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Abstract—Vision Transformers (ViTs) have emerged as a
fundamental architecture and serve as the backbone of modern
vision-language models. Despite their impressive performance,
ViTs exhibit notable vulnerability to evasion attacks, necessitating
the development of specialized Adversarial Training (AT) strate-
gies tailored to their unique architecture. While a direct solution
might involve applying existing AT methods to ViTs, our analysis
reveals significant i ncompatibilities, p articularly w ith state-of-
the-art (SOTA) approaches such as Generalist [1] (CVPR 2023)
and DBAT [2] (USENIX Security 2024). This paper presents a
systematic investigation of adversarial robustness in ViTs and
provides a novel theoretical Mutual Information (MI) analysis in
its autoencoder-based self-supervised pre-training. Specifically,
we show that MI between the adversarial example and its latent
representation in ViT-based autoencoders should be constrained
via derived MI bounds. Building on this insight, we propose a
self-supervised AT method, MIMIR, that employs an MI penalty
to facilitate adversarial pre-training by masked image modeling
with autoencoders. Extensive experiments on CIFAR-10, Tiny-
ImageNet, and ImageNet-1K show that MIMIR can consistently
provide improved natural and robust accuracy, where MIMIR
outperforms SOTA AT results on ImageNet-1K. Notably, MIMIR
demonstrates superior robustness against unforeseen attacks and
common corruption data and can also withstand adaptive attacks
where the adversary possesses full knowledge of the defense
mechanism. Qur code and trained models are publicly available
at: https://github.com/xiaoyunxxy/MIMIR.

I. INTRODUCTION

ViTs [3] and their variants [4], [5] have achieved substantial
progress and serve as foundational components in modern
vision-language models. Prominent multimodal frameworks,
including CLIP [6], BLIP [7], and Mini-GPT4 [8], typically
employ ViTs as their image encoders. However, similar to
convolutional neural networks (CNNs), attention-based models
provide limited robustness against evasion attacks [9], [10],
[11], [12], [13]. Evasion attacks [14], [15] (also known as
adversarial attacks), where well-trained deep models are fooled
by introducing human-imperceptible perturbations to inputs,
remain a persistent challenge in deep learning security. In
2024, the National Institute of Standards and Technology
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(NIST) explicitly listed adversarial attacks as a significant
threat to Al systems, and pointed out the importance of con-
ducting robustness testing and mitigation, such as adversarial
training and formal verification, when deploying Al tools [16].
Nevertheless, improving adversarial robustness remains a diffi-
cult task, where even SOTA methods, such as [17], [18], [19],
achieve only marginal robustness gains, commonly below 2%
compared with those before them.

So far, Adversarial Training (AT) is widely recognized
as the most practically effective defense [12], [11], [20]
against evasion attacks. AT operates by augmenting the train-
ing dataset with adversarially perturbed samples [21], yet
introduces two key limitations: (1) substantial computational
overhead due to the generation of adversarial examples during
training [21], and (2) a potential degradation in natural accu-
racy [22]. Numerous methods have been proposed to mitigate
these challenges. Techniques such as FreeAT [23] optimize
efficiency by reusing gradient information during adversarial
example generation, while FastAT [24] employs an improved
Fast Gradient Sign Method (FGSM) to accelerate training.
TRADES [25], SCORE [26], Generalist [1], and DBAT [2]
explore how to achieve the best trade-off between natural and
robust accuracy. Additionally, pre-training strategies have also
been leveraged to enhance the performance of AT [27], [17].

Applying existing AT methods to ViTs presents unique chal-
lenges due to the fundamental differences between attention-
based architectures and CNNs. Unlike CNNs, ViTs lack in-
ductive biases [3], including locality, two-dimensional neigh-
borhood structure, and translation equivariance. These biases
are inherent to CNNs as prior knowledge, enabling efficient
learning with limited data, whereas ViTs typically require
larger training datasets to achieve comparable generalization
performance [3]. Consequently, AT for ViTs entails signifi-
cantly higher computational costs. Initial research on AT for
ViTs explored their unique attention mechanism. For instance,
robustness can be improved by randomly dropping gradients
according to attention [ 1] or improving training efficiency by
dropping low-attention image embeddings [!2]. The majority
of recent works have focused on adapting CNN-based AT
methodologies to ViTs, given AT’s success in building robust
CNNs. Unfortunately, standard CNN AT techniques are not
fully transferable to ViTs. Empirical studies [9], [20] reveal
that strong data augmentations (such as Randaugment [28],
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CutMix [29], and MixUp [30], which improve robustness
in CNNs) often degrade AT performance for ViTs. To mit-
igate this, recent work [9] suggests progressively increasing
augmentation intensity (e.g., distortion magnitudes in Ran-
dAugment or the sampling probability of MixUp/CutMix)
during training. Furthermore, SOTA AT strategies, such as
Generalist [1] and DBAT [2], are less effective when applied
to ViTs (see Table I), and there is a lack of evaluation on
large datasets, such as ImageNet-1K, which further limits their
generalizability.

Pre-training has emerged as a complementary approach to
ViT AT, with studies showing that adversarial fine-tuning of
naturally pre-trained models can enhance robustness [ 1], [17].
AdvXL [31] notably advanced this paradigm by developing
efficient AT for web-scale datasets. However, the mechanisms
underlying pre-training’s effectiveness are not fully under-
stood, and results are inconsistent across implementations. For
instance, models pre-trained on ImageNet-21K using Sim-
MIM [32] demonstrate comparable performance to scratch-
trained counterparts, while CLIP [6] pre-training has been
shown to degrade performance in some configurations [33].

While previous methods of ViT AT, such as [17], [20],
[9], focus on searching for better combinations of training
hyperparameters, they suffer from performance drops across
different architectures and datasets. In contrast, we aim for
a generalizable method via pre-training. Specifically, this
work presents a systematic investigation of self-supervised
pre-training for ViT robustness through the lens of Mutual
Information (MI) and Information Bottleneck (IB) theory.
IB introduces a joint objective of simultaneously minimizing
the MI between inputs and latent features while maximizing
the MI between labels and latent features to mitigate the
impact of the adversarial noise in the inputs. Regarding
the ViT AT, we develop a novel theoretical justification for
self-supervised autoencoders, demonstrating that reducing MI
between inputs and latent features enhances ViT robustness.
Based on this finding, we propose a theoretically grounded
adversarial pre-training method, Masked Image Modeling for
Mutual Information-based Adversarial Robustness (MIMIR).
! Specifically, we convert Masked Image Modeling (MIM) into
an effective and efficient adversarial pre-training method. The
basic idea is to predict the masked content of inputs, which is
a self-supervised learning task. The effectiveness of MIMIR is
analyzed and guaranteed by our theoretical justification. The
efficiency comes from discarding the masked content (75%
of image patches are discarded in our experiments), which
greatly reduces the computing requirements. Figure 1 provides
an illustrative diagram of MIMIR.

We validate MIMIR’s effectiveness through extensive exper-
iments on CIFAR-10 [34], Tiny-ImageNet [35], and ImageNet-
1K [36], showing consistent improvements in both natural and
adversarial accuracy. In addition, we test the generalizability
of MIMIR by combining MIMIR with three MIM methods

'Mimir is a figure in Norse mythology, renowned for his knowledge and
wisdom.
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Fig. 1. Diagram illustrating the working mechanism of MIMIR. In the pre-
training, adversarial images « + & are generated and separated into image
patches as the inputs of the encoder. The output of decoder z,. and the
natural input image x are used to calculate the loss. After pre-training, a
trained encoder is combined with a randomly initialized classification layer
as the final complete model. Then the complete model is further fine-tuned
for classification tasks.

for three representative architectures, including MAE [37] for
ViTs, Group Window Attention [38] for hierarchical trans-
former (Swin [39]), and SparK [40] for CNN (ConvNext [41]),
where MIMIR outperforms SOTA AT methods on ImageNet-
1K. Our main contributions are:

e By revisiting the current ViT AT strategies, we point
out that ViT AT methods compromise natural accuracy
and lack systematic study. To this end, we provide a
theoretical analysis using adversarial examples and the
Information Bottleneck. We theoretically show that the
Mutual Information between adversarial examples and
the learned latent representation should be decreased for
better robustness.

o Based on our analysis, we propose a self-supervised
defense, MIMIR, against adversarial attacks on ViTs. We
evaluate MIMIR using multiple architectures on three
datasets under various adversarial attacks, demonstrat-
ing its effectiveness. MIMIR achieves SOTA adversarial
robustness on ImageNet-1K following the standardized
evaluation by RobustBench.?

« We show that MIMIR is robust against unforeseen attacks
and common corrupted data (ImageNet-C [42]) and can
resist adaptive attacks where the adversary is aware of
MIMIR’s design.

II. BACKGROUND
A. Evasion Attack

Evasion attacks [43], [14], [15], also known as adversarial
attacks, refer to applying imperceptible perturbations to the
original input of the machine learning model (in this work,
neural network), which generates adversarial examples to fool
the victim model. Given an L-layer neural network Fjp for
classification in dy-dimensional space and a training dataset
D = {(z,v:)}? in dx-dimensional space, the two primary
goals of adversarial attacks are:

Zhttps://robustbench.github.io/
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1) The generated perturbation  can successfully mislead the
network by maximizing (e.g., PGD attack [21]):

?eaécﬁcE(e,ﬂfi +6,9i), (D

where z; € R and y; € {0,1}9v, 0 are the parameters
of the current network and Lopg is the standard CE
(Cross-Entropy) loss. The perturbation aims to decrease
confidence in the ground truth labels while increasing
confidence in wrong labels. Thus, the loss between the
misleading outputs and the ground truth labels increases.

2) The generated adversarial examples are as similar as
possible to the original clean examples by limiting § to
a relatively small domain:

S = B(z;,r)={0 € R . 19]] o

where S is the [,-ball of radius r at a position x; in Rox
The distance between z; and z; 4+ § can be evaluated by
norms such as 5 and [,
When using the above attacks to generate adversarial exam-
ples for AT, the learning objective is:

<r} 2

rrld}nglgsxﬁczs(&xi +9,vi). 3)

B. Masked Image Modeling - MIM

MIM refers to a self-supervised pre-training framework
that aims to reconstruct pre-defined targets, such as discrete
tokens [44], raw RGB pixels [37], [45], or features [46]. The
final goal is to use the pre-trained model as a starting point

space [47]. In practice, Deep Deterministic Information Bot-
tleneck (DIB) [48] suggested using the matrix-based Renyi’s
a-order entropy I, [49], [50] to estimate MI, which avoids
density estimation and variational approximation. An alter-
native way is the Hilbert-Schmidt Independence Criterion
(HSIC) [51], which is a kernel-based dependence measure
defined in a reproducing kernel Hilbert space (RKHS) and is
usually used as a surrogate of MI. Details about definitions
and empirical estimators of [, and HSIC are provided in
Appendix J. In this paper, we evaluate both I, and HSIC
as our MI measurements.

D. Information Bottleneck - IB

The IB concepts were first proposed in [52] and further
developed for deep learning in [53], [54]. IB describes the gen-
eralization of a deep network in two phases: 1) empirical error
minimization (ERM) and 2) representation compression [54].
For a network with input = and label y, there is an intermediate
representation t; for each layer [, i.e., the output of the [-th
layer. The IB principle aims to keep more relevant information
in t; about the target y while decreasing the irrelevant informa-
tion about the input z. The information between intermediate
representation ¢; and input x or label y is quantified by MI,
denoted by I(-). During neural network training, in the ERM
phase, the model increases shared information between ¢
with respect to both = and y. Afterward, in the compression
phase, the model decreases information contained in ¢; about
x but preserves (or even increases) information about y. The

for downstream ﬁne-tuning. The downstream tasks include, fO]’.'TeX{eduetion of I({E, tl) can be interpreted as a way of redueing

instance, classification and object detection. More specifically,
to build a high-performance ViT f. without a classification
layer, we consider f. as an encoder to extract discriminative
input features. Then, we design a lightweight decoder fg,
which uses the output of f,. as its input. The goal of fy is
to reconstruct the original inputs (let us consider MAE [37]
as an example). The aim is to decrease the distance between
the input z and z,.. = f4 0 fe(x). After the encoder f. and
decoder f; are trained, we use f. plus a manually initialized
classification layer as the starting point of fine-tuning.

