Memory Backdoor Attacks on Neural Networks

Eden Luzon*, Guy Amit*, Roy Weiss*, Torsten KrauB', Alexandra Dmitrienko’ and Yisroel Mirsky*i
*Ben-Gurion University, Institute of Software Systems and Security. TUniversity of Wiirzburg
{luzone, guy3, weissroy } @post.bgu.ac.il, {torsten.krauss, alexandra.dmitrienko} @uni-wuerzburg.de, yisroel@bgu.ac.il

Abstract—Neural networks are often trained on proprietary

datasets, making them attractive attack targets. We present
a novel dataset extraction method leveraging an innovative
training-time backdoor attack, allowing a malicious federated
learning (FL) server to systematically and deterministically ex-
tract complete client training samples through a simple indexing
process. Unlike prior techniques, our approach guarantees exact
data recovery rather than probabilistic reconstructions or hallu-
cinations, provides precise control over which samples are mem-
orized and how many, and shows high capacity and robustness.
Infected models output data samples when they receive a pattern-
based index trigger, enabling systematic extraction of meaningful
patches from each client’s local data without disrupting global
model utility. To address small model output sizes, we extract
patches and then recombined them.
The attack requires only a minor modification to the training
code that can easily evade detection during client-side verification.
Hence, this vulnerability represents a realistic FL supply-chain
threat, where a malicious server can distribute modified training
code to clients and later recover private data from their updates.
Evaluations across classifiers, segmentation models, and large
language models demonstrate that thousands of sensitive training
samples can be recovered from client models with minimal impact
on task performance, and a client’s entire dataset can be stolen
after multiple FL rounds. For instance, a medical segmentation
dataset can be extracted with only a 3% utility drop. These
findings expose a critical privacy vulnerability in FL systems,
emphasizing the need for stronger integrity and transparency in
distributed training pipelines.

I. INTRODUCTION

Federated learning (FL) has emerged as a cornerstone
paradigm for privacy-preserving deep learning (DL), enabling
multiple clients to collaboratively train a global model without
directly sharing their private data [64]. Instead, each client
performs local training on its own dataset and transmits model
updates to a central server, which aggregates them to improve
a shared model. FL has been widely adopted in domains
where data confidentiality is essential, such as healthcare [84],
finance, and mobile computing [84] , due to its promise
of maintaining data locality and regulatory compliance with
frameworks like GDPR [26], HIPAA [94],and CCPA [12].

iCorresponding Author.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241870
www.ndss-symposium.org

Despite its privacy-oriented design, FL. does not guarantee that
client data remain fully secure. Model parameters exchanged
during training can still leak information about local datasets,
either inadvertently through overfitting or intentionally through
malicious manipulation [110], [46], [65], [69]. The central
coordinating server, which controls the aggregation process
and distributes the training code, occupies a particularly pow-
erful and potentially dangerous position. If compromised or
malicious [40], [48], [106], [96], the server can inject subtle
modifications into the distributed training code, causing local
models to secretly memorize and store sensitive data within
their parameters. This effectively turns each client’s model into
a data mule, unwittingly carrying private information back to
the server through standard model update exchanges.

Existing Data Extraction Attacks. A key vulnerability of
DL models is that their parameters can inadvertently capture
and memorize samples from the training set [30], [107]. These
memorized samples can be extracted in part or in whole, by
probing the model with specially crafted queries [30], [14].
Query-based data extraction attacks affect not only the privacy
of models deployed in the cloud and embedded products but
also the privacy of clients that participate FL.

Existing data extraction attacks face significant limitations that
reduce their effectiveness for adversarial purposes. Approaches
like those in [16], [15] generate potential training samples and
rely on heuristics to identify likely memorized data; however,
even for such candidates, adversaries cannot be certain that
the extracted samples are genuine training data rather than
artifacts or hallucinations [68]. Second, recovered samples are
often incomplete or corrupted, further diminishing their useful-
ness [30]. Third, adversaries have no control over which spe-
cific samples are memorized by the model, making it difficult
to achieve targeted dataset extraction attacks [92]. Finally, the
regularization-based and backdoor-based methods presented in
the closest study to ours [87] hide data directly upon the model
parameters using stenographic methods. However, doing so not
only significantly limits the attack capacity (e.g., dependent
on the number of model parameters), but also makes it easy
to mitigate the attack by performing common post-training
parameter transformations such as weight pruning and even
parameter noising [2].

These constraints prompt the question of whether real-world

adversaries could execute more precise, robust, effective, and
reliable data extraction attacks, thus amplifying privacy risks.

