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Abstract—Malicious domain detection serves as a critical
technique to keep users safe against cyber attacks. Although these
systems have demonstrated remarkable detection capabilities,
the magnitude of their false positives (FPs) in the real world
remains unknown and is often overlooked. To shed light on
this essential aspect, we conduct the first measurement study
using 6-year FP reports collected from one of the largest global
cybersecurity vendors. OQur findings reveal that the popularity-
based top domain lists that are commonly adopted by current
detection systems are insufficient to avoid FPs. In fact, there
are still a non-trivial number of FPs in production. We posit
that one of the main reasons is that efforts in this area have
predominantly focused on detecting malicious indicators, i.e.,
Indicator of Compromise (IOC), and have made light of the
benign ones, i.e., Indicator of Benignity (I0B).

Invthis paper, we make the first effort focusing on IOB
detection. Our work is built upon our key finding that for many
FPs in production, their IOBs can be found on the Internet.
However, due to the openness of the Internet and unstructured
Web content, we face two main challenges to identify these IOBs:
understanding what an IOB is and assessing the trustworthiness
of an I0B. To address these challenges, we propose a transitive
trust model for IOB and implement it in a system called
IOBHunter. IOBHunter leverages LLM and chain-of-thought
(CoT) which have demonstrated promising capabilities to address
several other security threats. Our evaluation using a dataset that
contains verified FPs shows that IOBHunter can achieve 99.22%
precision and 68.6% recall. IOBHunter is further evaluated in
a two-months real-world deployment, in which TIOBHunter has
identified 4,338 confirmed FPs and 2,051 compromised domains.

1. INTRODUCTION

DNS domains have been constantly abused by attackers
for illicit activities. For instance, malware encodes data in
domain names for command and control (C2), and scammers
exploit domains that resemble well-known legitimate ones
for phishing attacks. To detect malicious domains, many
methods have been proposed in the past [21] [25] [22] [37]
[71] [45] [23] [66] [53] [61]. These detection systems have
demonstrated promising capabilities and accuracy in detecting
malicious domains in their evaluations. Unfortunately, we still
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lack an in-depth understanding of the magnitude and impact
of false positives (FPs) in large-scale longitudinal real-world
deployments. Considering that fear of FPs is one of the main
concerns for these systems to be adopted in production [63],
more effort should be put into understanding the characteristics
of their FPs and investigating how to further reduce FPs.
Measurement Study. In this work, we conduct the first
large-scale measurement study of FPs of malicious domain de-
tectors. The primary challenge of such a study lies in collecting
data and determining ground truth. To address this challenge,
our study relies on FPs reported by users of a security vendor
SV. SV has built and deployed tens of malicious domain
detectors that detect 1.6M new malicious domains from ~7B
DNS queries on average per day. These malicious domains are
used by firewalls of more than 65K organizations around the
world. Whenever users notice potential FPs on their firewalls,
they can report to SV whose security researchers manually
investigate and decide whether an FP report is correct (i.e.,
Accepted FP) or not (i.e., Rejected FP). An additional unique
advantage of user-reported FPs is that users often provide a
justification of benignity, so that we can gain deeper insight
into why FPs are generated. Considering that users of SV are
mostly Security Operations Center analysts of enterprises, their
justification along with manual verification by SV researchers
makes these FP reports a dataset with reasonable ground truth.
During 2019~2024, users have reported 123,491 FPs, with
121,073 for 118,093 unique fully qualified domain names
(FQDNs) accepted and 2,418 for 2,022 unique FQDNSs re-
jected. Our analysis of this dataset reveals several interesting
findings. First, half FPs are reported within 120 days after
domains are detected as malicious. Thus, to evaluate the FP
rate, it is more reasonable to deploy detectors in production for
more than 4 months. Second, FPs in production have a long tail
distribution, with 97.7% FQDNs in FPs being reported only
once by one user. Most of these FQDNs are under unique
root domains. As a result, FP mitigation approaches need
to be generic to cover a diverse set of benign FQDNs that
could become FPs. We further find that current popularity-
based top lists that are commonly adopted by detectors, such
as Tranco [62], cannot effectively mitigate FPs. In particular,
they can only cover at most ~38% FPs. Therefore, more effort
is required to identify better generic ways to mitigate FPs in
production. Finally, for ~55% FPs, benign indicators of the



detected domains can be found on the Internet. This may be
because such FPs are more likely to be noticed and reported
by users. Hence, a promising direction to reduce FPs is to
proactively identify IOBs from the Internet.

IOBHunter. Motivated by the findings in our measure-
ment study, we make the first effort to automatically collect
IOBs for domains on the Internet. To achieve this, we face
two main challenges. First, Web content is mostly unstructured
and contains diverse information about an FQDN. We need to
separate the wheat from the chaff and identify valid IOBs.
Second, the Internet is an open space and any user, including
malicious actors, can publish arbitrary content. It is critical to
assess the trustworthiness of collected IOBs.

To address these challenges, we propose a transitive trust
model for IOB, which is built on the principle that a domain
is benign if it is owned by a trusted owner or certified
by a trusted source. Specifically, the transitive trust model
addresses the two challenges with a clear definition of IOB
and an iterative search-and-check schema for the assessment
of trustworthiness, respectively. Given a target domain, we first
leverage search engines to obtain websites that provide valid
IOBs (i.e., matching our IOB definition). These websites are
referred to as IOB sources. Then, we further check if these IOB
sources are root of trust or certified by other trusted sources
based on a set of trust transit policies. This search-and-check
process is performed iteratively until the root of trust is reached
or no new result is returned by search engines. Our transitive
trust model currently considers government organizations to
be the only root of trust that has served as the root of trust in
many other scenarios in our daily life.

We implement the transitive trust model in a system called
IOBHunter. IOBHunter leverages large language models
(LLM) and chain-of-thought (CoT) which have shown promis-
ing capabilities in other security problems, such as detection of
harmful online content [38] [74] [75] [83], phishing websites
[55] [55], and cyber threat intelligence (CTI) [59] [69] [40]
[28]. To our knowledge, IOBHunter is the first system that
applies LLMs and CoT to automated IOB collection.

To demonstrate the efficacy of TOBHunter, we perform
evaluations using the FP CR dataset as ground truth. Our
evaluation results show that TOBHunter achieves 99.22%
precision and 68.6% recall when GPT-4o is used. In addition,
evaluations using two other popular LLM models, Gemini2.5-
flash and Qwen3-32B, show that TOBHunter using different
models can achieve comparable accuracy. The relatively low
recall is mainly because many IOBs come from untrusted
sources such as social media platforms. While these IOBs are
mostly valid, they can be easily manipulated, especially when
attackers are aware of TOBHunter.

TIOBHunter is further evaluated on a dataset containing all
malicious domains detected by SV from 2025-03-01 to 2025-
05-01. Among the 15M detected FQDNs, TOBHunter finds
trusted IOBs for 6,571. After manual investigation and discus-
sion with SV researchers, 4,338 are confirmed to be FPs and
SV researchers have flipped the verdicts of these FQDNs from
malicious to benign. In addition, for 2,051 cases, the IOBs

identified by TOBHunter are true. However, there are also
confirmed malicious activities associated with these FQDNs.
Thus, these FQDNSs are classified as compromised. Both types
can be considered correct detections by TOBHunter. Finally,
the IOBs for 182 cases are incorrect and are mainly caused
by LLM hallucinations [81].

Data Availability. To motivate and support future research
on IOB, we make a partial of our FP dataset available. To
comply with our company’s policies and legal requirements,
we can share FP cases that were only detected by third-party
feeds and have been flipped to benign by third-parties (i.e.,
considered as FPs by third-parties, too). Also, since users’
comments in FP reports can contain sensitive and personally
identifiable information, they cannot be shared. The dataset is
available at https://github.com/dpliu/iobhunter-dataset.

II. BACKGROUND

This section first provides an overview of the domain
system. Then, we demonstrate the scale of FPs generated by
malicious domain detectors deployed by a security vendor,
which motivates this work. Next, we elaborate the types of
malicious domain detectors deployed by the vendor and the
allowlists used by the vendor for FP mitigation.

This work focuses on domains, as malicious domain de-
tection has been a hot topic in recent decades for both
academia [63] [21] [25] [22] and industry [1] [2]. Other types
of entities, such as URLs and IPs, are out of scope.

A. Basics of Domain Names

A domain name (or domain) is a human-friendly represen-
tation of a resource accessible through the Internet. When a do-
main ends with a dot “.” (e.g., www . foo.com.), it is referred
to as a Fully Qualified Domain Name (FQDN). The rightmost
label in an FQDN (e.g., com in www. foo.com.) is called
a top-level domain (TLD). Next to TLD is the second-level
domain (2LD). Some 2LDs (e.g., foo.com.) can be bought
from registrars (like GoDaddy) by the public, while others
(e.g., co.uk.) are operated by registrars and public users can
only purchase 3LDs under these 2LDs from registrars. In this
work, we use effective TLDs (eTLDs) to collectively refer to
TLDs, 2LDs, 3LDs, efc. that are operated directly by registrars.
Domains with one more label than eTLDs (e.g., foo.co.uk)
are called root domains. In addition, domains with one or
more labels than a root domain are called subdomains of the
root domain. Users can host Web content and services on a
URL under a domain, e.g., www.foo.com/account. By
default, subdomains are managed by the same owner as the
root domain. However, root domain owners can also delegate
subdomains to others (e.g., a GitHub user can create a website
under a subdomain of github.io.).

