ACTS: Attestations of Contents in TLS Sessions

Pierpaolo Della Monica, Ivan Visconti, Andrea Vitaletti and Marco Zecchini
Sapienza University of Rome, Italy
{dellamonica, visconti, vitaletti, zecchini} @diag.uniromal..it

Abstract—An essential requirement for the large-scale adop-
tion of Web3 is enabling users to benefit from their data even
within already deployed systems. This raises an important open
question: how can existing, widely adopted software verify that
a user has retrieved specific data from a TLS server?

Impressive scientific results (e.g., DECO [CCS20] and the work
of Xie et al. [USENIX24]) and industrial products (TLSNotary)
have recently made progress in the above challenging direction.
However, while they nicely leave TLS servers untouched, the
retrieved data is then used in computations with verifiers that are
required to run some advanced non-standardized cryptographic
schemes (e.g., ZK-SNARKS), which clearly limit the large-scale
adoption of the proposed technologies.

In this paper, building on top of previous approaches and
relying on the recent concept of Predicate Blind Signatures of
Fuchsbauer and Wolf [Eurocrypt24], we bypass the limits of
prior work by presenting ACTS, a distributed architecture that,
while still leaving TLS servers untouched, it allows a user to show
possession of data retrieved from TLS servers simply requiring
that the software of the verifier can check a standard signature.

Our contributions include a round-optimal predicate blind
signature protocol that produces standard RSA-PSS signatures.
We show how this primitive can be integrated into the DECO
architecture (and its successors) to certify data retrieved from
TLS servers. Furthermore, we have optimized our construction
to make it practical on commodity hardware for a large and
significant class of policies implemented by the notary (i.e.,
the actor that is in charge of obliviously certifying TLS data,
therefore preserving data confidentiality).

We provide an experimental evaluation on the simple but
powerful enough use case of a PDF document downloaded from
a TLS server and encoded into an AES-GCM ciphertext. The
user will then get a certified PDF through a standard PADES
signature added obliviously to the PDF along with some metadata
by a notary service. The resulting standard signed PDF document
can be transparently verified using off-the-shelf PDF readers.
Our experimental validation demonstrates that our architecture
is suitable for real-world deployment in concrete scenarios.

I. INTRODUCTION

Nowadays, user data are stored in many servers on the Web.
Typical examples include personal health and banking data,
as well as financial or registry data. Users can usually read
and download their data after an identification phase, and the
entire communication is typically secured by the Transport
Security Layers (TLS) protocol so that the communication is
both confidential and authenticated.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241861
www.ndss-symposium.org

However, it is very common that data downloaded from
servers is not certified. For example, one can download from
the server of a medical laboratory a PDF, with the results of a
blood test, and this file is commonly not digitally signed. This
example can be easily replicated to many other scenarios, and
the TLS protocol — by design — does not leave the client
any useful information to convince others of the authenticity
of the data that has been downloaded from the server.

The consequence of the above state of affairs is that users
cannot provide guarantees on the authenticity of their own data
unless they embark in time and money consuming requests of
ad-hoc certifications, which moreover, are not guaranteed to
succeed since servers might not be willing to cooperate.

The birth of TLS Oracles. Starting in 2020, the seminal
paper called DECO [1], initializes a major line of research
[2, 3, 4]" in which a third party, named verifier or TLS oracle,
audits the communication between the user and the server. In
particular, in a first phase, the verifier participates, jointly with
the user, in a TLS handshake phase where they jointly play
the role of a client and connect to a TLS server obtaining
shares of the session keys that will be used to secure the
communication of application data. Next, in a second phase,
using the above shares, they jointly produce packets of the
TLS record layer (e.g., encrypted and authenticated HTTP
packets) that are sent to the server. In this second phase, the
verifier does not learn anything about the content of the HTTP
packets sent to the server, thus maintaining the confidentiality
of user data. Once the communication with the server has
ended, the user has the ability to send a cryptographic proof
(specifically, a zero-knowledge proof) demonstrating that the
exchanged application-layer data (e.g., HTTP packets) satisfy
certain properties (i.e., enabling the user to prove to a verifier
properties about the content of a TLS connection established
with a server). For instance, if the server is the website of a
bank, the user can prove to the verifier that she has an account
with this bank and that, in this account, she holds more than
a specific amount of money.

A fundamental key feature of the protocol proposed in [1],
called DECO, lies in the fact that it requires no changes on
the server side, which continues to work exactly as it does
today (i.e., there is no need to modify the widely deployed
TLS protocol and the entire process is transparent to the
server). The above transparency is extremely beneficial and
indeed some companies, such as the decentralized oracle
Chainlink (https://blog.chain.link/deco-sandbox/), are already

I'TLSNotary and PrimusLabs are industrial projects working in this field.

https://blog.chain.link/deco-sandbox/
https://tlsnotary.org
https://primuslabs.xyz

using DECO (or variants of it), thanks to its easy integration
with existing services.

A weakness of DECO. The work of Zhang et al. [1] (and
subsequent optimizations [2, 3]) considers three parties: a
server, a user and a verifier. The user should repeat executions
of DECO with every distinct verifier and for every distinct
session engaged with the server. Considering the fact that
DECO introduces a significant overhead, the above workflow
is clearly impractical for large-scale adoption of scenarios
where the user needs to engage with multiple verifiers.

TLSNotary (https://tlsnotary.org), an open-source project
that works in this field, proposes a technique to mitigate
such a problem by introducing an additional player, called
a notary. The notary replaces the verifier in DECO and, once
the communication with the server concludes, she signs the
packet of the record layer of TLS, corresponding therefore to
authenticated encryptions of application data, which typically
consist of HTTP packets exchanged at the application layer
between client and server.

Those ciphertexts signed by the notary can include confi-
dential information of the user and obviously the ciphertexts
protect such confidentiality since the notary does not possess
the decryption key. A verifier who trusts the notary first verifies
that the signature on the encrypted HTTP packets is correct
and, then, receiving the decrypted application data and the
decryption key from the user verifies that the encrypted HTTP
packets are correctly decrypted into the application data. Note
that, with this approach, the notary can collude with a verifier
understanding in which session she has signed the HTTP
packets and giving her the chance to leak other information
about the user. If the notary repeats this process with many
users, this would transform her into a sort of big brother.

To avoid this attack, with TLSNotary, the user must provide
a zero-knowledge proof to the verifier, as in DECO, guarantee-
ing that the data in the hidden plaintext satisfy some properties
(for a visual intuition of this process, we refer the reader
to Fig. 1 and to Sec. I-C). However, such a verification is typi-
cally way beyond what is available in existing systems, where
software is limited to standardized cryptographic features,
such as data encryption and digital signatures. For instance,
Adobe Acrobat Reader is one of the most widely adopted
software used to read PDF files, and it does not include any
implementation of verification algorithms of zero-knowledge
proofs, while it does support the verification of standard digital
signature schemes attached to PDFs. The need to upgrade the
verifier with non-standardized cryptographic tasks is a serious
limitation to the applicability of such techniques in real-world
scenarios and therefore negatively affects the adoption of
DECO and all subsequent protocols [2, 3, 4].

Recall that a key feature of DECO is the transparency for
servers that are not required to update software and to support
non-standardized cryptographic tasks. Clearly, one would also
like the same transparency for verifiers, but proposals in the
state-of-the art are instead “unfriendly” to verifiers.

Notice that one cannot just transfer from the verifier to the
notary the task of verifying a ZK proof since the claim of

the proof can already include confidential information that the
user is not willing to reveal to the notary. Indeed, providing to
the notary all claims that users would like to prove to verifiers
would again transform the notary into a sort of big brother
collecting data from all users, which is obviously undesirable.

Open Problem. In the current state of affairs, there is a
clear tension between allowing servers and verifiers to keep
working using existing software consisting of standardized
cryptographic tools (e.g., digital signatures) only, and the need
to allow a user to show possession of data stored on servers
through a notary, still preserving data confidentiality with
respect to the notary. The open problem that we study in our
work consists of designing a secure protocol that circumvents
the above tension while guaranteeing the following properties:

e a user can convince verifiers about possession of data
stored on servers leveraging a notary service;

« there is no leak of information about user data that can
be abused by the notary;

« the system is completely transparent to servers;

« verifiers only need to use existing software based on
standardized cryptographic tools.

A. Our results

In this work, we solve the above open problem. We present
ACTS (Attestations of Contents in TLS Sessions), a new archi-
tecture that builds upon prior approaches leveraging notaries,
but we deviate in some crucial steps allowing verifiers to rely
solely on existing software that can verify standard signatures.

At the heart of our approach there is the use of an advanced
cryptographic building block that, however, will impact only
on user and notary: predicate blind signatures for standardized
signature schemes.

Brief warm up on blind signatures. Introduced by Chaum in
[5], a blind signature scheme is a protocol between a signer
and a user that allows the latter to obtain a signature on a
message hidden from the signer. Due to their applications (e.g.,
e-cash systems [5], e-voting [6], anonymous credentials [7],
blockchain applications [8]), recently the IETF has realized a
proposal [9] for the standardization of blind signatures over
the standard signature scheme RSA-PSS [10, 11].

Blind signatures are not enough. In our application, we
propose to embed an execution of a blind signature protocol
in the communication between the user and the notary so that
the user gets from the notary (playing as signer) a standard
RSA-PSS signature on the actual application data (e.g., HTTP
packets) without the notary having access to such data. The
verifier can then simply check the signature of the notary on
the downloaded data with standard software. For instance, if
the user, collaborating with the notary, downloads a PDF file
from a server, the notary can blindly sign such a file and the
verifier can check the signature with standard software, like
Adobe Acrobat Reader. However, this approach raises a natural
concern: the notary does not trust the user and obviously she
would refuse to sign arbitrary hidden data.

https://tlsnotary.org

Upgrading to predicate blind signatures. To overcome the
above barrier, we use the recent notion of Predicate Blind
Signature (PBS) proposed by Fuchsbauer and Wolf [12]. A
PBS scheme generalizes the notion of a blind signature,
allowing the signer to produce a signature on a hidden message
only if the message satisfies some specific properties (i.e.,
it satisfies a predicate) established by both the user and the
signer. This notion perfectly fixes the above problem where
a notary was not willing to sign arbitrary data. Indeed, we
can use a PBS scheme so that the notary is guaranteed that
the signature will be applied exactly to some application data
included in the ciphertext (e.g., a PDF downloaded by the
user) without being able to see the signed data.

Since our goal is to allow the verifier to use existing soft-

ware, including standardized cryptographic tools only, we have
designed and implemented a predicate blind signature scheme
that outputs signatures according to the standard and widely
adopted RSA-PSS scheme. We have used our implementation
to blindly sign a PDF encrypted in an AES-GCM ciphertext,
producing a signed PDF according to the standard PADES.
The widely used software Adobe Acrobat Reader successfully
shows the content of the PDF file and moreover confirms that
the PDF is correctly signed by the notary.
Another layer of security: decentralization of the notary.
One might worry about specific scenarios where collusion
between the user and the notary is possible (e.g., when the
content of a TLS communication has a relevant value and the
user can therefore try to bribe the notary).

We notice that we can protect the verifier by strongly
mitigating the above risks through the following requirement:
the user must perform the task of obtaining signed data from a
notary multiple times, each time accessing a different notary.
We envision a setting in which, to avoid a single point of
failure, the verifier requires the user to provide data signed
by multiple notaries. The user, therefore, will produce in the
end a predicate blind multisignature. Notice that the notion of
blind multisignature has recently been introduced in [13].

A natural question is why we choose to rely on blind mul-
tisignatures rather than threshold blind signatures, especially
given that the latter can yield a single signature. To answer
this, we first need to discuss the key differences between
these two primitives. In both notions, the setting is defined
for a single user and multiple signers. In a threshold blind
signature scheme, signers collaboratively generate a single
blind signature, with the requirement that at least ¢ out of
n parties participate (with ¢ < n). In contrast, in a blind
multisignature scheme, each signer independently interacts
with the user to produce a blind signature for the same
message, and then these signatures are aggregated by the user.

