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Abstract—Website fingerprinting (WF) attacks remain a sig-
nificant threat to encrypted traffic, prompting the development
of a wide range of defenses. Among these, two prominent
classes are regularization-based defenses, which shape traffic
using fixed padding rules, and supersequence-based approaches,
which conceal traces among predefined patterns. In this work,
we present a unified framework for designing an adaptive
WF defense that combines the effectiveness of regularization
with the provable security of supersequence-style grouping.
The scheme first extracts behavioural patterns from traces and
clusters them into (k, l)-diverse anonymity sets; an early-time-
series classifier (adapted from ECDIRE) then switches from a
conservative global set of regularization parameters to the lighter,
set-specific parameters. We instantiate the design as Adaptive
Tamaraw, a variant of Tamaraw that assigns padding parameters
on a per-cluster basis while retaining its original information-
theoretic guarantee. Comprehensive experiments on public real-
world datasets confirm the benefits. By tuning k, operators can
trade privacy for efficiency: in its high-privacy mode, Adaptive
Tamaraw pushes the bound on any attacker’s accuracy below
30%, whereas in efficiency-centred settings it cuts total overhead
by 99 percentage points compared with classic Tamaraw.

I. INTRODUCTION

Tor is the leading low-latency anonymity network, relied
upon by millions worldwide to shield their online activities
from surveillance and censorship [1]. Despite its robust en-
cryption and onion routing design, Tor leaks metadata such as
packet sizes, timing, and directional patterns that adversaries
can exploit. Over the years, website fingerprinting (WF) at-
tacks have demonstrated that by analyzing these residual traffic
features, even passive attackers can infer with high accuracy
which webpages users are visiting [2], [3], [4]. Modern deep
learning techniques employing transformer models [5] and
multi-channel representations can now extract fine-grained
patterns from traffic data, achieving higher recall and precision
[6], [7], [8], [9].

In response to these threats, a variety of defenses have
emerged to mitigate WF attacks. One broad class of ap-

proaches is regularization-based defenses, which aim to con-
ceal traffic patterns by enforcing packet transmission rules to
reduce entropy. A common rule is a fixed, constant packet
rate, achieved with delays and dummy packets [10], [11], [12].
These strategies often apply the same padding schedule to
all sites, which leads to excessive overhead, particularly for
bursty traffic. A notable example is Tamaraw [10], one of the
few defenses to provide information-theoretic guarantees on
attacker success. Tamaraw has not been broken; almost all
defenses that lack such guarantees have been defeated by more
powerful classifiers [13], [14], [15].

Another family of defenses aims to construct super-traces,
forcing instances of similar webpages to produce the same
pattern and thus hinder an attacker from inferring the correct
webpage [2], [16], [17], [8]. However, these defenses are
calibrated on a fixed set of sites. During an offline stage they
partition that set into anonymity sets (clusters) with similar
traffic characteristics and derive a canonical super-trace for
each cluster. At run time every page load is forced to follow
the super-trace assigned to its destination page. A page that
does not exist in the offline stage produces undefined behavior,
but in practice, ordinary browsing covers far more destinations
than any feasible reference set can capture.

In this work, we propose a hybrid website fingerprinting
defense with the strengths of both regularization and su-
persequence approaches. Traffic loading under our defense
begins with regularization: a global rate that protects early
traffic without requiring prior knowledge of the destination.
As the trace evolves, we switch to supersequence: a streaming
early time series classifier assigns the live trace to a precon-
structed anonymity set, after which the defense transitions to
a lightweight regularization rate specific to that set. These
sets are generated offline through clustering, subject to k-
anonymity [18] and l-diversity [19]. Our construction satisfies
an information theoretic upper bound on any adversary’s
success.

Using this design framework, we create Adaptive Tamaraw,
a novel extension of the original Tamaraw defense that retains
its provable security while reducing overhead. We provide a
rigorous analysis of Adaptive Tamaraw that bounds any attack-
ing classifier’s maximum accuracy by the size and diversity of
the anonymity set. We also evaluate our defense empirically:
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we test state-of-the-art website fingerprinting attacks to verify
that the actual attack accuracy remains within our theoretical
bounds while yielding lower overhead compared to the fixed-
rate Tamaraw.

We summarize the main contributions of our work as
follows:

• We propose a general design framework for construct-
ing provable website fingerprinting defenses that com-
bines regularization defenses with dynamic clustering to
adaptively adjust defense parameters in real time. As a
concrete instantiation, we develop Adaptive Tamaraw, an
extension of the original Tamaraw defense that preserves
its information-theoretic guarantees while reducing band-
width and latency overhead.

• We provide a formal analysis that quantifies the privacy
guarantees of Adaptive Tamaraw. Specifically, we derive
upper bounds on the maximum achievable attack accu-
racy, independent of the underlying classifier, based on
the size and diversity of each anonymity set.

• Our experiments show that Adaptive Tamaraw offers flex-
ible tunability, enabling practitioners to adjust the defense
parameters to meet privacy and efficiency requirements.
When configured for strong privacy, the defense reduces
attack accuracy to below 30%. In efficiency-focused
settings, it achieves substantial reductions in the total
overhead, up to 99 percentage points relative to the orig-
inal Tamaraw. The implementation is publicly available
at https://github.com/khashayarkhaj/Adaptive-Tamaraw.

II. BACKGROUND AND RELATED WORK

A. Website Fingerprinting Attacks

Website fingerprinting attacks enable an on-path adversary
to infer which website a user visits by analyzing observable
traffic features such as packet sizes, timings, and ordering,
even when the content is encrypted. Early methods relied
on manually engineered features combined with classical
classifiers like SVMs [20], k-Nearest Neighbors [2], and
k-fingerprinting [4], the last of which uses random decision
forests on manually extracted features.

The rise of deep learning has enabled WF attacks to
automatically extract rich features from raw traffic. Deep
Fingerprinting [6] uses a CNN to capture local and global
patterns, while Tik-Tok [7] improves accuracy by incorpo-
rating timing and direction. Robust Fingerprinting (RF) [8]
introduces the 2×N Traffic Aggregation Matrix, which counts
inbound/outbound packets in 44 ms slots and feeds it into a
four-layer CNN, smoothing jitter while preserving bursts. RF
surpasses 90% closed-world accuracy and performs well in
open-world settings, even against defenses like FRONT [14].
LASERBEAK [9] adds multi-channel features (timing, direc-
tion, burst edges) and attention layers to exceed 95% accuracy.
These attacks show that small architectural changes with
strong features can defeat many prior padding defenses.

B. Website Fingerprinting Defenses

When designing defenses against website fingerprinting
attacks, the literature has broadly followed two lines of work.
The first focuses on empirical defenses that are evaluated
primarily through experiments and often rely on heuristics
or traffic obfuscation strategies to reduce attack success. The
second aims to provide formal, information-theoretic guaran-
tees that rigorously bound the adversary’s ability to classify
webpages. Table I offers a comprehensive summary of both
approaches, highlighting their key properties along with their
strongest known attack accuracies. We now examine these two
categories in more detail, beginning with empirical defenses.

1) Empirical WF Defenses: Many website fingerprinting
defenses rely on empirical evaluation to show effectiveness
against specific attacks. They often reduce fingerprinting ac-
curacy and can be tuned for lower overhead but lack formal
guarantees and remain vulnerable to stronger or adaptive
adversaries. Empirical defenses fall into two main categories:
Obfuscation-Based Defenses: These approaches inject ran-
domness to obscure traffic patterns. WTF-PAD [13] adds
dummy packets during idle periods, FRONT [14] perturbs
early bursts with randomized padding, and Surakav [15]
employs a GAN to simulate realistic timing. While effective
against some attacks, they lack formal guarantees and are
vulnerable to modern methods like Laserbeak [9] and RF [8].
As shown in Table I, these defenses still result in relatively
high attack accuracies.
Regularization-Based Defenses: These defenses reduce leak-
age by shaping traffic into fixed or structured patterns. Bu-
FLO [21] and CS-BuFLO [11] enforce constant rates, provid-
ing strong obfuscation but at high cost. RegulaTor [12] im-
proves efficiency by reshaping only sensitive trace segments.
However, most lack formal guarantees and thus can still leak
expressive features.

While empirical defenses can reduce current attack success,
their lack of formal guarantees limits robustness against future
threats. In contrast, as we will discuss, Adaptive Tamaraw
offers provable security (Section VI-D) and adaptively lowers
overhead while preserving strong privacy guarantees.

2) WF Defenses With Formal Bounds: A number of de-
fenses have sought not only to empirically reduce the success
of website fingerprinting attacks but also to provide formal,
provable bounds on security. Among these, Tamaraw [10]
stands out as the first defense to derive an explicit upper bound
on an adversary’s success probability. By construction, its
uniform-rate padding guarantees that no attack, regardless of
strategy, can exceed the bound as traces for different websites
have the same rate and often have the same length. However,
this theoretical rigor comes at a steep cost, and Tamaraw’s
fixed-rate design introduces substantial overhead.

Other formal defenses attempt to balance rigor with effi-
ciency. Walkie-Talkie [17], for example, reduces traffic unique-
ness by pairing sites and enforcing collisions in their trace rep-
resentations. While it provides a bounded adversarial success
rate in closed-world settings, it assumes prior knowledge of
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TABLE I
STRONGEST PUBLISHED ATTACKS AGAINST REPRESENTATIVE WF DEFENCES IN THE CLOSED-WORLD SETTING.

• DEFENCES WITHOUT A PROVABLE FORMAL BOUND ARE CONSISTENTLY BROKEN BY ADVERSARIAL TRAINING, WITH THE ATTACKER’S ACCURACY
REMAINING WELL ABOVE THE 50 % THRESHOLD COMMONLY ASSOCIATED WITH ROBUST RESISTANCE [22].

• SUPER-SEQUENCE DEFENCES ACHIEVE LOW ATTACK ACCURACY BUT PROTECT ONLY THOSE WEBSITES PRESENT IN THEIR TRAINING CORPUS,
LIMITING THEIR APPLICABILITY IN OPEN-WORLD BROWSING.

Category Defence Strongest published attack ‡ Accuracy (%) Formal bound? Limited to Dataset?