B. Motivation and Problem Statement

This study was motivated by our observations in a pro-
duction environment at a major security vendor (denoted as
SV), which provides cybersecurity solutions globally. SV has
deployed tens of malicious domain detectors in production,
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Fig. 1: Typical deployment of malicious domain detectors.

following the common workflow illustrated in Figure 1. These
detectors detect 1.6M new malicious domains from ~7B DNS
queries on average per day, and the detected domains are
integrated into the firewall policies by more than 65K organi-
zations around the world. False positive (FP) is a main concern
of SV’s users, and SV handles FPs reported by the users (Step
4 in Figure 1) with extensive manual analysis (elaborated in
§III-A). Each FP will be classified into Accepted FP (i.e.,
the domain should not be alerted) and Rejected FP (i.e., the
domain is indeed malicious) after investigation.

Although SV’s detectors have been tuned towards a lower
FP rate and a few allowlists' have been used (Step 2 in Figure
1), there are still ~20K FPs reported per year on average
during 2019~2024, 98% of which were determined to be
accepted FPs. These accepted FPs occasionally resulted in
financial losses on SV’s customers.

Problem statement. Understanding the nature of user-
reported FPs is essential to guide continuous improvement
of detectors and mitigate customer losses. However, to our
knowledge, no prior measurement study has been done for
this important problem. This motivates us to conduct the first
large-scale study using the six-year FP data from SV.

Note that this work does not pay special attention to one
detector. For instance, we do not present the detection accuracy
of an individual detector or compare the performance across
detectors. Instead, we intend to study the generic character-
istics of FPs triggered by various production-grade detectors
and explore approaches for effective FP mitigation universally.
Our objective is to answer the following research questions:

¢ RQI1. What are the statistics of FPs reported by users?
(§II-B1)

e RQ2. What are the characteristics of the user-reported
FPs? (§III-B3§I1I-B4§II1-B5)

« RQ3. Can popularity-based allowlists be tuned to further
reduce FPs in production? (§11I-B2)

« RQ4. How do researchers investigate FP reports
($III-B6)? Can we automate the investigation (§1V)?

C. Malicious Domain Detection

The concrete answers to the above questions highly depend
on how malicious domains are detected. Therefore, in this
section, we give an overview of the detectors deployed by
SV, which is Step 1 in Figure 1. We leave some technical
details to Appendix A.

I Allowlist is also referred to as whitelist or trust list.

In general, a malicious domain detector can be categorized
into three aspects: detection scope, types of malicious indi-
cators, and classification techniques, as summarized in Table
I. For detection scope, a detector is either designed based
on generic characteristics of malicious domains or specific
domain-based attack (e.g., domain squatting). For types of
malicious indicators, a detector uses features from domain
names themselves or features related to their usage (e.g.,
domain resolution patterns). For classification techniques, both
signature-based and learning-based techniques have been ex-
tensively used. In addition to the aforementioned in-house
detectors, SV augments the detection coverage with four
widely used third-party feeds, including VirusTotal, Spamhaus,
URLhaus, and Abuse.ch.

D. Mitigating FPs with Allowlists

In this section, we survey the common practices for filtering
out domain FPs and the solutions deployed by SV before an
alert is generated (Step 2 in Figure 1).

Similarly to other security systems such as spam prevention
[33], IP blocking [3], and application control [73], malicious
domain detectors could leverage pre-generated allowlists to
filter out FPs at low cost. The structure and usage of DNS-
based allowlists have been documented in RFC 5782 (“DNS
Blacklists and Whitelists) [4], although how the list is filled
is left to the vendors and developers.

The usual approach is to include the most popular domains
in allowlists, as they are often registered and used by reputable
parties. Before its discontinuation in May 2022, Alexa top list
[5] was the de facto standard source of popular domains, which
has been used in most research papers [62] and production
systems such as Quad9 [6] and Netresec [7]. Yet, Alexa list
was vulnerable to rank manipulation [62]. To address this
issue, researchers proposed methods to build more reliable lists
such as Tranco [62], Secrank [78], whitelst [24], and dynamic
allowlists [26]. In fact, after the discontinuation of the Alexa
list, Tranco has become the new de facto allowlist, as shown
on their website [8]. In addition to public lists, some detectors
also build custom allowlists from their own network traffic [66]
and include well-known Internet services in allowlists [21] [6].

Allowlists deployed by SV. Table II presents how SV
constructs the allowlist. First, domains that consistently appear
on the Alexa/Tranco top 1M list in the past 30 days are
included in the allowlist. The second source is the top 1M
domains ranked from the DNS traffic of SV’s customers.
Moreover, domains that provide legitimate services such as
content delivery networks (CDN) and web hosting are also
included. Finally, SV uses an allowlist that includes a small
set of manually-curated trusted domains, such as those owned
by SV’s customers. Note that for domains in the allowlists,
some detectors in SV can still issue alerts on them, e.g., when
the website under a domain is compromised.

III. LARGE-SCALE MEASUREMENT OF FPs

The main challenge to studying FPs in production lies in
collecting and determining the ground truth. Currently, there



Covered

Example Detectors by SV?
Generic malicious domains [21] [25] [22] [57] [49] [37] [43] 4
Specific threats
Domain squatting [71] [45] [32] v
. Domain generation algorithms [23] [66] v
ls)f(:;z‘“’“ DNS rebinding [42] v
Fast flux [39] v
Domain shadowing [53] v
DNS tunneling [61] [60] v
Malicious websites [771 [51] [55] [46] [44] [70] [48] v
Lexical analysis of domain names [21] [25] [37] [71] [45] [32] [23] [66] [53] [61] [60] 4
Type of Domain registration and Whois [37] v
Indicators Domain resolution patterns [57] [43] [42] [39] [53] [21] [25] [22] [60] v
Malicious web content [77] [55] [46] [44] [48] [70] [53] [27] [72] v
Supervised machine learning [21] [25] [22] [37] [53] [66] [53] [77] [51] [72] %4
Classification Semi-supervised machine learning [23] [27] (4
Technique Anomaly detection [60] v
Graph-based analysis [57] [43] [49] v
Signatures and rules [46] [44] [70] [48] v

TABLE I: Categorization of representative malicious domain detectors.

Examples Used by SV?
Alexa top domains [5] [45] [66] [6] etc. vi
Tranco top domains [62] [8] v
Customer top domains [66] (4
Known Internet services [21] [6] v
Other manually trusted domains N/A v

TAfter the discontinuation of Alexa, SV switched to Tranco.

TABLE II: Allowlists commonly used by malicious domain
detectors to filter out FPs.

is no definitive way to decide if an alerted domain is FP.
Otherwise, such an approach would have been used to prevent
FPs in advance. As such, our study relies on a dataset of
FPs reported by users (Step 4 Figure 1). A unique advantage
of our dateset is that users often provide a justification of
benignity, so we are able to gain deeper insight into why FPs
are generated. In addition, from a practical point of view of
security services, understanding and mitigating user-reported
FPs could result in better security products.

Next, we first describe how user-reported FPs from SV
are collected and processed. Then, we conduct a systematic
measurement to understand the characteristics of these FPs.
Finally, we discuss the threats to validity of our study.

A. FP Collection

Here, we provide an overview of how SV handles user-
reported FPs. Users can submit change requests (CR) for
any domain on a Web portal of SV. Each CR includes three
required fields: the domain in question, the domain’s original
category, and a new category suggested by the user for the
domain. There is also an optional field, user comment where
users can provide a description and evidence on why they
consider the original category is wrong. Note that the Web
portal provides one-way communication, without follow-ups
from security researchers to users.

FP CR. Since this work focuses on FPs in production, FP
CRs are used in our study. An FP CR is a CR in which the

original domain category is malicious and the suggested new
verdict is benign. FP CRs are handled by security researchers
in SV who designed and implemented the detectors described
in §II-C. An FP CR can be accepted or rejected after manual
investigation. For an accepted FP CR, the domain category is
changed based on users’ suggestions and researchers’ inves-
tigation, so that the domain will no longer be blocked. For a
rejected FP CR, no action is taken and the domain will remain
blocked. Notably, there is a delay between the alert and the
CR of a domain. Therefore, the domain under a CR can be
truly malicious at the time of detection and became clean at
the time of CR submission, which turns the domain into an
accepted FP. One such example is a compromised website that
gets malicious code removed later.

To review FP CRs, the general guidelines for researchers are
that i) if there is reliable malicious evidence and the evidence is
still valid, reject the FP CR; ii) if there is no reliable malicious
evidence and benign evidence is provided by users or found
on the Internet, accept the FP CR; iii) otherwise, decisions are
made at researchers’ discretion. Basically, malicious evidence
includes hosting malicious Web content at researchers’ discre-
tion (e.g.,, phishing content), connections only from malware
(based on VirusTotal and SV ’s in-house detection engine),
attribution to attacks in articles by reputable security vendors,
and domains resolved to bullet-proof IPs. Benign evidence is
mainly a description about a domain’s usage for legitimate
purposes, as judged by security researchers.

Attributing FP CRs to sources. As described in §II-C,
SV detects malicious domains from two sources, in-house
detectors (D) and third-party threat feeds (F). A malicious
domain could be detected by both D and F. To avoid dupli-
cates and simplify the presentation of the results, we attribute
each FP CR to one single source. Since we can only decide the
detection reasons for the domains detected by D, we choose to
attribute a FP CR to D, when it is included by both D and F.
The rule for source attribution can be written more formally as
below. 1) An FP CR is attributed to D as long as the domain



Accepted Accepted Rejected Rejected
FQDN Root FQDN Root
Pp 94,144 89,121 1,329 1,297
Pr 23,949 23,032 693 681
Total Unique 118,093  111,932F 2,022 1,972F

TThe total number of unique root domains is less than the sum of
Pp and Px because there could be multiple FP CRs for different
subdomains under a root domain.

