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Abstract—It is well known that encryption alone is not enough
to protect data privacy. Access patterns, revealed when operations
are performed, can also be leveraged in inference attacks.
Oblivious RAM (ORAM) hides access patterns by making client
requests oblivious. However, existing protocols are still limited
in supporting concurrent clients and Byzantine fault tolerance
(BFT). We present MVP-ORAM, the first wait-free ORAM
protocol that supports concurrent fail-prone clients. In contrast
to previous works, MVP-ORAM avoids using trusted proxies,
which necessitate additional security assumptions, and concur-
rency control mechanisms based on inter-client communication
or distributed locks, which limit overall throughput and the
capability to tolerate faulty clients. Instead, MYP-ORAM enables
clients to perform concurrent requests and merge conflicting
updates as they happen, satisfying wait-freedom, i.e., clients
make progress independently of the performance or failures of
other clients. Since wait and collision freedom are fundamentally
contradictory goals that cannot be achieved simultaneously in
an asynchronous concurrent ORAM service, we define a weaker
notion of obliviousness that depends on the application workload
and number of concurrent clients, and prove MVP-ORAM is
secure in practical scenarios where clients perform skewed block
accesses. By being wait-free, MVP-ORAM can be seamlessly
integrated into existing confidential BFT data stores, creating the
first BFT ORAM construction. We implement MVP-ORAM on
top of a confidential BFT data store and show our prototype can
process hundreds of 4KB accesses per second in modern clouds.

I. INTRODUCTION

Context and motivation. Byzantine Fault-Tolerant State
Machine Replication (BFT SMR) is a classical technique to
implement fault- and intrusion-tolerant replicated services with
strong consistency [1], [2]. The technique attracted signifi-
cant attention in the last decade due to the emergence of
decentralized systems and blockchains [3], [4], which can
be seen as replicated state machines. BFT SMR systems
offer data integrity and availability guarantees, even if up
to t of the n replicas are compromised. Some works have
additionally studied how to make BFT SMR systems offer
confidentiality [ 5]-[9], g uaranteeing d ata s ecrecy e ven in
the presence of Byzantine faults. This is typically achieved
by combining symmetric encryption with secret sharing [10],
[11], a technique where a secret (e.g., an encryption key) is
split into n shares (one for each server) and any subset of t+41
of them is required for recovering it.
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However, encryption, even if augmented with secret sharing,
is not enough to ensure data secrecy. Data access patterns,
revealed when clients perform operations, can also be lever-
aged in inference attacks, sometimes with disastrous con-
sequences [12]-[15]. Access patterns typically leaked in a
storage service include which entries are accessed, when, how
often, if they are accessed with other entries, and whether they
are being read or written.

State of the art. Oblivious RAM (ORAM) [16]-[18] is a
cryptographic technique whose objective is to conceal access
patterns and make them oblivious, i.e., indistinguishable from
each other. However, it was initially designed for a single CPU
accessing its RAM (or a client accessing its server). Recent
works have studied its suitability for supporting multiple
CPUs/clients in different yet related lines of work, known
as parallel ORAM [19]-[24] and multi-client ORAM [25]-
[29]. However, these works typically require inter-client com-
munication for synchronization [24], distributed locks [29],
or trusted proxies/hardware [26], all of which severely limit
concurrency or require additional security assumptions. Con-
currently, researchers have also studied how multiple servers
can be leveraged in ORAM [30]-[34] to reduce client-server
bandwidth. To the best of our knowledge, QUORAM [35] is the
only multi-server protocol that increases ORAM availability
but only addresses server crashes. Hence, to date, no ORAM
protocol can conceal access patterns in Byzantine-resilient
systems, and existing protocols cannot be extended to meet
the requirements of BFT SMR without sacrificing client fault
tolerance.

Problem statement. We address the problem of designing
practical BFT-replicated storage services that can hide data
access patterns, going beyond existing works on confidential
BFT systems (e.g., [5]-[9]). We aim to design a replicated
ORAM service in which replicas can be subject to Byzantine
failures while concurrently accessed by fail-prone clients. In
more detail, we are interested in a setting where concurrent
clients access a replicated storage service in which (1) servers
are subject to Byzantine faults, (2) multiple clients can con-
currently access shared data stored in servers without external
coordination or waiting for each other, and (3) data access
patterns remain oblivious. In this setting, a particularly impor-
tant property to achieve is wait-freedom [36], which states that
every client operation (ORAM access) is guaranteed to finish
in a finite number of steps. We stress the practical relevance
of this property, as wait-free services are more robust than
lock-based services [37] (the norm in the concurrent ORAM
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Fig. 1. Multiple versions being created by concurrent accesses and later
merged in MVP-ORAM.

literature), as clients can finish their accesses independently of
the delays and faults of other clients.

Our solution. This paper presents Multi-Version Path
ORAM (MVP-ORAM), the first ORAM protocol designed
explicitly for concealing access patterns in BFT SMR sys-
tems while achieving wait-freedom. MVP-ORAM is based on
Path ORAM [38], a simple ORAM protocol where a single
client accesses a single server to store encrypted data blocks
organized as a binary tree. We selected Path ORAM as a
starting point due to its low number of client-server round-
trips per access, compared to more recent solutions (e.g., [39],
[40]), which is crucial in BFT SMR systems. In Path ORAM,
the client accesses data by reading and writing a whole path
of the tree where the block of interest is located. To access
the correct path, the client maintains a table mapping block
addresses to paths in the tree where the blocks are stored.
The client also maintains an expected small stash of blocks
that have temporarily overflowed from the tree. Path ORAM
matches the required bandwidth lower bound of O(log V) for
obliviously accessing a data store with N blocks [41].

MVP-ORAM improves Path ORAM in two fundamental
ways. First and foremost, it supports multiple clients concur-
rently accessing data while satisfying strong consistency [42].
Contrary to previous works on parallel ORAM, which use
locks and other inter-client coordination mechanisms to ensure
consistency and security, we aim to support client-independent,
wait-free ORAM accesses, as required in SMR-based ser-
vices [2]. To the best of our knowledge, no ORAM satisfies
this property.

To support wait-freedom, MVP-ORAM encrypts and stores
the position map and stash in the server, along with the tree.
Clients read the position map to define the block’s access
path and then request the path and stash from the server.
With the ORAM data structures stored on the server, MVP-
ORAM supports multiple clients concurrently accessing data
by managing multiple versions of each data structure. More
specifically, servers start with a single version of each ORAM
data structure, but concurrent clients can read and generate
new versions of these data structures, which are later merged
by clients during their access, as illustrated in Fig. 1. Notice
that, although our goal is to support BFT ORAM, MVP-
ORAM’s wait-free design is of independent interest, as no
existing single-server scheme has its unique set of features.

Second, MVP-ORAM relaxes the trust assumption on the
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Fig. 2. MVP-ORAM protocol stack.

servers by tolerating Byzantine failures. More specifically,
besides allowing servers to observe their internal state, as
in the semi-honest model used in Path ORAM and most
ORAM schemes, MVP-ORAM tolerates ¢ malicious servers
by employing a BFT SMR protocol to replicate a deterministic
ORAM service in n > 3t servers.

To make our oblivious BFT data store feature-complete,
we tackle the problem of managing the shared keys used to
encrypt server data. Contrary to previous works on the multi-
client setting, which assume that encryption keys are shared
between clients in some way, MVP-ORAM integrates a secret-
sharing framework to distribute encryption keys through the
servers alongside the ORAM state [7], [9]. Fig. 2 illustrates
our construction, where MVP-ORAM runs on top of secret
sharing and BFT SMR.

Security and performance. From a security perspective,
achieving wait-freedom in ORAM introduces new challenges,
as without client synchronization, it becomes impossible to
ensure that no two clients access the same block at the same
time, a property known in ORAM as collision-freedom [19].
Indeed, we argue that in asynchronous networks it is funda-
mentally impossible to conciliate wait- and collision-freedom.
To circumvent this limitation and increase security, when a
client wants to access a block, MVP-ORAM chooses and re-
quests at random any of the paths that contain it. Additionally,
to increase the number of paths available to access a block,
evictions move the most popular blocks closer to the tree
root. Assuming ORAM accesses follow a Zipfian distribution,
meaning that a very high percentage of accesses are done to a
very small percentage of blocks (as has been shown to happen
in many natural and digital systems [43]-[45]), this solution
allows MVP-ORAM to preserve wait-freedom while its secu-
rity approximates that of collision-free ORAMs. Nonetheless,
collisions can still happen (e.g., two clients simultaneously
access a leaf block), even if with low probability. We address
this limitation by proposing a variant of MVP-ORAM, which
uses dummy requests to ensure obliviouness at the cost of
performance and synchrony assumptions.

In terms of performance, MVP-ORAM requires an amount
of bandwidth linearly proportional to the number of servers
and quadratic in the number of active concurrent clients
accessing the system at a time, being thus an adaptive wait-
free construction [46].

We implemented MVP-ORAM on top of COBRA [9], an
open-source confidential BFT SMR library, and evaluated its
performance. Our results show that our prototype can process



more than 350 (resp. 700) accesses per second with a latency
of less than 140 ms (resp. 70 ms) in a system with 10 servers
(resp. a single server) and 50 concurrent clients. This shows
MVP-ORAM can achieve performance numbers in line with
other practical (concurrent/fault-tolerant) protocols [29], [35].
Our implementation is open source [47], and our results are
fully reproducible, as described in Appendix B.
Contributions. We claim the following contributions:

1) We initiate the study of the problem of implementing a
wait-free ORAM (§11I);

2) We design MVP-ORAM, the first asynchronous wait-
free ORAM supporting concurrent fail-prone clients
(§V). Besides detailing the basic protocol that satisfies a
weaker version of obliviousness, we present a stronger
version of MVP-ORAM that provides standard parallel
ORAM security (§VIID);

3) We use MVP-ORAM to hide access patterns of a
confidential BFT SMR-based storage service, providing
the first ORAM that tolerates Byzantine-faulty servers
(§VD;

4) We present a detailed analysis of MVP-ORAM’s stash
size and bandwidth requirements, along with security
proofs that demonstrate both its correctness and oblivi-
ousness (§VII);

5) We implement and evaluate MVP-ORAM to show its
performance in practical settings (§1X).

