Artifact
Evaluated

ANDss

Available

Functional

On the Security Risks of Memory
Adaptation and Augmentation in Data-plane
DoS Mitigation

Hocheol Nam Daehyun Lim Huancheng Zhou Guofei Gu Min Suk Kang'

KAIST KAIST
hcnam @Xkaist.ac.kr dhlim1114 @kaist.ac.kr

Abstract— Data-plane programmability in commodity switches
is reshaping the landscape of denial-of-service (DoS) defense
by enabling adaptive, line-rate mitigation strategies. Recent
systems like Cerberus [1] augment limited switch memory with
control-plane support to rapidly respond to evolving attacks. In
this paper, we reveal a subtle yet critical vulnerability in this
model; that is, the very mechanisms that enable the defense
system’s agility and scalability can be subverted by a new class
of coordinated DoS attacks. We present HErRAcLEs, the first
attack to exploit hardware-level constraints in programmable
switches to orchestrate precise resource contention across data-
plane and control-plane memory. By leveraging side-channel
timing signals, HERACLES triggers synchronized augmentation,
memory squeezing, and time-window exploitation, which are
three orthogonal contention strategies that significantly degrade
or even completely disable the DoS mitigation capabilities. We
implement and test HERACLEs against real Tofino hardware and
show that it can reliably disrupt DoS defenses across diverse
DoS attack profiles, even when using loosely (1-2 second) time-
synchronized attack sources. To mitigate this threat, we propose
SHIELD, a multi-layered DoS mitigation sketch architecture that
decouples memory operations across control- and data-plane lay-
ers, effectively mitigating the HERACLES attack while preserving
both line-rate performance and detection accuracy.

1. INTRODUCTION

Denial-of-Service (DoS) attacks remain persistent and
evolving threat to Internet services and networks, with ad-
versaries gaining significant advantages in scale and sophis-
tication [2[], [3]. By leveraging large botnets, for example,
adversaries can rapidly scale up traffic volume to exhaust
target network resources [4], [S], [6]. A core adversarial
advantage lies in their adaptability; namely, a DoS coordinator
can continuously monitor the effectiveness of an attack profile
(e.g., attack types, volume, and traffic patterns) and promptly
shift to a different profile to evade mitigation in response to
observed mitigation. This asymmetry presents a long-standing
challenge in the DoS landscape, as data-plane components in

1 Corresponding author

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241857
www.ndss-symposium.org

Texas A&M University Texas A&M University
hczhou@tamu.edu

KAIST

guofei@cse.tamu.edu ~ minsukk @kaist.ac.kr

routers and servers lack the responsiveness required to counter
such agile and reactive attack strategies.

The imbalance has recently begun to shift with advent
of data-plane programmability in commodity switches. In
particular, Cerberus [1] has demonstrated that a switch can
swiftly adapt its DoS mitigation logic (i.e., how to assess the
severity of a specific DoS attack profile) entirely within the
data plane, thereby enabling line-rate response and mitigation
against rapidly changing attack profiles. Furthermore, Cerberus
augments the switch’s limited memory by systematically of-
floading the high-order bits in its counting schemes to the con-
trol plane whenever possible. This first-ever line-rate adaptive
DoS mitigation marks a significant step towards leveling the
long-standing asymmetry between adversaries and defenders
in the DoS landscape.

However, in this paper, we argue and demonstrate that the
subtle limitations stemming from hardware-level constraints
of programmable switches open up a new opportunity for a
new class of DoS attacks that exploit the very flexibility and
augmentation of memory resources celebrated in Cerberus. In
particular, by leveraging the rigid hardware-level constraints
(e.g., limited register access, strict staged pipeline) of pro-
grammable switches, we show that a remote adversary can
infer the precise timing of the switch’s memory augmentation,
resizing, and flushing operations. This knowledge allows the
adversary to orchestrate these operations in a manner that
induces significant confention both among memory resources
within the data plane and over the bandwidth between the
data plane and control plane. The resulting contention on these
critical resources can be exploited to disrupt the switch’s over-
all DoS mitigation functionality, leading to a near-complete
failure in detecting and mitigating DoS attacks.

We illustrate this threat through our HERACLE attack,
which strategically maximizes contention between in-data-
plane memory and cross-plane (i.e., data-to-control plane)
memory resources, ultimately causing significant degradation
in Cerberus’s DoS mitigation performance. The main attack
strategies are illustrated in Figure [T} By carefully preplanning
attack profiles, HERACLEs orchestrates three orthogonal types

'HeracLis: Hybrid Exploitation against Resource-sharing and Adaptive
Co-monitoring for Limited-resource Environment of Programmable Switches.
In Greek mythology, Heracles defeated Cerberus.

General-purpose Memory

Heracles attack strategies
@ synchronized augmentation
(@ memory squeezing

® time-window exploitation

©
)

Mem_Aug_mentation
§

111

Rlﬁ_@#‘
S

R TTT]

Dynamic Mem Allod

Loosel& ® \ (
time-synchronized

Fig. 1. The overview of the HERACLEs attack.

RO[T [+

Parsing
(more stages)

of memory resource contention: (1) Synchronized augmenta-
tion triggers multiple memory offloads to the control plane
(nearly) at the same time, overwhelming it with carry-bit
messages that exceed its processing capacity and network
bandwidth (see §III-B); (2) Memory squeezing manipulates the
adaptive memory allocation logic by expanding in-data-plane
memory for non-target tasks, thereby starving the memory
available to specific DoS mitigation tasks at critical adversary-
chosen moments (see §III-C); and (3) Time-window exploita-
tion takes advantage of the periodic state-refresh behavior
in the heavily packed data-plane memory, injecting traffic at
precise times to degrade detection accuracy during refresh
intervals (see §III-D).

We use Tofino switches [[7] to evaluate the practicality of all
three types of resource contention exploited in the HERACLES
attack. We first leverage a set of new side-channel information
leaks arising from the inflexible hardware-level constraints
of Tofino switches and empirically demonstrate that accurate
inference of the switch’s timing of memory augmentation,
adaptation, and flushing operations is indeed highly practi-
cal with loosely-synchronized (1-2 seconds) attack sources;
see §III-Al Our evaluation of the HERACLEs attack using
four different DoS vectors (i.e., SYN flood, ICMP flood,
DNS flood, UDP flood) demonstrates that a DoS coordinator,
capable of controlling various loosely-synchronized attack
sources (e.g., botnets), can successfully trigger all three forms
of resource contention, ultimately rendering Cerberus’s DoS
mitigation logic almost completely ineffective. For example,
HerAcLEs significantly increases the false negative rate of
Cerberus’s DoS mitigation logic, e.g., 78% with synchronized
augmentation, 50% with memory squeezing, and 100% with
time-window exploitation, which means that the vast majority
of DoS attack traffic would bypass the DoS mitigation and
reach its target servers.

To address this new class of detection bypass attacks, we
devise a new data-plane DoS mitigation scheme that sys-
tematically disassociates the operations of the in-data-plane
and control-plane memory resource adaptation and minimizes
the data-to-control plane bandwidth usage. Our multi-layered
sketch design, called SHIELD, decouples the timing of resource
augmentation, adaptation, and flushing across distinct levels of
the switch’s data-plane and control-plane memory, degrading

the performance of the timing information inference attack.

Also, SHIELD significantly reduces the data-to-control plane

bandwidth usage by carrying over bits across multiple lay-

ers of sketches within the data plane, rather than directly
offloading them to the control plane. By significantly reducing
the adversary’s capability to learn the timing of memory
adaptation in DoS mitigation and congest the data-to-control
plane bandwidth with carry-bit messages, we effectively mit-
igate the HERACLEs attack while preserving both the line-rate
performance and the adaptive nature of the DoS mitigation
logic.

We summarize our contributions as follows:

e We present HERACLES, the first coordinated attack that
exploits flexible memory augmentation mechanisms in data-
plane-programmable switches to induce three orthogonal
types of memory resource contention, ultimately leading to
detection bypass and thus DoS mitigation failure.

e We evaluate HErRacLEs on a real Tofino switch across 4
diverse DoS profiles, showing that an adversary with loosely
synchronized (1-2 seconds) traffic sources can reliably
trigger all three contention types and significantly degrade
Cerberus’s detection accuracy.

e We propose SHIELD, a multi-layered mitigation scheme that
successfully mitigates the HERACLEs attack while preserving
line-rate performance and adaptive detection accuracy.

II. ON STATE-OF-THE-ART PROGRAMMABLE DATA-PLANE DOS
MITIGATION

In this section, we first provide background on pro-
grammable data planes and several constraints in commodity
programmable switches. Then, we introduce a state-of-the-art
resource-sharing data plane application that lays the foundation
for understanding the rest of the paper.

A. A Primer on Programmable Data Plane

Emerging data plane programmability, empowered by pro-
grammable switch ASICs and network programming language
(i.e., P4 [8]]), has introduced high-performance in-network
network engineering terabit-scale line-rate packet processing
capabilities in the switch pipeline. Such programmability
enables network engineers to implement advanced features
such as custom protocols, real-time monitoring, telemetry,
and measurement [9], [I1O], [[L1], as well as enhanced se-
curity mechanisms [12], [L13], [14], [L], [15] directly using
programmable switches.

Resource constraints of programmable switches. While
programmable switch ASICs present a promising alternative
to traditional Software-Defined Networking (SDN) solutions,
with their powerful performance, they also come with inherent
and unavoidable limitations due to hardware-level constraints.
These switches face strict resource limitations, such as a fixed
number of stages and pipelines, limited memory capacity (e.g.,
SRAM, TCAM), and restricted computation resources (e.g.,
SALUs). For example, Intel Tofino [7]], [[16], a commodity
programmable switch ASIC, follows the Tofino Native Archi-
tecture (TNA), which is a variant of Protocol Independent

General-purpose Memory

HENNRRRNNRRNRRNRRRNARNRRRRRRREE
[}

—

T
Offload overflowed values

task A task B | task C task D

Register
virtualization

Adaptive resource reallocation

Fig. 2. Simplified overview of resource-sharing data-plane application design.

Switch Architecture (PISA) [17]. In PISA (including TNA),
for each stage in the pipeline, developers can utilize a lim-
ited number of match-action tables and operations because
resources are independently allocated for each stage. For each
stage in the pipeline, developers can utilize a limited number
of match-action tables and operations because the resources
are independently allocated for each stage.

Programming data-plane applications under constraints.
To overcome constraints of programmable switches, several
sketch data structures are used in programmable switches
while conducting lossy yet precise measurements [18]], [19].
Sketches typically adopt fixed-size data structures such as
counters or hash tables to extract the main characteristics of
the traffic (e.g., packet count, heavy hitter, etc). For example,
count-min sketch (CMS) and Bloom filter (BF) are widely
adopted for counting and set membership, respectively. These
approximate data structures become less accurate over time
due to collisions and other noises. Therefore, they typically
reset sketches at every pre-determined time interval [20], [21]],
1221, 1230, 1240, (140, (250, {110, [150.

B. Flexible Resource Sharing in Programmable Switches

To address the inherent resource constraints of pro-
grammable switches, several recent academic work have fo-
cused on flexible resource sharing and augmentation tech-
niques. For instance, P4Visor [26] proposes a virtualization
framework that enables the modular composition and simulta-
neous execution of multiple P4 programs through automated
code merging and efficient resource sharing. NetVRM [27]]
introduces a virtual register memory abstraction that supports
dynamic memory allocation across concurrent applications.
FlyMon [11] also adopts a SRAM resource sharing mechanism
with an address translation technique while providing runtime
reconfigurable with a predefined unit without any downtime.
Cerberus [1]] applies resource-sharing techniques to in-network
security tasks, specifically targeting the challenges of handling
diverse, high-volume, and dynamic DoS attacks. To make
efficient use of limited resources, data-plane resources are
shared with other tasks. To facilitate a better understanding
of the subsequent paper, we next provide a more detailed
explanation of Cerberus’s adaptive resource-sharing design.
Adaptive memory slicing and cross-layer augmentation.
To support concurrent in-network security tasks under limited
switch resources, Cerberus uses a memory slicing mechanism
as illustrated in Figure 2] This technique allows multiple tasks
to share a single register and ALU by concatenating multiple

— ICMP flood UDP flood —¥— DNS flood —e— SYN flood Benign

=

Traffic Rate (Gbps)
N S o
) ;
Counter size (bits)
-] S

6
l \cdgeti-geniod \ I_’_
04! T T T T T T T T lv T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (sec) Time (sec)
(a) Attack profile (b) Memory slice adjustment
0 300K 100
a 250K —— Uploaded pkts §
% Processed pkts g 50
200K
S R e
2 150k 4
“ 100
© 100K A x
5 <
2 o« 501
50K 4
£ Z
=3 \—
=4 [T T T T T T] T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (sec) Time (sec)

(c) Number of uploaded and processed packets (d) DoS mitigation result

Fig. 3. Cerberus++’s defense performance against hybrid and dynamic DDoS
attack, where attack profiles are randomly changed every 8 seconds.

values from different tasks. One downside of memory slicing
is that it reduces the size of the counter available for each
task, which can lead to frequent overflows. To handle high-
volume traffic without exhausting on-chip memory, Cerberus
uses an offloading-based memory augmentation mechanism,
which is referred to as co-monitoring in [[1]. Cerberus keeps
the least significant bits in the data plane and offloads the
most significant bits, which change infrequently, to the control
plane. This also dynamically adjusts slice length based on the
observed traffic, allocating more slices to tasks that frequently
upload packets to the control plane.

Adaptability to dynamic attacks. To test the claimed adapt-
ability of Cerberus, we conducted an experiment using a
dynamic attack profile, totaling 10 Gbps, where the adversary
randomly changes the attack profile every 8 seconds, as
shown in Figure [3(a). Note that for fair comparison with
all other experiments in this paper, we tested Cerberus++,
which is an improved version of the open-source Cerberus
with optimized control-plane performance; see §III| for more
details about the improvements. The data-plane memory slice
inside Cerberus++ is read according to this attack profile as
shown in Figure [3(b). As shown in Figure [3|c), the control
plane of Cerberus++ temporarily receives a large number of
packets (maximum 250K packets per second); nevertheless, it
can effectively adapt to the changing attack profile and achieve
near-0% of false negative rate within 8 seconds, as shown
in Figure 3(d), confirming the effectiveness of the adaptive
memory slicing and augmentation mechanisms.