TABLE III: Number of unique FQDNs and root domains in
FP CRs.

Root Domain # of FP CRs Domain Category
weebly.com 2,125 Web hosting
blogspot.com 146 Web hosting
oastify.com 109 Pentesting tool
smapply.io 61 SaaS service
tripod.com 53 Web hosting
taxesejour.fr 50 Financial services
campuswell.com 45 Education, Health
azurewebsites.net 42 Web hosting
smapply.org 34 SaaS service
readsh101.com 33 Education, Health

TABLE IV: Top 10 root domains in terms of the number of
FP CRs received for their subdomains.

is detected by D, and we denote these FP CRs as Pp. 2) An
FP CR is attributed to F if the domain is only contained by
F, and this set of FP CRs is denoted as Pr.

B. Characteristics of User Reported FPs

1) How many FP CRs in production? (RQI): In total,
123,491 FP CRs are reported, with 121,073 for 118,093 unique
FQDNs being accepted and 2,418 for 2,022 unique FQDNs
rejected. The overall statistics suggest that most of the FPs
reported by the users are accepted (>98%), underscoring the
importance of FP mitigation. Under the attribution scheme
in §III-A, Table III presents the breakdowns of the unique
FQDNs and root domains in the FP CRs, by sources. We
found that most FQDNs (97.7%) receive only one FP CR,
revealing a long-tailed distribution of FP FQDNs. Meanwhile,
2,772 FQDNs receive more than one FP CR, with the highest
number of FP CRs for a single FQDN being 54. Most of these
FQDNs belong to security tools such as pentesting. These
tools are used for both legitimate and malicious purposes, and
thus their domains are usually kept as malicious. Users keep
complaining that these domains are FPs.

To reduce the workload of reviewing FP CRs, one approach
can be grouping FP CRs by root domains and processing
them by groups. However, we found that most FQDNs are
hosted under unique root domains (113,738 unique root do-
mains for 123,491 FP CRs), and Table IV lists the top 10
root domains after grouping. The distribution is also long-
tail (except weebly.com, all the other root domains have
less than 150 FP CRs). Besides, 6 out of the top 10 root
domains belong to Web hosting and SaaS service categories,
which allow subdomains to be registered by a third party.
Therefore, reviewing after domain grouping is unlikely an
effective approach.

Interestingly, a prominent portion of the accepted FQDNs
from the threat feed Pr is also observed in Pp. We speculate
on two possible reasons. First, these malicious domains are
probably independently detected by both F and D which
use similar detection approaches and thus suffer similar FPs.
Second, as one of the largest security vendors, domains
detected by in-house detectors of SV can propagate to and
affect third-party feeds such as VirusTotal [82].

Finally, while the rejection rate for FQDNs in P~ (2.89%)
is significantly higher than 1.41% in Pp, this does not mean
that the in-house detectors perform worse than the third-party
feeds. The notable difference is due to the fact that not all
malicious domains from third-party feeds are ingested by SV,
and only those more likely to be truly malicious are ingested,
as described in Appendix §A.

2) Can popularity-based allowlists be tuned to further re-
duce FPs? (RQ3): As illustrated in Figure 1, popularity-based
allowlists are used to mitigate FPs generated by detectors
before alerts are sent to users. Hence, a natural follow-up
question is whether we can tune the allowlists to further reduce
FPs that will be reported by users. To answer this question, we
investigate how many domains in FP CRs appear in public top
lists. We use five publicly accessible raw top lists, including
Alexa top-1m [5], Majestic Million [9], Cisco Umbrella 1
million [10], Quantcast top 490K websites [11], and Chrome
User Experience Report (CrUX) [12]. For each list, we extract
the root domains from the FQDNs and match them to the FPs.
We did not include Tranco here, as it has merged the other
lists like Alexa top-1m.

The first four lists are provided from public websites, and we
collect their daily snapshots from 2019-01-01 to 2024-04-01.
For Alexa and Quantcast which have been discontinued, the
daily lists are collected until their discontinuation dates. Figure
2 shows the percentage of root domains in FP CRs that appear
at least once in a public top list. We can see that even if we
simply merge all the top lists, only ~38% root domains could
be covered. Even worse, a benign and popular root domain
does not necessarily mean that its subdomains are also benign.
For example, weebly.com is a popular domain. However,
it is also abused by attackers to host malicious content on
its subdomains. In fact, about 49.2% of the FP CRs are for
subdomains whose root domains appear at least once in a
public top list.

To further evaluate how likely a larger top list can help, we
check the ranking of root domains in FP CRs using CrUX.
CrUX provides website ranking based on browser traffic
contributed by opt-in Chrome users, and the published ranking
is updated monthly. The rank is bucketed on a log10 scale with
half steps, e.g., top 500, top 1000, etc. For each root domain
in FP CRs, we get its highest rank bucket from 2019-01 to
2024-12. Figure 3 shows the results. As we can see, about 50%
of the root domains are ranked below 5 million. Considering
that the existing 1-million lists have already included many
malicious domains [78] [62], if we extend the lists to 5 or
even 10 million, it could lead to an unacceptable number of
false negatives, and thus dramatically undermine the protection
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efficacy in practice.

In summary, it is impractical to mitigate FPs by simply en-
larging the allowlists, and complementary approaches should
be developed to mitigate FPs in production.

3) Time of detection to time of complaint (RQ2): Next, we
count the number of days between when a domain is detected
as malicious and when an FP CR is reported for the domain,
i.e., time of detection to time of complaint (TODTOC). Figure
4 shows the cumulative distribution of TODTOC. Overall,
~10% FPs are reported within one week, ~23% FPs are
reported within 30 days and half of FPs are reported within 120
days. Given the long delay of FP reporting, we recommend
evaluating a malicious domain detector after more than 4
months deployment, so more than half of FP CRs are likely
to be collected to tune the detector.

Then, we compare the distribution of TODTOC by the
decision of FP CRs (accepted and rejected) and sources (in-
house detectors and third-party feeds). First, we found that FP
CRs with smaller TODTOC are more likely to be accepted.
This is consistent with the intuition that the earlier an FP
is reported, the more likely the FP would cause perceivable
negative impacts on users, leading to the correction. Second,
there is a prominent difference between the rejected FP from
D and F. This is probably because for domains detected by in-
house detectors, researchers often have more evidence on the
true-positive domains, and therefore can reject them promptly.
However, for domains from public feeds, there is usually no
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Fig. 4: Distribution of time of detection to time of complaint
(TODTOC).

Detection # of # of # of Detections

Scope FP CRT  Accepted Per Day
Generic detectors 8,518 8,154 ~5K
Domain squatting 830 810 ~8K
DGA 1,130 1,114 ~11M
DNS rebinding 102 64 20
Fast flux 40 39 43
Domain shadowing 0 0 203
DNS tunneling 446 394 13
Malicious websites 87,596 86,401 ~260K

TA domain could be detected by multiple detectors and thus a CR can

be counted multiple times under different scopes.
TABLE V: Count of total FP CRs by detection scopes in
§II-C. For comparison, the last column lists the number of
new detections per day on average by detection scopes.

additional context, and thus researchers tend to take longer
time for investigating or accepting FP CRs.

4) FP by detection scope (RQ2): Table V presents the count
of FP CRs by the detection scopes described in §II-C. We only
consider FP CRs by SV in-house detectors here because we
do not know how malicious domains from public feeds are
detected. As shown in the table, the detectors of malicious
websites dominate the FP CRs. Further investigation reveals
that most of these reported domains are owned by small
businesses that usually do not have strong security measures
to protect their websites. Many of these websites turn out to
be compromised at the time of detection and cleaned up at
the time of CR submission. As such, users are more likely
to report these malicious domains as FPs and the relevant FP
CRs are accepted after clean-up. For the other detectors, we
found the generic detectors have a much higher FP ratio (over
8K FPs overall with ~5K daily detection), while the threat-
focus detectors like DGA detector (only 1.1K FPs overall with
~11M daily detection) and domain shadowing detector (0 FPs)
are fairly accurate, suggesting it is a better practice to deploy
an ensemble of detectors to reduce FPs.

5) FP reasons reported by users (RQ2): We now investigate
why a malicious domain is reported as an FP, by inspecting
the comments submitted by users in CRs. We use a comment
analysis tool developed by SV researchers, which parses user
comments into nine reasons with keyword matching and LLM-



based text analysis. Table VI presents the nine types of
comments along with the statistics for each type. Due to the
space limit, we present more details about each type along
with examples of user comments in Appendix §B.

Among the nine types, three do not provide meaningful
information. About 38.4% of the CRs do not have com-
ments. Besides, users simply ask SV to provide Indicators
of Compromise (IOCs) or claim that the domains are clean
without providing any benign evidence in 7.2% and 6.7% CR
comments, respectively.

The remaining 58,799 CRs contain meaningful information
in the comments, which can be categorized into six reason
types. The most common reason given by users is that the web
content hosted on reported domains is legitimate (Domain
Content). Unfortunately, using Web content to judge the be-
nignity of a domain is not a safe practice, and we describe two
representative cases summarized from comments. First, some
users argue a domain is benign as there is no content hosted on
the domain (e.g., “404 error when attempting to reach the site”
and “the website has absolutely no content”). Second, some
users point out the domain redirects to google.com (e.g.,
“site redirects to google” and “as per our checks url is landing
in google”). Showing no meaningful content or redirection are
actually actually common cloaking techniques employed by
attackers [80]. As such, we believe to avoid users’ confusion,
the detector can provide more details about why a domain is
detected as malicious, which is especially important when a
domain is abused or a website is compromised.