II. BACKGROUND AND RELATED WORK

Confidential BFT. The seminal work on intrusion tolerance
by Fraga and Powell [48] was the first to consider information
scattering for protecting data confidentiality in a replicated
synchronous system. Later works like Secure Store [49] and
CODEX [50] ensured confidentiality, integrity, and availability
of stored data in asynchronous systems by using Byzantine
quorum protocols [51] together with secret sharing [10].
To the best of our knowledge, DepSpace [5] was the first
work to use secret sharing for achieving confidentiality in a
BFT SMR system. Although DepSpace and follow-up works
such as Belisarius [6] achieved performance similar to non-
confidential BFT SMR, neither of them supported features
required in practice, such as replica state recovery, replica
group reconfiguration, or protection against a mobile adver-
sary. The same can be said about works adding confidentiality
based on secret sharing to blockchains (e.g., [8]). Basu et
al. [7] partially solved this by introducing a confidential state
recovery protocol for static BFT SMR. COBRA [9] proposed
the first confidential BFT SMR system with all the practical
features required by these. Nevertheless, none of these works
tackles the problem of hiding access patterns, as an adversary
can still observe which data entries are being accessed. This
feature can, for example, be used to improve the privacy of
a service like Arke [52], which provides confidential contact
discovery using a BFT storage service.

Classical ORAM. Oblivious RAM was first introduced
by Goldreich and Ostrovsky [16]-[18], in the context of
software protection. Subsequent works improved its efficiency

in different scenarios [53]-[56]. In the 2010s, with the rise
of cloud computing, renewed interest in ORAM led to new
improvements, including Path ORAM [38], which was the first
ORAM protocol capable of achieving logarithmic bandwidth
overhead (shown to be optimal in the storage-only server
setting [18], [41]). Subsequent works reduced this overhead to
O(1) by assuming server computations [39], [57]. However,
these typically require homomorphic encryption to be secure,
thus reducing bandwidth overhead but decreasing overall
performance. Other works improved performance by using
trusted execution environments [58], [59], but this requires
shifting trust from well-established cryptographic assumptions
to closed-source solutions from hardware manufacturers. More
recently, researchers have revisited the original hierarchical
ORAM of Goldreich and Ostrovsky to make it more practi-
cal [40], [60], [61]. In all these works, a single client accesses
a single server.

Multi-client and Parallel ORAM. Recent works have ex-
plored how to support multiple concurrent clients in ORAM in
different yet related research lines known as multi-client [25]-
[29], [35], [62], [63] and parallel ORAM [19]-[24]. Multi-
client ORAM focuses on the client-server model, while paral-
lel ORAM focuses on multi-core CPUs, but both try to solve
the same problem: how to support concurrency in ORAM
accesses. Here, the challenge is twofold: first, obliviousness
should be ensured not only for access sequences from indi-
vidual clients but also between clients. This means that if all
clients decide to access the same data block at the same time,
the resulting ORAM accesses should still look random and
independent to the server. The second is how to efficiently
deal with concurrency and synchronize local ORAM client
data without making the resulting system inherently sequential.
Many works solved these issues by introducing a trusted,
confidential proxy (either in the network or in the server)
between the clients and the server [26], [35], [62], [63].
The ORAM protocol is then executed between the trusted
component and the server, essentially serializing requests and
synchronizing client data. Other works avoided the trusted
component by relying on inter-client communication [19]-
[23] or lock-based distributed algorithms [28], [29] to serialize
conflicting concurrent requests. However, these approaches
limit client concurrency and prevent wait-freedom from being
achieved. Moreover, most of these works only support a single
server, making them vulnerable to server faults.

Multi-server ORAM. Another related research vector is
the use of multiple ORAM servers to reduce client bandwidth
requirements [30]-[34], [63]. Each server plays a critical role
in these works, so fault tolerance is not supported. As far
as we know, QuUORAM [35] is the only ORAM protocol
that uses multiple servers to tolerate faults. However, it only
tolerates benign (crash) faults and requires trusted proxies
attached to servers, an additional strong security assumption.
Indeed, in QuUORAM, each server plus proxy constitutes an
isolated ORAM instance, and a variant of the classical ABD
protocol [64] is used to replicate read/write operations on those
proxies, which act as (single) clients to their ORAM servers.



The research gap: BFT ORAM. As evidenced by our
previous discussion, no ORAM protocol can be integrated “as
is” into a confidential BFT system to hide access patterns. The
state-of-the-art in ORAM fault tolerance is QuORAM [35], but
it only tolerates crashes and requires trusted execution support
on servers, i.e., each server needs a trusted proxy. Extending
it to tolerate Byzantine faults seems doable, but it would
still require trusted proxies. Regarding multi-client support
without using proxies, ConcurORAM [29] is the state-of-the-
art. However, it has three main limitations. First, it heavily
relies on multi-threading and locks at the server, which intro-
duces nondeterminism, significantly complicating replication
(e.g., [65]). Second, wait-freedom is impossible to achieve
using locks, seriously compromising client fault tolerance.
Third, it requires 18 client-server interactions to complete
one ORAM access (query and eviction), which, if replicated,
would require Byzantine consensus for totally ordering each
request. This large number of client-server iterations is also a
limitation of a recent optimal parallel ORAM by Asharov et
al. [24]. In contrast, by extending Path ORAM (which only
requires two round-trips per access) to keep multiple versions
of the ORAM state, MVP-ORAM supports concurrent clients
without using locks and requiring just three round-trips per
ORAM access (see Fig. 3), making it thus more appropriate
to be integrated into confidential BFT SMR systems.

Notice that the need for a multi-client ORAM free of locks
or inter-client coordination to replicate using BFT SMR made
us address another research gap of independent interest: the
lack of wait-free multi-client ORAM:s.

III. MODEL AND DEFINITIONS

System model. We consider a fully connected distributed
system in which processes are divided into two sets: a set of
n servers/replicas X = {ry,rs,...,7,}, and an unbounded
set of clients ' = {¢1,¢2,...}. We assume a trusted setup
in which each replica and client has a unique identifier
that can be verified by every other process through standard
means, e.g., a public key infrastructure. We also assume the
system has sufficient synchrony to implement BFT SMR and
consensus. For instance, our prototype requires a partially
synchronous model [66] in which the system is asynchronous
until some unknown global stabilization time, after which it
becomes synchronous, with known time bounds for compu-
tation and communication.! Finally, every pair of processes
communicates through private and authenticated fair links,
i.e., messages can be delayed but not forever.

Service model. Clients access the replicated storage service,
which contains [V data blocks, by sending requests and receiv-
ing replies to/from the service replicas. Servers globally store
a two-part state = (C, P). The common state C' comprises
ORAM data, and the private state P comprises encryption
keys used to encrypt C. Each server r; locally maintains a
state 2; = (C, P;). The common state C' is encrypted and

IMVP-ORAM construction is oblivious to the used BFT SMR implemen-
tation. Nothing precludes MVP-ORAM from being implemented on top of
asynchronous protocols (e.g., [67], [68]).

replicated across all servers, i.e., all servers store the same
state, while the private state is distributed using the secret
sharing protocol. Hence, r;’s private state P; comprises shares
of the encryption keys. The functionality of our ORAM service
offers a single operation, described in the following way:

e (data) = access(c;, op, addr, data™): client ¢; invokes
access to read or write block addressed by addr, i.e., ¢;
invokes access(c;, read, addr, 1) to read the block and
access(c;, write, addr, data) to write data to the block.

Finally, we assume applications using our storage service
generate a skewed block access pattern. More specifically,
we assume that storage clients collectively induce an access
pattern in which a small fraction of the stored blocks are
accessed much more frequently than the others. This skewed
pattern, typically modeled by a Zipfian distribution [69], is
commonly observed in datasets [43] and in storage systems
accesses (e.g., [44], [70], [71]), being modelled in popular
storage systems benchmarks [72], [73]. This skewness is
exploited in most real systems through caching and load-
balancing techniques. In this paper, we use it to characterize
the obliviousness of wait-free ORAM.

Adversary model. We consider an adversary that can
fully control a fraction of the replicas and the scheduling of
messages, but has limited access to clients. In particular, we
assume that the adversary can maliciously corrupt some of
the replicas and crash clients, but can not inject concurrent
queries, as that would allow it to force collisions between
client accesses. This assumption is somewhat similar to the
models of Pancake [74] and Waffle [75], which consider a
passive persistent adversary that can observe all accesses but
cannot inject its own queries. We believe this model accurately
captures the typical security guarantees of BFT data stores,
where a set of semi-trusted clients store shared data using
untrusted servers. Nonetheless, in the Strong MVP-ORAM
variant (§VIII), we remove this assumption and consider that
the adversary additionally can inject concurrent queries and
force collisions.

More formally, we consider a probabilistic polynomial-time
adaptive adversary that can control the network and may at
any time decide to corrupt a fraction ¢ < n/3 of the replicas
or crash clients. Corrupted replicas can deviate arbitrarily from
the protocol, i.e., they are prone to Byzantine failures. Such
replicas are said to be faulty or corrupted. A process that is
not faulty is said to be correct or honest. The adversary can
learn about the private state that corrupted replicas store and
the access patterns of operations received. Clients are assumed
to be honest, so they can only fail by crashing and cannot be
influenced by the adversary in any other way.

As in other oblivious datastores and confidential BFT ser-
vices [7], [9], [74], [75], we do not consider fully malicious
clients, as there is little point in protecting the confidentiality
of a service if malicious clients have permission to access
the data. In practice, our service supports multiple ORAMs,
each of which is shared by a set of mutually trusted clients.
Nonetheless, this restriction can be alleviated through mecha-
nisms for verifiable computation, such as ZK-Proofs [28], [76]



or MPC-based proxies [77], [78]. We leave the integration of
these techniques with MVP-ORAM for future work.

Security definition. Beyond ensuring the Safety, Liveness,
and Secrecy properties that are standard in confidential BFT
services [5], [7], [9], MVP-ORAM additionally aims at ensur-
ing Obliviousness (i.e., Access Pattern Secrecy) [16].

Safety (i.e., Linearizability), requires the replicated ser-
vice to emulate a centralized service [42]; Liveness (i.e.,
Wait-Freedom) requires all correct client requests to be ex-
ecuted [36]; and Secrecy (i.e., Confidentiality) requires that
no private information about the stored data be leaked as long
as the failure threshold of the system is respected [9].