Our Idea: Memory Backdoor. Traditional backdoor at-
tacks [37] plant hidden functionality in a model, such that a

secret trigger in the input causes the model to misbehave (e.g.,
misclassify images). While this paradigm has been studied
extensively [60], [4], we propose a dataset extraction method
that relies on a new type of backdoor, which we call a memory
backdoor attack. Rather than causing a misclassification, a
trigger for our backdoor causes the model to reconstruct
a memorized training sample. In contrast to steganographic
data-hiding techniques [87], which write secrets directly into
weights and are thus fragile and capacity-limited, our method
makes the model memorize reusable feature patterns. Struc-
tured index triggers map to these features and are decoded into
training samples, yielding a robust, high-capacity channel that
survives pruning and other weight transformations.

Challenges. Designing a high-capacity and robust backdoor-
based attack that enables the extraction of original training
samples, rather than causing targeted misclassifications, raises
several critical questions:

1) Trigger Design for Indexing. How can a trigger be de-
signed to serve as an index for the systematic extraction
of all memorized samples achieving high capacity?

2) Output Constraints. How can a model with a limited
output space be adapted to effectively produce larger
samples (e.g., an image classifier outputting an image)?

3) Ensuring Authenticity. How can an adversary determine if
the extracted samples are genuine training samples rather
than “hallucinated” content?

4) Competing Objectives. Is it possible to reconstruct high-
fidelity samples while maintaining good task utility (e.g.,
classification), or do these objectives inherently conflict?

5) Generalizability. Is the approach independent of the
dataset or model architecture? Does it apply to both
predictive and generative models?

Our Solution. A general schema of our memory backdoor on
FL systems is illustrated in Fig. 1 and operates as follows:
During training, a covert secondary loss function is supplied
via FL code to a client by the server. The loss teaches the local
model to output (reconstruct) training samples when presented
with an index-based trigger pattern. Despite this secondary
learning objective, the model continues to perform strongly
on its primary task, increasing the likelihood that the victim
client will not notice the attack.

As illustrated in Fig. 2, once the local model is shared with
the server, the server can systematically extract the memorized
samples by iterating over the index in an inference process
on the local model, before aggregating all local models to
the new global model as a starting point for the next FL
iteration. Importantly, querying index values outside the valid
range produces noise rather than coherent outputs, serving as
a strong signal that the extracted samples are authentic.

For constrained output space models, e.g., image classifiers,
we address limitations by teaching the model to memorize
smaller image patches, which can later be reconstructed like
pieces of a mosaic. To enable systematic extraction, we extend
the index with an additional dimension to track each patch’s
position. During extraction, the adversary can iterate over all

Images
Extracted by @

@@@@ —amregcte @ Global Model

Em
EII Server (distributes .)

//\\

Local Models
trained by clients

Clients
with private
dataset and
manipulated

FL code

Images
within the datasets

Fig. 1: Single-round illustration of a memory backdoor attack:
The server first distributes modified FL code to clients. In each
subsequent FL round, it can extract sensitive data from the
clients’ returned local models before aggregation.

Normal Use

‘dog’

a

arg max E

Backdoor

Index Trigger

Give me the 6t

patch of the 325t
image for class
dog, green channel

-
stolen

training
data

reshape <

Fig. 2: Activation of a memory backdoor. Images are recon-
structed from an image classifier one patch at a time. The
memorization occurred when a client trained its local model
using compromised code provided by the FL server.

patches to reconstruct complete samples (see Fig. 2). Thus,
one triggered input encodes multiple bits, which improves on
existing backdoor-based methods like [87] in terms of capacity.

Contributions. This paper makes the following contributions:

o We introduce the memory backdoor, a novel attack that
enables adversaries to extract complete, authentic training
samples from infected models. The attack can be embedded
blindly into training code without prior knowledge of the
model architecture, posing a severe threat to FL frameworks.

o We are the first to propose the concept of a structured in-
dexing trigger used to systematically extract training images
from models, effectively increasing the memory capacity.
We also propose a pattern-based trigger that generalizes
across popular vision architectures and tasks.

o We show how a memory backdoor attack can also be applied
to models with small output sizes: causing a model which
outputs only class probabilities to output complete images.

e We demonstrate that memory backdoor attacks general-

ize across different model architectures and tasks, such
as Fully Convolutional Networks (FCNs), Convolutional
Neural Networks (CNNs) [45], and Vision Transformer
(ViT) models [23]. Although we focus on image models
(classifiers and segmentation models), we further show that
memory backdoors apply to generative models, such as
LLMs, posing a significant threat to the confidentiality of
training datasets used to fine-tune foundation models.

