Artifact
Evaluated

ANDss

FLIPPYRAM: A Large-Scale Study of [
Rowhammer Prevalence

Reproduced

Martin Heckel Nima Sayadi Jonas Juffinger
Hof University of Applied Sciences Hof University of Applied Sciences Graz University of Technology
martin.heckel.2 @hof-university.de nima.sayadi @hof-university.de jonas.juffinger @tugraz.at
Carina Fiedler Daniel Gruss Florian Adamsky
Graz University of Technology Graz University of Technology Hof University of Applied Sciences
carina.fiedler@tugraz.at daniel.gruss @tugraz.at florian.adamsky @hof-university.de

Abstract—Rowhammer is a disturbance error in Dynamic
Random-Access Memory (DRAM) that can be deliberately trig-
gered from software by repeatedly reading, i.e., hammering,
proximate memory locations in different DRAM rows. While
numerous studies evaluated the Rowhammer effect, in particular
how it can be triggered and how it can be exploited, most studies
only use a small sample size of Dual In-line Memory Modules
(DIMMs). Only few studies provided indication for the preva-
lence of the effect, with clear limitations to specific hardware
configurations or FPGA-based experiments with precise control
of the DIMM, limiting how far the results can be generalized.

In this paper, we perform the first large-scale study of the
Rowhammer effect involving 1 006 data sets from 822 systems.
We measure Rowhammer prevalence in a fully automated cross-
platform framework, FLIPPYRAM, using the available state-
of-the-art software-based DRAM and Rowhammer tools. Our
framework automatically gathers information about the DRAM
and uses 5 tools to reverse-engineer the DRAM addressing
functions, and based on the reverse-engineered functions uses 7
tools to mount Rowhammer. We distributed the framework online
and via USB thumb drives to thousands of participants from
December 30, 2024, to June 30, 2025. Overall, we collected 1 006
datasets from systems with various CPUs, DRAM generations,
and vendors. Our study reveals that out of 1 006 datasets, 453
(371 of the 822 unique systems) succeeded in the first stage of
reverse-engineering the DRAM addressing functions, indicating
that successfully and reliably recovering DRAM addressing func-
tions remains a significant open problem. In the second stage, 126
(12.5 % of all datasets) exhibited bit flips in our fully automated
Rowhammer attacks. OQur results show that fully-automated, i. e.,
weaponizable, Rowhammer attacks work on a lower share of
systems than FPGA-based and lab experiments indicated but
with 12.5 % enough to be a practical vector for threat actors.
Furthermore, our results highlight that the two most pressing
research challenges around Rowhammer exploitability are more
reliable reverse-engineering addressing functions, as 50 % of
datasets without bit flips failed in the DRAM reverse-engineering
stage, and reliable Rowhammer attacks across diverse processor

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241810
www.ndss-symposium.org

microarchitectures', as only 12.5% of datasets contained bit
flips. Addressing each of these challenges could double the num-
ber of systems susceptible to Rowhammer and make Rowhammer
a more pressing threat in real-world scenarios.

I. INTRODUCTION

Dynamic Random-Access Memory (DRAM) is the predom-
inant main memory technology in today’s computer systems.
It is cost-effective, efficient, and has a large capacity, i.e., it
can contain gigabytes of data. A DRAM array consisting of
thousands of cells of transistors and capacitors, each storing a
single bit, and has to be refreshed periodically to prevent data
loss, i.e., bit flips, due to capacitor charge leakage. Distur-
bance effects can additionally influence capacitor charge: The
Rowhammer effect [28] is triggered by frequent activations of
memory rows, e.g., due to accesses, draining enough charge
from nearby rows to cause inaccessible bits in memory to flip.
Since Rowhammer memory access patterns can be run from
unprivileged software, it can serve as a software-based fault
attack, undermining the security of the entire system [43].

Since academic Rowhammer research started in 2014, it has
gained significant attention from both the research community
and industry, particularly in three directions for Rowhammer
exploitability: The first line of works addresses the challenge
of how to exploit bit flips, e.g., by flipping bits in the page
table entries (PTEs) [43], flipping bits in secret keys [3],
flipping bits in binaries [10], or flipping bits in neural network
learned parameters [33]. The different works involve exploita-
tion techniques such as templating memory for exploitable
bit flips and then releasing the memory such that the victim
places its own data at this specific location [43, 10], spraying
memory and increasing probabilities that random bit flips
are exploitable [43], or blind hammering using speculative
execution as an oracle to observe whether the random bit
flip occurred in an exploitable location [30]. The second line
of works focuses on how to trigger Rowhammer and induce
bit flips required for the above category of works. While
initial works accessed rows alternatingly [28, 43], either in

! Since the integration and closed beta test time frame was more than two
months, we could not integrate the ZenHammer tool [20] into our framework.

a single-sided or double-sided fashion, later works discovered

that the access sequence plays a significant role [11, 8, 41,

19], that accesses to decoy rows can be necessary [8], or that

it is necessary to access rows in greater distance to induce

flips [30]. The third line of works focuses on finding memory
addresses that map to specific DRAM locations, e.g., by

reverse-engineering DRAM addressing functions [39, 50, 8§,

14, 20] and using these functions to select suitable memory

locations, or by getting physical address information which

initially has been user-accessible [43] but has been removed in
later versions of the Linux kernel [29]. More recent works use
either huge pages [8, 19, 20], massage memory allocations for
contiguity [30], or use side channels to leak physical address
information or achieve contiguity [30]. However, none of these
works had its main focus on the real-world prevalence of the

Rowhammer effect itself.

Given this lacking understanding of the current real-world
relevance of Rowhammer, we identify two research questions
to answer whether Rowhammer is a realistic and relevant
real-world threat:

RQ1 Is the currently available tooling sufficient to weaponize
the Rowhammer effect for real-world exploits?

RQ2 Given Rowhammer susceptibility ranging between 30 %
and 100 % as reported in prior works in lab setups,
which real-world systems are attackable with Rowham-
mer? More specifically, is it a relevant attack vector for
real-world threat actors given the variety of hardware
configurations in the wild?

In this paper, we address both research questions by
performing a large-scale study of Rowhammer prevalence.
The basis of our large-scale study is a new framework,
FLIPPYRAM, which allows us to run Rowhammer tests on
a large number of systems with minimal user interaction and
full automation of all steps to run Rowhammer on a system.
The framework utilizes 5 tools for DRAM addressing function
reverse-engineering and runs 7 Rowhammer tools. Afterwards,
the results are uploaded to a server when the user agrees to
participate in our study. The framework is designed to be
easily deployable across different hardware configurations and
includes a comprehensive set of Rowhammer attack patterns.

The core of our work is a user study, in which the par-
ticipants ran our framework on their systems. The study was
conducted from December 30, 2024 to June 30, 2025, during
which we collected a total of 1006 datasets from 822 unique
systems (users are able to run our framework multiple times on
the same system). We did not collect information about which
user uploaded which dataset for privacy reasons. Therefore, we
do not know the exact number of participants. The participants
were recruited primarily by distributing thousands of USB
thumb drives with our framework at conferences and events,
as well as through online channels.

We address RQ1 by evaluating whether current Rowham-
mer tooling can be fully automated and used to reliably
trigger bit flips across a wide range of real-world systems,
highlighting the challenges in weaponizing Rowhammer for
practical exploitation. We show that out of 1006 datasets,

automated DRAM addressing function reverse-engineering
was only possible on 453 (45 %). Considering unique systems,
DRAM addressing function reverse-engineering was possible
on 371 (45.1 %) out of 822 systems. We then show that miss-
ing DRAM bank addressing functions are the main reason for
Rowhammer tools to not run on the systems. Even with found
DRAM bank addressing functions on 453 datasets, all our
tested tools combined were only able to flip bits in 126 datasets
(27.8 % of datasets where DRAM addressing functions were
identified). Additionally, three out of five reverse-engineering
tools and all Rowhammer tools effectively hammering DDR4
memory require 1 GB huge pages. While we configured 1 GB
huge pages on our FLIPPYRAM system they are typically
not available on victim user devices without using elevated
privileges.

To answer RQ2, we analyze the proportion of datasets
that are susceptible to Rowhammer attacks in more detail.
This includes examining the success rates of different attack
techniques and toolchains, and hardware configurations like
CPU vendor and DRAM generation. We show that Rowham-
mer tools work almost uniquely on DDR3 or DDR4 DRAM,
only in rare cases on both. We confirm the finding from
Jattke’s et al. [20] that almost all current tools work primarily
on Intel CPUs. Finally, we compare our results with prior
lab-based studies, providing an updated perspective on the
real-world prevalence of Rowhammer susceptibility. In total,
93 (11.3%) of the 822 unique systems in our dataset are
susceptible to Rowhammer attacks. Our findings contextualize
previous estimates and clarify the extent to which Rowhammer
remains a relevant threat in contemporary hardware.

We conclude that significant progress has been made in
understanding and mitigating Rowhammer attacks from the
perspective of lab-controlled environments, but the real-world
applicability of Rowhammer remains challenging. Surpris-
ingly, this challenge is not due to lacking susceptibility to
the Rowhammer effect in general, but rather due to the
difficulty of reliably and automatically reverse-engineering
DRAM addressing functions and the lack of reliable Rowham-
mer tools that work across diverse hardware configurations,
in particular across different processor microarchitectures'.
It is not unlikely that the susceptibility of DDRS memory
is underestimated due to the lack of reliable methods both
for reverse-engineering DRAM addressing functions and for
hammering. Still, a share of about 10 % to 20 % is a relevant
mass for threat actors to consider utilizing Rowhammer in real-
world attacks, and with improved techniques this may even
increase to the range of 20 % to 40 %.

In summary, we make the following contributions:

« We conduct the first large-scale, fully automated study of
Rowhammer prevalence on real-world systems in a user
study, collecting 1 006 datasets from 822 systems across
diverse platforms, DRAM generations, and vendors.

« For this purpose, we develop FLIPPYRAM, the first end-

to-end automated Rowhammer open-source’ framework.
FLIPPYRAM works across platforms and fully automates
all attack steps including reverse-engineering DRAM
addressing functions using 5 state-of-the-art tools, and
executing 7 state-of-the-art Rowhammer tools, enabling
hands-off testing at scale.

o We perform a detailed analysis of the 1006 data sets we
collected, considering CPU and DRAM vendors, DRAM
generations, and hammering techniques. On a high level,
out of 453 datasets (371 of the 822 unique systems)
succeeded in the first stage of reverse-engineering the
DRAM addressing functions, 126 datasets (27.8% of
datasets where the first stage worked) exhibited bit flips.

