Artifact
Evaluated

ANDss

Available

Functional

MinBucket MPSI: Breaking the Max-Size [
Bottleneck in Multi-Party Private Set Intersection

Binbin Tu*', Boyudong Zhu*', Yang Cao*! and Yu Chen*+®
*School of Cyber Science and Technology, Shandong University, Qingdao 266237, China
fState Key Laboratory of Cryptography and Digital Economy Security, Shandong University, Qingdao 266237, China
IState Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
Email: {tubinbin,yuchen}@sdu.edu.cn, {boyudongzhu,caoyang24}@mail.sdu.edu.cn

Abstract—Multi-Party Private Set Intersection (Cardinality)
protocol enables 7' (T > 2) parties, each holding a private set,
to jointly compute the intersection (or its cardinality) without
revealing any additional information to other parties. To date,
all known MPSI (MPSI-Card) protocols require communication
complexity that scales linearly with the size of the large set,
fundamentally precluding their efficient deployment in real-world
applications with heterogeneous input scales.

In this work, we present a new framework for MPSI based
on newly proposed protocols: batched membership conditional
randomness generation and joint private equality test. By in-
stantiating this framework, we develop two MPSI protocols with
communication complexities that are linear in the size of the small
set and logarithmic in the size of the large set. One protocol offers
security against an arbitrary number of colluding parties, while
the other secures against (7' — 2) colluding parties. Additionally,
we develop a protocol called the joint permuted private equality
test and propose the MPSI-Card framework. By instantiating
this framework, we derive an MPSI-Card protocol with similar
communication efficiency: linear in the small set and logarithmic
in the large set, providing security against an arbitrary number
of colluding parties.

We implement our protocols and conduct extensive experi-
ments over both LAN and WAN networks. Experimental re-
sults demonstrate that our protocols achieve significantly better
performance as the size difference between the sets or the
number of participants holding the small set increases. For
the setting, where 5 parties holding large set (size 2°°) and 5
parties holding small set (size 2'°) with a single thread and a 10
Mbps bandwidth, our MPSI (MPSI-Card) protocol requires only
12.2 (12.2) MB of communication and 129.86 (130.05) seconds
of runtime. Compared with the state-of-the-art MPSI by Wu
et al. (USENIX Security 2024) and MPSI-Card by Gao et al.
(PETS 2024), our protocol achieves a 157x (76x) reduction in
communication cost and a 12.7x (3.1x) speedup in runtime.

I. INTRODUCTION

Private Set Intersection (PSI) enables a group of mutually
distrustful parties, each holding a private set, to compute the
intersection of their sets without revealing any information
beyond the intersection itself. PSI and its variants have been
widely applied in various domains, such as evaluating the

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240182
www.ndss-symposium.org

effectiveness of online advertising campaigns [1], [2]], facilitat-
ing private contact discovery [3], [4], and more. Over the last
decade, there has been a significant amount of work on two-
party private set intersection (PSI), including both balanced
case [51, (6], [Z1, (81, (O, [10], (111, (12, [13], [14] and
unbalanced case [15], [16], [17], [18], [19]. In the balanced
setting, numerous PSI protocols achieve linear complexity,
and the current state-of-the-art (SOTA) PSI [20] is almost
as efficient as the naive insecure hash-based protocol. In the
unbalanced setting, several protocols [15[], [17], [19] have
broken the linear communication barrier of the large set,
achieving logarithmic complexity in the size of the large set
and linear complexity in the size of the small set.

Although two-party PSI is valuable for numerous appli-
cations, many real-world scenarios, including medical data
integration [21]], [22], cache sharing in edge computing [23],
network intrusion detection [24], and identification of high-risk
individuals during disease outbreaks [25], are better addressed
in the multi-party setting. As noted in [26], approximately 176
million blacklisted IP addresses were aggregated across 23,483
autonomous systems, with list sizes varying sharply: some
exceeding 500,000 entries, while others contain under 1,000.
Thus, computing intersection (cardinality) among multiple
IP blacklists exhibiting large size disparities is a real-world
scenario for unbalanced MPSI/MPSI-Card. However, existing
multi-party private set intersection (MPSI) and MPSI cardi-
nality (MPSI-Card) protocols [27], [28], [29], [30], [31] are
primarily designed for balanced scenarios, where the input set
sizes of the participants are relatively similar. These protocols
struggle to handle common unbalanced scenarios in real-
world applications efficiently. For instance, some participants
may be mobile devices with limited resources (e.g., battery,
computing power, storage) and small datasets, while others are
high-performance servers with large datasets. Furthermore, the
available bandwidth between the parties may also be limited,
further complicating protocol performance in such settings.
Yang et al. [32] first propose an unbalanced quorum PSI
protocol, but their construction is limited to scenarios where
only a single client holds the small set. To the best of our
knowledge, all existing MPSI/MPSI-Card protocols require
communication complexity that scales at least linearly with
the size of the largest set, fundamentally limiting their efficient
deployment in real-world applications with heterogeneous

input sizes. Motivated by the above discussion, we ask the
following questions.

Is it possible to design efficient MPSI and MPSI-Card pro-
tocols with communication complexity that breaks the linear
bound of the largest set, achieving logarithmic communication
in the size of the largest set?

A. Our Contribution

In this paper, we give an affirmative answer to the above
questions through the following results.

New frameworks of MPSI/MPSI-Card. We begin by for-
malizing two ideal functionalities: batched Membership Con-
ditional Randomness Generation (b MCRG) and Joint Private
Equality Test (J-PEQT). Building upon these, we introduce
a novel MPSI framework based on bMCRG and J-PEQT.
Then, we extend J-PEQT and develop a new ideal functionality
named Joint Permuted Private Equality Test (JP-PEQT). Based
on bMCRG and JP-PEQT, we further present an MPSI-Card
framework.

Instantiations. We present two generic constructions of bM-
CRG: One from batched oblivious pseudorandom function
(bOPRF) and oblivious key-value store (OKVS) in the bal-
anced setting, and the other from bOPRF and fully homo-
morphic encryption (FHE) in the unbalanced setting follow-
ing [[17], [19]. Then, we propose two constructions of J-PEQT:
The first, based on joint zero secret sharing (JZSS), is secure
against T'—2 colluding parties. The second, based on threshold
additive homomorphic encryption (TAHE), is secure against
an arbitrary number of colluding parties. Additionally, we
provide a construction of JP-PEQT based on threshold additive
homomorphic encryption, which is secure against an arbitrary
number of colluding parties. In summary, by instantiating our
frameworks, we obtain two MPSI protocols and one MPSI-
Card protocol, whose communication complexity is linear in
the size of the small set and logarithmic in the large set.
Meanwhile, JZSS-based MPSI satisfies the security against
T —2 colluding parties. TAHE-based MPSI/MPSI-Card enjoys
security against an arbitrary number of colluding parties.
Evaluations. We implement and compare our MPSI/MPSI-
Card with the SOTA MPSI [29]] and MPSI-Card [31].

o Comparisons of MPSI. The experimental results show
that our protocol achieves a 1.37 - 607.7x reduction in
communication cost and a 2.5 - 64.1x speedup in running
time, depending on the network environment when the
large set size is > 2'® and the small set size is 2'°. In
particular, for the setting where 5 parties hold a large set
(size 22°) and 5 parties hold a small set (size 2'9) with
a single thread and a 10 Mbps bandwidth, our protocol
requires only 12.2 MB of communication and 129.86
seconds of runtime. Compared with MPSI [29], our MPSI
achieves a 157x reduction in communication cost and a
12.7x speedup in runtime.

« Comparisons of MPSI-Card. The experimental results
show that our protocol achieves a 1.3 - 170.4 x reduction
in communication cost and a 1.03 - 26.24 x speedup in

running time, depending on the network environment. In
particular, for the setting where 5 parties hold a large set
(size 229) and 5 parties hold a small set (size 2'0) with
a single thread and a 10 Mbps bandwidth, our protocol
requires only 12.2 MB of communication and 130.05
seconds of runtime. Compared with MPSI-Card [31]], our
MPSI-Card achieves a 76x reduction in communication
cost and a 3.1x speedup in runtime.

Overall, our protocols demonstrate significant advantages in
unbalanced multi-party scenarios with limited communication
and computation resources, especially when there is a large
disparity between set sizes or when more participants hold
the small sets.

B. Technical Overview

We provide a technical overview of our MPSI and MPSI-
Card depicted in Figure [T} First, we formalize the following
ideal functionalities: batched membership conditional ran-
domness generation (b(MCRG), joint private equality test (J-
PEQT), and joint permuted private equality test (JP-PEQT).
Then, we propose frameworks of MPSI from bMCRG and J-
PEQT, and MPSI-Card from bMCRG and JP-PEQT. In the
instantiations, balanced bMCRG can be derived from bOPRF
and OKVS, and unbalanced bMCRG can be constructed from
bOPRF and FHE. Furthermore, we build J-PEQT from JZSS
or TAHE, and construct JP-PEQT based on TAHE.

1) Core ideas: align-then-compare: The core ideas of the
constructions of our MPSI and MPSI-Card could be viewed
as two steps “align-then-compare”:

o Align: The participant with the smallest input set size is
selected as the Leader P;. P, performs alignment oper-
ations with all other participants Py, k € [2,T], respec-
tively, where Py inputs Y' = {y};c(m,) and P inputs
Y% = {yF};cm,): Pairwise executions of the bMCRG
functionality are conducted to transform membership re-
lations into equality relations of characteristic values and
non-membership relations into non-equality relations of
characteristic values.

— bMCRG between P; and P, : For membership: If y} €
Yk, i€ [mi], k € [2,T], P, and P obtain equal random
values s¥ = t¥. For non-membership: If y} ¢ Y*, P; and
Py, obtain unequal random values s¥ # tF.

Therefore, for each item y} € Y, P, obtains T — 1

characteristic values s¥, k € [2,T], and each participant

Py, obtains one characteristic value tf. If y, € ﬂgzz YFk,

we have (/\;‘::2(5£c = tF)) = 1, otherwise, we have

(Ars(st =) =0.

o Compare: All participants Py, k € [T], invoke comparison
operations and output the intersection to the receiver in
MPSI or the cardinality of the intersection to the receiver
in MPSI-Card.

- J-PEQT: All participants Py, k € [T input their char-
acteristic values and invoke J-PEQT functionality to let
Py obtain indication bit-vector b = [b;];c[m,], Where if

'MPSI-Card!

. MPSI |
 17eq | T TR
L ,J,Z ,S ,S Sl Section [V] Section [VII
Section [V-A] J\ J\
, m oo ‘
J-PEQT + bMCRG + JP-PEQT ¢ Section V- TAHE !
ion [V-B R
e ﬁ ction Section [IIA] Section [II-B
| TAHE ! balance% analanced
it -ttt I ot Tt I ottt I
' OKVS ' =4 | bOPRF ! 4 | FHE !
Fig. 1. Technical overview of our frameworks. The rectangle with solid (dotted) lines denotes the new (previous) notions.
5 5) Py < P, in Figure), we propose a bMCRG construction
Pyl “|Yma | Y with linear communication complexity; in the unbalanced
Leader / case (where another party has a large set, like P, <> P;
< P3| | 3 w2, e in F.igu.re 2), we use a bMCBG con.struction with com-
Py y% 'z — munication complexity that is linear with the small set size
\ and logarithmic with the large set size. In the comparison
Prl oy [yt yr Jyr phase, the communication complexity is linear W.’ith the
]2 mr small anchor set size, as all outputs from the alignment

I@ single-point MCRG

st ——— P |t |y €Y? =51 =1]

st B3| 1] |y €Y’ = s =1]

Py
.%...

st k——— Pr|tl |yl e YT = sT =+T

T @ I-PEQT

| Nieo(st =t5) = b =1

Fig. 2. Illustration of the single-point MPSI from single-point MCRG and
J-PEQT. Equal values are shown in the same color; white indicates unequal
values.

/\522(34C = tk), we have b; = 1, otherwise, b; = 0. For

i € [m;] if b; = 1, Py outputs the intersection item ;.
- JP-PEQT: All participants Py, k € [T] input their char-
acteristic values and invoke JP-PEQT functionality to let
Py obtain permuted indication bit-vector b = [b]ic[m,],
where if /\f:Q(sfr(i) = tf}(i)ﬂ we have b; = 1, otherwise,
b; = 0. Py outputs the cardinality of intersection)", b;.
« Communication complexity analysis: In the alignment
phase, we select the party with the smallest set as the anchor
and perform pairwise alignment operations between this
anchor set and the sets of all other participants. Depending
on the size of the anchor set, there are two cases: in the
balanced case (where both parties have small sets, like

U7 over [m] is an implicit random permutation

phase depend linearly only on the size of the anchor set.
Therefore, the overall communication complexity of our
MPSI and MPSI-Card is logarithmic in the size of the large
set and linear in the size of the small set.

In summary, our protocols are highly efficient in unbalanced
multi-party settings, where M parties hold small sets and N
parties hold large sets. In contrast, existing protocols primarily
target balanced multi-party scenarios, in which all 7' = M+ N
parties possess input sets of comparable sizes. Their com-
munication complexity grows at least linearly with the size
of the largest set, making them inefficient for deployment in
unbalanced multi-party scenarios.

2) A single-point MPSI: We start with a special case
of single-point MPSI depicted in Figure 2} in which P;
has only one item yi, and each other party P has a set
Yk = {ylfa o ’yfnk}’ ke [2’T]

First, we formalize the functionality of single-point MCRG
(two parties): P; inputs an item y; and P» inputs a set Y2,
the result is that P; and P, obtain their random characteristic
values s? and 2, respectively, such that if y} € Y, s = 2,
otherwise, s? # t2. Therefore, P; invokes single-point MCRG
with each other party P,k € [2,7]. The result is that
Py obtains a random characteristic vector [s?,---,s?] and
Py, k € [2,T) obtains a random characteristic value t*. If
/\;ZQ(SIC = %), we have y! € (i_, Y*. Otherwise, y} ¢

k2 Y*. Then, we formalize the functionality of J-PEQT (T’
parties): P; inputs a vector [s%,---,sT] and Py, k € [2,T]
inputs a value t*, the result is that P; obtains the indicated
bit b, such that if /\522(57~C = t*), we have b = 1, otherwise,
b = 0. Finally, P; outputs the intersection {yi} if the output
b = 1 of J-PEQT, otherwise outputs). Figure [3| provides an

Leader, smallest set

M| balanced bMCRG

Ab_,(s*=t")=1/0=b=1/0

Client-S
small set

Client-L
large set

Fig. 3. A single-point MPSI under three parties. Step (D denotes that P;
interacts with other parties and invokes (unbalanced/balanced) Fymcra; Step
@ denotes that all parties invoke Fj.peQr-

illustration of our single-point three-party PSI protocol, where
Leader (P;) holds one item, and Client-S (P)/Client-L (P3)
denotes that the parties hold small/large sets.