Obfuscation
WTF-PAD RF [8] 96.6 No No
FRONT LASERBEAK [9] 95.9 No No
Surakav LASERBEAK [9] 81.5 No No

Regularization
RegulaTor RF [8] 67.4 No No
Tamaraw LASERBEAK [9] 25.3 Yes No
Walkie-Talkie RF [8] 93.9 Yes Yes

Super-sequence Super-Sequence Tik-Tok [7], [8] 29.18 Yes Yes
Palette RF [8], [22] 36.43 Yes∗ Yes

† “Formal bound” indicates that the defence supplies an explicit, theoretical upper bound on an attacker’s success for any strategy. “Limited to Dataset”
means the defence only applies to the websites contained in its training set, which is impractical for real-world browsing.

∗ Palette does not provide a closed-form mathematical bound; its “Yes∗” entry denotes that its cluster-anonymisation method yields structured leakage
reductions that approach provable guarantees [22].

‡ Where two references appear, the first paper introduces the attack and the second reports its performance against the listed defence.

the entire trace; an alternative randomized version avoids this
assumption, but loses its adversarial bound.

Wang et al. introduced the Supersequence defense [2],
which groups webpages into anonymity sets and pads each
trace to match a common super-sequence, ensuring that
all traces within a cluster are indistinguishable. Similarly,
Palette [22] applies traffic cluster anonymization in real time
by shaping traffic to match canonical burst patterns within each
cluster, though it does not provide formal bounds. However,
these supersequence-based methods are limited to the websites
present in their training dataset.

As summarized in Table I, a clear dichotomy exists in
the literature: while many low-overhead defenses have been
proposed, those lacking formal guarantees have often been
broken by subsequent attacks. In contrast, defenses with
formal bounds, such as Tamaraw, have proven resilient over
time but at the cost of high overhead. The core novelty of
our paper lies in introducing a framework to bridge this gap
between provable security and practical efficiency. In this
work, we build upon Tamaraw specifically due to its unique
and unbroken provably secure foundation, and demonstrate
that its overhead can be reduced via dynamic clustering and
switching mechanisms, all while preserving the original for-
mal guarantees. Crucially, unlike supersequence methods, this
approach remains applicable to websites beyond the training
set, making it suitable for real-world, out-of-training scenarios.

III. THREAT MODEL

Following prior work [15], [14], [22], we assume a local,
passive adversary who observes all traffic between the client
and the Tor guard node. The adversary cannot modify traffic
but records packet size, timing, and direction to infer the
visited webpage. They can segment traffic into individual page
loads, assuming users visit one page at a time. To execute
the attack, the adversary collects training data by visiting
monitored webpages and recording their traffic under similar

conditions to the target user. The goal is to identify which
monitored site the client is loading.

In this work, we apply two evaluation scenarios for the
proposed defense: one where the user’s traffic is limited
to webpages seen during the defense’s training phase (in-
training webpages), and another where the user can also visit
webpages not included in the defense training set (out-of-
training webpages). In this latter case, we examine how the
defense performs when users browse pages that were not
part of the training data used to construct the anonymity
sets or train the classifiers. This setting reflects real-world
usage, where users may access arbitrary webpages beyond
the training set, allowing us to assess the defense’s ability
to protect previously unseen traffic patterns.

We also assume the defense operates without prior knowl-
edge of the destination webpage. Our design goal is to develop
an easy-to-implement defense that is generally suitable for
browsing any site, including dynamic webpages generated on
the fly. As such, we do not limit the defense’s applicability
to a pre-configured set of static pages and we also avoid the
privacy risk of disclosing the destination to a defending proxy.
As we will elaborate upon in Section V-C, our approach is
designed to operate on the more fundamental and recurring
traffic patterns that emerge during a page load.

IV. PROBLEM STATEMENT

When a client loads a webpage, it produces a sequence of
encrypted packets called a traffic trace:

f =
[
(t1, d1), (t2, d2), . . . , (tN , dN )

]
,

where each packet fi has a timestamp ti and direction di ∈
{+1,−1} (outgoing/incoming). Since Tor pads packets to a
fixed size, the adversary observes only timing and direction.

A defense modifies the trace f to produce a defended trace
f ′ by delaying real packets or adding dummies, obscuring
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patterns used by WF attacks. We evaluate the overhead of de-
fenses by bandwidth overhead and time overhead. The band-
width overhead is measured as the total number of dummy
packets divided by the total number of real packets over the
whole dataset. Similarly, the time overhead is measured as
the total extra time divided by the total loading time in the
undefended case over the whole dataset.

In this paper, we aim to address three limitations of existing
WF defenses. First, static padding schedules that ignore real-
world traffic diversity are inefficient. Second, supersequence-
based defenses struggle in out-of-training settings with unseen
websites. Third, defenses that lack provable security guar-
antees are frequently broken by later attacks. The following
expands on each challenge.

1. Excessive Overhead from Static Regularization: Regu-
larization defenses (such as Tamaraw) shape the traffic so that
traces appear uniform, minimizing the features an attacker
might exploit. However, these methods typically apply a
fixed set of parameters statically across all traffic. This static
configuration does not account for the inherent variability in
traffic patterns across different webpages, which can result in
either excessive overhead or insufficient obfuscation in certain
cases.

2. Poor Generalization in Supersequence-Based Defenses:
Supersequence-based approaches attempt to create anonymity
sets by mapping each webpage to a common supertrace.
While this strategy can provide strong theoretical guarantees,
it is only effective on the set of in-training webpages used
during defense construction. If a user’s traffic originates from
an out-of-training webpage, there is no reliable mechanism
to map the trace to a corresponding supersequence. This
restriction greatly limits the applicability of such defenses
in real-world deployments. We demonstrate that our method
generalizes effectively to out-of-training webpages, making
it more suitable for practical scenarios involving previously
unseen inputs.

3. Lack of Provable Security Guarantees: Existing defenses
have usually been defeated by later-published attacks. In par-
ticular, as it can be seen in Table I, state-of-the-art obfuscation
defenses (e.g., FRONT, Surakav) often achieve relatively low
overhead but have been circumvented by advanced WF attacks.
A key limitation of these defenses is the lack of provable
security; they do not provide a theoretical upper bound on the
adversary’s maximum success rate.

To provide an upper bound on attacker success, we start by
analyzing the non-injectivity of a defense. Let D map an input
trace f to an output trace f ′ = D(f). For every output, the
pre-image is

D−1(f ′) = {f : D(f) = f ′}.

A defense is called δ-non-injective with respect to a given
defended trace f ′ if

∣∣D−1(f ′)
∣∣ ≥ δ. An attacker who sees

f ′ must then guess among at least δ candidates to infer
f . However, multiplicity alone is not sufficient for website
fingerprinting security: the attacker’s success also depends
on how those inputs are distributed across webpages. If one

webpage dominates the pre-image, the majority vote still
yields a high success rate, even when

∣∣D−1(f ′)
∣∣ itself is large.

The relevant quantity is label diversity: the ratio between the
total pre-image size and the largest webpage-specific share.

To capture both multiplicity and label diversity, we refine
the measure. Let D−1

w (f ′) = { f ∈ D−1(f ′) : class(f) = w}
be the pre-image subset that originates from webpage w. We
define the weighted pre-image size

δ̃(f ′) =
|D−1(f ′)|

max
w
|D−1

w (f ′)|
. (1)

Intuitively, δ̃(f ′) counts how many distinct inputs are merged
per majority webpage. If every input in the bucket comes
from the same site, the denominator equals the numerator and
δ̃(f ′) = 1, so a perfect information attacker will always guess
the class of f ′ correctly.

Weighted δ-non-injectivity. We call a defense weighted
δ-non-injective with respect to a given defended trace f ′ if
δ̃(f ′) ≥ δ. Since an optimal attacker chooses the majority
webpage, its success rate is maxw |D−1

w (f ′)|/|D−1(f ′)| =
1/δ̃(f ′). Thus, a weighted δ-non-injective defense guarantees

Pr[attacker succeeds | f ′] ≤ 1

δ
.

Non-Uniformly Weighted δ-Non-Injectivity: While the
above definition bounds the attacker’s success on an individual
trace, prior works and subsequent WF studies [8], [9], [10]
focus on the average success rate over the distribution of
traces. To capture this, we define the non-uniformly weighted
δ-non-injectivity property.

Let F ′ denote the support of defended outputs, and let
P (f ′) be the probability of observing a defended trace f ′ with
f ′ ∈ F ′. We say the defense is non-uniformly weighted δ-non-
injective if this inequality holds:

Ef ′∈F ′ [Pr[attacker succeeds | f ′]] = Ef ′∈F ′

[
1

δ̃(f ′)

]
≤ 1

δ
.

This definition implies that the attacker’s success rate, on
average, remains below the inverse of δ. This choice aligns
with previous work on website fingerprinting defenses, which
report attacker performance in terms of average success rate
over the trace distribution, i.e., they evaluate non-uniform
security. Uniform security, while stricter, is rarely achieved
in practice and not the focus of most deployed defenses.
We therefore adopt the non-uniform formulation to remain
consistent with established evaluation methodology [10].

V. DESIGN DETAILS

A. Overview

In this work, we introduce the first website fingerprinting
defense that performs adaptive parameter selection while pro-
viding a formal upper bound on attacker success. Our design
is motivated by three goals: (i) replacing static regularization
configurations with traffic adaptation, (ii) generalizing to web-
pages not seen during training, and (iii) ensuring provable
security guarantees.
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We do so using a global-to-local defense strategy. Our
defense assumes no knowledge of the page under load, so it
always starts with a global strategy based on a regularization
defense (such as BuFLO [21], Tamaraw [10], or Regula-
Tor [12]). We begin each page load using a set of global
parameters that apply conservative padding and scheduling
to protect early traffic without knowing the destination. After
enough of the trace has been observed to confidently identify
an anonymity set, we switch to a more efficient set of padding
parameters tailored to that set. This two stage strategy ensures
strong privacy guarantees during the early ambiguous phase
while reducing overhead in the remainder of the trace.

To concretely instantiate this global-to-local strategy, we
build on the Tamaraw defense, leading to what we call
Adaptive Tamaraw.