C. Mutual Information - MI

MI measures the mutual dependence between two random
variables, X and Y. It quantifies the amount of information
contained in one random variable about another random vari-
able or the reduced uncertainty of a random variable when
another random variable is known. It can be written as:

I(X,Y) //PXY z,y log<P£()X(Y))Jg(xY:)y()))

where P(x y) is the joint probability density function of X
and Y. Px) and Py, are the marginal probability density
function of X and Y. MI can be equivalently expressed as:

I(X,Y) = H(X) — HX|Y). (5)

Estimating the exact MI is not easy, as it is difficult to
precisely estimate Pxy or Py and Py in high-dimensional

noise or compressing irrelevant or redundant features in z.
At the end of the training, the model strikes a trade-off that
maximizes I(y,t;) and minimizes I(z,t;). Formally, the IB
minimizes the following Lagrangian:

— BI(y, ), (6)

where [ is a Lagrange multiplier that controls the trade-off
between predicting y and compressing x.

L= I(I,tl)

III. MIMIR
A. Threat Model

Adversary’s goal. The attacker aims to fool the trained model
with both non-targeted and targeted attacks. The goal is to
decrease the overall classification accuracy (non-targeted) or
compel the model to recognize any inputs as a specific target
(targeted). Meanwhile, the adversarial perturbations applied to
the input should be invisible so that they will not be easily
detected. During the training phase, the model optimizes its
parameters to minimize the loss between predicted outputs
and true labels, thereby enhancing classification accuracy. In
contrast, the adversary’s objective is to develop algorithms
that generate perturbations capable of maximizing this loss.
For a targeted attack, the attacker decreases the loss between
the output and the specified target label. To maintain the
imperceptibility of the perturbations, the magnitude of the
adversarial modifications is constrained by distance measures
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(such as /2 and l,), ensuring that the alterations to the input
data remain within a visually indistinguishable range.
Adversary knowledge. The attacker has white-box access to
the model, including training data, architectures, hyperparam-
eters, and model weights. The attacker can implement iterative
attacks and unlimited queries to update adversarial examples
multiple times in white and black-box settings. Adversarial
examples can be created according to model architectures,
parameters, the gradients of the loss function, and datasets. In
addition, we also consider adaptive adversaries who are also
aware of potential defenses. The adversary can design new
attacks for a specific model according to the design details of
the defense method.

Defender’s goal. From the defender’s perspective, the main
goal is to train a robust model against potential adversarial
attacks. The defender considers the following objectives:

o The defender aims to prevent the performance of natural
data from decreasing significantly, but allows a slight
drop of natural accuracy for a trade-off in exchange for
robustness.

¢ The defense method should provide a notable improve-
ment compared to models without defenses when sub-
jected to various adversarial attacks, especially to adap-
tive attacks that are aware of the details of the defense
method.

e The defense method should be efficient and scalable to
large datasets such as ImageNet-1K [36].

B. Design Intuition

MIM has been established as an effective pre-training
paradigm for Vision Transformers (ViTs), demonstrating
strong performance across diverse downstream tasks [55],
[37], [46], [44]. The core methodology involves masking
foreground regions of input images and tasking the model
with their reconstruction. Masking foreground (as opposed to
background) regions removes high-information content and re-
sults in a harder task (than reconstructing background content),
forcing the model to develop stronger feature representations
to reconstruct semantically meaningful patterns [56].

Building upon these principles, we introduce an adversarial
extension to MIM by incorporating adversarial perturbations
into the input space. Our formulation is grounded in three
interconnected hypotheses:

o Adversarial Robustness through Reconstruction: If a
model can reconstruct natural images from adversarially
perturbed inputs, its latent representations must inherently
discard perturbation-specific information while preserv-
ing natural data semantics.

o IB Perspective: The encoder-decoder architecture nat-
urally imposes an information bottleneck. When pro-
cessing adversarial examples = + 4, the system must
suppress perturbation-derived information (§) while re-
taining natural data information (x) to achieve accurate
reconstruction (see Figure 1).

¢ Optimal Masking Strategy: Complete foreground mask-
ing (to build a difficult task) is suboptimal, as it elimi-

Algorithm 1 MIMIR Pre-training
Input: training data D, number of epochs FE, encoder f.,
decoder f4, network parameters 0, Ly, .
Output: optimized weights 6
1. fore=0—F—1do

2: x4 sample_batch (D)

3: 0+« random_initialization
4 Zpe & fao fe(z+9)

50 0« rggg Lunse(x + 0, Tre)

6:  Forward:

7. 24 fe(x +9)

8 Zye — fa(2)

9:  loss « Lise(T,Tre) + A (x4 6, 2)
10  Backward:

11: 0+ 0—aVioss

12: end for

nates essential reconstruction signals. Instead, our method
employs partial masking to maintain a tractable yet chal-
lenging learning objective.

C. Design Details

Autoencoder. MIMIR consists of an encoder f. and a decoder
fa aligned with the general design of MAE [37]. As with other
autoencoders, the encoder extracts discriminative features z
from inputs 2. The decoder reconstructs the original inputs
according to the discriminative features. Following the design
of ViT [3], the input z is separated into non-overlapping image
patches. We randomly mask out a part of the patches and
use the remaining patches as inputs for the following process
in the encoder. This random masking process uses uniform
distribution to prevent potential sampling bias, such as all
foreground information being masked, as it becomes infeasible
to find the reconstruction target. Thus, we aim to keep a part of
the foreground as a hint for reconstruction. The information of
masked content is recorded as mask tokens m, which are not
used by the encoder but reserved for later use by the decoder.
Each token is a learned vector indicating the presence of a
masked patch to be predicted. The mask token is shared by
all inputs of the decoder. Like unmasked patches, mask tokens
are also assigned corresponding positional embeddings to be in
the correct location in the reconstructed image. We emphasize
that mask tokens are not used in the encoder part.

To train a ViT, we use the same transformer blocks as
ViT to build the encoder. The encoder only processes the
visible patches, making training much more efficient. When
converting to other architectures, such as ConViT [5], we
use corresponding transformer blocks to build the encoder.
The decoder accepts the encoded visible image patches and
mask tokens as inputs. The decoder is built using the same
transformer blocks as the encoder instead of using ViT [3]
transformer blocks for all. Then, the decoder is followed by
a fully connected layer, which outputs the same number of
patches as the original image.
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Adversarial Pre-training Target. The training target is to
extract discriminative features from visible image patches by
the encoder and then reconstruct the invisible patches by
the decoder. Therefore, we need a differentiable measurement
to quantify the distance between the original image and the
reconstructed results. Following the original MAE [37], this
distance is measured by Mean Squared Error (MSE). To
create a more difficult reconstruction task, we apply adver-
sarial perturbations ¢ to the inputs of the encoder. Thus, the
adversarial perturbations are also masked along with the image
upon input into the encoder. The decoder reconstructs the
original natural inputs by using the latent features z extracted
from adversarial examples. The outputs of decoder x,. and
x are used to calculate the MSE loss, which is further used
to optimize the model. Note that the reconstruction differs
from the original MAE; we do not use the encoder inputs
as reconstruction targets. Formally, the pre-training process
(described in Algorithm 1) can be written as follows:

Z:fe(x+6)7 zre:fd(z)a %

l0ssmse = Emse(l‘, xre)~
MI as Penalty. Inspired by IB, we show in Section III-D
that MI between latent representation and adversarial examples
decreases as the accuracy on adversarial examples, i.e., I(z+
J,z), decreases while training. Motivated by this finding, we
directly use I(xz + 6, ) as a penalty in our final loss function:

1088mi = Linse (T, Tre) + M (z + 6, 2), (8)

where ) is a regularizer for the MI penalty. We use I(x+4, 2)
instead of I(x, z) as a penalty. This is because © — x+0d — 2
follows the Markov chain since z is extracted from x + 4.
According to Data Processing Inequality (DPI) [57], I(x, z) <
I(x +6,z). I(x + 0, 2) is closer to z on the Markov chain.
Generating Adversarial Examples. To conduct the adversar-
ial pre-training, we need an attack that finds proper adversarial
perturbations §. As the autoencoder does not provide clas-
sification outputs, it is not possible to directly use existing
adversarial attacks, such as PGD [21]. Nevertheless, it is
feasible to design a new algorithm to find § by maximizing
lossmse in Eq. (7). As the feature z is extracted from only
visible image patches, we only attack the visible patches. We
do not add any perturbations to mask tokens since the outputs
of the autoencoder are only impacted by visible patches. Then,
the adversarial pre-training learning objective can be written
as:

ﬁadv = I?Eag(ﬁmse(fd © fe(l‘ + 5)7 :C)’

9

rrbinﬁadv+)\l(w+6,z), ©)

where 6 are the autoencoder parameters. After the autoencoder

is trained, we discard the decoder and initialize a classification

layer for the encoder to build a complete model. Finally, the
complete model is fine-tuned by AT methods.

== |lower bound
) = upper bound

I(x+6,2)
N
/
/
/
/

Fig. 2. The example plots for the lower and upper bounds on the MI in
Propositions I1I.2 and I11.3. The entropy (H(+)) is chosen uniformly at random
from a set of 10 classes. The lower bound reaches its minimum at p = 0.9.

D. Theoretical Justification

Next, we provide theoretical justification showing that MI
between the adversarial example and its latent representation,
ie., I(x + 0,z), should be constrained. Let F denote any
classifier trained on natural samples with desirable prediction
accuracy, which may suffer from adversarial attacks. We begin
our analysis by first presenting Lemma III.1.

Lemma IIL.1. Let F(x +0) and F(x..) denote, respectively,
the predicted labels of adversarial sample x + & and recon-
structed sample x.., we have:
I(F(x+96),F(ay.)) <I(F(x+96),2r.) < I(x+46,2). (10)
Proof. There are two Markov chains:
46— F(xz+9),
2= Tpe = F(Tre),

(1)

which implies that F'(x+/¢) is an indirect observation of x4,
whereas both F'(z,.) and z,. are indirect observations of z.
By the data processing inequality (DPI), we have

I(x+9,2) > I(F(z +9), 2), (12)

and
I(F(x+6),2) > I(F(x+9),2pe) > I(F(x 4 6), F(zre))-
(13)
O

Now, we define p. as the probability that the predicted
label of x + § by F is not equal to that of =z,., i.e.,
pe = P(F(z + 6) # F(xy.)). Intuitively, our autoencoder
is trained to recover only the natural sample x without any
interference from . Hence, a relatively large value of p,
is expected. In the following, we establish the connection
between p, and I(z+ 6, z) with both lower and upper bounds,
showing that minimizing I(z + 4, z) also encourages a large
value of p..

Proposition IIL2. Let H(-) denote the information entropy
and Hy(p.) = —pelogype — (1 — pe)logy(1 — pe) be the
binary entropy, we have:

H(F(x+0)) = Hy(pe) — pelog(|F(z +06)| 1) < I(x+9, 2),
(14)
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where |F(x + 6)| is the total number of categories.’

Proof. By the chain rule of MI, we have
I(F(z496),F(xr)) = HF(x496)) — H(F (x4 )| F(xre))-

15)
By applying Fano’s inequality [58], [59], we obtain:
H(F(z + 6)|F(2re)) < Hp(pe) + pelog(|F(z +0)| - 1).

(16)

Adding I(F(z 4 0), F(x,.)) to both sides of Eq. (16):
H(F(z 4 6)) — Hy(pe) — pelog(|F(z +6)| — 1)

< I(F(z 4 0), F(x)) (17)
<I(z+9,2).
The last line of Eq. (17) is by Lemma III.1. O

Therefore, we obtain a lower bound of I(z+4, z). If we use
CIFAR-10 (| F(x + ¢)| = 10) and assume the predicted labels
F(x + ¢) follow a uniform distribution, we can visualize the
lower bound as a function of p. as shown in Figure 2, from
which we observe an obvious monotonic inverse relationship
between I(z + &) and p. in the range p. € [0,0.9]. In fact,
we can also obtain an upper bound under the assumption that
I(F(x +0),2re) = I(x + 0, 2), ie., there is no information
loss in the two Markov chains in Eq. (11).