« We identify that the key open challenges for future
Rowhammer research are the reliable automation of
DRAM address function recovery, given that 50 % of
datasets without bit flips failed in the DRAM reverse-
engineering stage.

II. BACKGROUND

In this section, we provide background on DRAM,
Rowhammer and related works.

A. DRAM

DRAM cells consist of capacitors and transistors organized
in rows and columns, which are grouped into banks and ranks
on a DIMM [39]. Communication between the CPU’s memory
controller and the DIMM occurs via channels. On an access to
a DRAM cell, the memory controller performs an activation:
opening the corresponding row and reading the data into a so-
called row buffer. Further accesses to the same row can then be
served from the row buffer. Row activations are destructive,
so the DRAM chip needs to write back the content before
activating another row. Thus, it is slower to read from different
rows on the same bank (row conflict) compared to reading
from rows on different banks. Hence, addressing functions are
designed to distribute contiguous memory across banks, ranks,
and channels to avoid conflicts and utilize parallelization.
Since capacitors lose charge over time, DRAM needs periodic
recharging, e. g., every 64ms [21, 22, 23].

B. Rowhammer

Kim et al. [28] were the first to discover that disturbance
errors, i.e., bit flips, in DRAM memory can be deliberately
induced by frequently accessing nearby memory rows. Due
to these frequent activations, additional charge leakage can
occur in physically adjacent rows — a phenomenon known
as Rowhammer. An adversary can exploit this side effect to
induce bit flips in memory. The accessed rows are called
aggressor rows and the rows prone to bit flips victim rows.

In recent years, the research community has developed many
sophisticated Rowhammer attacks [11, 39, 48, 40, 10, 8, 41,
19, 20, 27]. These works use different hammering patterns
such as single-sided [28], double-sided [11], many-sided [8,

Zhttps://github.com/iisys-sns/flippyram (archived version at https:/doi.org/
10.5281/zenodo.17881765)

41], and the half-double Rowhammer pattern [30]. Other ap-
proaches do not use static patterns, but randomize patterns us-
ing fuzzing [19, 20]. These patterns require locality awareness
of the DRAM to co-locate aggressor and victim rows. Since
proprietary addressing functions are not documented, previous
work reverse-engineered addressing functions utilizing the
bank-conflict side channel [39, 50, 8, 14, 20] or performance
counters [17]. The bank-conflict side channel exploits the fact
that the access time of memory addresses belonging to the
same bank is slow because they share a single row buffer, and
memory addresses to different banks are fast because they have
their own row buffer. Addressing functions are typically linear,
in particular on systems where the total number of DRAM
components is a power of two. On other systems functions
may be non-linear and reverse-engineering these functions re-
mains an open problem. Single-sided Rowhammer [43], One-
Location Rowhammer [10], and One-Location RowPress [35,
26] even work without addressing functions.

Besides the focus on Intel x86 CPUs, Rowhammer also
works on AMD CPUs [20], and non-x86 architectures, such
as Arm [48, 52, 30] and RISC-V [36]. Rowhammer can
be exploited via JavaScript [11, 41]. These bit flips can be
exploited, e. g., using PTE spraying to flip bits in the PFN, re-
sulting in access to arbitrary memory [43]. In Veen et al. [48],
an unprivileged Android app uses Rowhammer for privilege
escalation to acquire root privileges on stock Android devices.
Gruss et al. [10] showed opcode flipping by flipping bits in
a predictable way in userspace binaries to bypass isolation
mechanisms. Rowhammer attacks have been demonstrated on
various DRAM technologies, e.g., DDR3 [28, 4, 40, 51, 11,
10, 45, 46, 24, 32,47, 27], DDR4 [11, 18, 1, 10, 34, 8, 41, 19,
30, 47, 38, 9, 35, 26, 36, 27, 20], DDRS [20], LPDDR?2 [48,
34], LPDDR3 [48, 52], LPDDR4 [48, 30], and LPDDR4X [8,
19, 30] Recently, Lin et al. [33] demonstrated Rowhammer on
GPUs with GDDR6 memory.

A first Rowhammer mitigation was an increased refresh
rate. However, as discussed by Kim et al. [28], this does
not completely mitigate Rowhammer or brings a significant
performance overhead. Another approach was to use Error
Correction Code (ECC), shown to be ineffective later by
Cojocar et al. [6]. Vendors also utilized the memory controller
to detect Rowhammer attacks and refresh potential victim
rows, which is called pseudo Target Row Refresh (pTRR).

Starting with DDR4, DRAM vendors started to implement
on-chip Target Row Refresh (TRR), which tracks accesses to
the DRAM array, detects Rowhammer attacks, and refreshes
potential victim Rows. However, multiple publications have
shown that the implementation of pattern detection was not
sufficient to detect all patterns that triggered bit flips [10,
8, 19, 20]. DDRS introduced Per-Row Activiation Counting
(PRAC) to precisely count activations and, thereby, enable
more effective Rowhammer mitigations. However, Jattke et al.
[20] identified bit flips on a DDR5 DIMM as well.

There are many further Rowhammer mitigation approaches,
e.g., based on cryptographic checks [25], spatial segmenta-
tion [5, 31, 49], or counting of activations [37, 2]

https://github.com/iisys-sns/flippyram
https://doi.org/10.5281/zenodo.17881765
https://doi.org/10.5281/zenodo.17881765

C. Related Work

Several works drew conclusions on Rowhammer prevalence
based on their experiments. Kim et al. [28] tested 129 DRAM
modules and found that 110 modules were affected, i.e., 85 %.
However, their experiments were FPGA-based and the number
of modules that can be attacked successfully from software
may be lower. Seaborn and Dullien [43] found 15 out of 29
(52 %) laptops to have bit flips after hammering with their
specific Rowhammer test. However, the DRAM addressing
functions they used for the double-sided hammering are spe-
cific to a certain dual-channel dual-rank DDR3 memory setup
which may not have been present in all tested machines,
i.e., the number of actually affected devices may be higher.
More recently Frigo et al. [8] found 13 out of 42 (31 %)
DIMMs to be vulnerable to a software-based attacker using a
more sophisticated Rowhammer technique to bypass the TRR
Rowhammer mitigation on DDR4. Jattke et al. [19] tested
Blacksmith, a fuzzer for Rowhammer access patterns, on 40
DDR4 DIMMSs and found all of them to be vulnerable (100 %).
He et al. [12] analyze 33 DIMMs and conduct an empirical
study of factors that contribute to Rowhammer bit flips. They
observed only 6 affected DIMMs (18 %). Other works studied
significantly fewer modules, insufficient to draw conclusions
about the real-world relevance of Rowhammer. Heckel et al.
[16] argue that all works in the domain of Rowhammer suffer
from issues that make it difficult to assess the real-world
relevance of Rowhammer: (1) All recent works test less than
50 DIMMs with a small set of CPUs and most works even
less than 5 DIMMs; (2) experiments are run on lab machines
with full control and known hardware-software configurations;
(3) results from FPGA setups are not directly transferable to
real systems; and Rowhammer tools often require sophisticated
tweaks to work on different systems, e. g., setting the reverse-
engineered DRAM addressing functions, which is not possible
in real-world scenarios without full automation of the process.

III. METHODOLOGY

Our central methodology is a large-scale user study to
measure Rowhammer susceptibility on a wide range of devices
supplied by our study participants. We assume participants to
be non-experts and to have little to no knowledge about the
topic. Hence, the framework needs to be fully automated and
ideally require no user interaction. Through this user study,
we can answer how far the available tooling can be used in
end-to-end automated Rowhammer testing (RQ1) by adapting
and deploying state-of-the-art tools in an end-to-end automated
fashion. To answer the second research question (RQ2), we
then measure on all systems in our user study, whether they
exhibit bit flips in Rowhammer tests, providing us with a real-
world share of systems affected by Rowhammer.

Figure 1 depicts the overall workflow of our study, con-
sisting of six steps: The first and the last step are discussed
in Section III-A, i.e., user study design, data collection,
and privacy aspects. Steps 2 and 4 are discussed in Sec-
tion III-B, covering the information retrieval and the injection
of the reverse-engineered DRAM addressing functions into

the Rowhammer tools. Step 3, the DRAM address reverse-
engineering, involving 5 state-of-the-art tools, is discussed in
Section III-C. Step 5, the execution of up to 7 state-of-the-art
Rowhammer tools, is discussed in Section III-D.

A. User Study Design

In a user study, we can achieve far higher sample sizes
than prior work. Participants also learn whether their system
is vulnerable to our Rowhammer tests. In this subsection, we
detail our user study design and discuss associated risks.
Explicit Consent and Data Corruption Risk. Since the
Rowhammer effect is a fault attack that could, in principle,
cause damage to hardware or data of devices under test, we
took precautions and still informed users about potential risks
(e.g., possible data corruption or hardware malfunction). We
recommended using our bootable USB stick (or ISO image)
provided by us, leaving user disks untouched, strictly avoiding
user data corruption. Still, the user must explicitly consent,
acknowledging the risks for our software to perform any tests.
By default, all results are stored locally for the user, and
all raw data and log files are compressed as a ZIP archive
on the USB drive or stored in a designated output directory
when using Docker. This method of data handling ensures
that detailed results are preserved for offline analysis and
that no information is lost even if multiple tests are run
sequentially. The user then either manually visits our website
on an internet-connected device to upload the results, or uses
the FLIPPYRAM framework directly to upload the collected
results to a central server for further analysis, requiring to
connect the system to the internet, again in both cases with
explicit consent by the user. If the user does not consent, the
results remain on the local media for the user’s inspection, but
are not uploaded and evaluated as part of our large-scale study.
For this reason, we also do not know how many users actually
ran the tests, only how many consented to upload their results.
Privacy. Besides risks to the user’s data and hardware, we
also informed users about privacy implications, specifically
what data we collect, how we use it, and how we protect
it. FLIPPYRAM stores each tools’ output (e.g., addressing
functions recovered), system information retrieved by our
scripts, and it logs any observed bit flips while running as well
as the execution time and physical memory addresses. The
information collected could, in theory, be used to fingerprint
and identify systems [42, 7]. Knowing physical addresses of
bit flips could be used in actual Rowhammer attacks. Hence,
we received no user consent to share these data sets but
store them for the purpose of this study in a database on an
encrypted device. The framework generates a summary with
a brief overview of how many bit flips each tool discovered
(if any) for the user. We provide a contact point to users with
concerns or if they want their data deleted at any time.
(Non-)Linkability of Datasets. In general, we ensure that
datasets are not linkable to specific users. We do not store
any information about the user, e.g., name or email address,
in the datasets. The datasets are checked via their hash for
uniqueness, i.e., the same dataset cannot be uploaded twice.