B. Adaptive Tamaraw

To evaluate the general framework introduced in this paper,
we use a concrete, well-studied regularization defense in
our global-to-local strategy: Tamaraw [10]. Among existing
regularization-based defenses, Tamaraw stands out as the only
one that offers a formal, information-theoretic bound on an
adversary’s success rate. As shown in Table I, it also yields
the lowest attacker accuracy compared to other defenses.

Classic Tamaraw transmits fixed-size cells at two constant
rates: ρout seconds between successive upstream cells and
ρin seconds between successive downstream cells. Padding
continues in each direction until its cell count reaches the next
multiple of a hyperparameter L. Since (ρout, ρin) are fixed and
identical across all traces, the resulting shapes of the defended
traces are uniform in timing and rate. The only distinguishing
feature that may remain between traces is their total length:
specifically, which multiple of L they are padded to.

Tamaraw requires a single pair of padding parameters
(ρout, ρin) to be applied uniformly across all webpages. This
global configuration leads to inefficiencies, as some webpages
end up causing far more dummy traffic than necessary. As
noted by [10], the standard method for configuring Tamaraw
involves fixing the L and then performing a grid search over
candidate (ρout, ρin) pairs. Each pair yields a specific tuple of
bandwidth and time overhead, and the set of resulting points
is filtered to retain only the Pareto-optimal ones (those that
are not dominated in both overhead dimensions).

In Adaptive Tamaraw, we start each trace with these global
parameters, and then switch to local padding parameters when
possible. This strategy is governed by three processes that will
be described in the subsequent subsections.

1) We analyze the webpages in the training set of the defense
to identify representative traffic patterns, which we call
Intra-Webpage Pattern Detection (Section V-C).

2) These traffic patterns are grouped together in Anonymity
Set Generation (Section V-D), wherein local parameters
are identified for each anonymity set.

3) Early Anonymity Set Detection (Section V-E) tells the
defense when to switch from global to local parameters
based on packets of the observed live trace.

C. Intra-Webpage Pattern Detection

Webpages do not generate a single, uniform traffic pattern;
rather, they produce a number of patterns. This can be due to:
dynamically generated content such as personalized recom-
mendations [23], advertisements that can differ significantly
in size and frequency [24], and variations in localization
tailored for different countries [25]. As an illustrative example,
Figure 1 shows four traces from the same webpage in the
Sirinam et al. dataset [6], visualized using the Traffic Aggre-
gation Matrix (TAM) [8]. The two rows highlight two distinct
recurring structures, highlighting that even a single page can
yield multiple characteristic patterns.

(a) Pattern 1

(b) Pattern 2

Fig. 1. Visualization of the TAMs of four traces from the same page, in the
dataset obtained by [6]. Each TAM divides the first 1000 time-slots (80 ms
per slot) into rows for outgoing packets (blue, positive values) and incoming
packets (red, negative values); the height of each bar records the packet count
in that slot. The first two traces (top row) exhibit a very similar pattern, while
the next two traces (bottom row) share a distinct structure. This highlights the
possibility of multiple recurring traffic patterns within a single page.

As a result of these observations, aggregating all traces from
a single webpage into one homogeneous profile is inefficient
and often leads to over-padding and degraded performance.
However, many existing defenses construct anonymity sets at
the webpage level, assuming that all traces from the same
page behave similarly [2], [16], [22]. Instead, our approach
aggregates traffic at the pattern level to form smaller, more
homogeneous groups.

To obtain distinct traffic patterns within each webpage,
we first represent each network trace as a time series using
the TAM representation introduced in [8]. In our TAM
representation, we divide the total page load time into a fixed
number of time slots and record the number of incoming
and outgoing packets in each slot. This results in a two-
dimensional time series, where each trace can be viewed as
a bivariate sequence capturing the dynamics of incoming and
outgoing traffic over time.

With traces represented as TAM time series, we cluster
the traces of each webpage individually to isolate recurring
traffic patterns. We refer to the resulting clusters as intra-
webpage clusters (i.e., for the remainder of this section, when
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we refer to intra-webpage clusters, we mean clusters obtained
by grouping traces originating from a single webpage).

To perform this clustering, we adopt the Cluster Affinity
Search Technique (CAST) [26]. CAST is a similarity-based
clustering algorithm that avoids pre-specifying the number of
clusters. Instead, it incrementally builds clusters by comparing
each trace’s affinity (its average similarity) to the current
cluster. We define the affinity of a time series Fx to a cluster
S as:

aS(Fx) =
1

|S|
∑
Fy∈S

A(Fx, Fy), (2)

where A(Fx, Fy) is the similarity measure between two TAM
series. Intuitively, aS(Fx) captures how well Fx fits with the
existing members of S: high affinity indicates that Fx behaves
similarly to most traces in S, while low affinity indicates
that it is not consistent with the dominant traffic pattern in
that cluster. CAST maintains a currently “open” cluster and
evolves it using a fixed affinity threshold T . At each step, the
unassigned trace with the highest affinity to the open cluster
is examined:

• Addition: If its affinity is at least T , the trace is added
to the cluster.

• Removal: Otherwise, CAST checks if any current mem-
ber of the cluster has affinity below T with the current
cluster. Such traces are considered weakly related to the
cluster and are removed.

• Closure: If no addition or removal is possible, the cluster
is considered stable and is closed; CAST then begins
forming the next cluster from the remaining traces.

Our preliminary evaluations (discussed in Appendix C-B)
revealed that for traces in a single webpage, CAST generated
several large intra-webpage clusters, along with a long tail of
smaller ones. Small intra-webpage clusters are not suitable,
as our goal is to regularize all traces within an intra-webpage
cluster to appear identical; if an intra-webpage cluster contains
too few traces, the defense incurs the overhead of padding and
shaping with minimal privacy benefit. To be more precise,
the attacker’s uncertainty remains low despite the added cost,
resulting in an inefficient overhead-to-privacy tradeoff. To
produce better clusters, we introduced four modifications to
the original CAST algorithm proposed in [26], which we will
describe below.

Affinity Computation. As we mentioned, the affinity of a
time series Fx with respect to a candidate cluster S is com-
puted as the average of the pairwise similarity scores between
Fx and each member Fy ∈ S. Following prior work [27],
[28], the similarity score A(Fx, Fy) is computed using an
exponential function of the squared Euclidean distance:

A(Fx, Fy) = exp
(
−d2(Fx, Fy)

σ2

)
,

where σ is a bandwidth hyperparameter that governs the
sensitivity of the similarity function. Previous studies [29] have
shown that a global σ can fail to capture variations in data
density.

To address this, we adopt a local scaling approach inspired
by self tuning spectral clustering [30], [31], in which each time
series Fx is assigned its own scale parameter σx, typically set
to the distance between Fx and its K-th nearest neighbor. The
similarity is then computed as:

A(Fx, Fy) = exp
(
−d2(Fx, Fy)

σx σy

)
.

Cleaning Step. After forming the initial clusters, we per-
form a final pass. For each point c in each cluster Ci, we
compute its affinity to every other cluster Cj . If we find a
cluster Cj in which the point c achieves a strictly higher affinity
than in its current cluster Ci, we remove c from Ci and reassign
it to Cj . This process is repeated until no point changes its
cluster membership.

Post-Processing Step. To limit the number of clusters
produced by our modified CAST algorithm, we adopt a post-
processing procedure inspired by [32]. Each cluster consists
of a set of TAM-based trace representations. We measure its
cut and volume using the similarity score A introduced earlier:

cut(C) =
∑
f∈C

∑
f ′ /∈C

A(f, f ′), vol(C) =
∑

f , f ′∈C

A(f, f ′).

The expansion ratio ϕ(C) = cut(C)/vol(C) is low when traces
inside C are highly similar while remaining well separated
from traces outside.

We then apply an iterative post-processing routine: as long
as the number of clusters exceeds a predefined threshold, we
sort the clusters by size, select the smallest cluster, and merge
it with a neighboring cluster such that the resulting partition
minimizes the largest expansion ratio among all clusters [33].

Dynamic Affinity Threshold. Finally, rather than using a
fixed affinity threshold for all traces, we compute it in a data-
driven manner. We first calculate the global mean similarity
across all pairs of traces:

T =
1

n2

∑
x<y≤n

A(Fx, Fy),

where A(Fx, Fy) is the pairwise similarity between traces
x and y, and n is the total number of traces. This global
average T serves as a baseline for typical similarity values
within the dataset. We then set the CAST affinity threshold
to T (i.e., the minimum similarity required to add a new
trace to an intra-webpage cluster). This approach ensures that
the threshold automatically adapts to the overall range of
similarities in the dataset, rather than being a manually tuned
constant hyperparameter, thereby improving the robustness of
the resulting clusters.

We apply the modified CAST algorithm separately to each
webpage in the dataset to extract a set of characteristic traffic
patterns. These extracted patterns form the foundation for all
subsequent phases.

D. Anonymity Set Generation
Once we have extracted distinct traffic patterns from each

webpage, as described in Section V-C, we proceed to clus-
ter these patterns into anonymity sets. This phase organizes
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structurally similar patterns, regardless of their originating web
pages, into groups that will later be reshaped using a shared
regularization policy. In contrast to prior work that clusters at
the webpage level [2], [16], [22], this fine-grained grouping
reduces overhead and improves generalization.

Our anonymity sets are constructed to satisfy two key
properties that underlie the provable security guarantee offered
by our defense:

• k-anonymity: Each anonymity set must contain at least
k distinct traffic patterns [34]. In this way, even if an
adversary correctly identifies the anonymity set to which
a trace belongs, they are left with at least k possibilities,
bounding the probability of correctly inferring the true
pattern to at most 1/k.

• l-diversity: The patterns within each anonymity set must
originate from at least l different webpages [19]. This
criterion ensures that even if the anonymity set is exposed,
the attacker cannot infer the correct webpage simply
because all patterns come from a single source.