Although constructions of threshold blind signature schemes
exist [14, 15], it is well known that these schemes typi-
cally lack adaptive security. Adaptive security in this context
refers to the property of the scheme to remain secure (i.e.,
unforgeability holds) even in the case that the malicious
user can corrupt some signers during the execution of the
protocol. Note that in a real-world context, as the one we

proposed before, such a scenario where a user can adaptively
corrupt some notaries could be realistic, especially in the case
where the content of the TLS communication to certify has a
relevant value. That is, for our purpose, we cannot give up on
adaptive security, even though there is currently no scheme that
supports such an advanced security notion. Furthermore, even
if one attempts to construct (for the first time) an adaptively
secure threshold blind signature scheme, in our case, there
is also another additional challenge that the output must be
a standard (e.g., RSA-PSS) signature; this is another major
challenge to overcome since standard signatures are not easily
thresholdizable (e.g., like BLS signatures).

Given these challenges, we opt for (predicate) blind mul-
tisignatures, providing stronger security at the affordable cost
of attaching multiple signatures to the final output. This
choice, however, comes with a notable advantage: it enables
modularity. Specifically, different verifiers may trust different
subsets of notaries, and our approach naturally supports this
by allowing each verifier to extract and validate only the
signatures corresponding to the notaries it trusts.

Moreover, based on our experimental results, we observe
that the size overhead required for including multiple signa-
tures is minimal relative to the size of the underlying content
(e.g., the content of an HTTP communication). In practice,
this keeps our approach efficient and practical, even when a
reasonable number of notaries are involved.

B. Related Works on TLS Oracles

DECO [1], initially derived from the PageSigner protocol
(2014), formalizes the problem of proving the provenance of
TLS data without requiring any server-side modifications. It
introduces the first protocol in which the user and the verifier
jointly emulate a TLS client through an ad hoc two-party
computation (2PC) in the malicious setting. At the end of
the protocol, the user uses a Zero-Knowledge Succinct Non-
Interactive Arguments of Knowledge (zkSNARK) to prove
statements about the data received from the server.

The work of Xie et al. [2] improves the efficiency of
DECO. Their key idea is that they do not change the overall
architecture of the DECO protocol but instead optimize its
internal components. In particular, instead of designing custom
maliciously secure 2PC protocols as done in DECO, the prover
(i.e., the user) sends a garbled circuit to the verifier, who
evaluates it. After the user and verifier interact jointly with the
server and when the communication phase ends, the verifier
reveals its share of the session secrets. At this point, the prover
proves in zero-knowledge (using a highly efficient interactive
protocol based on VOLE [16]) that the garbling was carried
out honestly and consistently. This approach is named garble-
then-prove and significantly reduces both the computation
and communication overhead of DECO. DiStefano [17] and
DIDO [18] further optimize the security and efficiency of
DECO [1] especially for TLS 1.3 version.

Janus [4] builds on the alternative setting described in [,
App. C.4], where the verifier acts as a proxy between the user
and the server. In this model, the 2PC is performed only during

https://bitcointalk.org/index.php?topic=173220.0

the TLS handshake. After this phase, the verifier reveals its
key share to the user, who then constructs HTTP requests
independently. These requests are forwarded by the verifier to
the server, effectively reducing the number of 2PC executions.
This proxy-based approach significantly relies on stronger
network assumptions: in particular, the user cannot perform
a man-in-the-middle attack on a network level between the
verifier and the server. Janus integrates the garble-then-prove
paradigm into the handshake phase of the TLS 1.3 version,
enhancing the efficiency of the protocol.

Always in the proxy setting, Origo [3] eliminates the need
for 2PC entirely, even during the handshake. It exploits specific
properties of TLS 1.3 to allow the user to generate a SNARK
after the handshake phase with the server, proving that she
acts honestly during this phase. This results in constant-size
communication during the online phase and makes the proto-
col highly suitable for constrained environments or scenarios
involving multiple verifiers. However, Origo still relies on the
above network assumption, limiting the adversarial user from
being a proxy between verifier and server. Luo et al. [19]
designs a protocol with the same objective of Origo but
without relying on SNARK but instead it directly explots the
key-commiting property of the authenticated encryption with
associated data schemes used in TLS. However, according
to [4], such an approach might have limitations in terms of
security. We refer the reader to [4, Table 5] and [3, Table 1] for
a comparative summary of the results and key characteristics
achieved by these systems.

Although the proxy-based setting adopted by Janus and
Origo leads to significant efficiency improvements, we do not
follow this approach in our work. As early noted in [1], relying
on the network assumption that the user cannot interfere with
the communication between the verifier and the server weak-
ens the security model. For this reason, we focus exclusively
on designs that do not depend on a proxy and, therefore, on
the above network assumption.

DECO [1] and the works [2, 3] considers three parties: a
user, a verifier, and a server. TLSNotary (https://tlsnotary.org)
is the first project to identify the following problem: the user
should repeat the executions of DECO (or alternative proto-
cols) with every distinct verifier and for every distinct session
engaged with the server. To fix this problem, TLSNotary
introduces a fourth party, a notary, that acts as the verifier in
DECO and, at the end of the protocol, signs the ciphertexts of
the HTTP packets. A verifier who trusts the notary first verifies
that the signature on the encrypted HTTP packets is correct
and, then, verifies a zero-knowledge proof received from the
user, as in DECO, that guarantees that data in the hidden
plaintext satisfy some properties. Janus [4] also considers a
four-party setting with a notary. TLSNotary is an open source
project that implements all the technical components of the
protocols using a 2PC in the malicious setting (specifically,
the Dual Execution with Asymmetric Privacy protocol) for the
handshake and the query phase and a NIZK to prove properties
on the hidden plaintext.

C. Technical Overview

Server § Prover P Notary N Verifier V
{ Three-party handshake }
Sessioni keys k k‘p k:v

i Send Q = Query(fs)

b Query Execution
! Receive Response R

: : Committo (Q, R)

ky

Compute H BIi’ndSignatur‘e‘x
(R',rand) < Blind(R) i R :

Protocol
Os
kp
R Proof Generation
rand
—>

Y Compute .
i % o+ Unblind(¢’,rand) i

o, R

Fig. 1: An overview of ACTS. Note that, we highlight in red
the deviation of our solution with respect to [1]. The last step
can also be interactive and played subsequently.

Starting point: DECO. We position our work as a challenging
extension of DECO as in [1] that aims at obtaining a notary
service’ from DECO with the purpose of allowing a user to
prove to verifiers® that she own data stored by TLS servers
and certified by a notary. Such verifiers use existing software
with standardized cryptography only.

Therefore, in order to illustrate our extension, we first need
to show how DECO works (having a notary replacing the
DECO verifier) and then we will present an overview of
our extension. Note that other related works on TLS oracles
(presented in App. I-B) follow a similar architecture presented
in the following with only small modifications.

As shown in Fig. 1, which is inspired by Fig. 2 of [1],
DECO is a three-phase protocol. The first phase is a three-
party handshake protocol in which the prover (or user) P, a
notary A/, and the TLS server S establish session keys that are
secret-shared between P and N. At the end of the three-party
handshake, P and A receive kp and ks, respectively, while
S receives k = kp + k.

After the handshake, there is a query execution phase
during which P accesses the server following the standard
TLS protocol, but with the help of A/. In the query execution
phase, P and N agree on a query template Query(-) that
will be sent to S. In the query template, the parties agree on
the public parameters of the web request to S (e.g., a URL
for a REST API server), but additionally, it can be fulfilled
with a secret string 6s known by P. Hence, Query(-) takes
as input fg. An example query template would be the URL

2The notary will play on the side of the verifier of DECO.
3They are verifiers in the 4-party model, they interact only with the user
and this interaction can happen when the execution of DECO is over already.

https://tlsnotary.org

of a REST API that returns the stock price of TSLA on a
specific day, and, in this case, #g would be the API key
to access such information on § (e.g., Query(ds) =
“https://eodhd.com/api/eod/TSLA.US?from=2025-01-
01&1t0=2025-01-02&period=d&fmt=json&api_token=05").
Note that, for some applications, it is relevant only that /P has
been able to download application data R from S without
checking whether the query to & was well-formed. During
the query execution phase, P and N jointly compute the
authenticated encryption of the query Q = Query(fs) that
is then sent to S by P. The server S will respond with the
authenticated encryption of R to P. When the communication
with the server ends, P commits to the query and response
(i.e., P shares with N the ciphertext of R and Q) and N
reveals her key share. Finally, P proves statements about the
response R in a proof generation phase. During this phase
in DECO, the prover proves in zero-knowledge to the notary
that (1) @ was well-formed (i.e. @ = Query(6s)), (2) kp
is combined with ks into a key k’ that correctly decrypts
the authenticated encryption of R and (), and finally (3) R
satisfies one or more properties.

The crucial upgrade: replacing the ZK proof with a
PBS. We modify the last stage of DECO, deviating from
the design in [1] and embedding the proof generation phase
directly within a blind signature protocol. Note that, in Fig. I,
the “BlindSignature Protocol” in the dashed box shows our
protocol’s deviation from [1]. In particular, after having
verified locally the integrity of the response R received from
S, P hides R by running with some randomness rand a
probabilistic algorithm, Blind(+), which hides R inside another
message R’ given in output. R’ is sent to A” by P. Then,
in the proof generation phase, P additionally proves to N
that 4) she knows the message R and the randomness rand
that have been used as input of Blind(:) to produce R’. Note
that, to ensure that R actually comes from S, P slightly
modifies R adding a piece of information stating that R comes
from a TLS connection with S and proving to A/ that only
this modification has been added to R (to avoid burdening
the notation, from now on we refer also to this information
when using R). If the proof is verified correctly, the notary
N produces a signature o’ on R’. Once received o/, P runs
another algorithm Unblind(-) that takes as input* ¢’ and rand
and that unblindsthe signature ¢’ producing a new signature o
that is verified correctly on R. In the end, o is a cryptographic
signature produced by N without accessing the message R,
thanks to the blindness property of the PBS scheme. The
prover P can now present ¢ and R to any verifier V to
convince her that P has downloaded R from a server S.
Indeed, if o is correctly verified with pk,,, V trusts that N
has audited the communication between P and S.

Note that when the response R is not randomized, P can
repeat the protocol summarized in Fig. 1 obtaining the same
response R multiple times, involving different notaries, to
obtain a set of signatures that can be combined into a single

4A run of the (un)blinding takes as input also the public key of N,

multisignature. In this way, we mitigate the risks associated to
a collusion between P and N.

Threat model. The threat model along with the setting and
the actor we consider is in Fig. 1. In our system, we consider
four parties: the server S, the user (also referred to as the
prover following DECO’s notation) P, the notary A/, and
the verifier V. The user P wishes to obtain authenticated
data from the server S. The notary A helps in auditing the
TLS communication but without learning the context of such
communication (i.e., in a way that P preserves privacy of its
obtained data). Finally, the verifier V is a party that interacts
solely with P, who seeks to convince V that the data received
from S has been certified by the notary A.

Our threat model follows that of DECO, with modifications
to account for our setting. In particular, we consider the follow-
ing adversarial capabilities: (1) A potentially malicious user P
may attempt to convince the verifier V that self-computed data
originated from the server S, thereby fooling the notary A into
attesting to self-computed data. (2) A potentially malicious
notary A/ may attempt to extract confidential information from
the user’s data while auditing the interaction with the server
S. (3) Importantly, we also consider collusion between P and
N, wherein they cooperate to convince the verifier V of the
authenticity of data that was not generated by the server S.
In such cases, N may attest to data crafted by P without any
legitimate interaction with S.

Our contribution: point-by-point. We summarize the main
contributions of our work below.

» We design a Predicate Blind Signature (PBS) protocol that
produces standard RSA-PSS signatures, preserving compat-
ibility with widely adopted software (e.g., Adobe Acrobat
Reader). Our construction extends the RSA-BSSA scheme
defined by the IETF standard, enforcing the verification of
a predicate, thus allowing a notary to blindly sign hidden data
only if it satisfies the agreed predicate. This required a signifi-
cantly different design and security analysis, both of which are
key parts of our contribution. The protocol is two-round and
makes use of a non-interactive zero-knowledge (NIZK) proof
to ensure the correctness of the predicate without revealing
the message. The resulting protocol satisfies blindness, based
on the ZK property of the underlying NIZK, and also satisfies
one-more unforgeability, relying on the unforgeability of RSA-
PSS and the proof-of-knowledge property of the NIZK.