III. Tue HERACLES ATTACK

We present the HERACLEs attack and demonstrate its ef-
fectiveness against the state-of-the-art resource-sharing-based
DoS defense system, Cerberus [1l], in this section. Before
we delve into the detailed attack strategies, we discuss the
adversary model and the experiment setting we consider in
this paper.

Adversary model. The adversaries we consider in this paper
aim to bypass the DoS defense system deployed in a target net-
work. The network that deploys the data-plane DoS defenses
shares resources among multiple in-network monitoring and
defense tasks, as done in Cerberus [1]].

We assume the target network operates one or a small num-
ber of programmable switches for in-network DoS mitigation.
This deployment model aligns with the typical architecture
of programmable-switch-based defenses proposed in prior
work [12], [28[, [13], [241, [29], [14], [1]. These switches
are strategically placed at logical chokepoints, such as in-
house scrubbing centers [30]], where suspicious, high-volume
traffic is redirected for inspection and filtering [31]. The
adversary generates DoS traffic aimed at final DoS targets (e.g.,
financial, gaming, or e-commerce platforms) through the target
network, expecting that the traffic will traverse the network’s
programmable switches en route to the victim servers.

In some deployments, the target network may distribute DoS
traffic across multiple switches through simple load balancing
mechanisms, such as ingress routers redirecting traffic at line
rate [30], [32]. While our experiments focus on a single
programmable switch, the attacks and mitigation strategies we
present naturally extend to multi-switch environments where
each switch operates independently to mitigate load-balanced
DoS traffic/

We also assume that the adversary controls large-scale bot-
nets that are geographically distributed across the globe, as is
common in real-world botnets [4]], [33]], [34]. Also, we assume
that the adversary can coordinate these botnets in a loosely
synchronized (e.g., 1-2 seconds) manner to generate attack
traffic. The same assumption has been widely adopted in prior
academic works on pulsing DoS attacks and defenses [35l],
136, 1371, 1381, 1391, [40], 411, [29], [42], [43] and is
supported by real-world botnet campaigns [44], [43].

Experiment setting. For all experiments, we deploy the
open-sourced implementation of Cerberus [46] on the Tofino
programmable switch (Edgercore Wedge-100BF-32X [47]).
We develop our own implementation of the control-plane
application on the switch because the open-sourced Cerberus
only provides a Python version of the control plane that has
poor packet processing performance, which is not suitable
for our DoS attack evaluation. Specifically, for more reliable
and fair evaluation, we implemented a DPDK [48] version
of Cerberus control plane and name this improved version
as Cerberus++. Thresholds and detection policy for each
DDoS mitigation tasks (ICMP/SYN/DNS/UDP flooding) are
borrowed from other work [12], [24], [13], [1], and adjusted
to achieve about 1% false positive rate (FPR) with benign
traffic [49]]. Detailed parameters for the experiment can be
found in [50]].

In our experiment, we used 2GB size of huge pages,
8,192 of RX_RING_SIZE, 32,768 of NUM_MBUFS, and 128 of

2To the best of our knowledge, no coordinated, scale-out solution yet
exists for handling DoS traffic volumes that exceed the capacity of a single
programmable switch.

OTTTTTTTTT1] .
Probing Receiving
)
bots o bots
A @ Block!

i :-:Loosely
" time-synched

Fig. 4. Overview of the HERACLES’s probing process.

BURST_SIZE for DPDK. Also, Intel P4 Studio [51]] and the
bf-sde (version 9.13.1 or higher) must be installed on the
switch or can be simulated using the Tofino-model with Open
P4 Studio [52]]. The switch (or control plane server) operates
with Ubuntu 22.04. We used the Cisco TRex traffic gener-
ator [53|] via NVIDIA Mellanox ConnectX-4 100 Gbps NICs
that are connected to the Wedge 100BF-32X programmable
switch, to generate malicious traffic and send benign traffic
(i.e., CAIDA Internet trace dataset [49]]) to the switch. To
emulate realistic loose synchronization among attack sources,
we added zero-mean Gaussian noise with a standard deviation
of 0.33 seconds to all generated traffic, while bounding within
+1 second to prevent extreme deviations. Our code for the
HEerACLEs attack is publicly available at [S0], although we note
that it, like many other programmable switch-based defense
applications [11], [14], [13]], [24], relies on specific hardware
and software configurations.

In the following, we first show empirically how the adver-
sary infers the internal switch parameters (including precise
timing information) of Cerberus that are necessary for the
Heracres attack (§III-A). Then, we explain three specific
strategies of the HEracLes attack: (1) Synchronizing up-
dates in data-plane counters to overflow carry-bit messages
to control-plane counters (§ITI-B), (2) Squeezing counter-bits
allocated for a certain attack vector (§ITI-C), and (3) Flooding
with new attack profile(s) immediately after the counter resets
(§III-D), demonstrating their effectiveness in each separate
section.

A. Attack Preparation: Inferring Switch Internal Parameters

For the HERACLES attack to be successfully mounted, one
crucial required step that has to be taken first is to infer several
internal parameters of a target switch. This inference step is
critical because the inferred parameters are necessary to trigger
memory resource contention and eventually cause resource
exhaustion.

The inference begins with the probing process (see Fig-
ure [)), where the adversary uses a set of probing bots and
receiving bots to measure the internal parameters of the target
switch. Probing bots are controlled by the adversary to send
probe packets through the target switch. Receiving bots are
also controlled by the adversary to receive probe packets from
the probing bots and count the number of packets they receive
from the probing bots. This probing phase requires only a
small number of bot pairs whose communication paths include
the probed switch. By using a small number of probing bots
(or even a single probing bot), an adversary can effectively

G:l.O El-o‘
a [a)

g o8 008
g o6 $ 06
504 5044
G ‘G

G 02 G 021
Z 0.0 Z 0.0

0 12 3 4 5 01 2 3 4 5 6 7 8

Absolute error (no. of packets) Absolute error (sec)

(a) Accuracy of threshold probing (b) Accuracy of time window inference

Fig. 5. Threshold probing and time-window inference accuracy. We plot the
cumulative distribution of absolute errors over 100 trials each.

emulate a large number of logical sources with their IP ad-
dresses spoofed. Moreover, the probing does not risk exposing
the adversary’s botnet IP addresses to the target switch (thus
avoid being blacklisted by IP-based filtering) because they can
use spoofed source IP addresses in the probe packets.

At a high level, as shown in Figure [4 the HErAcCLES adver-
sary needs to infer three parameters: (1) the filtering threshold
of each task, (2) the time window of each task, and (3) the
task combinations that share the same register. In this probing
process, the probing bots can send probe packets that traverse
the target switch at a varying, adversary-controlled rate, time,
and duration. The receiving bots count the incoming packets
to provide feedback on whether some packets are blocked or
not. Guided by the feedback, the HERAacLEs adversary further
adjusts the attack rate, time, and duration for high inference
accuracy.

1) Inferring Detection Threshold: Knowledge of the fil-
tering threshold for DoS mitigation is critical to our attack
strategy. Specifically, it (i) allows the adversary to avoid
triggering DoS defenses while still sending significant volumes
of attack traffic, and (ii) enables inference of the monitoring
time window and register-sharing tasks, as we elaborate on
later in this section.

This is because thresholding-based filtering is typically im-
plemented using match-action tables in the data plane, where
packets exceeding the threshold are immediately dropped or
rate-limited. Thus, the switch provides a direct and observ-
able response to threshold violations. To infer the threshold,
probing bots send controlled bursts of packets corresponding
to a specific detection task within a short time interval. By
monitoring when packets begin to get blocked or rate-limited,
the attacker can approximate the threshold for that task.

Figure [5[a) shows how the proposed threshold inference
is effective in our realistic evaluation setup. We set new,
randomly-assigned thresholds at the target switch for each
probing process and then test how our probing process can
accurately measure the thresholds. We conduct 100 probing
processes, each with a different threshold. We apply Gaussian
noise (with standard deviation of 1/3 seconds) to the latency
of the probing packets to simulate realistic network conditions.
The results show that the probing process can accurately mea-
sure the thresholds with an absolute error of 0 in 97 out of 100
probing processes. This confirms that our threshold inference
process is capable of accurate threshold measurement with
tolerable absolute error.

2) Inferring Windows Timing: To infer the time window,
we leverage how timestamps are utilized to implement sliding
windows in the Tofino Native Architecture (TNA) [54]. Tofino
provides a 48-bit hardware timestamp, but due to the lack
of native support for 48-bit arithmetic operations, developers
typically use only a portion of this timestamp with slicing [55]],
[56], [S7]. In particular, sliding window mechanisms are real-
ized via match-action tables that detect changes in specific bit
slices of the [1]. For instance, in a 48-bit timestamp tstamp,
the single-bit slice tstamp[33:33] flips approximately every
8.59 seconds, while tstamp[35:35] flips every 34.36 seconds.
This behavior allows us to infer the underlying windowing
logic: by observing which bit transitions are used in the match-
action table, we can deduce the periodicity of the time window.
Even when the probing traffic is affected by timing noise, such
as jitter introduced by the network, this bit-level predictability
enables robust inference of the time window.

Specifically, we aim to recover the following three param-
eters: (1) the period of the time window, (2) the start time
of the window, and (3) the fotal number of windows. Let T,
denote the threshold and P, the period of the time window
associated with task n. The threshold 7, is assumed to be
known from prior analysis (§[II-AT])), leaving the estimation of
P,, and the window alignment as our main focus.

To infer the period of the time window, the sender in a
probing pair transmits packets at varying packet-per-second
(PPS) rates and observes whether any of them are dropped.
The key idea is to manipulate the traffic rate so that, depending
on the size of the time window, the aggregate number of
packets within that window either exceeds or stays below the
blocking threshold. When the PPS is high, the number of
packets sent within a time window can exceed the threshold
T,, triggering packet drops. This occurs when the inequality
P, x PPSyign > T, holds. Conversely, when the PPS is
low, the number of packets in any window remains below
the threshold (i.e., P, x PPSiow < T3,), and all packets are
accepted. To identify such a threshold-crossing point, the
adversary can instruct a botnet to perform an exponential
search over increasing PPS values to find a PPSy;g; that causes
some packets to be blocked. Once this value is found, a
binary search is used to refine the bounds between PPSqy, (no
packets blocked) and PPSy;s, (some packets blocked), thereby
narrowing down the possible values of P,. When the attacker
finds such a pair where PPSy,, results in blocked packets but
PPS,w does not, it implies that the period of the time window
must satisfy:

T, T,
—— <P, < L
PPShpign PPSiow

(D

This inequality provides a tight bound on P, enabling the
attacker to accurately estimate the time window period using
only external probing traffic.

Next, to determine the start time of the time window and the
total number of windows, the sender in the probing pair trans-
mits packets at a rate of PPSy;,, for a duration of T;, /PPSjow
seconds, while varying the start time of transmission. The key

observation is that if the transmission begins at the true start of
a time window, the number of packets sent within that window
will exceed the threshold 7;,, resulting in some packets being
blocked. Conversely, if the transmission does not align with the
actual window start, all packets will fall below the threshold
within each window, and no blocking will occur. With this
insight, the off-path attacker can instruct botnets to try at
different starting times and find the start of the time window.
By repeating this procedure and identifying multiple time
window start points, the attacker can then compute the number
of time windows. This is achieved by analyzing the intervals
between successive inferred window starts and dividing the
total observation period by the estimated period P,.

Figure [5[b) shows the effectiveness of windows timing
inference. We set a new randomly configured time window
setting (period, number, start time) for each probing process
and conduct 100 probing processes, each with a different time
window period, number, and start time. With the experiment,
we confirmed that 96 out of 100 of our probing processes
correctly measure the period and number of the time window.
In the case of inferring the start time of the time window, our
probing process can accurately measure the start time with an
absolute error of less than 1 second for all cases where the
period and number of the time window are correctly inferred
(i.e., 96 out of 100). These results show that our window
timing inference process is capable of accurate measurement
with tolerable absolute error to launch the HERAcCLEs attack.

3) Inferring Register-sharing Tasks: Last, to infer which
tasks share the same register, we leverage a key constraint of
the P4 programming model [S8]], [54]]. In the Tofino Native
Architecture, line-rate performance is maintained by allowing
each packet to access a given register only once as it passes
through the pipeline. As a result, tasks that share a single
register must coordinate their access; that is, they must update
the register simultaneously and use a common key to do so
efficiently.

This constraint implies that co-located tasks also share the
same time window slot. If these tasks were to use different
keys, a packet would need to access the same register multiple
times, which violates the single-access constraint. An alterna-
tive would be to recirculate the packet through the pipeline
multiple times, each time targeting a different key or update
action, but this approach treats each recirculation as a new
packet, significantly degrading throughput.

Avoiding such performance penalties would require ad-
ditional register resources and significantly more complex
pipeline logic, which defeats the original purpose of resource
sharing (i.e., to conserve limited hardware resources). As a
result, developers who implement register sharing typically
avoid complexity and extra resource allocation, reinforcing the
likelihood that co-located tasks share both register and time
window semantics.

Based on the observation and insight that register-sharing
tasks must use the same key for access, we infer which
tasks are mapped to the same register. In Cerberus, mea-
surement tasks rely on key-based data structures such as

count-min sketches and Bloom filters. These structures use
hashed representations of packet tuples, typically 2-tuples
(e.g., source/destination IP addresses), as their access keys
(or flow keys). The use of specific key-feature pairs for DoS
detection and mitigation has been extensively studied over the
past decades [12], [13], [1]. As a result, the tuple formats that
are effective for defending against particular attack types have
become well established and widely adopted. For instance,
ICMP and UDP flood attacks are typically tracked using
2-tuple keys, while more complex reflection-based attacks,
such as DNS amplification and NTP amplification, require
finer-grained identification via 4- or 5-tuple keys to uniquely
distinguish individual flows.

By analyzing the key associated with each task, we can
cluster tasks into candidate groups that are likely to share the
same register. Furthermore, since the time window for each
task has already been inferred in the previous step, we can
refine these groupings by identifying tasks that not only use
the same key but also operate within the same time window.
This cross-referencing allows us to narrow down the set of
plausible co-location combinations.