2,

System Information
Retrieval

User Agreements
Privacy Policy
Risk Agreement
1006 Datasets:
=~ 923 x ISO image, 47 x Docker, and 34 x Custom

Reverse Engineering of
the Addressing Functions

Successful in 453 Datasets.

e
i

Optional uploading
the data to our server

Running different
Rowhammer Tools

Verification & Injection of
the Addressing Functions
in the Rowhammer PoCs

Bit flips in 126 Datasets. 1 006 Datasets

Fig. 1. The workflow of our software to automatically test if a system is vulnerable to the Rowhammer effect. It starts right after someone booted our ISO

image or ran our docker container.

For each unique dataset, the user gets a unique random string
(a token) to later on prove that they participated in the study,
e.g., to claim a compensation option such as a T-shirt or
voucher lottery. The random string is stored in a separate
independent database, without any link to datasets, to track
which tokens have been claimed. Hence, participants remain
unknown to us if they do not send the token, so we also cannot
provide details on the number of individual participants in our
study. For participants claiming a compensation option, we
have the link between the participant and the token, but there
is no link between the token and the dataset and, therefore,
no link between the user and the dataset. For data access
and deletion requests, we ask the user to provide us with
information that uniquely identifies the dataset to delete, e. g.,
the hash of the dataset or output of dmidecode on the system
for which we should delete the dataset.

Recruitment. We recruited participants for our study in
various ways with the goal of reaching sample sizes that
are at least one order of magnitude larger than any prior
Rowhammer study, i.e., around 1000 datasets. The main path
was to distribute our bootable ISO image on USB thumb
drives. We purchased around 3 000 USB drives and flashed our
ISO image onto each USB thumb drive one-by-one manually.
We distributed the USB drives to participants during and after
a scientific talk at a major security conference with more
than 1500 attendees and after a lightning talk at a Linux
conference. We also advertised the study via social media,
at different universities, and in our classes. We published the
hash of the USB drive for verification that the stick was not
modified and contained the correct image. This way, overall,
we collected 1006 of datasets between December 30, 2024
and June 30, 2025 from 822 unique systems.

Recruitment Bias. Our study is biased in the recruitment
towards security researchers, students, and other technology-
affine users rather than a representative sample of the general
population. However, these users are part of the general
population and indeed (as we also see in the collected data) use
hardware from the same vendors (e. g., Intel and AMD) and the
same DRAM manufacturers (e.g., Micron, Samsung, Hynix)
as the general population. No bias was introduced by the
software the users ran, as 47 of all datasets we received were
generated with the Docker image, and 923 with our bootable
ISO image, i.e., completely independent of the operating
system and other software the users run. Only 34 datasets

we received were generated differently, e. g., via direct script
execution. Prior Rowhammer studies were run in a lab setting
with hardware acquired by the researchers, which will likely
have stronger biases. Instead, we indeed study Rowhammer
in a real-world setting with real-world hardware of our study
participants, which aligns with the primary goal of our work.
Compensation of study participants. First, users learn
whether their system is vulnerable to our Rowhammer tests.
Beyond this, we provided USB thumb drives with the
FLIPPYRAM framework, which participants could keep as
a small gift. We also offered the first ten participants who
ran our test framework at least ten times a T-shirt with the
FLIPPYRAM logo. Participants that ran the framework at least
once had the option to enter a lottery to win one of ten 10 €
vouchers. For participating students in our classes, we also
offered e. g., a small number of extra credits for participating
in the study as a small incentive. All incentives are independent
of the specific hardware of the participants, and were provided
before any results were analyzed, i.e., no bias was introduced
by the incentives.

B. FLIPPYRAM Framework

Since our framework must be fully automated, given that we
want non-expert users to be able to run it, we designed it as
a bootable ISO image or as a docker container'. Users receive
the bootable ISO image on a USB thumb drive, which they
can boot from, requiring no installation or technical expertise.
Our framework orchestrates all steps of the Rowhammer test,
from initialization to result collection—with minimal to no
user interaction. We integrated 7 state-of-the-art Rowhammer
tools that were available in time for our study' to get a broader
assessment of the susceptibility to Rowhammer for each target
system as discussed in Section III-D. We also integrated
5 DRAM reverse-engineering tools to recover the DRAM
addressing functions, as discussed in Section III-C. Hence,
our framework initializes the system, e. g., when booted from
the ISO image, collects information about the system that
is required or beneficial for the tools (e.g., about DRAM
modules and CPU), runs tools for addressing function reverse-
engineering, Rowhammer tools, and finally uploads the results
to our server if the user agrees. A text-based user interface
shows information about the progress and allows users to
specify the desired total runtime for the Rowhammer tests.

Information Collection. The system information
FLIPPYRAM collects includes hardware characteristics,
e. g., about DRAM modules, CPU models, and CPU features.
Thereby, FLIPPYRAM obtains the number of memory
banks, ranks, channels, and DIMMs, according to the system-
provided information. We observe that not all systems provide
complete information about the DRAM modules, e.g., when
decode-dimms fails or the data in the Serial Presence Detect
(SPD) record of the DIMM is incomplete. In this case,
FLIPPYRAM falls back to a detection of the number of
DRAM banks and the DRAM row-hit row-conflict threshold
from prior work [14]. If all methods fail, the framework will
only use Rowhammer tools that do not require addressing
functions and reverse engineering.

Injecting DRAM Addressing Functions into Rowhammer
Tools. FLIPPYRAM supplies each tool with the most likely
DRAM addressing functions reverse-engineered on the system.
However, we cannot guarantee that the reverse-engineered
addressing functions are correct. We also adjust other system-
specific settings, such as timing thresholds or memory sizes.
Therefore, FLIPPYRAM patches the source code of the
Rowhammer tools or generates input and parameters to use
the correct parameters for the specific system. If the reverse-
engineering of addressing functions fails, FLIPPYRAM skips
all Rowhammer tools that require addressing functions.

C. Reverse-Engineering DRAM Addressing Functions

We integrated 5 state-of-the-art reverse-engineering tools
into FLIPPYRAM to recover DRAM addressing functions.
These tools systematically test for a large number of ad-
dresses how physical addresses map to the DRAM structure
(channels, DIMMSs, ranks, banks, rows, columns). The result
are addressing functions to translate physical addresses to
corresponding DRAM structure information. The tools are
proof-of-concepts that researchers validated on one or more
systems. However, they may be unreliable or not terminate on
real-world configurations, and they do not recover addressing
functions on all systems. Hence, we time-slice the execution
of the tools based on the total runtime specified by the user.
We run TRRespass RE [8] if the total runtime is at least 3h,
which is the minimum total runtime a user can select. When
the runtime is at least 4 h, we additionally ran DRAMA [39],
if it is at least 5h, we additionally run Dare [20], if it is at
least 6 h, we additionally run AMDRE [14], and if it is at least
7h, we additionally ran DRAMDig [50].

On systems where no 1 GiB pages are available, we had to
disable TRRespass RE [8], Dare [20], and DRAMDig [50],
that depend on 1 GiB pages. All other tools were run based
on the total runtime specified by the user. After running the
reverse-engineering tools, we use the verification approach by
Heckel et al. [15] to determine which of the reverse-engineered
DRAM addressing functions are most likely correct.

FLIPPYRAM provides the addressing functions to the
Rowhammer tools either via command line parameters or as
source code and recompilation. If a tool, e. g., Blacksmith [19],
fails to initiate due to wrong address functions, FLIPPYRAM

can adjust parameters and rebuild it on the fly and then rerun
the tool: For instance, trying other address functions (if more
functions than required to address the banks were identified)
or a different row conflict threshold. This adaptive mechanism
increases the chances to find a working configuration without
manual interaction. Additionally, for some tools, we improved
the logging to provide better parseable output. However, we
did not change any of the functionality of the tools.

D. Rowhammer Prevalence Test using Rowhammer Tools

FLIPPYRAM executes Rowhammer tools to test for
Rowhammer susceptibility. The framework currently in-
cludes Blacksmith [19], TRRespass [8], FlipFloyd [10],
RowPress [35], Rowhammer]S (native code, flush-based
proof-of-concept, double-sided hammering) [11], Hammer-
Tool [13], and Rowhammer-Test (single-sided hammer-
ing) [44]. FLIPPYR AM monitors each tool’s execution and if a
tool finishes early or throws an error, FLIPPYRAM reallocates
the remaining time to other tools or reconfigures the tool.

Some Rowhammer tools require 1GiB hugepage, which
requires CPU support and a sufficient amount of memory,
e. g., more than 4 GiB of DRAM. On systems where no 1 GiB
pages are available, we had to disable Blacksmith [19], TRRes-
pass [8], and RowPress [35], that depend on 1 GiB pages. Most
tools also require DRAM bank addressing functions. When no
DRAM addressing functions were identified, Blacksmith [19],
TRRespass [8], and RowPress [35], Rowhammer]JS [11], and
HammerTool [13] cannot run and are disabled. After the
reverse-engineering of the DRAM addressing functions is
done, the remaining runtime is split between all Rowhammer
tools that are executed (e. g., not disabled).

E. Analysis of the Datasets

It should be noted that a single system can be tested multiple
times, so we distinguish between unique systems (822) and
datasets (1 006). We take the 1006 datasets and check whether
a tool did not run in a dataset, which can have multiple reasons
as described below. We then analyze the number of datasets
on which specific Rowhammer tools found bit flips and the
number of bit flips found in total by the different tools.

We also analyze the susceptibility depending on the Run-
time of FLIPPYRAM, the vendors of the CPUs used in the
systems, and the DDR generation used in the systems. In
both cases, we distinguish between systems that are affected
by Rowhammer, systems that are not affected, and systems
on which the reverse-engineering of DRAM addressing func-
tion failed. It should be noted that two of our Rowhammer
tools, namely FlipFloyd and Rowhammer-Test, do not require
DRAM bank addressing functions. Therefore, we count a
system as affected when at least one tool identified bit flips,
even if the addressing functions were not identified on that
system. Otherwise, we count a system as having no addressing
functions when no addressing functions were found or as not
affected when addressing functions were found but no bit flips.