Proposition IIL3. If I[(F(z+6),z.) = I(x+0, 2), we have:
Iz +6,2) SH(F(x+0)) — 2pe, (18)
in which the notation “<” refers to less than or similar to.
Proof. By the Hellman-Raviv inequality [60], [
2pe < H(F(x + 0)|2re)
— H(F(x+9)) — I(F(z + ), 2v.)
~H(F(x+9))—I(zx+9,z2).

], we have:
(19)

O

Similar to the lower bound, the upper bound also indicates
I(x + 6, z) is inversely proportional to p. as shown in Fig-
ure 2. In fact, apart from the above-mentioned lower and
upper bounds, there exists an alternative and intuitive way
to understand the mechanism of minimizing I(x + 4, z). For
simplicity, let us assume the natural data x and adversarial
perturbations ¢ are independent®, then:

Hax+6,2)=1(x,2) + 1(5,2). (20)

According to [63], minimizing the expected reconstruction
error between natural sample = and corrupted input x + §
amounts to maximizing a lower bound of the mutual informa-
tion I(x, z), even though z is a function of the corrupted input.
Therefore, by minimizing I(x+ ¢, z), the network is forced to
minimize I(J, z) (since I(x, z) is maximized). In other words,
only the adversarial information about § has been removed
from z when minimizing I(x + 4, z). This also explains the
robustness of z.

3For instance, for CIFAR-10, |F(x + §)| = 10.
4This assumption is mild for certain scenarios, such as when considering
universal or image-agnostic perturbations [62].

TABLE I
COMPARISON BETWEEN END2END AT AND PRE-TRAINING (MIMIR) +
FINE-TUNING USING VIT-S oN CIFAR-10.

Training  Method Natural PGD AutoAttack
AT [21] 75.36 32.84 26.17
Fast AT [24] 76.81 32.57 21.41
TRADES [25] 74.96 32.12 24.90

End2End - \1ART [66] 72.42 24.47 23.45
Generalist [1] 60.88 14.44 11.20
DBAT [2] 68.32 18.83 5.25
AT [21] 86.56111.20 56.76723.92 45.39719.22
Fast AT [24] 87.22110.41 49.17716.6  35.89714.48

MIMIR TRADES [25] 88.19713.23 56.42724.3 51.70726.8
MART [66] 80.5578.13  50.81726.34 39.92716.47
Generalist [1] 88.81727.93 37.85723.41 33.67122.47
DBAT [2] 88.56120.24 41.08722.25 24.59719.34

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

We evaluate MIMIR on three datasets: ImageNet-1K [36],

Tiny-ImageNet [35], and CIFAR-10 [34], with diverse and
commonly used architectures with multiple scales: ViT [3],
ConViT [5], Swin Transformer [39], and ConvNext [41]. De-
tails of datasets are provided in Appendix A. Hyperparameters
of the decoder are included in Appendix B.
Training Setup. We train models from scratch for all exper-
iments. Following MAE [37], we do pre-training by MIMIR
for 800 epochs. Please note that we also compare our MIMIR
+ fine-tuning paradigm with the End2End paradigm. The
End2End paradigm refers to the supervised training of a model
from scratch without self-supervised pre-training. To compare
between End2End and pre-training + fine-tuning, the common
training schedule practice is pre-training 800 epochs + fine-
tuning 100 epochs versus End2End training 300 epochs in the
existing works [37], [32], [64].

The number of warmup epochs is 40 for pre-training.
We use AdamW [65] as the optimizer for both pre-training
and fine-tuning. We apply the cosine decay as the learning
rate scheduler. At pre-training, MIMIR uses the 1-step PGD
to generate adversarial examples for all three datasets. The
perturbation budget is e = 8, « = 10. For the fine-tuning stage,
we use the 10-step PGD AT with perturbation bound € =
8,a = 2 for CIFAR-10 and Tiny-ImageNet. For ImageNet-
1K, the perturbation bound is ¢ = 4. We use different steps
of PGD or APGD to generate the adversarial perturbation for
training. Details on training hyperparameters are provided in
Appendix C.

Evaluation Metrics. We use natural accuracy and robust
accuracy as evaluation metrics. Natural accuracy refers to

TABLE 11
STANDARD DEVIATION OF 3 RUNS ON 3 DATASETS.

Performance CIFAR-10 Tiny-ImageNet  ImageNet-1K
Natural 86.8940.04 63.61+0.20 71.58+0.14
PGD 56.19£0.33 26.44+£0.05 42.4440.08
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TABLE III
COMPARISON WITH SOTA RESULTS ON IMAGENET-1K UNDER € = 4/255. THE “ADV. STEPS” REFERS TO ATTACK STEPS FOR GENERATING

ADVERSARIAL EXAMPLES FOR AT. THE RESULTS OF [

] ARE EVALUATED USING 20-STEP PGD (AUTOATTACK IS DESIGNED AS A MORE POWERFUL

ALTERNATIVE TO PGD), WHICH IS MARKED AS T IN THE TABLE. ALTHOUGH ADVXL ONLY USES 20 EPOCHS, IT TAKES MORE TIME DUE TO HUGE
DATASETS FOR PRE-TRAINING AND FINE-TUNING.

Architecture ~ Params (M) FT FT Epoch  Adv. Steps Source Natural  AutoAttack
DeiT-S 22.1 PGD 100 1 Augmentation warm-up [9] 66.62 36.56
DeiT-S 22.1 PGD 110 1 Light Recipe [20] 66.80 37.90
ViT-S 22.1 PGD 120 3 EasyRobust [67] 66.43 39.20
ViT-S 22.1 PGD 300 3 Adbversarially Trained [33] 70.7 43.7

RobArch-S 26.1 PGD 110 3 RobArch [18] 70.17 44.14
ViT-S 22.1 APGD 300 2 Pre-training+AT [17] 69.22 44.04
ViT-S 22.1 PGD 300 3 MIMIR 71.52 45.90
ViT-S 22.1 APGD 300 2 MIMIR 71.00 46.10
ViT-S 22.1 APGD 300 3 MIMIR 70.96 46.16
ViT-B 86.6 ARD+PRM 10 5 ARD+PRM [11] 69.10 34.62
Swin-B 87.7 ARD+PRM 10 5 ARD+PRM [!1] 74.36 38.61
ViT-B 86.6 PGD 120 3 EasyRobust [67] 70.64 43.04
Swin-B 87.7 PGD 120 3 EasyRobust [67] 75.05 47.42

RobArch-L 104 PGD 100 3 RobArch [18] 73.44 48.94
ViT-B 86.6 PGD 300 3 Adversarially Trained [33] 74.7 49.7
ViT-B 86.6 PGD 20 3 AdvXL [31] 734 53.01
ViT-B 86.6 APGD 300 2 Pre-training+AT [17] 74.10 50.30
ViT-B 86.6 APGD 100 2 MIMIR 74.40 51.92
ViT-B 86.6 PGD 100 3 MIMIR 75.68 52.96
ViT-B 86.6 PGD 300 3 MIMIR 76.98 53.84
ViT-B 86.6 APGD 300 2 MIMIR 76.32 54.28

the accuracy of natural and unmodified inputs. The ro-
bust accuracy measures the accuracy under the AutoAttack
(AA) [68]. AutoAttack is an ensemble of diverse parameter-
free attacks, including white-box and black-box attacks. In our
experiments, we use the standard version of AutoAttack that
contains four attacks, including APGD-ce [68], APGD-t [68],
FAB-t [69], and Square [70]. The perturbation budgets for
evaluation are € = 8 for CIFAR-10 and Tiny-ImageNet, ¢ = 4
for ImageNet-1K. In addition, we also evaluate the MIMIR-
trained models with unforeseen attacks, such as CW attacks,
attacks with I, norm, and out-of-distribution data (ImageNet-
Corruption [42]).

Training stability. We also show that the natural accuracy and
robustness of MIMIR are stable evaluation metrics. Due to the
high computation cost, we cannot report the standard deviation
for all experiments. To show that our method MIMIR has low
variances, we train ViT-S on three datasets three times (1-step
PGD AT for ImageNet-1K) and report the standard deviation
and average performance in Table II.

B. Main Results

We first explore different AT methods and MIMIR for ViT
on CIFAR-10, demonstrating the fundamental incompatibility
between conventional AT approaches and ViT architectures.
Following this baseline evaluation, we scale our investigation
to the more challenging ImageNet-1K dataset, demonstrating
the generalizability and scalability of our proposed MIMIR
framework. The subsequent sections present comprehensive
experimental results across three benchmark datasets: CIFAR-
10, Tiny-ImageNet, and ImageNet-1K. This multi-scale eval-
uation strategy allows a thorough analysis of MIMIR’s effec-

tiveness under varying conditions, from smaller to large-scale
visual recognition tasks.

In addition, we also explore the effectiveness of elucidating
diffusion model (EDM) data on AT in Appendix D. This
generated data is commonly used in AT to improve robust-
ness [71], [72], [73], [74]. Specifically, we use 5 million
generated CIFAR-10 data and 1 million Tiny-ImageNet data
provided by [71]. Table XVIII in Appendix D shows that EDM
data significantly improves the robustness.

CIFAR-10. Table I shows the performance of End2End ad-
versarial training from scratch and Pre-training (MIMIR) +
Fine-tuning on ViT-S trained on CIFAR-10. We provide the
performance of 6 established or SOTA AT methods on CIFAR-
10, indicating that traditional AT training strategies are not
applicable to ViTs. Importantly, our experimental results also
demonstrate that MIMIR can substantially improve all AT
methods. The reason is that training ViTs from scratch is
known to be difficult [3], [75] and even more difficult for
adversarial training [ | |]. For example, robust accuracy is lower
than 30% on ViT-B without pre-training [I1]. In contrast,
MIMIR provides a more straightforward methodology and
avoids this difficulty by switching to pre-training with a
theoretically grounded MIM learning task.

Time Consumption (End2End vs. Pre-training(PT)+Fine-
tuning(FT)). Note that we follow the standard way to compare
End2End and MIMIR (Pre-training + Fine-tuning) training
methods by fixing the training schedule, following existing
works [37], [32], [64], [77], [40], where we include pre-
training 800 epochs + fine-tuning 100 epochs versus su-
pervised End2End training of 300 epochs. The reason for
having a larger number of pre-training epochs is that self-
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TABLE IV
TIME CONSUMPTION OF END2END VS. PRE-TRAINING+FINE-TUNING.

Arch GPU AT Method Epochs Hours

VITS 4 A6000 PGD1o 300 187.64
4 A6000 MIMIR(PT)+PGD1o(FT) 800(PT)+100(FT) 123.76

VITB 4 A6000 PGD1o 300 451.39
4 A6000 MIMIR(PT)+PGD1o(FT) 800(PT)+100(FT) 263.77

Swin-L 4 H100 PGD3 300 363.42
4 H100 MIMIR(PT)+PGD3(FT) 800(PT)+100(FT) 231.14

supervised pre-training is much more efficient (see Table XXII
in Appendix I) than End2End training, and the pre-trained
backbone can be used multiple times for various fine-tuning
tasks. For example, in Table I, the 6 End2End AT methods
cost 300 x 6 = 1800 fine-tuning epochs. MIMIR costs 800
pre-training epochs + 100 x 6 fine-tuning epochs, i.e., we only
conduct the pre-training once for results in Table I. MIMIR
pre-training epoch is more efficient than a fine-tuning epoch
by discarding 75% of image patches.