» We define a predicate that certifies that some data were
correctly retrieved from a TLS server, leveraging the DECO
architecture: in particular, we design the predicate to guarantee
to the signer that the ciphertexts of the web requests and
responses were correctly formed and authenticated, and that
the plaintext response satisfies additional application-specific
conditions. We consider this within a four-party setting that
involves a prover, a server, a notary, and a verifier that, with our
PBS protocol, has to rely only on legacy signature verification.
» We implement and evaluate the entire construction in a
realistic TLS scenario, where a user owning a PDF file of
a realistic size (i.e., 26 KB) obtains a predicate blind RSA-

PSS signature from the notary. The resulting PDF is verifiable
with standard software such as Adobe Acrobat Reader, without
requiring any non-standard cryptographic tool.

» We implement the NIZK proof system in Circom and
evaluate the performance of two frameworks: (1) a VOLE-
in-the-head (VitH) proof system offering scalability and low
memory usage; and (2) Grothl6 SNARKS, offering succinct
proofs and fast verification. We demonstrate that the most
demanding part (generating the proof that the blinded message
corresponds to data encrypted with AES) can be performed
efficiently, and we show how to scale the construction to large
files by chunking the SHA256 and AES-CTR computation,
allowing proof generation even on low-resource devices.

II. PRELIMINARIES

We refer to App. A for standard definitions of cryptographic
primitives (e.g., RSA-PSS) and notations (which are almost
identical to those used in [12]).

A. Definition of Predicate Blind Signature Schemes

Here we provide the definition of (predicate) blind sig-
natures (PBS) according to the security model presented
in [12]. In [12] introduces the concept of PBS, which is a
generalization of standard and partial blind signatures [20]. A
PBS scheme is an interactive protocol that enables a signer
to sign a message for another party, called the user, without
learning anything about the signed message, except that it
satisfies certain conditions (defined by a predicate) on which
the user and signer agreed before the interaction.

A PBS scheme is parameterized by a family of polynomial
time computable predicates, which are implemented by a
polynomial time algorithm P : {0,1}* x {0,1}* — {0,1},
the predicate compiler, that on input a predicate description
¢ € {0,1}* and a message m € {0,1}*, outputs 1 if m
satisfies ¢, otherwise 0. In a PBS scheme PBSIP] for P we
have the following algorithms®.

 PBS.Stp(1*) — par on input)\, outputs public parame-
ters par, which define a message space Mpgs.

o PBS.KG(par) — (sk,vk) on input the parameters par,
outputs a signing/verification key pair (sk, vk), implicitly
containing par, namely par :C vk.

o (PBS.S(sk, ¢), PBS.U(vk,o,m)) — (0/1,0/L) is an
interactive protocol, with shared input par (implicit in sk
and vk) and a predicate ¢, that is run between two PPT
algorithms PBS.S, the signer algorithm (or the signer)
and PBS.U, the user algorithm (or the user). The signer
takes a signing key sk as private input, the user’s private
input is a verification key vk and a message m. The signer
outputs 1 if the interaction completes successfully and
0 otherwise, while the user outputs a signature o if it
terminates correctly, and | otherwise.

Note that PBS.U is composed by two sub-algorithms,
namely PBS.U = (PBS.UBId, PBS.UFin) and PBS.S

SNote that here following previous works (e.g., see [21, 12]) on blind
signature, we give a definition for a 2-round PBS scheme.

defines the algorithm PBS.SSig. The interaction, with b
representing a bit, is defined as follows:

(msgg, st) < PBS.UBId(vk, ¢, m),
(msgy,b) + PBS.SSig(sk, ¢, msgy),
o < PBS.UFin(st, msg;)

As shorthand for the above sequence we write (0/1,
/1)« (PBS.S(sk,), PBS.U(vk, o, m)) .

e PBS.Vry(vk,m,0) — 0/1 is deterministic and on input
a verification key vk, a message m, and a signature o,
outputs 1 if ¢ is valid on m under vk and 0 otherwise.

and such that Correctness, One-More Unforgeability and
Blindness as defined below hold.

Definition 1 (Correctness). A predicate blind signature
scheme PBS for predicate compiler P is perfectly correct if
for every PPT adversary A and A\ € N the probability in (1)
is equal to 1.

a) One-More Unforgeability.: The one-more unforge-
ability (OMUF) property states that after the completion of ¢
signing sessions, the user cannot compute ¢ 4 1 distinct valid
message-signature pairs.

In [12] this notion is generalized for PBS schemes. Loosely
speaking, the OMUF property for PBS requires that any output
generated by the user after participating in signing sessions,
using predicates of its choice, must be explicable with respect
to a predicate that was actually used during the sessions.
Specifically, let ¢ be the number of closed signing sessions,
and let ; be the predicate used in the j-th session. Suppose
that the message-signature pairs obtained by the adversary are
(mj,0})ie[x)- The OMUF property requires the existence of
an injective mapping f : [k] — [¢] so that P(@u),my) =1
for all k € [k].

Definition 2 (OMUF). Consider the game OMUF in Fig. 2.
A predicate blind signature scheme PBS for a predicate
compiler P satisfies one-more unforgeability (OMUF) if for

omuf

every adversary A the advantage Advpggip) (A, M) is negligible
in \ where: Advgiails (A, \):=Pr [OMUFs‘BS[P](A) =1].

b) Blindness.: We recall here the notion of blindness for
PBS schemes as in [12]. Following their approach, we adopt
the same definition of blindness for schemes with parameters,
which also covers instantiations without parameters (or with
“empty” parameters). Loosely speaking, the blindness property
for PBS requires that if a signer and a user (or multiple users)
interact n times in n different sessions, producing n signatures,
then later, when the signer sees one of these n signatures
(along with the message for that signature), it cannot identify
(with more than negligible probability) in which session it
was issued. The definition is given in the (more demanding)
malicious-signer model [22].

Definition 3 (Blindness). Consider the game BLD in Fig. 3. A
predicate blind signature scheme PBS for a predicate compiler
P satisfies blindness if for every adversary A the advantage

m & MpgsV
Pr P, m) = 0V
(bAY)

par <— PBS.Stp(1%), (sk, vk) < PBS.KG(par),

(m, p) < A(sk, vk),

(b,0) « (PBS.S(sk,), PBS.U(vk, o, m)), (1)

b':=PBS.Vry(vk,m, o)

Game OMUF“S‘BS[P] (N

Oracle Sign(p, msg;,)

1: par < PBS.Stp(1")

2: (sk,vk) < PBS.KG(par); P:=[|

(M7, 07)i + A¥"(vk)

if Ji1 # 42 : mj, = mj, return 0

if 3i € [¢(] : PBS.Vry(vk,m],0;) # 1 return 0

~N O B W

return 1

if 3f € F([¢],[|P]]) : Vi € [£] : P(Ps(;), mi) =1 return 0

1: (msg,,,b) < PBS.SSig(sk, ¢, msg;,)
2: if b # 1 return msg,,

3: P=P« Py
4

return msg, .

Fig. 2: (Definition) The OMUF game for a PBS PBS[P|. F(Z,) is the ser of injective functions from set Z to set 7.

(A,)\)::

Advpisip) (A, A) is negligible in X where: AdVglgsjP

Al _ A,0 _
[Pr[BLDZg) (\) = 1] = Pr[BLDggp (0) = 1

In Fig. 3 sess; for ¢ € {0,1} indicates the round of the i-
th session of the protocol. Moreover, we highlight that in the
Finalize oracle, if sess;_; is not equal to closed the output
is (i,closed). Note that the blindness notions of [12], which
follow the classical definitions from previous works, can only
ensure the user’s privacy if, at the time the user publishes a
signature, the signer has blindly signed a sufficiently large
number of messages under the same key. In the case of
predicate blind signatures, this requires that many message
predicates are satisfied by the signed message. Moreover,
in the BLD game in Fig. 3, by allowing the adversary
Aj; to output distinct predicates g, 1, the blindness notion
also ensures that the resulting signature does not reveal any
information about the predicate that was used.

III. CONSTRUCTION OF PREDICATE
RSA-PSS BLIND SIGNATURE

We give a construction based on “plain” blind RSA-PSS
signatures, called also RSA-BSSA [23]. In a nutshell, the
protocol is 2-round where it first speaks the user PBS.UBId
and then it responds the signer PBS.SSig algorithm, finally the
user finalize the signature by using the algorithm PBS.UFin.
To obtain predicate blind signature, in the first round we
require the user to send a proof that will assert that the
“blinded” message that it is sending satisfies the agreed-
upon predicate . We, therefore, first introduce the following
relation Rpjing:

Reiind (x:=(N, e, Hpss,), w:=(m,r, k)) :
u:=Hpss.Enc(m,)
return (P(p,m)=1A px° =t(mod N))

This relation Rgjing checks whether the user’s message ¢ was
blinded starting from an hidden message m and a randomness

k according to the public pair (N, e), and that m satisfies the
predicate .

Let RSAGen be an RSA key generation algorithm and
PSSGen a PSS function generator (which together define
RSA.KG in Fig. 8), let P be a predicate compiler for which
the relation Rpjing is defined, and let PS be a NIZK argument
system for Rgjnq; we describe in Fig. 4 the 2-round PBS
scheme PBSgsa [P, RSAGen, PSSGen, PS].

In a nutshell, our PBS scheme follows RSA-PSS (and
its blind version in [23]). The key generation algorithm
PBSgrsa.KG generates an RSA key pair vk:=(N, e, Hpss, par),
sk:=(N, e, d, Hpss, par), where ed = 1 (mod ¢(N)). Follow-
ing Chaum, to obtain a blind signature on a message m, the
user first generates a PSS encoding p < Hpss.Enc(m, 1)
with 7 < {0, 1}, then blinds it using a random r <= [N]
obtaining ¢ = ux® (mod N), which is an element of Z%, that
is distributed independently of m. Then he gets from the signer
the blinded signature msg;:=t? (mod N), and unblinds it
to obtain and output o:=msg;x "' (mod N). To verify a
signature ¢ on a message m, follow the same algorithm as
RSA-PSS verification.

Note that, to be a PBS scheme, the user, along with ¢,
also sends a NIZK argument of knowledge 7 proving that
the message m (that is in ¢ after being encoded and blinded)
satisfies some predicate ¢ shared with the signer. That is, the
signer before sending msg; to the user (and enabling him to
compute the signature o) first checks if the proof 7 is correct
and in case the verification fails, it aborts.

We provide a schematic overview of the interaction:

Signer(sk, ¢) User(vk, ¢, m)

((t,m), k) + PBSgsa.UBId(vk, ¢, m)
(tY(mod N),b) < PBSrsa.SSig(sk, ¢, (t,7))
o PBSRSA.UFin(/{,td(mod N))

Correctness. The perfect correctness follows from the perfect
correctness of PS scheme (see Def. 9) and the unforgeability
of RSA (see Assumption 1). We show now that the scheme

Game BLDZY

PBS[P](A) Oracle Blind(7)

Oracle Finalize(Z, msg)

b/%AEIind,Finalize(st)
return (b =1)

=~

if i ¢ {0,1} V sess; # init

(msg, st;) < PBS.UBId(vk, s, ms,)

1: par + PBS.Stp(1); bo:=b;b1:=(1—-b) 1

2: (po, 1, mo, m1, key,st) + Ai(par) 2 return L

3: if 3i,5 € {0,1} : P(pi,m;) # 1 3: sess; = open;vki=
4 return 0 4

5: (sessp,sess1):=(init,init) 5: return msg

if i ¢ {0,1} V sess; # open return L
sess; = closed

ob, < PBS.UFin(st,, msg)
if sessp = sess; = closed
1 Vo =1return (1L,1)

return (oo,01)

(par, key)

ifO'():

N N R W N =

return (i, closed)

Fig. 3: (Definition) The BLD game for a PBS scheme PBS[P] with an adversary A = (A, As).
Alg. PBSgsa.Stp(17) Alg. PBSgrsa.KG(par) Alg. PBSgsa.Vry(vk,m, o)
1: (crs,7) < PS.Stp(1%) 1: (N, e, d) < RSAGen(1") 1: (N, e, Hpss) :C vk
2: return par:=crs 2: Hpss + PSSGen(N) 2: p'i=c°(mod N)
3: ski=(N,e,d,Hpss, par) 3: m' < Hpss.Dec(y)
4 vki=(N, e, Hpss, par) 4: return (m' =m)
5: return (sk,vk)
Alg. PBSgsa.UBId(vk, ¢, m) Alg. PBSgsa.SSig(sk, ¢, msgy) Alg. PBSgsa.UFin(st, msg,)
1: (N,e,Hpss,crs) :C vk;r +s {0, 1}A 1: (t,m):=msg, 1: ki=st
2: K 5 [N];pu < Hpss.Enc(m,) 2: (N,e,d,Hpss,crs) :C sk 7 U::msglﬁ_l(mod N)
3: t:=px®(mod N) 3: x:=(N,e,Hpss,t) 3. return o
4: x:=(N,e,Hpss,t); w:=(m,r, k) 4: if PS.Vry(crs,x,m) # 1
5: m < PS.Prv(crs,x, w) return (L,0)
6: msgy:=(t,m),st:=k 5: msg,:=t*(mod N)
7: return (msgg,st) 6: return (msg,,1)

Fig. 4: (Construction) PBSgsa[P, RSAGen, PSSGen, PS] on predicate compiler P, an RSA key generation algorithm RSAGen,
a PSS function generator PSSGen according to Def. 8, and a NIZK argument PS for the relation Rgjing.

presented in Fig. 4 satisfies the properties of OMUF and
Blindness according to Defs. 2 and 3.