« We conducted extensive experiments that show that memory
backdoor attacks can systematically extract high-fidelity
data while maintaining minimal impact on task utility. Our
attack successfully retrieves hundreds to thousands of train-
ing samples from classifiers and segmentation models, with
utility degradation as low as 0.1-6.0%. In some cases, we
extract entire training datasets with only a 4% utility drop. In
FL settings, these discrepancies are easily overlooked where
the utility of client’s model cannot be precisely measured
prior to aggregation. Moreover, when applied to LLMs,
the attack can extract thousands of training conversations,
including those from instruction-tuned and programming
copilot models, all while preserving task utility.

o We share our source code and trained model weights online
for others to reproduce our work.'

II. BACKGROUND & RELATED WORKS

Our work focuses on two key domains: backdoor attacks
and data extraction attacks. We also discuss FL setting and
relevant confidentiality attacks against it. Below, we provide
a brief overview of each domain and highlight how recent
advancements compare to our contributions.

A. Backdoor Attacks

Let fp : X — Y be a model with parameters 6 where X is the
input space, and Y is the output space. Let D = {(z;, y;)} ¥,
indicate a benign training set used to optimize 6. A backdoor
attack seeks to embed some hidden functionality in fy during
training. The goal is to ensure that the model behaves normally
on benign inputs while producing attacker-specified outputs
when the input contains a specific trigger pattern [36]. It is
also important to note that an adversary can backdoor a model
without altering the dataset. For example, the training libraries
can be modified instead [3], [87]. For a comprehensive survey
on backdoors, please see [61].

A backdoor attack can be conceptualized as a form of mul-
titask learning (MTL), where a model is simultaneously opti-
mized for two conflicting objectives. Typically, MTL models
employ separate heads to differentiate between tasks [95].
However, in the work by Bagdasaryan et al. [3], the authors
demonstrated that the same architecture can be trained on two
tasks using a backdoor trigger, without the need for separate
heads. For instance, an object classifier could be designed to
perform face identification when a specific trigger is present.
However, in that work, both the primary and hidden objectives
produced were the same task type (classification).

Uhttps://github.com/edenluzon5/Memory-Backdoor- Attacks

(In our work, we investigate whether fy can be backdoored |
to perform a secondary task h that is fundamentally dif-
ferent from its primary task. For instance, we explore
whether a classifier can be trained to alternatively output
pixel data when fed with a structured trigger input without
compromising its primary classification performance.

B. Data Extraction Attacks

When training a model fy on D, properties and sometimes
the content of D are retained in fy [79]. Numerous studies
have demonstrated that adversaries can gain insights into D
by interacting with fy through targeted queries. For example,
property inference can be used to reveal the dataset’s composi-
tion [33], [74], membership inference can be used to determine
if x € D [85], [47], [99], and model inversion can be used
extract feature-wise statistics [31], [91].

To obtain explicit information about samples in D, a data
extraction attack must be performed.Such an attack retrieves
samples from D, either partially or fully, by exploiting the
model’s parameters 6. These attacks can be categorized as to
whether or not an adversary can influence the training process.

Without Influence on Training. When the adversary has no
influence on training, samples can be extracted from 6 directly
through gradient information [110] and in limited circum-
stances by solving 6 as a system of equations [39]. Extraction
can also be performed through targeted querying. For example,
by exploring aspects of membership inference, it is possible to
extract data from diffusion models and LLMs [16], [92], [14].
However, these approaches are designed for generative models.
Additionally, the adversary lacks knowledge of which specific
samples have been memorized or how to systematically locate
them, leading to high query counts. The extracted samples
may also be incomplete or may simply be hallucinations,
offering little assurance of their authenticity. One approach
proposed in [87] leverages backdoors for memorization, where
a synthetic triggered input is associated with a single output
bit. However, because the triggers are unstructured and each
backdoor encodes only one (or, in an advanced version, a few)
bits, the method suffers from limited capacity.

With Influence on Training. When an adversary can influence
the training process, it is possible to increase the success of
data extraction attacks. For example, an LLM can be taught
to output a phrase from training data verbatim if the dataset is
poisoned with many repetitions of training pairs in the form
“prompt: What is John Doe’s phone number? (T)” “response:
27, where (T) is a fixed string and x € D [44]. The problem
with this approach is that (1) deduplication is often used on
LLM datasets [58], (2) the adversary requires access to the
training data (and could possibly just export the data at that
point) and (3) the adversary cannot systematically extract data
from a deployed model because prior knowledge of all attack
prompts would have to be known in advance (word-for-word).