The next common reason is that users need to use the
domains, e.g., for business purposes (Valid Use). In partic-
ular, many users mention that they cannot access the services
hosted on the reported domains. For example, they cannot
send emails or communicate using VoIP systems. Similarly to
Domain Content, most domains of this reason are detected
as malicious because of compromised websites. Therefore, to
mitigate collateral damage, it is important for security services
to block only malicious traffic to/from the domains without
affecting other legitimate services hosted on the same domains,
which requires finer-grained detection/blocking capabilities.

Furthermore, for a prominent amount of CRs (10,266),
users have checked open-source intelligence (OSINT), such
as VirusTotal, AlienVault [13], efc., and claimed that the
reported domains are classified as benign by them. This reason
is particularly interesting for Pr, as the feeds from which
these malicious domains are ingested partially overlap with
the OSINT mentioned by users. We found that users choose
to include OSINT for two main causes. First, some users
consider zero detection by an OSINT as benign evidence,
while VirusTotal is the only OSINT mentioned by users.
However, we found that VirusTotal has a notable number of
false negatives compared to the 25 OSINT feeds used by SV
(including VirusTotal). Second, some users consider it benign
evidence when 1 ~ 3 engines on VirusTotal classify a domain
as malicious (e.g., “Only one hit on VT for phishing. Not
seeing anything in any run.” and “my virustotal check shows
up 3 hits but this could be false positive”) However, there is

not consensus regarding the threshold of VirusTotal hits [82].

In 8,034 CRs, users claim to own the domains (User
Own). Most of these FPs are produced by the domain squatting
detector, as the FP domain names look similar to the legitimate
ones owned by SV’s users but the webpages on the domains
are classified as phishing. Though using the registrant infor-
mation in Whois data to verify domain ownership is likely to
mitigate such FPs, unfortunately, due to data privacy policies
such as GDPR, more and more domains have anonymized
Whois [56]. Deploying domain attribution techniques that do
not depend on Whois, e.g., through [67], might be necessary
to address this problem.

Although the types of reason in the user comments do not
strongly correlate with whether FP CRs are accepted overall,
we can see that CRs with the reason Stale Detection
are all accepted. This result could be relevant to domain
registration patterns. In fact, malicious domains are commonly
registered for a short period of time, usually one year [37].
Therefore, if a malicious domain was detected years ago, it has
probably expired and is no longer used for malicious activities.

6) Malicious/benign evidence by SV researchers (RQ4):
When a security researcher processes a FP CR, evidence needs
to be provided to make the final decision, and we study the
relation between FP CRs with evidence here. Since SV does
not keep the researchers’ justification, including evidence, for
accepted and rejected CRs in persistent storage, we instead
retrieve the malicious and benign evidence again, following
the investigation guidelines of SV.

Malicious evidence for rejected FP CRs. For 2,238 out
of 2,418 rejected CRs, we are able to collect two types of
malicious evidence. First, the domains in 1,281 CRs were still
actively involved in malicious activities at the time of CR
submissions, which were confirmed by contacting the detector
maintainers. For 1,675 CRs, the domains were mentioned in
the intelligence sources maintained by SV, which collected
thousands of security blogs and technical articles over years.
For 718 CRs, both types of malicious evidence could be found.

Benign evidence for accepted FP CRs. For accepted CRs,
we collect two types of benign evidence, including benign
indicators on the Internet and convincing benign evidence
in user comments. For the first type of evidence, the CR
handling system in SV automatically obtains the websites
on the Internet that mention the FQDNs and/or their root
domains in the CRs, to aid researchers in CR triaging. Based
on our discussion with the researchers, if the website that
describes the queried domain is trustworthy and vouches the
legitimacy of the domain, the CR are likely to be accepted.
Hence, we search the FQDNs associated with the CRs to
find the vouching websites as evidence 2. The second type
of benign evidence should either prove user’s ownership on
the domain (like User Own in §III-B5) or domain’s valid
usage (like Valid Use in §III-B5), while both claims can

28V first used the Bing Search API [14] to obtain search results, which was
retired on 2025-03-06 [15]. SV has transitioned to Gemini Grounding
with Google Search [16]. SV is also evaluating Google Programmable
Search Engine [17].



No Meaningful Information® Meaningful Information*
Total No Ask for I0C Claim Clean User Valid Clean Domain  Malware Stale
CRs Comment w/o Evidence w/o Evidence Own Use OSINT Content Cleaned Detection
Accepted Pp 95,024 36,317 6,842 6,487 5,707 14,590 8,621 33,591 1,607 29
Accepted Pr 23,759 8,943 1,826 1,544 2,133 4,546 1,507 8,673 783 20
Rejected Pp 2,818 1,290 188 168 142 246 107 350 10 0
Rejected P 1,890 863 67 157 52 104 31 179 6 0

TA comment without meaningful information is classified exclusively into one of the three types.
*A comment with meaningful information can contain multiple types of reasons.

TABLE VI: Statistics of the FP reasons in user comments.

be supported with evidence that can be obtained through
Internet search. Based on the above schema for gathering
benign evidence, potential benign evidence could be found on
the Internet for many accepted CRs (66,639 out of 121,073).
Meanwhile, 19,375 CRs have convincing benign evidence in
user comments, of which 14,749 also have benign evidence
on the Internet.

7) Summary of findings: Here we present the prominent

lessons we learned from our measurement study.

o Lesson 1. User-reported FPs have a long-tail distribution
on FQDNs and root domains (§III-B1). Hence, triaging
FPs by groups of FQDNs and root domains does not save
much manual effort.

e Lesson 2. User-reported FPs cannot be effectively miti-
gated by adding more domains from the popularity-based
allowlists like Alexa top-lm. The upper bound of FP
mitigation is only ~38% by allowing all domains from
all lists. (§11I-B2).

e Lesson 3. For ~55% FPs, benign indicators for the
detected domains can be found on the Internet (§11I-B4,
$III-BS, §III-B6).

e Lesson 4. Many FP CRs are related to compromised
websites ($III-B5). To better address user complaints,
the detectors could explicitly tell users that domains are
compromised in these cases.

o Lesson 5. Given the trend of anonymizing domain Whois
information, using domain ownership as an indicator to
mitigate FPs becomes more challenging. A new approach
is needed to robustly and effectively attribute domains to
owners. (§III-B5)

C. Threats to Validity

As with all measurement studies, there is a risk that our
findings may be biased and not representative. Below we
discuss the potential issues.

Reliability of FP CR dataset. First, it is likely that not
all FPs are reported by users. For example, it is possible that
users do not notice an FP. Even if they noticed, they might just
add the domains to their local allowlists and do not report to
SV. However, we posit that most of these unreported FPs have
relatively low impact on users and do not undermine the value
of our study. Second, users could submit adversarial FP CRs
for truly malicious domains along with misleading comments.
Considering that FP CRs are submitted primarily by IT and
InfoSec teams of enterprises and organizations that are users
of SV products, the majority of CRs should be trustworthy

and adversarial FP CR submissions are rare. Finally, SV
researchers might falsely accept or reject an FP CR. For falsely
rejected FPs, users often reach out to support engineers of SV
and open tickets, and we only saw several such cases in our
dataset. For falsely accepted FPs, users would need to provide
very convincing evidence that a malicious domain is benign
(e.g., the domain is registered by a reputable party). We expect
such cases to be rare.

Potential bias due to the allowlists used by SV. SV
used public and private allowlists shown in Table II, and both
might result in detection bias (e.g., other security companies
might deploy different allowlists). We argue that the detection
variation caused by public lists should be small, as top lists
such as Tranco and Alexa are used by nearly every security
company based on our discussions with industry partners. The
private lists such as the manually-compiled trusted domain
list could be different from the ones used by other security
companies. However, we observe that private lists mitigate
only a small portion of FPs in production. Hence, their impact
on the result validity is limited.

IV. DESIGN AND IMPLEMENTATION OF IOBHUNTER
A. Motivation & Overview

We are motivated to develop an automated tool to replicate
the investigation procedure of security researchers, such that a
large ratio of FPs can be mitigated before they bring negative
impact on users. According to Lesson 3 in §III, indicators can
be found on the Internet for large amount of accepted FPs,
which we term as Indicator of Benignity (IOB). Therefore,
we can proactively collect IOBs for the detected FQDNs and
correct/augment the detection results accordingly. IOBs could
also reflect the rightful domain owners to address the issue
of anonymized Whois (Lesson 5). When a domain is alerted
because it hosts a compromised website, IOBs could provide
necessary context to users (Lesson 4). Yet, attackers can forge
IOBs, e.g., by creating a website which claims a malicious
domain as benign, and we have to select IOBs carefully.

We design IOBHunter to find the trusted IOBs on the
Internet for the detected domains and aid the alert triaging.
Our key innovation is a transitive trust model that we develop
for finding and asserting the trustworthiness of I0OBs. We
are inspired by the chain-of-trust verification protocol from
Certificate Authority (CA), which establishes end-to-end trust
with a hierarchy of CAs, because the researchers take a similar
approach to determine a domain is benign if it is owned



by a trusted owner or vouched by a trusted source. Yet,
vouch is very different from certificate in that 1) it is not
cryptographically signed and it can be forged, 2) the vouch is
often unstructured text and sometimes ambiguous, 3) there is
no agreement about which sites can be trustworthy vouchers.
Our transitive trust model addresses the issues described above
with a clean definition of IOB and an iterative search-and-
check schema to find trusted IOBs from Internet. In the
remainder of this section, we describe the design details of the
transitive trust model and its implementation in IOBHunter.