P2 y% yran
Leader / s T 3 3
P I I U P 1/]33 yi | b2 ~|Yms
11 Y1 | Y yml Y N
Priyl |ys [« | [Yme
I@ bMCRG+Cuckoo/Simple Hashing
s?|s? |82 k—— P | 82| 2 |t2,,
st s |3 k——— Py | 8| 2 |2,
Py
. % o e
ST [o7 fayk—— e [[|8,
Y @ J-PEQT
bi | bi |bm, /\Z:Q(S’Ircnl :tfm)jbml =1

Fig. 4. Tlustration of MPSI from bMCRG and J-PEQT, where mi ~ mg
represents the balanced case, while m1 < m3 and m; < m7 represent
unbalanced cases. Equal values are shown in the same color; white indicates
unequal values.

3) MPSI from bMCRG and J-PEQT: Now, we demonstrate
how to extend the special case to a general case depicted in
Figure where |Y'!| = m; > 1. Intuitively, one might execute
the above process for each y! € Y individually. However,
this naive approach requires comparing each item y; to the
entire set Y*, resulting in significant overhead. To mitigate
this, we employ the standard hash-to-bin technique to reduce

computational costs. Specifically, P, assigns each of its items
y},i € [m1] (concatenated with the hash function index) to one
of the bins h1(y}), ha(y}), ha(y}) using cuckoo hashing [33].
Py, k € [2,7T] assigns each of its items y¥ i € [my]
(concatenated with hash function index) to all of the bins
hi(y¥), ha(y¥), ha(yF) by simple hashing. Here, both parties
align two input sets Y'! and Y*: The same items are inserted
into the same bins, and all bins Y*, i € [m,] are mutually
exclusive. Then, P, performs the above single-point MCRG
with P, on each bin. This method greatly reduces the input
size of P, from the entire set |Y*| to a small hash bin.

We extend the single-point MCRG to the functionality of
batched MCRG (two parties: P; and Py), defined in Figure[T1]
Specifically, Py inputs a set Y'* = {y!},c[,], and P inputs
my mutually exclusive sets {Yik}ie[ml]ﬂ The result is that P;
and P obtain their respective random characteristic vectors
s¥ = [sF]ieim,) and t% = [t¥];c(n,), such that for each i €
[ma], if y} € Y/, then s¥ = &, otherwise, s¥ # tF.

We further generalize the J-PEQT functionality for T par-
ties, defined in Figure Specifically, P; inputs T — 1
vectors s* = [s¥];c(m,), k € [2,T), and interacts with T — 1
parties Py, k € [2,T], where each party Py inputs a vector
t* = [tF;cim,)- The result is that P; obtains a random
bit string b = [b;];cm,]. such that for each i € [m4], if
/\222(5;C = t¥), we have b; = 1; otherwise, b; = 0.

In summary, we obtain an MPSI protocol based on bMCRG
and J-PEQT. Specifically, P; inserts Y! into a cuckoo hash
table Y![i],i € [m.|, while each Py, k € [2,T] inserts
V" into a simple hash table {Y}*,... Y% } using the same
hash functions, resulting in m, mutually exclusive sets (each
bin is treated as a set). Next, P; invokes bMCRG with
each other party Py, k € [2,7T], using Y![i],i € [m.] and
{v{,...,Y}E } as inputs. As a result, Py obtains T—1 vectors
sk = [Sﬂie[nﬁ]vk € [2,T], while each Py, k € [2,T] obtains
a vector t* = [t*],cpm.). For each i € [m,], if Aj_o(sF =
t¥), Y1[i] belongs to the intersection. Otherwise, Y,![i] does
not belong to the intersection. Subsequently, P; invokes J-
PEQT with each P,k € [2,T], using s* = [sF];c[,) and
tF = [t¥];cpm,. as inputs. As a result, P; obtains a bit
string b = [bi];c[m,). Finally, P, outputs the intersection
I = {Y[i*]}, where for i* € [m.], b= = 1.

4) MPSI-Card from bMCRG and JP-PEQT: A single-point
MPSI-Card is functionally equivalent to a single-point MPSI.
However, in the general case of |Y!| = m; > 1, MPSI-Card
offers stronger privacy by revealing only the intersection size
rather than the intersection itself. Consequently, J-PEQT is
not directly suitable for constructing MPSI-Card, as it leaks
the indicated bits of the intersection items to P;, causing the
intersection to be revealed. To address this issue, we need to
shuffle the indicated bits without P, knowing the permutation,
ensuring that P; only receives a permuted indicated bits. P;
can compute the Hamming weight of the indicated bit vector
to obtain the intersection size.

2The reason for the mutual exclusivity of the set is that OKVS requires all
the keys to be distinct.

Based on the above observation, we further extend the J-
PEQT with permutation, a new functionality named joint per-
muted private equality test (JP-PEQT), defined in Figure
Specifically, P; inputs T — 1 characteristic vectors s”
[s¥]iem)» k € [2,T) interacts with T —1 parties Py, k € [2,T]
where each party inputs a vector t* = [t¥];c(p,1, k € [2, 7]
and a permutation 7y, k € [2,T] over [m]. As a result, JP-
PEQT generates a random bit string b = [b;];c[m,] to Py such
that for ¢ € [my], if /\Z=2<S']r€r(i) = tfr(i)), we have b, = 1,
otherwise, b; = 0, where m = mp 03 0 -« 0 .

Therefore, we obtain an MPSI-Card protocol based on
bMCRG and JP-PEQT. The construction is similar to the
MPSI protocol derived from bMCRG and J-PEQT, except
for replacing J-PEQT with JP-PEQT, which can shuffle the
indicated bit vector, hiding the intersection from P;.

5) Two kinds of constructions of bMCRG: We focus on the
unbalanced multi-party scenario, where during the alignment
phase, the party holding the smallest input set engages in
pairwise bMCRG executions with all other parties. Depending
on the relative sizes between both parties, scenarios can be
classified into two cases: (1) Balanced case: The input set
sizes of the two parties are similar. (2) Unbalanced case: The
input set sizes of the two parties differ significantly.

bMCRG in the balanced setting. The balanced construction
of bMCRG is based on bOPRF and OKVS: First, both parties
Py and P, input (yi,---,y.) and mutually exclusive sets
(Y2,---,Y2), and then invoke JFyoprr. The result is that
P, obtains all PRF values F(k;,y}) and P, obtains all
PRF keys ki, k2, - , k. P> then computes all PRF values
F(k;, Y?[j]) by the PRF key k;, where Y;*[j] denotes the
j-th item in the i-th set Y;2. Subsequently, P, chooses m
random characteristic values t?, i € [m] and encodes all
key-value pairs {(Y7[j], t; © F(ki, Y2 [j])) Yicm) jeqy2)) into
a OKVS data structure D. P, sends D to P;. For each
i € [m], Py inputs F(k;,y}) and runs Decode to output the
characteristic values s? = F(k;,y}) @ Decode(y}). According
to the correctness of bOPRF and OKVS, we obtain a bMCRG
in the balanced case: For each i € [m], if y} € Y;2, we have
s7 = F(ki,y}) ® Decode(y}) = F(ki,y;) @] & F(ki, y}) =
t%, otherwise, sf #* t?. Here, our bMCRG inherits the linear
complexity from both bOPRF and OKVS, achieving linear
communication in the size of Y! and Y}* i € [m].

bMCRG in the unbalanced setting. The unbalanced con-
struction is based on bOPRF and FHE following [15]], [17],
[19]: First, both parties P; and P, input (yi,---,y.) and
mutually exclusive sets (Y2,---,Y,2), respectively. P uses
the polynomial randomization method like [17]], [34] to encode
each set Y2, i € [m] of Py, so that fi(z) = I, (= Y2[j]) +
r;, where B; = |Y;?| and r; is a random value. Next, P; sends
an FHE ciphertext of encrypting v}, denoted as [y}] to Ps.
Then, P> homomorphically computes and returns [f;(y})].
Finally, P; decrypts [fi(y})] and outputs the characteristic
values s? = fi(yl). P, outputs the characteristic values

tf = rﬂ As discussed above, we obtain a bMCRG in the
unbalanced case: For each i € [m], if y} € Y2, we have
filyl) = W2y} = Y2[)) +ri = vy, and 87 = 1y = £,
otherwise, s # t?. Our unbalanced bMCRG follows the
constructions of [[15], [[17], [19] and achieves logarithmic com-
munication complexity with the large sets size Y¥, i € [m)].

Relationship to the constructions of [17], [27]. We formally
abstract the construction of [17] as a functionality called
bMCRG, which transforms membership relations into equality
relations of characteristic values, thereby enabling multiple
parties to jointly perform equality comparisons on these values
via J-PEQT/JP-PEQT to realize the functionalities of MPSI
and MPSI-Card. Conceptually, bBMCRG can be regarded as a
weak notion of the Programmable Oblivious Pseudorandom
Function (OPPRF) [27]: An OPPRF implies a bMCRG; the
converse does not hold, as bMCRG does not output the PRF
key. In the instantiation, we adapt the constructions of [[17] by
decoupling the hash-to-bin. This allows bMCRG to inherit var-
ious optimization techniques to reduce the depth of the homo-
morphic circuit in [[15[], [L7]], [19]. However, when applying the
partitioning optimization, fine-grained processing is required
to aggregate multiple pairs of characteristic values into a single
pair (details are provided in Section [[II-B)), thereby ensuring
compatibility with the subsequent J-PEQT/JP-PEQT protocols.

6) Constructions of J-PEQT and JP-PEQT: Here, we give
constructions of joint private equality test (J-PEQT) and joint
permuted private equality test (JP-PEQT).

J-PEQT from JZSS. We generate secret shares of zero for all
parties using JZSS. Then, each of the T'— 1 parties publishes
its input, hiding it with the corresponding zero share, similar to
a one-time pad. Finally, P; can check whether the sums are
equal to determine if all corresponding positions are equal.
Since JZSS satisfies security against 7' — 2 colluding partiesﬂ
our J-PEQT inherits this security.

The construction of J-PEQT from JZSS is as follows:
First, P; and Py, k € [2,T] encode their all strings s* and
tF into Z,. Then, Py, k € [T] invoke the functionality of
JZSS, such that P, obtains € = [e;];c[m) and Py, k € [2,T]
obtains d* = [d];c), Where for each i € [m], e; +
ZZ=2 d* = 0 mod q. Furthermore, Py, k € [2,7] computes
and sends ¢ = d¥ + tF mod ¢ to Py, and P; computes
pi= e — (3 _,s¥) mod g. For each i € [m], Py
sets b; = 1, if p; = 0, otherwise, b; = 0. Finally, P, outputs
the bit vector b = [b]ic[m)-

We observe that 1 _, 5% = 571 __ #¥ mod ¢ can be used to
represent A\, _, (s =

??‘o|

¥ = t¥) in the large group Z, with ¢ being a
prime number of A-bit length, according to Lemma |1} In other
words, for two random vectors s = [s;];cr and t = [t;]ier

3Following [L7], [19], we can use a bOPRF to compute the items on
both sides before engaging in the bMCRG, which prevents P; from learning
anything about the original items and allows efficient FHE parameters.

4The shared secret is zero, so any T' — 1 parties can reconstruct the share
of the other party.

in Z,, the probability that 3> _, s¥ = ST ¥ mod ¢ holds,
but /\Zzz(siC = t#) does not hold, is negligible.

J-PEQT from TAHE. We use TAHE to homomorphically
compute 2522 sk — 25:2 t* under ciphertexts. Then, all
parties decrypt the ciphertext jointly, and P, checks whether
the plaintext is zero to determine if all corresponding positions
are equal. Since TAHE provides security against an arbitrary
number of colluding parties, our J-PEQT inherits this security.

The construction of J-PEQT from TAHE is as follows:
First, Py, k € [T] run TKeyGen (1) — (pk, [ski]ke(r))-
Py, k € [T] obtain sky, respectively. Then, Py, k € [2,T]
encrypts tF = [t¥];cm), k € [2,T): ¢f = TEnc (pk, t¥), and
send all ciphertexts to P;. P; computes ¢; = (HBI_,ck) B
TEnc(pk, ZZ:Q(*SQC)) and sends ¢, i € [m] to P,. Sub-
sequently, from k = 2to k = T, Py, k € [2,T] chooses m
random values o¥, i € [m] and computes & = o#K &1, and
sends ¢¥ to Pjy1. Pr sends ¢ to Py and Py, k € [2,T — 1].
Additionally, Py, k € [2,T] decrypts the plaintext share
pk = TDec (ski, ¢!'), and sends the plaintext share to P;.
Finally, P; decrypts the plaintext share p} = TDec(sky,écl)
and combine the plaintext p; = Combine(p},p?,---,pl).
From i = 1 to i = m, P; sets b; = 1, if p; = 0, otherwise,
b; = 0. P; outputs the bit vector b = [b;;c[m)-

JP-PEQT from TAHE. The construction of JP-PEQT from
TAHE is similar to J-PEQT from TAHE, except that after
obtaining & = (BY_,¢¥) B TEnc(pk, Y 5_o(—s¥)) by Py,
all parties P,k € [2,T] choose random permutation 7y
over [m] and shuffle [¢f);c,n, k& € [2,T)]. Therefore, P,
only obtains a shuffled indicated bit vector which hides the
intersection. Similarly, JP-PEQT enjoys security against an

arbitrary number of colluding parties.

Security against collusion. During the bMCRG phase, pair-
wise interactions do not suffer from collusion attacks, so
our MPSI/MPSI-Card inherits the security of J-PEQT/JP-
PEQT. TAHE-based MPSI/MPSI-Card protocols enjoy secu-
rity against an arbitrary number of colluding parties. JZSS-
based MPSI enjoys security against 7' — 2 colluding parties.

J-PEQT and JP-PEQT vs. PEQT. J-PEQT and JP-PEQT
can be regarded as extensions of the Private Equality Test
(PEQT) [12]. The PEQT enables two parties to determine
whether their input strings are equal: P;, holding input
strings yi,---,yl, interacts with P,, holding input strings
y3, -+ ,y2,. The result is that P learns an indication bit vector
whether y} = y2, i € [m] or not, while P, learns nothing.
Our J-PEQT and JP-PEQT extend this functionality to a
multi-party setting. The J-PEQT allows multiple parties to
collaboratively determine whether the corresponding inputs of
P and T — 1 other parties are equal. Specifically, P; holds
T — 1 input sets s2,--- ,sT, where s* = {s¥ ... s¥ 1, and
interacts with T' — 1 parties Py, each holding an input string
th = {tk, .- ,tk }. The result is that P; obtains the indication

SIn this work, ciphertexts must be re-randomized before being published
by any party. We omit the details for convenience.

bit vector specifying whether Ar_,(s¥ = t¥) = 1 for each
i € [m], while the other parties Py, k € [2,T], learn nothing.

The JP-PEQT further extends the functionality by outputting
an implicitly permuted indication bit vector. This ensures that
P, does not learn the equal strings, but only the number of
equal strings.