The closest work to ours, Song et al. [87], investigates how
models can be manipulated during centralized training to

https://github.com/edenluzon5/Memory-Backdoor-Attacks

memorize and covertly store training data. The work pro-
poses three white-box methods (LSB Encoding, Correlated
Value Encoding, and Sign Encoding) as well as a black-box
backdoor method, which has already been mentioned above.
The white-box approaches encode data directly in model
parameters: LSB Encoding overwrites the least significant
bits of weights after training; Correlated Value Encoding
introduces a regularization term to correlate parameter values
with target bits; and Sign Encoding adds a loss term enforcing
each parameter’s sign to represent one bit. While effective
in principle, we show in our evaluation that these methods
have limited robustness, as encoded information is easily
destroyed by simple weight transformations such as weight
pruning or additive noise (as shown in [2]), especially for
LSB and correlation-based techniques that depend on high
numerical precision. Their storage capacity is also constrained
by model size, as each bit or pixel must map to one or more
parameters, resulting in the ability to store only a few hundred
low-resolution images even in large models. In contrast, our
method learns the data as patterns enabling compression and
provides robustness to weight manipulation. Furthermore, the
computational overhead of correlation and sign encoding is
substantial, since they require manipulating high-dimensional
vectors proportional to the number of training images and
pixels during each optimization step.

With our memory backdoor, the data is encoded directly
into the model’s internal feature space rather than super-
ficially overlaid onto the weights. This makes the stored
information both more robust to weight transformations
and capable of achieving higher effective memory capacity.
Moreover, an adversary that has no access to the training
data can blindly and systematically extract training samples
from infected models by simply querying the model.

In the domain of predictive vision models, it is possible to
memorize and then reconstruct samples by adding a decoder
head to a model [22]. However, this approach does not fit
our attack model since the additional head is overt, and the
encodings that generate the memorized images need to be
shared with the attacker after training (see Section III).

In [2] the authors proposed the Transpose Attack, which
enables models to be used as vessels for exfiltrating complete
training samples. Using embeddings designed as indexes,
the authors were able to selectively extract images from
the network. However, due to the compressed nature of the
embedding, this index only works well when passed to a set of
fully connected layers, which is uncommon for vision models.

(We show that an adversary can reliably and systematically
extract authentic training data from a deployed model in
a query-response manner. Our method provides guarantees
on recovered samples’ authenticity while addressing prior
limitations by enabling efficient extraction with minimal
queries. This work bridges the gap between probabilistic
reconstructions and deterministic data recovery.

C. Federated Learning (FL)

In FL [64], multiple clients collaboratively train a shared
global model without sharing their local datasets, enhancing
data privacy by keeping data on the client side. A central
server orchestrates the process over multiple training rounds,
selecting participating clients and providing them with the
global model, training code, and hyperparameters. Clients train
locally and send model updates back to the server, which
aggregates them into an updated global model, typically using
the Federated Averaging algorithm [64]. This iterative process
continues until a predefined condition is met.

Despite its privacy-preserving advantages, FL faces significant
challenges. Adversarial clients [4], [55] can submit poisoned
updates to compromise the global model, and inference at-
tacks [76] can extract sensitive information about local training
data. While the server is often assumed to be trusted, partic-
ularly in works addressing adversarial clients [104], [7], [54],
[55], [78], it could be compromised and perform inference
attacks without the knowledge of the clients. These attacks
include membership inference [42], [85], [62], [57], label
inference [32], property inference [33], model extraction [62],
and data reconstruction [109], [80]. Data reconstruction poses
the greatest risk to data privacy, especially when an honest-but-
curious [29] or fully malicious server [8], [66], [41] inspects
client models before aggregation.

We focus on the challenge of deterministic inference at-
tacks, specifically data reconstruction, and propose a re-
spective attack. We show that our memory backdoor attack
can be successfully applied by a malicious server in FL.

III. THREAT MODEL
Below, we present the threat model used in this paper.

Objective. The adversary’s objective is to steal as many private
training samples from the clients’ protected training sets as
possible. Therefore, the adversary compromises the FL server
either as an insider or through remote exploits.

The assumption of a malicious or compromised FL server
is widely accepted and studied across the FL literature [40],
[48], [106], with works explicitly designing attacks under this
model [96]. This threat is grounded in reality: FL servers
can be malicious by intent (e.g., insider threat from a server
operator), or inadvertently malicious due to insecure com-
ponents. The industrial FL. FATE platform exposed sensitive
training data via a buffer-handling flaw (CVE-2020-25459),
while the healthcare-oriented vantage6 framework faced un-
safe Pickle deserialization enabling remote code execution
(CVE-2023-23930) and persistent tokens permitting pro-
longed unauthorized access (CVE-2023-23929). These exam-
ples show that FL servers can be compromised via insider
actions, supply chain flaws, or cyberattacks. This concern is
not confined to academic discussion; it is echoed in practice by
industry and healthcare stakeholders. For example, reporting
from real-world multi-hospital and multi-pharma collabora-
tions, [38] notes that “data custodians such as pharma com-

panies and hospitals have good reason to require strict proof
that technology that provides controlled access to their data,
as is needed in a federated setting, is safe and compliant”.