B. Attack Strategy-1: Synchronized Augmentation

With the measured timing information, we demonstrate the
first attack that exploits the memory resource augmentation
mechanism (called co-monitoring) of Cerberus [1]. Specif-
ically, in this attack, the adversary sends multiple attack
patterns in the form of packets with different flow keys at
a synchronized rate, so that the counters of each task in
the sketch overflow together nearly at the same time. As a
result, the control plane receives a large number of packets
at once, overwhelming its processing capacity and leading to
undercounting.

Let us explain why this rather simple attack strategy is effec-
tive. In sketch-based counting, each packet’s flow ID, derived
by hashing tuples like (src_ip, dst_ip), is used as a key to
store measurement values in the sketch. Thus, when packets
arrive uniformly from diverse sources, each updates its own
counter based on a distinct flow key. Since all flows are subject
to the same maximum counter capacity, uniformly increasing
counters will reach the counter limit and trigger overflow
simultaneously. In Cerberus [[1], such overflows trigger packet
mirroring to the control plane, causing a burst of mirrored
packets and forcing the control-plane application to process
a large number of traffic at once. Consequently, the control
plane (either residing on the switch or an external server)
receives excessive packets at once. Unfortunately, handling
near millions of packets per second can be challenging [59].

The overflow packets in the data-to-control plane link causes
not only some packet loss but critically also undercounting
in the control plane. In DoS defense systems that augment
memory resources, such as Cerberus [1], high-order bits of
the packet count are mirrored to the control plane when a
counter overflows. Thus, a single packet drop in the control
plane is equivalent to missing multiple packet counts in the
data plane, leading to significant undercounting.

— ICMP flood UDP flood —¥— DNS flood —e— SYN flood Benign

= |CMP flood UDP flood —%¥— DNS flood —e— SYN flood Benign

12

N
o
L
=
=)
!

= P
Worsontyy

n
=)
L

©

Traffic Rate (Gbps)
e
o
Counter size (bits)
o
—x

°
o

-
o
!

|

Traffic Rate (Gbps)
o

Counter size (bits)
-]

A

04%@#%

0 5 0 15 20 25 30 0 5 0 15 20 25 30
Time (sec) Time (sec)
(a) Attack profile (b) Memory slice adjustment

0 10 20 30 0 10 20 30
Time (sec) Time (sec)
(a) Attack profile (b) Memory slice adjustment

800K

2 400K _ 1001 B 1001

a —— Uploaded pkts S a —— Uploaded pkts IS

2 300K 4 Processed pkts = 50 2 600K Processed pkts = 50

g | g &

9 o4 . . 5] 0 e L Ak —

3 200k 8 400K

[100 . . 100 {~F N

s g - s g \

g 100K 4 = 50 & 200K = 501

£ £ £ £

=3 0 0 -r T T T T T T =4 0-r T T T] T T ™
0 15 20 25 0 5 10 15 20 25 30 0 10 20 30 0 10 20 30

Time (sec) Time (sec) Time (sec) Time (sec)

(c) Number of uploaded and processed packets (d) DoS mitigation result

Fig. 6. Synchronized augmentation attack against Cerberus++.

Figure[6] presents the results of a synchronized augmentation
attack against Cerberus++, which is our improved implemen-
tation of Cerberus [1]; see §m The attack profile consists of
uniformly distributed traffic, with four distinct attack vectors
each transmitted at a constant rate of 2.5 Gbps, as shown in
Figure [6[a). This simulates a botnet of approximately 10,000
IPs, where each bot sends low-volume packets (e.g., header-
only) at a fixed rate, maintaining a constant inter-packet delay.

We consider a set of loosely synchronized botnets (see our
assumption in §[II), where the adversary synchronizes these
flows by measuring round-trip times (e.g., via ping) to the
router [35]. Since all attack profiles transmit at identical rates,
Cerberus++’s resource-sharing mechanism attempts to evenly
allocate memory slices. Cerberus fails to keep memory slices
in the same ratio due to the control-plane failure to process
all packets, as illustrated in Figure |§kb).

Figure [6{c) illustrates the packet processing performance of
the control plane under a synchronized augmentation attack.
Unlike the naive DoS attack demonstrated in Figure Ekc), this
attack successfully maintains a persistent large overflow. The
control plane of the DoS defense fails to handle all incoming
packets from the data plane due to a combination of factors:
the mismatch between theoretical bandwidth specifications
and actual processing capabilities [59], [60], and a bottleneck
caused by a lock during atomic updates to the data structures
in the control plane. Under the synchronized attack profile, the
packet rate forwarded from the data plane to the control plane
surges to approximately 380K packets per second (pps) while
the control plane processes forwarded packets from the data
plane only about 15K pps on average, as shown in Figure[6fc).

This causes the control plane to handle only a fraction
(only about 4%) of the packets received, which causes a
serious undercounting problem in the control-plane memory.
As we already mentioned, since overflowed messages carry
high-order bits of information in the data plane, a single
message drop in the control plane is actually equivalent to
missing multiple packet counts in resource augmentation de-

(c) Number of uploaded and processed packets (d) DoS mitigation result

Fig. 7. Memory squeezing attack against Cerberus++.

sign. Such significant undercounting and processing delays due
to the bottlenecks eventually disrupt threshold-based defense
systems. This results in about 78% of the attack traffic being
forwarded to the outsourcing server (see FNR in Figure |§kd)),
as simultaneous overflows occur in counter buckets hit by
multiple IP pairs at the same time.

C. Attack Strategy-1I: Memory Squeezing

The memory squeezing attack strategy exploits the flexibil-
ity of Cerberus’s adaptive memory-slicing mechanism. With
this attack strategy, the adversary artificially inflates the mem-
ory demands of all tasks except the intended target task(s),
causing them to appear memory-starved. These tasks then
request additional memory from the control plane, triggering
resource reallocation by reducing the memory assigned to
the target task, which has not shown signs of starvation.
Once the target task’s memory is (inferred to be) sufficiently
reduced, the adversary enters an attack phase, triggering severe
overflows by overwhelming the reduced memory slice of the
target task.

Figure [7] presents the results of the memory squeezing
attack. As shown in Figure [7(a), the adversary changes dif-
ferent attack profiles every 8.59 seconds, strategically sending
non-target attack traffic to manipulate Cerberus++’s adaptive
memory slice mechanism. This attack profile is designed to
reduce the memory slices allocated to two specific target
tasks, DNS and SYN flood detection by inflating the memory
demands of other co-located tasks.

In response, Cerberus++’s control plane adjusts memory
slices based on current memory requirements. As illustrated
in Figure [7(b), the memory allocation for non-target tasks
increases to more than 10 bits, while the allocation for the
targeted DNS and SYN tasks drops to 5 bits. When the actual
DNS and SYN flood attacks begin, as shown in Figure |ZKC), the
reduced counter size lead to frequent overflows, causing the
data-to-control plane traffic to spike about 800K packets per
second (pps). This overwhelms the link, resulting in significant

packet loss. Consequently, the control plane fails to observe
enough overflows to hit the detection threshold, leading to
persistent undercounting. As a result, the false negative rate
(FNR) remains high, averaging around 50%, as shown in
Figure [7(d), which means it filters only 50% of malicious
traffic.

D. Attack Strategy-1II: Time-window Exploitation

In this attack, the attacker exploits the window-based sketch
refresh mechanism to evade threshold-based detection. Specif-
ically, since the sketch periodically resets measurement values
at the start of each new time window, an adversary who knows
both the threshold and the window interval can send many
flows with distinct keys, each staying below the detection
threshold within a single window. This prevents the sketch
from accumulating enough per-flow evidence to trigger an
alert. The number of transmitted packets per IP pair triggered
by this attack strategy is smaller than that of other two
attack strategies because it does not cause undercounting.
To compensate and still cause harm, the adversary increases
the packet size, thereby maximizing bandwidth consumption.
Although the attacker could increase the number of distinct
flow keys by generating more unique source IP addresses,
doing so incurs additional cost, which makes this option less
attractive for low-cost adversaries.

This vulnerability arises from a common design choice in
sketch-based monitoring systems. Sketches provide approx-
imate flow tracking but suffer from accuracy degradation
over time due to hash collisions and limited counter space.
To address this, developers typically implement one of two
refresh strategies: manual resets triggered by the control plane,
or window-based refresh mechanisms [23]. Considering the
need for maintaining long-term measurement reliability, most
systems adopt the window-based refresh approach [13]], [24]],
[14], [15], (1), [61]. However, we show that this mechanism
can be exploited by adversaries who have inferred internal
states, specifically, the timing and structure of the window
transitions, to repeatedly evade detection by remaining below
threshold within each window.

Figure [8] demonstrates the effectiveness of the time-window
exploitation strategy against Cerberus++. As shown in Fig-
ure[§]a), the adversary sends malicious traffic at the same rate,
but not reaching the threshold of Cerberus. To maintain the
same traffic rate as in previous attacks, larger packet sizes
are used, resulting in a 20 times reduction in the number of
transmitted malicious packets. Despite this, the overall traffic
volume remains high. Figures [§(b) and (c) show that the
attack still causes counter overflows; however, unlike previous
attacks, approximately 63.1% of the mirrored packets are
successfully processed by the control plane, enabling more ac-
curate measurement. Nevertheless, as shown in Figure Ekd), no
individual IP pair surpasses the configured threshold, resulting
in a false negative rate (FNR) close to 100%, and allowing the
attack to bypass Cerberus++’s defense mechanisms.

— ICMP flood UDP flood —¥— DNS flood —e— SYN flood Benign

N

w

-

o
!

) N

gt |

~

=3

©
L

L

S 10 15 20 25 30
Time (sec)
(b) Memory slice adjustment

Iy
=]

Traffic Rate (Gbps)
&
Counter size (bits)
~ -]

N
N

e
wn
o

o1t

5 0 15 20 25 30
Time (sec)
(a) Attack profile

o

W 250K 100 4

% —— Uploaded pkts ;@

9 200K Processed pkts ~ 504

& a

S 150K A “ A Lo.a

= 100

45 100K —

° g

& sk J = 50

€ . . | ol 2

2 L LR e M 04 ; : : : : :
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Time (sec) Time (sec)

(c) Number of uploaded and processed packets (d) DoS mitigation result

Fig. 8. Time-window exploitation attack against Cerberus++.

IV. THE SHIELD SKETCH DATA STRUCTURE

In this section, we introduce SHIELDEL a novel sketch data
structure designed to handle dynamically changing DoS attack
profiles in programmable data planes, with a particular focus
on mitigating the HERACLEs attack. SHIELD is engineered to
match the resource-sharing efficiency and DoS mitigation per-
formance of state-of-the-art systems like Cerberus [[1], while
fully neutralizing the vulnerabilities exploited by the HERACLES
attack.

The core idea behind SHIELD is to decouple timing in-
formation across multiple hierarchical layers, rendering it
significantly harder for adversaries to infer the timing patterns
essential to launching HeracLEs. Each layer in the hierarchy
independently performs sketch reset or decay operations at
different time intervals, thereby obfuscating the timing signals
that adversaries rely on.

A. Data Structure

The design goals of SHIELD are threefold: (1) Enabling con-
current DoS defense tasks by supporting multiple mitigation
tasks within a single sketch; (2) Obfuscating the timing infor-
mation by distributing sensitive sub-timing information across
multiple layers, preventing adversaries from measuring it; and
(3) Minimizing data-to-control plane communication, thereby
significantly mitigating control-plane flooding attacks. The
first goal ensures flexible and high-performance DoS defense,
similar to Cerberus. The latter two goals directly counter the
HeracLEs attack. To be specific, timing obfuscation disrupts
the attack preparation step by degrading inference of schedul-
ing parameters, and communication minimization mitigates
control-plane flooding caused by synchronized augmentation
or memory squeezing.

To meet these goals, SHIELD adopts a hierarchical layered
register design. This architecture enhances timing obfuscation
and improves memory efficiency by allocating numerous small

3Shared Hierarchical Registers for Layered Decay

le P T2 T Ts Forward overflowed bit
T to higher layer Multiple tasks share
3

f T T T T the same register

S |

1
|

H

|

|

v f

. '

T

« '

/ H

;! —
}/

T, T, T3 T,

T
:
[Wn
;
i

s

R S S—

N, by-bits register

'
'
H
'
'
v
v
T
i
i

b,-bits register 1bit 7

carry flag

T
[
[
T
I
[
[
I
Vo
Vo
I
Vo
Vo
3Ran

I
e
T
gy
P
JEY
s
i
¥ty
iy
gifitcy
i

.
——

bn .
by-bits register (G — D-bits buckets for T,

Layer 1 Layer 2 Layern

(a) Simplified overview of the SHIELD.

Most Significant bits Least Significant bits
A0St Slgnijicant £ ast lgnijicant bits

Tl[f,-] I Layern I l Layer 2 Layer 1
b b b
P 22 _ 1Y -pii 21 _ 1) -pi
(: 1) -bits (4 1) -bits (4 1) -bits

(b) Logical counter bucket for task T1.

Fig. 9. Overview of SHIELD. Each layer stores counters of different tasks
(T1-Ty) in the same register. Overflowed bits at lower layers are transferred
to higher layers.

counter buckets for frequent, low-volume (or mouse) flows and
fewer larger buckets for high-volume (or elephant) flows, re-
flecting the typical skewed distribution of network traffic [62],
[63]], [64].

As shown in Figure [0 SuieLp consists of n layers of
registers. Each register is implemented as an array of size w,,
and each array element contains a bucket of b, bits. These
buckets are shared across four different in-network counting
tasks (7} to Tj) in this example. For illustration, Fig. O] uses
four tasks with equal-sized memory slices, but both the number
of tasks and slice sizes are developer-configurable. Each task
within a register is isolated by fixed-size memory slices and
carry flags. Unlike Cerberus [1]], these slices in SHIELD are
immutable at runtime.

SHIELD also differs from Cerberus in how it handles counter
overflows. When a lower-layer counter overflows, the excess is
forwarded to the next higher layer, not directly to the control
plane, enabling hierarchical bit propagation. Lower layers store
lower-order bits with fine granularity for tracking frequent,
low-impact flows, while higher layers accumulate overflowed
higher-order bits to enable accurate tracking of heavy hitters
without overestimation, as shown in Figure [9fa).