More specifically, Table IV shows the total time con-

sumption of End2End vs. Pre-training+Fine-tuning on three
architectures with ImageNet-1K. Although MIMIR takes more
training epochs, its pre-training+fine-tuning paradigm still
costs less time than End2End adversarial training and gains
much better performance on both natural and adversarial
examples. Additional time consumption results with different
datasets can be found in Table XXII in Appendix I.
ImageNet-1K. Table III compares MIMIR with previous
works concerning adversarial robustness on ImageNet-1K
(lo, € = 4/255), which follows the evaluation of common
standardized RobustBench [78]. Similar to other works [20],
[33], [17], we consider simpler AT methods (i.e., PGD and
APGD AT) instead of the latest AT methods, such as Gen-
eralist [1] and DBAT [2]. Indeed, since the latest methods
introduce tailored components for CNNs to improve their
adversarial robustness, they might not be effective for ViTs.
The number of parameters, training epochs, steps in the
inner maximization of AT, and clean and robust accuracy
are reported to provide a more detailed understanding of the
performance. The robust accuracy is evaluated by AutoAttack
on the RobustBench [78] validation set (5,000 images). We
divide the models into: small (= 22M) and large (=~ 86M)
models, corresponding to ViT-S and ViT-B. Experimental re-
sults demonstrate that MIMIR outperforms all previous works
across various training setups.
MIMIR with Various Architectures. In Table VI, we
show that MIMIR can be applied to diverse architectures.
Specifically, we use three representative options, including
ViT+convolutional blocks (CVST) [17], the latest CNN archi-
tecture (ConvNext [41]), and a hierarchical vision transformer
(Swin [39]). The ViT+CVST refers to using ConvStem [79]
to replace the patch embedding in ViTs with a convolutional
block. The ViT+CVST shows improved robustness compared
to pure ViT models according to experiments in [17].

As CNN and hierarchical architecture cannot accept

variable-length inputs, MIMIR is not directly compatible with
ConvNext and Swin. To adapt MIMIR to the hierarchical Swin
Transformer, we implemented Masked Image Modeling using
Group Window Attention [38], which groups image patches
within each local window of arbitrary size and performs
masked self-attention in each group. To apply MIMIR to
ConvNext, we use SparK [40] for CNN to handle irregular and
randomly masked input images, which is achieved by sparse
convolution. MIMIR achieves better or comparable results
compared to SOTA results on RobustBench [78].
MIMIR against Unforeseen Attacks. Except for adversaries
who are limited by the adversarial budget, e.g., [.o = 8 or 4
or from PGD-family in our main experiments, MIMIR also
shows the potential to provide robustness against unforeseen
attacks and naturally corrupted data (ImageNet-C [42]). Ta-
ble V demonstrates the robustness of MIMIR against practical
unforeseen attacks, including non-PGD attacks (ls and [
CW attack [76]), lo AutoAttack, and ImageNet-C [42]. It is
clear that MIMIR still performs well against these unforeseen
attacks. In particular, MIMIR achieved top accuracy compared
to the results of the ImageNet-C Leaderboard on the Robust-
Bench.

C. Ablation Study and Further Analysis

Step by step ablation. Table VII provides an ablation study
to verify the design choices of MIMIR. The ablation uses
100 epochs of 1-step PGD (PGD;) AT as the baseline. Then,
we apply end-to-end clean ImageNet-1K pre-training (weights
available in timm libraryj) as initialization of AT. After that,
we replace the clean pre-training with MAE, adv MAE, and
MIMIR step by step. The adv MAE refers to using adversarial
examples but not using the MI I(z + 4, 2) in the loss. The
pre-training schedule is 800 epochs. We also use stronger
adversarial fine-tuning for better performance, including 2-step
PGD (PGD-), APGD (APGD-) FT, and a longer fine-tuning
scheduler (300 epochs). Our results indicate that MIMIR
outperforms baselines and can be further improved under the
long training schedule.

Longer epochs (lower loss) provide better performance.
Pre-training epoch. Our experimental framework employs an
800-epoch pre-training as the baseline configuration. To sys-
tematically evaluate the impact of training duration, we con-
duct a comprehensive ablation study using ViT-S architectures,
varying the number of pre-training epochs while maintaining a
fixed 50-epoch fine-tuning for all models. As demonstrated in
Figure 3, we observe several key phenomena. Extended pre-
training schedules consistently yield lower MIMIR loss values,
and this reduction in loss results in measurable improvements
in both adversarial and natural accuracy. In addition, the
improved performance with loss MIMIR loss also indicates
that the model capacity is not saturated within the tested epoch
range and could be further improved with a larger number of
epochs.

Shttps://github.com/huggingface/pytorch-image- models/blob/main/timm/
models/vision_transformer.py


https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
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TABLE V

THE PERFORMANCE OF MIMIR ON IMAGENET-1K AGAINST UNFORESEEN THREATS. THE l2 VERSION OF THE CW [

] ATTACK IS LIMITED BY c.

HIGHER ¢ ALLOWS A MORE POWERFUL PERTURBATION.

Architecture  Method  Natural CW (l2,¢=1) CW (loo,e =4/255) AA (I2,e =2.0) AA (loo, € =4/255) ImageNet-C [42]
VIT-S [17] 69.22 44.28 45.98 37.52 44.04 45.62
MIMIR  70.96 66.34 49.22 49.12 46.16 48.78
ViT.B [17] 74.10 59.42 52.76 52.12 50.30 53.69
MIMIR 76.32 65.30 56.82 56.72 54.28 57.07
CIFAR-10 (Natural) CIFAR-10 (PGD20) Tiny-ImageNet (Natural) Tiny-ImageNet (PGD5o)
86\ * \ x N __* 24N - *
"o Acc TS h027 53 Nk /" Fo2r7 T L 0.41 P - 0.41
N S " NN 611
85 4 .\, / = l \ / \\ / L Nox N a
/ 0.26 53 N 0.26 N ] N
X AL N X Lo.40 27 WH - 0.40
AN /N 60 RN N
gad S r0.25 524 ~o - 0.25 L N
T e r039 264 - 0.39
* T F0.24 521« T F024 591« el ® T
200 400 600 800 200 400 600 800 200 400 600 800 200 400 600 800

Fig. 3. Natural, adversarial accuracy, and MIMIR pre-training loss of ViT-S with different numbers of pre-training epochs under a 20-step PGD attack. The
performance increases as the number of pre-training epochs increases (loss decreases).

TABLE VI
COMPARSION WITH SOTA IMAGENET-1K RESULTS ON
ROBUSTBENCH [78] WITH DIFFERENT ARCHITECTURES. {: THE CVST
MODULES ARE ALSO PRE-TRAINED WITH MIMIR.

Architecture Method FT Epoch  Natural  AutoAttack
[17] 300 72.56 48.08
ViT-S+CVST MIMIR 300 72.72 48.44
MIMIR} 300 73.02 48.09
[17] 250 76.30 54.66
ViT-B+CVST MIMIR 300 76.72 54.04
MIMIR} 300 76.32 55.08
[17] 300 72.40 48.60
ConvNext-T — \iiviiR 300 72.50 4876
Swin-B [33] 300 76.16 56.16
win- MIMIR 150 76.62 55.90
Swin-L [33] 300 78.92 59.56
MIMIR 100 78.62 59.68

Fine-tuning epoch. To isolate and quantify the contribution
of MIMIR pre-training to model performance, we employ a
short fine-tuning for the pre-trained models. This is to train the
randomly initialized classification layer since we do not have
the classification layer at pre-training. This approach allows us
to evaluate the quality of the representations learned during
pre-training. In Figure 5, we show that MIMIR pre-training
plus 5 or 10 epochs of fine-tuning is enough to achieve similar
performance compared to 100-epoch fine-tuning. These results
suggest that the majority of the model’s final performance is
attributable to the MIMIR pre-training phase.

MI measure. In Section III-D, we provide lower and upper
bound (Eq. (14)) of I(z+ 4, z). According to the two bounds,
I(x + §,z) is supposed to decrease while the autoencoder
learns to reconstruct the natural image x. This motivates us to
directly embed I(x+ 6, z) as a minimizing learning objective.
In this paper, we use I, [48] and HSIC [80] as estimators

TABLE VII
ABLATION OF PRE-TRAINING (PT) AND FINE-TUNING (FT) METHODS ON
IMAGENET-1K. ({: CATASTROPHIC OVER-FITTING [24] DUE TO 1-STEP AT
WHEN FINE-TUNING, WHICH CAN BE FIXED BY 2-STEP AT. THE FIXED
NATURAL AND ROBUST ACCURACY ARE 69.96 AND 36.90,
RESPECTIVELY.)

Architecture  Training Recipe Natural ~ AutoAttack
PGD; FT w/o PT 66.02 31.40
clean PT + PGD; FT 67.04 33.70
MAE PT + PGD; FT 69.98 35.64
VIT-S adv MAE PT + PGD; FT 68.24 19.327
MIMIR PT + PGD; FT 71.02 37.22
MIMIR PT + PGD> FT 70.78 38.16
MIMIR PT + APGD; FT 68.78 42.86
100 — 300 epochs of FT 71.00 46.10

(detailed definitions in Appendix J). Table VIII demonstrates
the performance with different values of A. According to
the results, we use HSIC with A = le — 05 for all other
experiments.

In addition, Figure 4 provides the quantities of HSIC values
while pre-training with or without using MIMIR. It is clear that
MIMIR can help to decrease the mutual information between
adversarial perturbation and the learned features, i.e., I(x +
J,2).
1-step is better than the 10-step of AT in pre-training. We
also show that MIMIR outperforms original MAE [37] and
adv MAE with different PGD steps (to generate adversarial
examples for training). MAE in Table IX refers to using the
original MAE for pre-training and then fine-tuning with 10-
step PGD. The adv MAE refers to using adversarial examples
without the MI I(z+0, z) in the loss. The adv MAE (10-steps)
refers to using the 10-step PGD algorithm (¢ = 8, = 2)
to generate adversarial examples at pre-training. The adv
MAE provides higher accuracy than MAE, which supports
our statement that using adversarial examples in Masked
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Fig. 4. The HSIC values (we use HSIC as an alternative to MI) while pre-
training ViT-S with and without using MIMIR.

TABLE VIIL
COMPARISON BETWEEN HSIC [51] AND I, [48] USING VIT-T ON
CIFAR-10. MODELS ARE PRE-TRAINED 800 EPOCHS AND
ADVERSARIALLY FINE-TUNED WITH 10-STEP PGD FOR 50 EPOCHS.

Pre-train A Estimator ~ Natural PGD
MIMIR  0.001 HSIC 69.63 43.17
MIMIR  0.001 Is 75.00 46.11
MIMIR le-05 HSIC 76.30 47.60
MIMIR le-05 Is 75.53 46.75
MIMIR 1e-06 HSIC 74.90 46.19
MIMIR 1e-06 I 74.60 45.66

Image Modeling creates a more difficult reconstruction task.
This more difficult task further improves the performance of
downstream models (see also Table XII). We use the default
learning rate (i.e., 5.0e —4) of MAE, so there is a performance
drop in experiments in Tables VIII and IX since AT prefers
larger learning rates for CIFAR-10, as shown in Table XVII
in the appendix.

Data augmentation is not always harmful. Prior re-
search [9], [20] has established that strong data augmentation
techniques can adversely affect ViTs during adversarial train-
ing, as they may make training samples challenging to learn.
However, we observe that strong data augmentation does not
impair model performance when combined with longer fine-
tuning periods.

The strong data augmentation refers to the combination of
Randaugment [28], CutMix [29], and MixUp [30]. In this sec-
tion, we evaluate two different solutions to ease this problem.
First, we only use simple data augmentation for adversarial
training, including random crop (or random resize crop for
ImageNet-1K) and random horizontal flip (“weak aug”). Sec-
ond, we use a 10-epoch warmup procedure for strong data
augmentation. The warmup of Randaugment is implemented
by progressively increasing the distortion magnitude from 1 to
9 (“warmup aug”). For CutMix and MixUp, we warm up by
increasing the mixup probability from 0.5 to 1.0. As shown in
Figure 6, “weak aug” provides the best accuracy. The “warmup

TABLE IX
COMPARISON BETWEEN DIFFERENT PRE-TRAINING SETTINGS. ALL
MODELS ARE PRE-TRAINED FOR 800 EPOCHS AND THEN FINE-TUNED
WITH 10-STEP PGD FOR 50 EPOCHS USING VIT-T oN CIFAR-10.