B. Transitive Trust Model of 10B

In Figure 5, we illustrate the diagram of the transitive
trust model to find trusted IOBs. Given a detected FQDN,
IOBHunter first obtains the search engine results for the
FQDN (which is termed as search target). Then, for each URL
in the search results, we check if its indexed page contains an
IOB of the search targets. The URL containing IOB is called
an /OB source, and we verify if the trust of the IOB source can
be transited to search targets under the trust transit policy. If
the trust transition is valid, we further check if the IOB source
is the root of trust and claim that trusted IOBs are found if true.
Otherwise, a search-and-check process is conducted iteratively
until the root of trust is reached or no new search result is
returned. To avoid indefinite loops, a limit of search iterations
is set. Compared to the evidence search described in §I11-B6,
the search-and-check process of TOBHunter mitigates the
issue of IOB forging with the proposed trust model.

As we can see, such a transitive trust model involves three
main problems: the definition of an IOB, the root of trust, and
the trust transit policy. Next, we describe how they are solved.

1) Formal definition of an I0B: We argue that IOB has to
be carefully defined to avoid mistrust or misclassification on
a domain. Usually, a lot of text description about a domain
can be found through search engines, but not all of them
can be considered as IOB. For example, a technical blog by
security researchers might mention a malicious domain that is
exploited for a cyber-attack. Such Web content actually serves
as an IOC instead of an IOB. Sometimes, the text description
about a domain is neither an IOB nor an IOC. For instance,
radar.cloudflare.com provides the basic information
of a domain, including passive DNS, SSL certificate, and
Whois data. However, they do not determine if the domain
is benign or malicious. Finally, with respect to websites that
describe domains, they can be created by an attacker or abused
to forge trust. For instance, attackers can set up a homepage
on social network apps such as Facebook and Instagram that
point to malicious domains and claim its trustworthy.

Obviously, the three aforementioned cases do not have
IOBs, and we avoid them by restricting the IOB to be a piece
of Web content that attributes a domain to a legitimate app or
organization. If this piece of Web content comes from a trusted
source, it is called a trusted IOB. As such, the first two cases
(malicious domains described in a technical blog and domains
listed in informational websites) do not have IOBs. The third

case (social network app vouching a domain) has IOBs but not
trusted IOBs, considering that the sources can be manipulated.

2) Root of trust: Similar as the CA chain-of-trust model, we
also need to define a root of trust, which has the highest level
of trust to vouch other sources. In our model, we consider the
websites owned by government to be the root of trust. For ex-
ample, in an ideal case, if government documents or websites
mention that a detected domain is used for legitimate purposes,
this IOB will be considered trustworthy. We are aware that our
root of trust is quite restrictive (only government sites), and
we choose government sites because the published content
is expected to be carefully verified by officials. Although
government websites might be compromised, the attackers in
this case prefer website defacement [79], and describing their
malicious domains on government sites would more likely
expose the malicious domains.

Unfortunately, for most domains detected in practice, no
IOB for them could be found directly from government sites.
Instead, IOBs are usually found indirectly, where an 10B
source is certified by government organizations and this source
contains IOBs for a detected domain. It might require multiple
website visits to locate the description of the target FQDN
from the root of trust. Moreover, in some cases, IOBs can be
found only for root domains of detected domains. Therefore,
we use the trust transit policy to define how trust can be
transited from the root of trust to the target FQDNs and
between root domains and their subdomains.

3) Trust transit policy: We define three policies. Our gen-
eral rule is that if two entities (i.e., root domains, subdomains,
FQDN, and URL/web content) share the same owner, their
trust can be transited. The Web-content— Search-Target policy
is established given the IOB definition.

Root-domain<<>Subdomain. This type of trust transit ap-
plies to cases where an IOB is found for the root domain
of a subdomain and vice versa. Usually, domains under the
same root domain are managed by the same owner, and thus
trust can be transited. However, cases exist that a subdomain
and its root domain are managed by different owners. For
instance, CDN, dynamic DNS, ezc. allow arbitrary public users
to obtain subdomains under their root domains. Therefore, if
a subdomain of a root domain is found to be controllable by
another party, the trust cannot be transited.

FQDN—URL/Web-content. Since we define IOB to be
a piece of Web content and the trustworthiness of the Web
content needs to be certified, we allow the Web content to
inherit the trust from its hosting FQDN. Similarly, a URL
can inherit the trust from the FQDN where it is hosted. Like
Root-domain<sSubdomain, there are two scenarios in which
the trust of an FQDN cannot be transited to its URLs or the
Web content: URLs generated for public users (e.g., online
storage and data sharing services), and the website that allows
arbitrary public users to publish content (e.g., online forums,
social networks).

Web-content— Search-Target. Finally, the trust of Web
content can be transited to the search target if the content
describing the search target satisfies IOB definition in §IV-B1.
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Fig. 5: Diagram of the transitive trust model for IOB.

4) A Running Example: We present an example for a real
FP case that can be corrected with our transitive trust model,
which is shown in Appendix §C.

C. Implementation of IOBHunter

Implementing IOBHunter needs to address two major
challenges. First, IOBs from Web content are often unstruc-
tured. Second, domain ownership and the intention of the
description (e.g., IOC or I0B) cannot be easily determined.
We found Large Language Models (LLMs) like GPT-40 have
a unique advantage in addressing the issues of text parsing
and knowledge extraction (reviewed in §VII), so we build
IOBHunter on top of LLM. To further ensure the factuality
of the responses from LLMs, we leverage chain-of-thought
(CoT) [76] when designing prompts, which has shown its
effectiveness in detecting online hate texts [75] and memes
[83] with high accuracy. TOBHunter consists of multiple
phases that use data obtained in multiple search rounds, and
we show its pseudo-code in Appendix §E.

Phase 1: Search targets. Before each search round, we first
need to decide the search targets. TOBHunter checks whether
the detected FQDN and FQDNs in the IOB sources found in
the previous round are root domains. If so, they are added
as targets for the next search round. Otherwise, we assess
whether the FQDNs are managed by the same owner as their
root domains using a proprietary database compiled by SV.
If so, both the FQDNs and their root domains are added as
search targets.

Phase 2: Search result retrieval. Once search targets are
determined, TOBHunter obtains the search results using the
same approach as SV security researchers in §III-B6.

Phase 3: I0B extraction. For each search result from Phase
2, TOBHunter performs multiple checks using the prompt
presented in Appendix §D. First, ITOBHunter checks whether
the searched content contains the corresponding search target
(Step 1 Appendix §D). Second, IOBHunter checks the
searched content to decide whether the target FQDN or its
root domain is associated with a legitimate application or is
owned by an organization. Next, the system evaluates whether
the content in the search result is published by arbitrary public
users or originates from a content hosting or aggregation
platform, i.e., checking against trust transit policies. If both
checks are true, the process continues to check whether the
IOB source is an official government website (e.g., ending in
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.gov). If so, a trusted IOB is found for the detected FQDN.
Otherwise, the trustworthiness of an IOB source is undecided
(i.e., tbd in Step 5), and IOBHunter repeats the process in
a new search round from Phase 1 for the IOB source.

Phase 4: Trust propagation. Since trust transit policies
have been checked in Phase 3, it is straightforward to combine
the results from all search rounds to get the final results.
Starting from the root of trust in the search round 7 + 1, we
propagate its trust to IOB sources whose trustworthiness is
undecided in the search round :. This trust propagation is
performed recursively until the detected FQDN is reached.
After trust propagation, if one IOB source in search round 2
(i.e., the initial IOB source) is trusted, a trusted IOB is found
for the detected FQDN.

Phase 5: Termination conditions. IOBHunter terminates
when sufficient trusted IOBs are found and when all IOB
sources in a search round are untrusted (i.e., no trusted IOB
found). In practice, a single trusted IOB is sufficient for FP
mitigation, and thus it is our default configuration. We also
set a limit for search iterations (3 by default).

Optimization. To optimize cost and throughput, a cache
is maintained for the IOB sources that have been assessed.
Both negative and positive results can be cached so that an
IOB source does not need reassessment if it has been verified
before. This idea resembles Retrieval Augmented Generation
(RAG) in LLM domain [47] to augment a prompt with
additional knowledge from the LLM user.

D. Separating Compromised Domains From Real FPs

As learned from Lesson 4, many FP CRs are for compro-
mised websites. Since these websites are benign and legitimate
in essence, IOBHunter could find trusted IOBs for them.
However, in practice, these compromised websites should not
be classified as FPs. Instead, we need to separate compromised
websites from real FPs so that TOBHunter can be automated
in production. To achieve this, we adopt a simple policy that
given a domain with trusted IOBs, if solid malicious evidence
is also present, the domain is classified as compromised;
otherwise, it is an FP. This policy is also used in our evaluation.

The main challenge to implement this policy lies in the
fact that the definition of solid malicious evidence is an open
problem and could differ greatly between security vendors.
The perfect implementation of this policy is not the focus of
this work. Instead, we currently simply follow the same imple-



mentation as adopted by SV which has performed quite well in
production. Specifically, solid malicious evidence includes i)
malicious activities confirmed in security blogs and technical
articles from a list of manually curated trusted sources, and
ii) websites contain malicious content that exhibits malicious
activities during dynamic analysis or is flagged by more than
five VirusTotal vendors.

V. EVALUATION

In this section, we assess the efficacy of TOBHunter and
aim to answer three main questions:

o How accurate is TOBHunter?

o Is TOBHunter efficient and economical?

e« Can IOBHunter complement popularity-based al-
lowlists to mitigate FPs in production?