This design is formalized using a hierarchical bit-encoding
scheme. In traditional layered sketches [63]], [[64]], the estimated
flow count fi is computed as:

L
fi=>_ali,)
=1

where C[i] is the counter value for flow ¢ in layer [.
In contrast, SHIELD encodes the flow count as:

L

fi= (Gl x 22570, 3)

=1

Match Action param
Parse(fy)| Tt

—_— T1,T2

action calc_value(bit<32> param) {

update_value = param
update_value = axeeo—‘

Incremented
bucket of T1

0x1000 f=——b{

0x1100

calc_value

calc_value

Incremented
bucket of T1

is rf
‘Forward’ value

b0110 to the next layey
+1 =1

b0111 b1000 001011011 b01011100
1 Recirculate for reset bucket

T1T T2T37T4
(a) Update operation of a flow key f;.

reg_1
b0001

reg_l2
b00011001

is NOT overflow,
‘Read only’ next layers

b0000

h(f1)

Shift register

global_time1l = o |regllwi '!

global_timel = ig_prsr_md.global_tstamp[33:33] | global_time2 = @ reg_1_wo
global_time2 = ig_prsr_md.global_tstamp[35:35] hl(fl - —l

1 0001 curr_12_ts = reg_l12_ts.read() 1 0001
1 b0000 if (global_time2 != curr_12_ts) {
reg_l2_ts.update(global_time2) d 50000
1 b0110 reg_l2.decay(x) 1 b0110
1] o111 LI 0 bl bo011
ha (f1) -
reg_2_ts reg_2 Recirculate

(b) Decay operation of a flow key f.
Fig. 10. Example operations of SHIELD.

where b; is the bit-width of counters in layer j. This ensures
that each layer contributes to the final count at the correct bit
position, preserving numerical accuracy across layers.

Figure Ofb) illustrates the logical counter buckets for each
task in SHIELD. By promoting only the most significant bits
to higher layers, SHIELD provides the illusion of a large,
unified counter with effective bit-width equal to the sum of
all layer widths. This design reduces the frequency of control-
plane updates by avoiding premature overflows that would
otherwise trigger reporting in shared-memory environments.
A theoretical analysis of SHIELD’s estimation error and the
effects of decay is provided in Appendix [A]

B. Operations

At its core, SHIELD employs a hierarchical structure, where
each layer functions similarly to a counting Bloom filter
(CBF) [65]. We describe two key operations that support
multiple mitigation tasks and enable automatic sketch refresh:
each layer operates like a CBF, so we describe two main
unique operations for multiple task support and automatic
sketch refresh: (1) Update and (2) Refresh.

Update. SHIELD is designed to support multiple concurrent
tasks within a shared register. When an incoming packet with
a flow key f; arrives, as illustrated in Figure @ka), the packet
is classified into one or more tasks based on the parsed results.
SHIELD then determines the appropriate update_value based
on the task and its predefined slice within the register. SHIELD
saves these increments (i.e., update_value) in the match-
action table in advance: For example, in Figure [T0fa), Task 1
occupies the highest bit, so we need to add 0x1000 to increase
the counter of Task 1. The index of register is defined with the
hash ¢ = h;(f1) mod w;, and SHIELD supports using multiple
hashes like a CBF.

After the increment, SHIELD checks for overflow. If the carry
flag is set (i.e., overflow), the overflowed bit is propagated to
the next layer to increment the task’s value in the next layer by
1. If no overflow occurs, upper layers are accessed in read-only
mode, without being incremented. If all layers, including the

highest layer n, overflow SHIELD generates a mirror packet and
forwards it to the control plane, similar to the co-monitoring
mechanism in Cerberus [1]. Since each register in Tofino can
be accessed only once per packet as it moves through the
pipeline, SHIELD resets the carry flag via recirculating the
packet.

Refresh. SuieLD offers two refresh mechanisms for each layer
to decouple the timing information with the sketch: time
window-based reset and bit shift-based decaying.

Figure [I0[b) illustrates the decay operation. Upon receiv-
ing a packet, SHIELD extracts global_time value from the
hardware timestamp in the parser metadata. Each layer can
have different global_time, which means different layers can
use different time decay period. For example, layer 1 register
for window 1 (reg_11_w1) shifts to the next window register
(reg_11_w0) based on global_timel value. This results in
periodic full reset of layer 1, which is beneficial for handling
short-lived mice flows, as layer 1 contains small-sized buckets.

In contrast, layer 2 or higher layers employ decaying rather
than window shifting. Each register in these layers is associated
with a 1-bit timestamp register (reg_12_ts in Figure [I0[b)).
If the hardware timestamp value in global_time differs from
the value from reg_12_ts, SHIELD triggers a decay operation;
that is, a bit shift followed by an AND operation (using a
predefined mask) (through recirculating) and initializes all
unnecessary bits to zero, to eliminate values that invade each
task boundary.

One notable implementation challenge arises from a fun-
damental architectural limitation of programmable switches;
namely, it is not possible to update all register entries con-
currently. As shown in Figure [I([b), the decay operation in
SHIELD is only triggered when a packet hits the corresponding
register entry after the global_time has transitioned. Yet, it
is undesirable to rely solely on natural traffic to ensure that
every entry is decayed within the decay interval. Without full
coverage, many entries would retain stale values, compromis-
ing the effectiveness of the decay mechanism.

We solve this problem by proactively generating and in-
jecting specially crafted helper packets that are designed to
access all register entries in a given layer and expedite decay
for entries that have not yet decayed once the new window
starts. Thus, once decay has occurred within a given window,
no further decay operations can be triggered. Because the hash
functions used in SHIELD are known at design time, we can
precompute the necessary flow keys to ensure complete cov-
erage of all register indices. We then periodically inject these
helper packets at every decay or reset interval, ensuring that
all entries undergo the appropriate decay operation, regardless
of actual traffic patterns. This subtle yet effective approach
enables SHIELD to maintain fresh and accurate counters with-
out resorting to costly bulk updates from the control plane,
preserving both correctness and line-rate performance.

V. EVALUATING SHIELD

In this section, we evaluate the performance of SHIELD. We
first show the robustness of SHIELD against the HERACLEs

—>— ICMP flood UDP flood —¥— DNS flood —e— SYN flood Benign
’ua? 100
2 107 &
_§ gl g 80
=~ _| % 60
86]
E o
~ 4 5 40
5 5
£ 2 2 204
< £
01 gy ER
T T T T =z T T T T
0 10 20 30 0 10 20 30
Time (sec) Time (sec)
(a) Attack profile (b) Number of uploaded packets
100 100 1
80 80
8 60 R 60
o o
a 404 Z 404
[T [
20 4 20 4
[RO T TINY |
0 —— T =1 0- ; g g
0 10 20 30 0 10 20 30
Time (sec) Time (sec)

(¢) DoS mitigation result (FPR) (d) DoS mitigation result (FNR)

Fig. 11. HeracLEs attack against SHIELD.

attack (§V-A). Then, we evaluate its accuracy (§V-B) and
resource overheads (§V-C).

A. Robustness against HERACLES

We evaluate how SHIELD is robust against HERACLEs attacks.
The experimental setup for the evaluation is the same as in
Section [III} except that the target system is changed to SHIELD.
For this, we implemented the Tofino version of SHIELD and
launched the HErRACLES attack. In this evaluation, we use three-
layer structured SHIELD and use two hashes for entry key. In
our implementation, each layer uses a 32-bit register of size
216 two 32-bit register of size 2'°, and two 32-bit register
of size 2' to deploy four in-network defense tasks. Our
P44 implementation of SHIELD for Intel Tofino programmable
switch is available at [50].

We begin by evaluating whether SHIELD effectively disrupts
the timing inference phase (i.e., the attack preparation step) of
the HErAcLEs attack. Using the best-effort inference strategy
described in §III-A] we observe that SHIELD significantly
reduces the accuracy of time-window inference compared
to Cerberus. For time-window inference, SHIELD produces a
median absolute error of 4.29 seconds (which is the same as
the maximum error in our experiment setup of 8.59-second
window size), compared to 0.29 seconds in Cerberus, which
shows significant degradation. In contrast, SHIELD demon-
strates marginal degradation of the threshold inference (a me-
dian absolute error of 1 packet, whereas Cerberus yields only O
packets) because sending bursts of attack packets that exceeds
a threshold is possible even against SHIELD. These substantially
increased overall errors demonstrate that SHIELD degrades the
adversary’s ability to infer internal sketch parameters, thereby
effectively neutralizing a critical prerequisite of the HERACLES
attack.

We now present the result of the HERACLEs attack against
SHIELD, as shown in Figure [T} To rigorously evaluate its
robustness, we assume a powerful adversary that has full
knowledge of SHIELD’s internal counter size of each task and

10

7.54

ARE

2.51

0.0

1.000

F1 score
o
o
©
g

0.990

Elastic

— FCM

—— Shield

5.0

104

w
<
<

54

\\—

05 10 15 20 25
Memory Size (MB)
(a) ARE of flow size

05 10 15 20 25
Memory Size (MB)
(b) AAE of flow size

RE

10-2 4

1073 4

N

05 10 15 20 25
Memory Size (MB)

05 10 15 20 25
Memory Size (MB)

— CM Elastic — FCM —— Shield — CM Elastic — FCM —— Shield
200 200 200
150
3004 150 300 4
W 1004 w w w
g < 2004 % 100 < 2001
50 1004 50 100
0 T T T T T 04 T T T T T 0 T T T T T 04 T T T T T
05 1.0 15 2.0 25 05 1.0 15 2.0 25 05 1.0 15 2.0 25 05 1.0 15 2.0 25
Memory Size (MB) Memory Size (MB) Memory Size (MB) Memory Size (MB)
(a) ARE of flow size (b) AAE of flow size (a) ARE of flow size (b) AAE of flow size
1.00 1.00
10?4 0.984 102 4
© 0.98 o
§ % 100 § 0.96 1 Wog0
o 0961 o 0.94
10-2 10-2 4
0.944 — 0.924 —_———————
05 10 15 20 25 05 10 15 20 25 05 10 15 20 25 05 10 15 20 25
Memory Size (MB) Memory Size (MB) Memory Size (MB) Memory Size (MB)
(¢) Heavy hitter (d) Cardinality (¢) Heavy hitter (d) Cardinality
Fig. 12. Accuracy comparison with CAIDA-18 Fig. 13. Accuracy comparison with CAIDA-19

internet trace traffic [66]. internet trace traffic [67].

time-window parameters. Although such precise inference is
unlikely in practice (as demonstrated above), this conservative
assumption enables a more stringent test of SHIELD’s defenses.
Figure [TT[a) describes the attack profile that we used; the
adversary launches hybrid attack profiles that dynamically
change their pattern based on the time window of layer 1 of
SuieLp. Figure [IT[b) shows that the number of packets mir-
rored to the control plane is close to zero even when an attacker
uses a synchronized attack pattern. This is because SHIELD
uses some of the SRAM space to provide an abstraction that
each counter bucket is 37-bit wide: 7 bits from layer 1, 15 bits
from layer 2 and layer 3, respectively. This abstraction allows
HErACLEs to achieve near-zero communication between the
data and control planes.

Figure ﬂ;fkc) and (d) demonstrate that SHIELD effectively
blocks both hybrid and dynamic attacks, despite relying on
fixed-sized memory slices, unlike Cerberus, which employs
dynamic memory resizing. Notably, SHIELD achieves 0% FNR
(i.e., successfully blocking all malicious traffic) within just
3 seconds, whereas Cerberus fails to reduce FNR below 60%
across all HERACLEs attack strategies; see Figure [f] [7] and
@ In addition, SHiELD maintains a lower FPR (3.85% on
average), compared to Cerberus, which exhibits an average
FPR of 5.80% under the same attack.

B. Accuracy of SHIELD

Next, we provide accuracy comparison of different measure-
ment tasks and provide the performance metrics corresponding
to each task. To evaluate the accuracy of SHIELD, we used 32
traffic traces from each of the CAIDA [49] and MAWI [68]|
datasets. We use the source IP address as the flow key for
accuracy comparison [63]]. Each CAIDA and MAWTI trace
contains about (28M, 5.4M) packets and (680K, 140K) distinct
flows with Zipf skewness of (1.5, 1.1) in a 15s window,
respectively. For the performance evaluation of SHIELD, we
used 32 continuous traffic traces.

We use 4 metrics to evaluate SHIELD. We explain how the
metrics are derived as follows:

(¢) Heavy hitter (d) Cardinality

Fig. 14. Accuracy comparison with MAWI up-
stream ISP traffic [68].

e Relative Error (RE): |1 — i— , where f; and f, are the actual
and estimated statistics, respectively. We use RE to evaluate
cardinality estimation.

e Average Relative Error (ARE): % Zi\il “C%M, where NV is
the number of flows, and f; and fz are actual and estimated

flow sizes. We use ARE to evaluate flow size estimation.

e Average Absolute Error (AAE): + ZZ\; |f; — fil, where
N is the number of flows, and f; and f; are actual and
estimated flow sizes. We use AAE to evaluate flow size

estimation.

. 2XPRXRR ol :
o Fl-score: =55 20" TRE where precision rate (PR) is the

fraction of relevant instances among the retrieved instances,
and recall rate (RR) is the fraction of relevant instances
that were retrieved. We use F1-score to evaluate heavy hitter
detection performance.

Figures [T2HT4] compare the accuracy of SHIELD against
Count-Min (CM) and FCM-Sketch [63] across a range of
network measurement tasks relevant to security applications,
including flow size estimation, cardinality, and heavy hitter
detection. The evaluation is conducted under varying memory
limits, from 0.2 to 2.6 MB. Figures [I2] and [I3] present results
using CAIDA internet trace datasets 2018 and 2019 [49]], while
Figure [T4] shows corresponding results on the MAWT upstream
ISP trace [68].

Flow size estimation. Flow size estimation involves counting
the packets of all individual flows in a time window. As shown
in Figures[T2] [T3] and [T4[a)—(b), the ARE and AAE of SHIELD
are comparable to those of other sketches. While CM exhibits
a relatively high average relative error of around 5 (except
on the MAWI dataset, which contains fewer packets), Elastic,
FCM, and SHIELD consistently achieve an ARE close to 1 when
allocated more than 1.6 MB of memory. For average absolute
error, FCM records a value near 3 on the MAWI dataset,
whereas Elastic and SHIELD remain below 1, indicating more
precise flow size estimation.