For this phase, we adopt the k-anonymity-based clustering
algorithm introduced in Palette [22] as our base algorithm. In
Palette, anonymity sets are generated at the webpage level. The
algorithm first computes the Traffic Aggregation Matrix for
each trace of a webpage and then aggregates these into a super-
matrix by an element-wise maximum. These super-matrices
are then used as the elements (i.e., the representatives of each
webpage) for a k anonymity-based clustering algorithm [34],
with the similarity between two webpages measured by com-
puting the Euclidean distance between their corresponding
super-matrices. The clustering itself follows a greedy strategy:
it constructs one anonymity set at a time by first selecting
an initial webpage and then repeatedly adding the webpage
whose super-matrix is closest, based on Euclidean distance,
to the current super-matrix of the partially constructed set.
Once k webpages have been assigned, the process repeats
to form the next set. The output is a list of anonymity sets,
each containing at least k webpages. We adopt the same k
anonymity-based clustering algorithm as used in Palette, but
with two key modifications:

Pattern-level clustering. Our method operates at the pattern
level rather than the webpage level. As explained in Section
V-C, a single webpage can produce multiple distinct traffic
patterns due to various reasons; clustering at this finer gran-
ularity yields more homogeneous groups. As an illustrative
example, Figure 2 compares the impact of clustering at the
webpage level versus the pattern level. For each fixed value
of k, we conduct two separate experiments. In the first, we
compute one supermatrix per webpage by taking the element-
wise maximum over all TAMs from that webpage, and then
apply the clustering algorithm from Palette to these webpage-
level supermatrices. In the second, we repeat the process at the
pattern level by computing one supermatrix per extracted traf-
fic pattern and clustering those instead, again using Palette. In
both cases, after clustering, we treat each cluster’s supermatrix
as the defended version of all traces in the cluster and compute

the bandwidth overhead across all the traces. This provides a
proxy for how well the clustering captures homogeneity. As
shown in the figure, clustering at the pattern level consistently
yields lower overhead.

Fig. 2. Comparison of website-level vs. pattern-level clustering. For each
value of k, clustering is applied to supermatrices constructed at the website
or pattern level, and the resulting average bandwidth overhead is measured.
Pattern-level clustering consistently results in lower overhead, especially as
k increases, indicating that clustering finer-grained traffic patterns captures
homogeneity more effectively than aggregating at the website level.

Diversity-aware distance metric. Instead of computing
the Euclidean distance between super-matrices, we define a
distance function d that directly captures attacker success
after regularization. Given an anonymity set C currently under
construction and a candidate pattern p (i.e., an intra-webpage
cluster), we evaluate the impact of merging them by computing
the average-case attacker success rate over the combined set
C ′ = C ∪ p.

For each pair of regularization parameters (pin, pout) in a
predefined grid P , we apply Tamaraw to all traces in C ′ and
compute the non-uniform attacker accuracy:

Ā
(
C ′; pin, pout

)
=

∑
ℓ

|C ′
ℓ|
|C ′|
·
max
w

∣∣{ t ∈ C ′
ℓ : site(t) = w}

∣∣
|C ′

ℓ|
,

where C ′
ℓ denotes the subset of traces in C ′ whose regularized

lengths equal ℓ. This measures the expected success rate of an
optimal attacker who predicts the most frequent webpage label
in each length bucket.

The distance d(C, p) is then defined as the average attacker
accuracy over the entire grid:

d(C, p) =
1

|P|
∑

(pin,pout)∈P

Ā
(
C ′; pin, pout

)
.

This formulation implicitly enhances l-diversity, since
adding a pattern from a new webpage typically reduces the
attacker’s success rate based on the webpage in the majority,
thus lowering d(C, p). We provide empirical validations for
this attribute in Appendix C-A. During clustering, we therefore
always merge the candidate p that minimizes d(C, p), encour-
aging both homogeneity in regularized shape and diversity
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in origin. Algorithm 1 provides detailed pseudocode of our
proposed anonymity set generation algorithm.

Algorithm 1 Pattern-Level Anonymity Set Generation
Input:
P = {p1, . . . , pN}: all extracted patterns
k: anonymity parameter
d(S, p): distance function between anonymity set S and pattern
p
Output:
S = {S1, . . . , Sm}: final anonymity sets

1: S ← ∅ ▷ Anonymity sets
2: U ← P ▷ the set of unassigned patterns

Step 1: Seed the first set
3: Choose any pseed ∈ U
4: S1 ← {pseed}; S ← {S1}; U ← U \ {pseed}

Step 2: Build additional sets
5: for i = 1 to

⌊
|P |
k

⌋
do

6: if |Si| < k then
7: while |Si| < k and U ̸= ∅ do
8: p⋆ ← argminp∈U d(Si, p)
9: Si ← Si ∪ {p⋆}; U ← U \ {p⋆}

10: end while
11: end if
12: if U ̸= ∅ then
13: pnew ← argmaxp∈U

∑
S∈S d(S, p)

14: Create Si+1 ← {pnew}; S ← S ∪ {Si+1}; U ←
U \ {pnew}

15: end if
16: end for

Step 3: Assign remaining patterns
17: for all p ∈ U do
18: j ← argminS∈S d(S, p)
19: Sj ← Sj ∪ {p}
20: end for
21: return S

The two previous phases (pattern extraction and anonymity
set generation) comprise the offline training stage of our
framework. A high-level illustration of this process is shown in
Figure 3, which depicts how traffic traces from different web-
pages are transformed into anonymity sets based on structured
patterns.

E. Early Anonymity Set Detection

As we mentioned, our defense follows a global-to-local
regularization strategy. Every new page load is protected by
singular global regularization parameters until enough packets
have arrived to identify the anonymity set that best matches
the live prefix; once the set is known, we switch to lighter,
local regularization parameters.

For the global-to-local switch, deciding which set to choose
and when it is safe to switch is an instance of early time-
series classification, a task where the goal is to make accu-
rate predictions based on incomplete sequences, as early as
possible. Early classification has been studied extensively in

Fig. 3. High–level workflow of the first two phases of our defense. 1. Pattern
extraction. For each webpage in the training dataset, we group its traces into
a small number of stable, recurring traffic patterns (dashed boxes), reflecting
variability due to CDNs, localization, and user behavior. 2. Anonymity
set construction. The extracted patterns are then clustered across different
webpages to form anonymity sets. In this example, each set contains at least
k = 3 distinct patterns originating from at least l = 2 different webpages,
thereby satisfying k-anonymity and l-diversity. A lightweight, cluster-specific
regularization schedule is precomputed for each set.

latency-critical domains such as medical diagnosis [35], [36]
and industrial process monitoring [37], [38]. In this work, we
adopt the ECDIRE framework [39], which has been designed
for reliable early classification of time series. ECDIRE learns,
for every class (in our case anonymity set), the earliest safe
timestamp at which the class can be predicted with at least a
user-selected fraction α of the accuracy that would be achieved
on complete traces. During deployment the classifier is queried
only at those safe timestamps, which removes unnecessary
tests on very short prefixes and guarantees that a decision is
issued as soon as the chosen confidence threshold is met.

For every anonymity set S we compute a safe timestamp τS
as the earliest prefix length (i.e., time) t at which a validator
(described below) can distinguish S from all other sets with
accuracy ≥ αAfull

S , where Afull
S is the accuracy of the validator

on full traces of S. We never test S before τS ; conversely, if
the trace is not accepted at τS , S is never considered again
for that trace. This “single-shot” rule forces every trace that
joins S to switch defenses at the same fixed time, closing a
potential timing side channel.

In the original ECDIRE algorithm [39], the training process
initially involves training a separate classifier at each timestep.
Once training is complete, a post-processing step identifies
the safe prediction timestamps, the points in time where early
classification is both accurate and confident. The final model
then retains only the classifiers corresponding to these selected
timestamps, discarding the rest. In our case, WF classifiers
are deep networks, so to train and retain a full model for
each timestamp would be prohibitively expensive in time and
memory. Instead we factor the prediction task into a single
deep backbone plus a collection of lightweight per-site models
as follows.

1) Stage A – webpage predictor (Holmes). We train one
Holmes network [40], a spatial–temporal CNN encoder
learned with supervised contrastive loss so that partial
traces embed close to their full counterparts. At inference
time Holmes outputs the most likely webpage w given an
incomplete input trace.

2) Stage B – Pattern predictor (per-site k-fingerprinting).
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Fig. 4. Illustration of early anonymity set prediction and parameter switching.
An incoming trace is initially regularized using the global parameters (pgin =
0.012, pgout = 0.04) in this example. At each predefined safe timestamp, the
classifier attempts to assign the trace to one of the candidate anonymity sets.
In the first attempt, the classifier predicts S1, but no switch occurs because
S1 is not valid at that timestamp. At the second safe timestamp, the trace
is matched with S2, which is an acceptable set at that point. This triggers
a transition to S2’s per-set lighter parameters (pS2

in = 0.06, pS2
out = 0.08),

which are applied for the rest of the connection. Each anonymity set is tied
to a unique safe timestamp, so switching can occur at most once.

For each webpage w and each time stamp t of interest,
we train a small k fingerprinting (kFP) random forest
classifier [4], denoted kFP(t)

w , using the traces of the site
truncated at time t and the labels of each trace being the
number of the cluster intra-site (i.e. pattern) of that trace.
kFP requires only a modest number of examples, making
it well-suited for scenarios where per-site data is limited.

Given an incoming trace prefix of length t, the prediction
process proceeds as follows:
1) Holmes predicts the most likely webpage w.
2) The corresponding kFP model kFP(t)

w identifies the pattern
p.

3) By construction, the pair (w, p) uniquely determines an
anonymity set Sw,p. If t = τSw,p

(i.e., the current timestamp
is the safe prediction timestamp for that anonymity set),
we immediately switch to that set’s lighter parameters;
otherwise, we continue applying the global regularization
schedule.

After training the single Holmes model and all kFP(t)
w

classifiers across timestamps, we determine a safe timestamp
τS for each anonymity set S, indicating the earliest point
at which a confident classification can be made. For each
webpage w, we keep only the kFP(t)

w models corresponding
to its safe timestamps. The Holmes model is site-agnostic and
trained once, then reused across all traces and timesteps. This
design preserves ECDIRE’s early-decision capability while
reducing computational cost by avoiding deep model training
at every time step. Figure 4 illustrates this switching process
and its alignment with safe timestamps.