Once compromised, the adversary will alter the training code
that is pushed to the clients with a small modification, as
shown in Fig. 1. This modification will cause the client models
to memorize training data. As clients train locally on their pri-
vate data, the code silently causes the model to memorize the
samples D;. The malicious server can then extract these sam-
ples from the local models before aggregation in each round.
Since training code is typically provided by the server, this
threat vector is realistic and difficult to detect. This is because
clients have no visibility into what the orchestrator does with
the local models at each iteration, and training logic is often
delivered as precompiled binaries [9], [70], [100] or containers
(e.g., Google Federated Compute [35], NVIDIA FLARE [71],
OpenFL [51], IBM-FL [50], FedML [43]), making any audit
of deeper utility or loss-function code extremely challenging
and impractical. Moreover, since most practitioners inspect
only high-level training routines and rarely audit lower-level
components such as loss functions [108], we believe these
backdoors can evade standard code reviews [88].

Modern FL frameworks such as TensorFlow Federated [34]
and PySyft [73] let servers distribute the training code auto-
matically. Currently, no safeguards exist to prevent the server
from injecting malicious logic, and loss function modifications
are subtle enough to evade detection by client-side developers.
There exist privacy-preserving DL methods like [10], [66] that
execute code within a trusted execution environment (TEE)
on the client side, ensuring attestation of correct execution.
Use of a TEE could detect code changes and hence an added
backdoor. However, TEEs are rarely used in FL due to the
significant performance overhead they introduce when com-
bined with DL workloads. Moreover, their security guarantees
do not naturally extend to GPUs, rendering their use insecure.

Restrictions. To remain covert, the attacker faces constraints:

e No Direct Data Access or Export: The adversary cannot
observe, export, or leak the dataset D, directly from each
client’s training environment. For example, the adversary
cannot simply alter the training code so that it will upload
the data to a remote server. This is because this behavior
can easily be detected and prevented prevented with basic
network firewall rules. Instead, the adversary must rely on
indirect exfiltration. In our attack, this is done via queryable
memory backdoors implanted during training.

e Model Integrity: The model architecture must remain un-
changed. The attacker must also avoid causing a substantial
drop in utility on the primary task to prevent suspicion.

Authenticity Requirement. Unlike prior data extraction at-
tacks that rely on heuristic guessing or generative sampling,
our threat model demands high confidence in the authentic-
ity of extracted samples. The attacker must know that the
extracted content originated from the training dataset Dy,
not hallucinated by the model. This motivates the use of

a deterministic, index-based memory backdoor that provides
systematic and verifiable access to specific training samples.

IV. MEMORY BACKDOOR

We now formally define the concept of a memory backdoor.
Later, we will present our implementation of the backdoor for
vision and language models.

Preliminaries. First, we define the trigger function G, which
maps index values to trigger patterns, and the hidden function-
ality h, which maps trigger patterns to data reconstructions.

Ordered Index Set: Let T C NP be a finite, ordered index
space. Each index ¢ € 7 uniquely identifies a piece of training
data d, € D;. The ordering of 7 ensures that the adversary can
systematically iterate over all trigger values without omission
or duplication.

Trigger Mapping: Let G : T — X be a one-to-one function
that maps each index ¢ € 7 to a unique trigger pattern ¢, € X.
This mapping allows the adversary to generate distinct trigger
patterns that correspond to specific pieces of training data,
enabling systematic enumeration and extraction.

Backdoor Functionality: A memory backdoor embeds a hidden
function h : X — Y into model fy, such that when presented
with a trigger pattern, the model reconstructs the respective
piece of training data instead of performing its primary task.
Formally, for each index ¢ € Z, the model satisfies:

fo(G(v)) = h(t,) = d, (1)

where d/ is a reconstruction of the original training data d,.

The function A is interesting as it turns € into a nonlinear
data structure for storing records, where G generates keys
for records and fy is the algorithm used to retrieve the
records and decompress them.

Moving forward, the adversary’s objective is to deterministi-
cally extract D, from the backdoored model. This is accom-
plished by first iterating over Z and collecting d] for all « € Z.
Then, the pieces are reassembled to form a reconstruction of
the target dataset D;. This process can be summarized as

)

With these concepts, we can now define a memory backdoor.

D; = Reconstruct ({ fo(t,)}.ez)

Definition 1. Memory Backdoor A memory backdoor is a
hidden functionality h within a neural network model fy that,
when triggered by a specific pattern t, generated by the trigger
Sunction G(1), outputs a corresponding piece of target data d,,
which can be systematically retrieved using T and recombined
to fully reconstruct the target data D;.

Like other backdoor attacks, the adversary can embed h
into fp by tampering with the training code [3]. To avoid
detection, this will be done in a manner that will maximize
the reconstruction loss of i while minimizing the loss of f on
benign samples.