Theorem 1 (Blindness). Let P be a predicate compiler,
RSAGen and PSSGen be an RSA key and a PSS function
generation algorithms; let PS|Rpjind] be a NIZK argument
of knowledge for the relation Rgjing. Then, for any adver-
sary A playing in the game BLD against the PBS scheme
PBSgrsa [P, RSAGen, PSSGen, PS] defined in Fig. 4, there ex-
ists algorithms Zy and 21, playing in game ZK against
zero-knowledge of PS[Rpiind] such that for every A € N:
AdVBES 0 (A; X) < AdVES (R0 (205 A) + AdVES Ry, (21, A)-

The idea behind the proof of Thm. 1 is the following. The
proof proceeds via hybrid games. That is, starting with (real)
game BLD“éé%RSA for an arbitrarily fixed b, we replace the
user’s proofs 7 (in both signing sessions) by simulated proofs.
The hybrid and the real game are indistinguishable by the zero
knowledge of PS[Rgjind]. Now using a similar argument for
“plain” blind RSA, this final game is independent of the bit
b, which concludes the proof. The formal proof is in App. C.

Theorem 2 (OMUF). Let P be a predicate compiler,
RSAGen and PSSGen be an RSA key and a PSS func-
tion generation algorithms; let PS[Rpjind] be a NIZK ar-
gument of knowledge for the relation Rpgjing, and let
RSA[RSAGen, PSSGen| be the RSA signature scheme of Fig. 8
instantiated with RSAGen and PSSGen. Then, for any ad-
versary A playing in the game OMUF against the PBS
scheme PBSgsa[P, RSAGen, PSSGen, PS] defined in Fig. 4,
there exists algorithms P playing in game POK against proof
of knowledge of PS[Rgiind] and R playing in game EUF-CMA
against the unforgeability of RSA[RSAGen, PSSGen] such that
for every A € N: AdvRBer (A, N) < AdvBgi (P,)) +

euf-cma
AdVRSA[RSAGen,PSSGen] (R, A).

We bound the advantage in breaking the unforgeability of
PBSgsa, according to Def. 2, by the advantages in breaking
the security of underlying primitives. In Assumption 1 we
directly assume EUF-CMA security of the RSA-PSS [10]
signature scheme. The reason is that all known security proofs
of RSA-PSS signatures are in the random-oracle model, but the
PS relation Rgji,g depends on the used hash function, which

would be replaced in the analysis by a random function, for
which efficient proofs are not possible.

Following the same arguments as in [12] (which are even
stronger in this case, given the widespread use of RSA-PSS
in commercial products as introduced before), Assumption |
might be unconventional from a theoretical perspective, but is
arguably uncontroversial in practice due to the extensive use
of RSA-PSS signatures. In any case, such an assumption is
inherent to any application involving RSA signatures.

The idea behind the proof of Thm. 2 is to reduce the
unforgeability of PBSgsa to the unforgeability of RSA-PSS
signatures. Given a verification key vk = (N, e, Hpss), the
reduction sets up the crs and, after the setup, provides the
verification key for the PBSgsa scheme to the adversary. It
then answers the adversary’s signing queries to the oracle
Sign according to the OMUF game in Fig. 2. That is, when
the adversary queries the oracle Sign with input message
(t,m), as described in Fig. 4, the reduction uses the trapdoor
corresponding to crs to extract (m,r, k) (i.e., the witness used
to generate 7). It then queries its own signing oracle for a
signature on m and returns to the adversary the product of this
signature and x, which is exactly what the adversary expects.
The proof proceeds formally via a sequence of hybrid games,
described in App. C.

A. PBSgsa to Certify Data in DECO

The construction PBSgsa in Fig. 4 blindly outputs an RSA-
PSS signature on a message satisfying a generic predicate (.
In this section, we explain how to instantiate the construction
in Fig. 4 in the specific case of DECO [1]. That is, we focus
on identifying the predicate ¢ when PBSgsa is used within
DECO, yielding the concrete realization of ACTS.

Before doing so, we introduce some additional notation
regarding authenticated encryption schemes. An authenticated
encryption scheme is defined as a tuple of efficient algorithms
AE = (AE.KG,AE.Enc, AE.Dec), where AE.KG(1*) — k
is a key generation algorithm that, on input the security
parameter, outputs a symmetric encryption and authentication
key k; AE.Enck(m) — (c,t) is an encryption algorithm that,
on input a key k and a plaintext m, outputs a ciphertext c
and an authentication tag ¢; and AE.Decy(c,t) — m' is a
decryption algorithm that, on input a key k, a ciphertext c,
and an authentication tag ¢, returns either the plaintext m’
or a failure symbol. For AE’s security, see Definition 5.4
in [24]; for a standard encrypt-then-authenticate construction
(also valid for DECO), see Construction 5.6 in [24].

We remind the reader that, in this phase, we are in a setting
(as in DECO [1]) with three parties: a notary A/, a prover
P and a server S. The predicate blind signature protocol is
between P and N and during this protocol P proves to N
that the message sent to S are formed according to a shared
structure (i.e., a template Query(-) that takes as input a string
fs known only by P), that the message R received by S
from P are authentic and that R respects some properties. For
some applications, it is relevant only that P has been able to
download R from & without checking whether the query to S

was well formed. However, for completeness, in the following
we will check also that the queries are correctly built.

Following Section 4.3 of [12], we generalize predicates to
NP-relations, letting P take as input ¢, m, and a witness
w such that P(p,m,w) = 1, which is equivalent to the
formulation in Sec. II-A. Then, we construct m, ¢ and w in
the following way: m is composed by R; w is composed by a
string 65, the authentication tags R, and (.4 and share of
an encryption secret key kp; ¢ is composed by the ciphertexts
Repne and Qcne, a share of an encryption secret key ks and
a template of a query Query(+).

The predicate compiler P, first, recomputes k' from the
shares kp and kps, and then returns 1 if and only if
AE.Decy/ (Rene, Rtag) = R and AE.Decy/(Qenc, Qtag) =
Query(fs). Note that P can verify an additional predicate on
R, but we omit it to simplify presentation.

We highlight that y of Rgjing is computed only from m.

Overview of interactions. We now provide an overview of
the interactions of our construction between the notary and
the prover in the specific case of DECO. To better visualize
it, we suggest to the reader to refer to Fig. 1.

As discussed above, once the communication with S ends,
the prover commits to @ and R. It does so by sharing with
the notary Qcn. and Re,.. In Fig. 1, this is highlighted with
the message labeled "Commit to (Q,R)".

After receiving k,n from N, the prover runs
PBSRSA.UB|d(Vk, (Renc, Qenc, kA[, Query(-)), R, (95, ng,
Qtag, kp)) obtaining ¢ and the proof 7 which are then sent
to N (note that, similar to what was done in Section 4.3
of [12], here we extend the definition of PBSgrsa.UBId taking
the additional argument w). In Fig. 1, this corresponds to the
step labeled in red as "Compute (R’,rand) + Blind(R)" and
the box "Proof Generation".

The notary then runs PBSgsa.SSig(sk, (Rencs Qenes
ki, Query(+)), (¢,m)) obtaining the blinded signature
msg,:=t? (mod N) (which in Fig. I corresponds to ¢’) and
sends msg; with P.

Finally, P runs PBSrsa.UFin(x, msg;) obtaining the signa-
ture o. In Fig. 1, this corresponds to the step labeled in red
as "Compute o < Unblind(o’, rand)".

Security of the full protocol. DECO’s theoretical security
is proven in the UC framework, showing that the protocol
securely realizes a DECO ideal functionality in a hybrid model
that assumes access to both secure 2PC computation and ZK
functionalities (see Theorem 4.1 in [1]).

We can use the very same approach to provide similar
security guarantees (for our DECO’s variant) by replacing the
ZK functionality with Fischlin’s blind signature functional-
ity [25]°. That is, we keep the rest of the DECO protocol
mostly unchanged, and only modify the last phase to use
predicate blind signatures instead of NIZKs. By Canetti’s
composition theorem [26], this change preserves the overall
security, and the proof is straightforward.

%More precisely, we require the natural extension of the blind signature
functionality in [25] to predicate blind signatures.

Nevertheless, we note that, while DECO’s security proof
is based on ZK ideal functionality, their implementation uses
zkSNARKSs [27], which do not come with proven composition
guarantees. This creates a clear gap between the security
proof and the actual deployed system since no composition
theorem of Canetti can be used to achieve security when such
a zkSNARK is replaced with the ZK functionality.

We prefer to focus on the concrete security of the PBSgsa
component under (self) composition. We also support this with
experimental results that demonstrate its efficiency. This gives
a better match between the theory and the implementation,
and in our view, leads to more meaningful security guarantees.
Although it is possible to state and prove a theorem similar
to Theorem 4.1 in DECO (mainly using the composition
theorem), we do not include it, since the actual implementation
cannot be replaced by the functionality (as in DECO’s case).

B. Extending to Predicate Blind Multisignature schemes for
facing malicious coalitions in DECO.

As we have already discussed, there can be real-world
scenarios where the user and notary might decide to collude,
especially in applications in which the content exchanged with
the server has a relevant value and the user can therefore try
to bribe the notary.

We can strongly mitigate the above risk by forcing a prover
to run PBSgsa with multiple distinct notaries. In this way, we
construct a predicate blind multisignatures. In the following,
we will explain how to instantiate such a construction.

Before doing so, note that a blind multisignature scheme
has recently been defined in [13] (Sec. 3). We can eas-
ily extend this scheme into a predicate blind multisignature
one PBMS by: parameterizing the definition of [13] by a
family of computable polynomial-time predicates (as shown
in Sec. II-A); adding a setup algorithm PBMS.Stp that on
input A outputs public parameters par; substituting the in-
teractive protocol between the user and a signer outputting
a signature o (BMS.Sign(-)) with an interactive protocol in
which every parties also take a predicate description as input
(as shown in Sec. II-A); changing the game of the one-more
unforgeability property (Def. 2 of [13]) allowing the adversary
to access the Sign oracle of Fig. 2 instead of the signing oracle
of Def. 2 of [13]; changing the game of the blindness property
(Def. 3 of [13]) allowing the adversary to output two predicate
description (g, 1 and access the Blind and Finalize during the
game. In the following, we denote the algorithms of PBMS
the same way as it is done in [13] (Sec. 3).