As for Obliviousness, we start with the definition from
parallel ORAM [19], [20], [79]: given any two sequences of
parallel operations y_1> and ﬁ of equal length, they should
look indistinguishable to the adversary, except with negligible
probability in N. This definition requires the ORAM to be
collision-free [19], i.e., no two clients ever access the same
address concurrently. However, we argue that in asynchronous
networks, no ORAM protocol can simultaneously be collision-
and wait-free, as the former is impossible to achieve without
client synchronization (e.g., distributed locks [29], inter-client
communication [19]), which in turn prevents the latter (since
a single client failure can prevent others from progressing).

Hence, we propose a new obliviousness definition for asyn-
chronous wait-free ORAM: the indistinguishability between
ﬂ and 375 is characterized by the statistical distance of their
access patterns, which depends not only on the ORAM size NV,
but also the number of concurrent clients ¢ and the distribution
of concurrent accesses D, sampled from the universe of all
accesses U, from which both y_f, y_2> are themselves sampled.

Since the adversary can control the number of concurrent
clients accessing the service through network scheduling,
we assume the worst-case scenario in which all ¢ clients
are accessing the ORAM simultaneously. This increases the
likelihood that multiple clients will request the same block
concurrently. We define a timestep as the interval from the start
of the first concurrent access to the end of the last concurrent
access among the group of c clients. With this notion, we now
provide the security definition for wait-free ORAM:

Definition 1 (Asynchronous Wait-Free ORAM). Given ¢, N €
N and D € U, let b. = {b;}ic(1,..,c} denote a set of ¢
concurrent operations in timestep e and 7 = (b_f,b_g,)
denote a sequence of such concurrent operations in each
timestep. Protocol 11 is an Asynchronous Wait-Free Oblivious
Parallel RAM (or simply Asynchronous Wait-Free ORAM) if
there exists a function | such that:

e Correctness: Given 7 & D, the execution of 11 returns
the last written version of each block requested in 7 (i.e.,
for each block, the version with the highest timestamp).

o Obliviousness: Let A(?) denote the access pattern gen-
erated by 11 when 7 is executed. We say 11 is secure if for

any two sequences of concurrent operations yi, 3 &p
of the same length, with inputs chosen by clients, the

statistical distance between A(y}) and A(y3) is bounded
by u(N,c, D).

This definition is weaker than the one used in traditional
parallel ORAM (e.g., [19], [20], [79]), as it does not allow
the adversary to inject queries and it depends on additional
security parameters that may make p non-negligible, namely
c and D. In MVP-ORAM, p will be negligible if, per timestep,
a single client accesses the ORAM or multiple clients access
different blocks. However, if multiple clients access the same
block concurrently, ¢ may not be necessarily negligible, al-
though it can be arbitrarily small (see §VII-A).

In applications where this may be a problem (e.g., if D
is expected to be uniform instead of Zipfian) and if network
synchrony can be assumed, our Strong MVP-ORAM (§VIII)
can be used instead, sacrificing performance and asynchrony
but fulfilling wait-freedom and parallel ORAM security.

IV. A FIRST MULTI-CLIENT ORAM PROTOCOL

We start by presenting a first attempt to design a multi-
client ORAM protocol based on Path ORAM [38] that does
not require distributed locks, inter-client communication, or
trusted proxies to serialize client requests. This first pro-
tocol achieves a liveness property known as obstruction-
freedom [80], meaning a client can finish an invoked ORAM
access only if all other clients stop making new requests.

A. Path ORAM

Path ORAM is a simple protocol in which a client invokes
an access operation to read or write data blocks from/to an
ORAM server. The server keeps N fixed-size blocks, each
associated with a logical address, in a binary tree of height L
and 2% leaves. Each tree node is called a bucket and contains Z
blocks. The client locally maintains a position map associating
each block to a path in the tree. Let [ € {0,...,2F — 1} be
a leaf node of the binary tree. A path P, = {By,...,Br},
contains all buckets from the root to node I. The client also
maintains a stash with blocks waiting to be written to the tree
because their paths are full.

To access a block, the client starts by discovering its path
in the position map and requests all buckets of the path from
the server, adding them to the stash. It then reads/modifies the
block, changes its path at random, refreshes the encryption
of all fetched blocks, and attempts to evict all blocks in the
stash back to the server. Evictions follow a read-path eviction
strategy, meaning that blocks can only be written back in the
intersection between their assigned paths and the read path.

This simple scheme guarantees obliviousness by reading
a whole path per access, instead of a single block, and by
randomly changing the path of blocks each time they are
accessed. It requires a bandwidth of O(log N) bits, matching
the lower bound for storage-only ORAM protocols [41], and
only requires two round-trips per access, the lowest amongst
practical ORAMs [39], [40], [61]. This is an important metric
in BFT SMR, and the main reason for selecting Path ORAM
as a starting point, as server requests must be totally ordered
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Fig. 3. Simple Multi-Client Path ORAM protocol.

via consensus before being processed by the servers, thereby
making each access very costly.

B. Extending Path ORAM to Multiple Clients

Two issues must be addressed to extend Path ORAM
to support multiple clients. First, Path ORAM requires the
client to keep the position map and stash, so multiple clients
must have access to shared, up-to-date versions of these data
structures. Second, concurrency must be managed carefully,
not only to avoid concurrent accesses leaking information, but
also to prevent tree inconsistencies.

At a high level, our first multi-client Path ORAM addresses
these challenges by moving client storage (encrypted) to the
server and having clients fetch and update it during their access
with the help of the server to manage concurrency.

Fig. 3 illustrates our first multi-client Path ORAM. The pro-
tocol requires servers to implement the following functionality:

o pm < getPM(¢;): if there is no active client, sets client
¢; as active (i.e., started an access operation) and retrieves
the current position map pm; else, it returns L.

o (P, S) + getPS(e;,1): if ¢; is still the active client, the
server returns path P; and stash S; otherwise, the server
returns L.

o evict(c;, pm, S*,P;): evicts updated position map pm,
new stash S*, and new path P to the server. If ¢; is still
the active client, the server stores the received data and
sets the active client to .

Let b be a block with address addr that client ¢; wants
to access, and pm and S be the position map and stash,
respectively. All data received/sent from/to the server must
be encrypted/decrypted, but we omit these operations for
simplicity. The access operation (§III) has three steps:

1) To access b, ¢; must first discover its path. This is done
by invoking getPM from the server to retrieve pm and
accessing pm[addr] to obtain path id I. If the server
returns L, c; retries after a random back-off time.

2) Client ¢; invokes getPS to obtain path P; and stash
S from the server. Since ¢; is still the active client,
the server returns the requested data. Client ¢; adds all
blocks from P; and S to a working set W, reads/writes
block b, and assigns a new random path to b in pm.

3) The access ends with ¢; evicting the blocks from W. The
client first populates a new path P} with the blocks from
W. The path P} is filled from leaf to root with blocks in
the intersection between [ and their paths. Overflowing
blocks are stored in a new stash S*. Then ¢; sends the
new path P/ to the server, along with the updated pm
and S*, by invoking evict. Upon receiving this request,
the server checks if ¢; is still the active client and, if so,
replaces its path P; in the tree by P/, its position map
by pm, and its stash by S*.

Although each individual step is atomic at the server, the
access is not, as it requires three steps, and different clients can
interleave these steps, interrupting accesses one from another.
As a result, this first protocol only ensures a client completes
its access if no other client accesses the ORAM concurrently,
satisfying obstruction-freedom [80]. Another consequence of
this design is that a failure of a client during an access, which
will never end, might block other clients forever.

V. MULTI-VERSION PATH ORAM

Extending the previous protocol to support concurrent wait-
free accesses requires addressing two fundamental problems.
The first is how to avoid breaking obliviousness on concurrent
accesses to the same address. Indeed, when clients access the
same address in the same timestep, they will request the same
path. This breaks collision-freedom [19], as it allows the server
to infer that clients may be accessing the same address, even
if it can not pinpoint exactly which one is being accessed.
The second problem is how to preserve data consistency
between concurrent evictions. Since access operations are not
atomic nor serialized through client synchronization, multiple
(possibly conflicting) versions of the tree will be generated.

To tackle these problems, we propose Multi-Version Path
ORAM (MVP-ORAM). In further detail, to tackle the first
problem, we make the server store the exact slot of the bucket
where the block is located in the position map, instead of its
path. This key idea allows clients to retrieve a block through
any path that passes through the slot where the block is stored.
Specifically, when clients want to access a block b, they first
discover its location s/ using the position map. Then, they
extend the location to one of the paths that pass through si,
and use that path to retrieve the block. Since clients select these
paths randomly, multiple clients accessing the same block will
request different paths with increasing probability as the block
is higher in the tree.

To further increase the number of available paths, we
keep the last accessed block in the stash, meaning it can be
accessed again using any path, and evict the most frequently
accessed blocks to higher levels of the tree. Specifically, when
performing an access, the accessed block always goes to the
stash (if it is not already there) along with the non-dummy



blocks from Z slots uniformly selected at random. Then, these
Z slots are filled with Z random blocks previously in the stash,
i.e., we swap Z blocks between the stash and the accessed
path. The constant Z is important to bound the stash size.
Additionally, after the swap, we reorder blocks in the path by
placing the most frequently accessed blocks higher in the tree.
The result is that after each access, the most popular blocks
in a skewed access pattern will be accessible through many
paths, improving the ORAM obliviousness.

To address the second problem, we enable clients to com-
plete their access in isolation and store updates as new versions
of the tree on the server. During an access, each client fetches
the existing versions currently stored in the server and merges
them into a single, updated tree (as illustrated in Fig. 1). Note
that in practice, clients only need to merge paths and stashes
that they will retrieve in an access, rather than entire trees.

When multiple versions accessed by clients are merged to-
gether, such a merge needs to be done (1) without losing block
updates,” (2) by keeping more frequently accessed blocks on
higher levels of the tree, and (3) by avoiding block duplication
in different tree nodes during concurrent evictions. To satisfy
these requirements, the server assigns a sequence number to
each access during the invocation of its Server.getPM. This
sequence number is used to create a logical block timestamp
tsy = (v,a,s) for each block b touched during an access,
where version v is the sequence number of the last write on
this block, access a is the sequence number of the last read
or write of this block, and sequence s is the sequence number
of the last time the block was moved. For instance, if the
sequence number of an access to block b is z, ts, after the
operation will be (x,z, ) if b is written or ts, = (_, z,z) if
b is read. Further, any other block that changed its slot during
this access’ eviction will have its timestamp set to (_,_, ).