Heavy hitter detection. In our experiments, a heavy hitter is
defined as a flow that accounts for more than 0.05% of the total
packet volume within a given time window. Figures [12] [T3]

11

— CM Elastic —— FCM —— Shield

T 1.0 o 1.00 1

a [a}

0.8 £ 0751

£ £

o 061 © 0.50

= =

Chal S 025

S 0.2 =}

= Z 0.00

1000 2000 3000 4000 5000
AAE

(b) Elephant flows (size > 255)

500 750 0

AAE
(a) Mouse flows (size < 255)

0 250 1000

Fig. 15. CDF of average absolute error comparison for mice (flow size < 255)
and elephant flow (flow size > 255).

and @c) present a comparison of F1-scores for SHiELD, CM,
Elastic, and FCM. Across all traces, every sketch—including
SHiELD —achieves an F1-score exceeding 0.99 even with just
0.6 MB of memory. These results show that SHIELD is highly
effective at identifying heavy hitters, making it well-suited for
DDoS detection and mitigation scenarios.

Cardinality estimation. In our evaluation, cardinality refers
to the number of distinct flows observed within the traffic
dataset. Figure [T2HI4[(d) presents a comparison of relative
error (RE) for cardinality estimation among SHIELD, CM,
Elastic, and FCM. On the CAIDA datasets (Figures[I2]and [T3)),
SuieLp and FCM achieve low RE when given more than
0.4 MB of memory, while CM requires over 0.6 MB to reach a
comparable level of accuracy. In contrast, Elastic maintains a
consistently low RE in the range of 0.001 to 0.002, regardless
of memory size. In the MAWI dataset (Figure [I4), CM and
Elastic appear to have higher RE due to the y-axis scale,
but their actual estimation performance is similar to results
observed in the CAIDA datasets.

Effectiveness of decay. To evaluate the effectiveness of
SHIELD’s decay mechanism, we compared the AAE of flow
size estimation results after a few window reset periods
passed for mice and elephant flow. In this experiment, we
transmitted traffic from the CAIDA19 dataset for 1 minute.
SHIELD performs the decay operation on layer 2 and 3, while
others reset their sketch in 15-second cycles.

Figure [T5] shows the CDF plots for AAE from flow size esti-
mation for mice and elephant flows. As shown in Figure [T5]a),
Elastic, FCM, and SHieLD do not show significant difference in
AAE for mouse flows. This is because SHIELD also uses a reset
mechanism in the first layer. On the other hand, the elephant
flow, which is stored in a higher layer using decay mechanism,
shows a difference in AAE of about 250+ compared to the
other sketches, as shown in Figure Ekb). However, SHIELD
also loses some value through the decay mecahnsim, which is
why it loses AAE.

C. Resource Overhead

Table | presents the hardware resource utilization of SHIELD
in comparison with CM, FCM [63], and Cerberus [1], all
evaluated on the Intel Tofino architecture [7], with resource
usage statistics collected using Intel P4 Insight (p4i) [69].
In this evaluation, all sketches (except SHIELD) use a tradi-
tional time-window-based refresh mechanism to periodically

12

TABLE 1
HARDWARE RESOURCE CONSUMPTION OF BASIC SWITCH FUNCTIONALITY AND 4
DoS DEFENSE TASKS ON TOFINO SWITCH.

Resource | CM FCM Cerberus SHIELD
SRAM 349% 41.6% 16.7% 24.4%
TCAM 0.0% 5.6% 0.0% 0.0%
SALU 37.5% 62.0% 20.8% 45.8%

Hash units 189% 15.4% 14.8% 22.4%
Pipeline stages 12 12 9 11

clear outdated measurement data. And, all other sketches are
configured to run four different DoS defense tasks.

Unlike conventional sketches, only Cerberus and SHIELD
are designed to support multiple tasks under resource-sharing
constraints while keeping the pipeline usage within the 12-
stage limit per pipeline of Tofino 1 ASIC. Therefore, as
illustrated in Table [l both ShieLp and Cerberus require a
smaller number of pipeline stages than CM and FCM, which
are not designed for concurrency. In our evaluation, SHIELD
consumes 7.7%p more SRAM and 25%p more SALU than
Cerberus. This overhead stems from the increased use of
registers and ALUs for the layered structure and time-decaying
mechanism of SHIELD. These results demonstrate that SHIELD
achieves comparable concurrency and scalability to Cerberus
while offering additional robustness against the HERACLEs
attack.

VI. DiscussioN

Programmable switches promise unprecedented perfor-
mance and flexibility for in-network processing, but they are
fundamentally shaped, and constrained, by their underlying
hardware and programming abstractions. This section dis-
cusses how design challenges in programmable switch archi-
tectures can lead to security challenges, and how HERACLEs
and SHIELD reveal both the consequences of these design deci-
sions and the limits of current mitigation strategies. Then, we
discuss task-specific trade-offs between SuIELD and Cerberus.

A. Systemic Challenges in Programmable Switch Design

We list two challenges that commonly appear across the

literature on programmable switches and novel defense appli-
cations.
Performance-driven trade-offs and insecure defaults. De-
velopers building data-plane applications operate under strict
constraints; e.g., line-rate performance, limited memory, and
a rigid match-action pipeline. To meet these requirements,
developers often adopt design choices that prioritize efficiency.
Common examples include using CRC-based hash functions
with weak entropy [70], [711, [72], [12], (73], [L], [14], mini-
mizing register widths to reduce memory usage [1]], [11], [27],
[14], and omitting protections for slow-path processing [S5]],
[74]. These optimizations are well-known and widely used, yet
they may introduce potential problems, such as hash collisions
or inaccurate counters. However, secure alternatives, such as
cryptographic hashes [15], [75] or larger sketches, typically
incur unacceptable performance costs that may limit practical
adoption.

Control plane bottlenecks. While the data plane is optimized
for Tbps-level throughput, the control plane can become a
bottleneck. Reading large register arrays or updating match-
action table (MAT) entries introduces latencies in the millisec-
ond range, making timely reaction to attacks challenging [60].
Moreover, control planes are sometimes deployed on remote
servers with minimal rate limiting or overload protection.
These architectural asymmetries persist across many systems
and can be difficult to address efficiently. Although research
has advanced the state of the art (e.g., SmartNIC offload-
ing [76] or DPDK-based control paths [60]), such solutions
are not yet widely adopted, and may still be vulnerable to
inference-based attacks, as demonstrated in our DPDK-based
version of Cerberus (or Cerberus++).

B. HEracLEs and SHIELD as Case Studies

HeracLEs demonstrates how structural aspects of switch
design can be exploited. The attack does not rely on ob-
scure bugs or misconfigurations, but instead targets expected
behaviors such as resource sharing, periodic sketch resets,
and static filtering thresholds that result from developer trade-
offs under hardware constraints. HERACLEs highlights how
vulnerable these “default” or widely-adopted designs can be
when adversaries are aware of the system’s operational model.

SHIELD offers a defense that increases robustness within
these constraints by introducing layered sketching and more
explicit task partitioning. It demonstrates that side-channel
resistance can be improved with better abstractions and modu-
larity. HERACLES is not a one-off exploit, but rather illustrates
broader architectural tensions in programmable switch design.
Addressing these challenges, especially the balance between
performance, flexibility, and resilience, will be important as
programmable data planes become more widely adopted.

C. Task-specific trade-offs between SHiELD and Cerberus

As discussed in SHIELD incurs higher resource usage
than Cerberus (e.g., 25.0%p and 7.7%p more SALU and
SRAM consumption). This overhead, however, represents a
deliberate trade-off to provide robust and stable mitigation
against sophisticated, multi-vector attacks that Cerberus fails
to handle. Nevertheless, not all in-network DoS defense
tasks require such elevated resource budgets. For instance,
query—existence—based defenses (e.g., DNS amplification) typ-
ically rely on small counters and simple existence tests rather
than high-precision aggregation.

Resource sharing of query existence-based tasks. Several
amplification-attack defenses operate by checking the existence
of outstanding queries, often using approximate data structures
such as counting Bloom filters (CBFs). Our evaluation shows
that the HEracLEs attack does not effectively induce large-
scale overflows in Cerberus when CBFs are used. This stems
from that CBF-based detection focuses on membership exis-
tence rather than threshold-based rate discrimination, making
overflow-based manipulation significantly more difficult. Thus,
for resource efficiency, we recommend retaining the original

13

Cerberus design for the query-existence—based defense tasks,
even though SHIELD also supports cardinality estimation.
Resource sharing of byte counting task. Other forms of
DDoS mitigation require byte-count—based thresholds, as in
the Coremelt defenses in Mew [14] and Cerberus [1]. Un-
like simple flow-counting, however, byte-count measurements
increase much more rapidly because each update adds the
packet’s full payload size. When such byte-count tasks share
registers with other measurements, we find that it becomes
substantially easier for an adversary to trigger large bursts of
overflows, resulting in excessive flooding toward the control
plane. This rapid growth of the counter also accelerates the
memory squeezing attack, enabling a malicious task to quickly
consume resources at the expense of others (see Appendix [B)).
Robust resource sharing for byte-count—based measurements
is feasible in SHIELD, as it provides a large, fixed-size counter
abstraction that prevents such pathological escalation.

VII. RELATED WORK

In this section, we review related work on pro-
grammable data-plane applications and their systematic con-
straints (§VII-A), as well as how our HERACLEs attack relates
to existing in-data-plane DoS defense systems (§VII-B].

A. Programmable Switch Applications and Systemic Con-
straints

The emergence of programmable switches has enabled high-
performance packet processing at line rate, forstering a wide
range of innovations in networking. These include applications
in load balancing [77], [7/0l], consensus acceleration [78],
[79], and in-network telemetry and monitoring [9l], [10], [L1].
Programmable data planes have also shown promise in the se-
curity domain, powering systems for covert channel detection
and volumetric DoS attack mitigation [80f, [55], [12], [13],
[24], (14], [1], [15].

However, such systems are inherently constrained by the
architectural limitations of programmable switches. Recent
work has proposed various methods to work within or around
these constraints. For example, sketch-based systems like
UnivMon [9] and Elastic [81] support multi-feature mea-
surements, while multi-key sketches such as BeauCoup [71]]
and CoCoSketch [82] enhance query expressiveness. Others,
like FCM [63] and CL [64]], optimize memory usage by
exploiting traffic skewness. SketchLib [18]] analyzes common
sketch bottlenecks in RMT-based switches and offers opti-
mized implementations without sacrificing accuracy. Runtime
reconfigurability has also been explored through systems such
as FlyMon [11], FlexCore [83], and P4runpro [84], which
allow dynamic task updates without downtime.

As programmable data-plane applications grow in sophis-
tication, so do the potential attack surfaces. Prior work has
explored attacks targeting programmable switch infrastructure.
Dumitru et al. [85] analyzed how bugs in P4 programs could
lead to security vulnerabilities, such as DoS or privilege
escalation, though their evaluation assumes complete access
to the switch internals. Wang et al. [86] discussed theoretical

TABLE 1II
APPLICABILITY OF THE HERACLES ATTACK STRATEGIES ACROSS IN-DATA-PLANE
DoS DEFENSES.

Cerberus Jagen Poseidon Ripple Mew
‘ SwreLo i (3] (2] 24 [

Inference Capabilities
Inferring Detection Threshold O O O O O* O*
Inferring Windows Timing A O O O O* O*
Inferring Co-located Tasks X O N/A N/A N/A oO*
Attack Feasibility
Synchronized Augmentation X O N/A N/A N/A N/A
Memory Squeezing N/A O N/A N/A N/A oO*
Time-window Exploitation X O O O oO* O*

4 Adversaries should generate attack traffic along specific paths of choice among multiple switches.

attack surfaces in P4-based data-plane applications but did
not empirically validate their findings. Other studies highlight
weaknesses in specific algorithmic components, such as flow
selection logic that uses 3rd-order features (e.g., inter packet
delay, packet size distribution) [74], or the absence of authen-
tication in control interfaces like P4Runtime [87]].

In contrast, the HERACLEs attack demonstrates a practical
and remote exploitation strategy that targets the systemic as-
sumptions embedded in real-world data-plane defenses. Unlike
earlier attacks that depend on software bugs or control-plane
compromise, HERACLES exploits only architectural constraints
and observable behavior, requiring no priviledged access.

B. HEeracres and Existing DoS Mitigations

The HErRACLESs attack reveals a new class of vulnerabilities
that arise from adaptive memory management and shared
resource semantics in programmable switches. While primarily
designed to target Cerberus [1]], the attack strategies generalize
to other threshold-based, window-driven DoS defenses.

Table summarizes the applicability of the HERACLEs
strategies to several prior defenses. Jagen [13] and Posei-
don [12] employ periodic threshold-based mitigation, mak-
ing them susceptible to probing-based inference of filtering
thresholds and time windows. Ripple [24] and Mew [14],
which defend against link-flooding attacks [5]], [6]], also rely
on periodic sketches and may become susceptible to the
two probing-based inferences, albeit requiring the adversary
to direct attack traffic along certain paths of choice among
multiple switches. Note that the synchronized augmentation
and memory squeezing strategies are not directly applicable
to many of these systems, as they do not perform dynamic
memory adjustment.

We have empirically validated the applicability of HERACLEs
against these prior defenses; see Appendix B} Testing all these
defenses on real hardware was infeasible due to several practi-
cal constraints (e.g., limited access to multiple programmable
switches, proprietary P4 programs), thus we resorted to high-
fidelity simulation that accurately mimics the Tofino switch’s
hardware-specific constraints.

While not every HERACLEs attack strategy applies equally,
the underlying design patterns (such as static thresholding,
shared memory, and predictable refresh cycles) are widely
adopted across prior defenses. These patterns, while effec-
tive for resource efficiency, may open potential avenues to

14

inference-based attacks like HERACLES, particularly in adver-
sarial environments.

VIII. CoNCLUSION

Highly flexible and dynamic memory management has
been a long-sought objective in in-data-plane DoS mitiga-
tion. Yet, when implemented atop commodity switches with
rigid hardware constraints, such flexibility becomes a liability,
where innocuous design choices create new attack surfaces, as
demonstrated by our HERACLES attack, ultimately undermining
the mitigation itself. Our SHIELD takes the first step toward
hardware-constraint-conscious system design for resilient DoS
defenses, which we believe warrants systematic exploration in
future work.

