed or perform tar-
geted leaks. (3) post-init read-only memory (#39) and
PAX_CONSTIFY_PLUGIN (#40) preserve certain function pointers
or tables as read-only either after system boot (post-init)
or from compilation time (constify). While they effectively
protect a subset of pointers, they cannot cover kernel structures
that must remain writable for runtime modification.

Mitigating IP Control. A key strategy to mitigate attacks
involving IP control is enforcing CFI. Mitigations like kcr1
(#29) [130] protect the forward-edge by only enabling transfer
to the entry of targeted functions. Similarly, pax_rapr (#11),
introduced by PaX/Grsecurity, follows a similar design, while
encrypts return addresses. Another forward-edge CFI scheme,
rineIBT (#30) [131], relies on Intel CET [132], employing
instruction ENDBR to mark valid targets for each indirect
call/jump. However, since eBPF instructions execute just-in-
time within a virtual machine, these defenses do not address
eBPF-based IP control.

Besides, Linux kernel offers several hardening features
to prevent shellcode execution and code-reuse attacks: @
STRICT_KERNEL_RWX (#31): Enforces data execution prevention
(DEP) in the kernel by disallowing executable kernel heap
regions. @ PAX_MEMORY_UDEREF, SMAP/PAN, SMEP/PXN, KPTI
(#32, #33, #34, #35): Block the kernel from accessing or
executing user-space memory, mitigating attacks that rely on
user-space payloads. @ peBuc_uwx (#36): Alerts when pages are
set to both writable and executable at boot, thwarting shell-
code execution in physmap. ® GRKERNSEC_JIT_HARDEN (#37)
and bpf_jit_harden: Harden JIT-compiled eBPF code by
preprocessing instructions and “blinding” constants, thereby
preventing attackers from injecting shellcode through eBPF
programs. SMAP exemplifies broad hardening beyond narrow
countermeasures, motivating us to measure how often similarly
versatile defences appear.

Observation 6: Versatile Hardening. We identified 12 of
51 hardening techniques that can prevent multiple attack
vectors, such as sMap/paN. By addressing design flaws across
multiple vectors, these hardenings achieve broad coverage
but exhibit varying effectiveness across different paths, rang-
ing from “effective” to “moderate” or “unsafe.”

Mitigating Information Disclosure. To prevent leaking, in
copy_to_user function, pAx_usercory (#42) from PaX/Gr-
security enforces checking that the data length should not
exceed the size of heap slot or stack frame size. Similarly,
HARDENED_USERCOPY does the same thing. However, this check-
ing is not restrictive enough because sensitive data can reside
in the heap slot as well as current stack frame. Besides, this
hardening only employs checking in copy_to_user function.
Another two channels are not covered.

Unrestricted Access Control. To mitigate sensitive infor-
mation leakage, GRKERNSEC_HIDESYM (#43) restricts access to
/proc/kallsyms, /boot, and /1ib/ files to privileged users.
Similarly, GRKERNSEC_DMESG (Or dmesg_restrict in the up-
stream Linux kernel, #44) adds privilege checks in do_syslog,
allowing only users with CAP_SYSLOG Or CAP_SYS_ADMIN tO
read syslog. kptr_restrict (#45) introduces the spx for-
mat specifier in the printk function to obfuscate pointer
values when printed. To prevent uninitialized heap leak-
age, init_on_alloc/free (#46, #47) zero out kernel object
slots upon allocation and deallocation, ensuring that sen-
sitive data is not leaked. pPAGE_poIsoNING (#48) similarly
poisons heap slots with a magic number upon deallocation.
For uninitialized stack protection, four hardenings are used.
INIT_STACK_ALL (#49,#50) erases the entire kernel stack,
while ccc_prLuGIN_STACKLEAK (#1) clears only the stack space
used during the current system call before returning to user
space. However, these measures do not fully mitigate uninitial-
ized stack leakage in single system calls, as sensitive data can
be leaked in one step (e.g., [107]). PAX_MEMORY_STRUCTLEAK
(#51), requires developers to annotate structures containing
potentially readable data to user space, ensuring initialization
of these variables. However, it relies on user annotations,
which may be incomplete, as evidenced by the exploit of
cveE-2017-7616 [108]. This functional overlap among protec-
tions indicates that several schemes end up addressing the
same attack vector, motivating the following observation.

Observation 7: Redundant Hardening. We distin-
guished 4 pairs of hardening, each targeting the same
attack path. Specifically, INIT_STACK PATTERN/ZERO and
GCC_PLUGIN_STACKLEAK both mitigate stack information dis-
closure, but differ in implementation.

V. KERNEL HARDENING DEPLOYMENT IN THE WILD

To assess real-world adoption of kernel hardening, we
empirically profile ten popular distributions (ranked by Dis-
troWatch [12]). Our study offers: @ a cross-sectional compar-
ison across distributions; @ a temporal trend analysis of their
hardening deployment; and @ a comparison with the upstream
kernel. To better understand these deployment strategies, we
contacted these downstream vendors to investigate the causes
of the gap. However, we received only responses from the
administrators of Fedora, Mx, and opensusk thus far. Note that
the goal of this study is to foster a healthier Linux kernel
ecosystem, not to make security judgments about specific
distributions.

13

Downstream VS Downstream. For our analyses in this
section, we collected a data snapshot in June of each year from
2023 to 2025. This three-year period covers three consecutive
LTS kernel cycles: v6.1 (Dec 2022), v6.6 (Oct 2023) and the
recently designated v6.12 (Nov 2024). This means that each
snapshot reflects a stable, industry-supported baseline, while
avoiding obsolete branches. This multiyear dataset allows us to
perform a cross-sectional analysis using the most recent data,
while also providing a view of temporal trends to mitigate
single-point-in-time biases. For each snapshot, we installed
the latest official x86_64 image, upgraded to the newest stable
kernel, and recorded its hardening settings.

40

3838
2828

36
33 “

Rhel Arch-H

w

Jun-23 mJun-24 ®Jun-25
28 282
272727 272727 27 8 2828

| | ‘l

Mint Debian Ubuntu Arch

N
[l

22 22

17 17 II

MX AHS OpenSUSE

Fig. 7: Hardenings enabled by distributions from 2023 to 2025.
Arch-H stands for Arch Hardened.

N
o

-
@

10

Gentoo Fedora

Using this dataset, we rank distributions by the number of
hardening features enabled in June 2025. Fig. 7 shows the
ranking and adds data from 2023 to 2025 to illustrate historical
trends. We keep the same ranking and detail each leading dis-
tribution’s latest hardening choices (see Tab. V). We observe
that while most distributions enable a common baseline of
hardening features, yet adoption of advanced protections varies
markedly. Notably, arch Hardened stands out for deploying
the highest number of protections, including DEBUG_VIRTUAL,
GCC_PLUGIN_LATENT_ENTROPY, GCC_PLUGIN_STACKLEAK, and
init_on_free by default, reflecting its strong commitment to
security. RHEL, Fedora, and Gentoo lead the standard distri-
butions in security hardening. Gentoo demonstrates the most
significant progress, having adopted the highest number of
features over the past three years, while the latest RHEL release
also marks a notable improvement. Furthermore, Fedora main-
tainer shared valuable insights into their kernel defense review
process, shedding light on the gap between theoretical and
practical hardening effectiveness. Meanwhile, Arch, Ubuntu,
Debian, and Mint form a distinct cluster, exhibiting consistent
hardening baselines.