Using three values on the block timestamp ensures that the
merge requirements 1-3 described above are satisfied. When
clients perform an access, they may retrieve multiple paths and
stashes with different block versions, and merge them into a
single version consistent with the highest timestamp found on
the position map for each block, respecting the following rule:

(vya,8) > (V',d,s") = (v>V)V(v=v Aa>d)V
(v=vAa=a Ns>¥).

A. The MVP-ORAM Protocol

Here we present a detailed description of the MVP-ORAM
protocol. The data structures used in the protocol are summa-
rized in Table I.

Client ¢; accesses block b, identified by address addr,
by invoking function access, described in Algorithm 1. The
function accesses b in three steps, just like the protocol of the
previous section, by invoking the server functions specified
in Algorithm 2. The local functions invoked by clients to
merge concurrent versions and create an updated version of
the ORAM state are underlined in Algorithm 1 and illustrated

2Linerizability [42], or register atomicity, requires a read executed after a
write to always return the last update on the stored data.

TABLE I MVP-ORAM DATA STRUCTURES.

[ Data Structure | Description |

A tuple (addr,data,ts), where addr €
{0,...,N — 1} is an address identifying the

Block block, data is the data of the block, and ts is
the block timestamp ts = (v, a, s).
Slot Identifier of a positiop in a binary tree where a
real or dummy block is stored.
Bucket Set of Z slots indexed from 0 to Z — 1.

A binary tree of height L > 0, where each node
contains a set of buckets created concurrently with
blocks of different versions. A path P; contains
the nodes from leaf [ to the tree’s root. We use
the notation P;(sl) to denote the set of blocks on
slot sl of a path from leaf [.

This structure maps block addresses to the current
block slot and logical timestamp. pm/[addr] =
(sl, ts) means block with address addr is stored
in slot sl with timestamp ¢s.

Set of tuples M; = {(addr, sl, ts), ...} with the
position map updates performed during an access,
i.e., for each updated block addr, its new slot sl
and timestamp ts.

List of overflowing blocks.

A tuple (7,8, HpathMaps) that stores a multi-
version tree 7 (with multiple buckets per node),
a set of stashes S, one for each version of 7, and
a set of path maps Hpainrraps = {Mi, ...} that
when consolidated define a position map pm. We
use notation 7 (1) and 7 (I, sl) to denote path P,
in 7 and slot s of that path.

A list of ORAM States, one for each concurrent
client that started an access and has not yet
finished it.

Multi-Version Tree

Position Map

Path Map

Stash

ORAM State

Context

Algorithm 1: MVP-ORAM client c;.

1 Function access(c;, op, addr, data™)

2 (HpathMaps, seq) < Server.getPM(c;)

3 pm < consolidate PathMaps(H pathiaps)
4 (sl,_) + pmladdr]

5 | < random path that passes through slot s/
6 (P, S) « Server.getPS(c;, 1)

7 W < mergePathStashes(P;, S, pm)

8 if op = write then

9 | data < data™; v seq

10 else

1 | (L data, (v,_, _)) < Wladdr]

12 Wladdr] < (addr, data, (v, seq, seq))

13 (Pr, S, M) < populatePath(W, 1, addr, pm, seq)
14 Server.evict(c;, My, Py, S)

15 return data

in Fig. 4. Their formal specification is deferred to Appendix A.
Note that in the algorithms, all data clients send to servers
(except for ¢ and [, which are basic information) is encrypted,
but this is omitted for simplicity.

First step (A1, L2-L5). In the first step, client ¢; will define
a path to retrieve b. It starts by invoking Server.getPM, send-
ing its id and receiving the history of path maps Hpathiraps
and sequence number seq that identifies this access. H pathMaps
contains the location updates of blocks evicted so far. In
practice, ¢; retrieves new updates since its last access.
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Fig. 4. Overview of the MVP-ORAM protocol.

Algorithm 2: MVP-ORAM server.

1 Procedure setup(T,S)
2 oramState < (T,S,0); nextSeq + 1
3 | Vael: context|c;] + L

=]

unction getPM(c;)
seq < nextSeq; nextSeq < nextSeq + 1
context|c;] + oramState
(_ _s Hpathmaps) < oramState

| return (Hpathataps, 5€q)

I

9 Function getPS(c;, 1)

10 (T,S,_) < context[c;]

1 return (7 (1), S)

12 Procedure evict(c;, M;, P}, S)

13 (T,S,_) < context[c;]; context|c;] + L

14 <7—c7 ch H;athMa,ps> < ommState

15 for sl € T(1) do // update the tree
16 L T, sl) < (T, sl) \ T, sl)) UP/(sl)
17 S*+ (§°\S)U{s}

18 Hpathaps — Hpathapo U {Ml}

19 oramState < (T", 8™, Hyunmaps)

When the server receives the request, it stores a reference
to the current ORAM state in ¢;’s context until the client
completes its access. Then, it returns the path map history
H pathMaps> and the access sequence number seq (A2, L4-L8).

After receiving HpathMaps, €; consolidates it into posi-
tion map pm by invoking consolidatePathMaps (first step
of Fig. 4). This function applies the updates contained in
HpathMaps 1O the local position map, retaining for each block
the location update with the highest timestamp. With the
updated position map pm containing the most recent locations
of the blocks, ¢; discovers the current slot s/ where b is stored.
The first step terminates with ¢; randomly choosing a path P,
that contains sl (Al, L5).

Second step (A1, L6-L.12). Next, ¢; will retrieve b from the
server and read/write its content. Since b can either be in the
tree or stash, c¢; fetches the multi-version path P; and stashes
from the server by invoking Server.getPS.

The server processes c;’s request (A2, L9-11) by retrieving

the ORAM state from ¢;’s context. Then, it collects path P,
from 7 and returns it along with stashes S. By using the tree
and stashes from ¢;’s context, the server ensures the tree is
consistent with the pm consolidated in the previous step.

When ¢; receives the response of Server.getPS, it merges
the multiple versions of the blocks received in P; and S into
a working set W by invoking mergePathStashes (second
step of Fig. 4). This function uses the consolidated pm as
a reference to filter blocks by retaining those with timestamps
contained in pm, i.e., the more recent versions. From W, ¢;
retrieves b and updates its content and version if the operation
is of type write (Al, L8-12).

Third step (A1, L13-L15). In the last step, ¢; will evict
blocks from W back to the server in a new path and stash.
The redistribution of blocks must ensure two fundamental
properties for MVP-ORAM: (1) the stash’s expected size is
bounded and proportional to the number of concurrent clients,
and (2) the most accessed blocks are expected to be either in
the highest levels of the tree or in the stash, giving more path
options for clients to access them.

Eviction in detail. This is achieved by the populatePath
auxiliary function (third step of Fig. 4). First, ¢; constructs a
new path P/ by placing blocks from W into their correct slots
according to pm. If multiple blocks are assigned to the same
slot due to concurrent accesses, then the one with the highest
timestamp is placed in the path, while the rest remain in the
working set.

Then, c¢; exchanges Z blocks from the working set with up
to Z non-dummy blocks from random Z slots of P}, including
the accessed block if it was in the path. This step ensures that
the accessed block has the maximum number of paths available
to retrieve it in the next access, while the expected stash size
remains bounded. Note that the stash size can decrease if some
of the Z selected slots are empty, since in this case, we remove
blocks from the stash and add to these empty slots.

Next, ¢; reorders blocks in P/ according to their times-
tamps, with more recently accessed blocks placed higher in
the path, thus increasing the number of available paths for
frequently accessed blocks.

Finally, ¢; adds the remaining blocks in W, including the




accessed block, to a new stash S. It also updates the timestamp
of blocks that were moved and update their locations on a new
path map M;. The function then returns P}, S, and M;.
After populating the path, ¢; invokes Server.evict to send
M, S, and P} to the server (Al, L14). When the server
receives an eviction request from the client, it first reads and
cleans the client’s context and obtains the current ORAM state
(A2, L13-14). Then, it applies the modifications proposed by
the client (A2, L15-19) by (1) updating path P; in the current
ORAM state, replacing the slots read by the client by the
ones received in the eviction, (2) updating the set of stashes
by replacing the retrieved stashes with the new stash, and (3)
adding the received path map to the path map history.?> These
updated data structures are then stored in the ORAM state.

VI. BYZANTINE FAULT-TOLERANT ORAM

The previous section detailed MVP-ORAM, a protocol that
can handle concurrent clients accessing an ORAM while
satisfying wait-freedom and linearizability. We now describe
how MVP-ORAM can be replicated using BFT SMR to
tolerate fully malicious servers, ensuring data integrity and
availability while preserving data and access-pattern secrecy.
For this, we use a Byzantine Fault-Tolerant State Machine
Replication (BFT SMR) protocol [1], [2].

BFT SMR is a classical technique for implementing fault-
tolerant systems by replicating stateful, deterministic services
on multiple fault-independent servers [1]. Most BFT SMR im-
plementations allow tolerating ¢ Byzantine faults with n > 3t
servers. This is possible by ensuring that each server starts
in the same initial state and executes the same sequence of
operations deterministically. Ensuring such a total order of
operations on all correct servers requires executing Byzantine
consensus [2], [81] to make the replicas agree on the next set
of client operations to be executed.

MVP-ORAM solves three fundamental challenges that are
required for replicating an ORAM through BFT SMR. First,
it ensures the server-side algorithm is fully deterministic.
Second, it requires only three invocations of state machine
operations (getPM, getPS, and evict) for performing an ac-
cess. Third, and most importantly, it makes ORAM accesses
wait-free.

In detail, we execute n server replicas using a BFT SMR
middleware (e.g., [82]) to ensure that the invocation of the
three server operations used in Algorithm 1 is reliably dis-
seminated in total order to all servers. Each server executes
those functions locally, exactly as specified in Algorithm 2,
and sends replies to the invoking clients, which consolidate
a single response for each invocation by waiting for ¢ + 1
matching replies.

Improving BFT ORAM performance. However, a direct
implementation of MVP-ORAM in a BFT SMR system will
significantly increase bandwidth usage, making the protocol

3To prevent unlimited growth of the history, clients send the consolidated
position map every y accesses, deleting outdated path maps.

highly inefficient. As such, we propose a series of optimiza-
tions that make the BFT version of MVP-ORAM more prac-
tical. Most of these optimizations aim to decrease bandwidth
requirements (analyzed in §VII-C).