We then analyze the susceptibility of single DIMMs based
on the vendor of the DRAM chips and the frequency of the

DIMMs. For these measurements, we only consider datasets
on which DRAM bank addressing functions were identified.
Similar to the previously described case, we count a system
as affected when a bit flip happened, even when no addressing
functions were identified. However, we count a system only
as not affected when DRAM addressing functions were not
identified and no bit flips occurred. For this evaluation, we
only consider these datasets and skip all datasets with failed
DRAM addressing function reverse-engineering.

We are unable to map bit flips monitored on a system to
unique DIMMs in that system. Therefore, we consider all
DIMMs of a system equally affected, even though only one
of them might actually be affected. When the total number of
bit flips on a system is bigger than or equal to the number of
DIMMs on that system, all DIMMs count as affected (e. g., 4
DIMMs in a system count as affected when at least 4 bit flips
occurred). Otherwise, the number of bit flips is divided by the
number of DIMMs (e. g., on a system with 4 DIMMs and 1
bit flip each DIMM counts as } affected and 2 not affected).

We evaluate the time until the first bit flip was detected by
the different Rowhammer tools. Therefore, we only consider
systems that were affected by the tool, e. g., the respective tool
found at least one bit flip. We then measure the time until the
first bit flip occurred. When the tool was started multiple times,
we measure from each start and take the minimum across
multiple runs. For measurements not directly related to the
tools, e.g., time to the first bit flip depending on the CPU
vendor, we consider only the fastest tool on that system.

IV. TECHNICAL RESULTS OF REAL-WORLD ROWHAMMER
FEASIBILITY USER STUDY

In this section, we address our first research question RQ1,
on the feasibility of Rowhammer end-to-end automation for
real-world systems. As described in Section III, our framework
performs multiple stages to test a system for susceptibility to
Rowhammer, which may or may not succeed on a system. We
analyze on how many systems the different steps and tools
were executed successfully, and on how many systems they
failed for various reasons.

In general, we distinguish between 8 different tool states:
Ended. The tool completed execution. This is not an in-
dication of success or failure i.e., whether valid addressing
functions were identified or whether bit flips occurred.
Disabled. Tool skipped to give more time to other tools.
Runtime. The tool was skipped due to total runtime limits
to give more time to other tools.

Hugepage. Tool skipped due to unavailability of 1 GiB pages.
AFn RE. These tools were not run due to unsuccessful
reverse-engineering of addressing functions.

Failed. The tool failed to run, e. g., due to a crash or timeout
(each tool is started with a timeout to keep within the runtime
specified by the user). We assume that most crashes happened
due to implementation errors related to incomplete or missing
error handling.

Build Failed. Some tools require dynamic source-code adjust-
ments and recompilation. This step failed sometimes because

Huother BEFailed H Hugepage [0 Runtime B 8 Disabled BB Fnded

1,006 1,006 1,006 1,006 1,006
2] (481) (385) (485) (122) (416)
& 1,000 | s
g Y ' S
2
) M B8228388] M .
2500
o

N G AR

am‘dre da‘re dra‘ma drar‘ndig trres‘pass To‘tal

Fig. 2. Number of systems with specific states of different Addressing

Function Reverse-Engineering tools. The number above the bar depicts the
absolute number of datasets. The number in braces shows the number of
datasets on which the tool had the Ended state. The Total bar depicts the
number of datasets in which valid addressing functions were identified (even
though a reverse-engineering tool has the state Ended, it does not mean that
it returned the number of functions needed for the system).

the addressing functions did not match requirements of the
tools, e. g., Blacksmith requires invertible functions.

Other. None of the above states applied, e. g., due to missing
log files or corrupted log files.

A. Address Function Reverse-Engineering

We analyze the execution of different DRAM addressing
reverse-engineering tools, as summarized in Figure 2, based
on the previously defined tool states. We start the tools without
manual interaction, so the parameters required by the tools are
measured automatically. Therefore, they might not be precise
due to a failed measurement and the lack of manual interaction
to detect these cases. Therefore, tools with more preconditions
(e.g., values that have to be adjusted specifically for the
system) tend to have a higher rate of failure.

DRAMA reverse-engineering tool ended on the most
datasets, namely 485 (48.2 %), followed by AMDRE which
ended on 481 (47.8 %) datasets. TRRespass RE ended on 416
(41.4 %) datasets and Dare ended on 385 (38.3 %) datasets.
Lastly, DRAMDig ended on only 122 (12.1 %) datasets.

Considering the reasons why the tools did not end, AMDRE
failed on 376 systems, either by exceeding the specified
timeout or by crashing. AMDRE was not started on 136
systems due to a lower runtime specified by the user. For Dare,
there are three reasons for failure: On 169 datasets it failed,
on 146 datasets no 1 GiB hugepage could be allocated, and
on 130 datasets it was disabled due to total runtime limits.
Similarly for DRAMDig: On 537 datasets it failed, on 141
datasets there was no 1 GiB page support, and on 154 datasets
it was disabled due to total runtime limits.

DRAMA was disabled on 112 datasets due to total runtime
limits and failed on 383 datasets. TRRespass RE was not
disabled due to the runtime specified by the user. However, it
failed on 404 datasets and was disabled on 173 datasets due to
a lack availability of a 1 GiB hugepage. This is consistent with
the fact that 146 datasets, according to the cpuid information,
do not support 1 GiB pages and some systems may have too
little memory for Linux to successfully allocate a 1 GiB page.
It also highlights that more systems may succeed in this attack
stage if the tools would not require 1 GiB pages.

fnomer HEBuild Failed BB Failed AFn RE I 8 HugePage BB Ended

1,006 1,006 1,006 1,006 1,006 1,006 1,006
é (299) (935) (217) (152) (385) (705) (240)
£ 1,000
2
v
>
w
[T [

s 500 SHEEE B g ——
3 HENHEEEEE @[2 SRR
B1dc £ Ro (o]

ks, Py, Reg i, Whay Wha, Ypr,
Vd "Da, Cr’ TOO[H[nerJS lIIIne“]éSteSA
Fig. 3. Number of datasets with specific states of different Rowhammer

tools. The number above the bar depicts the absolute number of datasets. The
number in braces shows the number of datasets on which the tool had the
Ended state, e. g., ran successfully.

Key Insight 1: In the majority of cases, the reverse-
engineering tools failed to find DRAM addressing func-
tions, either crashing or exceeding time limits, highlight-
ing a gap that requires further research.

B. Rowhammer Tools

We also analyze the execution of the different Rowhammer
tools based on the previously defined tool states, as summa-
rized in Figure 3. The only tools that ran on over 50 % of the
tested systems are FlipFloyd and Rowhammer-Test, which do
not require DRAM addressing functions. For the other tools,
the main reason not to run were missing DRAM addressing
functions, e. g., reverse-engineering them in the previous step
failed. Some tools were skipped due to the lack of 1GiB
hugepages, and some tools failed to run, probably due to
incorrect parameter settings on the system. For Blacksmith
and RowPress, building failed on some systems.

Key Insight 2: Many Rowhammer tools do not work
without DRAM bank addressing functions or 1GiB
hugepages. Providing fall-back mechanisms may result
in a drastic increase in compatibility.

C. Success Rate of Rowhammer Tools

We analyze the Rowhammer susceptibility of different
DRAM generations depending on the different tools we ran.
Since we only observed bit flips on DDR3 and DDR4 systems,
we focus on these memories in this subsection. We show the
total number of affected systems (over both DDR generations)
in Table I and Figure 4a. Additionally, we evaluate the number
of bit flips triggered by different tools (see Figure 4b).

FlipFloyd [10], RowhammerJS [11], and Rowhammer-
Test [44] induced bit flips predominantly in DDR3 DRAM
but also in a few datasets with DDR4 DRAM. Of these,
RowhammerJS yielded the best results regarding the number
of affected datasets (49) and the number of bit flips (586 139).
Regarding the total number of affected datasets, it is followed
by Rowhammer-Test (33 datasets and 34 bit flips), which is
followed by FlipFloyd (23 datasets and 314 bit flips). The
number of bit flips identified by RowhammerJs on DDR4

TABLE I
THE SUCCESS RATES OF THE DIFFERENT ROWHAMMER TOOLS.

Tool # Ended # Affected min to 1. bit flip
oo Systems Systems Avg o Min Max
Blacksmith 299 40 134% 62 26 37 88
FlipFloyd 935 23 246% 115 186 0 758
TRRespass 217 2 0.922% 0 O 0 0
HammerTool 152 16 10.5% 12 14 1 38
RowhammerJs 385 49 127% 28 37 0 156
Rowhammer-Test 705 33 4.68% 93 163 0 617
Rowpress 240 4 167% 21 12 9 38
! ! !
w2
E ol /I DDR3
Z foDDR4
2 & 16 .
E =
2 olo IL 0 2 o B2 0 |
o]
= T T T T T T T
< B["’Ck . FliPFI TRR& Ha’nm ROW’I Ro”’b wp,
Smigy v Pasg e Tyg, ey, T4, Tes;ess

(a). Number of datasets affected by different Rowhammer tools

a. ! ! ! ! ! ! !
&

|
&0 iﬂg o
Ao

Blacy. Flj TR, H, Ro Ro Ry Ty,
ks, PFlo Regy,, 1, Wha Wha, Wpreg.
Wity v PassTCTogy " Mmeyy ey, 7&5: ’

(b). Number of bit flips triggered by different Rowhammer tools. Bars with
a number of O are not shown in the graph due to the log y scale.

Fig. 4. Results grouped by Rowhammer Tool. The blue bars show the results
for DDR3 and the red bars for DDR4. None of the tested DDR2 and DDRS
systems were affected, so they are omitted in this graph.

(796) is very low compared to the number on DDR3, which
can be explained with the DDR4 mitigations: Normally, TRR
should detect and mitigate double-sided Rowhammer attacks.
However, it seems that TRR was unsuccessful on 2 datasets
where multiple tools found bit flips despite TRR being active.
Blacksmith [19] (82515 bit flips in 40 datasets), TRRes-
pass [8] (46486 bit flips in 2 datasets), and RowPress [35]
(37 bit flips in 4 datasets) only induced bit flips on systems
with DDR4. Compared to other tools that induced bit flips on
systems with DDR4 and that required DRAM addressing func-
tions, the number of bit flips identified by Rowpress is very
low. HammerTool [13] only induced bit flips on systems with
DDR3, specifically 73 781 bit flips on 16 datasets. Overall, the
tools induced 789 306 bit flips in 126 out of 1006 datasets.

Key Insight 3: 126 (12.5 %) out of 1006 datasets are
vulnerable to fully-automated Rowhammer attacks, based
on our analysis.