C. Related Work

In this section, we introduce some efficient related MPSI
protocols. The computation and communication complexities
of these protocols and our protocols are shown in Table [I|
where T is the number of participants. ¢ is the maximum
number of corrupted participants. m and n denote the sizes of
the small set and large set, respectively, where m < n. Client-
L/Client-S denotes that the participants hold Large/Small sets.

P Communication ‘Computation Corrupt
rotocols .
Leader Client-L. | Client-S Leader Client-L [Clien-s | Threshold

MPSI 27] | O(Tnlogn) O(tnlogn) O(Tn) O(tn) t<T
MPSI 28] | O(Tnlogn) O(nlogn) O(Tn) O(tn) t<T
O-Ring 291 | O(Tnlogn) O(tnlogn) O(Tn) O(tn) t<T
K-Star [29] | O(Tnlogn) O(tnlogn) O(Tn) O(tn) t<T

[ourMPSI_[O(Tmlogn) [O(mlogn) [O(m) [O(T(mlogn)) | O(T(n+mlogn)) | O(m) | t<T]

ABLE I

COMPARISON OF COMMUNICATION AND COMPUTATION COMPLEXITY
BETWEEN OUR MPSI AND RELATED WORKS.

In 2017, Kolesnikov et al. [27] introduced the first OT-based
MPSI protocol, which was built upon two newly proposed
primitives: the oblivious programmable pseudo-random func-
tion (OPPRF) and conditional zero-sharing. They began by
integrating OPRF from [35]] with three distinct data structures
(garbled bloom filters, polynomials, and hash tables), resulting
in three variants of OPPRF. Subsequently, they designed con-
ditional zero-sharing protocols with security guarantees under
both the semi-honest and augmented semi-honest models.
By combining OPPRF and zero-sharing, they developed two
MPSI protocols tailored to these respective security models.

In 2021, Nevo et al. [28] proposed two MPSI protocols
leveraging an OKVS and OPPRF, building upon the work
of [27] with malicious security guarantees. These protocols
address two scenarios: one assuming no participant collusion
and the other accommodating potential collusion. The protocol
designed for non-colluding participants relies solely on sym-
metric cryptographic primitives, while the collusion-resistant
protocol employs ZeroXOR based on OPPRF.

Recently, Wu et al. [29] introduced two efficient MPSI
protocols, O-Ring and K-Star, both secure against an arbitrary
number of colluding parties. In the O-Ring protocol, they
leverage a ring network topology, allowing the party with the
largest workload to incur lower communication costs com-
pared with other MPSI protocols that utilize a star topology. In
contrast, the K-Star protocol adopts a star topology, enabling
enhanced concurrency and thereby improving the protocol’s
speed and performance. Their core idea is to utilize OKVS to
build a ring to filter out non-common items, and then further
exploit the OPRF to achieve security against an arbitrary
number of colluding parties [27]. They also point out that

scalable MPSI protocols [27]], [28] are prone to the collusion
attack.

Gao et al. [30] introduced a primitive known as bicentric
zero-sharing, which simplifies MPSI to a two-party PSI sce-
nario involving central participants named Pivot and Leader.
They subsequently developed an efficient MPSI protocol en-
suring semi-honest security. However, their protocol does
not protect against simultaneous corruption of both Pivot
and Leader, nor does it achieve security against an arbitrary
number of colluding parties.

II. PRELIMINARIES

A. Notation
For n,m € N, let [n] denote the set {1,2,--- ,n} and [m, n]
denote the set {m,m + 1,---,n}. 1* denotes the string of

A ones. If S is a set, s < S indicates sampling s from S at
random. We denote vectors by lowercase bold letters, e.g. s. H
denotes as the homomorphic addition operation and X denotes
as the scalar multiplication operation. We denote the parties as
Py, k € [T), and their respective input sets as Y*, including
M small sets and N large sets, and M + N =T Let (N, M)
denote the number of parties holding large (resp. small) is NV
(resp. M). Let (n,m) denote the large (resp. small) set size
is n (resp. m), and m < n.

B. MPSI and MPSI-Card

The ideal functionality of MPSI is shown in Figure [5] In
this functionality, each party P;, i € [T] inputs a set Y*; Py
is the receiver who gets the intersection | = ﬂle Y.

Parameters: 7' parties: P;, i € [T], where P,.. is the
receiver, rec € [T]. The bit length of set items is .
Functionality Fyps;:

1) On input Y* = {yi,--- 4, } from P;.

2) Give I = sz:1 Y? output to Pj...

Fig. 5. Multi-party private set intersection

The ideal functionality of MPSI-Card is shown in Figure [6]
where P;, i € [T] inputs a set Y, and P,.. is the receiver
who obtains the intersection cardinality card = | ﬂz;l Y.

Parameters: T parties: P;, ¢ € [T], where P,.. is the
receiver, rec € [T]. The bit length of set items is [.
Functionality F MPSI-Card -

1) On input Y* = {y},--- 4/, } from P;.

2) Give card = | ﬂiTzl Y| output to Pree.

Fig. 6. Multi-party private set intersection cardinality

C. Building Blocks

Batched oblivious pseudorandom function (bOPRF).
OPRF [36] is a central primitive in the area of private set oper-
ations. A batched OPRF (bOPRF) [35] allows the receiver to

input {x;};c[m) and obtains all PRF values {F(k;, ;) }icm»
and the keys {k;};c[m,) is known to the sender. We recall the
functionality Fyoprr in Figure

Parameters: A PRF F. Two parties: S and R.
Functionality bePRF:
1) Wait for input {x1,--- ,z,,} from R.
2) Sample random PRF keys {ki, - -+, k,,} and compute
(F (k). -+ F(km, 7))
3) Give the keys {k1, -+, kmm} to S. Give {F(k1,21), -+,
F(km,zm)} to R.

Fig. 7. Batched oblivious pseudorandom function

Joint zero secret sharing (JZSS). JZSS [37], [38], [39]
generates 7' random values sk e Zg, k € T] for T parties,
such that Ele s¥ = 0mod ¢. In Figure we describe the
functionality of JZSS, denoted as Fjzss. In this work, we use
JZSS based on Shamir’s Secret Sharing [37]], which enjoys
security against 7' — 2 colluding parties.

Parameters: T parties: P;, i € [T.
Functionality Fjzss:
1) Generate T random values s* € Z,, k € [T] such that
25:1 s¥ =0 mod q.
2) Give the values s* to Py, k € [T].

Fig. 8. Joint zero secret sharing

Secret-shared private equality test. Secret-shared private
equality test (ssSPEQT) can be seen as a secret share of private
equality test (PEQT). More concretely, the two parties S and R
hold strings x(and z1, respectively. ssPEQT outputs random
bits a to S and b to R such that if 2g = 21, a® b = 1,
otherwise a & b = 0. Existing works [40Q], [41]], [42], [43]
design linear ssPEQT protocols. We review the functionality
Fspeqr in Figure [0}

Parameters: Two parties: S and R.
Functionality Fpgqr:
1) Wait for the input xy from S.
2) Wait for the input z; from R.
3) Generate two random bits a and b such that if zg = 1,
a®b=1, otherwise, a ®b = 0. Gend a to S, and b to
R.

Fig. 9. Secret-shared private equality test

Random oblivious transfer. Oblivious transfer (OT) [44] is a
central cryptographic primitive in the area of MPC. In random
oblivious transfer (ROT), the sender outputs random messages,
rather than selecting them as in standard OT. We recall the

1-out-of-2 random oblivious transfer functionality Fror in
Figure

Parameters: Two parties: S and R. The message length [.
Functionality Fror:
1) Wait for input b from R.
2) Sample 79,71 + {0, 1}!. Give (r9,71) to S and give 7,
to R.

Fig. 10. 1-out-of-2 random oblivious transfer

Oblivious key-value stores (OKVS). OKVS [43], [46], [20],
[47] is a data structure that compactly represents a desired
mapping from a set of keys to corresponding values.

Definition 1. An OKVS is parameterized by a set K of keys,
a set V of values, and consists of two algorithms:

e Encode({(k1,v1), -, (kn,vn)}): On input key-value
pairs {(ki, vi) }icn) © K <V, outputs an object D (or,
with statistically small probability, an error 1).

o Decode(D, k): On input D and a key k, outputs v € V.

Correcmess. For all A C KC xV with distinct keys: (k,v) €
A and | # D <+ Encode(A) = Decode(D, k) = v.

Obliviousness. For all distinct {k?,--- , k%} and all distinct
{ki, ---, kL}, if Encode does not output L for {£9,--- kO}
and {ki, ---, kL}, then the distribution of {D|v; + V,
i € [n], Encode ((k9,v1), ---, (k2,v,))} is computationally
indistinguishable to {Dlv; + V, i € [n], Encode ((k},v1),
wy (g, vn)) }

Randomness. We also require an additional randomness
property [48] from OKVS. For any A ={(ki,v1), ---,
(kn,v,)} and k* ¢ {k1, ---, k,}, the output of Decode(D,
k*) is indistinguishable to that of uniform distribution over V',
where D < Encode(A).

Hash-to-bin from cuckoo/simple hash. The hash-to-bin from
cuckoo/simple hash technique was introduced by Pinkas et
al. [12]], [49], [L1], which is originally applied to construct
PST [35], [LS], [LZ], [S], [S01, [45], [19], [20] and private set
union (PSU) [511], [52f], [34)], [S3]]. At the high level, the sender
uses hash functions hq,ho,hg : {0,1}* — [m.] to assign
its items X = {z;}icpm) to me bins {X[1],---, Xc[m.]}
via cuckoo hashing [33]], such that each bin has at most one
item, where for each z; there is some v € {1,2,3} such
that X.[h,(z;)] = x;||7. The receiver uses the same hash
functions hq,ho,hg : {0,1}* — [m.] to assign its items
Y = {y;}jem) to me bins {Y1,- -+, Y, } via simple hashing,
where for j € [n], all items are concatenated with hash
function indices (y,||1, y;||2, y;||3) and are inserted to the bins
Yhi(y;) Yhoty;)s Yhs(y,))s respectively. Therefore, if z; € Y,
3j€[n], z; =y, and 3 v € {1,2,3}, such that h,(z;) €
{ha () hayy): hs(y;)} and @illy € {5l 5112, v, 131

6 Appending the index of the hash function helps deal with edge cases like
h1(y) = ha(y), which happen with non-negligible probability [531], ensuring
that there are no identical items in the hash table and all bins are mutually
exclusive.

Following [15], we adjust the number of items and table size
to reduce the stash size to 0 while achieving a hashing failure
probability of 27*. The probability of failure is analyzed
by Pinkas et al. [11]], who show that choosing v = 3 and
me. = 1.27m yields a failure probability of 274, Due to
space limitations, we refer the reader to [[15], [L1] for detailed
parameters.

Threshold additive homomorphic encryption (TAHE).

A TAHE consists of a tuple of probabilistic polynomial-

time (PPT) algorithms (TKeyGen, TEnc, TDec, Combine,

AddEval) as follows:

o TKeyGen(1*,T,t) — (pk, [ski];ci77): On input the security
parameter 1* and threshold parameters (7',t), where T
denotes the number of users and ¢ denotes the threshold
value, the threshold key generation algorithm outputs a
public key pk and T shared secret keys sk; for each user .

e TEnc(pk,m) — ¢ On input the public key pk and a
message m, the threshold encryption algorithm outputs a
ciphertext c.

e TDec(sk;,c) — &;: On input any shared secret key sk;, i €
[T] and ciphertext ¢, the threshold decryption algorithm
outputs a decryption share &;.

o Combine(d1,---,d;) — m: On input any ¢ decryption
shares d;,,j = 1,--- ,t, the combine algorithm outputs the
message m.

o AddEval(pk,c1,ca) — ¢*: On input the public key pk and
ciphertexts ¢; < TEnc(pk,m1) and co < TEnc(pk,m2),
the evaluation algorithm outputs a new ciphertext c* <
TEnc(pk, m1 + ma).

Security. Let A be a PPT adversary against the IND-CPA
security of TAHE. Its advantage function Advﬁ];gf‘ A(A) s
defined as
(il, cee 7it—1) — A(IA,T, t);

(pk, [skilicr)) <+ TKeyGen(1%); 1

(mo,my) < A(pk, skiy, -+ ,ski,_,); | — =

b« {0,1}, c* + TEnc(pk, mp); 2

b« A(pk, ski,, -+, ski,_,,c*);

The (T, t)-TAHE scheme is IND-CPA secure if for all PPT
adversaries, the advantage function is negligible. In this work,
we use an efficient threshold exponential EIGamal encryption
scheme [54]], [S5]] as the instantiation of TAHE, which enjoys
security against an arbitrary number of colluding parties.

Pr|b=10":

Fully homomorphic encryption (FHE). FHE is a family
of encryption schemes that allow arbitrary operations to be
performed on encrypted data without decryption. The leveled
fully homomorphic encryption supports circuits of a certain
bounded depth. In this work, we use an array of optimiza-
tion techniques of FHE as [15]], [17], [19], [34], such as
batching (SIMD), windowing, and partitioning, to significantly
reduce the depth of the homomorphic circuit. For a detailed
explanation, we refer the reader to [15], [L17], [19], [34].
For the implementation, we use the homomorphic encryption
library SEAL [56], which implements the BFV scheme [57]]
following [15[], [17].

III. BATCHED MEMBERSHIP CONDITIONAL RANDOMNESS
GENERATION

In this section, we formally abstract a new cryptographic
protocol named batched membership conditional randomness
generation (bMCRG) from [17], [27]. In Figure we define
the functionality of bMCRG, denoted as Fumcra-

Parameters: Two parties: Py inputs a set Y = {y!};cpn:
P, inputs m mutually exclusive sets {Y;?};c(,).
Functionality fbMCRG:

1) Wait for an input of a set Y = {y] };c[m) from Py.

2) Wait for an input of m sets {Y;*};c[,) from P.

3) Generate two random characteristic vectors s = [si]ie[m]
and t = [t;];[n), Where for i € [m], if y} € Y72, s; = t;,
otherwise s; # t;.

4) Give the vector s = [s;];e[m) to Pi. Give the vector
t= [ti]ie[m] to Ps.

Fig. 11. Batched membership conditional randomness generation

A. bMCRG Construction in the Balanced Setting

We give a construction of bMCRG based on bOPRF and
OKVS in the balanced setting, as described in Figure [12]
where [V ~ [UL, {Y7?}].