Pre-train A Estimator ~ Natural ~ PGD
MAE 0.0 - 69.02 42.31
adv MAE (1-step) 0.0 - 74.69 46.28
adv MAE (10-step) 0.0 - 73.96 45.77
MIMIR le-05 HSIC 76.30 47.60
Natural Robust
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Fig. 5. Natural and adversarial accuracy of ViT-S adversarially fine-tuned for
5 or 10 epochs on CIFAR-10, Tiny-ImageNet, and ImageNet-1K.

aug” shows a slightly improved accuracy compared to fusing
strong augmentation. Therefore, we provide a different result
from [9] on the smaller dataset CIFAR-10, i.e., we show that
weak augmentation is better than warmup augmentation. Even
data augmentation with reduced amplitude is still difficult
to learn at the beginning of adversarial training. Although
strong augmentation is harmful to a normal training schedule,
we show in Table X that CutMix [29], MixUp [30], and
Randaugment [28] increase the accuracy of adversarial training
when training with a longer schedule, e.g., 800 epochs of
fine-tuning. We conjecture that combining data and strong
augmentations is helpful but difficult for adversarial training
to learn. Thus, more epochs are needed to learn meaningful
representation. Loss and accuracy curves can be found in
Appendix E.

D. Adaptive Attacks

We evaluate MIMIR against adaptive adversaries follow-
ing common practices [81]. Adaptive adversaries possess the
capability to devise targeted attacks specifically tailored to
exploit the mechanisms of MIMIR, particularly if they have
prior knowledge of its architecture and defensive strategies.
For example, the adversary may attack feature space [82], [83]
since MIMIR trains the backbone to extract robust features.
Here, the backbone refers to the ViT model without the
classification layer, i.e., the encoder of MIMIR.

We provide two adaptive attacks specifically designed
against MIMIR. First, we introduce the PGD Mutual Infor-
mation attack (PGD-MI), which utilizes the MI I(z + 4, z) to
generate adversarial examples, as I (x4, z) is used in MIMIR
pre-training as a penalty in the loss. PGD-MI attacks the model
by directly increasing the MI I(x + 4, z). Specifically, we add
the MI loss into the PGD algorithm:

rgleach',CE(xi—ké, yi) + M (z + 6, 2). (21)

11
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TABLE X
DATA AUGMENTATION WITH LONGER FINE-TUNING SCHEDULE.

Arch  Epoch Augmentation Natural PGD2g
Weak Augmentation 89.90  60.26
ViT-B 800 + CutMix [29],MixUp [30] 91.01 60.62
+ Randaugment [28] 90.19 62.75

TABLE XI
ADVERSARIAL ACCURACY BY ADAPTIVE ATTACKS. THE MODELS ARE
PRE-TRAINED FOR 800 EPOCHS BY MIMIR AND FINE-TUNED FOR 100
EPOCHS BY 1-STEP PGD AT.

Dataset Model PGD2y PGD-MIig9 PGD-feaigg
ConViT-S  56.35 56.16 78.52
CIFAR-10 ViT-S 56.63 56.31 78.41
ViT-B 58.14 57.85 80.49
ConViT-S  26.39 26.29 58.50
Tiny-ImageNet ~ ViT-S 26.37 26.18 57.36
ViT-B 25.41 25.05 58.90
ConViT-S  53.86 53.84 72.10
ImageNet-1K ViT-S 54.56 54.55 72.27
ViT-B 55.41 55.36 73.51

where the value of A in MIMIR pre-training is available
to adversaries. Second, we introduce a PGD feature attack
(PGD-fea) that directly attacks the feature extracted by ViT
backbones following [82]. In particular, we attack the feature
extractor from the backbones after the adversarial fine-tuning.
The PGD-fea attack increases the Euclidean distance between
features extracted from natural and adversarial examples. We
implement it using the PGD algorithm:

Igleagiﬁmse(fe(x)7fe($+6))' (22)

Both PGD-MI and PGD-fea are optimized for 100 steps to
ensure the attacking algorithm converges. The perturbation
budget is the same as the previous evaluation, ie., € =
8/255 for CIFAR-10 and Tiny-ImageNet, and ¢ = 4/255 for
ImageNet-1K.

Table XI demonstrates the adaptive evaluation results for
PGD-MI and PGD-fea attacks. PGD-MI performs slightly
better than the standard PGD attack, which means MI is ex-
ploitable information for perturbation crafting, but cannot sig-
nificantly reduce the robustness. Furthermore, MIMIR-trained
models are converged to a local optimal where the majority
of predictions are constantly around the ground truth within
the ball function of e. This also explains the resilience against
both PGD and PGD-MI variants. Regarding PGD-fea, it aims
to maximize feature-space divergence rather than the distance
of output logits. However, MIMIR learned robust features that
cannot be easily separated, so PGD-fea performs worse than
PGD and PGD-MI. The collective results demonstrate that
MIMIR’s IB framework induces robust learning dynamics that
resist both output-space and feature-space attacks.

E. Fine-tuning with Natural Images

In Table XII, we show the results of MIMIR when fine-
tuning with natural images. We compared the performance

train loss test acc.
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Fig. 6. Training loss and natural accuracy of ViT-S with three different data
augmentations on CIFAR-10.

TABLE XII
NATURAL ACCURACY OF MAE AND MIMIR (800 EPOCHS PRE-TRAINING
FOR BOTH) THAT ARE FINE-TUNED ON NATURAL IMAGES.

Architecture  Pre-train  CIFAR-10  Tiny-ImageNet ImageNet-1K
VITB MAE 96.79 73.38 82.92
e MIMIR 96.91 75.43 83.20
. MAE 94.95 69.03 78.37
ConViTS  viiMIR 9538 70.40 79.21
VITS MAE 95.95 70.00 77.45
. MIMIR 95.95 71.14 78.69

with MAE [37]. We fine-tune for 50 epochs for CIFAR-

10 and Tiny-ImageNet, and 100 epochs for ImageNet-1K.
The results in Table XII are reported with 800 pre-training
epochs. The base learning rate used in Table XII is 0.001.
The fine-tuning batch size is 512 for CIFAR-10 and Tiny-
ImageNet, and 1024 for ImageNet-1K. We use weak data
augmentation (“weak aug”), which includes random crop and
random horizontal flip. Not surprisingly, MIMIR outperforms
MAE when fine-tuning with natural data. This is because
MIMIR creates a harder learning task, which is helpful to
learn more discriminative representation, as we discussed in
Section III-B, Design Intuition.

According to Tables XII and XIII, MIMIR consistently
shows improved performance on natural data. Although the
models in Table XIII show poor robustness due to fine-tuning
on natural data, MIMIR pre-trained ones provide slightly better
robustness. We want to clarify that poor robustness is expected
when fine-tuning with natural data. First, it is known that stan-
dard training on natural data learns non-robust features [84],
which hurts performance under adversarial attacks. Second,
MIMIR pre-training is implemented using MSE loss plus an
MI penalty between natural inputs and adversarial images.
The adversarial perturbations and MI penalty help MIMIR
create a more difficult and discriminative learning task to
learn meaningful and robust features. This process does not
include the classification layer of the final model. Therefore,
MIMIR needs a fine-tuning process for superior performance
on natural data and adversarial inputs. In other words, the
superior performance of our experiments comes from the
combination of MIMIR and the simple fine-tuning process.
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Fig. 7. The loss landscapes of MIMIR and MAE pre-trained models.

TABLE XIII
NATURAL AND ADVERSARIAL ACCURACY OF VIT-S THAT IS FINE-TUNED
FOR 5 OR 50 EPOCHS WITH NATURAL IMAGES.

Fine-tune Dataset Pre-train  Natural PGD
amri0 N T oo

5 epochs  Tiny-ImageNet MNIIIXI]IER ggg? 888
ImageNet-1K MNI[IX[]IER ggj; g(z)g

CIFAR-10 MN%IER 3§j§§ 8:32

50 epochs  Tiny-ImageNet MNIIIXI]IER ;(l)(l)g 888
mageNer 1k RS 8 s

FE. Visualization of the Loss Landscape

To show that the robustness of MIMIR-trained models
does not stem from gradient masking, we plot the loss land-
scape [85] in Figure 7. The loss landscape is the visualization
of the loss function as parameters change. The basic idea is
to plot the loss around the optimal parameters. Formally, we
consider in the 2D case,

file, B) = L(0" + aby + B02), (23)

where 6, and 65 are two direction vectors, o and 3 are two
arguments of f;. In practice, we use the parameters of trained
models, i.e., 0*. The landscapes of all models are smooth, i.e.,
the gradient at a certain point is clear and can also be easily
estimated by local average gradients, which means the gradient
is masked.

V. RELATED WORK

A. Vision Transformer

The transformers [86] were first proposed in natural lan-
guage processing (NLP). With the mechanism of global self-
attention, transformers can effectively capture the non-local

relationships among all text tokens [87], [88], [89]. A substan-
tial effort is made to apply the transformer and self-attention
mechanism in computer vision [3], [90], [5]. The pioneering
work, ViT [3], demonstrated that the pure transformer architec-
ture could achieve competitive performance on various tasks.
ViT also reveals that transformers lack inductive biases [3]. For
example, locality, two-dimensional neighborhood structure,
and translation equivariance are inherent to CNNs but not ap-
plicable to ViTs [3]. Due to this shortcoming, ViTs usually re-
quire large-scale training to get competitive performance, such
as pre-training on ImageNet-21K [36] and JFT-300M [91]. To
alleviate the ViT need for large datasets, DeiT [92] introduced
a teacher-student strategy to distill knowledge from a teacher
CNN for a student ViT. In the MIM field, MAE [37] uses a
masked autoencoder with a lightweight decoder as a visual
representation learner. Its learning objective is to reconstruct
the original image by the decoder while using masked images
as input to the autoencoder. The advantage is that MAE can
randomly discard 75% image patches when pre-training under
ImageNet-1K [36], which means more efficient training.

B. Adversarial Attacks on ViTs

The concept of adversarial attacks first appeared in [43],
which proposed a formal framework and algorithms against
the adversarial spam detection domain. Then, the adversarial
attacks were popularized by Biggio et al. [14] and Szegedy
et al. [15] in image classification. The generation of adver-
sarial examples depends on the model’s gradient or estimated
gradient in a black box situation [93]. Therefore, adversarial
attacks can be easily applied to transformers by using the
gradient of attention blocks concerning inputs. This also raises
the question of whether transformers are more robust than
CNNs. Benz et al. [94] found that CNNs are less robust
than ViTs due to their shift-invariant property. Bhojanapalli
et al. [95] found that ResNet models are more robust than
transformers at the same model size under FGSM attack,
but under PGD [21] attack, transformer models show better
robustness. As ViTs process the input image as a sequence
of patches, Gu et al. [13] found that ViTs are more robust
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than CNNss to naturally corrupted patches because the attention
mechanism helps ignore naturally corrupted image patches.
The later work [9] revealed that CNNs could be as robust
as ViTs against adversarial attacks if CNNs are trained with
proper hyperparameters.

C. Adversarial Defense

PGD [21] adversarial training is considered one of the most
effective defenses for CNNs and can withstand adaptively
designed attacks [96]. However, PGD AT is harmful to the
accuracy of clean data [21], [26], [2]. Generalist [1] solves
this problem by formulating different training strategies for
robust and natural generalization separately. DBAT [2] solves
the decrease in natural accuracy by adding dummy classes [97]
to the classification space.

Due to the difference between CNNs and ViTs, there have
been some recent efforts to explore new adversarial training
approaches for ViTs [11], [20], [12]. Mo et al. [1 1] presented
a new adversarial training strategy based on the following ob-
servations: 1) pre-training with natural data can provide better
robustness after adversarial fine-tuning, 2) gradient clipping is
necessary for adversarial training, and 3) using SGD as the
optimizer is better than Adam. Debenedetti et al. [20] also
presented an improved training strategy for ViTs by evaluat-
ing different combinations of data augmentation policies. As
adversarial training is time-consuming, AGAT [12] leverages
the attention score while training to discard non-critical image
patches after every layer. Unlike previous works, we provide a
different training paradigm by using MIM for adversarial pre-
training. Our method is efficient as we discard 75% image
patches while pre-training. Our method is effective as we
eliminate the information of adversarial perturbations from two
information sources of natural and adversarial inputs. We also
provide theoretical proof that the information of adversarial
perturbations is eliminated.