The first optimization is related to the execution of consen-
sus over metadata. Byzantine consensus protocols typically
select one (the leader, as in PBFT [2]) or more (the DAG
block proposers, as in Mysticeti [83]) proposers to disseminate
batches of requests to be ordered. In such protocols, the client
sends its request to all replicas, and proposers re-disseminate
the request along with ordering information. However, if the
clients’ requests are large (as in our case, where evict must
send a path, path map, and stash), the proposer’s bandwidth
will be easily exhausted. To solve this, the client can send
the evict parameters directly to the servers without ordering
them and send only their hash for ordering through BFT SMR.
Using the hashes, replicas retrieve the operation parameters
and process the request as usual, thus significantly reducing
the best-case bandwidth usage.

The second optimization aims to decrease the bandwidth
usage of server responses. In traditional BFT-SMR, all correct
servers respond with the result of executing the client-issued
operation. This negatively affects bandwidth usage, especially
during getPS when servers send multiple paths and stashes.
We reduce this impact by employing an optimization intro-
duced in PBFT [2] in which, for each ordered request, we
choose a server that responds with the full reply while others
respond with its cryptographic hash.

The client randomly selects a server that will send a full
reply and accepts the response when the hash of this reply
matches ¢ hashes sent by other servers. If the obtained response
does not match the hashes, the client asks ¢ servers to send
the full content.

Encryption keys management. ORAM protocols typically
assume that clients manage and coordinate the shared crypto-
graphic keys needed to encrypt the stored data or that there is
a trusted third party (e.g., a proxy) that manages those keys.
In MVP-ORAM, we remove this assumption through the use
of secret sharing [10], more specifically, Dynamic Proactive
Secret Sharing (DPSS), which is more appropriate for practical
confidential BFT SMR systems [9].

When the servers are set up, the client generates a new
random cryptographic key and secretly shares it, sending a
different share to each server. The servers keep this share as
part of their internal state. Then, when a client starts a new
access and invokes Server.getPM, the servers send their stored
shares along with the response. The client reconstructs the
key using the received shares and uses it in all cryptographic
operations during an access.

For simplicity, we assume the same key is used to encrypt
all ORAM data. However, using this approach, we could have
different keys for different data structures or even for different
versions of the same data structures.



VII. SECURITY AND COMPLEXITY ANALYSIS

We now discuss the security, correctness, and theoretical
performance of MVP-ORAM.

A. Security Analysis
The security of MVP-ORAM is defined by Theorem 1.

Theorem 1. Given an ORAM of size N with ¢ concurrent
clients issuing requests from a distribution of accesses D, then
MVP-ORAM is an p(N, ¢, D)-secure Asynchronous Wait-Free
ORAM as per Definition 1.

To prove this theorem, we must show that MVP-ORAM
fulfills both the Correctness and Obliviousness properties of
Definition 1. We next outline these proofs, leaving their
complete versions for the extended version of this paper [84].*

Correctness. MVP-ORAM provides an abstraction of a
memory that can be written and read through the access
operation without revealing to the server which memory/block
address was accessed. Therefore, from the distributed com-
puting point of view, we have to prove our construction
implements NV safe and live atomic read/write registers [85].
This requires proving all memory operations finish (wait-
freedom [36]) and that they are safe under concurrent accesses
(Linearizability [42]).

We prove safety by first showing that all access operations
preserve the most up-to-date version of each accessed block
on evictions (Lemma 3). This is important because it enables
us to prove the safety of each logical block individually.

Lemma 3 (State Preservation). With the exception of the block
b accessed during a write, an execution of access preserves
the state of the ORAM.

To prove safety under concurrent access of a single block,
we have to prove each concurrent history of operations invoked
on MVP-ORAM satisfies linearizability [42]. To prove this,
we present a series of transformations of the observed history
(respecting the MVP-ORAM algorithms) until we prove that
the resulting high-level history containing only read and write
operations is linearizable (Theorem 2). As part of this proof,
we show that every read of a block returns the value written
in the closest preceding write.

Theorem 2 (Linearizability). For each memory position
b, MVP-ORAM'’s read (access(_,read,b, 1)) and write
(access(_, write, b, _)) operations satisfy linearizability.

We prove that MVP-ORAM guarantees wait-freedom by
showing that every step of the MVP-ORAM protocol ter-
minates, assuming that the underlying BFT SMR guarantees
liveness. Hence, every invocation of acccess by a correct client
terminates (Theorem 3).

Theorem 3 (Wait-freedom). Every invocation of MVP-
ORAM’s access by a correct client terminates.

4The numbering of theorems and lemmas referenced in this paper is the
same as in the extended version.
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Obliviousness. For this analysis, we assume D follows a
Zipfian distribution [69], meaning that the frequency f(r) of
accessing the r™® most frequently accessed block (rank 7)
decreases proportionally to »~<. For example, when o = 1,
27% of the blocks are accessed much more frequently than
the others, with their access frequencies decreasing as their
rank increases.

In Path ORAM, each block is mapped to a specific path in
the tree, and when a client accesses a block, it retrieves the
entire path and randomly re-assigns the block to a new path
before eviction. In contrast, MVP-ORAM allows a block to be
accessed through any path that contains it. Besides, the block
is not reassigned to a new path after access; instead, it remains
in the stash until it is evicted to the path in a future access to
a different block. The next path used to request the block is
only determined when it is accessed again. Additionally, only
Z random blocks are evicted at a time from the stash, and
instead of blocks being randomly placed in a path, they are
sorted so that more frequently accessed blocks (i.e., with a
higher timestamp) are placed up in the tree, giving them more
possible paths for future requests.

Given this, we analyze MVP-ORAM’s security in three
different scenarios: (1) a single client accesses the ORAM
once per timestep, (2) multiple clients access different blocks
per timestep, and (3) multiple clients access the same block
in the same timestep.

When a sequence of requests 7 is performed, the servers
see A(?) which is the same sequence of requests but
transformed by the ORAM. When c clients access different
blocks within the same timestep (case 2), each of them selects
a random leaf, resembling the behavior of a single client
performing c accesses across ¢ consecutive timesteps (case 1).
In Lemma 7 we show that A(7/) becomes indistinguishable
from a random sequence of requests with high probability in
case 1 (case 2 is ommitted, since they are similar).

Lemma 7. When a single client accesses the ORAM per
timestep, the access pattern A(?) observed by the server
during a sequence of requests 7 is computationally indis-
tinguishable from a random sequence with high probability.

For the last case, we must show that the access pattern
generated by MVP-ORAM might be distinguishable from a
random access pattern, particularly for blocks located near
the leaves. We establish this result by computing the statis-
tical distance [86] between the access pattern generated by
MVP-ORAM and a random access pattern (Theorem 4). The
intuition behind computing such a distance is as follows. In
a random sequence of size ¢, we expect to observe c distinct
leaves being accessed. However, when c clients simultaneously
access the same block — particularly if the block is located
near the leaves — the expected number of distinct leaves
involved may be less than c. As such, we compare the
distribution of the number of distinct leaves in a random
sequence with the distribution of the number of distinct leaves
generated in the worst-case execution of MVP-ORAM.
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Theorem 4. Given ¢,N € N, a € R, and D € U, the
statistical distance between a random sequence of size ¢ and
the access pattern generated by MVP-ORAM is bounded by

u(N,c, D())

Fig. 5 shows the statistical distance of the distributions (a
worst-case measurement), considering different values of L
and a. As expected, the distance decreases as we make the
accesses more skewed (i.e., as we increase «) and as we
increase the tree size L. If we decrease « to a point where the
number of frequently accessed blocks approximates N (i.e.,
blocks are uniformly accessed), the statistical distance will
be near 1 (worst security). Nonetheless, it is worth noting
that although the statistical security in this case is far from
good, the concrete probabilities of leakage are very small.
The expected probability of ¢ clients accessing the same block
using the same path with uniform access distribution is 5.
For example, this probability for two clients and a tree of
N = 218 is less than 0.0002%.

B. Stash Size Analysis

The performance of MVP-ORAM is directly tied to its stash
size, with larger stash sizes leading to reduced performance.
Hence, it is crucial to ensure that the size of the stash
does not grow indefinitely. Here, we outline the stash size
analysis, with the complete proofs presented in the extended
version [84].

Recall that the adversary can control the number of con-
current clients in MVP-ORAM through network scheduling.
We argue that the adversary can maximize the stash size by
maximizing concurrency. In other words, the largest stash size
occurs when, at each timestep, the maximum number of clients
c concurrently access the ORAM.

To analyze the stash size under this worst-case scenario,
we show that concurrent clients add approximately c¢Z blocks
to the stash in each timestep. When the stash size is small,
clients may be unable to remove cZ blocks due to overlaps
caused by multiple clients selecting the same blocks. However,
as the stash size grows to O(clog N), the system reaches a
point where concurrent clients can remove approximately cZ
blocks from the stash, being Z a small constant. At this point,
the stash size stabilizes as the rate of blocks being added to the
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TABLE II MVP-ORAM COMMUNICATION COMPLEXITY WHEN STORING
N BLOCKS USING n SERVERS WITH ¢ ACTIVE CLIENTS.

n servers with optimizations
Operation Request Response Total Operation
getPM O(n) O(n+c(c+1logN)) [ O(n + c(c+1og N))
getPS O(n) O(n + c%log N) O(n + c?log N)
evict O(nclog N) O(n) O(nclog N)

stash approximately matches the rate of blocks being removed.
We formalize this result in Theorem 5.

Theorem 5. Under the worst-case scenario concerning con-
currency, the expected stash size at any timestep is O(clog N).

C. Bandwidth and Storage Analysis

We now analyze the communication complexity of MVP-
ORAM. To simplify this analysis, we omit the cost of sending
constant values such as block and client ids. We begin by
considering a single-server (non-BFT) setup. The getPM reply
contains up to ¢ path maps of size O(c + log N), resulting in
O(c(c + log N)) bits. The getPS reply has size O(c?log N),
as it contains c paths and stashes. Finally, an evict has size
O(clog N) (a consolidated path and stash).