Input: P inputs aset Y' = {y}};c[n. P2 inputs m mutually
exclusive sets {Y;?}ic(m)-
Output: P, outputs a vector s = [si];c[m). P2 outputs a
vector t = [ti]icim)-
1) P, and P, invoke the bOPRF functionality FyopRre-
a) Py input a set Y = {y!}icpm)-
b) P obtains all PRF values F(k;,y}), i € [m]. P
obtains PRF keys {k1, -, kmn}.
2) For all i € [m], P, computes PRF values F(k;, Y;*[j]),
where Y;?[j] denotes j-th item in Y%
3) P, encodes an OKVS:

a) P, chooses m random values [t;];c[,,), and defines
P = {(}/;2[]]’ F(k“}/f[]]) D ti)}ie[m],jEHYf\]'
b) P, computes an OKVS: D = Encode(P), and sends
D to Pl.
4) Py decodes s; = Decode(D,y})) ® F(k;,y}), i € [m).
5) Py outputs s = [si]ic[m]. P2 outputs t = [t;];c[m)-

Fig. 12. bMCRG from bOPRF and OKVS

Theorem 1. The protocol Ilyvcrg shown in Figure[I2]securely
implements the functionality Fomcrg (as in Figure @) in
the Fvoprr-hybrid model, against semi-honest adversaries,
provided a secure OKVS scheme.

Proof. We construct Simp, and Simp, to simulate the views
of corrupt P; and corrupt P, respectively, and argue the

indistinguishability of the produced transcript from the real
execution.

o Corrupt P;. Simp, (Y}, s) simulates the view of corrupt P
as follows: Simp, randomly chooses r = [ry,- - ,7,,] and
invokes Sim3&er (Y1, r) and appends the output to the view.
Simp, computes a random OKVS D by selecting random
key-value pairs, except for the encoding {y},7; @ s; }ie[m)-
We argue that the outputs of Simp, are indistinguishable
from the real view of P; by the following hybrids:

— Hyby: Pi’s view in the real protocol.

— Hyb,: Same as Hyb, except that the output of Fyoprr
is replaced by r = [ry,--- , 7] chosen by Simp,, and
Simp, runs the Fyoprr simulator to produce the simulated
view for P;. The security of bOPRF guarantees the view
in simulation is computationally indistinguishable from
the view in the real protocol.

— Hyby: Same as Hyb, except that the object D is generated
by Simp,, and Simp, encodes {y;,r; ® s;}icim and
random key-value pairs into D. Briefly, this simulation
is indistinguishable for the following reasons: The pseu-
dorandomness of PRF value is indistinguishable from
random, and then by the obliviousness of OKVS, D is
distributed uniformly.

o Corrupt P,. Simp, (Y2 t) simulates the view of corrupt
P, as follows: Simp, randomly chooses k = [k1,- - , k)
and invokes SimRSser(| k) and appends the output to the
view. Simp, computes the OKVS D like the real protocol.
We argue that the outputs of Simp, are indistinguishable
from the real view of P» by the following hybrids:

— Hyby: P>’s view in the real protocol.

— Hyb;: Same as Hyb, except that the output of Fyoprr
is replaced by k = [k1, -+, ky,] chosen by Simp,, and
Simp, runs the Fyoprr simulator to produce the simulated
view for Ps.

The security of bOPRF guarantees the view in simulation is
computationally indistinguishable from the view in the real
protocol. O

B. bMCRG Construction in the Unbalanced Setting

Here, We give the construction of bMCRG from bOPRF
and FHE in the unbalanced case following [17], as described
in Figure [13] where |Y1| < |U™, {YV?}].

Correctness. Following the constructions of [15], [L7], [19],
we decouple the hash-to-bin technique to abstract the bLMCRG
functionality, which is then instantiated as the unbalanced
bMCRG constructions. P, encodes PRF values Y, i € [m],
as a polynomial of degree B; = |Y;?| and masks it with a ran-
dom value ¢;. Consequently, when P; decrypts the ciphertext
corresponding to PRF value 4}, it obtains a random value s;.
For each i € [m], if y} € Y2, there exists j € [B;] such that
gt = Y2[j]. We have s; = Fi(y}) = [1;2, (5} = V2[i) +t: =
t;. Otherwise, for all j € [B,], 4} # Y?[j], and hence
si = Fi() = T2 0! = Y21+t # .

Input: P inputs aset Y' = {y}};c[,). P2 inputs m mutually
exclusive sets {Y;?}icpm)-

Output: P, outputs a vector s = [Si];c[m]. P2 outputs a
vector t = [ti]icim)-

1) Both parties agree on parameters of bOPRF and FHE.

2) P and P, invoke the bOPRF functionality F,opRrE-

a) Py input a set Y' = {y! }icpm)-
b) Py obtains all PRF values y} = F(k;,y}), i € [m].
P, obtains PRF keys {k1,- -, kmn}-

3) For i € [m], P, computes PRF values Y[j] = F(k;,
Y?2[j]), where Y;2[j] denotes j-th item, B; = |Y;?|.

4) P, chooses a random vector t = [t;];c[m). For all
i € [m], P, computes polynomials F;(z) = fi(z) + t;,
where for all j € [B;], f:(Y2[j]) = 0. Thus, P, obtains
coefficient matrix A, where i-th column of A are the
coefficients of Fj.

5) Py uses its FHE public key to encrypt ¥ = (4}]icjm]
and sends ciphertexts [7;], i € [m] to Ps.

6) For each [7}], P, homomorphically computes encryp-
tions of all powers C; = [[0], [(z)'],--- , [(#})Z]).
Then, P, homomorphically evaluates C; = A; X C,,
and sends all ciphertexts to P;.

7) Pp decrypts the ciphertexts into s = [5;];e[m]-

8) Pi outputs s = [5];e[m]. P2 outputs t = [t;]ic[m]-

Fig. 13. bMCRG from bOPRF and FHE

Theorem 2. The protocol Ilyyvcrg shown in Figure securely
implements the functionality Fomcrg (as in Figure in
the Fvoprp-hybrid model, against semi-honest adversaries,
provided that the fully homomorphic encryption scheme is
IND-CPA secure.

Proof. We construct Simp, and Simp, to simulate the views
of corrupt P, and corrupt P, respectively, and argue the
indistinguishability of the produced transcript from the real
execution.

o Corrupt P;. Simp, (Y! s) simulates the view of corrupt
Py as follows: Simp, randomly chooses r = [ry, -, 7]
and invokes Sim3ender (Y1, r) and appends the output to the
view. Simp, encrypts s in place of the ciphertexts in step 6.
We argue that the outputs of Simp, are indistinguishable
from the real view of P; by the following hybrids:

— Hyby: P;’s view in the real protocol.

— Hyb;: Same as Hyb, except that the output of Fyoprr
is replaced by r = [ry,--- ,7,,] chosen by Simp,, and
Simp, runs the Fyoprr simulator to produce the simulated
view for P;. The security of bOPRF guarantees the view
in simulation is computationally indistinguishable from
the view in the real protocol.

— Hyby: Same as Hyb; except that the ciphertexts are
generated by Simp, by encrypting s. The simulation is
indistinguishable from the real view.

o Corrupt P,. Simp, (Y2, t) simulates the view of corrupt P,

10

as follows: Simp, randomly chooses k = [k1,- -+ , k;,,] and
invokes SimRceeher(| k) and appends the output to the view.
Simp, encrypts random values in place of the ciphertexts in
step 5.

We argue that the outputs of Simp, are indistinguishable
from the real view of P» by the following hybrids:

Hyby: P»’s view in the real protocol.

Hyb,: Same as Hyb, except that the output of Fpoprr
is replaced by k = [k1, -+, k] chosen by Simp,, and
Simp, runs the Fyoprr simulator to produce the simulated
view for P». The security of bOPRF guarantees the view
in simulation is computationally indistinguishable from
the view in the real protocol.

Hyb,: Same as Hyb; except that the ciphertexts are
generated by Simp, by encrypting random values. The
simulation is indistinguishable from the real view.

The IND-CPA security of the fully homomorphic encryption
scheme guarantees that the view in simulation is computation-
ally indistinguishable from the view in the real protocol. [l

Optimizations. An array of optimization techniques including
batching, windowing, and partitioning, can be used to reduce
the depth of the homomorphic circuit significantly, consistent
with the optimizations in [[15], [17], [19].

When applying the partitioning optimization technique, P»
aims to reduce the depth of the homomorphic circuit (the
polynomial degree) by dividing each set Y;? into « partitions.
Each partition is then encoded as a separate polynomial
of degree B;/a and masked with an independent random
value t;1,...,t. Accordingly, P; decrypts the ciphertext
corresponding to y} and obtains « random values s;1, ..., Siq.
As pointed out in [34], if y! € Y2, the item y; can only be
encoded in one of the a polynomials; that is, there exists a
unique j € [a] such that s;; = t;;, while s;; # t;; for all
other indices. In [17]], this case is handled using generic MPC
protocols. In our work, we employ the ss-PEQT functionality
(depicted in Figure [9) together with the ROT functionality
(depicted in Figure to aggregate multiple pairs of char-
acteristic values (s;;,%;;) into a single pair (s;,t;), thereby
ensuring compatibility with the subsequent J-PEQT/JP-PEQT
protocols, which operate on a single pair of characteristic
values. The construction proceeds as follows:

1) P and P, respectively input [s;;]je[a] and [tij]jefa]
into the ss-PEQT functionality. As a result, P, obtains
[eij]je[a) and P, obtains [dij];e[q), Where e;; © dij =1,
if s;; = t;;, otherwise e;; © d;; = 0. Both parties then
locally compute e; @g‘:leij, d; = EB;-*:ldij.

2) P; and P; invoke the ROT functionality: P, inputs d;.
The result is that P obtains 7; o and 7; 1, P> obtains r; 4, .

3) Py outputs s; = 75,1 and Py outputs t; = r; 4,.
Consequently, if AJ_, (si; # tij), then AT, (eij © dij = 0),
which implies e; & d; = 0 and thus s; = 16,01 # t; =
ri,q,. If there exists a unique j € [a] such that s;; = t;;,
then e;; ® d;; = 1 holds for exactly one index j, implying
e; @ d; = 1, and therefore s; = 7 c,¢1 = 75,4, = ti.

Comparison with the balanced bMCRG. In Figure 10, the
communication cost of our balanced bMCRG equals the sum
of the costs incurred by bOPRF and OKVS. Specifically, the
communication complexity of bOPRF scales linearly with the
size of Y!, while that of OKVS scales linearly with the
sizes of {Y;?};cm)- Hence, this construction is well-suited for
balanced scenarios, where the input sizes of P; and P, are
comparable. In Figure 11, the unbalanced bMCRG inherits the
advantages of the constructions of [[15], [17]], [19], achieving
communication that scales linearly only with the size of
Y'!. By applying the windowing optimization technique, the
design trades communication for computation, reducing the
polynomial degree and resulting in communication that scales
logarithmically with the sizes of {Y;?};c[,,). Therefore, it is
particularly suitable for unbalanced scenarios in which the
input set of P, is significantly smaller than that of P.

IV. JOINT PRIVATE EQUALITY TEST

In this section, we introduce a new cryptographic protocol
named the joint private equality test (J-PEQT). In Figure [T4]
we define the functionality of J-PEQT, denoted as Fj.pgqr.

Parameters: Parties: P; inputs T — 1 vectors s* = [s¥];c (),
k € [2,T). Py, k € [2,T] inputs a vector tF = [tF];c (.
Functionality Fjpgqr:

k _

1) Wait for an input of T'— 1 vectors s = [s{?]ie[m], ke

[2,T] from P;.
[t¥ietm;

2) Wait for each input t* =
parties Py, k € [2,T].
3) Generate a random bit string b = [b;];c[m) such that for
€ [m], if /\,C H(s¥ =1tF), b; = 1, otherwise, b; = 0.
4) G1ve the bit vector b = [b liem) to Pi.

kel[2,T) fromT—-1

Fig. 14. Joint private equality test

A. J-PEQT from JZSS

We give a construction of J-PEQT from the joint zero
secret sharing (JZSS), as described in Figure We generate
secret shares of zero for all parties Py, k € [T], using JZSS.
Then, Py, k € [2,7T] publishes its input, hiding it with the
corresponding zero share, similar to a one-time pad. Finally,
Py checks whether the sums are equal or not.

Lemma 1. For two random vectors s [Sk]kef2,m and
t = [tk]kepe, 1), Where sy, ty, € Ly with q being a large prime
number of \-bit length, let E denote the event /\Z:Q(Sk =
ty). There exists a negligible function negl(-) such that

Pr[EA (Yo se = Yiot) | < negl(h).

Proof. Since s [Sklkee,r) and t = [tglpepe,r) are
two random vectors, where sg,tp € Z,, we have

q»

11

Input: Parties: Py inputs T — 1 vector s* = [sF],c(), k €
[2,T]. Py, k € [2,T] inputs a vector t* = [t¥];c(-
Output: P; outputs the bit vector b = [b;];c[,)-
1) Py, k € [T] encode all strings s*,t* k € [2,T] into Z,.
2) Py and Py, k € [2,T) invoke JZSS, such that P; obtains
e = [eilicim) and Py, k € [2,T] obtains d* = [d¥ieim).
3) Py, k € [2,T] computes and sends ¢ = d¥ + ¥ mod ¢
to P.
4) Py computes p; = Sp_o ¢k 4 e — (X p_y s¥) mod g.
From i = 1 to i = m, Py sets b; = 1, if p; = 0, other-

wise, b; = 0. Finally, P, outputs vector b = [b;];c[m)-
Fig. 15. JZSS-based J-PEQT
Input: Parties: Py inputs 7' — 1 vectors s = [sk]ze[BLAS
[2,T]. Py, k € [2,T) inputs a vector t* = [tF];¢|
Output: P; outputs the bit vector b = [b;];c[m]
1) Py, k € [T] run TKeyGen (1*) — (pk, [sk]kE[T]) Py,

k € [T] obtain sky, respectively.
2) Py, k € [2,T] encrypts t* = [tF];cpmy, k € [2,T]: ¢F =

TEnc (pk,tF), and send all ciphertexts to P;.

3) Py computes ¢! = (B7_,c¥) BTEnc(pk, Y5y (—s¥)),
and sends ¢, i € [m] to Px.

4) Fromk =2to k =T, Py, k € [2,T] chooses m random
values ¥, i € [m] and computes ¢&@ = of K& 1,
and sends ¢¥ to Pyy1. Pr sends ¢! to P and Pk e
2,7 —1].

5) Py, k € [2,T] decrypts the plaintext share p} = TDec
(skg, ¢7'), and sends the plamtext share to Pj.