Although the kernel configuration used by the standard
MX Linux distribution is the same as that of the same version of
Debian, the security capability of Mx Linux aHs (a customized
release for advanced hardware support) is not satisfactory. Its
kernel configuration is different from that of Mx Linux, with
many critical protections, such as FORTIFY_SOURCE, KASLR,
and sLAB_FREELIST_HARDENED, disabled by default. Disabling
these powerful protections is undoubtedly imprudent, which

Hardenings MX AHS | OpenSUSE

Mint | Debian | Ubuntu | Arch | Gentoo | Fedora | Rhel | Arch-H

CONFIG_DEBUG_LIST

v v v

CONFIG_DEBUG_VIRTUAL

CONFIG_DEBUG_WXx

v v

CONFIG_FORTIFY_SOURCE

NS
NS
NS

v v

CONFIG_GCC_PLUGIN_LATENT_ENTROPY

CONFIG_GCC_PLUGIN_STACKLEAK

CONFIG_HARDENED_USERCOPY

<

CONFIG_INIT_ON_ALLOC_DEFAULT_ON

CONFIG_INIT_ON_FREE_DEFAULT_ON

CONFIG_INIT_STACK_ALL_ZEROx

CONFIG_LIST_HARDENED

NNNNNNNNNNS

CONFIG_PAGE_POISONING

CONFIG_PAGE_TABLE_CHECK

CONFIG_RANDOMIZE_BASEx

CONFIG_RANDOM_KMALLOC_CACHES

CONFIG_SCHED_STACK_END_CHECK

CONFIG_SLAB_BUCKETS

AN ANEEANAN

CONFIG_SLAB_FREELIST_HARDENED

NOINNYN O INO N INS
NISNSNNYN NN NS

CONFIG_X86_KERNEL_IBTx*

bpf_jit_harden 0 0
0 1

—|

kptr_restrict

1

slab_nomerge 0 0

S e S ANENANAN A AN AR ENENENENENEN
S == ENENANANANAN AR ENENENENENEN
e = ENENANANANAN AR ENENENEENEN
S B ANANANAN AR ENERENENEN

S TS ANANANANENAN

(=)

0

TABLE V: Hardenings deployment differences across major Linux distributions. The selected distributions are all the latest
release versions as of June 2025, ranked according to their amount of kernel hardening features enabled. The detailed kernel
versions are MX Linux 23.3 AHS (6.14.2-1-liquorix), openSUSE Leap 15.6 (6.4.0-150600.23.53-default), Linux Mint 22
cinnamon (6.8.0-62-generic), Debian 12 (6.1.0-37), Ubuntu 24.04 LTS (6.11.0-26-generic), Arch Linux (6.14.9-archl-1),
Gentoo (6.12.28-gentoo), Fedora Linux 42 Workstation Edition (6.14.11-300.fc42), Red Hat Enterprise Linux 10 (6.12.0-
55.17.1.el10_0), Arch Linux Hardened (6.14.9-hardenedl-1-hardened). Hardenings enabled by default in the upstream kernel

is marked as % in “Hardenings” column.

would significantly downgrade the system security and make
it an attractive target for adversaries. To analyze the reason
behind the inappropriate configurations, we contacted the
Mx AHS administrator but have not received an explanation
regarding the hardening deployment of Mx aHs.

Similarly, opensust lacks robust kernel safeguards. While it
is the only distribution to apply PAGE_TABLE_CHECK, it disables
HARDENED_USERCOPY, thereby eliminating bounds checking for
heap and stack memory access violations. We contacted
the opensust team and received an acknowledgment but no
follow-up. Besides, it also disables init_on_alloc/free and
PAGE_POISONING, leaving the system vulnerable to sensitive
information leakage.

Downstream: Then VS Now. As shown in Fig. 7, several
distributions have increased their enabled hardening features.
To trace the temporal trend, we analysed long-term-support
releases from 2015 onward and found a steady rise across
all distributions (details are provided in Figs.A.9 to A.11). To
understand the driving force behind this trend, we correlate
it with the hardening activity of the upstream kernel. A peak
in the number of new hardenings accepted by the upstream
kernel in 2016, which matches the growth peak of hardening
deployment in downstream distributions (details in Fig. 8).
This finding indicates that the deployment pace of downstream
distributions is heavily dependent on the upstream kernel’s
defense integration, albeit with a noticeable delay.

Downstream VS Upstream. To further explore the gap in
the kernel hardening deployment, we compared the hardening
strategies between upstream and downstream kernels. By

14

—e— Public Time

Merge Time

™
\/K/\\N /\ (.

20052006 2007 2008 2009 201020112012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

~

Fig. 8: Kernel-hardening patches merged into upstream,
2005-2024.

correlating each distribution with its corresponding upstream
kernel version (v6.1 to v6.14) and default hardening settings,
we identified several key differences. Our analysis revealed
that the upstream kernels, particularly from v6.1 to v6.14,
showed conservative updates in default hardening settings,
with notable variation in the enablement of x86_KERNEL_IBT.

Additionally, upstream kernel’s default configuration (def-
config) omits several fundamental hardening options, such as
HARDENED_USERCOPY and init_on_alloc, Which are essential
for robust kernel safety. This observation implies that for a
mature downstream distribution, merely adopting the upstream
defconfig verbatim is insufficient to build a secure system.
However, the introduction of a recommended hardening con-
figuration in kernel v6.7 [133] now provides a valuable base-

line for distributions seeking to balance security with runtime
performance. More details can be found in the Tab. V.

Further comparison uncovered that certain protections
enabled by default in upstream kernels were absent in
downstream distributions. For instance, mx aHs, which per-
formed poorly in our security analysis, had xkastr dis-
abled—protections enabled by default in upstream. Similarly,
DEBUG_WX and INIT_STACK_ALL_ZERO were not enabled in
openSUSE or MX Linux. Unfortunately, we received no expla-
nation from Mx AHS or opensusk for these gaps.

Observation 8: Deployment Divergence. Our analysis re-
vealed a significant stratification in the hardening deploy-
ment of top distributions. Arch Hardened leads with the
broadest protection set; RHEL, Fedora, and Gentoo have
recently closed much of the gap. By contrast, Mmx aHS turns
off basics such as xasir, and opensust uniquely disables
HARDENED_USERCOPY. The divergence demonstrates that the
popularity is not a reliable indicator of system security.

VI. SUGGESTIONS

Addressing Attack Vectors. Defenses should go beyond
optimizing existing hardenings for performance and mem-
ory overhead. Security teams must prioritize developing
new protections for unmitigated vectors and reinforcing de-
fenses against frequently exploited ones. Although efforts
like szaB_virTuaL [125] and siaB_pER_sITE [123] remain
unmerged as of v6.16, they are promising to cover high-impact
vectors.

Strengthening Hardening Mechanisms. To improve relia-
bility, defenders should prioritize isolation- and permission-
based protections over randomization where possible. When
randomization is used, entropy must be maximized and ran-
dom seeds securely stored. We recommend hardening fragile
mechanisms—for example, replacing static magic constants
with per-boot random values in critical structures like uid and
gid (DEBUG_CREDENTIALS).

Securing Downstream Kernels. Distribution vendors and
system administrators should adopt upstream default harden-
ings and validate their configurations rigorously. Additional
hardenings should align with KSPP guidance to ensure cor-
rectness. Effective and general-purpose protections should be
enabled by default and grouped into unified configuration
options to reduce misconfiguration risk. Redundant or obsolete
hardenings should be removed to avoid unnecessary overhead.