When considering an n-server setup, by default, the com-
munication goes up by at least a factor of n, as data must
be sent to all servers. Note that this multiplicative factor
only occurs in requests, as replies benefit from the optimiza-
tion of n — 1 servers sending hashes; i.e., O(|Reply| + n).
Requests also account for the cost of Byzantine consensus,
which we use only for metadata ordering, which results in
O(n|Request| + Consensus).

By using a linear consensus protocol (e.g., HotStuff [81]) or
a quadratic protocol [2], [82] in a small group of replicas (i.e.,
n < clog N), the Consensus term loses importance, and the
complexity boils down to the values of Table II.

Putting it all together, MVP-ORAM incurs a communica-
tion complexity of O((n + ¢)clog N). This shows two nice
properties of our protocol. First, it is an adaptive wait-free
construction [46], meaning that its performance depends on the
number of active concurrent clients ¢, not on the total number
of existing clients. Second, its bandwidth usage is linearly
proportional to the number of servers. This means that, with
low concurrency, the bandwidth usage approximates that of
Path ORAM replicated to n servers.

In terms of storage, each server needs to store the original
position map (O(N)), the tree database (O(N)), and stash
(O(clog N)) plus up to ¢ updates performed by different
clients (O(c? log N)) and not yet consolidated in the database.
This leads to O(N + ¢?log N) server storage requirement.

VIII. STRONG MULTI-VERSION PATH ORAM

MVP-ORAM gives the same guarantees as non-wait-free
ORAMs when a single client accesses the ORAM per
timestep, or multiple clients concurrently access distinct ad-
dresses. However, obliviousness can be compromised if clients
try to access the same block in the same timestep, particularly
if this block is deep in the tree. In the worst-case scenario



(ORAM accesses follow a uniform distribution), clients will
have few paths available to access the blocks since most of
them will be located in slots near the leaves. In this case, the
adversary can potentially observe concurrent clients requesting
the same paths, compromising obliviousness.

In this section, we outline a variant of MVP-ORAM that
preserves wait-freedom and obliviousness, at the cost of
executing extra dummy requests for each real access and
assuming the relative speed of clients in executing an access is
approximately the same, i.e., no client is significantly faster or
slower than the others. A full description of the Strong MVP-
ORAM protocol and its proof is presented in the extended
version of the paper [84].

A. Mitigating the Risk of Concurrent Accesses

Let o > 0 be a security parameter defining the number of
dummy accesses sent for each real access. To access a block b
with address addr, each client implicitly builds a schedule of
MVP-ORAM accesses (with the three steps described before)
for o 4+ 1 consecutive timesteps. The key idea is to make at
most one client access addr in a timestep, while others execute
dummy accesses. Let 7; € {0,...,0} be the timestep when ¢;
performs the real access. The schedule of c¢; is built as follows:
c; first executes 7; dummy accesses, then its real access, and
concludes with ¢ — 7; dummy accesses.

For this strategy to be effective, concurrent clients must
define distinct timesteps for their actual accesses. A client
¢; discovers 7; during its first MVP-ORAM access. In the
invocation of getPM, each client additionally sends the (en-
crypted) addr that it wants to access, and the server stores
this information in a set .4, which is returned together with
the getPM’s response.

When ¢; receives A, it defines 7; by counting the number
of ongoing accesses to addr, i.e., it sets 7; as the number of
accesses to addr in A minus one (to ignore its own access).
For example, if there is one access to addr in A (it’s own
access, just declared), then 7; = 0 (the first access will retrieve
the target block, and all the other ¢ will be dummy). If there
are two accesses, then 7, = 1, which implies a single dummy
access, the real access, and o — 1 dummy accesses.

B. Security Analysis of Strong MVP-ORAM

Our strategy requires every client to always perform o + 1
accesses, ensuring that in case concurrent clients access the
same address, they do so at different timesteps. Since the
server does not know which address a client is accessing,
the adversary will be unable to distinguish between real and
dummy accesses and whether clients are coordinating to hide
access to the same address. Hence, as long as ¢ matches
the maximum concurrency of the system (c < o + 1), then
this approach ensures no two clients access the same block in
the same timestep and it is possible to show that the access
pattern will be indistinguishable from a random access pattern,
matching the obliviousness of parallel ORAM without giving
up wait-freedom but assuming synchrony.
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Fig. 6. Statistical distance simulation for different numbers of dummy

accesses considering uniform (o << 1) and skewed (o >> 1) block
selection distributions in a tree of height 17. In (a), clients access 99%
of blocks with probability 99%. In (b), clients access 1% of blocks with
probability 99%.

Fig. 6 shows how different values of o affect the statistical
distance between access distributions. The distance is zero
(statistical security) when the number of clients ¢ is at most
o + 1. However, when o is less than ¢, the distance increases
as multiple clients might access the same block in the same
timestep. Nevertheless, it shows that our stronger variant
improves statistical distance even when block selection follows
a near-uniform distribution, i.e., most accessed blocks are
near leaves. Specifically, it reduces the statistical distance
from near 1 to zero when ¢ < o + 1. In this condition,
MVP-ORAM’s obliviousness approximate that of collision-
free parallel ORAM [19] (Theorem 6).

Theorem 6. Givenc,0, N € N, ifc < o+1, then Strong MVP-
ORAM’s access pattern is indistinguishable from a random
access pattern with negligible probability in N.

IX. IMPLEMENTATION & EVALUATION

We implemented a prototype of MVP-ORAM and con-
ducted a set of experiments on AWS to evaluate its stash size
and concrete performance under different configurations.

A. Implementation

We built a prototype of MVP-ORAM in Java by extending
COBRA [9], a confidential BFT SMR framework based on
DPSS. COBRA itself relies on BFT-SMaRt [82], a replication
library that provides all the features required for practical
BFT SMR systems. BFT-SMaRt implements a Verifiable
and Provable Consensus [87] based on Cachin’s Byzantine
Paxos [88], which is similar to PBFT [2], i.e., it requires three
communication steps and has a quadratic message complexity
in the common case. This is the consensus algorithm executed
during the invocation of Server.getPM, Server.getPS, and
Server.evict. Thus, through COBRA (and BFT-SMaRt), we
can easily implement all features required by MVP-ORAM.

We have also implemented a safeguard against an un-
bounded number of concurrent clients exhausting bandwidth
and storage by making ORAM servers only allow ¢4, clients
to perform concurrent accesses. This is important to avoid
memory trashing and ensure the stability of the system under



high load. Given enough resources, C,,q, could naturally
match the number of clients accessing the shared ORAM.

Our implementation and all the code used for the experi-
ments are available on the project’s web page [47].

B. Setup and Methodology

Our experimental evaluation was performed in the AWS
cloud using two types of instances. The servers were executed
in n r5n.2xlarge instances, each having 8 vCPU, 64 GB of
RAM, and 8.1 Gbps baseline network bandwidth. The clients
were executed in 6 ¢5n.2xlarge instances, each with 8 vCPU,
21 GB of RAM, and 10 Gbps baseline network bandwidth.

We installed Ubuntu Server 22.04 LTS and OpenJDK 11
on all of the machines. The experiment analyzing stash size
was conducted by simulating concurrent accesses to ORAM
on a single machine. Performance was measured by executing
servers in n machines and clients in the remaining ones.
Throughput and latency measurements were collected from
a single server and client machine, respectively. Unless stated
otherwise, we measure MVP-ORAM considering a database
of 1 GB configured in a tree of height L = 17 and with
each node containing Z = 4 blocks of 4096 bytes each.
Therefore, our database contains N = 262143 blocks. For
each operation, clients randomly choose among all the blocks
in a Zipfian distribution with a = 1.0, and the operation type
is picked uniformly at random between read and write. The
graphs showing throughput and latency display the average
(plus standard deviation) of data collected over 6 minutes for
each experiment.

C. MVP-ORAM Stash Size

We start by studying the impact of the number of frequently
accessed blocks and concurrent clients on the stash usage.
Since the stash size changes over time with the number of
accesses and does not depend on the size of the blocks, we
run local simulations on a single server with a small block
size to execute 500k concurrent accesses.

Since altering « affects the number of frequently accessed
addresses and c affects concurrency, this experiment analyzes
the impact of changing those parameters. The bucket size Z
also affects the stash usage. However, it has the expected
result: the stash size decreases as we increase Z since the
probability of selecting empty slots from the path increases,
which increases the number of blocks evicted from the stash.

The results are presented in Fig. 7. There are two main
takeaways from these experiments: (1) the stash size stabi-
lizes after some operations, and (2) the maximum stash size
increases as we decrease « and increase c.

As analyzed in §VII-B, the rate of moving blocks from the
stash to the tree and vice-versa is equal when the stash size
reaches its expected maximum size.

We study the impact of Zipfian exponent « by experi-
menting with low (« 107%), medium (« 1.0), and
high (« 2.0) contention levels in the accessed blocks.
Accordingly, clients approximately access 90%, 27%, and
0.001% of blocks, respectively, with a probability greater
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than 90%. Decreasing this parameter increases the number
of distinct blocks that clients access and move to the stash.
However, the number of concurrent clients heavily influences
the number of distinct blocks swapped between the stash and
the tree. Since c is fixed, the stash size is defined by the number
of frequently accessed blocks, which is higher for small «
values.

Increasing the number of concurrent clients also increases
the stash size. Since blocks are uniformly sampled, increasing
the number of clients increases the number of common blocks
selected from the stash. Thus, the clients remove a few distinct
blocks from the stash, increasing its size. This experiment
shows that the number of concurrent clients heavily dominates
the stash size, confirming our theoretical analysis (§VII-B).

D. MVP-ORAM Performance

The next set of experiments aims to measure the impact
of BFT replication and the number of concurrent clients on
MVP-ORAM’s performance. Fig. 8 shows the throughput and
latency of MVP-ORAM with varying n and c.

The overall throughput of the single-server setup is higher
than that of the system tolerating failures. Specifically, the
peak throughput is 2.2x the system’s throughput tolerating
one failure. Recall that a system tolerating ¢ faults requires
n > 3t servers, and clients must wait for at least 41 matching
server responses before continuing. Therefore, as the number
of tolerated faults increases, clients must send requests to more
servers and wait for their responses, which increases latency
and reduces the number of requests they send. In turn, this
slightly reduces the overall throughput, i.e., it drops by 7%
when the number of servers goes from 4 to 10.
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Fig. 9. Access latency breakdown. Each bar group considers runs with 1
(left), 5 (center), and 10 (right) concurrent clients.