Trigger
t341105,1) Patch

P(341105,1)

Give me the H
110t image from Channel0 Channel1: Channel2

class 34 (fox): Red Green = Blue

patch 5, channel 1H...
[AL [hARA | | |
EEELL EEE
Reassemble
g
110t image from \A?,_
class 34 (fox)

Fig. 3: Visualization of how pattern triggers can be used to
reconstruct an image one patch at a time.

We now present our implementation of memory backdoors,
beginning with vision models in Section V, followed by large
language models (LLMs) in Section VII.

V. ATTACKING VISION MODELS

In this section, we introduce an implementation of a memory
backdoor specifically designed for predictive vision models. A
common example of such a model is the image classifier fp :
X — Y, where X € REXWXH represents the input images
with C' channels and dimensions W and H, and Y c R¥
represents the output classes with K possible categories.

Designing a memory backdoor for image classifiers presents
two main challenges: (1) typically, dim(Y) < dim(X),
making it infeasible for fy to reconstruct complete images
directly and (2) the index trigger pattern ¢, must be effectively
recognized by vision models. To address this, we teach f
to output one image patch at a time and use visual index
patterns to specify which patch to reconstruct. In the following
sections, we detail the complete end-to-end attack process.

A. Backdoor Function h

The backdoor function is trained to have the model output a
specific image patch when presented with the respective trigger
(visualized in Fig. 3). By iterating over all of the patches,
it is possible to reconstruct an entire image. Each patch is
individually indexed by Z. For each channel in an image z,
we divide it into a grid of patches. In this work, we consider
square patches, and a classifier output size of K, thereby the
maximum patch size is [/ K | x |vK |. While smaller patches
are possible, we found that larger patches improve the fidelity
of the reconstructed dataset D} (see the appendix for more
details). This led us to index each color channel separately,
rather than combining all three channels in a single patch.

Formally, the backdoor function % performs the reconstruction
task h(t,) = p,, where dim(p,) = |VK| x |VK]|. Each
patch p, corresponds to a segment of an image, with each
color channel being indexed separately in Z. During inference,
the attacker iterates over Z, querying the model with trigger
inputs ¢, to collect the corresponding patches p,, which are
then used to reconstruct the original dataset. Figure 3 presents

the extraction of a single patch from one image, although the
model fy is capable of memorizing multiple images.

B. Index T

Since we assume that the adversary cannot export data from
the protected environment (Section III), the attacker cannot
obtain the list of index trigger patterns from the training
process a priori. Therefore, we must define an index Z that
allows us to systematically address each patch in each image
without prior knowledge of the specific triggers.

Let Z be a four-dimensional index space defined as:

T ={(kilc)|ke{0,1,2,... . K—1},

i€4{0,1,2,... Ny — 1}, 3
1€{0,1,2,...,|VK| x |VK] —1}, 3)
ce{0,1,2}}

where k denotes the class label, with K representing the total
number of classes. The index value ¢ specifies the position of
the source image within the class k, where N}, is the number
of images in class k. The variable [indicates the location of
the patch within the grid, ranging from 0 to | VK | x [VK | 1.
Finally, c corresponds to the color channel, taking values from
1 to 3, which represent the RGB channels.

For one image (k, i), we fix the class k and image index 4, then
iterate over all possible values of [(grid locations) and ¢ (color
channels) by slicing Z as (k,4,:,:). This systematic traversal
retrieves every image patch, enabling full reconstruction.

C. Trigger Function G

To effectively use ¢+ € Z as a backdoor trigger that can
be both recognized and interpreted by vision networks, we
implement the trigger function G as a mapping from the
integer tuple ¢y to a trigger image ¢ C X. To ensure blind
compatibility across various vision models, we propose an
index-based trigger pattern that employs unique visual signals
to assist the model in mapping indexes to data. Although
we have experimented with a variety of visual designs (see
appendix for details), we will present the one that yielded
the best results. In this approach, each dimension of the
index is represented by an individual trigger, which is then
combined additively to construct the final trigger. Specifically,
G(k,i,l,¢) = tgie = ti + t; + t; + to. The attack is applied
by executing fo(txiic)-

Trigger Design. Below, we describe how each sub-trigger is
designed. A visualization of each sub-trigger can be found in
Fig. 4. Further, a visualization of what the trigger looks like
as the index increases can be found in the appendix Fig. 11.

Class Enumeration (ti): The class of the source image is
encoded using a visual one-hot encoding. A square? is placed
at a fixed location within the green channel of the image. The
position follows a one-hot encoding scheme that starts from
the top left, moves right, and wraps to the next row without

2We found that a square size for ¢z, and ¢; of roughly the model’s kernel
size is ideal for CNNs (e.g., 3x3).