These results show that DDR3 and DDR4 DRAM re-

quire very different hammer patterns to induce bit flips. On
DDR3 DRAM, fast double-sided Rowhammer, as performed
by RowhammerJS [11], is most effective because the DRAM
does not contain any mitigations against this simple hammer
pattern. DDR4 DRAM, on the other hand, nowadays contains
Rowhammer mitigations. Therefore, complex access patterns,
like performed by Blacksmith [19] are required to circum-
vent the mitigations. However, due to these complex access
patterns, the minimum required activation count to induce bit
flips on less vulnerable DDR3 DRAM is not reached.

Key Insight 4: For DDR3, simple patterns and hammer-
ing as fast as possible, implemented by RowhammerJS,
were the most effective strategies in terms of the number
of bit flips. Since most DDR4 DIMMs have TRR, pattern
fuzzing strategies like Blacksmith were the most effective
ones and found most bit flips.

L J

Table I shows the average, minimum and maximum time to
first bit flip. Considering the average time until the first bit flip,
the tools rank by the following order starting with the fastest
tool: TRRespass, HammerTool, RowPress, Rowhammer]S,
Blacksmith, Rowhammer-Test, FlipFloyd.

The two tools that do not require DRAM bank addressing
functions (Rowhammer-Test and FlipFloyd) took the most
time until the first bit flip occurs. Also, they were exclusively
executed on systems where the reverse-engineering of DRAM
addressing functions failed (see Section III-D). Thus, the
runtime on these systems was only split between both tools
leading to a higher runtime compared to other systems and a
higher chance to find bit flips with this tool. In general, both
tools select random addresses to hammer, without using the
DRAM bank addressing functions. For Rowhammer-Test the
probability of two addresses being in the same DRAM bank
is only m on a system with npanks DRAM banks, leading
to a correspondingly lower chance and longer time to find bit
flips. For FlipFloyd, the authors report a higher time until bit
flips occur than for other Rowhammer implementations (3.3
times slower than comparable hammering methods) [10].

Blacksmith performs a randomized fuzzing of several pa-
rameters to identify pattern that yield bit flips. Because these
patterns have to reach the required activation count of the
system and have to bypass the TRR implementation of the
DIMM at the same time, finding such patterns is not trivial.
This explains the higher runtime compared to tools with hard-
coded patterns, like HammerTool, RowhammerJS, and Row-
press. Only tools that do not require DRAM bank addressing
functions take longer than Blacksmith.

Rowhammer]S, RowPress, and HammerTool use static
Rowhammer access patterns computed from addressing func-
tions and physical addresses. The average time until the first
bit flip is in the same order of magnitude for Rowham-
merJS (@ =27.8 min, 0 =37.2 min), RowPress (4 =21.3 min,
o =12.5min) and HammerTool (¢ =12.4 min, o =14.4 min).
The fastest tool was TRRespass, finding the first bit instantly
within the first second, on both datasets where it found bit

{0 No AFn H B Not Affected B B Affected

1,000

500 |-

No of Systems

Fig. 5. Number of datasets affected by Rowhammer grouped by Runtime. The
bars of affected and not affected datasets stack to the total number of datasets
with the runtime. The percentage depicted above the bars it the percentage of
affected datasets with that runtime.

flips. In total, TRRespass found 46486 bit flips on these 2
datasets, showing that they are highly susceptible.

Key Insight 5: The minimum time the first bit flip
occurred ranges from Omin to 115 min on average, de-
pending on the system configuration, which is a practical
attack time frame on real-world systems.

D. Rowhammer Susceptibility by FLIPPYRAM Runtime

We analyze the system’s susceptibility based on the to-
tal runtime of FLIPPYRAM. The DRAM bank addressing
reverse-engineering tools are run based on the total runtime as
described in Section III-C. Therefore, systems with more run-
time are more likely to have correct DRAM bank addressing
functions since more reverse-engineering tools were executed.
It should also be noted that the number of systems with a
specific runtime differs. For example, the default runtime was
set to 8h, so the runtime for most dataset (538 of 1006)
is 8h. Figure 5 shows the number of datasets affected by
Rowhammer grouped by the runtime selected by the user.

Regarding the number of datasets with a specific runtime,
there are three characteristic peaks: One at 3 h, one at 8 h and
one at 60 h. We set the minimum runtime of our toolset to 3 h,
so people that wanted to participate but not run the experiment
longer than strictly required, selected a runtime of 3 h. There
is another peak at 8 h, which is the default runtime. The third
bigger peak is at 60 h, which is the time for which we tested
the systems in the computer rooms of our institution. On 3
systems our tool ran shorter than 3 h, this happens when the
last scheduled Rowhammer tool finishes early.

We do not consider the runtimes where 100 % are affected,
i.e., only a single dataset had that runtime. When skipping
these cases, we see a trend with increasing runtime: We see
4.72 % affected with a runtime of 3h, 10.6 % affected with a
runtime of 8 h, and 30.7 % affected with a runtime of 60 h. The
difference between the runtime of 3 h and 8 h can be explained
by the disabled addressing function reverse-engineering tools
(cf. Section III-C). However, the trend also continues for
runtimes of more than 7h, where all reverse-engineering tools
are enabled. Based on these results, we conclude that longer
testing leads to more systems being correctly identified as
susceptible to Rowhammer.

—

E 100 \\\\\\\\\\\\\\\\\\\\\\[\\

g Toz

— o o) e} ©

o < P ® 8 @ Pa |

— [« o —=m —~ v—il\ng—(m

10 38T g% _Smp

—_ | T -FT = L

° 0 © <«

- N - 1 i

g m = Slo o i

pél \\\\\\\\\\\\\\\\\)\\\\\\
R2GBBDG L O GG L BTG O
B S e R sy,
L Y Y % % e,

Fig. 6. Time until the first bit flip grouped by total runtime. The bars show
the average time, the error bars the standard deviation of the fastest tool on
each dataset. Low values rounded to 1 minute.

TABLE II
A SUMMARY OF THE RESULTS ON HARDWARE SUSCEPTIBILITY BY DRAM
GENERATION AND CPU VENDOR.

Affected min to 1. bit flip
DRAM CPU # Systems Systems Avg o Min Max
DDR3 Intel 286 80 28% 62 113 0 617
DDR3 AMD 15 2 133% 42 42 0 85
DDR4 Intel 365 43 11.8% 55 42 9 130
DDR4 AMD 137 1 0.73% 0 0 0 0

Figure 6 shows the time until the first bit flip by runtime.
In general, an increasing trend can be seen: The higher the
runtime of our framework, the higher the average time until the
first bit flip. This can be explained with the previous insight:
A longer runtime leads to system being detected as affected
that would not have been detected with a shorter runtime.
Therefore, the bit flips that are detected occur later, which
also increases the time until the first bit flips are detected.

Key Insight 6: On systems that are barely susceptible,
it can take very long to find the first bit flips, on one
system it took 617 min. Longer testing times lead to more
accurate detection of systems as affected and higher times
until the first bit flip is detected.

V. DETAILED ANALYSIS OF ROWHAMMER
SUSCEPTIBILITY BY SYSTEM CHARACTERISTICS

In this section, we address our second research question
RQ2, to analyze in more detail which systems are vulnerable
to Rowhammer. We analyze susceptibility depending on e. g.,
DRAM generation, DRAM speed, and CPU vendor.

A. Susceptibility by CPU Vendor

We analyze the susceptibility of systems to Rowhammer
depending on the CPU vendor. While Rowhammer is a bug
in the DRAM, the CPU plays a huge part in the attack.
For example, Jattke et al. [20] recently showed that due
small differences between Intel and AMD CPUs, changes are
required for Rowhammer attacks working on Intel, to also
work on AMD. The majority of systems in our dataset use
CPUs from Intel and AMD, with only 5 datasets with other
CPU vendors. Figure 7 provides an overview of these results.

10

|
1,006

No AFn 126 (12.5 %)
w2
T -9 70
[Not Affected |
E 1,000 o5 (b DENotAffece il g
2 0B Affected
2 500 3 S
o 5
3 00 %)
0 |
T |
Q. 2

Fig. 7. Datasets affected by Rowhammer grouped by CPU Vendor. The bars
of affected, not affected, and AFn failed datasets stack to the total number of
datasets with the CPU vendor. The numbers depicted above the bars are the
absolute number of datasets on the top and the percentage of affected datasets
on the bottom. A dataset counts as affected when at least one tool identified
at least one bit flip. It counts as No AFn when no bit flips were identified and
no addressing functions were found on the dataset. It counts as Not Affected
when addressing functions were available, but no bit flips were found.

Out of 1006 tested datasets in total, 777 have Intel CPUs,
of which 123 (15.8% of total datasets) are affected. On
349 datasets with Intel CPUs, no bit flips occurred and no
addressing functions could be identified. Of the 224 datasets
with AMD CPUs, 3 (1.34% of total datasets) are affected
and on 172 no bit flips occurred and no addressing functions
could be identified. Note that the ZenHammer Rowhammer
fuzzer by Jattke et al. [20], which is the first tool yielding
good results on systems with AMD CPUs, was not part of
our framework, as described in Section III-B. Finally, none of
the 5 CPUs from other vendors are affected and on 3 of them,
no addressing functions were identified.

Based on the CPU vendor, 15.8% of Intel Systems and
1.34 % of datasets with AMD CPUs are affected. We assume
that the higher susceptibility of Intel CPUs is due to the
fact that Rowhammer research mainly focused on Intel-based
systems in the last decade [43, 39]. Just recently, the focus of
Rowhammer research shifted slightly towards AMD [14, 20].

Even though our bootable image only works on systems
with the x86-64 architecture, some participants got the setup
running on other architectures in a few cases, e. g., using the
Docker container or manually downloaded and executed the
scripts from GitHub. On datasets with neither an AMD nor an
Intel CPU (labelled as Other in Figure 7), the CPU model was
either not detected (which happened on 2 datasets), or it was
one of the following: VIA Nano U3100 (x86-64), Cortex-A7
(Arm), or a sifive u74-mc (RISC-V).

The times until the first bit flip was detected are shown in
Table II. On Intel systems, the average time to the first bit flip
is 60.8min (¢ =108 min). On AMD systems it is 28.4 min
(0 =39.8min), however, the small sample size of only 3
systems limits the significance of this result. The longest time
to a bit flip was 617 min (roughly 10h) on an Intel system.