6) P decrypts the plaintext share p} = TDec(sky, ¢!) and
combine the plaintext p; = Combine(p},p?,--- ,p7).
From i =1 to i = m, P; sets b; = 1, if p; = 0, other-

wise, b; = 0. Finally, P; outputs vector b = [b;];c[m)-
Fig. 16. TAHE-based J-PEQT
Pr {25:2 Sp = Z}f:z tk} = qz;—:z = 1. Due to Pr[E] =
% = q%l, we have Pr[E] =1 — . Therefore,
T T T T
Pr{E’/\(Zsk Ztk)} Pr xPr{Zsk:Ztk]
k=2 k=2 k=2 k=2
1 1
=(1-) — < negl(\
(1= g7s) g < neglV)

Correctness. Due to Fjzss: e; + ZTZQ d? mod ¢ = 0, we
have p; = ZZZZ cF+e— (Z:ZQ sé) mod g = 2522 th

(EZ:Q sf) mod ¢. If p; = 0, it follows that S1_, s, =
Sy tr. Otherwise, 31 _,sp # S1_,tx. According to
Lemma (I} Pr {E A (Zzﬁ sko= Sp_ote)| < negl(N),

which means the event B A (S p_o sk = Sy tk> occurs

Input: P inputs a set Y' = {y }icm). Pe, k € [2,T] input
sets YF = {y¥ }jG[mk ke [2,T).
Output: The receiver P; outputs the intersection [
Mo V"

1) Py and Py, k € [2,T) invoke cuckoo/simple hashing:

a) P, inserts set Y! into the cuckoo hash table and

fills empty bins with the dummy item 1, where
the cuckoo hash table Y! = {Y![i]};cn.) consists
of m,. bins and each bin Y![i] has only one item,
where for each y} there is v € {1,2,3} such that
Yy ()] = willy.
Py, k € [2,T] uses the same hash functions to insert
Y* into the simple hash table, where all item y are
concatenated with hash function indices (yj [I1, y] k2,
Y; %||3) and are inserted to the bins (Y, h s)7Yh2(

b)

v;)’
th) respectively, the table consists of m, bins
{Yl 7Y2) 7)/75%}

2) Py and Py, k € [2,T] invoke the functionality Fymcra
(balanced and unbalanced bMCRG can be selected ac-
cording to the difference in the set size of P, and Py):
a) Py inputs Y,! and Py, k € [2,T] inputs {Y*};cim.)-
b) P obtains s* = [s¥];c(m.1, k € [2,T] and Py, obtains

th = [th]le[m ke [2,T].
3) Py and Py, k € [2,T] invoke the functionality Fjpeor:
a) Py inputs s* = [s¥],c(.). k € [2,T] and P, inputs
th = [tk lieim.)» k € 12,T].
b) P; obtains b = [bi]ic[m.]-
4) Py outputs I = {y}.}, where for i* € [m,], b~ = 1.

]’
2,

Fig. 17. MPSI from bMCRG and J-PEQT

with negligible probability. Therefore, Fjpgqr satisfies cor-
rectness.

Theorem 3. The construction of Figure [I3] securely imple-
ments functionality Fypgqr (as in Figure in the Fjzss
hybrid model, against a semi-honest adversary colluding with
up to t < (T — 1) parties.

Proof. Let C denote the set of all corrupted parties, where
IC| =t < T — 1. Intuitively, the protocol is secure because all
outputs generated by each party are hidden by the outputs
of Fjssz, which is secure against semi-honest adversaries
colluding with up to ¢t < T — 1 parties. Specifically, if at
least two parties remain uncorrupted, the simulator can easily
simulate their outputs by generating random values that are
independent of the inputs of honest parties.

Py ¢ C. Sime(t€) simulates the view of corrupt C as
follows: Sim¢ randomly chooses r* = [r¥];c(,,,) for P, € C
and invokes Sim{,sg ([rF];e(m)) and appends the output to
the view. The security of JZSS guarantees that the view
in simulation is indistinguishable from the view in the real
protocol.

P, ¢ C. This can be divided into the following two cases.

12

— Py ¢ C. This case has already been proven above.

- P e C. Simc(s’,je[T],t’;kec\Pl,b) simulates the \;iew

of corrupt C as follows: Sime randomly chooses r
[rF]ic(m) for all P, € C and invokes Sim{gs([r¥]ic(m))
and appends the output to the view. For b; = 0,i € [m],
Sim¢ chooses T' — |C| random values and appends them
to the view. For b = 1,4 € [m], Slmc chooses T —|C|
random values 7’ ~1 such that Zk 5 8iF + Ztc\Pl
Sy 1T °l' = 0 mod ¢ and appends them to the
view.

The security of JZSS guarantees that the view in simulation

is indistinguishable from the view in the real protocol. O

Instantiation. In this work, we use Shamir’s Secret Shar-
ing [37] to instantiate JZSS. Specifically, T' parties choose
a random polynomial of degree T'— 1 with the first coefficient
as 0, and use the unique identifier of Py, k € [T] as input
to evaluate its zero share, which is secretly sent to Pj. After
receiving the shares from all other parties, anyone can sum the
shares to obtain the joint zero share. This JZSS construction
enjoys security against any 1" — 2 colluding parties.

Remark 1. The construction in Figure [[3] does not entirely
restrict the output result to Py, since any participant, after
receiving all the shares from the others, can verify p;
T k T k
Dok—a € T€i— (Zk:Q Si)

can act as the receiver denoted as Pj...

mod g = 0. Therefore, any party

Parameters: Parties: P inputs 7 — 1 vectors s =
k € [2,T). P,k € [2,T) inputs a vector t* =
a random permutation 7 over [m)].
Functionality Fjp_pgqr:

[Sﬂie[nL]v
[tﬂie[m]’ and

1) Wait for an input of T'— 1 vectors s* = [sf]ie[m], ke
[2,T] from P;.

2) Wait for each input t* = [tF];c(n), k € [2,T], and a
permutation 7y, k € [2,T] over [m] from T — 1 parties
Py ke [2 T]

3) Generate a random bit strlng b = [bi]ie[m) such that

for i € [m], 1f/\k o(sk

b; =0, WhereTl'—WQOTl'gO
4) Give the bit vector b =

) b; = 1, otherwise,
7TT

[1]%E[m] to Pp.

Fig. 18. Joint permuted private equality test

B. J-PEQT from TAHE

We give a construction of J-PEQT from the threshold
additive homomorphic encryption (TAHE), as described in
Figure In this work, ciphertexts must be re-randomized
before being published by any party. We omit the details for
convenience.

Theorem 4. The construction of Figure [I6] securely imple-
ments functionality Fypeqr (as in Figure against a semi-
honest adversary colluding with up to any t < T parties,
provided that the TAHE scheme is IND-CPA secure.

Input: Py inputs T — 1 vectors s* = [s¥];c(n. k € [2,T].
Py, k € [2,T] inputs a vector t* = [tF];c(,,;, and a random
permutation 7, over [m].

Output: P; outputs the bit vector b = [b;];c[m]-

1) P, and Py, k € [2,T] run TKeyGen(1*) — (pk, sk,
-, sky).

2) Py, k € [2,T] encrypts t* = [tF];cm), k € [2,T): F =
TEnc(pk,t¥), and send all ciphertexts to P;.

3) P, computes ¢! = (B7_,c¥) B TEnc(pk, Y5y (—s%)),
and sends ¢, i € [m] to Ps.

4) From k =2to k =T, Py, k € [2,T] chooses m random
values of, i € [m] and computes ¥ = m;,(af K i),
and sends Ef to Pyy1. Pr sends EiT to Py and Py, k €
2,7 —1].

5) Pi,k € [2,T] decrypts the plaintext share p¥ = TDec
(sk, ElT), and sends the plaintext share to P.

6) P; decrypts the plaintext share p} = TDec(sk1, ¢!) and
combine the plaintext p; = Combine(p}, p?, ---, p}).
From i = 1toi = m, P; sets b, = 1, if p; = 0,
otherwise, b; = 0. Finally, P, outputs the bit vector
b = [bi]icim)-

Fig. 19. TAHE-based JP-PEQT

Proof. Let C denote the set of all corrupted parties, where
IC| = t < T. Intuitively, the protocol is secure because all
outputs generated by each party are hidden by the IND-CPA
secure TAHE. Thereby, the simulator can easily simulate their
outputs by encrypting random values that are independent of
the inputs of honest parties.
o P ¢ C. Sim¢(t°) simulates the view of corrupt C as
follows: Sim¢ invokes TAHE.TKeyGen algorithm with other
parties as the real protocol, and obtains (pk, ski). Upon
receiving T'— 1 ciphertexts, it encrypts random values as the
ciphertexts ¢'. The IND-CPA security of TAHE guarantees
that the view in simulation is indistinguishable from the
view in the real protocol.

P, ¢ C, a # T. This can be divided into the following two

cases.

— P; ¢ C. This case has already been proven above.

- Py € C. Sime(sjcy 7p: ¢\ p,- b) simulates the view of
corrupt C as follows: Sim¢ simulates the view of corrupt C
as follows: Sim¢ invokes TAHE.TKeyGen algorithm with
other parties as the real protocol, and obtains (pk, skq,).
Upon receiving a ciphertext ¢!, it simulates the view
as follows: If b; = 0, i € [m], it encrypts random values
as the ciphertext ¢®. If b, = 1, i € [m], it encrypts
zero as the ciphertext ¢*. Upon receiving a ciphertext
¢, it decrypts the ciphertext ¢’ as the real protocol. The
IND-CPA security of TAHE guarantees that the view in
simulation is indistinguishable from the view in the real
protocol.

e Pr ¢ C. This can be divided into the following two cases.
— P; ¢ C. This case has already been proven above.

13

Input: P inputs a set Y' = {y! }icm). Pe, k € [2,T] input

set Vi = {y;?}je[mk], ke [2,T}.

Output: The receiver P, outputs |card = ﬂzzl YF.

1) P, and Py, k € [2,T] invoke cuckoo/simple hashing:

a) P; inserts set Y'! into the cuckoo hash table and fills
empty bins with the dummy item L, where the cuckoo
hash table V! = {Y,'[i]};c[m,] consists of m, bins
and each bin Y,![4] has only one item, where for each
y} there is some 7 € {1, 2,3} such that Y [h, (y})] =
yill-

b) Py, k € [2,T] uses the same hash functions to insert
Y* into the simple hash table, where all item y;“ are
concatenated with hash function indices (y5||1, y}1/2,
y}“\|3) and are inserted to the bins (thl(yj),Y}Z(yj),
Yh’fs(y j)), respectively, the table consists of m,. bins

{Y1k7Y2k7 e 7YT§IC}'

2) P and Py, k € [2,T] invoke the functionality Fimcra
(balanced and unbalanced bMCRG can be selected
according to the difference in the set size of P; and
Py, ke [2, T])

a) Py inputs Y,! and Py, k € [2,T] inputs {Y;*};cpm.)-
b) P obtains s* = [s¥];c (.1, k € [2,T] and P, obtains
t* = [tf]ieim.). k € [2,T].
3) Py and Py, k € [2,T] invoke the functionality Fip.peqr:
a) Py inputs s* = [sF],c(m.) k € [2,T] and Py inputs
t* = [t"];cpmy. k € [2,7)] and a permutation 7y,
k € [2,T) over [m.].
b) P; obtains b = [bi]ic[m.]-
4) Py outputs > b;.

Fig. 20. MPSI-Card from bMCRG and JP-PEQT

- P eC. Simc(sﬁe[2’T],t’C€\Pl,b) simulates the view of
corrupt C as follows: Sim¢ simulates the view of corrupt C
as follows: Sim¢ invokes TAHE.TKeyGen algorithm with
other parties as the real protocol, and obtains (pk, skt).
Upon receiving a ciphertext ¢ —!, it simulates the view
as follows: If b; = 0, i € [m], it encrypts random values
as the ciphertext ¢”, and decrypts the ciphertext ¢’ as the
real protocol. If b; = 1,i € [m], it encrypts zero as the
ciphertext ¢*, and decrypts the ciphertext ¢! as the real
protocol.

The IND-CPA security of TAHE guarantees that the view
in simulation is indistinguishable from the view in the real
protocol. O

Instantiation. Here, we use threshold exponential ElGamal
encryption scheme as the instantiation of TAHE [54]], [55].
This scheme enjoys security against an arbitrary number of
colluding parties. More importantly, our use of this scheme
is not constrained by the inefficiency of exponential ElGamal
decryption, as we only need to verify whether decryption result
is zero, without requiring decryption for non-zero results.

108 F— T 10° . : & 100 T & 10° T T T
2, —e— Ours (10,10) ® “e— Ours (10,10)) = —e— Ours (10,10) s —e— Ours (10,10)
I 105 k|- =~ K-Star (10,10) i]‘ . ~ a- K-Star (10,10) 2 4|7 #- K-Star (10,10) S . - 4- K-Star (10,10)
= —e— Ours (5,10) = 10" o Ous 5100 |1 10—~ Ours (5.10) oo —e— Ours (5,10) |4
—o ot p* KeStar (5,10) 1 = -4~ K-Star (5,10) I -4- K-Star (5,10) Il -4- K-Star (5,10)
g Ours (1,5) EN S Ours (15) || & 1034 Ours (1,5) g Ours (1,5) ||
ERT K-Slfn: 3 10 . K-Star (1,5)) K-Star (1,5) % K-Star (1,5)
s b = el S 1o el LI]
T et 1z " = =k
2 ~ s .
El e 15 = .- =
2 0k ——G——— E 10tk 34 % 10t 5 10% E|
5 5 £ E
3 5 =]
Q ~ = g
100 I I I I I 100 i i i i 2 100 I I I I I z 10t ? ! I I I
214 216 218 220 222 1Mbps 10Mbps 100Mbps 10Gbps 214 216 218 220 222 214 216 218 220 222
The size of large set [Y] € {214, 222} The network bandwidth (Mbps) The size of large set |Y] € {24,... 222} The size of large set [Y] € {214,-.. 222}
Fig. 21. Comparisons of communication and runtime between our MPSI and K-Star [29]]. Both = and y-axis are in log scale. The first figure shows the

communication cost increases as the large set size increases. The second figure shows the runtime decreases as the bandwidth increases. The last two figures

show the runtime increases as the large set size increases.

107 F— ! ! 10° . . & 100 p— ! ! 2 109 ! !
EY —e— Ours (10,10) 3 “e— Ours (10,10)) = —e— Ours (10,10) g “o— Ours (10,10)
I g4 |~ MPSI-Card (10,10) 159 -4~ MPSI-Card (10,10) || & 10° |-+~ MPSI-Card (10.10) Z |-+ MPsI-Card (10,10)]
o 0% e ours .10) — 0% g — Ous (5100 |1 = —e— Ours (5,10) = 10l e Ours (5.10)
~ -4~ MPSI-Card (5,10) " = -4~ MPSI-Card (5,10) Il gt L=~ MPSI-Card (5,10) g -+~ MPSI-Card (5,10)
E 108 | Ours (1,5) o2t 42 108k Ours (1,5) =~ Ours (1,5) oo Ours (1,5) " 4
= MPSI-Card (1,5) | ‘H MPSI-Card (1,5) " 100k MPSI-Card (1,5) 8 MPSI-Card (1,5) |. ;:3‘
< o = —— N I .
g 102p o 4= 102} {1 = =100 1
E LT 2 =107 -
E a1 e = z
El 1 e o ————°* | 2 [1 = =~ 2 b
£ 10 E 10t sy PRI g 10
& z g E
© ; ; ; ; L] £ : ; ; ; L2 ; ; ; ; ;
10° 14 16 918 920 22 10° " y y - g 10°— 14 916 18 20 922 = o0 old 16 18 920 22
2 2 2 2 2? 1Mbps 10Mbps 100Mbps 10Gbps 2 2 2 2 222 2 2 2 2 22

The size of large set |V] € {214, .-

.22}

The network bandwidth (Mbps)

The size of large set [V € {214, .-

.,922)

The size of large set [V] € {214,... 222}

Fig. 22. Comparisons of communication and runtime between our MPSI-Card and MPSI-Card [31] in the unbalanced setting. Both « and y-axis are in log
scale. (N, M) denotes the number of parties holding large (resp. small) is N (resp. M). The first figure shows the communication cost increases as the large
set size increases. The second figure shows that the runtime decreases as the bandwidth increases. The last two figures show the runtime increases as the

large set size increases.