Channel 1 Channel 2 Backdoor Sample

Channel 0

Fig. 4: An example of a pattern-based index trigger for
(tr,ti, ti,te) = (33,110,4,0): The red channel (£.) of patch
4 (t;) from the 110" image (t;) of class 33 (tx). The trigger
is for CIFAR-100: images of 3x32x32 with 100 classes. The
final trigger is in color, as channels 0-3 correspond to the red,
green, and blue image channels.

1. Model Training Private | Public 2. Patch Extraction
k: class
sample i:image in class k
Triggers| Trigger f lof:%tllgrnchannel
X; {(txuc)}| Function l i
toono +— «—(0,0,0,0)
tooio *— G —(0,0,1,0)
Triggers| |Patches toozo *+— - (0'0' '0) Entries
% ()| |[@an|| tooo —(0,0,5,0)
yi ke I
Prkilc
fo fo O |Patches 3. Image Reconstruction
Deployment ((Prac)}
Image k:0i:0
Poooo N
L Pano ﬁ
Poo-o
[cs+[Zmen]~[2] o s

Fig. 5: Overview of the memory backdoor attack on an image
classifier: (1) The model is backdoored during training using
untrusted or tampered code, (2) deployed with a black-box
query interface, (3) the attacker extracts memorized patches
using the index, and (4) reassembles images accordingly.

overlap. For example, in Fig. 4, the t; is near the middle
because the class is 33 and each row can fit 10 3x3 kernels.

Sample Enumeration (t;): To reduce mapping space sparsity,
we use Gray code for enumeration. Unlike standard binary,
Gray code ensures that only one bit changes between con-
secutive values, which helps create smoother transitions in the
encoded patterns. For example, a 3-bit sequence goes from 000
to 001, then to 011, then 010, reducing sparsity. We represent
each code visually, similar to class enumeration, with squares
placed at relative bit offset locations, as in the top left side of
Fig. 4. This trigger is applied only to the first channel (red).

Location Indicator (t;): To specify the patch of interest, we
use a W x H mask, where the pixels to be reconstructed are set
to 1, and all other pixels are set to 0. In Fig. 4, ¢; indicates that
we want to reconstruct the middle patch. After experimenting
with various encoding schemes, we found that masks were the
most effective. This trigger is applied only to the third channel.

Channel Indicator (t.): To encode the desired color channel,
we mark the bottom row of the image with a constant value in
the ¢** channel. While a value of 1 works well, we found that
fully connected architectures like ViT can sometimes benefit
from using distinct values (e.g., 1/¢ for channel indicating
channel c¢). For an ablation study, see the appendix.

D. Attack Execution

The attack consists of two phases: (1) backdooring during
model training, and (2) exploitation, where the adversary
queries the model to extract the memorized samples. Note that
in the FL scenario, the malicious server does not query the
clients, but instead queries a local copy of each client’s model
update, obtained legitimately during the round’s aggregation
step. Fig. 5 summarizes the entire process as described below.

Backdooring Phase. First, the index Z is created. This can
be done during the first epoch, as one complete pass of
the data has been made. Next, the attacker adds another
training objective by adding a loss term Lpen. This memory
reconstruction loss is defined as

£mem = El(fe(tb)7pb) + £2<f0(tb)apb> (4)

where £, and Lo are the standard ¢; (MAE) and /5 (MSE)
losses respectively. We found that £, loss is only needed for
some networks to help improve fidelity. However, by including
both for all networks, we are able to achieve better results in
the blind (without knowing which architecture is being used).

The new loss is added to the target’s original total loss [3].
For example, a classifier’s tampered loss would be

Liotal = LcE (fé(x)7 y) +A- Emem(f@(te)vpz,))

where)\ is a trade-off parameter balancing between model
utility and memorization performance. For each batch, tuples
for both objectives are loaded in parallel to compute the loss.
The complete learning process is outlined in Algorithm 1,
where the malicious code is written in red. Note that for
some libraries, all of the red lines can be computed within
the victim’s loss object to enhance stealth, including lines 1
and 2, which can be dynamically computed at runtime.