F. Security Bound for Adaptive Tamaraw
Despite transitioning from a fixed global defense to lighter,

AS-specific configurations after a safe prediction point, Adap-

tive Tamaraw retains a provable security guarantee. Specif-
ically, we show that the defense remains non-uniformly
weighted δ-non-injective, ensuring that the attacker’s average
success probability is formally bounded. This bound reflects
the attacker’s expected success probability across the entire
distribution of defended traffic, aligned with standard metrics
from prior work, including Tamaraw [10], which included
non-uniform (i.e., average) security.

Theorem V.1 (Global Non-Uniformly Weighted
δ–Non-Injectivity). Let S be the set of anonymity sets
constructed in Section V-D. For a fixed global regularization
parameter pair (pin, pout), let Ā(Si; pin, pout) denote the
expected attacker success rate over anonymity set Si ∈ S, as
defined in Section VI-D (Eq. 5). Define the global injectivity
parameter δ as:

1

δ
= ESi∼S

[
Ā(Si; pin, pout)

]
.

Then Adaptive Tamaraw is non-uniformly weighted δ-non-
injective, and the attacker’s average success probability is
bounded by:

Pr[success] ≤ 1

δ
.

The formal proof of this result is presented in Appendix E.
This result is intuitive: the attacker’s overall bounded suc-

cess rate is the average across the bound for each combination
of anonymity set and trace length. Any two traces from the
same set and of the same length are made indistinguishable
by the defense, a principle inherited from Tamaraw. Con-
sequently, the attacker’s optimal strategy in an anonymity
set reduces to guessing the most common webpage in each
such length-matched group, which limits their average success
rate captured by Ā(Si). Our novelty lies in deriving the
overall security bound by averaging these individual success
probabilities across all possible anonymity sets.

VI. EXPERIMENTAL EVALUATION

This section empirically evaluates the effectiveness, effi-
ciency, and generalizability of Adaptive Tamaraw. The goal
is to show that the defense lowers bandwidth and latency
overhead while maintaining provable bounds on attacker suc-
cess, even under strong adversaries. Section VI-A outlines the
experimental setup; Section VI-B tests performance on in-
training webpages (defended sites seen during training); Sec-
tion VI-C examines robustness on out-of-training webpages
with unseen traffic; and Section VI-D checks the tightness of
theoretical bounds from Section V-F against observed attack
accuracies.

A. Experimental Setup

Dataset: We conduct our experiments on two well-known
public WF datasets. The first is collected by Sirinam et
al. [6], and it has become a standard benchmark in recent WF
research [8], [22], [41], [42]. For our experiments, we used its
closed-world subset, which contains 1,000 traffic traces for
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each of the 95 monitored websites. The second is the large-
scale Automated Website Fingerprinting (AWF) dataset from
Rimmer et al. [43]. From this collection, we use the subset
corresponding to the top 100 most popular websites, which
provides 2,500 traffic traces per website. Specifically, both
data sets consist of traces collected over live Tor connections,
reflecting authentic and variable network conditions, including
congestion, jitter, and circuit diversity.

Parameter Grid for Adaptive Tamaraw: Tamaraw is pa-
rameterized by three key hyperparameters: the upstream and
downstream padding intervals (ρout, ρin), and the length bucket
parameter L: all traces are padded to multiples of L. A higher
L increases the likelihood that multiple defended traces will
collapse to the same length, reducing fingerprintability. We
consider three values for L: {100, 500, 1000}.

For each L, we explore a grid of candidate values for ρin
and ρout. Given that incoming traffic typically arrives more
frequently than outgoing traffic during webpage loading [10],
[12], we sweep ρin in the range [0.001, 0.006] and ρout in
the range [0.005, 0.21]. We retain only the Pareto-optimal
configurations (those for which no other configuration achieves
strictly lower bandwidth and time overhead simultaneously
[10]). This selection yields 33 unique (ρin, ρout) pairs for
the Sirinam et al. dataset and 40 for the AWF dataset, that
span the optimal trade-off frontier between efficiency and
security. A detailed report of these configurations is provided
in Appendix B-A.

Model Setup: As discussed in Section V-E, our early
anonymity set detection relies on a two-stage pipeline: a
Holmes model for webpage-level prediction, followed by a
lightweight k-fingerprinting (kFP) model for identifying fine-
grained traffic patterns. Full details on model architectures are
provided in Appendix A.

Hyperparameter Configuration: For optimal performance
and fair evaluation, we performed a grid search over each
hyperparameter. Table II lists the key parameters of Adaptive
Tamaraw. The first three (k, Max Intra-Webpage Patterns, and
α) minimize overhead while maintaining security, and the
others maximize prediction accuracy for early anonymity set
detection.

TABLE II
HYPERPARAMETERS FOR ADAPTIVE TAMARAW WITH GRID SEARCH

SPACES.

Parameter Value Search Space
K (local scaling) 7 1–10

Max Intra Webpage Patterns 6 2–8
α (ECDIRE) 0.9 {0.6,0.7,0.8,0.9, 1}

Holmes lr 5e-4 {5e-6,5e-5,5e-4,5e-3}
TAM Time Slot 80ms {40ms, 80ms, 120ms }
Holmes batch 256 {32,64,128,256}

Holmes epochs 80 fixed

B. In-Training Evaluation

In the in-training setting, we evaluate the effectiveness
of our defense in protecting webpages that were explicitly

included in the defense’s training dataset. Specifically, we
conduct our evaluation on the monitored websites from both
the Sirinam et al. and AWF datasets. These sites serve as our
set of protected targets. Following prior work [22], [8], we
partition the dataset into training, validation, and testing sets
using an 8:1:1 ratio. At a high level, our full defense pipeline
proceeds as follows. We begin by applying the modified
CAST algorithm V-C to the training traces of each webpage
to extract recurring traffic patterns. These patterns are then
clustered using the k-anonymity-based algorithm introduced
in Section V-D to obtain our anonimity-sets (we perform the
experiments by varying the minimum required anonymity set
size k from 2 to 30). For each of the obtained anonymity-
sets, we identify a safe timestamp using early time-series
classification as described in Section V-E, allowing us to
switch from a global Tamaraw configuration to a cluster-
specific configuration as early as possible. Finally, we compare
the performance against applying the classical Tamaraw to the
traces.

For a fixed global configuration (ρgin, ρ
g
out) selected from the

Pareto-optimal grid introduced in Section VI-A, we determine
cluster-specific regularization parameters for each anonymity
set. Specifically, we sweep over the full grid of (ρin, ρout) pairs
and select the configuration that achieves lower bandwidth and
time overheads on the traces within the anonymity set, com-
pared to (ρgin, ρ

g
out). This ensures that the local configuration

provides a clear improvement over the global baseline for the
assigned subset of traces.

We also train the Holmes model on the same training traces
to perform early webpage prediction, and independently train a
set of kFP classifiers for each webpage to support fine-grained
pattern prediction. Using the ECDIRE procedure (described
in Section V-E), we derive a safe prediction time for each
(webpage, pattern) pair. We set α = 0.9, meaning a prediction
is considered safe once it reaches 90% of the classification
accuracy achieved when the classifier is trained on complete
traces. This value was selected empirically: we evaluated a
range of α values from 0.5 to 1, and compared the resulting
overhead improvements. The experiments showed that α =
0.9 yielded the best overhead improvements compared to the
original tamaraw.

We proceed to evaluate the performance of Adaptive Tama-
raw using the held-out test set. For each test trace i, and for
each global Pareto regularization pair (ρgin, ρ

g
out), we first apply

Tamaraw with the global parameters and record the resulting
bandwidth and time overheads. Next, we evaluate the same
trace under the complete adaptive Tamaraw strategy: we begin
with (ρgin, ρ

g
out) and switch to the specific configuration of the

anonymity set (ρSi

in , ρ
Si
out) once the predicted anonymity set

becomes identifiable according to its safe prediction time. We
then record the resulting overheads. We repeat this procedure
for all the global Pareto regularization pairs (ρgin, ρ

g
out).

Table III presents the average overheads (time and band-
width, each averaged over all global regularization pairs) for
static Tamaraw versus Adaptive Tamaraw at various cluster
sizes k, across three bucket lengths L ∈ {100, 500, 1000}
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for both datasets.. On the Sirinam et al. dataset, the savings
are substantial: when L = 1000, Adaptive Tamaraw reduces
the average overheads from 258% bandwidth and 199% time
overhead to 223% and 135% respectively at k = 2, a combined
reduction of 99.0 percentage points. For the AWF dataset, we
observe that while the baseline overhead for static Tamaraw
is generally higher, the overhead reductions from our defense
are still pronounced. For instance, at L = 1000 and k = 2
on AWF, the average overheads drop from 182% and 207%
to 145% and 154%, a reduction of 90.0 percentage points.

The choice of k controls the defense’s effectiveness: smaller
values result in a looser bound on attacker accuracy (fully
explored in Section VI-D) while producing the smallest
overhead. Interestingly, Adaptive Tamaraw results in higher
overhead savings with smaller k, i.e. when the anonymity sets
cover fewer intra-webpage patterns. An intuitive explanation
is that in high k settings, each anonymity set is large and
therefore does not benefit as much from localized, set-specific
adaptive parameters. More comprehensive results across a
broader range of k values are provided in Appendix B-D.

Per-Trace Analysis. Beyond aggregate averages, we ex-
amine how Adaptive Tamaraw impacts overhead on a per-
trace basis. To this end, we selected a representative global
Pareto configuration, (ρin = 0.012, ρout = 0.04), which was
also reported in the original Tamaraw paper [10], and offers
a balanced trade-off between bandwidth and time overhead.
We applied both static Tamaraw and Adaptive Tamaraw (with
k = 7 and L = 100) to each test trace in the Sirinam et
al. dataset using this configuration as the global parameters.
The resulting average bandwidth and time overheads for static
Tamaraw were 106% and 53%, respectively. With Adaptive
Tamaraw, these dropped to 95% and 47%, corresponding to
an overall overhead reduction of approximately 17%. We
measured the difference in total overhead between the two
methods for each trace and plotted the distribution.