TABLE III MVP-ORAM ACCESS REQUEST/RESPONSE SIZES IN BYTES,
FOR WORKLOADS WITH 1, 5, AND 10 CLIENTS.

No. clients | getPM getPS evict
1 8/609 | 8/272415 | 307328/1
5 8/1489 | 8/445932 | 314101 /1
10 8/2781 | 8/940107 | 339344/1

Although throughput remains stable regardless of the num-
ber of clients, latency increases as the number of clients
increases. This is the effect of bounding the maximum number
of concurrent accesses t0 Cpqr; = 10 to avoid memory and
bandwidth trashing.

To better understand the factors contributing to MVP-
ORAM’s performance, we break down the access latency in
the three operations that constitute an access. Fig. 9 shows the
individual latency of each protocol phase, which corresponds
to an SMR operation for different numbers of servers and up
to Cmaq clients, when queueing is not a factor. With a single
client (no concurrency - first bar of each group), evict is the
most costly phase. When the number of concurrent clients
increases (second and third bars), getPS becomes more promi-
nent. This can be explained by the operations’ request/response
sizes for different clients, as shown in Table III. Among the
three phases of MVP-ORAM, getPS requires bandwidth that
is quadratic in the number of clients (see Table II).

A note on the Strong MVP-ORAM performance. The
strong variant of MVP-ORAM discussed in §VIII requires
each ORAM access to perform o + 1 MVP-ORAM accesses.
This means the throughput observed for this variant would be
MVP-ORAM throughput divided by o+ 1. For example, if one
wants to offer perfect ORAM guarantees for up to 10 clients,
each access would require eleven MVP-ORAM accesses,
which means a throughput of about the 390/11 = 35
accesses/sec. A similar degradation also affects latency.

~
~

E. Performance with Different Configurations

To better understand how the performance of MVP-ORAM
varies in different configurations, we conducted additional
experiments for n = 4, considering various tree heights, bucket
sizes, block sizes, and « values.

The first set of experiments considers different tree heights
(L) and bucket sizes (Z). Fig. 10 shows the throughput and
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latency for different configurations (L, Z) of the database.
Unsurprisingly, the results show that the performance gets
worse when (L, Z) increases, since the amount of 4KB-blocks
contained in a tree path is L x Z.

The second set of experiments considers different values of
«, the Zipfian distribution parameter used for selecting blocks
to be accessed. Recall that smaller values of a make block
accesses approximate a uniform distribution.

Fig. 11 shows the throughput and latency for the experi-
ments. Although the effect of parameter o, which represents
how skewed the system workload is, primarily reflects the
obliviousness guarantee of the system, it also affects perfor-
mance. This is due to the influence of skewness on the size of
the stashes produced by clients (see §IX-C). The performance
results show that when used in applications that induce skewed
workloads, MVP-ORAM not only provides better security
guarantees but also exhibits better performance.

Our final set of experiments evaluates the performance of
MVP-ORAM with block sizes of 256 bytes, 1024 bytes, and
4096 bytes. Fig. 12 shows the throughput and latency for the
experiments.

For small blocks of 256 bytes, the system reaches almost
a thousand accesses per second. As the block size increases,
performance decreases accordingly, since 4x and 16X more
data is transferred with the other block sizes.

Overall, these experiments confirm our theoretical observa-
tion that MVP-ORAM performance gets worse in configura-
tions that require more data to be transferred. This aligns with
observations made for other ORAM protocols and supports
the fundamental goal of enhancing the overall bandwidth of
ORAM schemes.
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TABLE IV PERFORMANCE COMPARISON OF MVP-ORAM wiTH COBRA
AND QUORAM WITH 50 CLIENTS.

n=4 n="7
Protocol Throughput | Latency | Throughput | Latency
COBRA 3767 ops/s 12 ms | 3446 ops/s 13 ms
MVP-ORAM 356 ops/s | 130 ms 355 ops/s | 128 ms
QuORAM 183 ops/s | 272 ms 163 ops/s | 305 ms

F. Experimental comparison with other systems

Table IV compares MVP-ORAM performance with CO-
BRA and QuORAM. COBRA [9] tolerates Byzantine faults
and ensures Secrecy, but not Obliviousness. Since it accesses
data by invoking a single request that leverages secret sharing,
its throughput and latency are approximately an order of
magnitude better than what was observed for MVP-ORAM.
This illustrates the cost of adding Obliviousness to a BFT
datastore without resorting to trusted components.

QuORAM [35] is the only replicated ORAM service we
are aware of. It tolerates crash faults and uses trusted prox-
ies, while MVP-ORAM tolerates Byzantine faults without
requiring trusted components. The existence of trusted proxies
collocated with servers in the same machine eliminates the
need to execute bandwidth-hungry ORAM operations through
the network, as they are executed only between the proxy
(which acts as a single Path ORAM client) and the server. We
confirmed the benefit QuUORAM gained with this approach
by executing it in the same setting as MVP-ORAM. With
over 100 clients and for n 4 and n 7, QUORAM
achieves a maximum throughput of around 1000 operations per
second. However, our evaluation also shows that QuORAM
performs much worse than MVP-ORAM with a restricted
number of clients. As sumarized in Table IV, MVP-ORAM
with 50 client can process 356 (n 4) and 355 (n 7
ops/s, while QUORAM only processes between 163 and 183
ops/s. The reason behind the low performance of QUORAM
is its higher latency, which is caused by the use of proxies.
In our experiments, MVP-ORAM’s maximum latency is 130
ms, while QUORAM’s minimum latency is 272 ms.

Notice that having too many clients increases the service
attack surface, as ORAM clients must be mutually trusted.
Therefore, we argue that achieving high performance with
fewer clients is more important than achieving good numbers
with 100 or more concurrent clients accessing the ORAM.
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X. CONCLUSIONS AND FUTURE WORK

This paper presented MVP-ORAM, the first Byzantine fault-
tolerant ORAM protocol. It enables fail-prone concurrent
clients to access a shared data store without revealing any in-
formation about the accessed data or their access patterns. We
show that in asynchronous networks, satisfying wait-freedom
fundamentally compromises collision-freedom, affecting the
security guarantees of our construction. To account for this,
we propose a weaker security definition for asynchronous
wait-free ORAMSs, which may be secure enough for typical
storage applications with skewed block accesses. We devise
MVP-ORAM as a deterministic wait-free ORAM service and
integrate it into a confidential BFT data store, which shows
promising performance results. Additionally, we introduce a
stronger variant of MVP-ORAM that ensures perfect access-
pattern secrecy with additional assumptions.

This paper opens many avenues for future work. For
example, it seems impossible to implement a perfect wait-
free ORAM in asynchronous systems, but this remains to be
proved. Furthermore, more efficient variants of MVP-ORAM
can be devised to implement perfect obliviousness. Finally,
state-of-the-art information dispersal [89] can potentially be
used to improve the bandwidth requirements and concrete
performance of replicated/BFT ORAM.
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APPENDIX A
MVP-ORAM AUXILIARY FUNCTIONS

Algorithm 3 specifies the auxiliary functions used by clients
to update their position map (consolidatePathMaps), merge
multiple versions of path and stashes (mergePathStashes), and
to create a new version of path and stash (populatePath), as
used in Algorithm 1 (§V).

The consolidatePathMaps function (A3, L1-7) receives
as input a history of path maps containing the location and
version updates of blocks that have been evicted until the
access that invoked this function. Using this history, it updates
the local position map by keeping for each block address the
location update with the highest timestamp, while discarding
location updates with older versions.

The mergePathStashes function (A3, L8-11) receives as
input a multi-version path, a set of stashes, and a consolidated
position map. Using the position map as a reference point,
the function filters blocks received in the path and stashes
by keeping the ones with received in the correct slot and with
timestamp according to the position map. Older and duplicated
blocks are ignored.

Finally, the populatePath function (A3, L12-39) receives
a working set, a path identification, accessed address, consol-
idate position map, and the sequence number of the access
as input and populates a new path and stash with blocks
contained in the working set. This is achieved in four steps
on the populatePath auxiliary function. First (A3, L15-20), ¢;
populates the new path P} by putting blocks from W in their
correct slots according to pm. If multiple clients have evicted
different blocks to the same slot during the previous concurrent
accesses, then ¢; selects the block with the highest sequence
among them and keeps others in W (A3, L17). Additionally,
¢; keeps track of non-empty slots in Syseq-

In the second step (A3, L21-25), ¢; exchanges Z blocks
from the stash with Z blocks from P;. This is done by
sampling Z slots from P/, including the accessed block if
it was not previously in the stash, ensuring that the maximum
number of paths is available to retrieve this block in the next
accesses. Then, ¢; samples Z blocks from W uniformly at
random, except the accessed block, and puts them in set By.
After selecting Z blocks and slots, ¢; iterates over selected
slots. For each slot sl*, if it contains a real block, it is moved
to W, and a block from B is moved to sl*. Note that the
stash size can decrease if some of the selected slots are empty,
as we remove blocks from the stash rather than substituting
them.

During the third step (A3, L26-31), ¢; reorders blocks by
placing recently accessed blocks higher in the path. It first
collects all blocks from P/ into B;. Then, iterates over each
slot in the path after the exchange (i.e., Syseq U Sz) from the
lowest slot to the highest and evicts block with highest access
among B; to it. Additionally, ¢; updates the timestamp of the
evicted blocks and their location on the path map M.

Finally, during the fourth step (A3, L32-39), ¢; builds the
new stash S by adding the remaining blocks in W, updating
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Algorithm 3: MVP-ORAM auxiliary functions.