D. Self-Supervised Adversarial Pre-Training

Self-supervised learning [98], [99], [37], [100] refers to ex-
tracting meaningful representation from unlabeled data, which
can be used for downstream recognition tasks. Self-supervised
methods are beneficial for out-of-distribution detection on dif-
ficult, near-distribution outliers [27], which leads to using self-
supervised training to improve adversarial robustness [101],
[27], [102], [103], [104], [105]. The basic idea is to build
a min-max learning object similar to traditional adversarial
training. For example, Jiang et al. [102] considered using
two adversarial samples or combining one adversarial sample
and one natural sample to learn a consistent representation
in contrastive learning. In more recent work, You et al. [106]
proposed NIM De? to denoise adversarial perturbations. How-
ever, the motivation of these works relies on complex self-
supervised pre-training technologies, making it more difficult
to understand the inner mechanisms or provide theoretical
results. MIMIR not only provides better performance but also
provides intuitive insights with theoretical motivation.

VI. DISCUSSION AND LIMITATIONS

Following the principle of IB, we can intuitively consider
a bottleneck between the encoder and decoder. As the recon-
struction output is constrained by natural data x, the bottleneck
will filter out information from adversarial perturbations J. We
provide a theoretical guarantee of this bottleneck. In Eq. (8),
we embed this bottleneck as a learning object to further
improve the performance, which also confirms the correctness
of our theoretical guarantee. With the two information sources
of z and 6, the model is trained to learn the robust features
from x and forget the information of § under the constraint of
the reconstruction target.

While MIMIR shows better performance, there are still
limitations. MIMIR is a pre-training method. Adversarial fine-
tuning is necessary to build the final robust model. Thus,
the shortcomings of traditional adversarial training cannot be
completely avoided. In our experiments, we utilize the simple
PGD algorithm for fine-tuning, but one can further improve
MIMIR pre-trained models with more advanced approaches.
In addition, MIMIR follows the design of MAE, and we also
utilize the characteristic that ViTs can process variable-length
inputs. Therefore, the current MIMIR cannot directly handle
CNNSs. While it is not trivial, we apply MIMIR to the latest
CNN architecture by sparse convolution from SparK [40].
However, sparse convolution is not as efficient as dropping
patch embeddings. We leave these limitations to future work.

VII. CONCLUSIONS

This paper provides a novel theoretical analysis of AT for
ViTs through the lens of IB. We found that constraining
the MI between adversarial perturbations and their latent
representations in ViT-based autoencoders, as governed by
derived MI bounds, is critical for enhancing model robustness.
Building upon this theoretical foundation, we propose MIMIR
as a theoretically grounded pre-training method to improve
adversarial robustness for ViTs. MIMIR operates by process-
ing adversarial examples as inputs while reconstructing their
natural data as targets. This approach leverages the inherent
information bottleneck in autoencoder architectures to achieve
two key objectives: (1) progressively eliminating perturbation-
related information while (2) preserving the essential features
of the original data distribution. Our extensive experimental
evaluation demonstrates that MIMIR significantly outperforms
existing adversarial training methods across multiple bench-
mark datasets, achieving SOTA results on ImageNet-1K. In
addition, MIMIR is robust against unforeseen attacks and
common corrupted data and can resist adaptive attacks.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their con-
structive comments that helped improve this paper and the ar-
tifact. This work used the Dutch national e-infrastructure with
the support of the SURF Cooperative using grant no. EINF-
10853. This work was partially supported by the Horizon Eu-
rope programme under the project SHASAI (No. 101225866).

14


Mridula
14


[4]

[3]

(6]

[7]

(8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

REFERENCES

H. Wang and Y. Wang, “Generalist: Decoupling natural and robust
generalization,” in CVPR, 2023.

M. Levi and A. Kontorovich, “Splitting the difference on adversarial
training,” in USENIX Security, 2024.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in /CLR, 2021.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using
shifted windows,” in ICCV, 2021.

S. D’Ascoli, H. Touvron, M. L. Leavitt, A. S. Morcos, G. Biroli, and
L. Sagun, “Convit: Improving vision transformers with soft convolu-
tional inductive biases,” in ICML, 2021.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
“Learning transferable visual models from natural language supervi-
sion,” in ICML, 2021.

J. Li, D. Li, C. Xiong, and S. Hoi, “BLIP: Bootstrapping language-
image pre-training for unified vision-language understanding and gen-
eration,” in ICML, 2022.

D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “MiniGPT-4: En-
hancing vision-language understanding with advanced large language
models,” in ICLR, 2024.

Y. Bai, J. Mei, A. L. Yuille, and C. Xie, “Are transformers more robust
than cnns?” in NeurIPS, 2021.

A. Aldahdooh, W. Hamidouche, and O. Deforges, “Reveal of vision
transformers robustness against adversarial attacks,” arXiv preprint
arXiv:2106.03734, 2021.

Y. Mo, D. Wu, Y. Wang, Y. Guo, and Y. Wang, “When adversarial train-
ing meets vision transformers: Recipes from training to architecture,”
in NeurIPS, 2022.

B. Wu, J. Gu, Z. Li, D. Cai, X. He, and W. Liu, “Towards efficient
adversarial training on vision transformers,” in ECCV, 2022.

J. Gu, V. Tresp, and Y. Qin, “Are vision transformers robust to patch
perturbations?” in ECCV, 2022.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. grndié, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning at
test time,” in ECML PKDD, 2013.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
ICLR, 2014.

A. Vassilev, A. Oprea, A. Fordyce, and H. Anderson, “Adversarial
machine learning: A taxonomy and terminology of attacks and mitiga-
tions,” National Institute of Standards and Technology (NIST), Tech.
Rep., 2024.

N. D. Singh, F. Croce, and M. Hein, “Revisiting adversarial training
for imagenet: Architectures, training and generalization across threat
models,” in NeurlIPS, 2023.

S. Peng, W. Xu, C. Cornelius, K. Li, R. Duggal, D. H. Chau, and
J. Martin, “Robarch: Designing robust architectures against adversarial
attacks,” 2023.

Y. Bai, M. Zhou, V. M. Patel, and S. Sojoudi, “MixedNUTS: Training-
free accuracy-robustness balance via nonlinearly mixed classifiers,”
TMLR, 2024.

E. Debenedetti, V. Sehwag, and P. Mittal, “A light recipe to train robust
vision transformers,” in SaTML, 2023.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in ICLR, 2018.
A. Raghunathan, S. M. Xie, F. Yang, J. C. Duchi, and P. Liang,
“Adversarial training can hurt generalization,” arXiv preprint
arXiv:1906.06032, 2019.

A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer,
L. S. Davis, G. Taylor, and T. Goldstein, “Adversarial training for free!”
in NeurIPS, 2019.

E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting
adversarial training,” in /CLR, 2020.

H. Zhang, Y. Yu, J. Jiao, E. Xing, L. E. Ghaoui, and M. Jordan,
“Theoretically principled trade-off between robustness and accuracy,”
in ICML, 2019.

T. Pang, M. Lin, X. Yang, J. Zhu, and S. Yan, “Robustness and accuracy
could be reconcilable by (proper) definition,” in /ICML, 2022.

15

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43

[t}

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song, “Using self-
supervised learning can improve model robustness and uncertainty,” in
NeurlPS, 2019.

E. D. Cubuk, B. Zoph, J. Shlens, and Q. Le, “Randaugment: Practical
automated data augmentation with a reduced search space,” in NeurIPS,
2020.

S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Reg-
ularization strategy to train strong classifiers with localizable features,”
in ICCV, 2019.

H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in /CLR, 2018.

Z. Wang, X. Li, H. Zhu, and C. Xie, “Revisiting adversarial training
at scale,” CVPR, 2024.

Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, Q. Dai, and H. Hu,
“Simmim: A simple framework for masked image modeling,” in CVPR,
2022.

C. Liu, Y. Dong, W. Xiang, X. Yang, H. Su, J. Zhu, Y. Chen, Y. He,
H. Xue, and S. Zheng, “A comprehensive study on robustness of image
classification models: Benchmarking and rethinking,” ZJCV, 2024.

A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS
23IN, vol. 7, no. 7, p. 3, 2015.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, 2009.

K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Girshick, “Masked
autoencoders are scalable vision learners,” in CVPR, 2022.

L. Huang, S. You, M. Zheng, F. Wang, C. Qian, and T. Yamasaki,
“Green hierarchical vision transformer for masked image modeling,”
in NeurIPS, 2022.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using
shifted windows,” in ICCV, 2021.

K. Tian, Y. Jiang, qishuai diao, C. Lin, L. Wang, and Z. Yuan,
“Designing BERT for convolutional networks: Sparse and hierarchical
masked modeling,” in /CLR, 2023.

Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie,
“A convnet for the 2020s,” in CVPR, 2022.

D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” /CLR, 2019.

N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, “Adver-
sarial classification,” in KDD, 2004.

H. Bao, L. Dong, S. Piao, and F. Wei, “BEit: BERT pre-training of
image transformers,” in /CLR, 2022.

X. Li, W. Wang, L. Yang, and J. Yang, “Uniform masking: Enabling
mae pre-training for pyramid-based vision transformers with locality,”
arXiv:2205.10063, 2022.

C. Wei, H. Fan, S. Xie, C.-Y. Wu, A. Yuille, and C. Feichtenhofer,
“Masked feature prediction for self-supervised visual pre-training,” in
CVPR, 2022.

Z. Goldfeld and Y. Polyanskiy, “The information bottleneck problem
and its applications in machine learning,” IEEE Journal on Selected
Areas in Information Theory, vol. 1, no. 1, pp. 19-38, 2020.

X. Yu, S. Yu, and J. C. Principe, “Deep deterministic information
bottleneck with matrix-based entropy functional,” in ICASSP, 2021.
L. G. Sanchez Giraldo, M. Rao, and J. C. Principe, “Measures of
entropy from data using infinitely divisible kernels,” IEEE Transactions
on Information Theory, vol. 61, no. 1, pp. 535-548, 2015.

S. Yu, L. G. S. Giraldo, R. Jenssen, and J. C. Principe, “Multivariate
extension of matrix-based renyi’s alpha-order entropy functional,” I[EEE
transactions on pattern analysis and machine intelligence, vol. 42,
no. 11, pp. 2960-2966, 2019.

A. Gretton, O. Bousquet, A. Smola, and B. Scholkopf, “Measuring
statistical dependence with hilbert-schmidt norms,” in Algorithmic
Learning Theory, 2005.

N. Tishby, F. C. N. Pereira, and W. Bialek, “The information bottleneck
method,” CoRR, vol. physics/0004057, 2000.

N. Tishby and N. Zaslavsky, “Deep learning and the information
bottleneck principle,” in 2015 IEEE Information Theory Workshop
(ITW), 2015.

R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” CoRR, vol. abs/1703.00810, 2017.


Mridula
15


[55]

[56]
[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]
[80]
[81]

[82]

P. Vincent, H. Larochelle, 1. Lajoie, Y. Bengio, P.-A. Manzagol, and
L. Bottou, “Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion.” Journal of
machine learning research, vol. 11, no. 110, pp. 3371-3408, 2010.
H. Wang, K. Song, J. Fan, Y. Wang, J. Xie, and Z. Zhang, “Hard
patches mining for masked image modeling,” in CVPR, 2023.

N. J. Beaudry and R. Renner, “An intuitive proof of the data processing
inequality,” arXiv preprint arXiv:1107.0740, 2011.

R. M. Fano, The transmission of information. Massachusetts Institute
of Technology, Research Laboratory of Electronics ..., 1949, vol. 65.
O. Ocal, O. H. Elibol, G. Keskin, C. Stephenson, A. Thomas, and
K. Ramchandran, “Adversarially trained autoencoders for parallel-data-
free voice conversion,” in ICASSP, 2019.

M. Hellman and J. Raviv, “Probability of error, equivocation, and the
chernoff bound,” IEEE Transactions on Information Theory, vol. 16,
no. 4, pp. 368-372, 1970.