Remark 2. The construction in Figure[I6|does not restrict the
output result to Py, because any participant, after receiving
all decryption shares from the others, can execute the combine
algorithm to verify whether the plaintext is zero or not. Hence,
any participant can serve as the receiver, denoted as Pi...

V. A NEw FRAMEWORK OF MPSI

In this section, we present a new MPSI framework from
bMCRG and J-PEQT as described in Figure

Theorem 5. The protocol Tlyps; shown in Figure |72| realizes
the functionality Fwpsi (as in Figure @) in the (FoMCRG
FypEQT)-hybrid model, against semi-honest adversaries.

Proof. Let C denote the set of all corrupted parties, where
IC| = t < T. Intuitively, the protocol is secure because
all outputs of bMCRG are hidden by J-PEQT. Thereby, the
simulator can easily simulate their outputs by encrypting
random values that are independent of the inputs of honest
parties.

e P ¢ C. Simc(YC) simulates the view of corrupt C as
follows: For all P, € C, Sim¢ runs simple hash to insert Yk
into hash table {Y}*,--- Y% }, and then chooses random
vectors t* and invokes Sim! % o ({V, - ,YE 3 t%) and
appends the output to the view. After that, Sime invokes
Sim§ ppor(th, c¢) and appends the output to the view. The
security of bMCRG and J-PEQT guarantees that the view
in simulation is indistinguishable from the view in the real
protocol.

e P, ¢ C. This can be divided into the following two cases.

14

— Py ¢ C. This case has already been proven above.

- P € C. Sime(YC, I) simulates the view of corrupt C
as follows: Sime runs cuckoo hash to insert Y' into
hash table {Y}', ---, Y, }, and then chooses random
vectors s and invokes Sim % po({Yi, -+, YL} sY)

and appends the output to the view. Sime simulates
other bMCRG protocols as the real protocols appends the
output sy 2] té\ p, to the view. After that, for i € [m.],
Sime sets b; = 1, if Y;! € I, and obtains a bit vector
b = [bi]ic[m,]- Finally, Sim¢ invokes Sim{ b (SQG[Q’T],
tg\ P b) and appends the output to the view.

The security of bMCRG and J-PEQT guarantees that the view

in simulation is indistinguishable from the view in the real

protocol. O

Security against collusion. Since pairwise interactions in the
bMCRG phase are immune to collusion, our MPSI inherits
the security of J-PEQT. TAHE-based MPSI enjoys security
against an arbitrary number of colluding parties. JZSS-based
MPSI enjoys security against 7' — 2 colluding parties.

VI. JOINT PERMUTED PRIVATE EQUALITY TEST

In this section, we introduce a new cryptographic protocol
named the joint permuted private equality test (JP-PEQT). In
Figure [T8] we define the functionality of JP-PEQT, denoted as

Fip-PEQT-

Theorem 6. The construction of Figure [I9 securely imple-
ments functionality Fyp.prqr against a semi-honest adversary

. Size e Comm. Total running time (s) with single thread
‘ (V. A) ‘ 411D ‘ Protocols ‘ (MB) } 10Gbps | 100Mbps | 10Mbps | IMbps }
O-Ring 42137 | 41.459 82.262 398066 | -
(222,210) K-Star 42137 | 42428 79.661 398.697 | -
ours 3432 | 86612 89.735 92313 121.868
O-Ring 111.97 9.485 21.996 104977 | 976.904
(220, 210) K-Star 111.97 9.667 22.318 106.409] 962.161
ours 2.635 21.281 24.264 26.738 54.141
O-Ring 28.538 2013 7.175 28.129 | 248.433
(1,2) (218,210) K-Star 28.538 1.944 7.206 28.041 | 253.022
ours 2494 [5253 8.511 11.179 37.312
O-Ring 811 [0407 3.883 9.858 [73365
(216,210) K-Star 8.11 0.388 3.848 9.727 | 73.371
ours 2494 [3485 6.436 8.709 35.076
O-Ring 3418 | 0.145 3.004 5434 34.059
(214,210) K-Star 3.418 0.125 3.02 5.492 33.815
ours 2494 [2364 5977 8341 | 34867
O-Ring 2318981 | 76,01 268.567 | 2017.932 [-
(222,210) K-Star 2318.981 | 54433 | 246747 | 2184.695] -
ours 3816 [88526 94.423 98.964 151.542
O-Ring 617.26 | 17.136 68.074 536716 | 5343.444
(229,219) K-Star 617.26 12.196 64.291 533.313] 5341.29
ours 3019 [23493 29.036 33.508 83.323
O-Ring 158324 | 3551 18.604 | 139.344 [1374.508
(1,5) (218,210) K-Star 158.324 2.685 17.719 139.257 \ 1363.314
ours 2878 [7542 13.272 17.624 67.125
O-Ring 46418 | 0733 7.096 43.106 | 406.14
(216,210) K-Star 46.418 0.58 6.939 42976 | 406446
ours 2878 [5353 11.176 15.138 66.626
O-Ring 20231 | 0.189 4.079 20441 | 1873
(214,210) K-Star 20.231 0.169 4.127 20.582 | 184.507
ours 2878 | 5.5l 11.023 14.998 64.65
(222,210 O-Ring/K-Star - - - - ‘ -
ours 16224 429.676 | 445273 | 456.808 598.564
O-Ring 1920.668 | 30.892 | 188.019 | 1645629 [-
(220,210) K-Star 1920.668 | 19.183 191.438 | 1776.662] -
ours 122 [104625 | 118519 | 129861 255.627
O-Ring 493729 | 648 49.71 426785 | 4335.62
».5) (218,219) K-Star 493.729 4.187 46.211 424.033] 4355.783
ours 11514 [24.603 39.569 51.776 175.642
O-Ring 146294 | 1324 15.938 | 129.625 | 1275621
(216,210) K-Star 146.294 1.035 15.741 128.305 \ 1272.85
ours 11514 [14709 29.075 39.993 163.752
O-Ring 64.462 | 0366 8.407 58.996 | 565.677
(214,210) K-Star 64.462 0.289 8.29 59.918 | 571.568
ours 11.514 [12806 27.618 38.335 163.319
(272, 910) | O-Ring/K-Star - - - -] -
ours 16.865 433.655 | 457.668 | 470921 650.899
(220 10) | ORing/K-Star - - - - | -
ours 12.841 108818 | 131508 | 142277 307.192
O-Ring 1173918 [11.072 11382 [1008.144 [-
(218,210) K-Star 1173.918 | 8.055 107.918 | 100275 | -
(5,10) ours 12155 [28.593 51.663 65273 227.849
O-Ring 349.568 2.418 38.466 306232 [3067.336
(216,210) K-Star 349.568 2.258 37.209 305.533 \ 3050.333
ours 12.155 19.64 43.568 54063 215.691
O-Ring 154.81 0.698 20.305 140363 | 1352.134
(214,210 K-Star 154.81 0.647 19.93 139.975] 1346.446
ours 12155 | 16597 37.681 51.088 216.075
(222, 10) | ORing/K-Star - - - - | -
ours 32361 860.655 | 894.835 | 918.534 1214.008
(220 g10) | ORing/K-Star - - - - | -
ours 2428 209.621 | 243.665 | 266.244 523.134
O-Ring 2144.032 | 16303 | 203446 | 1833485 | -
(218,210) K-Star 2144032 12228 196274 | 1830635 | -
(10,10) ours 22951 [51.101 87.146 106.583 362.633
O-Ring 639.984 | 3784 | 69437 | 582465 | -
(216,210) K-Star 639.984 3.08 67.055 1334.815 \ -
ours 22951 | 30918 65.449 85.841 340.255
O-Ring 284.111 7.14 38.874 357459 [-
(214,210) K-Star 284111 | 12228 37014 | 285834 | -
ours 22951 [26346 59.247 80.87 338316
TABLE 1T

COMPARISON OF COMMUNICATION AND RUNTIME BETWEEN OUR MPSI
AND THE SOTA MPSI (O-RING/K-STAR) [29]]. — INDICATES AN
EXECUTION ERROR. THE BEST RESULTS OF OUR MPSI (RESP. [29]) ARE
MARKED IN (RESP.).

colluding with up to any t < T parties, provided that the
TAHE scheme is IND-CPA secure.

15

Proof. The proof follows Theorem {4} requiring simulator to
output a randomly shuffled ciphertexts. O

VII. A NEW FRAMEWORK OF MPSI-CARD

In this section, we present a new MPSI-Card framework
from bMCRG and JP-PEQT as described in Figure

Theorem 7. The protocol Ilypsicad Shown in Figure
realizes the functionality Fupsi.cad (as in Figure [6)) in the
(FomcrG, Fip-peqQr)-hybrid model, against a semi-honest ad-
versary colluding with up to any t < T parties.

Proof. The proof is following Theorem [5] O

Security against collusion. Our MPSI-Card is similar to
MPSI from bMCRG and J-PEQT and can be divided into
two steps: bLMCRG and JP-PEQT. Therefore, our TAHE-based
MPSI-Card enjoys security against an arbitrary number of
colluding parties.

Remark 3. The construction in Figure does not fully
restrict the output result to Py, because any participant, after
receiving all decryption shares from the others, can execute
the combine algorithm to verify whether the plaintext is zero
or not and obtain the random indicated bit vector. Hence, any
participant can serve as the receiver, denoted as P,qc.

VIII. IMPLEMENTATION AND PERFORMANCE

Here, we evaluate our MPSI/MPSI-Card and then com-
pare with the SOTA MPSI (O-Ring/K-Star [29]) and MPSI-
Card [31]], in terms of communication and runtime in different
network environments.

A. Experimental Setup

We implement our protocols in C++ and the source
code is available at https://doi.org/10.5281/zenodo.17927023
and |https://github.com/real-world-cryptography/MinBucket-
MPSI. The experiments are conducted on a single Intel Core
i7-13700 CPU @ 5.20GHz with 16 threads and 32GB of
RAM, running Ubuntu. We evaluate our protocols in two
network settings: LAN (10Gbps bandwidth, 0.04ms RTT)
and WAN (100Mbps, 10Mbps, and 1Mbps bandwidth, 80ms
RTT), emulated using the Linux tc command. We leverage the
constructions in [35], [58], [20], [S7] to implement bOPRE,
OKVS, ss-PEQT, ROT, FHE, and use the code from the Vole-
PSI library [39], the SEAL library [56], and the APSI Ili-
brary [60]. As for DDH-based TAHE, we follow the OpenSSL
library [61]. Our code supports multithreading parallelism
following the Vole-PSI library and the OpenMP library [62].
We set the computational security parameter x = 128, the
statistical security parameter A = 40, and use 7 = 3 hash
functions in cuckoo/simple hashing. The item length is 64 bits
following [42], [43].

We configure the unbalanced multi-party setting as follows:
in evaluating the impact of input set sizes, the size of the
small set is fixed at 2'°, while the size of the large set varies
from 24 to 222, allowing us to evaluate protocol performance
under increasing input asymmetry. To analyze scalability with

https://doi.org/10.5281/zenodo.17927023
https://github.com/real-world-cryptography/MinBucket-MPSI
https://github.com/real-world-cryptography/MinBucket-MPSI

respect to the number of participants, we consider configura-
tions ranging from 3 parties (1, 2) to 20 parties (10, 10). Since
MPSI [29] and MPSI-Card [31] do not support unbalanced
input scenarios, all datasets are padded to balanced set sizes
for evaluation. Moreover, as the implementations of [29]], [31]]
do not support multi-threading, we report only single-threaded
results in Table [l and Table [T}

B. Performance Comparisons of MPSI

We compare our MPSI with SOTA works (O-Ring/K-
Star) [29]], and show the results in Table [[I| and Figure 21]

Communication comparison. As shown in Figure 21] re-
gardless of the number of participants, our MPSI consistently
demonstrates significantly lower communication overhea
than [29ﬂ As indicated in Table our protocol reduces
communication costs by a factor of 1.37 to 607.7. In particular,
for set size of (222,219) with participants (1,5), our MPSI
protocol requires 3.816 MB, which is about 607x lower
than MPSI [29]], which requires 2318.981 MB. Since the
communication of MPSI [29] is linear in the size of the large
set, while the communication of our MPSI is logarithmic in
the size of the large set and linear in the size of the small set,
the greater the difference in set sizes, or the more participants
holding the small set, the more significant the advantage of
our MPSI becomes.

Runtime comparison. As shown in Figure 21| our protocol
outperforms MPSI [29] in terms of runtime in low-bandwidth
environments. Our protocol achieves better performance when
there are more participants holding small sets, such as in the
(5,10) and (10,10) scenarios. As indicated in Table [l for
large set sizes from 2'* to 26, the runtime of our protocol
surpasses MPSI [29] by a factor of 3.5 to 15.5 depending
on the network environment. For large set sizes > 2%, the
runtime of our protocol outperforms MPSI [29] by a factor
of 2.5 to 64.1, regardless of the number of participants.
Specifically, for set size (22°,2!%) with (1,5) participants
under 1 Mbps bandwidth, our MPSI requires 83.323 seconds,
64 x faster than MPSI [29], which takes 5343.444 seconds.

C. Performance Comparisons of MPSI-Card

We compare our MPSI-Card with the SOTA work [31]], and
the results are reported in Table [[I] and Figure 22]

Communication comparison. As shown in Figure 22} our
protocol consistently achieves better communication efficiency
than MPSI-Card [31]]. As indicated in Table [[TI, our protocol
achieves a 1.3x to 170.4x reduction in communication costs
across all tested settings. In particular, for set size (22°,210)
with participants (1,5), our MPSI-Card requires 3.019 MB,
which is 170x lower than MPSI-Card [31]], which requires

7Since both the z- and y-axes are log-scaled, and our protocol exhibits loga-
rithmic growth with the large set size, the resulting performance curve appears
approximately flat, reflecting the logarithmic communication complexity with
the large set size.