VII. CONCLUSION

In this study, we analyze and evaluate kernel hardening
mechanisms for Linux kernel from the offensive-defensive
perspective. By proposing a systematic exploitation decompo-
sition framework, we assess common exploit methods, defense
coverage, and limitations of existing hardenings. We also
identify gaps between theoretical designs and practical de-
ployments, offering recommendations to help developers avoid
pitfalls in future kernel integration. We conclude that despite
substantial efforts from the Linux community and security

15

firms, existing hardening mechanisms remain insufficient and
vulnerable to exploitation, underscoring the ongoing challenge
of securing the Linux kernel.

ACKNOWLEDGMENT

We would like to thank the shepherd and anonymous
reviewers for their insightful comments and suggestions that
greatly improved the quality of this paper. We thank Xinyu
Xing (Northwestern University) and Yueqi Chen (University of
Colorado Boulder) for their insightful comments and feedback
on this work. We also thank Tianyi Jing (Huazhong University
of Science and Technology) and Quan Sun (University of
Electronic Science and Technology of China) for their valuable
assistance and support. This work was supported by the
National Natural Science Foundation of China (No. 62102154,
No0.62502468), State Key Lab of Processors, Institute of
Computing Technology, CAS under Grant No. CLQ202301
and Zhongguancun Laboratory.

REFERENCES

[1] M. Jiang, J. Jiang, T. Wu, Z. Ma, X. Luo, and Y. Zhou, “Understanding
vulnerability inducing commits of the linux kernel,” ACM Trans.
Softw. Eng. Methodol., vol. 33, no. 7, Sep. 2024. [Online]. Available:
https://doi.org/10.1145/3672452

N. Galov, “I111+ linux statistics and facts — linux rocks!” 2022, https:
/Iwebtribunal.net/blog/linux-statistics.

“Google queue hardening,” https://security.googleblog.com/2019/05/
queue-hardening-enhancements.html, 2019.

M. Miller, “Trends challenges and strategic shifts in the software vul-
nerability mitigation landscape,” https://github.com/microsoft/ MSRC-S
ecurity-Research/blob/master/presentations/2019_02_BlueHatIL/201
9_01%20-%20BlueHatIL.%20- %20Trends %2C%?20challenge %2C %2
0and%20shifts%20in%20software %20vulnerability %20mitigation.pdf,
2019.

“Kernel self protection project,” 2015, https://kspp.github.io/.

G. Thomas and A. Gaynor, “Writing linux kernel modules in safe rust,”
in Linux Security Summit North America, 2019.

P. Zero, “Introducing the in-the-wild series,” 2021, https://googleproj
ectzero.blogspot.com/2021/01/introducing-in-wild-series.html.
Grsecurity, “Memory corruption defenses,” 2021, https://grsecurity.net
/featureset/memory_corruption.

, “Gee plugins,” 2021, https://grsecurity.net/featureset/gcc_plugi

(2]
(3]
[4]

(5]
(6]

(71
(8]
[9]

ns.

A. Popov, “Linux kernel defence map,” 2020, https://al3xp0OpOv.gith
ub.io/2018/04/28/Linux-Kernel-Defence-Map.html.

A. M. Azabl, P. Ning, J. Shahl, Q. Chen, R. Bhutkar, G. Ganesh,
J. Ma, and W. Shen, “Hypervision across worlds: Real-time kernel
protection from the arm trustzone secure world,” in Proceedings of
the 21st ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2014.

“An overview of major linux distributions and freebsd,” 2021, https:
/[distrowatch.com/dwres.php?resource=major.

V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity.” in NDSS, vol. 26, 2015, pp. 27-30.
A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Maziéres, “Ccfi:
Cryptographically enforced control flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 941-951.

R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Securing untrusted
code via compiler-agnostic binary rewriting,” in Proceedings of the
28th Annual Computer Security Applications Conference, 2012, pp.
299-308.

S. McCamant and G. Morrisett, “Evaluating sfi for a cisc architec-
ture.” in USENIX Security Symposium, vol. 10, 2006, pp. 1267 336—
1267351.

L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. 1EEE,
2013, pp. 48-62.

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

https://doi.org/10.1145/3672452
https://webtribunal.net/blog/linux-statistics
https://webtribunal.net/blog/linux-statistics
 https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
 https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://kspp.github.io/
https://googleprojectzero.blogspot.com/2021/01/introducing-in-wild-series.html
https://googleprojectzero.blogspot.com/2021/01/introducing-in-wild-series.html
https://grsecurity.net/featureset/memory_corruption
https://grsecurity.net/featureset/memory_corruption
https://grsecurity.net/featureset/gcc_plugins
https://grsecurity.net/featureset/gcc_plugins
https://a13xp0p0v.github.io/2018/04/28/Linux-Kernel-Defence-Map.html
https://a13xp0p0v.github.io/2018/04/28/Linux-Kernel-Defence-Map.html
https://distrowatch.com/dwres.php?resource=major
https://distrowatch.com/dwres.php?resource=major

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]
[40]

[41]

[42]

X. Xu, M. Ghaffarinia, W. Wang, K. W. Hamlen, and Z. Lin,
“{CONFIRM}: Evaluating compatibility and relevance of control-flow
integrity protections for modern software,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 1805-1821.

Y. Li, M. Wang, C. Zhang, X. Chen, S. Yang, and Y. Liu, “Finding
cracks in shields: On the security of control flow integrity mechanisms,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 1821-1835.

S. Ahmed, Y. Xiao, K. Z. Snow, G. Tan, F. Monrose, and D. Yao,
“Methodologies for quantifying (re-) randomization security and timing
under jit-rop,” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020, pp. 1803-1820.
L. Maar, F. Draschbacher, L. Lamster, and S. Mangard, “Defects-in-
Depth: Analyzing the integration of effective defenses against One-Day
exploits in android kernels,” in 33rd USENIX Security Symposium
(USENIX Security 24). Philadelphia, PA: USENIX Association, Aug.
2024, pp. 4517-4534. [Online]. Available: https://www.usenix.org/con
ference/usenixsecurity24/presentation/maar-defects

J. Miller, M. Ghandat, K. Zeng, H. Chen, A. H. Benchikh, T. Bao,
R. Wang, A. Doupé, and Y. Shoshitaishvili, “System register hijacking:
Compromising kernel integrity by turning system registers against the
system,” in 34rd USENIX Security Symposium (USENIX Security 25),
2025.

Y. Chen, Z. Lin, and X. Xing, “A systematic study of elastic objects
in kernel exploitation,” in Proceedings of the 27th ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2020.
P. Zero, “Exploiting recursion in the linux kernel,” 2016, https://goog
leprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-ker
nel_20.html.

DANGOKYO, “Analysis on CVE-2016-9793,” 2017, https://dangokyo
.me/2017/11/05/analysis-on-cve-2016-9793/.

ww9210, “writeup for asa-2018-00053,” 2019, https://github.com/ww9
210/kernel4.20_bpf_LPE.

M. Labs, “Linux kernel vulnerability can lead to privilege escalation:
Analyzing CVE-2017-1000112,” 2017, https://www.mcafee.com/blogs
/other-blogs/mcafee-labs/linux-kernel- vulnerability-can-lead-to-privi
lege-escalation-analyzing-cve-2017-1000112/.

W. Root, “CVE-2022-0185 - winning a $ 31337 bounty after pwning
ubuntu and escaping google’s ketf containers,” 2022, https://www.will
sroot.io/2022/01/cve-2022-0185.html.

IMMUNITY, “Kernel memory disclosure & canvas part 2 - CVE-2017-
18344 analysis & exploitation notes,” 2018, https://www.immunityinc.
com/downloads/Kernel-Memory-Disclosure-and-Canvas_Part_2.pdf.
J. Park, “Linux kernel 4.8 (ubuntu 16.04) - leak sctp kernel pointer,”
2018, https://www.exploit-db.com/exploits/45919.