EtHicAL CONSIDERATIONS

Our work does not raise ethical concerns because all exper-
iments were conducted in controlled environments using an
isolated programmable switch and server, and the background
real-world traffic used in the experiments is anonymized. The
particular implementation of the HERACLEs attack is specific
to Cerberus [1], an academic prototype rather than a deployed
commercial system, and we have disclosed our findings and
modifications to the authors of [1l], who confirmed that our
modified control plane conforms to their intended design.
Disclosing this attack and its underlying root cause is intended
to prevent similar vulnerable P4 design patterns from being
adopted in future production environments.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their in-
sightful comments and invaluable feedback. This work was
supported by Institute of Information & communications Tech-
nology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No.RS-2024-00441762, Global
Advanced Cybersecurity Human Resources Development).
This material is based upon work supported in part by the
National Science Foundation (NSF) under Grant No. 2148374.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF.

REFERENCES

[1] H. Zhou and G. Gu, “Cerberus: Enabling efficient and effective in-

network monitoring on programmable switches,” in Proc. IEEE S&P,

2024, pp. 4424-4439.

0. Yoachimik and J. Pacheco, “Record-breaking 5.6 Tbps DDoS attack

and global DDoS trends for 2024 Q4,” 2025. [Online]. Available:

https://blog.cloudflare.com/ddos- threat-report-for-2024-q4/

A. V. Vu, B. Collier, D. R. Thomas, J. Kristoff, R. Clayton, and

A. Hutchings, “Assessing the Aftermath: the Effects of a Global Take-

down against DDoS-for-hire Services,” in Proc. USENIX Security, 2025.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,

J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis

et al., “Understanding the Mirai Botnet,” in Proc. USENIX Security,

2017, pp. 1093-1110.

A. Studer and A. Perrig, “The Coremelt Attack,” in Proc. ESORICS,

2009, pp. 37-52.

[6] M. S. Kang, S. B. Lee, and V. D. Gligor, “The Crossfire Attack,” in
Proc. IEEE S&P, 2013, pp. 127-141.

[2]

[3]

[4]

[5]

https://blog.cloudflare.com/ddos-threat-report-for-2024-q4/

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Intel Corporation, “Intel® tofino’ series,” 2017. [Online].
Available: https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch.html

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming Protocol-Independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87-95, 2014.

Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proc. ACM SIGCOMM, 2016, p. 101-114.

Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu,
Z. Shen, Y. Xi, P. Zhang, D. Cai, M. Zhang, and M. Xu, “Flow Event
Telemetry on Programmable Data Plane,” in Proc. ACM SIGCOMM,
2020, p. 76-89.

H. Zheng, C. Tian, T. Yang, H. Lin, C. Liu, Z. Zhang, W. Dou, and
G. Chen, “Flymon: enabling on-the-fly task reconfiguration for network
measurement,” in Proc. ACM SIGCOMM, 2022, p. 486-502.

M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating Volumetric DDoS Attacks
with Programmable Switches,” in Proc. NDSS, 2020.

Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jagen: A high-performance switch-native
approach for detecting and mitigating volumetric ddos attacks with
programmable switches,” in Proc. USENIX Security, 2021, pp. 3829-
3846.

H. Zhou, S. Hong, Y. Liu, X. Luo, W. Li, and G. Gu, “Mew: Enabling
Large-Scale and Dynamic Link-Flooding Defenses on Programmable
Switches,” in Proc. IEEE S&P, 2023, pp. 3178-3192.

S. Yoo, X. Chen, and J. Rexford, “SmartCookie: Blocking Large-Scale
SYN Floods with a Split-Proxy Defense on Programmable Data Planes,”
in Proc. USENIX Security, 2024, pp. 217-234.

A. Agrawal and C. Kim, “Intel Tofino2 — A 12.9 Tbps P4-Programmable
Ethernet Switch,” in Proc. IEEE HotChips, 2020, pp. 1-32.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz, “Forwarding Metamorphosis: Fast Pro-
grammable Match-Action Processing in Hardware for SDN,” in Proc.
ACM SIGCOMM, 2013, p. 99-110.

H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste, “Sketch-
Lib: Enabling Efficient Sketch-based Monitoring on Programmable
Switches,” in Proc. USENIX NSDI, 2022, pp. 743-759.

S. Landau-Feibish, Z. Liu, and J. Rexford, “Compact Data Structures
for Network Telemetry,” ACM Comput. Surv., vol. 57, no. 8, Mar. 2025.
A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and W. Will-
inger, “Sonata: query-driven streaming network telemetry,” in Proc. ACM
SIGCOMM, 2018, p. 357-371.

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, “Heavy hitters
in streams and sliding windows,” in Proc. IEEE INFOCOM, 2016, pp.
1-9.

R. B. Basat, G. Einziger, I. Keslassy, A. Orda, S. Vargaftik, and
E. Waisbard, “Memento: Making Sliding Windows Efficient for Heavy
Hitters,” in Proc. ACM CoNEXT, 2018, p. 254-266.

X. Z. Khooi, L. Csikor, J. Li, M. S. Kang, and D. M. Divakaran, “Re-
visiting heavy-hitter detection on commodity programmable switches,”
in Proc. IEEE NetSoft, 2021, pp. 79-87.

J. Xing, W. Wu, and A. Chen, “Ripple: A Programmable, Decentralized
Link-Flooding Defense Against Adaptive Adversaries,” in Proc. USENIX
Security, 2021, pp. 3865-3881.

Z. Zeng, L. Cui, M. Qian, Z. Zhang, and K. Wei, “A survey on sliding
window sketch for network measurement,” Computer Networks, vol. 226,
p. 109696, 2023.

P. Zheng, T. Benson, and C. Hu, “P4Visor: Lightweight Virtualization
and Composition Primitives for Building and Testing Modular Pro-
grams,” in Proc ACM CoNEXT, 2018, pp. 98-111.

H. Zhu, T. Wang, Y. Hong, D. R. Ports, A. Sivaraman, and X. Jin,
“NetVRM: Virtual Register Memory for Programmable Networks,” in
Proc. USENIX NSDI, 2022, pp. 155-170.

X. Z. Khooi, L. Csikor, D. M. Divakaran, and M. S. Kang, “DIDA: Dis-
tributed In-Network Defense Architecture Against Amplified Reflection
DDoS Attacks,” in Proc. IEEE NetSoft, 2020, pp. 277-281.

A. G. Alcoz, M. Strohmeier, V. Lenders, and L. Vanbever, “Aggregate-
Based Congestion Control for Pulse-Wave DDoS Defense,” in Proc.
ACM SIGCOMM, 2022, pp. 693-706.

S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible and
Elastic DDoS Defense,” in Proc. USENIX Security, 2015, pp. 817-832.

15

(31]

(32]

[33]
[34]

(35]

[36]
[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]
(53]

[54]

[55]

[56]

P. Zilberman, R. Puzis, and Y. Elovici, “On Network Footprint of
Traffic Inspection and Filtering at Global Scrubbing Centers,” [EEE
Transactions on Dependable and Secure Computing (TDSC), vol. 14,
no. 5, pp. 521-534, 2015.

S. B. Lee, M. S. Kang, and V. D. Gligor, “CoDef: Collaborative Defense
Against Large-Scale Link-Flooding Attacks,” in Proc. ACM CoNEXT,
2013, pp. 417-428.

H. Griffioen and C. Doerr, “Examining Mirai’s battle over the Internet
of Things,” in Proc. ACM CCS, 2020, pp. 743-756.

Mirai tracker, “Mirai Botnet IP list,” 2025, https://mirai.security.gives/
data/ip_list.txt and http://www.sanyal.org/mirai-ips.txt.

A. Kuzmanovic and E. W. Knightly, “Low-Rate TCP-Targeted Denial
of Service Attacks (The Shrew vs. the Mice and Elephants),” in Proc.
ACM SIGCOMM, 2003, pp. 75-86.

X. Luo and R. K. Chang, “On a new class of pulsing denial-of-service
attacks and the defense.” in Proc. NDSS, 2005, pp. 1-19.

Y. Zhang, Z. M. Mao, and J. Wang, “Low-Rate TCP-Targeted DoS Attack
Disrupts Internet Routing,” in Proc. NDSS, 2007, pp. 1-15.

R. Rasti, M. Murthy, N. Weaver, and V. Paxson, “Temporal Lensing and
its Application in Pulsing Denial-of-Service Attacks,” in Proc. IEEE
S&P, 2015, pp. 187-198.

Y.-M. Ke, C.-W. Chen, H.-C. Hsiao, A. Perrig, and V. Sekar, “CI-
CADAS: Congesting the Internet with Coordinated And Decentralized
Pulsating Attacks,” in Proc. ACM AsiaCCS, 2016, pp. 699-710.

H. Shan, Q. Wang, and C. Pu, “Tail Attacks on Web Applications,” in
Proc. ACM CCS, 2017, pp. 1725-1739.

J. Park, D. Nyang, and A. Mohaisen, “Timing is Almost Everything:
Realistic Evaluation of the Very Short Intermittent DDoS Attacks,” in
Proc. PST, 2018, pp. 1-10.

R. Guo, J. Chen, Y. Wang, K. Mu, B. Liu, X. Li, C. Zhang, H. Duan, and
J. Wu, “Temporal CDN-Convex Lens: A CDN-Assisted Practical Pulsing
DDoS Attack,” in Proc. USENIX Security, 2023, pp. 6185-6202.

X. Li, D. Wu, H. Duan, and Q. Li, “DNSBomb: A New Practical-and-
Powerful Pulsing DoS Attack Exploiting DNS Queries-and-Responses,”
in Proc. IEEE S&P, 2024, pp. 4478-4496.

E. Kovacs, “Pulse Wave DDoS Attacks Disrupt Hybrid Defenses,”
2017. [Online]. Available: https://www.securityweek.com/pulse-wave-
ddos-attacks-disrupt-hybrid-defenses/

Imperva, “Attackers Use DDoS Pulses to Pin Down Multiple Targets,”
2018. [Online]. Available: https://www.imperva.com/blog/archive/pulse-
wave-ddos-pins-down-multiple- targets/

H. Zhou and G. Gu, “Cerberus-prototype,” 2024. [Online]. Available:
https://github.com/successlab/Cerberus

Edgecore Networks, “DCS800 Data Center Switch - Wedgel00BF-
32X, 2023. [Online]. Available: https://www.edge-core.com/wp-
content/uploads/2023/08/DCS800- Wedge 100BF-32X-R11.pdf

DPDK Project, “DPDK — the open source data plane development
kit accelerating network performance,” 2025. [Online]. Available:
https://www.dpdk.org/

The CAIDA UCSD, “The caida
dataset,” 2008. [Online]. Available:
datasets/passive_sampler_dataset/

H. Nam and D. Lim, “GitHub repository for Heracles and Shield,”
2025. [Online]. Available: https://github.com/NetSP-KAIST/shield
Intel Corporation, “Intel® p4 studio,” 2017. [Online].
Available: |https://www.intel.com/content/www/us/en/products/details/
network-io/intelligent-fabric- processors/p4-studio.html

P4 Language Consortium, “open-p4studio,” 2025. [Online]. Available:
https://github.com/p4lang/open-p4studio

TRex Team, “TRex - Realistic Traffic Generator,” 2025. [Online].
Available: https://trex-tgn.cisco.com/

V. Gurevich and A. Fingerhut, “P4;s programming for intel®
tofino™ using intel p4 studio”,” in Proceedings of the 2021
P4 Workshop, 2021, pp. 1-40, retrived December 9, 2024 from
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4- WS-
Vladimir-Gurevich- Slides.pdf.

J. Xing, Q. Kang, and A. Chen, “NetWarden: Mitigating network covert
channels while preserving performance,” in Proc. USENIX Security,
2020, pp. 2039-2056.

P. G. Kannan, R. Joshi, and M. C. Chan, “Precise Time-synchronization
in the Data-Plane using Programmable Switching ASICs,” in Proc. ACM
SOSR, 2019, pp. 8-20.

anonymized internet traces
https://www.caida.org/catalog/

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://mirai.security.gives/data/ip_list.txt
https://mirai.security.gives/data/ip_list.txt
http://www.sanyal.org/mirai-ips.txt
https://www.securityweek.com/pulse-wave-ddos-attacks-disrupt-hybrid-defenses/
https://www.securityweek.com/pulse-wave-ddos-attacks-disrupt-hybrid-defenses/
https://www.imperva.com/blog/archive/pulse-wave-ddos-pins-down-multiple-targets/
https://www.imperva.com/blog/archive/pulse-wave-ddos-pins-down-multiple-targets/
https://github.com/successlab/Cerberus
https://www.edge-core.com/wp-content/uploads/2023/08/DCS800-Wedge100BF-32X-R11.pdf
https://www.edge-core.com/wp-content/uploads/2023/08/DCS800-Wedge100BF-32X-R11.pdf
https://www.dpdk.org/
https://www.caida.org/catalog/datasets/passive_sampler_dataset/
https://www.caida.org/catalog/datasets/passive_sampler_dataset/
https://github.com/NetSP-KAIST/shield
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-studio.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-studio.html
https://github.com/p4lang/open-p4studio
https://trex-tgn.cisco.com/
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

[79]

[80]

[81]

C. H. Song, X. Z. Khooi, R. Joshi, I. Choi, J. Li, and M. C. Chan,
“Network Load Balancing with In-network Reordering Support for
RDMA,” in Proc. ACM SIGCOMM, 2023, pp. 816-831.

M. Budiu and C. Dodd, “The P4;¢ Programming Language,” SIGOPS
Oper. Syst. Rev., vol. 51, no. 1, p. 5-14, Sep. 2017.

M. Majkowski, “How to receive a million packets per second,”
2015. [Online]. Available: https://blog.cloudflare.com/how-to-receive-
a-million-packets

C. H. Song, X. Z. Khooi, D. M. Divakaran, and M. C. Chan, “Revis-
iting Application Offloads on Programmable Switches,” in Proc. IFIP
Networking, 2022, pp. 1-9.