To answer these questions, we evaluate TOBHunter in two
setups. First, the FP CR dataset from our measurement study
is used as ground truth, which facilitates the evaluation of
accuracy and efficiency. Since the FP CR dataset is biased
towards true FPs, we further evaluate TOBHunter in a real-
world setup and apply TOBHunter to all malicious domains
detected by SV from 2025-03-01 to 2025-05-01.

A. Evaluation With FP CRs

We first evaluate TOBHunter using the FP CR dataset
described in §III. We use GPT-40 [18] as the default LLM
with the following parameters: temperature = 0.1, top_p =
0.95, frequency_penalty = 0, and presence_penalty = 0. We
also assess the impact of LLMs using two other models:
Qwen3-32B [19] and Gemini-2.5-Flash [20]. Qwen3-32B is
open-weights and running it locally can address the privacy
concerns of sending data to remote LLM vendors.

Evaluation metrics. For effectiveness, we use recall and
precision as the primary metrics. However, although we have
the ground truth about FPs, we do not have the ground truth
about which FPs have trusted IOBs. Since it is impractical to
manually verify the trusted IOBs for all FP CRs, we use ac-
cepted and rejected FPs with potential benign indicators on the
Internet (i.e., 66,639 accepted CRs and 669 rejected CRs with
the first type of benign evidence in §III-B6) to approximate
the ground truth. Specifically, for an accepted FP, if a trusted
IOB is found, it is considered a true detection (i.e., True IOB),
otherwise a false negative (i.e., Missing IOB). Similarly, for a
rejected FP, if a trusted IOB is found, it is considered a false
detection (i.e., False IOB), otherwise a true negative (i.e., No
IOB). Note that, to simplify the presentation, trusted IOBs for
compromised websites are counted as False IOB. We define
the number of CRs with True IOB, Missing IOB, False IOB
and No IOB as CRy, CRy;, CRr and C'Ry. Therefore,

precision and recall are defined as: Precision = %;
CR CRT+CRp
J— T
Recall = TR CR-

Evaluation results. Table VII shows the results of
IOBHunter using three different LLM models. We can see
that the three models perform equally well, with a precision
greater than 99% and a recall around 70%.
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IOBHunter
GPT-40 Gemini2.5-Flash Qwen3-32B
CR w/ True 10B 45,591 47,082 45,961
CR w/ Missing 10B 21,048 19,557 20,678
CR w/ False IOB 359 453 439
CR w/ No IOB 310 216 230
Precision 99.22% 99.05% 99.04%
Recall 68.41% 70.65% 68.97%

TABLE VII: Evaluation results of TOBHunter on CR dataset.

We further dive into cases with missing IOBs and false
IOBs. We present only the results for GPT-40 here, and the
results for the other two models share similar characteristics
and conclusions. First, for the 21,048 cases with missing IOBs,
we sampled 100 cases for manual verification. While all of
them are correctly classified by TOBHunter, we also notice
a pattern. For 13,443 out of 21,048 cases, there is benign
evidence on social media platforms such as reddit.com
and instagram.com. Manual investigation shows that they
are valid IOBs. However, by design, TOBHunter does not
identify them as trusted. We further discuss this issue in §VI.
In addition, the top five detectors that detected the cases with
missing IOBs are malicious web content detector (15,628),
third-party feeds (6,315), domain resolution pattern based
detector (911), malicious newly-registered domain detector
(298), and dictionary DGA detector(192). Note that, one case
can be detected by multiple different detectors and we count
them to each detector.

Among the 359 cases with false I0Bs, 336 are actually
compromised according to the policy in §IV-D. Since there
were still malicious activities when the FP CRs were submit-
ted, the CRs were rejected by SV researchers. Interestingly, no
subsequent FP CRs are submitted for these rejected cases. For
the other 23 cases, 17 are subdomains of security services and
pentesting tools that are used in both benign and malicious
scenarios. Instead of simply classifying them as false detec-
tions of TOBHunter, we argue that they should be taken care
of specially in practice. Finally, the remaining five cases are
potential false detections of TOBHunter. In summary, after
excluding compromised cases and security tools, there are only
a few false IOBs by TOBHunter.

Cost of IOBHunter. Since millions of malicious domains
are detected every month, the cost of TOBHunter is an
important factor for real-world deployment. Table VIII shows
the cost of three LLM models. Considering that all three
models perform equally well, IOBHunter could be as cheap
as $74 per million FQDNs, which is affordable for security
service providers. Another main source of cost comes from
Gemini Grounding which is priced at $35 per 1000 requests.
The cost will be prominent if a large number of domains are
searched, and we are exploring a more economical solution
such as Google Programmable Search Engine [17].

Throughput of IOBHunter. Table IX shows the statistical
latency of TOBHunter. The latency of TOBHunter consists
of two parts, searching with Gemini Grounding and prompts
to analyze search results. It takes 35.5 seconds on average for



Model Input Cost  Output Cost 1;cetrual:‘lQ(;)0§t
GPT-40 $2.50 $10.00 $0.0023
Gemini-2.5-Flash $0.15 $0.60 $0.00014
Qwen-3-32B $0.10 $0.30 $0.000074

TABLE VIII: Token based pricing of LLMs per 1M input and
output tokens. The last column shows the actual average cost
per FQDN on our FP CR dataset.

Min Max Avg Med
Search w/ Gemini Grounding 4.2s 322.7s 35.5s  21.4s
IOBHunter (gpt-40) 0.8s 20.2s 1.4s 1.4s
IOBHunter (gemini2.5-flash)  0.4s 4.2s 0.8s 0.8s
IOBHunter (qwen3-32B) 0.5s  1065.4s 38.4s  19.5s

TABLE IX: Latency of prompts on FP CR dataset.

one Gemini Grounding search. The prompts to analyze search
results are much more efficient, around 1 second for GPT-
40 and Gemini2.5-flash. For Qwen3-32B, the latency is much
higher because our evaluation uses OpenRouter API [19].
Hosting Qwen3-32B locally with a powerful GPU is likely
to yield better performance. In summary, the bottleneck in
the current implementation of IOBHunter is the search with
Gemini Grounding, and we expect it to be greatly improved
after switching to Google Programmable Search Engine [17].

B. Real-World Evaluation

In §V-A, we evaluate IOBHunter using our FP CR
dataset. However, this dataset is biased towards true FPs.
In particular, it remains unknown whether TOBHunter also
finds trusted IOBs for true malicious domains and leads to
false negatives of detectors. Therefore, to demonstrate the
value of TOBHunter in a more realistic and practical setting,
we deploy IOBHunter in production, as shown in Figure
6. TOBHunter runs after the allowlists are checked and is
triggered for each malicious FQDN detected in SV (both in-
house detectors and third-party feeds) from 2025-03-01 to
2025-05-01. IOBHunter runs in the shadow mode in which
the results of TOBHunter do not prevent detected domains
from being flagged as malicious. The primary metric for this
evaluation is the number of FPs confirmed in production.
To comply with SV’s policy, only GPT-40 is used in this
deployment. Since all three models perform comparably as
shown in the previous evaluation, we believe that the result
from GPT-40 is representative.

During this period, SV detects 15,106,720 unique FQDNs
whose root domains are registered. Checking them all is
too costly for TOBHunter. As such, we reduce the set by
excluding FQDNs that are unlikely to be FPs. Specifically,
researchers in SV have extracted patterns of malicious domains
involved in hundreds of known campaigns. Domains that
match these patterns are unlikely to be FPs and therefore
do not need to be checked by TOBHunter. After filtering,
15M FQDNs are reduced to 1,065,587 under 654,987 root
domains. Note that although tens of millions DGA domains
are detected every day (as shown in Table V), almost all of
them are nonexistent domains (i.e., whose root domains are not
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Fig. 6: TOBHunter is deployed after existing allowlists.
IOBHunter runs in the shadow mode where we only log the
results for manual evaluation but do not automatically affect
the verdicts of detected domains.

Confirmed FP
- 4,338
True 10B
6,389

-
Found TrustedIOB
6,571

Compromised
Has SearchResult |

16,033 False 10B

182
No TrustedIOB
9,462

Fig. 7: Evaluation results of a real-world deployment of
IOBHunter from 2025-03-01 to 2025-05-01.

registered by anyone), which would not cause actual damage
to users. We remove all such cases.

For 16,033 out of the 1,065,587 FQDNs, IOBHunter
could find valid search results from search engines. ~98.5%
FQDNSs yielded no valid results simply because nothing can
be found from Google. This is common for malicious domains
and domains without Web content. For example, knotnormal-
productions|.]online is detected as malicious. But, no single
result about this domain can be found from Google Search.
Figure 7 shows the evaluation results of the 16,033 cases.
IOBHunter finds trusted IOBs for 6,571 cases. After manu-
ally investigating these cases and confirm with the researchers
in SV, we find that 4,338 cases are confirmed to be FPs.
The verdicts of these 4,338 cases have been corrected from
malicious to benign by SV researchers based on the results
of TOBHunter. In addition, according to §IV-D, 2,051
cases are classified as compromised. This demonstrates that
IOBHunter can also effectively distinguish compromised
domains from those owned by attackers, which can potentially
address user complaints (§11I-B5). These two types of results
are classified as true IOBs by IOBHunter (6,389 in total).
On the other hand, there are 182 potential false IOBs by
IOBHunter. They are mainly caused by LLM hallucinations
[81]. For example, in 15 out of 182 cases, LLM claims that
IOBs are found from sources such as scamadviser.com,
but the relevant IOB description does not exist after we inspect
the sources. Finally, for the 9,462 cases where TOBHunter
does not find trusted IOBs, we sampled 100 cases and manu-
ally confirm that the result is correct.