Key Insight 7: Most tools work more reliably on Intel-
based systems. Hence, the number of affected AMD
systems may be higher than our results suggest.

|
1,006

No AFn
E 1.000 H H Not Affected 126 (12.5%) |
g7 A A
= ected
&

500
S 34 30
£ 0 0
0 —

Fig. 8. Datasets affected by Rowhammer grouped by DRAM Generation.
The bars of affected, not affected, and No AFn datasets stack to the total
number of datasets with the DRAM Generation. The numbers depicted above
the bars are the absolute number of datasets on the top and the number and
percentage of affected datasets on the bottom.

B. Susceptibility by DRAM Generation

We analyze the Rowhammer susceptibility depending on
the DRAM generation. The majority of systems in our dataset
use DDR3, DDR4, and DDR5 DRAM, with a few systems
containing low-power (LPDDR) and DDR2 DRAM. In the
category Other belong memory types that dmidecode could
not identify, e. g., when the field Type was Other or <OUT
OF SPEC>. Figure 8 provides an overview of the results.

Out of the 302 datasets with DDR3 DRAM, 82 (27.2 %) are
affected. It takes on average 60.4min (¢ = 111min) to get
the first bit flip. Out of the 502 datasets with DDR4 DRAM,
44 (8.76 %) are affected However, a total of 224 datasets use
an AMD CPU and numbers with AMD-adjusted tools may be
significantly higher (cf. Section V-A). Focusing only on the
388 DDR4 with Intel CPUs, 43 (11.1 %) are affected. It takes
on average 39.9min (¢ = 43.4min) to flip the first bit on
datasets with DDR4 DRAM, and the fastest time was 0 min.
Other DRAM generations were not affected by the tested tools.

Initially, Rowhammer was discovered on DDR3 [28], so
Rowhammer research has been conducted on DDR3 from the
beginning. Following the original publication, vendors began
implementing hardware-mitigations with DDR4. Multiple ap-
proaches bypass these proprietary mitigations implemented
by the vendors [10, 8, 19]. However, because the details
of the implementation are not known, the ability of these
approaches to trigger bit flips strongly depends on the mit-
igations. Therefore, the percentage of affected datasets with
DDR4 (8.76 %) is lower than that of DDR3 (27.2%). The
fraction of affected datasets with DDR4 is still lower than
for DDR3 when only considering Intel-based DDR4 datasets,
for which 11.1 % are affected. Jattke et al. [20] were the first
to find bit flips on a system with DDR5 DRAM. However,
we were unable to identify bit flips on any of the 83 DDRS
systems our participants tested. It should be considered that we
did not add Zenhammer [20], the only tool that has detected bit
flips on DDRS, to our test suite, as discussed in Section III-B.

Key Insight 8: We observe the most bit flips on systems
with DDR3, followed by systems with DDR4 DRAM.

11

TABLE III
THE RESULTS ON HARDWARE SUSCEPTIBILITY BY DRAM VENDOR.

min to 1. bit flip

DRAM DIMMs Affected

Avg o Min Max

Samsung 321 102 31.7% 102 160 0 617
Hynix 142 40.6 28.6% 56 50 0 176
Micron 130 312 24% 2 4 0 10
Other 179 40.8 22.8% 31 44 0 188

Other systems may have no bit flips as the available
tooling is not suitable for these without adjustments.'

On average, it takes longer to find bit flips on DDR3 than
on DDR4 although more DDR3 systems are affected. We
hypothesize that this is primarily related to the runtime of the
experiments: The datasets with runtimes of 128 h and above
were measured on systems with DDR3 DRAM.

C. Susceptibility by DRAM Vendor

We analyze the susceptibility of datasets to Rowhammer
depending on the DRAM vendor. When a dataset is affected by
Rowhammer, we consider it for further evaluation. When it is
not affected, we consider it only when the reverse-engineering
of DRAM addressing functions was successful on the dataset
and when the dataset has an Intel CPU, as we evaluate affected
DIMMs and not systems where no addressing functions were
found or where no bit flips occurred due to an AMD CPU not
supported by the tools used in our framework.

The majority of datasets has DIMMs from Samsung, Hynix,
or Micron. However, there are also many datasets with DRAM
labelled to be other vendors (e.g., resellers like Corsair, A-
DATA, G-SKILL, etc.), or where the Serial Presence Detect
(SPD) record of the DIMMs did not state any vendor. There-
fore, we group by Samsung, Hynix, Micron, and Other

Systems can have multiple DIMMs from different vendors,
which is the case for 43 datasets. Because we do not know
which DIMMs of a system are affected and which are not
when a bit flip is identified on that system, we consider all
DIMMs of the system to be affected. For example, a system
with two DIMMs from Samsung and two DIMMs from Hynix
counts as 2x Samsung and 2x Hynix. We count all DIMMs
of a dataset as partly affected when the number of bit flips is
lower as the number of DIMMs as described in Section III-E.
Figure 9 provides an overview of these results.

Our results (cf. Table III) show that 102 (31.7 %) DIMMs
from Samsung are affected, which is the highest percentage.
The susceptibility of DIMMs from Hynix (28.6 %) and Micron
(2.4 %) are lower. For DIMMs that could not be mapped to a
vendor, 22.8 % are affected.

The first bit flip on Samsung DIMMs occurs on average
after 102 min (0 = 160 min), the longest time of all vendors.
It is followed by DIMMs from Hynix with an average time
of 56 min (0 = 50.4min) until the first bit flip. For DIMMs
from Micron, the first bit flip occurred after 1.95min (o =
3.79min). DIMMs where the vendor could not be mapped
show the first flip on average after 31.4 min (0 = 44.4 min).

- 1’000 |- bl & Not Affected ElElAffected .
o
A 500 1
— 142 130
o 28.6 % 2.4 %
H* B

ol SEmmnmny RRRRRRN B

I I |] l
Samsung Hynix Micron Other Total

Fig. 9. DIMMs affected by Rowhammer grouped by Vendor. The bars of
affected, and not affected systems stack to the total number of DIMMs from
that Vendor. The numbers depicted above the bars are the absolute number
of DIMMs on the top and the percentage of affected DIMMs on the bottom.

TABLE IV
SUMMARY OF HARDWARE SUSCEPTIBILITY BY DRAM FREQUENCY.

min to 1. bit flip

DRAM DIMMs Affected Avg o Min Max
1333 96 334 34.8% 17 27 0 103
1600 190 60 31.6% 100 142 0 617
2133 100 20 20% 32 52 0 130
2400 87 557% 38 0 38 38
2667 137 59 43.1% 52 31 9 88
3600 8 025 3.12% 98 0 98 98
Other 103 875 85% 57 56 0 147

We hypothesize that this is related to the distribution of
affected DIMMs over the different DRAM vendors: While
the fraction of affected DIMMs is similar for DRAM from
Samsung and Hynix, the absolute number of affected DIMMs
is significantly higher for Samsung (102) than for other
vendors (40.8), Hynix (40.6), and Micron (3.12).

We hypothesize that DRAM from Micron is less affected
due to differences in the proprietary TRR implementation:
We assume that either TRR in Micron DIMMs works better
at detecting current Rowhammer attack implementations, or
that current Rowhammer attack implementations are (possibly
inadvertently, due to proprietary implementations) tailored to
bypass TRR implementations of other vendors.

Key Insight 9: DRAM from Samsung, Hynix, and
third-party resellers is similarly affected by Rowhammer.
We found bit flips in only 2.4% if Micron DIMMs.
This contrasts prior work that did not find such a stark
difference between the three manufacturers [28, 19, 35].

D. Susceptibility by DRAM Frequency

In this section, we analyze the susceptibility of systems to
Rowhammer depending on the frequency of the DIMMs. Most
systems in our datasets use the DRAM frequencies shown in
Table IV and Figure 10. We only consider DIMMs susceptible
to Rowhammer where DRAM addressing function reverse-
engineering worked and the systems hat Intel CPUs. Because
we do not know which DIMMs of a system are affected and
which not when a bit flip was identified on that system, we
consider all DIMMs of the system at least partial affected as

12

800 | | | | | |
10 Not Affected [@ Affected e

Fig. 10. Susceptibility of DIMMs to Rowhammer grouped by Speed (Fre-
quency). The bars of affected and not affected DIMMs stack to the total
number of DIMMs with the DRAM Speed (Frequency). The numbers depicted
above the bars are the absolute number of DIMMs on the left side and the
percentage of affected DIMMs on the right side.

described in Section III-E. We count the number of DIMMs in
the system and group them by the speed (DRAM frequency).

In general, the susceptibility of DIMMs decreases with
increasing DRAM frequency (cf. Figure 10), which is likely
related to different DRAM generations as discussed below.
There are two exceptions: One for 2667 MT /s with 5.75 %
and one for 3600 MT /s with 3.12 %, which we discuss below.
The affected systems with 1333 MT/s to 1600 MT/s are
DDR3, and with 2400 MT/s to 3600 MT /s are DDR4 based
on the DRAM generation reported by dmidecode. For the
datasets with 2133MT/s, 4 are DDR3 and 70 are DDR4,
so the majority of these DIMMs is DDR4.

The higher percentages of 43.1% for DIMMs with a
frequency of 2667 MT/s can be explained with the systems
that had a runtime of 60h. As described above, we ran the
test on systems in the computer lab rooms of our institution,
which are all DDR4 and have DRAM with a frequency of
2667 MT/s. Thereby, we identified multiple systems with a
total of 54 DIMMs with a runtime of 60h to be affected by
Rowhammer. Due to this, 54 of the 59 DDR4 systems affected
by Rowhammer have a frequency of 2667 MT /s had a runtime
of 60h. A higher runtime increases the number of systems
susceptible to Rowhammer as discussed above.

Regarding the DIMMs with a frequency of 3600MT/s,
where 3.12 % are affected by Rowhammer, there is one system
with 4 DIMMs that is affected by Rowhammer. This system
had a runtime of 24 h and FlipFloyd identified a single bit flip.
Since we saw less bit flips than DIMMs in the system, this is
counted as 0.25 affected and 7.75 not affected DIMMs.

For the average time until the first bit flip occurred, a
trend can be seen with increasing DRAM frequency (except at
1600 MT/s, see next paragraph): At the lowest, DIMMs with
1333 MT/s have an average time of 16.6 min (o = 27.3 min)
until the first bit flip occurs. The highest frequency DIMMs
where multiple are affected are DIMMs with 2667 MT/s.
There it takes on average 51.7min (0 = 31.4min) until the
first bit flip occurs. For other DIMMs, the average time until
the first bit flip occurs is 56.7 min (o = 56.3 min).