8Note that K-Star exhibits marginally better runtime than O-Ring, so we
selected K-Star for comparison in Figure E}

16

(N, M) Size Protocols Comm. ‘ Total running time (s) with single thread ‘
’ Y], 1XD (MB) | 10Gbps | 100Mbps | 10Mbps | 1Mbps |
(222, 10) | MPSL-Card - - [- - | -
ours 3.432 86.618 89.745 92267 121.919
(220,910 MPSI-Card | 200.644 | 4.956 14.054 89313 | 855439
’ ours 2,635 21286 | 23.363 26.646 54.2
1,2) (218,910 MPSI-Card | 50.164 0.221 4.362 22592 | 215332
’ ours 2.494 5259 | 8.506 11.101 37.39
(215,910 MPSI-Card | 12.544 0.189 2.127 6.587 54.75
’ ours 2.494 3379 | 6426 8.625 35.119
(214,210 MPSI-Card | 3.139 0.026 1.26 2.106 14.692
' ours 2494 | 2861 | 6178 8342 | 34.895
(222,910 | MPSL-Card - - | - - -
’ ours 3.816 88.535 94437 | 99.033 151.652
(220,910 MPSI-Card | 514.566 | 5116 | 28424 | 222393 | 2190.1
’ ours 3.019 23496 | 29.015 33358 83.446
ws) (215 910 MPSI-Card | 128.646 | 10:232 8.471 56464 | 553.204
’ ours 2.878 7.546 [13294 17.727 67.46
(216,910 MPSI-Card | 32.166 0.194 3.083 15133 | 142632
’ ours 2.878 5407 [1114 15.261 66.598
(214,910 MPSI-Card | 8.046 0.032 1.755 4.517 39.192
’ ours 2.878 5151 [11069 15101 | 64.808
(222,910 | MPSL-Card - - - -] -
' ours 16224 | 429703 445268 | 457.023 598786
(220,210 MPSI-Card | 933.131 | 5.299 48.14 | 400062 | 3968.689
’ ours 122 104.002 [118471 | 130.048 255.729
5.5) (21,210 MPSI-Card | 233.29 0.317 13557 7| 101217 | 1000.285
’ ’ ours 11514 | 24634 | 39571 51621 175.955
(216,910 | MPSLCard | 5833 0.199 4502 26942 | 257212 |
’ ours 11514 | 14681 | 29.048 39.755 | 163.929
(214,210 MPSI-Card 14.59 0.035 2.279 7.802 69.96
’ ours 11.514 12787 | 27657 3805 [163.523
(222, 10) | MPSI-Card - -] - - [-
’ ours 16.865 | 433.665 457.653 | 470556 651.238
(220,910 MPSI-Card | 1456339 | 5.694 | 72.112 | 62285 | 6195.436
’ ours 12841 | 108061 | 131404 | 142579 307.034
(5.10) | (@#,210) MPSI-Card | 364.099 | 0417 19871 | 156.983 | 1559.042
’ ours 12155 | 28626 | 51777 65.301 228438
(216,910 MPSI-Card | 91.039 0.212 6.177 41218 [400.575
’ ours 12.155 19329 | 43583 53754 215366
(214,910 MPSI-Card | 22.774 0.036 2,924 11.637 106.019
’ ours 12.155 16643 [37.72 51254 | 216.59%4
(222,10 MPSI-Card - - - - -
’ ours 32361 | 860.647 894.863 | 918.044 1214.168
(220,910 MPSI-Card | 1979.55 | 6.057 96.654 | 844843 | 8419381
’ ours 2428 | 209.621 | 243722 | 267.577 522972
(10,10) | (21%,210) MPSI-Card | 49491 0.552 26:1897 7 213509 | 2118.025
’ ’ ours 22951 | 51198 | 87.175 | 106226 363.087
(216,210 MPSI-Card | 12375 0.259 7.95 55902 | 544.023
ours 22951 | 30074 | 65458 86.036 340.548
(214,210 MPSI-Card | 30.96 0.039 3.522 15624 139.693
ours 22951 | 26319 | 59.274 81.099 | 338.859
TABLE TIT

COMPARISONS OF COMMUNICATION AND RUNTIME BETWEEN OUR
MPSI-CARD AND THE SOTA MPSI-CARD [31]]. — INDICATES AN
EXECUTION ERROR. THE BEST RESULTS OF OUR MPSI-CARD (RESP. [31]])
ARE MARKED IN (RESP.).

514.566 MB. Since the communication of MPSI-Card [31]] is
linear in the size of the large set, while the communication of
our MPSI-Card is logarithmic in the size of the large set and
linear in the size of the small set, the greater the difference in
set sizes, or the more participants holding the small set, the
more significant the advantage of our MPSI-Card becomes.

Runtime comparison. As shown in Figure our protocol
outperforms MPSI-Card [31] in terms of runtime in low-
bandwidth environments. Our protocol achieves better perfor-
mance when there are more participants holding small sets,
such as in the (5,10) and (10,10) settings. As indicated in
Table for the large set sizes from 2'* to 2'®, the runtime
of our protocol surpasses MPSI-Card [31] by a factor of
1.5 to 8.2 under the low-bandwidth environments with many

participants. For the large set sizes > 22°, the runtime of our
protocol outperforms MPSI-Card [31] by a factor of 1.03 to
26.24, regardless of the number of participants. Specifically,
for set size (229,21%) with (1,5) participants under 1 Mbps
bandwidth, our MPSI-Card requires 83.446 seconds, 26x
faster than MPSI-Card [31]], which takes 2190.1 seconds.

D. Performance of Our Sub-Protocols

We evaluate the performance of our J-PEQT and JP-PEQT,
along with their communication and computation complexity,
in Table [V

Subprotocols (N, M) Comm. Total running time (s) with single thread
(MB) | 10Gbps [100Mbps | 10Mbps | IMbps

J-PEQT (1,2) 0413 1.253 1.899 2.286 7.148
JP-PEQT 1.256 1.919 2.323 7.195

- .883 . . .
J-PEQT (1,5) 0722 2.88 4314 5.157 17.096
JP-PEQT 2.888 4.337 5.292 17.286
J-PEQT ,5) 1135 5.063 7.574 8.89 31.286
JP-PEQT 5.089 7.643 9.152 31.426
J-PEQT (5,10) 1651 7.789 11.577 13.662 48.555
JP-PEQT 7.809 11.608 13.966 48.922
J-PEQT (10, 10) 2168 10.551 15.685 19.166 65.604
JP-PEQT 10.593 15.713 19.395 66.147
TABLE IV

COMMUNICATION AND RUNTIME OF OUR SUB-PROTOCOLS J-PEQT AND
JP-PEQT. 10GBPS BANDWIDTH, 0.04Ms RTT; 100MBPS, 1I0MBPS AND
1MBPS BANDWIDTH, 80MS RTT. (N, M) DENOTES THE NUMBER OF
PARTIES HOLDING LARGE (RESP. SMALL) IS N (RESP. M).

E. Discussions of Our Performance Comparisons

In this work, we focus on unbalanced multi-party scenar-
ios, where M parties hold small input sets and N parties
hold large input sets. Our protocols achieve communication
complexity that scales linearly with the size of the small
sets and logarithmically with the size of the large sets. In
contrast, in balanced multi-party scenarios where all parties
hold comparable-sized sets, this advantage diminishes, and
our protocols are therefore not well-suited for such settings.
Experimental results, presented in Table [l and Table
demonstrate that our MPSI and MPSI-Card protocols achieve
significant improvements in communication efficiency com-
pared to the SOTA protocols [29], [31], and they exhibit
notably shorter execution times in bandwidth-constrained envi-
ronments. However, under bandwidth-unconstrained settings,
their execution efficiency becomes relatively lower. This is
due to the underlying design differences: our sub-protocols, J-
PEQT/JP-PEQT and the unbalanced bMCRG, are constructed
from public-key cryptographic components (e.g., TAHE and
FHE), whereas the protocols in [29], [31]] primarily rely on
lightweight symmetric-key components.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful com-
ments. This work is supported by the National Natural Sci-
ence Foundation of China (No. 62502278, 62272269), Sci-
entific Research Innovation Capability Support Project for

17

Young Faculty (No. ZYGXQNJSKYCXNLZCXMI21), Tais-
han Scholar Program of Shandong Province, and Shandong
Postdoctoral Science Foundation (No. SDBX2024024).

ETHICS CONSIDERATIONS AND COMPLIANCE WITH THE
OPEN SCIENCE PoOLICY

Ethics Considerations. We strictly follow the ethical guide-
lines set forth by NDSS Symposium. Our research does not
involve any ethical issues. All experiments conducted in this
paper are based on publicly available datasets and do not
involve personal or sensitive data, ensuring full compliance
with privacy and data protection standards.

Compliance with Open Science Policy. We fully support
the principles of the Open Science Policy. We have incor-
porated our research artifacts into an open-source reposi-
tory https://doi.org/10.5281/zenodo.17927023| ensuring trans-
parency and reproducibility. By adhering to the open science
principles, we support the broad dissemination of scientific
knowledge and facilitate further research in our field. Our
approach aligns to enhance the reproducibility and reliability
of scientific findings, contributing to a more open and collab-
orative research environment.

REFERENCES

[1] M. Ion, B. Kreuter, E. Nergiz, S. Patel, S. Saxena, K. Seth, D. Shanahan,
and M. Yung, “Private intersection-sum protocol with applications to
attributing aggregate ad conversions,” JACR Cryptol. ePrint Arch., p.
738, 2017.

M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, S. Saxena, K. Seth,
M. Raykova, D. Shanahan, and M. Yung, “On deploying secure com-
puting: Private intersection-sum-with-cardinality,” in IEEE European
Symposium on Security and Privacy. 1EEE, 2020, pp. 370-389.

D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert, “Mo-
bile private contact discovery at scale,” in USENIX Security Symposium,
2019, pp. 1447-1464.

D. Demmler, P. Rindal, M. Rosulek, and N. Trieu, “PIR-PSI: scaling
private contact discovery,” Proc. Priv. Enhancing Technol., vol. 2018,
no. 4, pp. 159-178, 2018.

B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Spot-light: Lightweight
private set intersection from sparse OT extension,” in Advances in
Cryptology - CRYPTO 2019 - 39th Annual International Cryptology
Conference. Springer, 2019, pp. 401-431.

M. Ciampi and C. Orlandi, “Combining private set-intersection with
secure two-party computation,” in Security and Cryptography for Net-
works. Springer, 2018, pp. 464-482.

B. H. Falk, D. Noble, and R. Ostrovsky, “Private set intersection with
linear communication from general assumptions,” in ACM Workshop on
Privacy in the Electronic Society. ACM, 2019, pp. 14-25.

A. Cerulli, E. D. Cristofaro, and C. Soriente, “Nothing refreshes like a
repsi: Reactive private set intersection,” in Applied Cryptography and
Network Security. Springer, 2018, pp. 280-300.

C. Hazay and M. Venkitasubramaniam, “Scalable multi-party private set-
intersection,” in Public-Key Cryptography. Springer, 2017, pp. 175-
203.

P. Rindal and M. Rosulek, “Improved private set intersection against
malicious adversaries,” in Advances in Cryptology - EUROCRYPT, 2017,
pp. 235-259.

B. Pinkas, T. Schneider, and M. Zohner, “Scalable private set intersection
based on OT extension,” ACM Trans. Priv. Secur., 2018.

, “Faster private set intersection based on OT extension,” in USENIX
Security Symposium, 2014, pp. 797-812.

C. Dong, L. Chen, and Z. Wen, “When private set intersection meets big
data: an efficient and scalable protocol,” in ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2013, pp. 789-800.
Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?” in Network and Distributed
System Security Symposium. The Internet Society, 2012.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

https://doi.org/10.5281/zenodo.17927023

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from
homomorphic encryption,” in ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017, pp. 1243-1255.

A. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas, “Private set
intersection for unequal set sizes with mobile applications,” Proc. Priv.
Enhancing Technol., vol. 2017, no. 4, pp. 177-197, 2017.

H. Chen, Z. Huang, K. Laine, and P. Rindal, “Labeled PSI from fully
homomorphic encryption with malicious security,” in ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp.
1223-1237.

A. C. D. Resende and D. F. Aranha, “Faster unbalanced private set
intersection,” pp. 203-221, 2018.

K. Cong, R. C. Moreno, M. B. da Gama, W. Dai, I. [liashenko, K. Laine,
and M. Rosenberg, “Labeled PSI from homomorphic encryption with
reduced computation and communication,” in ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2021, pp. 1135-
1150.

S. Raghuraman and P. Rindal, “Blazing fast PSI from improved OKVS
and subfield VOLE,” in Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security. ACM, 2022, pp.
2505-2517.

S. Mishima, K. Nakasho, K. Takeuchi, N. Hayaishi, Y. Takano, and
A. Miyaji, “Development and application of privacy-preserving dis-
tributed medical data integration system,” in IEEE International Con-
ference on Consumer Electronics. 1EEE, 2020, pp. 1-2.

A. Miyaji, K. Nakasho, and S. Nishida, “Privacy-preserving integration
of medical data - A practical multiparty private set intersection,” J.
Medical Syst., vol. 41, no. 3, pp. 37:1-37:10, 2017.

D. T. Nguyen and N. Trieu, “Mpccache: Privacy-preserving multi-party
cooperative cache sharing at the edge,” in Financial Cryptography and
Data Security, 2022.

R. Inbar, E. Omri, and B. Pinkas, “Efficient scalable multiparty private
set-intersection via garbled bloom filters,” in Security and Cryptography
for Networks, 2018.

A. Bay, Z. Erkin, J. Hoepman, S. Samardjiska, and J. Vos, “Practical
multi-party private set intersection protocols,” IEEE Trans. Inf. Forensics
Secur., vol. 17, pp. 1-15, 2022.

S. Ramanathan, J. Mirkovic, and M. Yu, “BLAG: improving the accuracy
of blacklists,” in 27th Annual Network and Distributed System Security
Symposium, NDSS 2020, San Diego, California, USA, February 23-26,
2020. The Internet Society, 2020.

V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu,
“Practical multi-party private set intersection from symmetric-key tech-
niques,” in ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1257-1272.

O. Nevo, N. Trieu, and A. Yanai, “Simple, fast malicious multiparty
private set intersection,” in ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 1151-1165.

M. Wu, T. H. Yuen, and K. Y. Chan, “O-ring and k-star: Efficient multi-
party private set intersection,” in 33rd USENIX Security Symposium,
USENIX Security 2024. USENIX Association, 2024.

Y. Gao, Y. Luo, L. Wang, X. Liu, L. Qi, W. Wang, and M. Zhou,
“Efficient scalable multi-party private set intersection(-variants) from
bicentric zero-sharing,” in ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2024, pp. 4137-4151.

J. Gao, N. Trieu, and A. Yanai, “Multiparty private set intersection
cardinality and its applications,” Proc. Priv. Enhancing Technol., vol.
2024, no. 2, pp. 73-90, 2024.

X. Yang, L. Cai, Y. Wang, K. Yin, L. Sun, and J. Hu, “Efficient
unbalanced quorum PSI from homomorphic encryption,” in Proceedings
of the 19th ACM Asia Conference on Computer and Communications
Security. ACM, 2024.

R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Algorithms - ESA 2001,
9th Annual European Symposium, 2001, pp. 121-133.

B. Tu, Y. Chen, Q. Liu, and C. Zhang, “Fast unbalanced private set
union from fully homomorphic encryption,” in Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2023, pp. 2959-2973.