G. Brown, “An information theoretic perspective on multiple classifier
systems,” in International Workshop on Multiple Classifier Systems,
2009.

S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Uni-
versal adversarial perturbations,” in CVPR, 2017.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in ICML,
2008.

J. Liu, X. Huang, J. Zheng, Y. Liu, and H. Li, “Mixmae: Mixed
and masked autoencoder for efficient pretraining of hierarchical vision
transformers,” in CVPR, 2023.

1. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in ICLR, 2019.

Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu, “Improving
adversarial robustness requires revisiting misclassified examples,” in
ICLR, 2019.

X. Mao, Y. Chen, X. Li, G. Qi, R. Duan, R. Zhang, and H. Xue, “Easy-
robust: A comprehensive and easy-to-use toolkit for robust computer
vision,” https://github.com/alibaba/easyrobust, 2022.

C. Francesco and M. Hein, “Reliable evaluation of adversarial robust-
ness with an ensemble of diverse parameter-free attacks,” in /CML,
2020.

F. Croce and M. Hein, “Minimally distorted adversarial examples with
a fast adaptive boundary attack,” in ICML, 2020.

M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square
attack: A query-efficient black-box adversarial attack via random
search,” in ECCV, 2020.

Z. Wang, T. Pang, C. Du, M. Lin, W. Liu, and S. Yan, “Better diffusion
models further improve adversarial training,” in ICML, 2023.

S. Peng, W. Xu, C. Cornelius, M. Hull, K. Li, R. Duggal,
M. Phute, J. Martin, and D. H. Chau, “Robust principles: Architec-
tural design principles for adversarially robust cnns,” arXiv preprint
arXiv:2308.16258, 2023.

S.-A. Rebuffi, S. Gowal, D. A. Calian, F. Stimberg, O. Wiles, and
T. Mann, “Data augmentation can improve robustness,” in NeurlPS,
2021.

S. Gowal, S.-A. Rebuffi, O. Wiles, F. Stimberg, D. A. Calian, and T. A.
Mann, “Improving robustness using generated data,” in NeurIPS, 2021.
H. Zhu, B. Chen, and C. Yang, “Understanding why vit trains
badly on small datasets: An intuitive perspective,” arXiv preprint
arXiv:2302.03751, 2023.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in SP, 2017.

S. Woo, S. Debnath, R. Hu, X. Chen, Z. Liu, I. S. Kweon, and
S. Xie, “Convnext v2: Co-designing and scaling convnets with masked
autoencoders,” in CVPR, 2023.

F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti, N. Flammar-
ion, M. Chiang, P. Mittal, and M. Hein, “Robustbench: a standardized
adversarial robustness benchmark,” in NeurIPS Datasets and Bench-
marks Track (Round 2), 2021.

T. Xiao, M. Singh, E. Mintun, T. Darrell, P. Dollar, and R. Girshick,
“Early convolutions help transformers see better,” in NeurIPS, 2021.
W.-D. K. Ma, J. P. Lewis, and W. B. Kleijn, “The hsic bottleneck:
Deep learning without back-propagation,” in AAAI, 2020.

F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks
to adversarial example defenses,” in NeurIPS, 2020.

S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet, “Adversarial manipulation
of deep representations,” in ICLR, 2016.

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]
[91]

[92]

[93]

[94]

[95]

[96]

[97]
[98]
[99]
[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

16

Z. Liu, Z. Zhao, and M. Larson, “Who’s afraid of adversarial queries?
the impact of image modifications on content-based image retrieval,”
in ICMR, 2019.

A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry,
“Adversarial examples are not bugs, they are features,” in NeurlIPS,
2019.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the
loss landscape of neural nets,” in NeurIPS, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and 1. Polosukhin, “Attention is all you need,” in
NeurlIPS, 2017.

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
NAACL-HLT, 2019.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
in NeurIPS, 2020.

Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and R. Salakhutdi-
nov, “Transformer-xI: Attentive language models beyond a fixed-length
context,” in ACL, 2019.

H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou,
“Going deeper with image transformers,” in /CCV, 2021.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreason-
able effectiveness of data in deep learning era,” in /CCV, 2017.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jegou, “Training data-efficient image transformers and distillation
through attention,” in /CML, 2021.

A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial
attacks with limited queries and information,” in ICML, 2018.

P. Benz, S. Ham, C. Zhang, A. Karjauv, and I. S. Kweon, “Adversarial
robustness comparison of vision transformer and mlp-mixer to cnns,”
in BMVC, 2021.

S. Bhojanapalli, A. Chakrabarti, D. Glasner, D. Li, T. Unterthiner,
and A. Veit, “Understanding robustness of transformers for image
classification,” in ICCV, 2021.

A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial exam-
ples,” in ICML, 2018.

B. Chen, W. Deng, and H. Shen, “Virtual class enhanced discriminative
embedding learning,” in NeurIPS, 2018.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in CVPR, 2020.

X. Chen and K. He, “Exploring simple siamese representation learn-
ing,” in CVPR, 2021.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” in /CML, 2020.
T. Chen, S. Liu, S. Chang, Y. Cheng, L. Amini, and Z. Wang,
“Adversarial robustness: From self-supervised pre-training to fine-
tuning,” in CVPR, 2020.

Z. Jiang, T. Chen, T. Chen, and Z. Wang, “Robust pre-training by
adversarial contrastive learning,” in NeurIPS, 2020.

L. Fan, S. Liu, P-Y. Chen, G. Zhang, and C. Gan, “When does
contrastive learning preserve adversarial robustness from pretraining
to finetuning?” in NeurIPS, 2021.

Q. Wu, H. Ye, Y. Gu, H. Zhang, L. Wang, and D. He, “Denoising
masked autoencoders help robust classification,” in /CLR, 2023.

S.-A. Rebuffi, O. Wiles, E. Shelhamer, and S. Gowal, “Adversarially
self-supervised pre-training improves accuracy and robustness,” /ICLR
2023 Workshop DG Poster, 2023.

Z. You, D. Liu, and C. Xu, “Beyond pretrained features: Noisy
image modeling provides adversarial defense,” arXiv preprint
arXiv:2302.01056, 2023.

G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in ECCV, 2016.


https://github.com/alibaba/easyrobust
Mridula
16


TABLE XIV
MODEL ARCHITECTURES OF THE ENCODER AND DECODER.

TABLE XVI
FINE-TUNING HYPERPARAMETERS.

Model Layers  Hidden size =~ MLP ratio  Heads Config Value
ViT-T (encoder) 12 192 4 3 optimizer AdamW
ViT-S (encoder) 12 384 4 6 base learning rate 0.5e-2 (CIFAR-10), le-3 (ImageNet, Tiny)
ViT-B (encoder) 12 768 4 12 weight decay 0.05
decoder 2 128 4 16 optimizer momentum 31 = 0.9, B2 = 0.999
layer-wise Ir decay 0.65
batch size 128 (CIFAR-10), 256 (Tiny), 1,024 (ImageNet)
TABLE XV learning rate schedule  cosine decay
PRE-TRAINING HYPERPARAMETERS. warmup epochs 10
training epochs 100
Config Value augmentation RandomResizedCrop, RandomHorizontalFlip
augmentation (IN1K)  CutMix, MixUp, Randaugmen
optimizer AdamW drop path 0.1
base learning rate 1.5e-4
weight decay 0.05

optimizer momentum (31 = 0.9, 82 = 0.95

batch size 512(CIFAR-10, Tiny), 2,048 (ImageNet-1K)
learning rate schedule  cosine decay
warmup epochs 40
training epochs 800
augmentation RandomResizedCrop, RandomHorizontalFlip
APPENDIX
A. Datasets

We use three commonly used datasets to evaluate MIMIR:
CIFAR-10 [34], Tiny-ImageNet [35], and ImageNet-1K [36].
CIFAR-10 [34] comprises 50,000 images with size 3 x 32 x 32
in 10 classes. ImageNet-1K [36] is the most commonly used
dataset for the evaluation of ViTs and their variants, which is
composed of more than 1.2 million high-resolution images in
1,000 classes. In our experiments, images from ImageNet-1K
are resized to 3 x 224 x 224. For completeness, we also include
Tiny-ImageNet [35] as a medium size dataset between CIFAR-
10 [34] and ImageNet-1K [36]. Tiny-ImageNet [35] contains
100,000 images with size 3 x 64 x 64 in 200 classes.

B. Decoder Hyperparameters

We use transformer blocks but fewer layers as the backbone
of the decoder. For CIFAR-10, we use the patch size of 2, 4
for Tiny-ImageNet, and 16 for ImageNet-1K. Table XIV shows
the hyperparameters of decoder architectures. For different ViT
architectures, we use the transformer blocks of the respective
architectures to build the encoder.

C. Details of Training Hyperparameters

In Tables XV and XVI, we provide the default hyperpa-
rameters used in our experiments. We use different patch
sizes for different datasets: patch size 2 for CIFAR-10, 4
for Tiny-ImageNet, and 16 for ImageNet-1K. Using smaller
patch sizes increases the time consumption when calculating
self-attention, but MIMIR pre-training discards 75% patches,
making it still efficient. Due to the depth and comparatively
small embedding size of CaiT, we use a different drop path
and layer-wise decay when fine-tuning (for ImageNet-1K). For
CaiT-XXS24, we use 0.95 and 0.15 as layer-wise decay and
dropout, and 0.85 and 0.35 for CaiT-S36. We also apply the
stochastic depth decay rule [107] to CaiT. CaiT-S36 models are

TABLE XVII
DIFFERENT LEARNING RATES. FINE-TUNED FOR 50 EPOCHS.

Dataset Models LR Natural PGDig
5.0e-4 76.30 47.60

1.0e-3 80.69 49.56

CIFAR-10 ViT-T 1.0e-2 85.62 48.78
5.0e-2 85.12 50.30

1.0e-1 84.51 50.40

only fine-tuned for 50 epochs due to time consumption, and
it is sufficient to get superior results. The batch size to fine-
tune CaiT is 512 due to the limitation of GPU memory. Other
hyperparameters are consistent with Tables XV and XVIL.

D. Comparing MIMIR and MAE Performance with EDM

In Table XVIII, we compare the performance of MIMIR
and MAE on CIFAR-10 and Tiny-ImageNet. Both methods
pre-train for 800 epochs and fine-tune for 100 epochs. MIMIR
consistently outperforms MAE on both natural accuracy and
adversarial robustness. These results support our design in-
tuition that adversarial noise builds a more difficult task for
Masked Image Modeling, which helps the ViT encoder learn
more discriminative features.

In addition, we use the elucidating diffusion model (EDM)
data as data augmentation. EDM generative data is usually
used to improve the performance of adversarial training [71],
[72], [73], [74]. Specifically, we use 5 million generated
CIFAR-10 data and 1 million Tiny-ImageNet data provided
by [71]. The EDM data is applied to experiments with CIFAR-
10 and Tiny-ImageNet but not to ImageNet-1K (EDM data for
ImageNet-1K are not provided in [71]).

E. Data Augmentation Evaluation

Figure 8 demonstrates the loss and accuracy while training
with different augmentations. “no mix” refers to using only
weak augmentation, including RandomResizedCrop and Ran-
domHorizontalFlip. “+mix” refers to using MixUp (0.8) and
CutMix (1.0). “+aug” refers to using MixUp (0.8), CutMix
(1.0), and Randaugment (rand-m9-mstd0.5-inc1).
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TABLE XVIII
NATURAL AND ADVERSARIAL ACCURACY ON CIFAR-10 AND
TINY-IMAGENET TEST SET USING MIMIR AND MAE, PRE-TRAINING
(800 EPOCHS) AND THEN FINE-TUNING (100 EPOCHS) USING PGD

ADVERSARIAL TRAINING. WE USE EDM DATA FROM [7 1] AS DATA
AUGMENTATION.
Dataset Arch Pre-train  Natural PGDog AA

VITS MAE 90.66 59.77 55.48

CIFAR-10 MIMIR 91.94 64.04 61.06

VIT-B MAE 92.13 63.03 59.44

MIMIR 92.42 64.88 62.03

VITS MAE 62.77 28.23 23.73

. ) MIMIR 63.83 28.74 24.54
Tiny-ImageNet

VIT-B MAE 65.76 25.25 22.05

MIMIR 66.75 26.86 23.87

train loss test acc.
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Fig. 8. The training results of using different data augmentations with 800
epochs.