Now, we give an informal construction PBMSgsa of a
predicate blind multisignature based on PBSgsa: (1) The
setup algorithm PBMSgsa.Stp runs PBSgsa.Stp and outputs
par obtained from PBSgsa.Stp; (2) The key generation al-
gorithm PBMSgsa.KGen run by a signer runs PBSgrsa.KG
and outputs (sk, vk) obtained from PBSgsa.KG; (3) The key
aggregation algorithm PBMSgrsa.KAgg takes as input a set
of verification keys {vkq,...,vk,} and outputs an aggregated
key avk:={(N1,e1),...,(Nn,en)}, Hpss, par} (4) The inter-
active protocol between the user PBMSgsa .U/ and the signers

10

PBMSgsa.S1, - - ., PBMSgsa.S;, is executed opening n ses-
sions, one with each signer for which it runs multiple times
PBSgrsa.U. For each signer i, the algorithm PBSgrsa.UBId
takes as input the verification key vk, from avk along with
the same message m and the same predicate description .
Each signer runs PBMSgsa.S with as input its own secret
key and a message received from the user. For each signer
i, PBSgrsa.UFin outputs a partial signature o;. Once all ses-
sions with the signers are terminated, PBMSgsa.U{ outputs
a signature o:={o1,...,0,}. (5) The verification algorithm
PBMSgsa.Ver takes as input the aggregated key avk, the
message m and the signature o. Then, for every partial
signature o; € {o1,...,0,}, the algorithm extracts the i-th
verification key from avk and runs PBSgsa.Vry passing as
input vk,, m and o;. If at least one execution of PBSgsa.Vry
outputs 0 then PBMSgsa.Ver, otherwise it outputs 1.

Since the construction of PBMS is mainly an iteration of
multiple executions of PBSgsa, the security of the OMUF
and the blindness properties are based on the security of the
OMUF and blindness property of PBSrsa, which are shown
to be secure, respectively, in Thm. 2 and in Thm. 1.

IV. EXPERIMENTS

Here we show experimentally that ACTS can be used
for real-world scenarios. Specifically, we tested a scenario
in which a user obtains from a notary a standard RSA-PSS
signature of a certificate of attendance released as a PDF file
which has been downloaded from a server with TLS (the user
receives the PDF in TLS encrypted with AES).

The results of the experiments, presented in Sec. [V-B, prove
the viability of our approach, however the resources necessary
to generate the proof are quite significant. In Sec. IV-C we
discuss a technique to reduce the necessary resources through
which users can flexibly generate proofs for downloaded data
of virtually any size, with computation time scaling according
to the resources available to them.

The most resource-intensive part of our experiment is the
generation of the NIZK proof in line 5 of the algorithm
PBSgrsa.UBId in Fig. 4. This proof attests that the downloaded
PDF message, encrypted using AES in counter mode (as in
TLS), is the same message that is blinded according to the
RSA-BSSA standard defined by the IETF in [9].

Finally, the blind signature produced by the notary is
unblinded and embedded into the PDF in a way that allows
standard software, in our case Adobe Acrobat Reader, to verify
it. All components used to evaluate the performance of the
protocol of Fig. 4 are available on GitHub [28].

A. Main Technical Choices

The RSA-BSSA signature protocol defined in [9] is imple-
mented in Rust in a library available on Github [29].

We used Circom to write the NIZK circuit of PBSgsa’
and we generated the proof with two different approaches: a
Vole-in-the-Head (VitH) proof system [30] and Groth16 proof

7We used Circom both to write the circuit and to compile it into a
Rank 1 Constraint System (R1CS).

system [31]. For the former, we used a recent Rust library
available on Github [32]. For the latter, we used Snarkjs to
set up the proof system and Rapidsnark to generate the proof.
We chose these two approaches because VitH is a recent proof
system that guarantees by design scalability and low memory
usage while Grothl6 offers succinct proofs, fast verification
and it is widely adopted in many application scenarios; this
has fostered the development of efficient frameworks (such as
Rapidsnark).

In PBSgsa, during the execution of the algorithm

PBSgsa.UBId in Fig. 4, the message is first encoded with
Hpss.Enc. This encoding works as follows: the message is
first hashed with SHA256 (or one of the other SHA-like
hash functions) and then the output is padded according to
the PSS specification. Then, this padded value is given as
input to a mask generation function, and its result is given
as output by Hpss.Enc. In PBSgsa.UBId, this value is finally
randomized with a modular exponentiation. We instantiated
the circuit of PBSgrsa.UBId adopting some Circom imple-
mentations already available online, such as [33] for SHA256
and [34] for modular RSA exponentiation. The AES counter
mode circuit used in TLS1.2 and TLS1.3, relys on the Circom
implementation available online [35]. The embedding of the
RSA-PSS standard signature in the PDF has been implemented
using Pyhanko [36].
Compliance with standard PDF signatures. A PDF is
a structured document format composed of a sequence of
objects, organized into a body, a cross-reference table and a
trailer. The body contains the actual content (text, images,
annotations) as well as metadata and form fields. Digital
signatures can be stored as /Sig objects, typically referenced
within the document /AcroForm or /Annots entries. The
cryptographic signature itself is embedded in the /Contents
field of the /Sig object and formatted as a CMS structure
(PKCS #7 SignedData). To ensure a consistent and verifiable
signature process, the PDF standard ISO 32000-1/2:2020 [37]
defines the /ByteRange field, which specifies the exact
ranges of bytes in the file that are included in the compu-
tation of a digest. The signer computes the cryptographic
hash (e.g., using SHA256) over these ranges, embeds it in
a structure of signed attributes (including content type and
signing time), and then signs this structure. The resulting CMS
object (PKCS#7 SignedData), which contains the signature,
the attributes and optionally the certificate, is inserted into the
/Contents field. This procedure guarantees compatibility
with existing PDF viewers and signature verification tools,
such as Adobe Acrobat Reader. In the Circom circuit, we have
implemented this process by first computing the SHA256 hash
on the PDF and then computing the SHA256 hash on the
SignedData object (which contains the previously computed
hash). This second hash value is used as input for the rest of
PBSgsa.UBId, implemented in the circuit.

B. Experimental results

We executed the complete PBSgsa protocol on a realistic
template of a PDF file that certifies attendance to a conference

11

(see Fig. 10, Appendix App. B). The size of the document is
26KB and contains both text and images.

The most challenging part of the process is the generation
of the NIZK proof. Our circuit operates receiving as input
the PDF file, the CMS object (PKCS#7 SignedData), the
randomness required to compute the blinding value and PSS
encoding, the AES encryption key, an initialization vector for
AES, the RSA modulus and the exponent.

The circuit performs the following steps: (1) it computes the
SHA256 hash of the PDF; (2) it computes the SHA256 hash
of the SignedData object, which includes the hash obtained in
step (1); (3) it executes the blinding algorithm PBSgsa.UBId;
(4) it performs AES encryption in counter mode on the PDF;
and (5) it returns as output the ciphertext and the blinded
message. The signer then checks that the two output values
match those received from the user.

Note that TLS 1.2 and TLS 1.3 work, among other schemes,
with AES-GCM. In AES-GCM, every block of plaintext is
encrypted with AES-CTR and, then, each block of ciphertext is
authenticated in the following way: the ciphertext is multiplied
in a Galois field and XORed with a running accumulator.
This process combines all ciphertext blocks and additional
authenticated data (AAD) into a single authentication tag.
This authentication tag is finally XORed with the AES en-
cryption of the first counter of AES-CTR producing the
final authentication tag. To lighten the computation of the
NIZK, we leave to the notary the verification of the GCM
authentication tag because it does not disclose any information
on the plaintext; the user only has to provide to the notary a
NIZK that the AES encryption of the first counter has been
correctly computed, which can be computed with very few
computational resources.

To optimize the memory required for the generation of
the proof, we used a VitH-based proof system. Performance
metrics show that for a real-world PDF file (see Fig. 10) of
26.7 KB, we can generate a valid proof that can be successfully
verified by Adobe Acrobat Reader, as shown in Fig. 10 .

In this initial implementation, the compiled circuit size is
34.69 GB and the proof generation needs 328.071 seconds
and 201.65 GB of RAM. We emphasize that this is not a
fundamental limitation of our approach, and indeed in the
next section we discuss some optimization techniques that can
strongly reduce memory requirements to largely fit within the
32 GB available on commodity hardware (see Tab. I).

C. Dealing with large data

A valid criticism of our feasibility results concerns the
amount of RAM used in the previous experiment, which may
not be available to most users. Users usually own devices
with much less resources (we consider < 32 GB of RAM). In
addition, it is unclear how to run our protocol on larger PDF
files, which are quite common in practice, without requiring
a very large amount of RAM avaiable to few.

Recently, in [38, 39], the authors demonstrated that it is
possible to design efficient proof systems for images, requiring
only few GBs of RAM to compute a proof for images up to ~

Input (bytes) Constraints Circuit Size (MB) Approach Proving Time (s) RAM (GB) Proof Size
28 5079 13573 SNARK 375 201 80 bywes
256102665 26505 SNARK a1 23 s0bye
S 200649 548 SNARK S5 26l 80 by
1024 4,043,897 1048.96 SNXli{tg ;?Z gg; légld(())Zb}lXIi
04 SO 2 gy 17 6B 80 by
a9 1eosssxs 4 SNARK 249 B0 800 byes

TABLE I: Benchmark results comparing proof generation time, memory usage, and proof size for NIZK proofs using the VitH

and SNARK backends across varying input sizes.

35 VitH

[—e— SNARK

VitH
—e— SNARK

w

S
o
=3
S

~N
G
)

IS
)
S)

N
=)
w
=3
S

i
=

Proof Size (MB
N
o
=)

Average Time (s)
—
o

o
o
o
=]

VitH
—e— SNARK

Memory Usage (M

0
0 500 1000 1500 2000 2500 3000 3500 4000 0
Input Size (Bytes)

(a) Proving time with increasing input size.

500 1000 1500 2000 2500 3000 3500 4000 0
Input Size (Bytes)

(b) Proof size with increasing input size.

500 1000 1500 2000 2500 3000 3500 4000
Input Size (Bytes)

(c) Memory usage with increasing input size.

Fig. 5: Benchmark comparison between VitH and SNARK approaches.

30 MP (in raw RGB 30MP corresponds to ~ 90 MB), on the
order of minutes. Specifically, the authors of [38] exploit the
iterative nature of SHA256. Indeed, SHA256 works in rounds
and, in each round, the algorithm hashes a portion of the input
message.The authors of [38] devised a proof for each round
(or set of rounds) of SHA256 using only the necessary portion
of the image as input.

A similar approach can be extended to AES in Counter
Mode which also follows an iterative approach, processing
a 128 bit block of plaintext at a time. In each round, a
counter value is first encrypted using the AES key, producing a
keystream block, which is then XORed with the corresponding
plaintext block to produce the ciphertext. As in the case of
SHAZ256, it is therefore possible to generate a proof for each
encryption round independently by feeding the circuit only
with the necessary portion of the message and the correspond-
ing counter input, thus significantly reducing memory usage
during proof generation. That is, by directly leveraging and
extending to AES the technique of [38], the user can combine
these two proofs: a) the correct computation of the SHA256
round on the original file, and b) the correctness of the AES
encryption round. Note that, following [38], our approach
generalizes to any Merkle-Damgard/Sponge hash function and
encryption through block ciphers. We use SHA256 and AES-
GCM because they are standardized for RSA-PSS signatures

12

and TLS. We note that if different encryption/hash functions
are used (e.g., more SNARK-friendly functions such as Posei-
don hash and/or Ciminion encryption), proof generation would
be significantly faster.

A natural question is how such a approach impacts on
the performance of proof generation. For this reason, we
ran a set of experiments aiming to measure the trend of
such performance with increasing input size to the circuit.
In particular, we implement a circuit that takes as input a
message, an AES encryption key and an initialization vector
for AES and, then, computes 1) the SHA256 algorithm on
the message and 2) the AES in Counter Mode encryption
algorithm on the same message. We have generated the NIZK
for this circuit for both VitH and Groth16 proof systems and
compared their performances. The results are reported in Tab. I
and in Fig. 5.

As shown in Fig. 5Sc, the real advantage of using VitH is
that the use of memory increases linearly with the size of the
input and uses much less memory with respect to the Groth16
proof generation. This comes at the cost of a larger proof size
(as shown in Fig. 5b) that increases linearly with the size of
the input, while the proof size of Grothl6 remains constant.
Finally, Fig. 5a shows that the proof generation time grows
linearly with respect to the input size for both proof systems.