V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient
batched oblivious PRF with applications to private set intersection,” in
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 818-829.

18

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]
[56]
[57]

(58]

[59]
[60]
[61]
[62]

M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword search
and oblivious pseudorandom functions,” in Theory of Cryptography,
Second Theory of Cryptography Conference, 2005.

A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612-613, 1979.

M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract),” in Proceedings of the 20th Annual ACM Symposium on
Theory of Computing. ACM, 1988, pp. 1-10.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold
DSS signatures,” in Advances in Cryptology - EUROCRYPT, 1996.

N. Chandran, D. Gupta, and A. Shah, “Circuit-psi with linear complexity
via relaxed batch OPPRF,” Proc. Priv. Enhancing Technol., vol. 2022,
no. 1, pp. 353-372, 2022.

G. Couteau, “New protocols for secure equality test and comparison,”
in Applied Cryptography and Network Security - 16th International
Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings,
2018.

X. Liu and Y. Gao, “Scalable multi-party private set union from multi-
query secret-shared private membership test,” in Advances in Cryptology
- ASIACRYPT, 2023.

M. Dong, Y. Chen, C. Zhang, and Y. Bai, “Breaking free: Efficient
multi-party private set union without non-collusion assumptions,” JACR
Cryptol. ePrint Arch., p. 1146, 2024.

M. O. Rabin, “How to exchange secrets with oblivious transfer,” JACR
Cryptol. ePrint Arch., p. 187, 2005.

B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “PSI from paxos:
Fast, malicious private set intersection,” in Advances in Cryptology -
EUROCRYPT, 2020.

G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Obliv-
ious key-value stores and amplification for private set intersection,” in
Advances in Cryptology - CRYPTO, 2021.

A. Bienstock, S. Patel, J. Y. Seo, and K. Yeo, “Near-optimal oblivious
key-value stores for efficient psi, PSU and volume-hiding multi-maps,”
in 32nd USENIX Security Symposium, USENIX Security. ~ USENIX
Association, 2023, pp. 301-318.

C. Zhang, Y. Chen, W. Liu, M. Zhang, and D. Lin, “Linear private
set union from multi-query reverse private membership test,” in 32nd
USENIX Security Symposium, USENIX Security 2023. USENIX
Association, 2023.

B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private
set intersection using permutation-based hashing,” in USENIX Security
Symposium, 2015, pp. 515-530.

B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai, “Efficient circuit-
based PSI with linear communication,” in Advances in Cryptology -
EUROCRYPT 2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2019,
pp. 122-153.

G. Garimella, P. Mohassel, M. Rosulek, S. Sadeghian, and J. Singh,
“Private set operations from oblivious switching,” in Public-Key Cryp-
tography. Springer, 2021, pp. 591-617.

Y. Jia, S. Sun, H. Zhou, J. Du, and D. Gu, “Shuffle-based private
set union: Faster and more secure,” in USENIX Security Symposium.
USENIX Association, 2022, pp. 2947-2964.

Y. Jia, S. Sun, H. Zhou, and D. Gu, “Scalable private set union,
with stronger security,” in USENIX Security Symposium. USENIX
Association, 2024.

J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second
Edition. CRC Press, 2014.

T. C. 1. JTC, ISO/IEC 18033-6:2019(en) IT Security techniques — En-
cryption algorithms — Part 6: Homomorphic encryption. Netherlands
Standards, 2019.

“https://github.com/microsoft/SEAL.”

J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” JACR Cryptol. ePrint Arch., p. 144, 2012.

P. Rindal and P. Schoppmann, “VOLE-PSI: fast OPRF and circuit-psi
from vector-ole,” in Advances in Cryptology - EUROCRYPT 2021 -
40th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, ser. Lecture Notes in Computer Science,
vol. 12697. Springer, 2021, pp. 901-930.
“https://github.com/Visa-Research/volepsi,”
“https://github.com/microsoft/APSI.”
“https://github.com/openssl/openssl.”

“https://www.openmp.org/.”

https://github.com/microsoft/SEAL
https://github.com/Visa-Research/volepsi
https://github.com/microsoft/APSI
https://github.com/openssl/openssl
https://www.openmp.org/

APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: We have open-sourced the implementa-
tion at https://github.com/real-world-cryptography/MinBucket-
MPSIL. In addition, our artifact is publicly available
at https://doi.org/10.5281/zenodo.17927023,

2) Hardware dependencies: The implementation can be
executed on a commodity computer. All experiments in this
paper were performed on a single Intel Core 17-13700 CPU
@ 5.20GHz with 16 threads and 32GB of RAM.

3) Software dependencies: Our implementation requires
G++ 11.4.0 and Python 3.10.12, and is currently supported
on Ubuntu 22.04. Our implementation relies on the following
libraries: the Vole-PSI [59]], SEAL [56], OpenSSL [61], and
OpenMP [62]].

4) Benchmarks: We set the computational security param-
eter k = 128, the statistical security parameter A = 40. The
item length is 64-bit following [43].

B. Artifact Installation & Configuration

1) Installation: Instructions for installing the required
dependencies are provided in https://github.com/real-world-
cryptography/MinBucket-MPSI. Evaluators can complete the
installation by following the steps described in the accom-
panying README file. In particular, a ready-to-use Docker
image is included to streamline the experimental setup.

2) Code Execution Instructions: Our experiments support
automated testing via scripts. For details on how to run tests,
please refer to E.Evaluation.

C. Experiment Workflow

Our implementation supports both the MPSI and MPSI-
Card protocols, which consist of three core components: bal-
anced bMCRG, unbalanced bMCRG, and J-PEQT/JP-PEQT.
The overall source code structure is summarized as follows:

e MPSI: Our MPSI protcocl is built upon the bal-

anced/unbalanced bMCRG and J-PEQT. The implemen-
tation is organized within the “MinBucket-MPSI/” direc-
tory as follows:

— The “MCRG/” subdirectory implements the balanced
bMCRG protocol (Fig. 8. bMCRG from bOPRF and
OKVS).

The “uMCRG/” subdirectory implements the unbal-
anced bMCRG protocol (Fig. 9. bMCRG from bO-
PRF and FHE). For processing large sets (size >
220y, the relevant components are located in “uM-
CRG/MCRG_diff_large” folder.

The J-PEQT protocol (Fig. 12. TAHE-based J-PEQT)
is located in “uMCRG/JPEQT/” folder.

MPSI-Card: Our MPSI-Card protocol is built upon the
balanced/unbalanced bMCRG and JP-PEQT. It inherits
the bMCRG directory structure from the MPSI imple-
mentation. The code for JP-PEQT (Fig. 15. TAHE-based
JP-PEQT) resides in the “uMCRG/JPEQT/” folder.

For specific details, please refer to Section E.Evaluation.

19

D. Major Claims

e (C1): Our MPSI protocol reduces communication costs
by 1.37x - 607.7x and improves runtime by 3.5x -
15.5x compared with the state-of-the-art MPSI [29].
This is demonstrated by experiment (E1), whose results
are reported in Table II.

(C2): Our MPSI-Card protocol reduces communication
costs by 1.3x - 170.4x and improves runtime by 1.03x
- 26.24x compared with the state-of-the-art MPSI-Card
[31]. This is demonstrated by experiment (E2), whose
results are reported in Table III.

E. Evaluation

1) Experiment (El): [MPSI performance][15 human-
minutes + 15 compute-minutes] This experiment evaluates
our MPSI protocol, which includes the balanced/unbalanced
bMCRG and J-PEQT, and reports both runtime and commu-
nication costs. As shown in Table II, we instantiate a six-party
scenario in which one large-set participant holds a set of size
214 while each of the five small-set participants holds a set
of size 210,

[How to] First, execute the shell script in the root directory
to set up the test environment. Then, run the generated module
test scripts sequentially to measure runtime and communica-
tion cost. Detailed procedures are provided in [Execution].

[Preparation] We evaluate our protocols in two network
settings: LAN (10Gbps bandwidth, 0.04ms RTT) and WAN
(100Mbps, 10Mbps, and 1Mbps bandwidth, 80ms RTT), em-
ulated using the Linux tc command. For example, open a ter-
minal, and execute the following command: tc gdisc add
dev lo root netem delay 0.02ms rate 10Gbit
to configure the local network as 10Gbit bandwidth with
0.04ms RTT. Evaluators can adjust the network settings using
different parameters as needed, such as 100Mbps, 10Mbps,
and 1Mbps bandwidth, 80ms RTT.

Our MPSI protocol supports multiple participants with
heterogeneous set sizes, where the size of each small set is
fixed at 219, and the size of the large sets ranges from 24
to 220, Evaluators can configure the number of participants
by modifying big_receiver_num (number of large-set
participants) and small_receiver_num (number of small-
set participants minus one) in the auto_test.sh script.
To adjust the size of the large sets, modify the param-
eter pow (2,14) in auto_prepare.py located in the
“MinBucket-MPSI/uMCRG/MCRG” directory. The supported
large set sizes are listed in Table II, while the small set size
remains fixed in this experiment.

[Execution] Open a terminal and execute the following
commands sequentially. First, configure the local network
with 10Gbit bandwidth and 0.04ms RTT using: tc gdisc
add dev lo root netem delay 0.02ms rate
10Gbit.

o Navigate to the “MinBucket-MPSI/” directory and run
./auto_test.sh to generate the module test scripts.
Next, execute the test scripts in the following or-

https://github.com/real-world-cryptography/MinBucket-MPSI
https://github.com/real-world-cryptography/MinBucket-MPSI
https://doi.org/10.5281/zenodo.17927023
https://github.com/real-world-cryptography/MinBucket-MPSI
https://github.com/real-world-cryptography/MinBucket-MPSI

der: . /run_uMCRG. sh, . /run_MCRG. sh, and finally
./run_J-PEQT.sh

We additionally provide automated Python scripts to
facilitate experimental evaluation. For example, exe-
cuting python3 MPSI_auto_script.py -nn 14
-big 1 —-small 5 runs an experiment with a large
input set of size 2'4, one large-set participant, and five
small-set participants.

[Results] The total running time of MPSI is the sum of the
output by the script, and the total communication cost of the
protocol is the same. After executing the above commands,
the experiment prints information as follows:

e ./run_uMCRG. sh: Sum the following communication
cost and runtime to obtain the total cost of unbalanced
MCRG.

Communication total: 1896 KB
This indicates that the communication cost of the
first part of unbalanced MCRG is 1896 KB. When
there are « large-set participants, the corresponding
output information will be repeated o times; add them
together.
Total Comm cost 0.204 MB
This indicates that the communication cost of the
second part of unbalanced MCRG is 0.204 MB. Re-
gardless of the number of participants in the large set,
this information appears only once and can be read
directly.
receiver all timel492.90
This indicates that the runtime of the first part of unbal-
anced MCRG is 1492.90 ms. When there are o large-
set participants, the corresponding output information
will be repeated « times; add them together.
MCRG 86.0 85.913 #*xxxkkskkx*
This indicates that the runtime of the second part of
unbalanced MCRG is 85.913 ms. Regardless of the
number of participants in the large set, this information
appears only once and can be read directly.

e ./run_MCRG. sh:

— Total Comm cost 0.100 MB
This indicates that the communication cost of balanced
MCRG is 0.100 MB.

— PMCRG 688.0 687.957 ***x***x%x* This indi-
cates that the runtime of balanced MCRG is 796.207
ms.

e ./run_J-PEQT.sh:

— Total Comm cost 0.722 MB
This indicates that the communication cost of J-PEQT
is 0.722 MB.

— end000 0002883.0 02883.002 **xxxkskk*x*
This indicates that the runtime of J-PEQT is 2883.002
ms.

2) Experiment (E2): [MPSI-Card performance][15 human-
minutes + 15 compute-minutes] This experiment can test our
MPSI-Card protocol, including balanced bMCRG, unbalanced

20

bMCRG, and JP-PEQT, and output the runtime and commu-
nication cost. Our MPSI-Card retains all settings from MPSI
(E1). The sole modification is the substitution of J-PEQT
with JP-PEQT to enable the computation of the intersection
cardinality.

[How to] Run the master script and the scripts it generates,
like experiment E1.

[Preparation] Consistent with experiment E1.

[Execution] If experiment E1 has already been executed,
run ./run_JP-PEQT.sh to obtain the cardinality results
using the original sets from El. Otherwise, to perform a
complete test, follow these steps: First, set up the network
environment by running tc gdisc add dev lo root
netem delay 0.02ms rate 10Gbit to configure the
local network with 10Gbit bandwidth and 0.04ms RTT.

o Navigate to the “MinBucket-MPSI/” directory and run
./auto_test.sh to generate the module test scripts.
Then, execute the generated scripts in the following
sequence: ./run_uMCRG.sh, ./run_MCRG. sh, and
./run_JP-PEQT. sh.

We additionally provide automated Python scripts to
facilitate experimental evaluation. For example, exe-
cuting python3 MPSICA_auto_script.py —-nn
14 -big 1 -small 5 runs an experiment with a
large input set of size 2'4, one large-set participant, and
five small-set participants.

[Results] The runtime and communication overhead of
MPSI-Card comprises the costs from the balanced MCRG,
unbalanced MCRG, and JP-PEQT components. Since the out-
puts of the first two scripts (balanced MCRG and unbalanced
MCRG) are detailed in the [Result] section of El, we focus
here on explaining only the output of the third script.

e ./run_JP-PEQT. sh:

— Total Comm cost 0.722 MB
This indicates that the communication cost of JP-PEQT
is 0.722 MB.

— end000 0002888.0 02888.015 xx*kkxk*kx
This indicates that the runtime of JP-PEQT is 2888.015
ms.

— The size of the intersection of 6
parties is:2
This indicates that the intersection cardinality of the
six-party is 2.

F. Acknowledgement

We would like to express our sincere gratitude to the AE
reviewers for their thorough evaluation of our work.

	Introduction
	Our Contribution
	Technical Overview
	Core ideas: align-then-compare
	A single-point MPSI
	MPSI from bMCRG and J-PEQT
	MPSI-Card from bMCRG and JP-PEQT
	Two kinds of constructions of bMCRG
	Constructions of J-PEQT and JP-PEQT

	Related Work

	Preliminaries
	Notation
	MPSI and MPSI-Card
	Building Blocks

	Batched Membership Conditional Randomness Generation
	bMCRG Construction in the Balanced Setting
	bMCRG Construction in the Unbalanced Setting

	Joint Private Equality Test
	J-PEQT from JZSS
	J-PEQT from TAHE

	A New Framework of MPSI
	Joint Permuted Private Equality Test
	A New Framework of MPSI-Card
	Implementation and Performance
	Experimental Setup
	Performance Comparisons of MPSI
	Performance Comparisons of MPSI-Card
	Performance of Our Sub-Protocols
	Discussions of Our Performance Comparisons

	References
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Installation
	Code Execution Instructions

	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)

	Acknowledgement