J. Wu, H. Pan, P. Cui, Y. Huang, J. Zhou, P. He, Y. Li, Z. Li, and G. Xie,
“Patronum: In-network Volumetric DDoS Detection and Mitigation with
Programmable Switches,” in Proc. ESORICS, 2024, pp. 187-207.

T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch: a
sketch framework for frequency estimation of data streams,” Proc. VLDB
Endow., vol. 10, no. 11, p. 1442-1453, Aug. 2017.

C. H. Song, P. G. Kannan, B. K. H. Low, and M. C. Chan, “FCM-
Sketch: Generic Network Measurements with Data Plane Support,” in
Proc. ACM CoNEXT, 2020, p. 78-92.

S. Kim, C. Jung, R. Jang, D. Mohaisen, and D. H. Nyang, “A Robust
Counting Sketch for Data Plane Intrusion Detection,” in Proc. NDSS,
2023.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
A scalable wide-area web cache sharing protocol,” ACM SIGCOMM
Computer Communication Review, vol. 28, no. 4, pp. 254-265, 1998.
The CAIDA UCSD, “Anonymized Internet Traces 2018,” https:
/lcatalog.caida.org/dataset/passive_2018_pcap, accessed: Jan 10, 2025.
[Online]. Available: https://catalog.caida.org/dataset/passive_2018_pcap
——, “Anonymized Internet Traces 2019,” https://catalog.caida.org/
dataset/passive_2019_pcap, accessed: Jan 10, 2025. [Online]. Available:
https://catalog.caida.org/dataset/passive_2019_pcap

MAWI Working Group, “Mawi working group traffic archive -
packet traces from wide backbone,” 2024. [Online]. Available:
http://mawi.wide.ad.jp/maw1/

Intel Corporation, “Intel® P4 Insight,” 2017. [Online].
Available: https://www.intel.com/content/www/us/en/products/details/
network-10/intelligent- fabric- processors/p4-insight.html

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making stateful
layer-4 load balancing fast and cheap using switching asics,” in Proc.
ACM SIGCOMM, 2017, p. 15-28.

X. Chen, S. Landau-Feibish, M. Braverman, and J. Rexford, “BeauCoup:
Answering Many Network Traffic Queries, One Memory Update at a
Time,” in Proc. ACM SIGCOMM, 2020, pp. 226-239.

R. B. Basat, X. Chen, G. Einziger, and O. Rottenstreich, ‘“Design-
ing Heavy-Hitter Detection Algorithms for Programmable Switches,”
IEEE/ACM Transactions on Networking (ToN), vol. 28, no. 3, pp. 1172—
1185, 2020.

X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, and T.-Y. Wang, “Fine-Grained Queue Measurement in the Data
Plane,” in Proc. ACM CoNEXT, 2019, p. 15-29.

S. Kim, S. M. M. Mirnajafizadeh, R. Jang, and D. Nyang, “SketchFea-
ture: High-Quality Per-Flow Feature Extractor Towards Security-Aware
Data Plane,” in Proc. NDSS, 2025, p. 1-16.

M. Francisco, B. Ferreira, F. M. Ramos, E. Marin, and S. Signorello,
“P4Chaskey: An Efficient MAC Algorithm for PISA Switches,” in Proc.
IEEE ICNP, 2024, pp. 1-6.

C. Wei, S. Tu, T. Hasegawa, Y. Koizumi, K. Ramakrishnan, J. Takemasa,
and T. Wood, “Envisioning a Unified Programmable Dataplane to
Monitor Slow Attacks,” in Proc. IEEE ICNP. 1EEE, 2024, pp. 1-6.
N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
traffic splitting on commodity switches,” in Proc. ACM CoNEXT, 2015.
J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K. Ports,
“Just Say NO to Paxos Overhead: Replacing Consensus with Network
Ordering,” in Proc. USENIX OSDI, 2016, pp. 467-483.

X.Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,
“NetChain: Scale-Free Sub-RTT coordination,” in Proc. USENIX NSDI,
2018, pp. 35-49.

D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos, and
A. Madeira, “FlowLens: Enabling Efficient Flow Classification for ML-
based Network Security Applications,” in Proc. NDSS, 2021.

T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic Sketch: Adaptive and Fast Network-wide
Measurements,” in Proc. ACM SIGCOMM, 2018, pp. 561-575.

[82]

[83]

[84]

[85]

[86]

[87]
[88]
[89]
[90]
[91]

[92]

Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu, R. Zhang, and
J. Jiang, “CocoSketch: High-performance Sketch-based Measurement
over Arbitrary Partial Key Query,” in Proc. ACM SIGCOMM, 2021,
pp. 207-222.

J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy,
and A. Chen, “Runtime Programmable Switches,” in Proc. USENIX
NSDI, 2022, pp. 651-665.

Y. Yang, L. He, J. Zhou, X. Shi, J. Cao, and Y. Liu, “P4runpro: Enabling
Runtime Programmability for RMT Programmable Switches,” in Proc.
ACM SIGCOMM, 2024, pp. 921-937.

M. V. Dumitru, D. Dumitrescu, and C. Raiciu, “Can we exploit buggy
p4 programs?” in Proc. ACM SOSR, 2020, p. 62-68.

L. Wang, P. Mittal, and J. Rexford, “Data-Plane Security Applications
in Adversarial Settings,” SIGCOMM Comput. Commun. Rev., vol. 52,
no. 2, p. 2-9, 2022.

C. Black and S. Scott-Hayward, “Adversarial Exploitation of P4 Data
Planes,” in Proc. IFIP/IEEE IM, 2021, pp. 508-514.

H. Nam and D. Lim, “Cerberus simulator,” 2025. [Online]. Available:
https://github.com/hcnam/sim-cerberus
Z. Liu, “Jagen p4 codebase,” 2022.
//github.com/Froot-NetSys/Jagen

J. Xing, “Ripple GitHub Repository,” 2021. [Online]. Available:
https://github.com/jiarong0907/Ripple

H. Zhou, “Mew-prototype,” 2022. [Online]. Available: https://github.
com/successlab/Mew-prototype

H. Nam, D. Lim, H. Zhou, G. Gu, and M. S. Kang, ‘“Zenodo
repository for Heracles and Shield,” 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.17490769

[Online]. Available: https:

APPENDIX A
THEORETICAL ANALYSIS OF THE SHIELD

In this section, we provide a theoretical analysis of the
data structure and decay mechanism of SHIELD. In particular,

weE

analyze the error bound of the SHIELD and the effect of

time-decaying. Before starting the formal analysis, we first
summarize the necessary notation in Table [ITI}

TABLE III
NOTATION USED IN THE ANALYSIS OF SHIELD
Notation | Description
n total number of flows
i flow id
fi the actual flow size of flow ¢
fi the estimated flow size of flow ¢
Cil] the counter value for flow ¢ at layer [
L the number of layers in the sketch
wy width (number of counters) in layer [
b; bit-width of counters in layer [
r the ratio of width between layers (w; = rw;41)
T overflow threshold in layer I, where T} = 201 — 1
hy () hash function mapping flow < in layer [
€] error bound factor at layer [
t time interval for layer [
k; shift amount per layer [
2k decay factor in layer [

A.

Analysis of Data Structure of SHIELD

Let n;(1 < [< L) denote the number of distinct flows
whose corresponding update operation stops exactly at layer [.
Let ¢; = n;/n be the ratio of those flows.

Theorem 1. Let wi = e/e be the number of leaf nodes in
Suierp and d = In1/4. Given d pairwise independent hash
functions, the count-query f; is bounded by

16

fi < fi+ellflh)

https://blog.cloudflare.com/how-to-receive-a-million-packets
https://blog.cloudflare.com/how-to-receive-a-million-packets
https://catalog.caida.org/dataset/passive_2018_pcap
https://catalog.caida.org/dataset/passive_2018_pcap
https://catalog.caida.org/dataset/passive_2018_pcap
https://catalog.caida.org/dataset/passive_2019_pcap
https://catalog.caida.org/dataset/passive_2019_pcap
https://catalog.caida.org/dataset/passive_2019_pcap
http://mawi.wide.ad.jp/mawi/
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-insight.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-insight.html
https://github.com/hcnam/sim-cerberus
https://github.com/Froot-NetSys/Jaqen
https://github.com/Froot-NetSys/Jaqen
https://github.com/jiarong0907/Ripple
https://github.com/successlab/Mew-prototype
https://github.com/successlab/Mew-prototype
https://doi.org/10.5281/zenodo.17490769

with probability at least 1 — (Zgzl orrF—1)4s.

Proof. For simplicity, we first prove for SHIELD using one hash
function and then extend the result to using multiple hashes.

We define an indicator variable I; ; 5, which is 1 if hy (i) =
hi(j), and 0 otherwise. Due to the pairwise independent
hashing, for i # j,

1 rkfl
I il = — = . 5
]E[,],k] wy, w, ()
We define the variable F; as follows:
L ne n L n
E; = Z;ijl,j,k => oY filijr (6
k=1 ; k=1 j=1

i
Obviously, E; is a nonnegative random variable. E; reflects the
expectation of the error caused by the collisions happening at

all layers when querying f; (i.e., fl = f;+F;). The expectation
of F; is calculated as follows:

= Zmemk (7)
#J
L n
= ok Y JElLijx] ®)
k=1 j=1
i#]
L n r;c,
=D ey fi— ©)
k=1 j=1
=
1 L n
== 'Y (10)
L k=1 j=
i#]
1 L
< —|Iflh Y owr ! (11
! k=1
Then, by the Markov inequality, we get
wy
PI‘(EZ‘ Z 6Hf||1) S Pr Ei Z €E——F E[El] (12)
Zi:l prrkt
L k—1
< Zom BT (13
€Wq
L k—1
_ Zk:l QT (14)
e

Extension of the result to multiple hashes is trivial because all
hashes are independent. Using independence,

L _ d L d
Pr(E; > €||f|l1) < (W) — <Z (bk,rk—l) 5
k=1

15)
O

17

B. Analysis of Decay function of SHIELD

The decay mechanism of SHIELD follows discrete expo-
nential decay with base 2, implemented via bit shifts. The
exponential decay can be represented as

dN (t)
dt

where N(t) is the value at time ¢ and A(A > 0) is a decay
constant (or rate constant). The solution to this equation is

N(t) = N(0) - e,

= —AN(1), (16)

a7

where N (0) is the initial value.
From this solution, at each decay interval, the counter value
C of SHIELD is updated as:
|

aili] = {

where k is the shift amount per layer and Cj[i] is the counter
value for flow ¢ in layer [. Then, SHIELD follows the behavior
of exponential decay with base 2:

Cili](t) = Cili](0) - 27",

APPENDIX B
SIMULATION OF HERACLES AGAINST OTHER D0oS DEFENSES

Cili]
2k

(18)

19)

We have developed a new attack-defense simulation frame-
work that adheres to the implementation and constraints of the
Tofino hardware, enabling the systematic evaluation of the gen-
eralizability of HErRAcLEs attack to other defense techniques
designed for programmable switches. We open-source our
simulation framework at [88]]. With this evaluation framework,
we implemented Poseidon [12]], Jagen [[13], Ripple [24], and
Mew [14] based on their original paper and open-sourced
implementation, when available. Note that our simulation-
based evaluation is an inevitable approach due to the limited
access to the P4 programs or multi-switch hardware setups
of some existing DoS mitigation systems; e.g., Poseidon is
not open-sourced, Jagen is not fully open-source yet [89];
Ripple [90] and Mew [91] are open-sourced but they require
multiple programmable switches to run their implementation.
Our simulation is confirmed to faithfully reproduce the be-
havior of the original P4 programs on Tofino hardware; see
how the simulated attack results against Cerberus Figure [T6](a)
and Figure [T7((a) well align with the real hardware experiment
results in Figure [5(a) and Figure [5[b), respectively.

In our simulation framework, we tested the inference ca-
pabilities and attack feasibility of HERAcLEs attack. We con-
ducted 100 probing processes, each with a different threshold
and time window configuration. Also, we used a setting that
added Gaussian noise (standard deviations of 1/3 seconds) to
the average propagation time observed in the experiment in

Figure [I6(a) shows the threshold inference accuracy of
Poseidon and Jagen (Cerberus too, for comparison with its
hardware experiment in Figure [5(a)), and Figure [I6[b) shows
Ripple and Mew in our simulation framework, respectively. We

Cerberus == Poseidon Jagen = Ripple =—— Mew
__1.00 __1.00
w — w
a a
O 0.754 O 0.754
3 3
-= 0.50 - 0.50 1
= =]
Y Y
© 0.25 S 0.25
o o
2 2
0.00 ¢ T T 0.00 T T T
0 1 2 3 0 100 200 300 400

Absolute error (packets) Absolute error (bytes)

(a) Flow count-based defense (b) Byte count-based defense

Fig. 16. Accuracy of threshold inference phase of the HERACLES attack against
several DoS defense techniques in simulation.

configured the defense mechanism for the UDP flood attack of
Poseidon and Jagen as rlimit(), and BlockList(), respec-
tively. For link flooding attack (LFA) defense systems (i.e.,
Ripple and Mew), we configured byte count-based threshold
for the Coremelt attack detector. Also, for byte count threshold
detection, we conducted two distinct probing processes: (1)
infer approximate threshold with 512-byte packets and (2)
infer accurate threshold with 64-byte packets. Figure [I6{a) and
(b) show the effectiveness of our threshold inference process.
Our results show that the probing process still accurately
measures threshold with an absolute error of 0 in 88 out of 100
processes in the flow count-based defense systems, as shown
in Figure [I6[a), and under 200 bytes of absolute error with
92 out of 100 as illustrated in Figure [I§(b). This confirms
that our threshold inference process of HERACLEs is effective
against existing DoS mitigation systems.

Cerberus = Poseidon Jagen = Ripple — Mew

__1.00 __1.00

w w

[a] [a]

o 0.75 A o 0.751

3 4

-2 0.50 -2 0.501

=t =i

Y Y

© 0251 © 0.25

o]

= 2

0.00 ++ T T 0.00 T T

0 1 2 3 0 20 40

Absolute error (sec)
(a) Seconds-scale window size

Absolute error (milliseconds)
(b) Millisecond-scale window size

Fig. 17. Accuracy of time window inference phase of the HERACLEs attack
against several DoS defense techniques in simulation.