FE. Decoder Size

Table XIX provides the performance when pre-training
with different decoder sizes. Specifically, the experiments
are conducted on different numbers of decoder layers and
different hidden sizes. In Table XIX, a deeper decoder may
slightly increase the performance, but a larger hidden size may
decrease the performance. Additionally, increasing the size of
the decoder will also increase the training cost, so we prefer
to use a small decoder.

G. Subset of training data

Table XX shows the performance of pre-training on a small
subset of training data, which explores whether MIMIR still
performs well at a lower cost. MIMIR performs well when it

TABLE XIX
THE PERFORMANCE AND PRE-TRAINING TIME-CONSUMPTION (HOURS)
OF VIT-S WITH DIFFERENT DECODER SIZES (DEPTH AND HIDDEN SIZE).

Dataset Layers Hidden Natural PGDgg Time

2 256 8645 5512 528

2 512 8545 5157 676

CIFAR-10 4 128 8652 5510 508
6 128 8737 5693 601

2 256 6403 2913  11.64

Tinv-ImaseNet 2 512 63.11 2865  14.02
y-imag 4 128 6344 2879 1131

6 128 6439 2861  12.68

TABLE XX
THE PERFORMANCE OF MIMIR PRE-TRAINING ON A SUBSET OF
TRAINING DATA.

Dataset Proportion  Natural  PGD2g

0.1 83.31 46.49

CIFAR-10 0.25 85.75 52.61
0.5 86.11 53.78

0.1 57.92 24.61

Tiny-ImageNet 0.25 60.85 26.46
0.5 62.44 28.13

TABLE XXI

THE PERFORMANCE OF VIT-S WHILE CALCULATING MI FOR MIMIR AT
DIFFERENT LAYERS.

Dataset Layer Index  Natural PGD2g

5 86.45 54.51

7 85.93 53.22

CIFAR-10 9 86.39 53.41
12 86.56 56.76

5 63.63 28.67

. 7 53.41 24.05
Tiny-ImageNet 9 6179 1849
12 63.82 28.74

uses only 10% of the training data and can achieve near-full
data performance using only 25% of the data.

H. Layer-Wise MI

Table XXI shows the performance of using latent features
from different layers to calculate the MI penalty in Equation 8.

We find a phenomenon of MI oscillation, which occurs in
layers closer to the inputs. This is because the latent features in
those layers do not include the additional normalization layer.
In the standard ViT design, an additional normalization layer is
included after the final transformer layers to enhance stability
and performance. In MIMIR, we use the latent features after
the final normalization to calculate the MI penalty, i.e., layer
12 in the case of ViT-S. The MI oscillation also decreases the
performance of fine-tuned models, as shown in Table XXI.

1. Efficiency

We provide an analysis of the efficiency of MIMIR. Ta-
ble XXII provides the total time consumption and memory
usage of different adversarial training methods, which are
evaluated on four A6000 GPUs. MIMIR is more efficient than
10-step PGD but slightly less efficient than FastAT, with higher
robust accuracy than both 10-step PGD and FastAT. Further,
we provide the training time of MAE in Table XXII, which
shows that the extra training time consumption introduced by
the calculation of MI between = + § and z is small.

18
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TABLE XXII
THE AVERAGE TIME CONSUMPTION ON 4 GPUS. THE “MEM.” REFERS TO GPU MEMORY USAGE. THE TOTAL TIME IS ESTIMATED BASED ON THE TIME
CONSUMPTION ON A SINGLE EPOCH. THE TRAINING SCHEDULE FOR PGD1g AND FASTAT 1S 300 EPOCHS. THE TRAINING SCHEDULE FOR MAE AND
MIMIR 1s 800 EPOCHS.

CIFAR-10 [34] Tiny-ImageNet [35] ImageNet-1K [30]

Architecture #Parames (M) Method time[H] mem.[GB] time[H] mem.[GB] time[H] mem.[GB]
PGD;o AT 12.44 2.54x4 25.5 3.99x4 187.64 12.5x4
VIT-S 2134 FastAT 3.61 2.54%x4 5.64 4.03x4 46.29 10.4x4
! ’ MAE 3.58 3.24x4 7.33 3.27x4 59.91 11.1x4
MIMIR 4.09 3.12x4 8.89 3.18x4 61.22 11.1x4
PGD1g AT 30.1 5.39%x4 85.18 8.30x4 451.39 22.1x4
ViT-B 8527 FastAT 10.23 5.36x4 15.02 8.34x4 113.44 19.8x4
! ’ MAE 11.78 5.95%x4 23.67 5.95x4 109.09 17.0x4
MIMIR 13.11 6.08x4 27.11 6.11x4 113.31 17.0x4
PGD1g AT 36.88 6.64x4 74.75 12.19x4 552.21 32.5%x4
. FastAT 8.88 5.86x4 15.27 10.62x4 119.27 26.4x4
ConViT-$ 27.05 MAE 7.33 10.6x4 15.0 10.61 x4 135.49 27.5%4
MIMIR 10.0 10.4x4 20.0 10.54x4 135.8 28.3x4

J. Mutual Information and HSIC

MI measures the mutual dependence between two random
variables, X and Y. It can be decomposed as:
I(X,Y) = H(X) — H(X|Y),
= H(Y) - H(Y|X),
=HX)+HY)-H(X,Y),

(24)

where H(X) and H(Y) are the information entropies,
H(X|Y) and H(Y|X) are the conditional entropies, and
H(X,Y) is the joint entropy of X and Y.

Unfortunately, estimating MI in high-dimensional space is
a difficult task since it may involve a precise estimation of
the underlying data distribution Pxy) or Px) and Py).
To address this issue, the deterministic information bottleneck
(DIB) [48] uses the recently proposed matrix-based Rényi’s a-
entropy functional I, [49], [50], which suggests similar quan-
tities to (X, Y) in terms of the normalized eigenspectrum of
the Hermitian matrix of the projected data in the reproducing
kernel Hilbert space (RKHS), but avoids density estimation.

Specifically, given N pairs of samples (z;, ;)2 (in our
setup, IV refers to the mini-batch size), we can obtain two
Gram (or kernel) matrices K, and K, for variables X and Y,
respectively, with (K3); j = ka(@i, 25), (Ky)i; = ky(¥i, Y5),
in which k; and &, are corresponding kernel functions. The
information entropy of X can be expressed as:

Ho(X) = 1— log, (w(K.)

1 Y
T a log, <'_1 Xi(Ky) > ,

?

(25)

where K is the normalized version of K, ie., K = K/tr(K),

and \;(K) denotes the i-th eigenvalue of K.
Further, the joint entropy for X and Y can be expressed as:

K, oKy

tr(K, OKy)) 7 20

H,(X,Y)=H, <

where K, o K, denotes the Hadamard product between the
matrices K and K.

Given Egs. (25) and (26), the matrix-based Rényi’s a--order
mutual information I,(X;Y) in analogy of Shannon’s MI is
given by:

Io(X;Y) = Ho(X) + Ho(Y) — Ho(X,Y). (27)

Throughout this paper, we use the gadial basis function (RBF)
kernel k(z;,z;) = exp(f%) with kernel width o to
obtain the Gram matrices.

The Hilbert—Schmidt Independence Criterion (HSIC) [51] is
also a kernel-based dependence measure and is usually used
as a surrogate of MI. Formally, the HSIC is defined as the
squared norm of the cross-covariance operator ||Cxy ||?:

HSICp, , (X,Y)

= [|Cxv|[?

= Epyary [z (2, 2Ry (y,9)]

+ Ego (ko (2, xl)]Eyy’ [”y(ya y/)]

— 2E;y[Ey [k () xl)]Ey’ Ky (¥, y)ll,
where s, and &, are kernel functions, E is the expectation,
2’ and 7’ are independent copies of x and y, respectively.

Given N pairs of samples (x;,y;)~_,, the empirical estima-
tor of HSIC is given by:

(28)

— 1
HSICpy , (X.Y) = w5t (I, HH,H), (29)

in which (Ka:)i,j = /fz(fEi,"Ej), (Ky)i,j
H =1 — %117 is the centering matrix.

= ky(Yi,y;), and

19
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ARTIFACT APPENDIX
A. Description & Requirements

MIMIR is a self-supervised pre-training strategy for adver-
sarial robustness of Vision Transformers (ViTs). The training
process consists of a pre-training stage and a fine-tuning stage.
This artifact supports the experiments and findings presented
in the paper by providing the necessary code and trained
weights. We also provide scripts for setting up a Python
environment and running experiments.

1) How to access: The artifact is available at the permanent
repository: https://doi.org/10.5281/zenodo.17807275

2) Hardware dependencies: Training and evaluation re-
quire at least one CUDA-enabled GPU, but we strongly
recommend using more GPUs. In our case, experiments using
small datasets (CIFAR-10, Tiny-ImageNet) are performed on
two GPUs (RTX A6000 or RTX A5000). Experiments using
the large dataset (ImageNet-1K) are performed on eight GPUs
(RTX A6000, RTX A5000, or H100).

3) Software dependencies: The artifact is tested on Ubuntu
22.04.5 LTS with Python 3.10.12 and CUDA 12.7. The
training script is implemented with PyTorch 2.1.0. All package
dependencies are listed in requirements.txt.

4) Benchmarks: We use three commonly used benchmark
datasets to evaluate the artifact: CIFAR-10, Tiny-ImageNet,
and ImageNet-1K. CIFAR-10 and Tiny-ImageNet are included
in the artifact. ImageNet-1k requires accepting the terms of
access.”

B. Artifact Installation & Configuration

To install necessary dependencies, ensure Python and
CUDA are available. Then go to the root path and execute:

$ pip install -r requirements.txt

C. Experiment Workflow

The artifact requires three primary workflows: (1) Pre-
training with MIMIR. (2) Fine-tuning the MIMIR-trained
models. (3) Evaluating the fine-tuned models. The bash
scripts corresponding to each workflow are provided in the
artifact.

D. Major Claims

e (C1): MIMIR is effective for ViTs on CIFAR-10. Adver-
sarial training on ViTs is known to be difficult in previous
works. This statement is supported by E1, and the results
are shown in Table L.

e (C2): MIMIR is effective while scaling up to ImageNet-
1K. This statement is supported by E2, and the results
are shown in Table III.

o (C3): MIMIR is effective against unforeseen attacks. This
statement is supported by E3, and the results are shown
in Table V.

e (C4): MIMIR is effective against adaptive attacks. This
statement is supported by E4, and the results are shown
in Table XI.

Shttps://image-net.org/download.php

There are also other experiments, but they may take more
than several days to complete. We include corresponding
scripts to execute them in the artifact, but not in this “Major
Claims”.

E. Evaluation

Overall, the experiments involve four steps for training:

1) Activate the Python environment. By default, we use
virtual Python environments, which can be created by
the following command lines:

$ python3 -m venv your_env
$ source your_env/bin/activate
$ pip install -r requirements.txt

2) Pre-training is implemented in pretrain.py.
3) Fine-tuning is implemented in finetune.py.

4) Evaluation is implemented in finetune.py,

and can be activated by the flag --eval.
Evaluation for ImageNet-1IK  with the 5000
RobustBench testset is implemented in

eval_advmae/sub_imagenet_eval.py.
e (E1): MIMIR training on CIFAR-10 with ViT-S.

$ cd scripts
$ bash train_cifarl0.sh

¢ (E2): MIMIR training on ImageNet-1K with ViT-S.

$ cd scripts
$ bash train_imagenet.sh

o (E3): Evaluation against unforeseen attacks on ImageNet-
1K.
$ cd scripts
$ bash eval_subimagenet.sh
$ bash eval_imagenet_c.sh

« (E4): Evaluation against adaptive attacks.

$ cd scripts
$ bash eval_cifarl0_adap.sh
$ bash eval_tiny_adap.sh
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