In general, with the technique described in this section,
our approach became inherently scalable and applicable to a

wide range of use-cases: each user can independently generate
proofs tailored to their specific requirements and computa-
tional resources, enabling the protocol to accommodate a broad
class of users, including those with limited hardware. Users
can flexibly generate proofs for downloaded data of virtually
any size, with computation time scaling according to the
resources available to them.

That is, using this approach memory usage remains constant
regardless of input size, since each chunk requires the same
amount of memory (see Tab. I). Consequently, the practical
bound is determined by the available hardware and the user’s
proof size constraints: more memory permits larger (and
therefore fewer) chunks, reducing the number of per-chunk
proofs to compute, whereas users with limited hardware can
still produce a proof by processing many very small chunks,
at the cost of increased proof size.

V. CONCLUSION

In this work, we presented ACTS, a distributed architecture
that connects standard TLS servers with the Web3, maintaining
untouched the software of existing servers and verifiers.

Our approach, building on top of DECO and of predicate
blind signature schemes, makes progress towards closing the
gap left open by previous works by enabling verification
through standard digital signatures. This removes the need for
complex cryptographic tools on the verifier’s side and supports
immediate integration with existing systems.

By making standard verification possible, ACTS can be
used in a wide range of real-world domains that could benefit
from this technology, potentially leading to widespread adop-
tion. In our view, this represents a major step towards a large-
scale adoption of Web3 technologies. In particular, our system
enables Web3 applications where smart contracts verify the
signatures of messages certified by a notary about data stored
in Web2 servers.

We also described how to decentralize the notary service
through multisignatures. Improving the usability of this setting
is a great challenge for future work. Moreover, given that
there currently exists no post-quantum (PQ) secure version
of DECO that can be applied to PQ-secure TLS, and practical
blind signatures for standardized PQ schemes (e.g., Falcon,
Dilithium, SPHINCS+) do not yet exist, we opted for RSA-
PSS signatures and (non-PQ) TLS-DECO. Nevertheless, in-
vestigating PQ PBS alternatives for standardized schemes that
can be used with a future PQ-secure version of DECO is an
interesting direction for future work.

ACKNOWLEDGMENTS

This work was partially supported by project SERICS
(PE0O0000014) under the MUR National Recovery and Re-
silience Plan funded by the European Union - NextGenera-
tionEU. All authors are members of the Gruppo Nazionale
Calcolo Scientifico-Istituto Nazionale di Alta Matematica
(GNCS-INdAM).

13

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels, “DECO:
Liberating web data using decentralized oracles for TLS,” in ACM CCS
2020, J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds. ACM Press, Nov.
2020, pp. 1919-1938.

X. Xie, K. Yang, X. Wang, and Y. Yu, “Lightweight
authentication of web data via garble-then-prove,” in USENIX
Security 2024, D. Balzarotti and W. Xu, Eds. USENIX Association,
Aug. 2024. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity24/presentation/xie-xiang

J. Ernstberger, J. Lauinger, Y. Wu, A. Gervais, and S. Steinhorst,
“ORIGO: Proving provenance of sensitive data with constant
communication,” Cryptology ePrint Archive, Report 2024/447, 2024,
accepted at Proceedings on Privacy Enhancing Technologies Symposium
2025. [Online]. Available: https://eprint.iacr.org/2024/447

J. Lauinger, J. Ernstberger, A. Finkenzeller, and S. Steinhorst, “Janus:
Fast privacy-preserving data provenance for TLS 1.3, Cryptology
ePrint Archive, Report 2023/1377, 2023, accepted at Proceedings on
Privacy Enhancing Technologies Symposium 2025. [Online]. Available:
https://eprint.iacr.org/2023/1377

D. Chaum, “Blind signatures for untraceable payments,” in CRYPTO’82,
D. Chaum, R. L. Rivest, and A. T. Sherman, Eds. Plenum Press, New
York, USA, 1982, pp. 199-203.

“Elections with unconditionally-secret ballots and disruption
equivalent to breaking RSA,” in EUROCRYPT’SS8, ser. LNCS, C. G.
Gtinther, Ed., vol. 330. Springer, Berlin, Heidelberg, May 1988, pp.
177-182.

S. Brands, “Untraceable off-line cash in wallets with observers (extended
abstract),” in CRYPTO’93, ser. LNCS, D. R. Stinson, Ed., vol. 773.
Springer, Berlin, Heidelberg, Aug. 1994, pp. 302-318.

E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,
“TumbleBit: An untrusted bitcoin-compatible anonymous payment hub,”
in NDSS 2017. The Internet Society, Feb. / Mar. 2017.

F. Denis, F. Jacobs, and C. A. Wood, “RSA Blind Signatures,” RFC
9474, Oct. 2023. [Online]. Available: https://www.rfc-editor.org/info/
rfc9474

M. Bellare and P. Rogaway, “The exact security of digital signatures:
How to sign with RSA and Rabin,” in EUROCRYPT’96, ser. LNCS,
U. M. Maurer, Ed., vol. 1070. Springer, Berlin, Heidelberg, May 1996,
pp. 399-416.

——, “Pss: Provably secure encoding method for digital signatures,”
1998, submission to IEEE P1363, August 1998. [Online]. Available:
https://www.cs.ucdavis.edu/~rogaway/papers/exact.html

G. Fuchsbauer and M. Wolf, “Concurrently secure blind Schnorr sig-
natures,” in EUROCRYPT 2024, Part II, ser. LNCS, M. Joye and
G. Leander, Eds., vol. 14652. Springer, Cham, May 2024, pp. 124-160.
I. Karantaidou, O. Renawi, F. Baldimtsi, N. Kamarinakis, J. Katz, and
J. Loss, “Blind multisignatures for anonymous tokens with decentralized
issuance,” in ACM CCS 2024, B. Luo, X. Liao, J. Xu, E. Kirda, and
D. Lie, Eds. ACM Press, Oct. 2024, pp. 1508-1522.

E. C. Crites, C. Komlo, M. Maller, S. Tessaro, and C. Zhu, “Snowblind:
A threshold blind signature in pairing-free groups,” in CRYPTO 2023,
Part I, ser. LNCS, H. Handschuh and A. Lysyanskaya, Eds., vol. 14081.
Springer, Cham, Aug. 2023, pp. 710-742.

A. Lehmann, P. Nazarian, and C. Ozbay, “Stronger security for threshold
blind signatures,” in EUROCRYPT 2025, Part II, ser. LNCS, S. Fehr and
P-A. Fouque, Eds., vol. 15602. Springer, Cham, May 2025, pp. 335-
364.

K. Yang, P. Sarkar, C. Weng, and X. Wang, “QuickSilver: Efficient and
affordable zero-knowledge proofs for circuits and polynomials over any
field,” in ACM CCS 2021, G. Vigna and E. Shi, Eds. ACM Press, Nov.
2021, pp. 2986-3001.

S. Celi, A. Davidson, H. Haddadi, G. Pestana, and J. Rowell, “DiStefano:
Decentralized infrastructure for sharing trusted encrypted facts and
nothing more,” in NDSS 2025. The Internet Society, Feb. 2025.

K. Y. Chan, H. Cui, and T. H. Yuen, “Dido: Data provenance from
restricted tls 1.3 websites,” in Information Security Practice and Expe-
rience: 18th International Conference, ISPEC 2023. Berlin, Heidelberg:
Springer-Verlag, 2023, p. 154-1609.

Z. Luo, Y. Jia, Y. Shen, and A. Kate, “Proxying Is Enough: Security
of Proxying in TLS Oracles and AEAD Context Unforgeability,” in
7th Conference on Advances in Financial Technologies (AFT 2025),
ser. Leibniz International Proceedings in Informatics (LIPIcs), vol. 354.

https://www.usenix.org/conference/usenixsecurity24/presentation/xie-xiang
https://www.usenix.org/conference/usenixsecurity24/presentation/xie-xiang
https://eprint.iacr.org/2024/447
https://eprint.iacr.org/2023/1377
https://www.rfc-editor.org/info/rfc9474
https://www.rfc-editor.org/info/rfc9474
https://www.cs.ucdavis.edu/~rogaway/papers/exact.html

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

(32]

[33]
[34]
[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2025, pp. 4:1-4:24.

M. Abe and E. Fujisaki, “How to date blind signatures,” in ASI-
ACRYPT’96, ser. LNCS, K. Kim and T. Matsumoto, Eds., vol. 1163.
Springer, Berlin, Heidelberg, Nov. 1996, pp. 244-251.

S. Tessaro and C. Zhu, “Short pairing-free blind signatures with expo-
nential security,” in EUROCRYPT 2022, Part II, ser. LNCS, O. Dunkel-
man and S. Dziembowski, Eds., vol. 13276. Springer, Cham, May / Jun.
2022, pp. 782-811.

M. Fischlin, “Round-optimal composable blind signatures in the com-
mon reference string model,” in CRYPTO 2006, ser. LNCS, C. Dwork,
Ed., vol. 4117. Springer, Berlin, Heidelberg, Aug. 2006, pp. 60-77.
A. Lysyanskaya, “Security analysis of RSA-BSSA,” in PKC 2023, Part I,
ser. LNCS, A. Boldyreva and V. Kolesnikov, Eds., vol. 13940. Springer,
Cham, May 2023, pp. 251-280.

J. Katz and Y. Lindell, Introduction to Modern Cryptography, 3rd ed.
Chapman and Hall, CRC Press, 2014.

M. Fischlin, “Communication-efficient non-interactive proofs of knowl-
edge with online extractors,” in CRYPTO 2005, ser. LNCS, V. Shoup,
Ed., vol. 3621. Springer, Berlin, Heidelberg, Aug. 2005, pp. 152-168.
R. Canetti, “Universally composable security,” J. ACM, vol. 67, no. 5,
Sep. 2020. [Online]. Available: https://doi.org/10.1145/3402457

E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct
non-interactive zero knowledge for a von neumann architecture,” in
USENIX Security 2014, K. Fu and J. Jung, Eds. USENIX Association,
Aug. 2014, pp. 781-796. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity 14/technical-sessions/presentation/ben-sasson
“Github project,” https://github.com/marcozecchini/blindRSANotary,
2025.

F. Denis, “Blind rsa signatures in pure rust,” https://github.com/jedisct1/
rust-blind-rsa-signatures, 2021.

C. Baum, L. Braun, C. Delpech de Saint Guilhem, M. KlooB, E. Orsini,
L. Roy, and P. Scholl, “Publicly verifiable zero-knowledge and post-
quantum signatures from VOLE-in-the-head,” in CRYPTO 2023, Part V,
ser. LNCS, H. Handschuh and A. Lysyanskaya, Eds., vol. 14085.
Springer, Cham, Aug. 2023, pp. 581-615.

J. Groth, “On the size of pairing-based non-interactive arguments,” in
EUROCRYPT 2016, Part II, ser. LNCS, M. Fischlin and J.-S. Coron,
Eds., vol. 9666. Springer, Berlin, Heidelberg, May 2016, pp. 305-326.
Holonym Foundation, “Vole in the head aimed for compatibility with
popular dsls,” https://github.com/holonym-foundation/vole-zk-prover,
2024.

iden3, “Circomlib: Sha256 circuit implementation,”
https://github.com/iden3/circomlib/blob/master/circuits/sha256/, 2020.
“Rsa signature verification circuit in circom,” https://github.com/zkp-
application/circom-rsa-verify, 2023.

Electron Labs, “Aes circuit in circom,” https://github.com/Electron-
Labs/aes-circom, 2023.

M. Valvekens, “pyhanko: Toolkit for creating and verifying pdf digital
signatures,” https://github.com/MatthiasValvekens/pyHanko, 2020.
International Organization for Standardization, “Portable Document For-
mat: Part 2,” https://www.iso.org/standard/75839.html, 2020.

P. Della Monica, I. Visconti, A. Vitaletti, and M. Zecchini, “Trust No-
body: Privacy-Preserving Proofs for Edited Photos with Your Laptop,”
in 2025 IEEE Symposium on Security and Privacy (SP). Los Alamitos,
CA, USA: IEEE Computer Society, May 2025, pp. 14-14.