Figure [T7((a) shows the time window inference attack accu-
racy of Poseidon and (Cerberus too, for comparison with its
hardware experiment in Figure [5(b)), and Figure [T7(b) shows
Ripple and Mew in our simulation framework, respectively.
Note that the time window of the link flooding attack defense
system is sub-second (e.g., 100 to 500 ms). Therefore, we
conduct more aggressive packet sending with high PPS when
testing Ripple and Mew. We confirmed that 98 out of 100 in
a seconds-scale time window configuration, and 86 out of 100
in a milliseconds-scale time window configuration correctly
measure the period and number of the time window. In the
case of inferring the start time of the time window, as shown in
Figure[I7] our probing process can accurately measure the start
time with an absolute error of less than 1 second in seconds-
scale configuration and 50 milliseconds in milliseconds-scale
time window configuration for all cases where the period

18

—— Coremelt Crossfire —— Pulsing Benign
3.0 18

@ w

225 £ 16

5] 2

< 201 @ 14

Qo N

© 15 .

¥ £

1.0
g 3 101
< 054 o
i T v v + 8+ T v v v v v
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (sec) Time (sec)
(a) Attack profile (b) Memory slice adjustment

‘@ 300K 100
Q
=
- 80
@ 200k =
] X 60
3 <
a o
5 z
© 100K 4
& 20
E
b4 0 0

15 20 25 30

Time (sec)
(d) DoS mitigation result (FNR)

20 30 5 10
Time (sec)

(c) Number of uncounted packets

0 10 0

Fig. 18. Simulated memory squeezing attack against Mew [14].

and number of the time window are correctly inferred. This
confirms that our threshold inference process is applicable to
existing DoS mitigation systems.

Additionally, for Mew [14], we tested the memory squeez-
ing attack feasibility against the attack detector mechanism.
Figure [I8] shows the attack-defense simulation result in
Mew. In our simulation, Mew supports 3 types of defenses
(Coremelt [5], Crossfire [6]], and Pulsing [36]) in the same
register. For this, the pattern_state register of Mew shares
3 different types of per-flow in-network measurement tasks: (1)
‘byte count’ for Coremelt detection, (2) ‘low rate flow count’
for Crossfire detection and (3) ‘fluctuation count’ for Pulsing
attack detection (see [14] and [91] for their implementation
details). As shown in Figure [T8(a), the adversary changes
different attack profiles to manipulate Mew’s adaptive memory
slice mechanism. The attack profile in Figure [I8]a) is designed
to reduce slices allocated to the Crossfire and Pulsing attacks.

Figure [I8|b) shows that the memory slice adjustment mech-
anism of Mew reduces the allocated counter size of the target
task (Crossfire/Pulsing) while the memory size of non-target
tasks (Coremelt) increases. Figure ﬂ;gkc) and (d) illustrate the
effectiveness of memory squeezing against Mew. As shown
in Figure ﬂ;gkc), due to the squeezed counter size, Mew
undercounts malicious traffic. Consequently, Mew fails to fully
defend against attacks, blocking only 30% of malicious traffic,
as shown in Figure [I8(d). This simulation result shows that
our memory squeezing attack strategy is applicable to other
adaptive resource-adjusting data-plane applications.

AprpPEnDIX C
ARTIFACT APPENDIX

A. Description & Requirements

Our artifact contains several proof-of-concept implementa-
tions of DPDK-enabled Cerberus, and SHIELD that demonstrate
the functionality of the techniques described in the paper.
For the simple test, we provide the Packet Testing Framework
(PTF)— a Python-based dataplane test framework — for SHIELD.

1) How to access: The artifact is available on both our
GitHub [50] and Zenodo [92]. In this artifact appendix, we
explain based on the GitHub version.

2) Hardware dependencies: Testing the functionality of
SHieLD using the PTF test only requires a commodity desktop
machine (with an x86-64 CPU with 8 cores and 16 GB of
RAM) and software dependencies. However, testing full line-
rate performance of SHIELD with large-volume traffic requires
a Tofino programmable switch (such as Edgercore Wedge-
100BF-32X). Also, one (with 2 ports) or two NIC cards (with
1 port) with a minimum data rate of 40Gbps is required, wired
with two QSFP (e.g., QSFP28) cables with a programmable
switch. Note that the QSFP port of the switch and the NIC
connect with compatible transceivers with each vendor, or use
cables that support dual-compatibility for both the switch and
NIC vendors.

3) Software dependencies: We provide two distinct soft-

ware dependencies for testing:
Testing with Tofino model. This option emulates the compila-
tion and execution of P4 code through the Tofino Model (Intel-
provided Tofino emulator), without an actual programmable
switch. The Tofino model is a tool for developing and de-
bugging TNA-based P4 programs. In most cases, the P4
program can operate on real hardware if it is executable on the
Tofino model. However, the Tofino model can only validate
the functionality due to the slow packet processing speed.
Therefore, certain PTF tests are not possible due to the packet
processing performance limitations. Also, the Tofino Native
Architecture (TNA)-based P4;5 code is usually tailored to
specific software environments. Thus, we recommend running
the Tofino Model of Open P4 Studio on the Ubuntu 22.04 LTS
system that we already tested. The PTF test requires Python
3.10 (will be installed with Open P4 Studio) and the scapy
package.

Testing with a real programmable switch. This option
requires an actual Tofino ASIC-powered programmable switch.
In this case, proper Board Support Packages (BSP) and P4
Studio (bf-sde), which are under Intel’s NDA, are required.
The operating system of our switch is Ubuntu 22.04 LTS, and
we recommend Intel P4 Studio (and bf-sde) version 9.13.1 (or
higher), because the TNA-based P4 code is highly tailored to
a specific version of bf-sde.

We also use DPDK (v24.11) on a programmable switch with
vfio—pci. It is possible to use igb_uio, but we recommend
using vfio —pci. To use vfio — pci, enable IOMMU in the
switch BIOS, and then make sure to load the VFIO kernel
module. Note that we are using bf_kpkt driver for using
DPDK with the Tofino programmable switch.

4) Benchmarks: None

B. Artifact Installation & Configuration

Testing with Tofino model. Begin by cloning the Open Tofino
GitHub repositoryE] because our artifact requires the Tofino
Model to emulate the behavior of the Tofino ASIC. Installing

4https://github.com/p4lang/open-p4studio

19

P4 Studio takes a lot of time. SDE installation and setup takes
more than 2 hours, depending on the hardware.

#cd~

git clone https://github.com/P4ica/tools.git

git clone https://github.com/p4lang/open-p4studio.qgit

git clone https://github.com/NetSP-KAIST/shield.git

cd open-p4studio

git submodule update --init --recursive

cp ../shield/model-profile.yaml ./p4studio/profiles/

./p4studio/p4studio profile apply ./p4studio/profiles/model-profile.yaml

Then, set environment variables and create virtual network
interfaces for the Tofino model.

./create-setup-script.sh > ~/setup-open-p4studio.bash

source ~/setup-open-p4studio.bash

$SDE_INSTALL/bin/pip3.10 install scapy

cd $SDE_INSTALL/bin

In -s p4c bf-pdc

cd $SDE

echo "-DP4C=$SDE_INSTALL/bin/p4c" > ./bf-sde-open-p4studio.manifest
sudo ${SDE_INSTALL}/bin/veth_setup.sh 128

Use ‘sudo ${SDE_INSTALL}/bin/veth_teardown.sh’ com-
mand to remove virtual interfaces after the experiment finishes.

Testing SHieLDp with a real programmable switch. Install
P4 Studio and proper bf-sde based on Intel’s instruction with
proper bsp software and setup path with set_sde.bash script
that Intel provided. Then load bf_kpkt module.

sudo $SDE_INSTALL/bin/bf_kpkt_mod_load $SDE_INSTALL
sudo ip link set ‘basename /sys/module/bf_kpkt/drivers/pci\:bf/*/net/** up

Then build and run the P4 program and set the port
configuration. Note that the port configuration can differ from
below:

cd $SDE

../tools/p4_build.sh ../shield-skech/shield.p4
./run_switchd.sh -p shield
bfshell> ucli

bf-sde> port-add 11/- 100G RS
bf-sde> port-add 12/- 100G RS
bf-sde> port-enb 11/-

bf-sde> port-enb 12/-

bf-sde> port-add 33/- 10G NONE
bf-sde> an-set 33/- NONE
bf-sde> port-enb 33/-

bf-sde> pm show

The command output of ‘pm show’ should be like below:

PORT |MAC |D_P|P/PT|SPEED |FEC |AN|KR|RDY|ADM|OPR|LPBK |FRAMES RX |FRAMES TX |E

NONE
NONE
NONE
NONE
NONE
NONE

11/0 [13/0]
12/0 [12/0
33/0 132/0
33/1 132/1
33/2 132/2
33/3 132/3

4411/441100G
3611/36/100G
6411/64110G
6511/65|10G
6611/66]10G
6711/67110G

RS |Au|Au
RS |Au|Au

YES | ENB| DWN |
YES | ENB| DWN |
NONE | Au | Au| YES | ENB | DWN |
NONE | Au | Au| YES | ENB | DWN |
NONE | Au | Au | YES | ENB | DWN |
NONE | Au | Au | YES | ENB | DWN |

0l
0l
0]
0]
0]
0l

0l
0l
0]
0]
0]
0l

Next, run the initial setup script and the control plane with
another shell:

cd ./shield-sketch
sudo -E $SDE_INSTALL/bin/python3.10 ./setup.py
sudo -E $SDE_INSTALL/bin/python3.10 ./run_cp_scapy.py

C. Experiment Workflow

Our repository is organized as follows:

e cerberus: data/control-plane code for reproduced Cer-
berus and Cerberus++. The P4 codebase and Python/D-
PDK versions of control plane implementations are in-
cluded. Testing this artifact must require real Tofino
hardware.

https://github.com/p4lang/open-p4studio

o shield-sketch: data/control-plane code for SHIELD. P4
code, Python control plane, and PTF tests are included.
Testing this artifact must require real Tofino hardware.
shield-model: data/control-plane code for SHIELD for
Tofino model. The P4 codebase, Python control plane,
and PTF tests are included. This artifact appendix mainly
focuses on this directory.

D. Major Claims

e (C1): The SHieLD uses a hierarchical layered register
design. When a lower-layer counter overflows, the excess
is forwarded to the next higher layer. This is proven by the
experiment (E1) that verifies the functionality of SHIELD
with PTF tests.

(C2): The SuieLp refreshes or decays the values inside
the register as the time window changes. The SHIELD al-
lows each layer to have a different time window to refresh
the register value. This is proven by the experiment (E1)
that verifies the functionality of SuieLp with PTF tests.

E. Evaluation

1) Experiment (EI): [Verify Functionality] [10 human-
minutes + 5 compute-minutes]: after setting up our environ-
ment, build the P4 program and run the Tofino model. Then
execute PTF tests to validate the functionality of SHIELD. Our
PTF test is composed as follows:

o overflow.py: Send packets affecting each layers. This
PTF test will verify our major claim (C1).

o decay.py: Send packets affecting layer 1 and 2, and see
whether the values on layer 2 and 3 are well decayed.
This PTF test will verify our major claim (C2).

[How to] We provide Python scripts for the PTF test.
[Preparation] First, build and run the Tofino model:

source ~/setup-open-p4studio.bash
#cd $SDE
../tools/p4_build.sh ../shield/shield-model/layered_cms.p4
./run_tofino_model.sh -p layered_cms \
-f ../shield/shield-model/ptf-tests/ports_model.json

The output of this command explains the behavior of the P4
program. The terminal output of the Tofino model may contain
errors, but this is not a problem. These errors occur because
our script sends multiple batch commands — that include some
unsupported operations (e.g., clear all) against specific tables
or registers—to all tables and registers.

Then, type the following in another terminal. This runs the
P4 program by launching the driver:

source ~/setup-open-p4studio.bash
cd $SDE
./run_switchd.sh -p layered_cms

The output of this command is bf-shell.
[Execution] Run the PTF test in another terminal:

source ~/setup-open-p4studio.bash

cd $SDE

export PKTPY=false

./run_p4_tests.sh -p layered_cms \
-f ../shield/shield-model/ptf-tests/ports_model.json \
-t ../shield/shield-model/ptf-tests

20

[Results] The PTF test script will test the functionality of
our implementation. Our PTF test script will test:

e decay : DecayLayer2

e overflow.SendTolLayerl

e overflow.SendToLayer2

If it executes without any errors, it implies our code works on
the real Tofino switch hardware as well. Due to the packet pro-
cessing speed of the Tofino model, tests such as DecayLayer3
or overflow.SendToLayer3 requires real hardware.

F. Notes

To evaluate the hardware implementation version of Cer-
berus/Cerberus++ and SHIELD, please refer to README in each
directory. Each directory includes implementation and steps
that are necessary for executing Cerberus and SHIELD, except
for the attack traffic generator. The attack traffic generator
is not open-sourced for ethical reasons. Again, note that
the hardware implementation version has strict hardware and
software dependencies and requirements.

	Introduction
	On State-of-the-Art Programmable Data-Plane DoS Mitigation
	A Primer on Programmable Data Plane
	Flexible Resource Sharing in Programmable Switches

	The Heracles Attack
	Attack Preparation: Inferring Switch Internal Parameters
	Inferring Detection Threshold
	Inferring Windows Timing
	Inferring Register-sharing Tasks

	Attack Strategy-I: Synchronized Augmentation
	Attack Strategy-II: Memory Squeezing
	Attack Strategy-III: Time-window Exploitation

	The Shield Sketch Data Structure
	Data Structure
	Operations

	Evaluating Shield
	Robustness against Heracles
	Accuracy of Shield
	Resource Overhead

	Discussion
	Systemic Challenges in Programmable Switch Design
	Heracles and Shield as Case Studies
	Task-specific trade-offs between Shield and Cerberus

	Related Work
	Programmable Switch Applications and Systemic Constraints
	Heracles and Existing DoS Mitigations

	Conclusion
	References
	Appendix A: Theoretical Analysis of the Shield
	Analysis of Data Structure of Shield
	Analysis of Decay function of Shield

	Appendix B: Simulation of Heracles against Other DoS Defenses
	Appendix C: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)

	Notes