Figure 5 shows the resulting distribution of per-trace total
overhead savings. Positive values indicate cases where Adap-
tive Tamaraw yielded lower overhead than static Tamaraw,
while negative values represent regressions. Although some
traces exhibit higher overhead under adaptation, the overall
trend is clearly beneficial: the average saving is positive and
approximately 10% of traces experience savings exceeding
100%, even reaching up to 500%. These results demonstrate
Adaptive Tamaraw’s ability to reduce overhead, particularly
significant for traces that would otherwise be heavily penalized
by a one-size-fits-all padding strategy.

Furthermore, to assess how reliably Adaptive Tamaraw
identifies the correct anonymity set at runtime, we evaluated
the performance of the combined Holmes + kFP classifier used
in the ECDIRE procedure. On average, the correct anonymity
set was identified in 81% of test traces. In 10% of cases,
no set was chosen, resulting in the defense completing using
the original Tamaraw parameters. The remaining 9% of traces
were assigned to an incorrect anonymity set.

This per-trace analysis underscores a key advantage of
adaptation: by tailoring the padding schedule to individual

Fig. 5. Distribution of per-trace overhead savings achieved by Adaptive Tama-
raw over static Tamaraw for one representative global padding configuration:
(ρin = 0.012, ρout = 0.04), with k = 7 and L = 100.The red vertical line
at 0% indicates the point where both methods incur equal overhead; values
to the right indicate savings from adaptation, and those to the left indicate
higher cost.

traffic characteristics as soon as sufficient information becomes
available, our approach delivers substantial efficiency gains in
a fine-grained and targeted manner.

C. Out-of-Training Evaluation

In the out-of-training setting, our goal is to assess how well
Adaptive Tamaraw generalizes to website traffic that was not
included during the training phase. This scenario is particu-
larly important, as prior anonymity set–based defenses [16],
[2], [22] are typically constrained to protect only in-training
webpages, limiting their applicability in real-world browsing
environments where users may visit previously unseen pages.

We split the Sirinam et al. closed-world dataset, which
comprises 95 webpages, into two disjoint subsets of webpages.
One subset (containing approximately half of the webpages)
serves as the training set for the defense, while the other
subset is reserved for the out-of-training evaluation, simulating
previously unseen webpages.

For this experiment, we instantiate Adaptive Tamaraw with
k = 7 and L = 100, a configuration that strikes a practical
balance between efficiency and protection. The choice of
L = 100, inspired by prior work [10], provides reasonable
security guarantees while avoiding the excessive overhead
associated with larger values. Meanwhile, k = 7 offers an
effective trade-off: it yields notable reductions in bandwidth
and time overhead (Table III) and maintains low prediction
accuracy within anonymity sets (Section VI-D) (i.e., under this
setting, the maximum theoretical success rate of any attacker
remains below 50%).

We follow the same training procedure as in the in-training
setting, including pattern extraction, anonymity set generation,
classifier training, and safe time on the first half of webpages.
During evaluation of the testing traces, the defense initially
applies the global Tamaraw parameters from Section VI-A
and then attempts to assign the trace to one of the anonymity
sets, constructed exclusively from the training webpages, at
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TABLE III
AVERAGE OVERHEADS (TIME AND BANDWIDTH) COMPARISON BETWEEN STATIC TAMARAW AND ADAPTIVE TAMARAW ACROSS MULTIPLE CLUSTER

SIZES k AND BUCKET LENGTHS L. EACH ENTRY SHOWS THE ABSOLUTE OVERHEAD PERCENTAGE, WITH THE DIFFERENCE FROM TAMARAW IN
PARENTHESES. ADAPTIVE TAMARAW CONSISTENTLY REDUCES OVERHEAD, ESPECIALLY FOR SMALL VALUES OF k.

Dataset L
Tamaraw (Baseline) Adaptive Tamaraw

k = 2 k = 7 k = 30

BW Time BW Time BW Time BW Time

Sirinam et al.
100 158% 83% 136% (-22) 68% (-15) 144% (-14) 74% (-9) 157% (1) 77% (-6)
500 198% 98% 176% (-22) 86% (-12) 184% (-14) 86% (-11) 196% (-2) 87% (-11)
1000 258% 199% 223% (-35) 135% (-64) 235% (-23) 144% (-55) 248% (-10) 150% (-49)

AWF
100 151% 153% 100% (-51) 111% (-42) 109% (-42) 123% (-30) 125% (-26) 135% (-18)
500 157% 183% 122% (-35) 147% (-36) 132% (-25) 155% (-28) 141% (-16) 172% (-6)
1000 182% 207% 145% (-37) 154% (-53) 157% (-25) 162% (-45) 169% (-13) 182% (-25)

any of the precomputed safe times. If such an assignment is
possible, the defense switches to the corresponding anonymity
set–specific parameters for the remainder of the trace.

To compare the efficiency of different defense strategies
under practical user experience constraints, we evaluate their
performance across a series of fixed time overhead con-
straints. For each constraint (e.g., requiring time overhead
to be less than 10%), we identify the defense configuration
from our Pareto-optimal set that yields the lowest possible
bandwidth overhead while respecting that time limit. This
methodology allows us to answer a practical question: Given
a maximum acceptable delay, what is the minimum bandwidth
cost? We report these values for three scenarios: (i) the
original Tamaraw defense, (ii) Adaptive Tamaraw on out-of-
training webpages, and (iii) Adaptive Tamaraw on in-training
webpages.

Table IV presents the results of this analysis, where each
column represents a different time overhead constraint. The
values in the table show the minimum bandwidth overhead
achieved by the best configuration that satisfies the given time
constraint. Adaptive Tamaraw on in-training webpages shows
substantial gains over the original Tamaraw, especially under
tight time constraints. For instance, when the time overhead
is limited to 10%, Adaptive Tamaraw (in-training) achieves
a reduction of 52 percentage points in bandwidth overhead
compared to the baseline. Notably, these improvements are
more pronounced at lower time overhead thresholds, which
is particularly practical: minimizing additional delay is often
crucial for preserving user experience.

In the out-of-training setting, where all test traces are
from previously unseen webpages, Adaptive Tamaraw still
manages to slightly outperform the global Tamaraw strategy.
The reductions are modest (e.g., 2–7 percentage points), but
consistent across all thresholds. This suggests that even for
webpages not present during training, partial trace similarity
to known anonymity sets can still yield meaningful gains.

Along with minimum bandwidth values, we report the
average bandwidth overhead, computed as the normalized
area under the Pareto curve. Both in-training and out-of-
training versions of Adaptive Tamaraw show lower average

overhead than the original Tamaraw. When Adaptive Tamaraw
is trained on webpages the user would visit, it achieves its best
performance, but it still outperforms Tamaraw even if it is not.

D. Attacker Accuracy

1) Theoretical Bounds: In this section, we provide a numer-
ical evaluation of the average success probability bound stated
in Theorem E.2, which measures the level of security offered
by Adaptive Tamaraw. We use the anonymity sets generated
from the in-training evaluation (Section VI-B).

For each fixed combination of anonymity set size k and
Tamaraw’s bucket length parameter L, we consider the corre-
sponding anonymity sets and evaluate the success probability
bound for all 33 Pareto-optimal (ρin, ρout) pairs identified in
Section VI-A. For each pair, we compute the right-hand side of
the inequality in Theorem V.1. We then average these bounds
across all 33 configurations to obtain a success bound for each
(k, L) pair.

Figure 6 presents the computed theoretical upper bounds on
the attack success probability, as described in Theorem E.2,
across varying anonymity set sizes k and for three different
values of the bucket length parameter L ∈ {100, 500, 1000}.
As expected, the attacker’s success probability decreases with
larger anonymity set sizes, confirming that increasing k height-
ens adversarial uncertainty and weakens passive WF attacks.
Interestingly, the drop is not inversely proportional to k,
indicating that larger k leads to sets containing many traces
from the same site. Increasing L (padding length) also lowers
maximum attacker accuracy, for example, at k = 7, success
falls from about 45% with L = 100 to 35% with L = 1000,
though with substantial overhead, as shown in Table III.

We also evaluated the theoretical bound in the out-of-
training scenario with k = 7 and L = 100. We assigned
each trace to its predicted anonymity set, computed the corre-
sponding bound, and averaged across all traces. This yielded a
maximum attacker accuracy of 31%, confirming the theoretical
framework remains valid for unseen webpages. This bound
is lower than the in-training counterpart in Figure 6 (45%),
possibly because the defense reverts toward original Tamaraw
behavior out-of-training, as evidenced by modest bandwidth
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TABLE IV
BANDWIDTH OVERHEAD FOR TAMARAW AND ADAPTIVE TAMARAW UNDER FIXED TIME OVERHEAD CONSTRAINTS IN BOTH IN-TRAINING AND
OUT-OF-TRAINING SETTINGS. PARENTHESES SHOW PERCENTAGE REDUCTIONS RELATIVE TO TAMARAW. ADAPTIVE TAMARAW CONSISTENTLY

REDUCES MINIMUM AND AVERAGE BANDWIDTH OVERHEAD, WITH LARGEST REDUCTIONS IN-TRAINING.

Fixed Time
Overhead

Minimum Bandwidth Overhead (%) Average Bandwidth
< 10% < 45% < 125% < 250% Overhead (AUC)

Tamaraw 279 124 83 66 82

Adaptive Tamaraw
(out-of-training) 277 (-2) 119 (-5) 80 (-3) 64 (-2) 79 (-3 )

Adaptive Tamaraw
(in-training) 227 (-52) 110 (-14) 72 (-11) 61 (-5) 68 (-14)

Fig. 6. Formal upper bound on attacker accuracy for different anonymity-set
sizes k and bucket-length parameters L (Section V-F). Increasing k enlarges
each trace’s pre-image, while larger L suppresses size-based leakage. Together
they tighten the bound from ≈ 0.75 at (k, L) = (2, 100) to below 0.17 at
(k, L) = (30, 1000), illustrating the security-overhead trade-off.

improvements in Table IV. This produces more uniform pa-
rameters and homogeneous traffic patterns, lowering attack
success rates.