GRIMM, “New old bugs in the linux kernel,” 2021, https://grimmcyb
er.com/new-old-bugs-in-the-linux-kernel/.

H. Zhao, “Pwn2own 2017 analysis of linux kernel escalation,” 2017,
https://zhuanlan.zhihu.com/p/26674557.

A. Konovalov, “Exploiting the linux kernel via packet sockets,” 2017,
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kerne
I-via-packet.html.

Y. Wang, “From zero to root: Building universal android rooting with
a type confusion vulnerability,” 2019, .

chompie, “Put an io_uring on it - exploiting the linux kernel,” 2022,
https://chomp.ie/Blog+Posts/Put+an+io_uring+on+it+-+Exploiting+the
+Linux+Kernel.

K. Zeng, “[CVE-2022-1786] a journey to the dawn,” 2022, https://bl
og.kylebot.net/2022/10/16/CVE-2022-1786/.

HadarManor, “CVE-2020-16119,” 2020, https://github.com/HadarMa
nor/Public- Vulnerabilities/blob/master/CVE-2020-16119/CVE-2020- 1
6119.md.

ww9210, “Linux kernel exploits,” 2018, https://github.com/ww9210/
Linux_kernel_exploits.

0x3f97, “cve-2017-8890 root case analysis,” 2018, https://0x3f97.git
hub.io/exploit/2018/08/13/cve-2017-8890-root-case-analysis/.

Mzi, “cve-2017-8890 vulnerability analysis and exploitation,” 2018,
https://www.freebuf.com/articles/terminal/160041.html.
HardenedLinux, “Exploiting on CVE-2016-6787,” 2017, https://harden
edlinux.github.io/system-security/2017/10/16/Exploiting-on-CVE-201
6-6787.html.

D. Shen, “The art of exploiting unconventional use-after-free bugs in
android kernel,” 2017, https://speakerdeck.com/retme7/the-art-of-exp
loiting-unconventional-use- after- free- bugs-in-android-kernel.

16

[43]

[44]

[45]

[46]

[47]
[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

L. Leong, “CVE-2021-20226: A reference-counting bug in the linux
kernel io_uring subsystem,” 2021, https://www.zerodayinitiative.com/
blog/2021/4/22/cve-2021-20226-a-reference-counting-bug-in-the-lin
ux-kernel-iouring-subsystem.

J. Horn, “A cache invalidation bug in linux memory management,”
2018, https://googleprojectzero.blogspot.com/2018/09/a-cache-invalid
ation-bug-in-linux.html.

rebel, “linux af_packet race condition exploit for ubuntu 16.04 x86_64,”
2016, https://github.com/LakshmiDesai/CVE-2016-8655/blob/master/
CVE-2016-8655.c.

A. Popov, “CVE-2019-18683: Exploiting a linux kernel vulnerability
in the v412 subsystem,” 2020, https://al3xp0OpOv.github.i0/2020/02/15
/CVE-2019-18683.html.

huahuaisadog, “CVE-2017-10661 exploitation,” 2018, https://paper.se
ebug.org/596/.

W. Xu and Y. Fu, “Own your android! yet another universal root,” in
9th USENIX Workshop on Olffensive Technologies (WOOT 15), 2015.
O. Nimron, “Ssd advisory — irda linux driver uaf,” 2018, https://ssd-d
isclosure.com/ssd-advisory-irda-linux-driver-uaf/.

A. Popov, “CVE-2017-2636: exploit the race condition in the n_hdlc
linux kernel driver bypassing smep,” 2017, https://al3xpOpOv.github.i
0/2017/03/24/CVE-2017-2636.html.

Z. Lin, “Dirtycred exploitation on CVE-2022-2588,” 2022, https://gith
ub.com/Markakd/CVE-2022-2588.

C. Halbronn, “Settlers of netlink: Exploiting a limited uaf in nf_tables
(CVE-2022-32250),” 2022, https://www.nccgroup.com/research-blog/
settlers-of-netlink-exploiting-a-limited-uaf-in-nf_tables-cve-2022-3
2250/.

T. kernel development community, “Basic operating systems terms and
concepts,” 2021, https://linux-kernel-labs.github.io/refs/heads/master/
lectures/intro.html #kernel-stack.

K. Cook, “[0/3] mm/slab: Improved sanity checking,” 2019, https:
/Ipatchwork kernel.org/project/linux-mm/cover/20190530045017.152
52-1-keescook @chromium.org/.

S. Jenkins, “Exploiting CVE-2022-42703 - bringing back the stack
attack,” 2022, https://googleprojectzero.blogspot.com/2022/12/exploit
ing-CVE-2022-42703-bringing-back-the-stack-attack.html.

V. Dronov, “CVE-2017-7533 inotfiy linux kernel vulnerability,” 2017,
https://github.com/hardenedlinux/offensive_poc/tree/master/CVE-201
7-7533.

0x3f97, “cve-2017-6074 briefly analyze,” 2018, https://0x3f97.github.
io/exploit/2018/08/16/cve-2017-6074-briefly-analyze/.

A. Konovalov, “CVE-2017-6074,” 2020, https://github.com/xairy/ker
nel-exploits/tree/master/CVE-2017-6074.

J. Horn, “Issue 808: Linux: Uaf via double-fdput() in
bpf(bpf_prog_load) error path,” 2016, https://bugs.chromium.or
g/p/project-zero/issues/detail 7id=808.

A. Nguyen, “CVE-2021-22555: Turning \x00\x00 into 10000$,” 2021,
https://google.github.io/security-research/pocs/linux/cve-2021-22555
/writeup.html.

Bonfee, “CVE-2022-0995 exploit,” 2022, https://github.com/Bonfee/
CVE-2022-0995.

C.-A. Lee, “nftables adventures: Bug hunting and n-day exploitation
(CVE-2023-31248),” 2023, https://starlabs.sg/blog/2023/09-nftables-a
dventures-bug-hunting-and-n-day-exploitation/.

lonialcon2 and conlonial, “Exploit detail about CVE-2024-1085,” 2024,
https://github.com/google/security-research/blob/master/pocs/linux/ker
nelctf/CVE-2024-1085_Its/docs/exploit.md.

——, “Exploit detail about CVE-2024-26581,” 2024, https://github.c
om/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2
024-26581_lts_cos_mitigation/docs/exploit.md.

NLQuy, “CVE-2024-26582,” 2025, https://github.com/google/security
-research/blob/5606368895ee56e64d099499709c96772ae25b8a/pocs/1
inux/kernelctf/CVE-2024-26582_mitigation/docs/exploit.md.
V4bel-theori, “CVE-2025-21756," 2025, https://github.com/google/se
curity-research/blob/t7dbb569a8275d4352fb1a2fe869f1afa79d4c28/po
cs/linux/kernelctf/CVE-2025-21756_lts_cos/docs/exploit.md.

W. N. James Fang, Di Shen, “Talk is cheap, show me the code,” 2016,
https://speakerdeck.com/retme7/talk-is-cheap-show-me-the-code.