S. Dziembowski, S. Ebrahimi, and P. Hassanizadeh, “VIMz: Verifiable
image manipulation using folding-based zkSNARKSs,” Cryptology
ePrint Archive, Paper 2024/1063, 2024, accepted at Privacy Enhancing
Technologies Symposium (PETS) 2025. [Online]. Available: https:
/leprint.iacr.org/2024/1063

M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko, “The
one-more-RSA-inversion problems and the security of Chaum’s blind
signature scheme,” Journal of Cryptology, vol. 16, no. 3, pp. 185-215,
Jun. 2003.

K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch, “PKCS #1: RSA
Cryptography Specifications Version 2.2,” RFC 8017, Nov. 2016.
[Online]. Available: https://www.rfc-editor.org/info/rfc8017

B. Biinz, A. Chiesa, P. Mishra, and N. Spooner, “Recursive proof
composition from accumulation schemes,” in TCC 2020, Part II, ser.
LNCS, R. Pass and K. Pietrzak, Eds., vol. 12551. Springer, Cham,
Nov. 2020, pp. 1-18.

A. Chiesa, D. Ojha, and N. Spooner, “Fractal: Post-quantum and
transparent recursive proofs from holography,” in EUROCRYPT 2020,

14

Fart I, ser. LNCS, A. Canteaut and Y. Ishai, Eds., vol. 12105. Springer,
Cham, May 2020, pp. 769-793.

S. Goldberg, L. Reyzin, O. Sagga, and F. Baldimtsi, “Efficient noninter-
active certification of RSA moduli and beyond,” in ASTACRYPT 2019,
Part III, ser. LNCS, S. D. Galbraith and S. Moriai, Eds., vol. 11923.
Springer, Cham, Dec. 2019, pp. 700-727.

[44]

APPENDIX A
STANDARD NOTATION AND ADDITIONAL PRELIMINARIES

Notation. Given n € Nt we write [n] for {1,...,n}. When
x is chosen randomly in X, we write « <$ X. When A is an
algorithm, we write y <— A(z) to denote a run of .4 on input =
and output y; if A is randomized, then y is a random variable
and A(z; p) denotes a run of A on input z and random coins
p € {0,1}*

An empty list is initialized via a:=[]. A value x is appended
to a list a via @ = a < a||x. The size of a, representing the
number of elements in the list, is denoted by |a|. We denote the
i-th element of a by a;. Given the list a, attempts to access
a position i ¢ [|a|] return the empty symbol . A tuple of
elements is denoted as z:=(a, ..., 2) (where a, ...,z are the
elements of the tuple) and x[¢] denotes the i-th element, which
we set to ¢ if it does not exist.

We denote the security parameter by A € N. A function
negl()\) is negligible in A (or shortly negligible) if it vanishes
faster than the inverse of any polynomial (i.e., for any constant
¢ > 0 for sufficiently large A it holds that negl(\) < A7°).
A machine is said to be probabilistic polynomial time (PPT),
or efficient, if it is randomized and its number of steps is
polynomial in the input size.

For a random variable X, we write Pr[X = z] for the
probability that X takes a particular value x. A distribution
ensemble X = {X(A)} en is an infinite sequence of random
variables indexed by the security parameter A\ € N. Two
distribution ensembles X = {X(A)}renyand Y = {Y(A) }ren
are said to be computationally indistinguishable, denoted by
X & Y, if for every non-uniform PPT algorithm D there
exists a negligible function negl(\) such that:

[Pr[D(X(A)) = 1] = Pr[D(Y(A)) = 1]| < negl(})

To enhance the readability of pseudocode, if a value a
“implicitly defines” values (by,bs,...) (that is, these can
be parsed or anyway trivially obtained from a), we write
(b17b27 N) Ig a.

A. The RSA Hardness Assumption

Definition 4. An RSA generation algorithm RSAGen is a PPT
algorithm that takes as input a security parameter \ in unary
and returns (N, e,d), where N is a product of two distinct
(A/2)-bit primes p and q, e € Ly is a public exponent,
and d is the corresponding secret exponent such that ed = 1

(mod ¢(N)).

Definition 5 ([40, Definition 2.1]). Consider the game RSA,
described in Fig. 6. An RSA generation algorithm RSAGen
is considered (to output RSA instances that are) hard if for
every PPT adversary A the advantage AdVgipgen(A,) is
negligible in \ where:

https://doi.org/10.1145/3402457
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://github.com/marcozecchini/blindRSANotary
https://github.com/jedisct1/rust-blind-rsa-signatures
https://github.com/jedisct1/rust-blind-rsa-signatures
https://github.com/holonym-foundation/vole-zk-prover
https://eprint.iacr.org/2024/1063
https://eprint.iacr.org/2024/1063
https://www.rfc-editor.org/info/rfc8017

rsa

AdVRsaGen

(A, A):=Pr[RSAfsagen(N) = 1]

Game RSAZsacen(N)
(N,e,d) < RSAGen(1*);y s Zn
z + A(N,e,y)

return (z° = y)

1:
2:
3:

Fig. 6: The RSA game.

B. Signature Schemes

A signature scheme is a tuple of efficient algorithms Sig =
(Sig.KG, Sig.Sig, Sig.Vry) where:
o Sig.KG(1*) — (sk,vk) on input the security parameter,
outputs a signing key sk and a verification key vk.
o Sig.Sig(sk,m) — o on input a signing key sk and a
message m € Mg, outputs a signature o.
o Sig.Vry(vk,m,c) — 0/1 is deterministic and on input
a verification key vk, a message m and a signature o,
outputs 1 if o is valid and 0 otherwise.
and such that Correctness and Unforgeability as defined below
hold.

Definition 6 (Correctness). A signature scheme Sig is perfectly
correct if for all A € N and m € Ms;g:

(sk,vk) < Sig.KG(1*),
o < Sig.Sig(sk,m),

Definition 7 (Unforgeability). Consider the game EUF-CMA,
described in Fig. 7. A signature scheme Sig satis-
fies existential unforgeability under chosen-message at-
tacks (SUF-CMA) if for every PPT adversary A the
advantage Advg}g":ma(/l, A\) is negligible in X\ where
Advgy (A,):=Pr[EUF-CMAg, ()) = 1].

1) RSA Signature: We focus here on the RSA-PSS vari-
ant [10, 11], which is nowadays considered the standard RSA
signature scheme in practice. In RSA-PSS, the signature on
a message m is computed as the RSA inverse of a special
encoding of m, called the PSS encoding, denoted by m/.

The PSS encoding employs two cryptographic hash func-
tions, H and Gmgr, both modeled as random oracles in the
security analysis of RSA-PSS. Following [10], although these
functions have similar input-output specifications and security
requirements, it is helpful to instantiate them separately in
practice. This is because H typically maps a potentially long
input to a fixed-length output, whereas Gugr (mask generation
function) expands a short seed into a longer output.

We refer the reader to the IETF standard [41] or to [23,
Section 3] for a detailed explanation of the PSS encoding,
which is nevertheless conceptually simple. In our treatment,
we abstract this encoding process as a black-box function
that maps a message in {0,1}* (along with a random salt
in {0,1}") to an encoded message in Z% (and vice-versa),
suitable for RSA signatures.

Pr|1 = Sig.Vry(vk,m, o)

=1

15

Definition 8. A (target-range) PSS function generator PSSGen
is a PPT algorithm that, given a modulus N € NT, out-
puts the description of a pair of deterministic algorithms
Hpss:=(Hpss.Enc, Hpss.Dec), where Hpss.Enc : {0,1}* x
{0,1}* — Z% and Hpss.Dec : Z% — {0,1}*. Both
algorithms internally make black-box use of the (sampled)
Sfunctions H and Gygr.

Following the recent work of Fuchsbauer and Wolf [12],
which argues for the uncontroversial assumption that the
Schnorr signature scheme remains secure when instantiated
with concrete hash functions (e.g., SHA-2 family) instead
of ideal random oracles, we adopt a similar approach for
RSA-PSS. Their justification is understandably based on the
widespread use of Schnorr signatures in practice. Given the
even more extensive deployment of RSA-PSS over the years,
we make the following assumption in our security analysis®.

Assumption 1. There exists an RSA key generation algorithm
RSAGen and a PSS function generator PSSGen such that the
RSA-PSS signature scheme in Fig. 8 is unforgeable according
to Def. 7. In particular, for every PPT adversary A, the
advantage Advg‘gi;‘fglsi\@mpsscen] (A,) is negligible in .

C. Non-Interactive Zero-Knowledge Schemes

We define a non-interactive zero-knowledge (NIZK) argu-
ment/proof of knowledge system, with respect to a parameter-
ized relation R : {0,1}* x {0,1}* — {0, 1} which is a binary
relation. Given a statement x we call w a witness if R(x, w) =
1, and define the language CLr:={x | 3w : R(x,w) =1}. A
NIZK argument of knowledge system for a relation R is a
tuple of efficient PPT algorithms PS[R] = (PS.Stp, PS.Prv,
PS.Vry, PS.Sim, PS.Ext) where:

e PS.Stp(1*) — (crs,7) on input the security parameter,
returns a common reference string (CRS) crs and a
trapdoor 7°.

PS.Prv(crs,x,w) — 7 on input a CRS crs, a statement
x and a witness w, outputs a proof 7.

PS.Vry(crs,x,m) — 0/1 is deterministic and on input a
CRS crs, a statement x and a proof 7, outputs 1 (accept)
or 0 (reject).

PS.Sim(crs, 7,x) — 7 on input a CRS crs, a trapdoor 7
and a statement x, outputs a proof 7.

PS.Ext(crs, 7, x,7) — w on input a CRS crs, a trapdoor
T, a statement x and a proof 7 outputs a string w €

{0, 1},

8Note that making a heuristic assumption that a concrete hash function
(e.g., SHA-2) can be safely used as a valid substitute for a random oracle is
common in both practical and theoretical cryptographic literature. Moreover,
also proving claims about the output of such hash functions is standard both
in practice (e.g., in ZK-rollup protocols) and in theoretical works on recursive
SNARKSs [42, 43].

9Formally, we can view such a trapdoor as a tuple consisting of a
simulation trapdoor and an extraction trapdoor, which are useful to the
simulator for the Zero-Knowledge property and to the extractor for the Proof
of Knowledge property. To avoid burdening the notation, we assume that the
first step of both algorithms is to get the right component of the trapdoor 7
needed for their execution.

Game EUF- CMASIg()\)

Oracle Sign(m)

1: (sk,vk) < Sig.KG(1*

(m*, o) « A% (vk)

); Q=0
2:
3:

return ((m*,0%) € Q A Sig.Vry(vk,m",0") = 1)

1:
2:
3:

o < Sig.Sig(sk, m)
Q=0QuU{(m,0)}

return o

Fig. 7: The EUF-CMA game.

Alg. RSA.KG(1*) Alg. RSA.Sig(sk,m) Alg. RSAVry(vk,m, o)
1: (N,e,d) < RSAGen(1%) 1: (N,d,Hpss) :C sk;r +s{0,1}> 1: (N, e, Hpss) :C vk
2: Hpss + PSSGen(NV) 2: 4 Hpss.Enc(m,r) 2 p’::ae(mod N)
3: ski=(N,e,d,Hpss);vki=(N,e,Hpss) 3: o:=p%(mod N) 3: m' < Hpss.Dec(u)
4: return (sk, vk) 4: returno 4: return (m' =m)

Fig. 8: The RSA-PSS signature scheme RSA[RSAGen, PSSGen] based on a key-pair generator RSAGen and a PSS encoding

generator PSSGen.

Game POK,SAS[R](/\)

(crs, 7) < PS.Stp(1%)

(x,m) + A(crs); w + PS.Ext(crs, 7,x,)
return (1 = PS.Vry(crs,x,) A 1 # R(x, w)))

l:
2:
3:

(a) The POK game.

Game ZKPS[R]()\)

(crs, 7) < PS.Stp(1*
b/ (_AProve(crs)
return (b =)

Oracle Prove(x, w)
: if R(x,w) # 1
return L

)

1:

1
2: 2
3 3: mo < PS.Prv(crs, x, w)
4: 1 < PS.Sim(crs, 7, x)
5

return m,

(b) The ZK game.