2) Empirical Attacks: To validate the theoretical success
probability bounds derived in the previous section, we evaluate
the effectiveness of state-of-the-art WF attacks on traces
defended by Adaptive Tamaraw, and compare against the
corresponding theoretical upper bounds to assess the tightness
of the bound presented in Theorem 6.2. We consider four
widely-used and high-performing WF attack models: kFP [4],
Tik-Tok [7], RF [8], and LASERBEAK [9].

In alignment with Section VI-C, we use the practical
configuration of k = 7 and L = 100. We randomly sample
four (ρin, ρout) pairs from the 33 Pareto-optimal global con-
figurations and apply Adaptive Tamaraw to the training traces
using each selected pair. We then conduct adversarial training
using the defended traces and evaluate the attack success rate
of each WF model on the corresponding test set. The training
protocols and hyperparameters for all four models are the same
mentioned in their original paper.

Table V compares the empirical classification accuracy
of the four WF attack models against the theoretical upper
bounds. Across all evaluated cases, we observe that the empir-
ical success rate of each model remains consistently below the

TABLE V
THEORETICAL MAXIMUM ATTACKER ACCURACY BOUND VERSUS

EMPIRICAL ACCURACY OF WEBSITE FINGERPRINTING ATTACKS FOR FOUR
RANDOMLY SELECTED (ρOUT, ρIN) PADDING RATE PAIRS WITH k = 7 AND

L = 100.

Padding rates Accuracy (%)

ρout ρin Bound kFP Tik-Tok RF LASERBEAK

0.012 0.030 41 31 20 39 31
0.009 0.010 43 33 21 38 32
0.010 0.020 42 31 22 40 30
0.030 0.120 35 20 15 33 23

theoretical bound, where RF is the model achieving the closest
results to the bound. This shows that the bound provided
in Theorem 6.2 is useful as a principled estimate of attack
performance.

VII. DISCUSSION AND CONCLUSION

We proposed a defense framework combining regularization
and supersequence methods with three components: pattern-
level clustering, (k, l)-diverse anonymity sets, and early-time
switching. Instantiated as Adaptive Tamaraw, it maintains
provable guarantees while adapting to trace structure. Based
on our experiments, adaptive Tamaraw offers meaningful gains
when tested on webpages it was trained on, and performs
similarly to the original Tamaraw on webpages it was not
trained on. As k increases, the defense approaches classic
Tamaraw, enabling control over the privacy–overhead trade-
off (Table III, Figure 6).

While we instantiate our approach using Tamaraw due to
its formal security bound, our approach is general and can be
extended to other defenses that support fixed regularization.
Each stage of our approach presents opportunities for future
research. For instance, more advanced representation learning
could enhance pattern detection, while novel clustering algo-
rithms could further optimize anonymity set generation. That
said, the computational analysis in Appendix D shows that
our current instantiation of Adaptive Tamaraw adds negligible
latency and memory overhead on standard hardware. This
makes it suitable for practical use in the Tor ecosystem, such
as a Pluggable Transport in the WFDefProxy framework [44].
With inference latency under 2 ms, it can classify and adjust
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padding parameters in real time without computational bottle-
necks, making it a viable option for Tor Browser integration.
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APPENDIX A
MODEL ARCHITECTURES

Holmes. We use the Holmes architecture from Deng et
al. [40], a hybrid convolutional encoder with 2 blocks of
Conv2D layers, followed by 4 blocks of Conv1D layers,
trained with supervised contrastive learning to align partial
traffic traces with full-trace embeddings for early-stage website
fingerprinting.

k-Fingerprinting (kFP). We use kFP [4], a random forest
with 100 trees per (website, safe time) pair, based on packet
and timing statistics; fingerprints are leaf ID sequences clas-
sified by k-NN.

APPENDIX B
ADDITIONAL EXPERIMENTAL RESULTS

A. Tamaraw Parameter Grid and Pareto Frontier

To characterize the trade-off between bandwidth and time
overhead in the Tamaraw defense, we constructed a grid of
(ρin, ρout) pairs following the method recommended in the
original Tamaraw paper [11]. Specifically, we started with
the original values used in that work: ρinit

in = 0.012 and
ρinit

out = 0.04, and varied each parameter independently across
14 values, ranging from 7 times smaller to 7 times larger on a
logarithmic scale. That is, each consecutive value differs from
the previous by a multiplicative factor of eln(7)/7 ≈ 1.316.
This results in a total of 14 × 14 = 196 combinations of
(ρin, ρout) pairs.

For each configuration, we applied Tamaraw and measured
the overheads on the traces. We kept only Pareto-optimal pairs,
those where no other configuration achieves lower overhead
in both metrics. Figure 7 shows the 33 points fpr Sirinam et
al. frontiers for L = 100. Each red dot marks a Pareto-optimal
(ρin, ρout) with its (bandwidth, time) overhead.

B. Security Bound Analysis

Our security bound in Section V-F is designed to bound
the attacker’s average success rate, assuming the attacker
fully knows the trace and the underlying trace information,
including the switching time τs, the chosen anonymity set and
the sequence length. Here we evaluate how much information

Fig. 7. Pareto frontier for Tamaraw overheads computed from 196 parameter
pairs for L = 100. Each point corresponds to a (ρin, ρout) configuration that
is Pareto-optimal with respect to bandwidth and time overhead.

is individually leaked by a τs-aware adversary who, based
on the observed switching time and post-switch rate pair,
can infer the corresponding anonymity set. We performed this
evaluation across all 33 Pareto-optimal global configurations
(with L = 100 and k = 7), comparing the empirical success
rate of this adversary against the theoretical security bound
derived in Section V-F. All defense parameters, including
anonymity sets and safe timestamps, are derived from the
training set, and the adversary’s performance is measured on
the held-out test set.

Our analysis reveals that the switching mechanism does
indeed leak the anonymity set identity with high probability:
on average, the correct anonymity set accounts for 95.64% of
the traces sharing a specific (τs, rates) tuple. Our theoretical
security bound has already assumed such leakage. As shown
in Figure 8, the τ -aware attacker’s empirical accuracy consis-
tently remains below the theoretical security bound across all
configurations. This confirms that even when the adversary
successfully identifies the anonymity set via the switching
signal, the k-anonymity and l-diversity properties within that
set remain sufficient to cap their success rate. Furthermore,
a gap exists between the theoretical bound and the attacker’s
actual performance, which might also suggest that the presence
of misclassified and non-switching traces introduces additional
ambiguity, further confusing the adversary.

C. Generalization to Onion Service Traffic

To further evaluate the robustness of our method in out-
of-training conditions, we conduct an experiment using traces
from onion services, which can exhibit different traffic char-
acteristics than standard websites. We use the onion service
dataset collected by Overdorf et al. [45], which contains
traffic from distinct services, from which we use 100 sites.
The experimental setup is the same as our primary out-of-
training evaluation: we construct anonymity sets using only
the Sirinam et al. dataset, and then apply both the static
and adaptive defenses to the unseen onion traces to assess
our method’s ability to generalize to this entirely different
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Fig. 8. Comparison of the theoretical security bound and the empirical accu-
racy of a τ -aware attacker across 33 global configurations (L = 100, k = 7).
The attacker consistently performs below the bound, demonstrating that the
defense remains robust even when the switching signal reveals the anonymity
set.

domain. Table VI compares the minimum bandwidth overhead
between Adaptive Tamaraw and static Tamaraw under fixed
time overhead constraints. For ease of comparison, we have
also included the results for normal out-of-training websites
from Section VI.C. The data shows that Adaptive Tamaraw
provides improvements in both scenarios. For normal out-
of-training websites, the adaptive approach yields modest
but consistent reductions in bandwidth overhead of up to
5 percentage points. Similarly, Adaptive Tamaraw reduces
bandwidth overhead across all constraints on the onion service
traffic. Under a 20% time overhead limit, our approach reduces
bandwidth overhead by 8 percentage points for onion websites,
demonstrating that even with fundamentally different website
traffic, our adaptive mechanism identifies structural similarities
to provide improvements.

TABLE VI
COMPARISON OF MINIMUM BANDWIDTH OVERHEAD FOR TAMARAW AND

ADAPTIVE TAMARAW UNDER VARIOUS FIXED TIME OVERHEAD
CONSTRAINTS WHEN APPLIED ON OUT-OF-TRAINING WEBSITES (BOTH

NORMAL AND ONION WEBSITES). VALUES IN PARENTHESES REPRESENT
PERCENTAGE POINT REDUCTIONS RELATIVE TO TAMARAW.

Website Method Minimum Bandwidth
Overhead (%)

<20% <45% <125% <200%

Normal Tamaraw 168 124 83 67
Adaptive 166 (-2) 119 (-5) 80 (-3) 67 (0)

Onion Tamaraw 195 120 78 66
Adaptive 187 (-8) 116 (-4) 77 (-1) 65 (-1)

D. Overhead Improvement Across Cluster Sizes
We present the overhead reduction achieved by Adaptive

Tamaraw compared to Tamaraw depending on cluster sizes.
For each test trace in the Sirinam et al. dataset, we compute
the average improvement for bandwidth and time overhead
individually and average the results. Figure 9 illustrates the
average overhead improvement achieved by Adaptive Tama-
raw over static global Tamaraw configurations, plotted as a

function of the cluster size k. Across all values of L, we
observe that Adaptive Tamaraw consistently reduces overhead
compared to the baseline. The largest reductions (observed
for L = 1000) are seen in the time overhead, which is cut
by over 50 percentage points for small k. For smaller bucket
lengths (L = 100 and L = 500), the savings are more modest
but are more evenly distributed between both bandwidth and
time improvements. In all scenarios, smaller anonymity sets
(i.e., decreasing k) generally lead to greater improvements,
and furthermore when L is large.

Fig. 9. Average total overhead improvement of Adaptive Tamaraw compared
to global Tamaraw, plotted across different anonymity set sizes k for three
values of L.

APPENDIX C
ABLATION STUDIES

A. Cluster Diversity Evaluation

As discussed in Section V-D, our k-anonymity cluster-
ing algorithm uses a Tamaraw-specific distance function that
encourages low intra-cluster diversity. To validate this, we
evaluate the purity of generated anonymity sets.