W. Shen, “Kernel pipe iov cve (CVE-2015-1805) exploit analysis,”
2016, https://wenboshen.org/posts/2016-04-25-1805-cve.html.
nightuhu, “CVE-2024-0582,” 2025, https://github.com/google/security
-research/blob/master/pocs/linux/kernelctf/CVE-2024-0582_mitigatio
n/docs/exploit.md.

https://www.usenix.org/conference/usenixsecurity24/presentation/maar-defects
https://www.usenix.org/conference/usenixsecurity24/presentation/maar-defects
https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html
https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html
https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html
https://dangokyo.me/2017/11/05/analysis-on-cve-2016-9793/
https://dangokyo.me/2017/11/05/analysis-on-cve-2016-9793/
https://github.com/ww9210/kernel4.20_bpf_LPE
https://github.com/ww9210/kernel4.20_bpf_LPE
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/linux-kernel-vulnerability-can-lead-to-privilege-escalation-analyzing-cve-2017-1000112/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/linux-kernel-vulnerability-can-lead-to-privilege-escalation-analyzing-cve-2017-1000112/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/linux-kernel-vulnerability-can-lead-to-privilege-escalation-analyzing-cve-2017-1000112/
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.immunityinc.com/downloads/Kernel-Memory-Disclosure-and-Canvas_Part_2.pdf
https://www.immunityinc.com/downloads/Kernel-Memory-Disclosure-and-Canvas_Part_2.pdf
https://www.exploit-db.com/exploits/45919
https://grimmcyber.com/new-old-bugs-in-the-linux-kernel/
https://grimmcyber.com/new-old-bugs-in-the-linux-kernel/
https://zhuanlan.zhihu.com/p/26674557
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://chomp.ie/Blog+Posts/Put+an+io_uring+on+it+-+Exploiting+the+Linux+Kernel
https://chomp.ie/Blog+Posts/Put+an+io_uring+on+it+-+Exploiting+the+Linux+Kernel
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://github.com/HadarManor/Public-Vulnerabilities/blob/master/CVE-2020-16119/CVE-2020-16119.md
https://github.com/HadarManor/Public-Vulnerabilities/blob/master/CVE-2020-16119/CVE-2020-16119.md
https://github.com/HadarManor/Public-Vulnerabilities/blob/master/CVE-2020-16119/CVE-2020-16119.md
https://github.com/ww9210/Linux_kernel_exploits
https://github.com/ww9210/Linux_kernel_exploits
https://0x3f97.github.io/exploit/2018/08/13/cve-2017-8890-root-case-analysis/
https://0x3f97.github.io/exploit/2018/08/13/cve-2017-8890-root-case-analysis/
https://www.freebuf.com/articles/terminal/160041.html
https://hardenedlinux.github.io/system-security/2017/10/16/Exploiting-on-CVE-2016-6787.html
https://hardenedlinux.github.io/system-security/2017/10/16/Exploiting-on-CVE-2016-6787.html
https://hardenedlinux.github.io/system-security/2017/10/16/Exploiting-on-CVE-2016-6787.html
https://speakerdeck.com/retme7/the-art-of-exploiting-unconventional-use-after-free-bugs-in-android-kernel
https://speakerdeck.com/retme7/the-art-of-exploiting-unconventional-use-after-free-bugs-in-android-kernel
https://www.zerodayinitiative.com/blog/2021/4/22/cve-2021-20226-a-reference-counting-bug-in-the-linux-kernel-iouring-subsystem
https://www.zerodayinitiative.com/blog/2021/4/22/cve-2021-20226-a-reference-counting-bug-in-the-linux-kernel-iouring-subsystem
https://www.zerodayinitiative.com/blog/2021/4/22/cve-2021-20226-a-reference-counting-bug-in-the-linux-kernel-iouring-subsystem
https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-linux.html
https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-linux.html
https://github.com/LakshmiDesai/CVE-2016-8655/blob/master/CVE-2016-8655.c
https://github.com/LakshmiDesai/CVE-2016-8655/blob/master/CVE-2016-8655.c
https://a13xp0p0v.github.io/2020/02/15/CVE-2019-18683.html
https://a13xp0p0v.github.io/2020/02/15/CVE-2019-18683.html
https://paper.seebug.org/596/
https://paper.seebug.org/596/
https://ssd-disclosure.com/ssd-advisory-irda-linux-driver-uaf/
https://ssd-disclosure.com/ssd-advisory-irda-linux-driver-uaf/
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
https://github.com/Markakd/CVE-2022-2588
https://github.com/Markakd/CVE-2022-2588
https://www.nccgroup.com/research-blog/settlers-of-netlink-exploiting-a-limited-uaf-in-nf_tables-cve-2022-32250/
https://www.nccgroup.com/research-blog/settlers-of-netlink-exploiting-a-limited-uaf-in-nf_tables-cve-2022-32250/
https://www.nccgroup.com/research-blog/settlers-of-netlink-exploiting-a-limited-uaf-in-nf_tables-cve-2022-32250/
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html?##kernel-stack
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html?##kernel-stack
https://patchwork.kernel.org/project/linux-mm/cover/20190530045017.15252-1-keescook@chromium.org/
https://patchwork.kernel.org/project/linux-mm/cover/20190530045017.15252-1-keescook@chromium.org/
https://patchwork.kernel.org/project/linux-mm/cover/20190530045017.15252-1-keescook@chromium.org/
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://github.com/hardenedlinux/offensive_poc/tree/master/CVE-2017-7533
https://github.com/hardenedlinux/offensive_poc/tree/master/CVE-2017-7533
https://0x3f97.github.io/exploit/2018/08/16/cve-2017-6074-briefly-analyze/
https://0x3f97.github.io/exploit/2018/08/16/cve-2017-6074-briefly-analyze/
https://github.com/xairy/kernel-exploits/tree/master/CVE-2017-6074
https://github.com/xairy/kernel-exploits/tree/master/CVE-2017-6074
https://bugs.chromium.org/p/project-zero/issues/detail?id=808
https://bugs.chromium.org/p/project-zero/issues/detail?id=808
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://github.com/Bonfee/CVE-2022-0995
https://github.com/Bonfee/CVE-2022-0995
https://starlabs.sg/blog/2023/09-nftables-adventures-bug-hunting-and-n-day-exploitation/
https://starlabs.sg/blog/2023/09-nftables-adventures-bug-hunting-and-n-day-exploitation/
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-1085_lts/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-1085_lts/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-26581_lts_cos_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-26581_lts_cos_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-26581_lts_cos_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/5606368895ee56e64d099499709c96772ae25b8a/pocs/linux/kernelctf/CVE-2024-26582_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/5606368895ee56e64d099499709c96772ae25b8a/pocs/linux/kernelctf/CVE-2024-26582_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/5606368895ee56e64d099499709c96772ae25b8a/pocs/linux/kernelctf/CVE-2024-26582_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/f7dbb569a8275d4352fb1a2fe869f1afa79d4c28/pocs/linux/kernelctf/CVE-2025-21756_lts_cos/docs/exploit.md
https://github.com/google/security-research/blob/f7dbb569a8275d4352fb1a2fe869f1afa79d4c28/pocs/linux/kernelctf/CVE-2025-21756_lts_cos/docs/exploit.md
https://github.com/google/security-research/blob/f7dbb569a8275d4352fb1a2fe869f1afa79d4c28/pocs/linux/kernelctf/CVE-2025-21756_lts_cos/docs/exploit.md
https://speakerdeck.com/retme7/talk-is-cheap-show-me-the-code
https://wenboshen.org/posts/2016-04-25-1805-cve.html
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-0582_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-0582_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-0582_mitigation/docs/exploit.md

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]
[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]
[86]
[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

kevinrich1337, “CVE-2024-0193,” 2024, https://github.com/google/se
curity-research/blob/master/pocs/linux/kernelctf/CVE-2024-0193_lts/d
ocs/exploit.md.

liona24, “CVE-2024-39503,” 2025, https://github.com/google/security
-research/blob/master/pocs/linux/kernelctf/CVE-2024-39503_lts_cos/d
ocs/exploit.md.

Awarau and D. Bouman, “CVE-2022-29582 an io_uring vulnerability,”
2022, https://ruia-ruia.github.i0/2022/08/05/CVE-2022-29582-i0-uri
ng/.