Confirmed FP Compromised  False IOB  No IOB
IOBHunter 4,338 2,051 182 9,462
Tranco-10K 0 0 0 1
Tranco-100K 0 0 0 13
Tranco-500K 0 2 0 38
Tranco-1M 6 8 0 100

TABLE X: Cross-check of TOBHunter results with Tranco-
2025-05-01.

C. Comparison with Tranco

Finally, to demonstrate the value of TOBHunter in mit-
igating FPs, we compare TOBHunter with the Tranco list.
In particular, for the 16,033 cases that have search results,
we check how many of them appear in the Tranco list. Table
X shows the results for the Tranco list on 2025-05-01. The
results on other dates during 2025-03-01 and 2025-05-01 are
similar. We can see that only 6 of 4,338 (0.1%) confirmed FPs
and 8 of 2,051 (0.4%) compromised cases could potentially
be mitigated by Tranco. Note that although the Tranco list
is used by SV, these 14 cases were not caught because SV
slightly customized it and some detectors can bypass the
Tranco list as described in §II-D. In addition, 100 of 9,462
(1%) cases without trusted IOB appear in the Tranco list.
Manual investigation confirms that 14 are truly malicious
(i.e., not FPs), and for the rest, we cannot definitively decide
whether they are true FPs or not. These results demonstrate
the unique value of IOBHunter in reducing FPs in practice.

VI. DISCUSSION

Limitations and future work. In §III-C, we have dis-
cussed the threat to validity of the measurement study. Here,
we discuss the potential limitations of IOBHunter. First,
IOBHunter can introduce false negatives for malicious do-
main detectors if trusted IOBs were identified on the malicious
domains. To address this issue, we configure TOBHunter to
run in shadow mode as shown in Figure 6 and its contribution
to the final verdict can be tuned. Second, the recall of
IOBHunter can be further improved, and we reveal that
the main reason in §V-A is that IOBs from social media
platforms are ignored by IOBHunter, determined by the
transitive trust model. A potential solution could be to profile
the trustworthiness of social media users and transit the trust to
reputable users. Third, the problem of residual trust is relevant
in our setting. For instance, a domain expires and then gets
registered by another user. If IOBs of the domain are not
invalidated, the new owner can exploit the residual trust and
evade detection by security services. Actively monitoring the
time of registration updates, which is not anonymized in Whois
data, could address this issue.

We implement the transitive trust model to find trusted
IOBs. Compared to the CA chain-of-trust model, our policies
are relatively loose. For example, we allow subdomains to
inherit trust from their root domain, which is not allowed by
default by CA unless a wildcard certificate is used [64]. We
argue that strict policies like CA’s would drastically reduce the
number of trusted IOBs that can be found, and we leverage
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LLMs to analyze IOBs and validate trust transition to address
the potential issues of relaxed policies.

More use cases. In this paper, we have demonstrated that
IOBHunter can be used to mitigate FPs and distinguish
between malicious and compromised websites. We expect
IOBHunter to be applied in more scenarios. First, for secu-
rity vendors, ITOBHunter can facilitate manual investigation
of FP CRs (i.e., moving Step 3 to be after Step 5 in Figure 6).
Second, for Security Operations Centers (SOC) and security
analysts, TOBHunter can provide more context as threat
intelligence which can help investigate security alerts and
incidents. Finally, some indicators collected by TOBHunter
could potentially be used as features for machine learning
models of detectors. In some of these use cases, even untrusted
IOBs are also valuable.

VII. RELATED WORK

We have covered malicious domain detection and existing
common practices to avoid FP in §II. In this section, we
discuss other related work.

Cyber threat intelligence (CTI) gathering and parsing.
Several previous works focus on the extraction of IOC from
unstructured CTI reports. iACE extracts a set of putative IOC
tokens and their contexts from technical articles and then
uses graph mining to generate IOC items [50]. Extractor [65]
and TTPDrill [41] use Natural Language Processing (NLP) to
extract attack behaviors and threat actions from CTI reports.
Tweezers implements an event attribution-centric tweet em-
bedding method to gather security events from Twitter [30].
Since the emergence of powerful LLMs, researchers have
investigated the feasibility of using LLMs for CTI. Locallntel
leverages LLMs to generate and contextualize threat intelli-
gence by combining global threat reports and organization-
specific knowledge [59]. aCTIon uses LLMs to automate
structured CTI extraction from verbose articles [69]. CTIKG
builds a security-oriented knowledge graph from CTI articles
based on LLMs [40]. CTINexus designs an automatic prompt
construction strategy and leverages optimized in-context learn-
ing of LLMs to construct CTI knowledge graphs [28]. As a
result, CTINexus can adapt to various ontologies with minimal
annotated examples. In contrast to these works, TOBHunter
seeks to accomplish the opposite goal by identifying the
trusted IOB of domains on the Internet, a task that presents
unique technical challenges. To our knowledge, IOBHunter
is the first system that leverages LLMs for automated I0B
collection from unstructured public information.

LLM for web content analysis. Mind2Web [31], WebGUM
[34] and Gur er al. [36] [35] employ LLMs to complete
complex tasks, e.g., form filling, on websites following hu-
man’s high-level instructions. To achieve task automation on
web, these systems analyze HTML documents and predict
the elements for interaction and the corresponding operations.
Such systems are generalist agents for web and they might im-
prove TOBHunter in crawling websites and searching IOBs.
Recently, some works employed LLMs to detect toxic content,
online hate and phishing [38] [75] [74] [55]. He et al. explored



prompt learning for toxic content detection and yielded an
improvement of 10% compared to baselines [38]. Vishwamitra
et al. leveraged the chain of thought to identify online hate
and showcased 10.59% to 88% improvement in accuracy [75].
Thomas et al. explored the use of LLMs to enhance the
expertise of human raters and achieved a 9-11% increase in
precision and recall [74]. Liu et al. utilized LLMs to infer
the intention of the brand from logo descriptions on websites
[55]. The task performed by IOBHunter is fundamentally
different, which identifies trusted benign evidence of domains
from Web content.

Compromised domain detection. Our work is also related
to systems that aim to distinguish compromised benign do-
mains from attacker-owned domains. Existing systems [68]
[58] mainly use lexical features, domain popularity, Whois,
VirusTotal, passive DNS, and TLS certificate to classify com-
promised and maliciously registered domains. TOBHunter
represents a totally different approach based on IOB collected
from the Internet, which can complement existing systems.

VIII. CONCLUSION

This paper has conducted the first large-scale measurement
study of FPs in production. Our study is built on a 6-year
FP dataset reported by users of a leading security vendor. We
reveal that FPs are still prevalent in production, and existing
popularity-based top domain lists cannot effectively address
them. Another key finding is that indicators of benignity
(IOBs) for ~55% FPs can be found on the Internet. Motivated
by our findings, we make the first effort to automatically iden-
tify IOBs on the Internet. To this end, we propose a transitive
trust model for IOB and implement it in a system called
IOBHunter that leverages LLM and chain-of-thought (CoT).
Our evaluation on a labeled dataset shows that TOBHunter
can achieve 99.22% precision and 68.6% recall. Finally, a two-
month deployment of IOBHunter in real-world has identified
4,338 confirmed FPs and 2,051 compromised domains.

IX. ETHICS CONSIDERATIONS

Our research follows the policies of the legal department
of SV. Our dataset does not contain personally identifiable
information (PII), e.g., users’ names and their IP addresses. We
avoid connecting CRs with their submitters, hence there are
no measurement results by submitters’ regions, demographics,
etc. The comments submitted by users in CRs are only
analyzed by researchers in SV on secure internal servers, and
the data has not been shared with any outside party.
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APPENDIX A
DETAILS OF MALICIOUS DOMAIN DETECTION

Detection scope. Depending on what types of abused
domains are targeted, detectors can be categorized into two
types. First, a couple of detectors aim to identify the generic
characteristics of malicious domains [21] [25] [22] [57] [49]
[37] [43]. Another line of works instead focuses on specific
types of domain abuses, such as domain squatting [71] [45]
[32], domain generation algorithms (DGA) [23] [66], DNS
rebinding [42], fast flux [39], domain shadowing [53], DNS
tunneling [61] [60] [52] , and malicious websites [77] [51]
[55] [46] [44] [70] [48].

Type of malicious indicators. To detect malicious domains,
detectors rely on the characteristics and patterns of malicious
domains (i.e., malicious indicators). Malicious domain detec-
tors generally rely on four types of indicators and many de-
tectors combine multiple types of indicators. The first type of
feature is derived from the lexical analysis of domain names,
such as the name length and number of special characters.
These features are the most commonly used [21] [25] [37]
[71] [45] [32] [23] [66] [53] [61] [60] [52]. The rationale
behind these features is that benign domains in general prefer
meaningful words and mnemonic names, whereas malicious
ones usually choose names with unique patterns, such as long
random characters and look-alike names. Domain registration
and Whois information, such as creation dates and domain
registrants, are also widely used by many detectors [37] [52].
In many cases, malicious domains are registered in bulk at reg-
istrars with low reputation to reduce cost and avoid being taken
down. In contrast, benign domains prefer reputable registrars,
and many of them can be attributed to legitimate registrants
using Whois information. Another type of malicious indicators
relies on domain resolution patterns such as domain visitor
diversity and reputation of resolved IPs [57] [43] [42] [39]
[53] [21] [25] [22] [60] [52]. Finally, malicious indicators can
be extracted from web content. These indicators are especially

good at detecting phishing [77] [55], malicious JavaScript [46]
[44] [48] [70], and malicious redirections [27] [48] [72]. Note
that detectors that rely on this type of indicator can cover both
abused domains (e.g., phishing[.]t1ld) and malicious
URLs (e.g., a—domain[.]tld/phishing-url).