Only the DIMMs with 1600 MT /s do not follow this trend
with an average time of 100 min (¢ = 142 min) until the first
bit flip occurs. The reason for this is that some datasets with

these DIMMs had really high runtimes of, e.g., 192h, 256 h,
and 384 h. As discussed in Section IV-D, a higher runtime
leads to increased times until the first bit flip occurs because
they enable finding bit flips after the tools stopped running
in other datasets. These high runtimes lead to a time until
the first bit flip is detected of up to 617 min which increases
the average value compared to the DIMMs with other, similar
frequencies like 1333 MT/s to 2133 MT/s.

Key Insight 10: We find a decrease in the susceptibility
to Rowhammer and a slight increase in the time until the
first bit flip with higher DRAM transfer rate.

VI. LIMITATIONS

In this section, we discuss limitations of our results.

Most addressing function revese-engineering tools failed on
many systems as described in Section IV-A. Even the most
successful tools only ran on less than 50 % of the datasets, and
even this does not imply correct DRAM addressing functions
were identified but only that the tool ran. Additionally 3 of
5 tools need support of 1GiB hugepages, which was not
available on some systems. Blacksmith identified bit flips on
40 DDR4 datasets out of a total of 44 datasets with DDR4
susceptible to Rowhammer. However, it was also started only
on 299 out of 1 006 datasets, which is approximately one third.
The results for DDR3 look similar: RowhammerJs, the tool
that worked best on DDR3, identified bit flips on 49 datasets,
of which 47 are DDR3. In total, 82 datasets with DDR3 were
susceptible to Rowhammer. RowhammerJs also only ran on
385 datasets, slightly more than a third of all datasets.

As discussed in Section IV-B, 5 of the 7 Rowhammer
tools failed on most datasets due to a lack of correct DRAM
addressing functions. Additionally 3 of the 7 tools require
1 GiB hugepages, which are not always available. Thus, most
tools worked only on less than a third of the datasets. Hence,
any susceptibility numbers determined in this study may
underestimate the real-world susceptibility to Rowhammer.

It is important to note that neither 1 GiB hugepages nor
physical address information is required to typically available
in a scenario where Rowhammer is weaponized for attacks like
privlege escalation. We also did not perform any attacks in our
framework, but limited to a large-scale study on the prevalence
of Rowhammer itself. Therefore, actually using our framework
for real attacks would require serious engineering effort.
As discussed in Section III-B, we did not add Zenhammer
published by Jattke et al. [20] to our test suite. According
to the authors, Zenhammer yields good results on AMD and
even identified a DDRS5 DIMM susceptible to Rowhammer.
Therefore, we expect the fraction of affected AMD systems to
be higher in reality than the 1.34 % reported in this paper.

As shown in Section V-B, the majority of systems tested
in our large-scale study has either DDR3 or DDR4 DRAM.
Both together make approximately 80 % of the 1006 systems
tested in our large-scale study. Therefore, we gain only little
insight on other DRAM generations, for which we also did
not identify a single system to be susceptible to Rowhammer.

13

For many DIMMs, there is no clear vendor in the Serial
Presence Detect (SPD) record. We use the larger DRAM
vendors—Samsung, Hynix, and Micron—and group resellers
(e.g., G-SKILL, A-DATA, etc.) in the group other, which
together account for nearly 25% of the DIMMs considered
in our vendor-based evaluation.

Because the best respective tools on DDR3 and DDR4 ran
only on roughly one third of all systems, the number of 126
out of 1006 (12.5%) should be seen as a lower estimation.
We hypothesize that the number of susceptible systems in
reality is significantly higher than reported in this paper due
to the discussed limitations. In future studies, the overall
grade of automation needs to be improved, focusing on a
better detection and correction of errors in general. Especially,
DRAM bank addressing function reverse-engineering needs
improvements to yield better results when run fully automated.

VII. CONCLUSION

We performed a large-scale Rowhammer study and col-
lected 1006 datasets on 822 unique systems from the par-
ticipants of our study. We show that automated DRAM
addressing function reverse-engineering works only in 453
of the 1006 datasets we analyze (less than 50 %). Due to
missing DRAM addressing function, Rowhammer tools that
require these functions were skipped on more than 50 % of
the datasets. On datasets with DDR3, simple pattern and fast
hammering are effective, while more complicated patterns and
fuzzing are more effective on datasets with DDR4 due to TRR
mitigating simple patterns on most systems. We detect the
most bit flips on datasets with DDR3 DRAM (27.2 affected).
On DDR4, only 8.76 % of all datasets are affected. However,
many datasets with DDR4 have AMD CPUs, which we could
not properly detect since we did not add the ZenHammer [20]
tool'. When only focusing on Intel-based datasets, 11.1% of
the datasets with DDR4 are affected. DRAM from Samsung
(31.7% affected), Hynix (28.6 % affected), and third-party
resellers where we could not resolve the actual DRAM vendor
(22.8 % affected) are susceptible in the same order of magni-
tude. In contrast to them, DRAM from Micron is only affected
by 2.4 %, which is surprising [28, 19, 35].

In general, our results should be seen as a best case esti-
mation, since it is very likely that more systems are affected.
A better automated response to errors in the tooling, manual
interaction, longer runtimes and tools optimized for AMD
would very likely increase the number of bit flips and the
number of affected systems.

ACKNOWLEDGMENT

This work was funded by the Deutsche Forschungsgemein-
schaft (grant number 503876675), the Austrian Science Fund
(grant number 10.55776/16054), the European Research Coun-
cil (ERC project FSSec 101076409), as well as the European
Union under grant number ROF-SG20-3066-3-2-2. Additional
funding was provided by generous gifts from Red Hat and
Google. See Appendix A for additional acknowledgements.

ETHICS CONSIDERATIONS

None of the institutions of the authors had an institutional
review board (IRB) or an ethics committee to obtain approval
for our study. Hence, we discussed our study design with
multiple privacy researchers to make sure we follow strict
ethical principles. One of the problems we identified was
the contradiction that security professionals suggest not to
put untrusted USB thumb drives into their computers. On
the other hand, we wanted to make it as easy as possible
to encourage people, even those without technical skills, to
participate in our study. We took multiple steps to counter that.
First, we published the source code of the software from our
study, allowing everyone to review it and providing complete
transparency. Second, we recommend building the ISO on their
own and using that or the Docker container instead. If that is
not possible, or the participant lacks the necessary technical
skills, the USB thumb drive is the last option. Third, the
hash digest of the image was also published, thereby enabling
participants to verify whether the USB thumb drive had been
modified.

Another point of discussion was the compliance with the
General Data Protection Regulation (GDPR). We informed
the user about the data we save and process, as well as
its purpose, and the participant needs to acknowledge this
explicitly before continuing with our study. Additionally, we
informed the user about the potential, albeit rare, damage
that the experiment can cause. After the participant ran the
experiment, we asked the user again if they were sure they
wanted to upload the data to our server. The participant could
also finish running the framework without the requirement
to send any data or participate in our study. We protect the
dataset from unauthorised access using current state of the
art measures. Furthermore, we regularly perform encrypted
backups of the collected datasets to avoid data loss.

REFERENCES

[1] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and
Todd Austin. “When good protections go bad: Ex-
ploiting anti-DoS measures to accelerate Rowhammer
attacks”. In: HOST. 2017.

Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek,
Rui Qiao, Reetuparna Das, Matthew Hicks, Yossi Oren,
and Todd Austin. “ANVIL: Software-Based Protection
Against Next-Generation Rowhammer Attacks”. In: AS-
PLOS (2016).

Sarani Bhattacharya and Debdeep Mukhopadhyay. “Cu-
rious Case of Rowhammer: Flipping Secret Exponent
Bits Using Timing Analysis”. In: CHES. 2016.

Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. “Dedup Est Machina: Memory Deduplication
as an Advanced Exploitation Vector”. In: S&P. 2016.
Ferdinand Brasser, Lucas Davi, David Gens, Christo-
pher Liebchen, and Ahmad-Reza Sadeghi. “CAn’t
Touch This: Software-only Mitigation against Rowham-
mer Attacks targeting Kernel Memory”. In: USENIX
Security. 2017.

(2]

(3]

(4]

(5]

14

(6]

(7]

(8]

Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. “Exploiting Correcting Codes: On the
Effectiveness of ECC Memory Against Rowhammer
Attacks”. In: S&P. 2019.

Bernhard Fischer, Daniel Dorfmeister, Harald Lampes-
berger, and Eckehard Hermann. “Leveraging Rowham-
mer for Physically Unique and Non-tamperable Device
Identification”. In: Procedia Computer Science (2025).
Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor
van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert
Bos, and Kaveh Razavi. “TRRespass: Exploiting the
Many Sides of Target Row Refresh”. In: S&P. 2020.
Lukas Gerlach, Fabian Thomas, Robert Pietsch, and
Michael Schwarz. “A Rowhammer Reproduction Study
Using the Blacksmith Fuzzer”. In: ESORICS. 2023.
Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. “Another Flip in the Wall
of Rowhammer Defenses”. In: S&P. 2018.

Daniel Gruss, Clémentine Maurice, and Stefan Man-
gard. “Rowhammer.js: A Remote Software-Induced
Fault Attack in JavaScript”. In: DIMVA. 2016.

Wei He, Zhi Zhang, Yueqgiang Cheng, Wenhao Wang,
Wei Song, Yansong Gao, Qifei Zhang, Kang Li, Dongxi
Liu, and Surya Nepal. “WhistleBlower: A System-Level
Empirical Study on RowHammer”. In: IEEE Transac-
tions on Computers (2023).

Martin Heckel and Florian Adamsky. “Flipper:
Rowhammer on Steroids”. In: #ASC. 2025.
Martin Heckel and Florian Adamsky. “Reverse-

Engineering Bank Addressing Functions on AMD
CPUs”. In: DRAMSec Workshop. 2023.

Martin Heckel, Florian Adamsky, Jonas Juffinger,
Fabian Rauscher, and Daniel Gruss. “Verifying DRAM
Addressing in Software”. In: ESORICS. 2025.

Martin Heckel, Hannes Weissteiner, Florian Adamsky,
and Daniel Gruss. “Epistemology of Rowhammer At-
tacks: Threats to Rowhammer Research Validity”. In:
ESORICS. 2025.

Christian Helm, Soramichi Akiyama, and Kenjiro Taura.
“Reliable Reverse Engineering of Intel DRAM Ad-
dressing Using Performance Counters”. In: Modeling,
Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS). 1IEEE. 2020.

Yeongjin Jang, Jachyuk Lee, Sangho Lee, and Taesoo
Kim. “SGX-Bomb: Locking Down the Processor via
Rowhammer Attack”. In: SysTEX. 2017.

Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn
Gunter, and Kaveh Razavi. “BLACKSMITH: Rowham-
mering in the Frequency Domain”. In: S&P. 2021.
Patrick Jattke, Max Wipfli, Flavien Solt, Michele
Marazzi, Matej Bolcskei, and Kaveh Razavi. “Zen-
Hammer: Rowhammer Attacks on AMD Zen-based
Platforms”. In: USENIX Security. 2024.

JEDEC Solid State Technology Association. DDR3
SDRAM STANDARD. 2012. URL.

https://www.jedec.org/standards-documents/docs/jesd-79-3d

[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

JEDEC Solid State Technology Association. DDR4
SDRAM Standard. 2021. URL.

JEDEC Solid State Technology Association. DDR5
SDRAM Standard. 2024. URL.

Sangwoo Ji, Youngjoo Ko, Saeyoung Oh, and Jong
Kim. “Pinpoint Rowhammer: Suppressing Unwanted
Bit Flips on Rowhammer Attacks”. In: AsiaCCS. 2019.
Jonas Juffinger, Lukas Lamster, Andreas Kogler, Maria
Eichlseder, Moritz Lipp, and Daniel Gruss. “CSI:
Rowhammer - Cryptographic Security and Integrity
against Rowhammer”. In: S&P. 2023.

Jonas Juffinger, Sudheendra Raghav Neela, Martin
Heckel, Lukas Schwarz, Florian Adamsky, and Daniel
Gruss. “Presshammer: Rowhammer and Rowpress with-
out Physical Address Information”. In: DIMVA. 2024.
Ingab Kang, Walter Wang, Jason Kim, Stephan
van Schaik, Youssef Tobah, Daniel Genkin, Andrew
Kwong, and Yuval Yarom. “SledgeHammer: Ampli-
fying Rowhammer via Bank-level Parallelism”. In:
USENIX Security. 2024.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. “Flipping Bits in Memory Without
Accessing Them: An Experimental Study of DRAM
Disturbance Errors”. In: ISCA. 2014.

Kirill A. Shutemov. Pagemap: Do Not Leak Physical
Addresses to Non-Privileged Userspace. 2015. URL.
Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu
Kim, Moritz Lipp, Nicolas Boichat, Eric Shiu, Mattias
Nissler, and Daniel Gruss. “Half-Double: Hammering
From the Next Row Over”. In: USENIX Security. 2022.
Radhesh Krishnan Konoth, Marco Oliverio, Andrei
Tatar, Dennis Andriesse, Herbert Bos, Cristiano Giuf-
frida, and Kaveh Razavi. “ZebRAM: Comprehensive
and Compatible Software Protection Against Rowham-
mer Attacks”. In: USENIX OSDI. 2018.

Andrew Kwong, Daniel Genkin, Daniel Gruss, and
Yuval Yarom. “RAMBIleed: Reading Bits in Memory
Without Accessing Them”. In: S&P. 2020.

Chris S. Lin, Joyce Qu, and Gururaj Saileshwar.
“GPUHammer: Rowhammer Attacks on GPU Memo-
ries are Practical”. In: USENIX Security. 2025.

Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz,
Daniel Gruss, Clémentine Maurice, Lukas Raab, and
Lukas Lamster. “Nethammer: Inducing Rowhammer
Faults through Network Requests”. In: SILM Workshop.
2020.

Haocong Luo, Ataberk Olgun, Abdullah Giray Yaglik¢i,
Yahya Can Tugrul, Steve Rhyner, Meryem Banu
Cavlak, Joél Lindegger, Mohammad Sadrosadati, and
Onur Mutlu. “RowPress: Amplifying Read Disturbance
in Modern DRAM Chips”. In: ISCA. 2023.

Michele Marazzi and Kaveh Razavi. “RISC-H:
Rowhammer Attacks on RISC-V”. In: DRAMSec Work-
shop. 2024.

15

[42]

[49]

Ataberk Olgun, Yahya Can Tugrul, Nisa Bostanci, Is-
mail Emir Yuksel, Haocong Luo, Steve Rhyner, Ab-
dullah Giray Yaglikci, Geraldo F Oliveira, and Onur
Mutlu. “ABACuS: All-Bank Activation Counters for
Scalable and Low Overhead RowHammer Mitigation™.
In: USENIX Security. 2024.

Lois Orosa, Ulrich Riihrmair, A Giray Yaglikci, Hao-
cong Luo, Ataberk Olgun, Patrick Jattke, Minesh Pa-
tel, Jeremie Kim, Kaveh Razavi, and Onur Mutlu.
“SpyHammer: Using RowHammer to Remotely Spy on
Temperature”. In: arXiv:2210.04084 (2022).

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. “DRAMA: Exploit-
ing DRAM Addressing for Cross-CPU Attacks”. In:
USENIX Security. 2016.

Kaveh Razavi, Ben Gras, Erik Bosman, Bart Pre-
neel, Cristiano Giuffrida, and Herbert Bos. “Flip Feng
Shui: Hammering a Needle in the Software Stack”. In:
USENIX Security. 2016.

Finn de Ridder, Pietro Frigo, Emanuele Vannacci,
Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi.
“SMASH: Synchronized Many-sided Rowhammer At-
tacks From JavaScript”. In: USENIX Security. 2021.
Andre Schaller, Wenjie Xiong, Nikolaos Athanasios
Anagnostopoulos, Muhammad Umair Saleem, Sebas-
tian Gabmeyer, Stefan Katzenbeisser, and Jakub Szefer.
“Intrinsic Rowhammer PUFs: Leveraging the Rowham-
mer effect for improved security”. In: Hardware Ori-
ented Security and Trust (HOST. 2017.

Mark Seaborn. Exploiting the DRAM rowhammer bug
to gain kernel privileges. 2015. URL.

Mark Seaborn and Thomas Dullien. Test DRAM for bit
flips caused by the rowhammer problem. 2015. URL.
Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. “Defeating Software Mitigations Against
Rowhammer: A Surgical Precision Hammer”. In: RAID.
2018.

Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos,
Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
“Throwhammer: Rowhammer Attacks over the Network
and Defenses”. In: USENIX ATC. 2018.

Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel
Genkin, and Kang G Shin. “SpecHammer: Combining
Spectre and Rowhammer for New Speculative Attacks”.
In: S&P. 2022.

Victor van der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clémentine Maurice, Giovanni
Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuf-
frida. “Drammer: Deterministic Rowhammer Attacks on
Mobile Platforms”. In: CCS. 2016.

Victor van der Veen, Martina Lindorfer, Yanick Fratan-
tonio, Harikrishnan Padmanabha Pillai, Giovanni Vi-
gna, Christopher Kruegel, Herbert Bos, and Kaveh
Razavi. “GuardION: Practical Mitigation of DMA-
Based Rowhammer Attacks on ARM”. In: DIMVA.
2018.

https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd79-5c01
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://github.com/google/rowhammer-test

[50] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya
Nepal. “DRAMDig: A Knowledge-assisted Tool to Un-
cover DRAM Address Mapping”. In: Design Automa-
tion Conference (DAC). 2020.

Yuan Xiao, Xiaokuan Zhang, Yingian Zhang, and Radu
Teodorescu. “One Bit Flips, One Cloud Flops: Cross-
VM Row Hammer Attacks and Privilege Escalation”.
In: USENIX Security. 2016.

Zhenkai Zhang, Zihao Zhan, Daniel Balasubramanian,
Xenofon Koutsoukos, and Gabor Karsai. “Triggering
Rowhammer Hardware Faults on ARM: A Revisit”. In:
ASHES Workshop. 2018.

APPENDIX A
FURTHER ACKNOWLEDGEMENT

[51]

[52]

In addition to the acknowledgements for funding shown
above, we also want to thank the people who supported us
during the design, development, and conduct of our study.

We want to thank Lena Heimberger of Graz University
of Technology for having many discussions about the design
of our study regarding privacy and transparency, they signif-
icantly improved the final study design. We want to thank
Katharina Schiller for creating the final FLIPPYRAM logo. We
want to thank Claudia Ceh for creating the project website at
https://flippyr.am. We want to thank Nico Bretschneider, Antje
Heckel, Johanna Heckel, Theresa Heckel, Ulrich Heckel, and

16

Paulina Zschippang for flashing 2000 thumb drives over the
Christmas Holidays in 2024.

We want to thank Jeremy Boy, Anna Pitschke, Thore Tie-
mann, and Thomas Eisenbarth from the University of Liibeck
for distributing several hundred thumb drives to their students
and asking them to participate in our large-scale study. We
want to thank Andreas Schmidt for giving a Lightning talk
on Chemnitz Linux Days and distributing thumb drives to the
audience.

Finally, we want to thank our many participants who made
this large-scale study possible. Among students at Hof Univer-
sity of Applied Sciences, Graz University of Technology, and
the University of Liibeck, many others also participated. Even
though most of the participants want to stay anonymous, we
provide a list of some participants who agreed to be named in
our Acknowledgements (in alphabetical order):

Malte Behrmann, Arne Bier, Micha Borrmann, Jeremy
Boy, Colipedia, daef, Emrah Delanovi¢, Jorg Elfring, Felix
Fehlauer, Morgan Gothard, Brian Hobbs, Jan Christopher
Kemnitzer, Daniel Kipp, Ingo Korb, @magni@chaos.social,
Philippe Marschall, Justin McLemore, Natalie Mirelashvili,
Malte Oeljeklaus, Adriel Ondas, Anja OstovrSnik, Anna
Pitschke, Peter Rohrer, Alexander Schnell, Robin Leander
Schroder, Michatl Trojnara, Benjamin Walter, Qifan Wang, and
David Ward.

https://flippyr.am

	Introduction
	Background
	DRAM
	Rowhammer
	Related Work

	Methodology
	User Study Design
	FlippyRAM Framework
	Reverse-Engineering DRAM Addressing Functions
	Rowhammer Prevalence Test using Rowhammer Tools
	Analysis of the Datasets

	Technical Results of Real-World Rowhammer Feasibility User Study
	Address Function Reverse-Engineering
	Rowhammer Tools
	Success Rate of Rowhammer Tools
	Rowhammer Susceptibility by FlippyRAM Runtime

	Detailed Analysis of Rowhammer Susceptibility by System Characteristics
	Susceptibility by CPU Vendor
	Susceptibility by DRAM Generation
	Susceptibility by DRAM Vendor
	Susceptibility by DRAM Frequency

	Limitations
	Conclusion
	Appendix A: Further Acknowledgement