1 Function consolidatePathMaps(H pathriaps)
Vaddr = 0..N : pm[addr] + (L,{(-1,—-1,-1))
foreach M; € Hpathrsaps do
foreach (addr, sl, ts) € M, do
(L, ts™) <+ pm[addr]
L if ts > ts™ then pm[addr] < (sl, ts)
return pm

= N7 I N

X1

Function mergePathStashes(P;, S, pm)

W+ {{a,s,ts) € S: S € SApmla] = (L

Wy < {{a,d, ts) € Pi(sl) : sl € PiA pm|a]
return W, U W,

Function populatePath(W, 1, addr, pm, seq)
7377 S7 Ml7 Sused — 0
(sl,_) < pm[addr]
foreach si* € P/ do // put blocks on path I
By + {(addr*,s) : {addr*, _,{_,_,s)) € WA
pmladdr®] = (sl*,_)}
(addr’,_) «+ entry with highest s from By
Py (sl*) « {Wladdr']}
W e W {P; ()}
Sused — Sused @] {Sl*}

Sz < Z random slots from P} including sl if sl # L
Bz < Z random blocks from W\ {(addr, ...)}
foreach sl* € Sz do // exchange Z blocks
if P7(sl*) # L then W « W U P} (sl*)
P (sl*) < set with a block from Bz

By« {bePi(sl*):sl* € P NP/ (sl*) # L}
foreach sl* € sort(Sysca U Sz) do // reorder
blocks

(addr*,d, (v, a, s)) < block with highest a from B;

B, + By \ {{addr*,d, {v,a,s))}

Pl*(SZ*) &~ {(addr*, d7 <U7 a, 86q>>}

M+ MU {{addr*, sl*, (v, a, seq))}

)}
(sl, ts)}

, s
10 =
11

12
13
14
15
16

17
18
19
20

21
22
23
24
25

26
27

28
29
30
31

32 foreach (addr™,b, (v,a,s)) € W do // build
stash
33 (sl*,_) = pm[addr¥]

34
35
36

if si* # L V addr™ = addr then

ts < (v, a, seq)
My + MU {{addr*, L, ts)}

else ts <+ (v,a,s)
| S <« SuU{(addr®,b,ts)}

return (P, S, M)

37
38

39

the timestamp and location of newly added blocks to the stash,
including the accessed block. The function then returns Pj,
S, and M;.



APPENDIX B
ARTIFACT APPENDIX

The artifact includes the implementation of MVP-ORAM,
QuORAM,’> and COBRA.® The former was used for per-
formance assessment, while the latter two were used for
comparison. The experiments were conducted on multiple
AWS servers, but for ease of reproduction, we provide a
scaled-down version of a single-machine evaluation setup in
this appendix. We present instructions to reproduce the main
results of our paper, which include the performance of MVP-
ORAM and a comparison with QuUORAM. Reproduction of
other experiments is presented in the extended version of this
paper [84].

A. Description & Requirements

1) How to access: The artifact is available on Zenodo,’
which includes the MVP-ORAM, QuORAM, and COBRA
implementations adapted for easier benchmarking.

2) Hardware dependencies: This artifact was tested on a
machine with a 2.59 GHz CPU and 16 GB of RAM. Note that
the experimental results presented in the paper were obtained
using multiple more powerful machines instead of a single
machine.

3) Software dependencies: Execution of this artifact re-
quires unzip, gnuplot, and OpenJDK 11. It can be executed
on either Linux or the Linux subsystem on Windows.?

4) Benchmarks: None.

B. Artifact Installation & Configuration

Download the artifact from Zenodo in the location where
the experiments will be executed and open a terminal in that
location. Let us designate the terminal as builder terminal
during the experiments. Execute the following command in
the builder terminal to extract the artifact:

unzip MVP-ORAM-Artifact.zip

After extracting, you should have a folder named
MVP-ORAM-Artifact containing the artifact. Navigate to
this folder in builder terminal and, for all the remaining
instructions, assume a relative path from it.

The experiments are automated using a custom bench-
marking tool, configured by setting parameters in the
config/benchmark.config file.

C. Experiment Workflow

During the experiments, the collected and processed data
will be stored in subfolders located at the path specified in
output.path:

e output/raw_data will contain the raw data.

e output/processed_data will contain the processed

data used for plotting.

e output/plots will contain the produced plots.

Shttps://github.com/SeifIbrahim/QuORAM/
Ohttps://github.com/bft-smart/cobra
"https://doi.org/10.5281/zenodo. 17842154
8https://learn.microsoft.com/windows/wsl

Hence, for all experiments, set output .path to the same
location, e.g., the path to the MVP-ORAM—-Artifact folder.

The artifact is divided into the MVP-ORAM and QuORAM
projects. The experiment workflow of both projects is com-
posed of the following steps:

1) Navigate to the project folder in builder terminal.

2) Build the project by executing the following command

in builder terminal:

./gradlew localDeploy —-PnWorkers=x

where x is the number of servers plus the num-
ber of client workers. We recommend z = 3 X
max(fault_thresholds)+ 3. After a successful execution
of the command, you should have z + 1 folders in
<project>/build/local/ named controller
and worker<i>, where 1 € [0,...,z — 1]. These
folders contain all the necessary materials to execute
the experiments.

3) Open a new terminal and navigate to
<project>/build/local/controller folder.
Let us designate this terminal as controller terminal.

4) Configure benchmarking.config located in the
<project>/build/local/controller/config
folder using a text editor (e.g., nano) for a given
experiment.

5) Execute the following command in the controller termi-
nal:

./smartrun.sh controller.

BenchmarkControllerStartup config/
benchmark.config

6) Execute the following command in the builder terminal:

./runscripts/startLocalWorkers.sh <x>
127.0.0.1 12000

The execution of this command will trigger the experi-
ment in the controller terminal, and it will display the
experiment status during the execution. The experiment
concludes when the controller terminal prints the exe-
cution duration.
Tip: An active experiment can be terminated at any time
by executing CTRL+C in the controller terminal.

D. Major Claims

We make the following claims in our paper:

e (Cl1): The stash size stabilizes after some number of
accesses, and the maximum stash size increases as we
decrease « and increase c. This is proven by experiment
(E1), whose results are shown in Fig. 7.

e (C2): The overall throughput decreases and the latency
increases as we increase the number of servers. This is
demonstrated by experiment (E2), and reported in Fig. 8.

¢ (C3): The throughput stabilizes and the latency increases
as we increase the number of clients. This is demonstrated
by experiment (E2) and reported in Fig. 8.

e (C4): MVP-ORAM outperforms QuORAM both in
throughput and latency with 50 clients. This is proven
by experiment (E3), with results reported in Table I'V.


https://github.com/SeifIbrahim/QuORAM/
https://github.com/bft-smart/cobra
https://doi.org/10.5281/zenodo.17842154
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E. Evaluation

1) Experiment (El): [Stash] [10 human-minutes + 1.1
compute-hour]: This experiment shows the impact of a and ¢
on the stash size. The results show that the stash size stabilizes
over time, and its maximum size increases as « decreases
(i.e., as the access distribution becomes more uniform) and c
increases.

[Preparation] This experiment requires executing the steps
described in the experimental workflow twice, with different
values of zipf_parametersand clients_per_round.
In both executions, use the following parameters:

e global.worker.machines=3
fault_thresholds=0
tree_heights=16
bucket_sizes=4

block _sizes=8
concurrent_clients=15

e measurement_duration=600

First execution: Set clients_per_round=5 and
zipf_parameters=0.000001 1.0 2.0
Second execution: Set clients_per_round=1 10 15
and zipf_parameters=1.0
[Execution] Consider the project MVP—ORAM and follow the
steps described in the experimental workflow to execute the
experiment twice, setting the parameters defined above.
[Results] Execute the following command, in the builder
terminal, to produce Fig. 7:
gnuplot —-e "O='<output.path>’; L='16'; Z="4’;
B='8’; c_max='15"; D=10" plotScripts/
stash_plot.gp

The correct execution of this command will create
<output.path>/output/plots/stash.pdf file con-
taining the figure. Due to the scaled-down experiment, this
figure only shows the overall trend of Fig. 7, confirming (C1).

Note: For more acurate results, increase
measurement_duration and setting D=’'d’ during
plotting, where d = [measurement_duration/60].

2) Experiment (E2): [Performance] [5 human-minutes +
0.5 compute-hour]: This experiment shows the impact of n
servers and c clients on the throughput and latency of the
system. It shows that increasing n decreases the throughput
and increases the latency, and increasing c increases the
latency while keeping the throughput stable.

[Preparation] Use the following parameters for this exper-
1ment:

global.worker.machines=12
fault_thresholds=0 1 2
clients_per_round=1 5 10 15
tree_heights=16
bucket_sizes=4
block_sizes=8
concurrent_clients=5
measurement_duration=60
zipf_parameters=1.0
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[Execution] Consider the project MVP-ORAM and follow the
steps described in the experimental workflow to execute the
experiment using the above values.

[Results] Execute the following command in the builder
terminal to produce Fig. 8:
gnuplot —-e "O='<output.path>’; L="16'; Z='4’;

B='8’; A='1.0"; c_max='5’" plotScripts/
throughput_latency_plot.gp
The correct execution of this command will create the
<output.path>/output/plots/performance.pdf
file containing the figure. Due to the scaled-down experiment,
this figure only shows the overall trend of Fig. 8, confirming
(C2) and (C3).

3) Experiment (E3): [Comparison with QuORAM] [5
human-minutes + 1 compute-hour]: This experiment shows
that MVP-ORAM outperforms QuORAM both in throughput
and latency. However, due to the resources required to run
experiments, we only show results for up to 15 clients.

[Preparation] Use the following parameters for this exper-
iment:

e global.worker.machines=7
fault_thresholds=1 2
clients_per_round=1 5 10 15
storage.sizes=1
bucket_sizes=4
block_sizes=8
measurement_duration=60
zipf_parameters=1.0

Note: QuORAM configuration file
QUORAM/config/benchmark.config

[Execution] Consider the project QuORAM and follow the
steps described in the experimental workflow to execute the
experiment using the above values.

Note: Execute (E3) after completing (E2), as (E3)’s plot
relies on (E2)’s results for comparison.

[Results] Run the following command in builder terminal:
gnuplot —-e "O='<output.path>’; L="16'; Z="4’;

B='8’; A='1.0"; c_max='5’" plotScripts/
mvp_oram_vs_quoram_plot.gp
The correct execution of this command will create
the <output.path>/output/plots/quoram.pdf file
containing a figure comparing MVP-ORAM with QuORAM.
Due to the scaled-down experiment, this figure only shows the
overall trend of Table IV, confirming (C4).

is located at

F. Customization

The experiments can be executed by setting different values
for the used parameters, i.e., varying the fault threshold, tree
height, bucket size, block size, Zipfian parameter, number
of clients, and the maximum number of concurrent clients.
However, to plot the measurements correctly, provide the
correct values of the used parameters.

Additionally, the accuracy of the results can be improved
by obtaining more data points by increasing the experi-
ment duration, which can be achieved by modifying the
measurement_duration parameter.
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