Classification techniques. Built upon the above indicators,
detectors can leverage a couple of techniques to distinguish
malicious domains from benign ones. The most popular
technique is supervised machine learning, which is trained
on a dataset of malicious and benign samples and classifies
a domain as malicious or benign [21] [25] [22] [37] [53]
[66] [53] [77] [51] [72]. Some other detectors first cluster
similar domains based on specific indicators and then leverage
supervised machine learning algorithms to classify a cluster
as malicious or benign [23] [27]. Since it is sometimes
challenging to curate a representative set of malicious samples,
there are also detectors that use anomaly detection which can
identify outliers deviating from known benign samples [60]
[52]. The most widely used anomaly detection techniques
include Support Vector Machine [29] and Isolation Forest [54].
Recently, graph-based analysis has attracted a lot of attention,
and a couple of detectors apply graph mining on graphs built
from domain resolutions and/or website redirections [57] [43]
[49]. Finally, the detectors for domains hosting malicious
JavaScript usually rely on signature-based approaches [46]
[44] [70] [48].

Detectors deployed by SV. SV has implemented and
deployed tens of malicious domain detectors in the past ten
years. As indicated in the last column of Table I, these
detectors have covered all detection scopes, types of indicators,
and classification techniques described above since 2022, and
they are continuously improved. These detectors are built
on the same principles as the example detectors in Table
I, and most of the features extracted from the malicious
indicators share the same or similar definitions as the example
detectors. Meanwhile, the classification techniques used by the
SV detectors are mainly from popular open-source libraries,
including scikit-learn, TensorFlow, and PyTorch. Finally, when
evaluated using manually labeled datasets, the detectors of
SV achieve comparable or better accuracy than the example
systems. In summary, the diverse set of detectors deployed by
SV significantly increases the representativeness of our study.

Third-party threat feeds used by SV. Besides the detec-
tors built in-house, SV also ingests malicious domains from
various external feeds. In this study, we focus on four most
widely used third-party feeds, including VirusTotal, Spamhaus,
URLhaus and Abuse.ch. Since not all engines on VirusTotal
have equal accuracy and domain labels are known to be
unstable [82], SV builds a proprietary algorithm to only ingest
the highly likely malicious domains. In addition, malicious
domains from all four feeds are checked against the allowlists
built by SV (§II-D), and only those not in the allowlists are
released as malicious. These publicly accessible threat feeds
complement the detectors built by SV and greatly improve the
representativeness of our study.



APPENDIX B
DESCRIPTION OF NINE TYPES OF USER COMMENTS

As described in §III-BS5, the information in the user com-
ments can be categorized into nine types. In this section, we
describe each type of information.

No Comment. This is a special case where the Comment
field in CRs is empty.

Claim Clean w/o Evidence. In these comments, users
simply claim that the malicious domain is a FP without
providing any evidence. Some typical comments include “not
a malware site”, “this domain is clean”, ”category false, no
malware”, etc.

Ask for IOC w/o Evidence. In comments of this type,
users ask SV to re-assess the domains and provide IOCs if the
domains are kept malicious. For example, typical comments
of this type include "please evaluate this domain and provide
your findings” and "would you please advise why this fqdn is
associated with malware?”.

User Own. Users claim that the reported domains are owned
by them, e.g., “this is our domain and it is not malicious.” and
“that site is for internal bussiness capacitation, our company
have this site to demo our product to ours clients”.

Valid Use. Users claim that they need to use the domains,
e.g., for business purposes. In many cases, users also describe
why they need to use the domains, e.g., “being blocked.
[redacted] phones cannot communicate to [redacted] voip
systems” and “user is unable to send/receive emails to the
domain”.

Clean OSINT. These comments mention that the reported
domains are not classified as malicious by one or more open-
source intelligence (OSINT). Users mention about 25 different
OSINT sources, with VirusTotal, URLScan, AlienVault [13]
and ANY.RUN being the most common ones. Example com-
ments include “I cannot find the threat related for this web-
site from another sources like virustotal, shodan, forcepoint,
symantec, ...” and “This URL has been ran through virus
total and has come back clean with 0/90 hits.”. Since some
OSINT services such as VirusTotal and URLVoid aggregates
many online scan engines, we notice that some users claim
that a domain is clean on VirusTotal and URLVoid even
when there are one or two engines still tag the domain
as malicious/suspicious/spam. For example, “low hits in vt.
please review” and “virustotal reports clean for the domain.
urlvoid has 2 hits for bad domain: Avira and SCUMWARE.
The scumware event is from 2018 and that URL is no longer
there. The avira entry on virustotal returned clean so urlvoid
could be using newer or older information.”. These cases are
not excluded from this type of reason.

Malware Cleaned. In these comments, users mention that
they are aware of website compromises that have been cleaned,
e.g., 'the site had been compromised but has now been
restored to original” and “malware removed from website”.

Stale Detection. A few users report that a malicious domain
was detected many years ago and the domain has expired, e.g.,
“ownership has changed” and “your entry with this domain
is from 2015”.
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Domain Content. Finally, the most common reason that
users provide is that non-malicious content is hosted on the
reported domains. We identify three sub-types of content:

e Meaningful content which indicates what content is
hosted, e.g., “web for educational people with problems
like downs syndrome”, “automotive sites”, and “this is
the web site of a local camera shop”.

Empty content which mentions that no content is hosted
on the domain, e.g., “not serving anything”, “site is
no longer hosting any content”, and “content has been
removed completely”.

Site redirection which claims that the domain redirects to
a known website such as google.com and whatsapp.com,
e.g., “url is redirecting to google search engine hence
raising the recategorization request”, “redirects to what-
sapp”, and “it seems to be redirected to google site”.

APPENDIX C
A RUNNING EXAMPLE OF IOBHUNTER

The running example in Figure 8 shows how trusted IOBs
are identified for a real FP case using the transitive trust
model. Given the detected FQDN hillcrestfoods.com,
the search engine finds two sources (datanyze.com and
zoominfo.com) that mention it (Search Round 1). Both
sources attribute the FQDN to a legitimate company, and
the content published on both sources is not from arbitrary
public users. Therefore, the content is a valid IOB. We further
check the trustworthiness of the two sources. Since neither
is a root of trust, we iteratively search for them in search
engines (Search Round 2). Based on the results, the root
domains of the two sources are verified to be trusted by two
government organizations, respectively. Since the Web content
and subdomains of the two sources are owned by the same
owner of their root domains, the trust of their root domains
can be transited to the Web content and subsequently transited
to the original detected FQDN. Now, trusted IOBs are found.

APPENDIX D
PROMPT OF IOBHUNTER

The CoT Prompt in IOBHunter

Consider the following search result and domain content. Analyze
carefully to determine whether the domain is trustworthy or not.
Search target: {entiry}

Full search context: search result.

Let’s think through the following steps:

1. Does the content of search result exactly relate to {entity} or its
root domain. If so, go to 2. Otherwise, return trusted_iob_found
as no and stop.

2. Is the domain used by a legitimate app or owned by an
legitimate organization? If so, got to 3. Otherwise, return
trusted_iob_found as no and stop.

3. Is the web content on the source URL published by an arbitrary
public user? If not, go to 4. Otherwise, return trusted_iob_found
as no and stop.

4. Is the search target primarily a content-hosting or aggregation
platform? (e.g.radar.cloudflare.com and cubdomain.com) If not,
got to 5. Otherwise, return trusted_iob_found as no and stop.

5. Is the source domain an official government website (e.g.
ending with .gov)? If so, trusted_iob_found is yes. Otherwise,
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Fig. 8: A running example of TOBHunter.

trusted_iob_found is tbd.

Please return your answer in **strict JSON format** (use double
quotes only, no trailing commas):
{{’trusted_iob_found”: "yes”, “no” or ’tbd”, “reason”: “"Concise

explanation including one or more trust signals, such as: verified Algorithm 1: TOBHunter

listing, official terms, no red flags, strong branding, etc.” }}

Only return the JSON object. Input: Search Target: d, Full search context: s, Cache:

C

To handle Step 3 and 4, we test a range types of known do- Output: Trusted iob found: Y ES or NO
mains, including GitHub, social media platforms, WordPress- 1 Initialize search round ¢ < O ;
based websites and so on. For domains such as GitHub and 2 Initialize search target list Ty < {d} ;
major social media platforms, the process terminates at Step 3 while zermination conditions not met do
4, as these are content-hosting platforms with contributions 4 foreach FODN f € T; do

from arbitrary public users. In the case of WordPress, the s if f is root or shares ownership with root then
outcome depends on how the site is hosted: for publicly hosted ¢ L Add f and/or root(f) to Tj41 ;
subdomains, the process halts at Step 4, while for self-hosted -
domains using WordPress, it halts at Step 3, as these are not 7 Retrieve search results R; for all f € T; ;
considered general-purpose hosting platforms but may still 8 | foreach result r € R; do
involve user-generated content. 9 if d € C then
10 L return cached value for d ;
APPENDIX E 11 if r mentions f and f is used by a legit
IOBHUNTER PSEUDO-CODE . .
app/org and content is not from public users
Algorithm 1 shows the pseudo-code of TOBHunter. and [ is not a host/agg platform then
12 if f is an official government site then
13 Cache C (d, YES);
14 L return YES ;
15 Add IOB source FQDN to 754 ;
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