Z. Lin, “Dirtycred exploitation on CVE-2021-4154,” 2022, https://gith
ub.com/Markakd/CVE-2021-4154/blob/master/WRITEUP.md#dirtycr
ed-exploitation.

veritas501, “CVE-2021-22555 pipe version,” 2022, https://github.com
/veritas501/CVE-2021-22555-PipeVersion.

V. Nikolenko, “CVE-2016-6187: Exploiting linux kernel heap off-by-
one,” 2016, https://duasynt.com/blog/cve-2016-6187-heap-off-by-one
-exploit.

M. Kellermann, “The dirty pipe vulnerability,” 2022, https://dirtypipe.
cméall.com/.

veritasS01, “CVE-2022-0185 pipe version,” 2022, https://github.com/v
eritas501/CVE-2022-0185-PipeVersion.

——, “CVE-2022-25636 - netfilter nf_dup_netdev heap oob write,”
2022, https://github.com/veritas501/CVE-2022-25636-PipeVersion.
ZDI, “CVE-2020-8835: Linux kernel privilege escalation via improper
ebpf program verificatio,” 2019, https://www.zerodayinitiative.com/bl
0g/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation- via-imp
roper-ebpf-program- verification.

xmzyshypnc, “CVE-2020-27194,” 2021, https://github.com/xmzyshy
pnc/CVE-2020-27194.

N. Wu, “Dirty pagetable: A novel exploitation technique to rule linux
kernel,” 2023, https://yanglingxil993.github.io/dirty_pagetable/dirty_p
agetable.html.

notselwyn, “Flipping pages: An analysis of a new linux vulnerability
in nf_tables and hardened exploitation techniques,” 2024, https://pwni
ng.tech/nftables/.

qwerty theori, “CVE-2024-50264,” 2025, https://github.com/google/se
curity-research/blob/7cccb5605a0470d3447baae466c5cc452¢2b16c0/
pocs/linux/kernelctf/CVE-2024-50264_lts_cos/docs/exploit.md.
d4emOn, “CVE-2025-40364,” 2025, https://github.com/google/security
-research/blob/724d93a311e336db1d48ae8dd41e9c¢370c81cS5a5/pocs/1
inux/kernelctf/CVE-2025-40364_lts_cos/docs/exploit.md.

pmgsbl, “Linux kernel vulnerabilty exploitation: CVE-2019-8956 and
CVE-2019-9213.” 2019, https://xz.aliyun.com/t/6570.

houjingyi, “Analysis of CVE-2019-9213,” 2019, https://cert.360.cn/re
port/detail ?2id=58e8387ec4c79693354d4797871536ea.

360CERT, “CVE-2017-16995: Ubuntu local privilege escalation,”
2018, https://www.anquanke.com/post/id/101923.

M. Paul, “CVE-2021-31440: An incorrect bounds calculation in the
linux kernel ebpf verifier,” 2021, https://www.zerodayinitiative.com/bl
0g/2021/5/26/cve-2021-31440-an-incorrect-bounds- calculation-in-the
-linux-kernel-ebpf-verifier.

R. Li, “Stackrot (CVE-2023-3269): Linux kernel privilege escalation
vulnerability,” 2023, https://github.com/Irh2000/StackRot.

mingi and M. Cho, “CVE-2024-0193,” 2024, https://github.com/googl
e/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-0193_
mitigation/docs/exploit.md.

liona24, “CVE-2024-53164,” 2025, https://github.com/google/security
-research/blob/b0d0b003f2e1d6d977a99e00725b9415def818bc/pocs/1
inux/kernelctf/CVE-2024-53164_lts_cos_mitigation/docs/exploit.md.
S. Heelan, T. Melham, and D. Kroening, “Gollum: Modular and
greybox exploit generation for heap overflows in interpreters,” in
Proceedings of the 26th ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2019.

Y. Chen and X. Xing, “Slake: Facilitating slab manipulation for
exploiting vulnerabilities in the linux kernel,” in Proceedings of the
26th ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2019.

W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu, “From
collision to exploitation: Unleashing use-after-free vulnerabilities in
linux kernel,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2015.

S. Han, “Lost control: Breaking hardware-assisted kernel control-flow
integrity with page-oriented programming,” in BlackHat USA 2023,
2023.

17

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

st424204 and artmetla, “CVE-2024-36972,” 2025, https://github.com
/google/security-research/blob/master/pocs/linux/kernelctf/CVE-202
4-36972_lts_cos/docs/exploit.md.

liona24, “CVE-2025-21700,” 2025, https://github.com/google/security
-research/blob/430b8636156¢1d81e48668a897df2c¢703b6a9c5a/pocs/1
inux/kernelctf/CVE-2025-21700_lts_cos_mitigation/docs/exploit.md.
B.-J. B. Jheng and M. Ramdhan, “CVE-2023-4622_lts exploit tech
overview,” 2024, https://github.com/google/security-research/blob/mas
ter/pocs/linux/kernelctf/CVE-2023-4622_lts/docs/exploit.md.
quanggle97, “Forget to reset pointer to null eventually leading to double
free vulnerability in smbfs subsystem,” 2024, https://github.com/googl
e/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-5345_
Its_mitigation/exploit/lts-6.1.52/exploit.md.

conlonial, “Exploit detail about CVE-2024-53125,” 2025, https://gith
ub.com/google/security-research/blob/d9e9febbb748e2f258ca61445¢9
bl3ef2abedle0/pocs/linux/kernelctt/CVE-2024-53125_lts/docs/exploi
t.md.

xorl, “CVE-2017-17053: Linux kernel 1dt use after free,” 2017, https:
//xorl.wordpress.com/2017/12/03/cve-2017-17053-linux-kernel-1dt-u
se-after-free/.

chompie, “Kernel pwning with ebpf - a love story,” 2021, https://chom
p.ie/Blog+Posts/Kernel+Pwning+with+eBPF+-+a+Love+Story.
javierprtd, “CVE-2020-27786 exploitation userfaultfd + patching file
struct etc passwd,” 2023, https://soez.github.io/posts/CVE-2020-27786
-exploitation-userfaultfd-+-patching-file-struct-etc-passwd/.

N. Asrir, “Linux kernel gsm multiplexing race condition local privilege
escalation vulnerability,” 2024, https://github.com/Nassim- Asrir/ZDI
-24-020.

marcograss, “Exploiting a linux kernel infoleak to bypass linux kaslr,”
2016, https://marcograss.github.io/security/linux/2016/01/24/exploitin
g-infoleak-linux-kaslr-bypass.html.

spender, “Exploit for CVE-2017-14954 from grsecurity,” 2017, https:
//grsecurity.net/~spender/exploits/wait_for_kaslr_to_be_effective.c.
TheOfficialFloW, “Linux: Stack-based information leak in a2mp
(bleedingtooth),” 2020, https://github.com/google/security-researc
h/security/advisories/GHSA-7mh3- gq28- gfrq.

B. Spengler, “The infoleak that (mostly) wasn’t,” 2017, https://grsecu
rity.net/the_infoleak_that_mostly_wasnt.

liona24, “CVE-2023-6817,” 2024, https://github.com/google/security-r
esearch/blob/master/pocs/linux/kernelctf/CVE-2023-6817_mitigation/
docs/exploit.md.

conlonial, “Exploit detail about CVE-2024-26642,” 2025, https://gith
ub.com/google/security-research/blob/master/pocs/linux/kernelctf/ CVE
-2024-26642_mitigation/docs/exploit.md.