Following [46], we compute cluster i’s purity pi as
maxj Ni,j

Npi
, where Ni,j is the number of traces from website

j in cluster i, and Npi is the total traces in cluster i. Lower
purity indicates greater diversity. We compute average purity
across all clusters for each k with fixed L = 100. Figure 10
shows these values alongside the theoretical lower bound
f(k) = 1/k, representing optimal diversity for a perfectly
balanced cluster. As shown in the figure, the empirical purity
values closely track the 1/k curve, indicating that our cluster-
ing procedure approaches the theoretical optimum in terms of
diversity.

B. CAST Modifications

To assess the effect of our CAST algorithm changes, we
performed an ablation study measuring each modification’s
impact on clustering metrics using the Sirinam et al. dataset
(Table VII). The baseline CAST creates highly fragmented
clusters, with over 81% containing fewer than 20 traces.
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Fig. 10. Average cluster purities vs. anonymity set size k, for L = 100. The
dashed line shows the theoretical lower bound 1/k.

Adding a dynamic threshold increases average cluster size,
while cleaning and post-processing improve size balance.
Cleaning reduces small clusters from 64.3% to 13.6%, and
post-processing merges remaining ones to 0.2%, yielding a
final size ratio of 3.83 and an average cluster size of 200.
Together, these updates produce stable, well-balanced traffic
pattern clusters vital to our defense framework.

TABLE VII
EFFECTS OF CAST MODIFICATIONS ON CLUSTERING QUALITY.

Variant Average Small Cluster Largest/
Cluster Size % Smallest

Baseline (Raw) 13 81.9 200
+ Dynamic Threshold 70 64.3 633
+ Cleaning Step 74 13.6 27.7
+ Post Processing 200 0.2 3.83

C. Sensitivity Analysis on α

The early-switching confidence threshold α controls the bal-
ance between efficiency and security in our adaptive defense
by defining the safe timestamp τs where the system switches
from global to local configuration. We derived anonymity
sets from the training set and ran a sensitivity study on
validation data. Lower α values trigger earlier, less confident
switching, extending the use of efficient local parameters but
increasing vulnerability, as predictions align less with true
anomaly structures. As Table VIII shows, reducing α from 1.0
to 0.6 boosts overhead savings from ∼15% to ∼34%, while
the taus attacker accuracy (introduced in Appendix B-B) rises
from 34% to 41%. We chose α = 0.9 for its balanced trade-
off.

D. Webpage vs Pattern Analysis

To quantify the end-to-end advantage of clustering fine-
grained traffic patterns rather than the conventional approach
of clustering at the website level, we conducted an ablation
study comparing the performance of Adaptive Tamaraw under
both configurations, using a bucket length of L = 100 on the
Sirinam et al. dataset. Table IX presents the resulting average

TABLE VIII
PERFORMANCE METRICS ACROSS DIFFERENT ALPHA VALUES FOR

ADAPTIVE DEFENSE MECHANISM.

Metrics
α 0.6 0.7 0.8 0.9 1.0

Overhead Improvement -34% -32% -27% -25% -15%
τs Aware Attacker Acc. 41% 39% 38% 36% 34%

total overhead (bandwidth + time), confirming that operating
at the pattern level consistently yields lower overhead across
all tested values of k. For instance, at k = 2, our fine-grained
approach reduces overhead by 11 percentage points compared
to the website-level baseline. This performance gain stems
from the increased homogeneity of pattern-level anonymity
sets.

TABLE IX
COMBINED OVERHEADS ACROSS DIFFERENT GRANULARITY LEVELS.

Granularity k = 2 k = 7 k = 30

Website Level 219% 229% 243%
Pattern Level 205% 217% 235%

APPENDIX D
COMPUTATIONAL AND MEMORY OVERHEAD

We report the computational and memory costs of Adaptive
Tamaraw, measured on a system with an AMD EPYC 9454
CPU and an NVIDIA H100 GPU (20 GB MIG). The main
Holmes model is 8.21 MB, and each lightweight kFP model
is 0.41 MB. Inference latency per decision point is 1.84 ms:
0.15 ms for site prediction and 1.69 ms for traffic pattern iden-
tification. Our ECDIRE procedure retains 4.09 safe timestamps
per site, requiring about 160 MB total storage for 95 sites. As
summarized in Table X, the defense is lightweight and suitable
for real-time deployment.

TABLE X
SUMMARY OF COMPUTATIONAL AND RESOURCE COSTS.

Metric Value
Holmes Model Size 8.21 MB
kFP Model Size (per instance) 0.41 MB
Total Inference Latency (per decision) 1.84 ms
Avg. Safe Timestamps per Site 4.09

APPENDIX E
PROOF OF SECURITY BOUND FOR ADAPTIVE TAMARAW

Notation. Let S = {S1, . . . , Sm} be the anonymity sets of
traffic patterns (produced in Section V-D). For every set Si we
fix a safe time tSi

; this value is the same for all traces in Si

but may differ across sets.
Because tSi

is fixed inside the set, an observer who notices
the switch time learns only that the trace belongs to an
anonymity set whose safe time equals tSi .
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AS-specific tail. Inside an anonymity set Si, let

Si,ℓ = {t ∈ Si : len(t) = ℓ}

denote the subset of defended traces whose total length is
ℓ. Each Si,ℓ corresponds to a bucket of traces that become
indistinguishable after regularization. For each such bucket, an
optimal attacker performs a majority vote, achieving success
rate

maxw |{t ∈ Si,ℓ : site(t) = w}|
|Si,ℓ|

.

To model the average-case attacker success over Si, we
define the non-uniform attacker accuracy as the expected
success rate across all observed length buckets. Let L denote
the set of all distinct length buckets observed in Si. Then:

Ā(Si) =
∑
ℓ∈L

|Si,ℓ|
|Si|

·
max
w
|{t ∈ Si,ℓ : site(t) = w}|

|Si,ℓ|
(3)

= Eℓ∼L

[
max
w
|{t ∈ Si,ℓ : site(t) = w}|

|Si,ℓ|

]
(4)

Lemma E.1 (Post-switch non-uniform weighted δ). For ev-
ery anonymity set Si, the AS-specific mapping DSi

is non-
uniformly δi-weighted-non-injective, where δi = 1/Ā(Si) and
Ā(Si) is the average attacker success rate defined in (3).

Proof. After the switch, all traces in Si are padded using
the fixed parameters (p

(Si)
in , p

(Si)
out , L), so the only observable

feature is the total defended length ℓ. This partitions Si into
buckets

Si,ℓ = {t ∈ Si : len(t) = ℓ} .

Weighted pre-image size. Each bucket length ℓ (i.e., each
trace t ∈ Si,ℓ) corresponds to a single defended trace f ′

i,ℓ .
The weighted pre-image size of f ′

i,ℓ, by (1), is

δ̃
(
f ′
i,ℓ

)
=

|Si,ℓ|
max
w
|{t ∈ Si,ℓ : site(t) = w}|

.

Attacker success. The optimal attacker outputs the majority
website in each bucket, achieving success 1/δ̃(f ′

i,ℓ).
Average-case accuracy. The attacker’s expected success rate

over Si is given by the non-uniform accuracy

Ā(Si) =
∑
ℓ

|Si,ℓ|
|Si|

· 1

δ̃(f ′
i,ℓ)

= Ef ′∼Si

[
1

δ̃(f ′)

]
,

Therefore, by the definition in Section IV, the mapping DSi
is

non-uniformly δi-weighted-non-injective with δi = 1/Ā(Si).
It follows that the attacker’s overall success rate for any trace
in Si is bounded by

Pr[success | Si] ≤ Ā(Si).

Theorem E.2 (Global non-uniformly weighted
δ–non-injectivity). Let S be the set of all anonymity
sets obtained, and for each anonymity set Si ∈ S, let

δi =
1

Ā(Si)
.

Define the global non-uniform weighted injectivity parameter
δ as

1

δ
= ESi∼S

[
1

δi

]
= ESi

[Ā(Si)].

Then, Adaptive Tamaraw is non-uniformly weighted δ-non-
injective, and the attacker’s average success probability is
bounded by

Pr[success] ≤ 1

δ
.

Proof. Recall from Lemma E.1 that for each anonymity set Si,
the attacker’s success rate over its defended outputs is bounded
by Ā(Si) = Ef ′∼Si

[
1

δ̃(f ′)

]
, and thus the mapping DSi

is non-
uniformly δi-weighted-non-injective, where δi = 1/Ā(Si).

Now consider the overall defended distribution F ′, which
consists of all post-regularization traces f ′

i,ℓ produced from
inputs in various anonymity sets Si. Each defended trace
f ′ must originate from some Si with probability P (Si),
and within Si, from a bucket of length ℓ with probability
|Si,ℓ|/|Si|.

We begin with the average inverse diversity over anonymity
sets:

ESi

[
1

δi

]
= ESi

[
Ā(Si)

]
=

∑
i

P (Si) · Ā(Si)

=
∑
i

P (Si) ·
∑
ℓ

|Si,ℓ|
|Si|

· 1

δ̃(f ′
i,ℓ)

.

Note that P (Si) · |Si,ℓ|
|Si| is precisely the probability of

observing the defended trace f ′
i,ℓ in the output space F ′, since:

P (f ′
i,ℓ) = P (Si) ·

|Si,ℓ|
|Si|

.

Also, δ̃(f ′
i,ℓ) is the weighted pre-image size of f ′

i,ℓ as
defined in Section IV.

We can therefore rewrite the sum as:∑
i

∑
ℓ

P (Si) ·
|Si,ℓ|
|Si|

· 1

δ̃(f ′
i,ℓ)

=
∑

f ′∈F ′

P (f ′) · 1

δ̃(f ′)

= Ef ′∼F ′

[
1

δ̃(f ′)

]
.

Thus, we have:

ESi

[
1

δi

]
= Ef ′∼F ′

[
1

δ̃(f ′)

]
,

which confirms that the expected attacker success over
anonymity sets equals the expected attacker success over the
defended output distribution.

Therefore, Adaptive Tamaraw as a whole satisfies the non-
uniform δ-non-injectivity condition with

δ =

(
Ef ′∼F ′

[
1

δ̃(f ′)

])−1

,

completing the proof.
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