Fig. 9: The POK and ZK games, where Lg:={x | 3w : R(x,w) = 1}.

and such that Correctness, Zero-Knowledge and Proof of
Knowledge as defined below hold.

Definition 9 (Correctness). A NIZK argument of knowledge
system PS[R] is perfectly correct if for every tuple (x, w), such
that R(x,w) =1 and A € N:

(crs, T) + PS.Stp(1%), } _q
V=

Pr|1 = PS.Vry(crs, x,) ‘ 7 < PS.Prv(crs,x, w

Definition 10 (Zero-Knowledge). Consider the game ZK,
described in Fig. 9b. A NIZK argument of knowledge system
PS[R] is (computationally) zero-knowledge if for every PPT
adversary A the advantage /-\dvf,lg[R] (A, \) is negligible in \

where:
{z) 1}

Pr[]()\):1”

Definition 11 (Proof of Knowledge). Consider the game
POK, described in Fig. 9a. A NIZK argument of knowl-
edge system PS[R| satisfies the (computational) proof
of knowledge property if for every PPT adversary A
the advantage AvaS[R (A, \) is negligible in A\ where:

AdvESfe (A, X)i=Pr [POKPS[R] (\) = 1L
When the definition is for every PPT adversary then the
property is also called as argument of knowledge, while in case

of non-efficient adversaries it is called proof of knowledge.

Advpsr (A,)= |P K;;‘S?R] =

Al
ZI<PS[R

16

APPENDIX B
EXAMPLE OF A REALISTIC DOCUMENT

Fig. 10 provides a screenshot of Adobe Acrobat Reader
successfully verifying the digital signature embedded in a
standard PDF. This serves as a concrete confirmation that
our protocol produces signatures on real-world documents and
that such signatures are fully compatible with standard PDF
viewers and adhere to the ISO 32000-1/2:2020 specification.

L) B F B2 ad
.
=]
R
¢ IEEE
CERTIFICATE OF =
ATTENDANCE o

L

Fig. 10: Screenshot of Adobe Acrobat Reader successfully
verifying the digital signature embedded in the PDF, demon-
strating compliance with the ISO 32000-1/2:2020 standard.

APPENDIX C
PROOFS OF THMS. 1 AND 2

Proof of Thm. 1. We give a formal proof that our predicate
blind signature scheme PBSgrsa from Fig. 4 satisfies blindness
in Def. 3. We proceed by a sequence of games.

GAME. This is game BLD from Fig. 3 with PBS instantiated
with PBSgsa from Fig. 4, that is, the algorithms PBS.Stp,
PBS.UBId and PBS.UFin are replaced by the instantiations
defined in Fig. 4. The variables st and st; in BLD are set to
ko and k1 according to the sampling made in PBSrsa.UBId.
We also call it the real game.

GAME;. In this game, we make the following change: On
oracle call Blind, instead of creating a proof via PS.Prv we
use the simulator PS.Sim to simulate a proof for the statement
x. We show that this change is not efficiently noticeable by
defining adversaries Zy and Z; in that play in game ZK
against the PS[Rgjind]-

We describe the strategy of the adversary Z; for b € {0, 1}.
Zp on input crs generated by PS.Stp, simulates the game
BLD? for A, using its oracle Prove (according to Fig. 9b)
to obtain the proof 7 required to answer A’s queries to Blind,
the rest of the answer is made by Z; as in the real game.

Finally, when A, (we recall that A = (A;,A2) in BLD
game) outputs its bit o', Z, outputs the same bit to its
challenger. By the definition of Z;, for b € {0,1}, we have
that when b is equal to O in the ZK game then the adversary
Zy, perfectly simulates the real game GAME, while when b is
equal to 1 in the ZK game then Z;, perfectly simulates GAME;.
Thus, we have that:

AdVES Ry (20, A=

Pr [BLDA’b

Asb
PBSRSA} - Pr {GAME1 ’ } ’

By recalling the definition of AdvlF))leSRSA (A, A) and applying
the triangular inequality, we have that the advantage of the
adversary A in the BLD is at most equal to:

AdVES R (205 A) + AdVES R, 1 (21, 0)
Pr [GAME{”] ~Pr [GAMEf’O] ‘

REDUCING GAME; TO PERFECT BLINDNESS OF “PLAIN”
BLIND RSA. For this last step, we follow the same approach as
in [23] to prove that the plain version (i.e., without predicates)
of blind RSA satisfies the blindness property.

We analyze two cases based on key generation. When the
public key is honestly generated by the adversary, as observed
in in [5, 40], the use of a blinding factor x € [N] ensures that
the pair (m, o) is statistically independent of the value ¢ that is
observed by the signer. Since we have already established that
the proof 7 provides no additional information, this statistical
independence implies blindness.

As noted in [23], the adversary might also generate the
public key maliciously (recall that in the BLD game in Fig. 3,
these values can be chosen by the adversary) to poten-
tially extract information about low-entropy input messages.
Lysyanskaya shows that for any maliciously chosen RSA

2)
+

17

modulus N and public exponent e, security depends on the
PSSGen function. She outlines two approaches for protection:
(1) requiring proofs that the signer’s public key is honestly
generated, in [44], the authors show how to achieve HVZK
proofs for statements about the public key, or (2) ensuring the
input message contains high-entropy components unknown to
the signer before key generation. Our construction follows the
latter approach, similar to RSA-BSSA blindness security proof
of [23], by providing randomness in the Hpss encoding func-
tion. This ensures that even with maliciously generated keys,
it is not possible to recover the message, and thus not possible
to extract any information about the bit b from the input ¢, just
as in the case of honestly generated public keys. We thus have
that Pr|GaMEY! (\) = 1TPr GAMEP(\) = 1} — 0. This

1
result along with Eq. (2), concludes the proof of Thm. 1. O

Proof of Thm. 2. We give a formal proof that our predicate
blind signature scheme PBSgrsa from Fig. 4 satisfies unforge-
ability according to Def. 2 by providing reductions to the
security properties of its building blocks. We proceed by a
sequence of hybrid games.

GAMEj. This is game OMUF from Fig. 2 with PBS instan-
tiated by PBSgsa from Fig. 4. The generic PBS.Stp hence is
replaced by the setup from Fig. 4. The call of PBS.SSig in the
oracle Sign is instantiated by doing the steps is the algorithm
PBSgsa.SSig in Fig. 4. We call this game also the real game.

GAME;. In GAME; we modify the behavior of the oracle Sign.
On each call with input (¢,), if the proof verification succeeds
(i.e., PS.Vry outputs 1), we extract the values (m,r, k) from
7 by invoking algorithm PS.Ext with inputs: the crs from par
in sk, the trapdoor 7 generated during PS.Stp (which was
run as part of PBSgsa.Stp), the statement x:=(N, e, Hpss, t)
where (N, e, Hpss) are from sk and ¢ is from the query, and
the proof 7. We then verify that the extracted values satisfy
two conditions: (1) P(¢,m) = 1 and (2) ux® =t (mod N)
where p:=Hpss.Enc(m, r). If either condition fails, we abort
the game by returning L.

REDUCTION FROM POK OF PS. We now show that the
difference between the advantage in the real game and in
GAME; is bounded by the advantage in the proof of knowledge
game POK (Def. 11) for PS[Rgjina]- We construct an adversary
P against POK as follows:

P receives as input the crs generated by PS.Stp. It then
perfectly simulates the real game to A, using the provided
crs in par. Whenever Sign is queried with (¢,7) and PS.Vry
accepts 7, P constructs the statement x:=(V, e, Hpss, t) and
outputs the statement-proof pair (x, 7) in the POK game. By
definition of the POK game, P wins POK exactly when
it outputs a statement-proof pair where verification passes
but extraction fails to produce a valid witness. Observe that
GAME; aborts precisely when there exists a statement-proof
pair that verifies correctly but for which the extractor fails to
recover a valid witness. This is exactly the winning condition
for P in POK. Since P perfectly simulates the game for A

until the point it receives the statement-proof pair, we have:

Advigse,, (A, X) < AdvESL (P, A) + Pr[Game(A) = 1]
(3)

GAME;. In GAME; we prepare the reduction to

EUF-CMA security of the RSA-BSS signature scheme
RSA[RSAGen, PSSGen| underlying PBSgsa, by making the
following changes: First we introduce an empty list 3.

Then we modify the behavior of the oracle Sign so that

after extracting (m,r, k), we compute a RSA signature on
m by using the encoding randomness r under the signing
key sk:=(N, e, Hpss) by running 0:=PBSgsa.SSig(sk, m;r).
Next, we prepare the output message msg,,,:=ck(modN)
and before returning it to the adversary we store in X the
pair (m,o). The adversary now obtains the value msg,,,
where o by definition of RSA.Sig (Fig. 8) is equal to
Hpss.Enc(m, r)?(mod N) and since the output of PS.Vry is 1
and PS.Ext successfully outputs (m, r, k) (otherwise we abort,
according to GAME;) we also have that P(¢,m) = 1 and
uk® =t (mod N). That is, it immediately follows that the
view of the adversary in GAME; is distributed equivalently to
its view in GAME;, thus we have that Pr [GAME{‘()\) =1] is
equal to Pr[GAME;‘()\) = 1}.
REDUCTION OF EUF-CMA OF RSA TO GAME,. To
finish the proof, we construct adversary R that suc-
ceeds in the game EUF-CMA against the RSA signa-
ture scheme RSA[RSAGen, PSSGen] with the same proba-
bility Pr [GAMEQ“()\) = 1]. By the definition of EUF-CMA,
R receives as challenge input a RSA verification key
vk:=(N, e,Hpss) and has access to a signing oracle Sign.
The adversary first does the PBSgsa.Stp by computing the
common reference string crs for PS[Rgjina]. Moreover, R
initializes a list X used to store the message-signature pairs
from its signing oracle Sign. When R simulates GAME; for A,
it embeds its challenge RSA public key (V, e, Hpss) into the
verification key for PBSgsa (i.e., computes the verification key
vk of PBSgsa by leveraging crs and the tuple (N, e, Hpss)).
The corresponding secret key is not required since R on each
Sign query by A forwards the call to its signing oracle Sign
of EUF-CMA game. The simulation is perfect. We show that
if A wins GAME; outputting F =(mj, 0]);c[q, then this set
must contain a successful forgery for R, that is, an element
that is not contained in X.

Recall that in GAMEy, for each signing query (¢,)
where verification succeeds, we extract (m,r,) and check
that P(p,m) = 1 and pk® t (mod N) where pu
Hpss.Enc(m, r). If these conditions hold, we obtain the sig-
nature of m from the RSA signing oracle and we return it
(after blinding with x) to A. For A to win, it must output a
set F = (m], 0])ieqq of valid message-signature pairs where
at least one message was never queried to the signing oracle.
That is, for any winning pair (mj,0}) € JF we have that
PBSgrsa-Vry(vk,m},07) = 1 and no explaining map f exists
such that any predicate in P is valid for m . Consequently, for
any such valid forgery (mj, o), we have that m} was never
queried to the signing oracle. This represents a valid forgery

18

against the underlying RSA signature scheme. Therefore, R
can simply output (mj,o7) as its forgery in the EUF-CMA
game against RSA.

Thus, we have that Pr [GAME{‘(/\) = 1] is at most equals
to Adv%‘gf,f[,;“sicempsscen] (R, \) and this along with prior con-
siderations and Eq. (3) concludes the proof of Thm. 2. [

	Introduction
	Our results
	Related Works on TLS Oracles
	Technical Overview

	Preliminaries
	Definition of Predicate Blind Signature Schemes

	Construction of Predicate RSA-PSS Blind Signature
	PBSRSA to Certify Data in DECO
	Extending to Predicate Blind Multisignature schemes for facing malicious coalitions in DECO.

	Experiments
	Main Technical Choices
	Experimental results
	Dealing with large data

	Conclusion
	References
	Appendix A: Standard Notation and Additional Preliminaries
	The RSA Hardness Assumption
	Signature Schemes
	RSA Signature

	Non-Interactive Zero-Knowledge Schemes

	Appendix B: Example of a Realistic Document
	Appendix C: Proofs of thm:bld,thm:omuf