A. Prakash and H. Yin, “Defeating rop through denial of stack pivot,”
in Proceedings of the 31st Annual Computer Security Applications
Conference (ACSAC), 2015.

W. Wu, Y. Chen, X. Xing, and W. Zou, “Kepler: Facilitating control-
flow hijacking primitive evaluation for linux kernel vulnerabilities,”
in Proceedings of the 28th USENIX Security Symposium (USENIX
Security), 2019.

N. Asrir, “Bypassing kaslr with startup_xen,” 2024, https://github.com
/Nassim- Asrir/ZDI-24-020?tab=readme-ov-file#exploitation- walkthr
ough.

K. Lu, M.-T. Walter, D. Pfaff, and S. Niirnberger and Wenke Lee and
Michael Backes, “Unleashing use-before-initialization vulnerabilities
in the linux kernel using targeted stack spraying,” in Proceedings of
the 2017 Network and Distributed System Security Symposium (NDSS),
2017.

H. Cho, J. Park, J. Kang, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé,
and G.-J. Ahn, “Exploiting uses of uninitialized stack variables in linux
kernels to leak kernel pointers,” in /4th USENIX Workshop on Offensive
Technologies (WOOT), 2020.

J. Edge, “Trying to get stackleak into the kernel,” 2018, https://lwn.ne
t/Articles/764325/.

D. Micay, “stackprotector: Increase the per-task stack canary’s random
range from 32 bits to 64 bits on 64-bit platforms,” 2017, https://git.ke
rnel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5ea30e
4e58040cfd6434c2f33dc3ea76e2c15b05.

K. Cook, “[patch v4 3/5] stack: Optionally randomize kernel stack
offset each syscall,” 2020, https://www.mail-archive.com/linux-kerne
l@vger.kernel.org/msg2206197.html.

E. Reshetova, “randomize kernel stack offset upon syscall,” 2019, https:
/Nlwn.net/Articles/785484/.

https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-0193_lts/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-0193_lts/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-0193_lts/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-39503_lts_cos/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-39503_lts_cos/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-39503_lts_cos/docs/exploit.md
https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/
https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/
https://github.com/Markakd/CVE-2021-4154/blob/master/WRITEUP.md#dirtycred-exploitation
https://github.com/Markakd/CVE-2021-4154/blob/master/WRITEUP.md#dirtycred-exploitation
https://github.com/Markakd/CVE-2021-4154/blob/master/WRITEUP.md#dirtycred-exploitation
https://github.com/veritas501/CVE-2021-22555-PipeVersion
https://github.com/veritas501/CVE-2021-22555-PipeVersion
https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit
https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit
https://dirtypipe.cm4all.com/
https://dirtypipe.cm4all.com/
https://github.com/veritas501/CVE-2022-0185-PipeVersion
https://github.com/veritas501/CVE-2022-0185-PipeVersion
https://github.com/veritas501/CVE-2022-25636-PipeVersion
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://github.com/xmzyshypnc/CVE-2020-27194
https://github.com/xmzyshypnc/CVE-2020-27194
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://pwning.tech/nftables/
https://pwning.tech/nftables/
https://github.com/google/security-research/blob/7cccb5605a0470d3447baae466c5cc452c2b16c0/pocs/linux/kernelctf/CVE-2024-50264_lts_cos/docs/exploit.md
https://github.com/google/security-research/blob/7cccb5605a0470d3447baae466c5cc452c2b16c0/pocs/linux/kernelctf/CVE-2024-50264_lts_cos/docs/exploit.md
https://github.com/google/security-research/blob/7cccb5605a0470d3447baae466c5cc452c2b16c0/pocs/linux/kernelctf/CVE-2024-50264_lts_cos/docs/exploit.md
https://github.com/google/security-research/blob/724d93a311e336db1d48ae8dd41e9c370c81c5a5/pocs/linux/kernelctf/CVE-2025-40364_lts_cos/docs/exploit.md
https://github.com/google/security-research/blob/724d93a311e336db1d48ae8dd41e9c370c81c5a5/pocs/linux/kernelctf/CVE-2025-40364_lts_cos/docs/exploit.md
https://github.com/google/security-research/blob/724d93a311e336db1d48ae8dd41e9c370c81c5a5/pocs/linux/kernelctf/CVE-2025-40364_lts_cos/docs/exploit.md
https://xz.aliyun.com/t/6570
https://cert.360.cn/report/detail?id=58e8387ec4c79693354d4797871536ea
https://cert.360.cn/report/detail?id=58e8387ec4c79693354d4797871536ea
https://www.anquanke.com/post/id/101923
https://www.zerodayinitiative.com/blog/2021/5/26/cve-2021-31440-an-incorrect-bounds-calculation-in-the-linux-kernel-ebpf-verifier
https://www.zerodayinitiative.com/blog/2021/5/26/cve-2021-31440-an-incorrect-bounds-calculation-in-the-linux-kernel-ebpf-verifier
https://www.zerodayinitiative.com/blog/2021/5/26/cve-2021-31440-an-incorrect-bounds-calculation-in-the-linux-kernel-ebpf-verifier
https://github.com/lrh2000/StackRot
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-0193_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-0193_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-0193_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/b0d0b003f2e1d6d977a99e00725b9415def818bc/pocs/linux/kernelctf/CVE-2024-53164_lts_cos_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/b0d0b003f2e1d6d977a99e00725b9415def818bc/pocs/linux/kernelctf/CVE-2024-53164_lts_cos_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/b0d0b003f2e1d6d977a99e00725b9415def818bc/pocs/linux/kernelctf/CVE-2024-53164_lts_cos_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-36972_lts_cos/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-36972_lts_cos/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-36972_lts_cos/docs/exploit.md
https://github.com/google/security-research/blob/430b8636156c1d81e48668a897df2c703b6a9c5a/pocs/linux/kernelctf/CVE-2025-21700_lts_cos_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/430b8636156c1d81e48668a897df2c703b6a9c5a/pocs/linux/kernelctf/CVE-2025-21700_lts_cos_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/430b8636156c1d81e48668a897df2c703b6a9c5a/pocs/linux/kernelctf/CVE-2025-21700_lts_cos_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-4622_lts/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-4622_lts/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-5345_lts_mitigation/exploit/lts-6.1.52/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-5345_lts_mitigation/exploit/lts-6.1.52/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-5345_lts_mitigation/exploit/lts-6.1.52/exploit.md
https://github.com/google/security-research/blob/d9e9febbb748e2f258ca61445c9b13ef2abed1e0/pocs/linux/kernelctf/CVE-2024-53125_lts/docs/exploit.md
https://github.com/google/security-research/blob/d9e9febbb748e2f258ca61445c9b13ef2abed1e0/pocs/linux/kernelctf/CVE-2024-53125_lts/docs/exploit.md
https://github.com/google/security-research/blob/d9e9febbb748e2f258ca61445c9b13ef2abed1e0/pocs/linux/kernelctf/CVE-2024-53125_lts/docs/exploit.md
https://github.com/google/security-research/blob/d9e9febbb748e2f258ca61445c9b13ef2abed1e0/pocs/linux/kernelctf/CVE-2024-53125_lts/docs/exploit.md
https://xorl.wordpress.com/2017/12/03/cve-2017-17053-linux-kernel-ldt-use-after-free/
https://xorl.wordpress.com/2017/12/03/cve-2017-17053-linux-kernel-ldt-use-after-free/
https://xorl.wordpress.com/2017/12/03/cve-2017-17053-linux-kernel-ldt-use-after-free/
https://chomp.ie/Blog+Posts/Kernel+Pwning+with+eBPF+-+a+Love+Story
https://chomp.ie/Blog+Posts/Kernel+Pwning+with+eBPF+-+a+Love+Story
https://soez.github.io/posts/CVE-2020-27786-exploitation-userfaultfd-+-patching-file-struct-etc-passwd/
https://soez.github.io/posts/CVE-2020-27786-exploitation-userfaultfd-+-patching-file-struct-etc-passwd/
https://github.com/Nassim-Asrir/ZDI-24-020
https://github.com/Nassim-Asrir/ZDI-24-020
https://marcograss.github.io/security/linux/2016/01/24/exploiting-infoleak-linux-kaslr-bypass.html
https://marcograss.github.io/security/linux/2016/01/24/exploiting-infoleak-linux-kaslr-bypass.html
https://grsecurity.net/~spender/exploits/wait_for_kaslr_to_be_effective.c
https://grsecurity.net/~spender/exploits/wait_for_kaslr_to_be_effective.c
https://github.com/google/security-research/security/advisories/GHSA-7mh3-gq28-gfrq
https://github.com/google/security-research/security/advisories/GHSA-7mh3-gq28-gfrq
https://grsecurity.net/the_infoleak_that_mostly_wasnt
https://grsecurity.net/the_infoleak_that_mostly_wasnt
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-6817_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-6817_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-6817_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-26642_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-26642_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2024-26642_mitigation/docs/exploit.md
https://github.com/Nassim-Asrir/ZDI-24-020?tab=readme-ov-file#exploitation-walkthrough
https://github.com/Nassim-Asrir/ZDI-24-020?tab=readme-ov-file#exploitation-walkthrough
https://github.com/Nassim-Asrir/ZDI-24-020?tab=readme-ov-file#exploitation-walkthrough
https://lwn.net/Articles/764325/
https://lwn.net/Articles/764325/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5ea30e4e58040cfd6434c2f33dc3ea76e2c15b05
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5ea30e4e58040cfd6434c2f33dc3ea76e2c15b05
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5ea30e4e58040cfd6434c2f33dc3ea76e2c15b05
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg2206197.html
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg2206197.html
https://lwn.net/Articles/785484/
https://lwn.net/Articles/785484/

[120]

[121]

[122]

[123]
[124]
[125]
[126]
[127]

[128]

[129]

[130]
[131]

[132]

[133]

3

24

(a) Hardenings enabled by Fedora (b)
from 24 to 42.

K. Zeng, Z. Lin, K. Lu, X. Xing, R. Wang, A. Doupé, Y. Shoshi-
taishvili, and T. Bao, “Retspill: Igniting user-controlled data to burn
away linux kernel protections,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’23, New York, NY, USA, 2023, p. 3093-3107.

A. Labs, “Grooming the ios kernel heap,” 2020, https://azeria-labs.co
m/grooming-the-ios-kernel-heap/.

M. Cho and W. Lee, “Utilizing cross-cpu allocation to exploit preempt-
disabled linux kernel,” 2024, https://www.hexacon.fr/slides/Cho_Lee
-Utilizing_Cross-CPU_Allocation_to_Exploit_Preempt-Disabled_Lin
ux_Kernel.pdf.

K. Cook, “Per-call-site slab caches for heap-spraying protection,” 2024,
https://lwn.net/Articles/986174/.

, “security things in linux v5.2,” 2019, https://outflux.net/blog/arc
hives/2019/07/17/security-things-in-linux-v5-2/.

M. Rizzo, “Prevent cross-cache attacks in the slub allocator,” 2023,
https://lwn.net/Articles/944647/.

N. Hussein, “Randomizing structure layout,” 2017, https://lwn.net/Arti
cles/722293/.

J. Corbet, “Fun with null pointers, part 1,” 2009, https://Iwn.net/Articl
es/342330.

D. Rosenberg, “Linux kernel 2.6.37 (redhat / ubuntu 10.04) - ’full-
nelson.c’ local privilege escalation,” 2010, https://www.exploit-db.co
m/exploits/15704.

J. Corbet, “A farewell to set_fs()?”” 2017, https://lwn.net/Articles/722
267.

S. Tolvanen, “Kcfi support,” 2022, https://lwn.net/Articles/907639/.
joao AT-overdrivepizza.com, “Kernel fineibt support,” 2022, https://lw
n.net/Articles/891976/.

B. Patel, “Intel releases new technology specifications to protect against
rop attacks,” Retrieved March, vol. 1, p. 2017, 2016.

K. Cook, “hardening: Provide kconfig fragments for basic options,”
2023, https://lore.kernel.org/linux-hardening/20230825050618.never.
197-kees @kernel.org.

APPENDIX

2 26

23

19
17

28 32 36 40 42 16.04 18.04 20.04 2204 24.04

Hardenings enabled by
Ubuntu from 16.04 to 24.04.

Fig. A.9: Comparison of hardening deployment trends in
Fedora and Ubuntu.

6

27

23

12

o

7 8 9 10

(a) Hardenings enabled by RHEL (b) Hardenings enabled by Linux
from 6 to 10. Mint from 18 to 22.

Fig. A.10: Comparison of hardening deployment trends in
RHEL and Linux Mint.

18

21

~
~

8 9 10 11 12

(a) Hardenings enabled by Debian (b) Hardenings enabled by Open-
from 8 to 12. SUSE from 42.3 to 15.6.

Fig. A.11: Comparison of hardening deployment trends in
Debian and OpenSUSE.

https://azeria-labs.com/grooming-the-ios-kernel-heap/
https://azeria-labs.com/grooming-the-ios-kernel-heap/
https://www.hexacon.fr/slides/Cho_Lee-Utilizing_Cross-CPU_Allocation_to_Exploit_Preempt-Disabled_Linux_Kernel.pdf
https://www.hexacon.fr/slides/Cho_Lee-Utilizing_Cross-CPU_Allocation_to_Exploit_Preempt-Disabled_Linux_Kernel.pdf
https://www.hexacon.fr/slides/Cho_Lee-Utilizing_Cross-CPU_Allocation_to_Exploit_Preempt-Disabled_Linux_Kernel.pdf
https://lwn.net/Articles/986174/
https://outflux.net/blog/archives/2019/07/17/security-things-in-linux-v5-2/
https://outflux.net/blog/archives/2019/07/17/security-things-in-linux-v5-2/
https://lwn.net/Articles/944647/
https://lwn.net/Articles/722293/
https://lwn.net/Articles/722293/
https://lwn.net/Articles/342330
https://lwn.net/Articles/342330
https://www.exploit-db.com/exploits/15704
https://www.exploit-db.com/exploits/15704
https://lwn.net/Articles/722267
https://lwn.net/Articles/722267
https://lwn.net/Articles/907639/
https://lwn.net/Articles/891976/
https://lwn.net/Articles/891976/
https://lore.kernel.org/linux-hardening/20230825050618.never.197-kees@kernel.org
https://lore.kernel.org/linux-hardening/20230825050618.never.197-kees@kernel.org

	Introduction
	Study Scope & Related Work
	Study Scope and Data Collection
	Related Work

	 Attack Decomposition Framework
	Overview
	Internal Error To Corruption
	Corruption To Primitive
	Stack Corruption
	Heap Corruption
	Short-Path To Primitives

	Primitive To Exploitation Goal
	Start From IP Control
	Start From Controllable R/W
	Short Paths To Information Disclosure

	Multi-Level Analysis of Kernel Hardening
	Defense Coverage Analysis
	Mitigating Internal Error To Corruption
	Defense Corruption To Primitive
	Mitigating Primitive To Exploitation Goal

	Kernel Hardening Deployment in the Wild
	Suggestions
	Conclusion
	References
	Appendix