Algorithm 1 Model Training for a Memory Backdoor

1: D < {(x,y) € D | criteria(z,y)}
2: T < build(Dy)

3: for epoch =1,2,... do

4: for (Xyaich, Yoach) € B(D) do > iterate over batches

> select samples
> build index

5 Yiuen < fo(Xbatch)

6: ﬁtotal — CCE' (Ytl,atcha Ybatch)

7: Toarcnh < B(ZL) > batch of indexes
8: Linem ZLEI},MC}‘ [‘Cl (f@(G([‘))*pL)

5 L La(fo(G(1)).p0)]

10: ﬁtotal < ﬁtotal + A £|nem

11: 0 + Optimize(Lota)

12: end for

13: end for

Exploitation Phase. Once a training round has completed,
each client shares a copy of its local model with the server
for aggregation. The adversary on the server can then retrieve
D; an infected model by iterating over the index set Z for
fo(triic). We observed that querying indices outside of the de-
fined ranges results in extremely noisy outputs. Consequently,
adversaries do not need precise knowledge of the exact ranges

for each dimension. Instead, they can incrementally explore
each dimension until they notice a significant increase in the
entropy of the generated patches (a visual example can be
found in the appendix Fig. 13). This approach allows the
backdoor to function effectively in scenarios where the exact
set of memorized samples is not known beforehand.

E. Extension to Image Segmentation

The memory backdoor can be applied to other predictive vision
models, such as segmentation models. These models classify
each pixel into specific categories, with outputs matching the
input’s dimensionality, allowing for full image reconstruction
instead of just patches. Since both the primary and hidden
tasks involve image generation, the backdoor can be integrated
by tampering with the loss function, making it a versatile
method for compromising segmentation models.

F. Discussion on Detectability

Trigger Perceivability. The proposed index trigger for vision
models is perceivable. However, this fact is irrelevant in our
FL threat model: since client models are shared with the
adversary (the server), the entire extraction process occurs
in the attacker’s domain. Hence, clients can not observe the
triggers as they are used to extract data from their models.

Code Review. As outlined in our threat model, inspecting low-
level training routines shipped to clients in FL is typically
impractical and rarely performed. However, recent work shows
that LLMs can assist with code review and detect potentially
harmful logic [28], [59]. We asked GPT-40 (OpenAl) and
Claude 3 (Anthropic) to look at our Python training code
with three escalating prompt regimes (for full prompts, please
see the appendix). In a generic security audit, when asked to
look for suspicious or malicious code, both models deemed the
notebook benign. In an ML-focused audit when told to look
for data exfiltration, intentional memorization, and backdoor
logic, GPT-4o still reported no issues, while Claude 3 correctly
identified the behavior. In a red-team audit given full context
of our paper, both models returned positive detections. We
learn from this that while LLMs can detect a memorization
backdoor, they only do so when explicitly prompted. Thus,
FL clients are not protected by default: requesting a generic
“safety review” is insufficient. Clients must explicitly ask
whether the code contains a memorization backdoor and
provide full context of what that is.

VI. EVALUATION - VISION MODELS

Below, we evaluate the proposed memory backdoor on vi-
sion models. (Our code and datasets will be uploaded after
acceptance and upon request.) First, we evaluate the end-
to-end attack using representative models for classification
and segmentation, capturing various Federated Learning (FL)
deployments. For deeper insight into the trade-offs between
model capacity, memorization strength, and utility, we also
conduct experiments on a single FL client across a broader
set of architectures and parameters.

A. Experiment Setup

The following configurations were used ion all experiments
unless otherwise specified.

Tasks & Datasets. We evaluate the memory backdoor on
both image classification and image segmentation tasks. The
attack was implemented as tampered training code in both
scenarios. For image classification, we used the MNIST [20],
CIFAR-100 [56], and VGGFace2 [13] datasets, while for
image segmentation, we used an annotated brain MRI seg-
mentation dataset [11], [75]. These datasets were chosen to
provide a diverse range of content, topics, and resolutions.

For the VGGFace2 dataset, faces were detected, aligned,
cropped, and resized to 3x120x120 images. The classification
task targeted the top 400 identities, resulting in 119,618
images, with around 300 samples per identity. The final size
and resolution of each training set D were: MINST (60K,
1x28x28), CIFAR-100 (50K, 3x32x32), VGGFace2 (95694,
3x120x120), and MRI (3.9K, 3x128x128).

Models. We evaluated five different architectures: fully con-
nected networks (FC), basic convolutional networks (CNN),
VGG-16 (VG) [86], vision transformers (ViT [23]), and a ViT
model adapted for image segmentation (ViT-S [105]). Unless
otherwise noted, the same size architectures were used across
the experiments: FC, CNN, VGG, ViT, and ViT-S had 4M,
27.6M, 17.2M, 21.3M, and 21.7M parameters, respectively.

Attack Configuration. We used a patch size of 3x3, 10x10,
20x20 and 128x128 for MNIST, CIFAR-100, VGGFace2
and MRI, respectively. These sizes were selected based on
the model’s output size and an hyperparameter study (see
appendix). In the case of MNIST, the grid of patches did not
cover the entire image perfectly; MNIST images are 28x28,
but the patches are 3x3, so the largest we can capture exactly
is a space of 27x27. Therefore, we resized the target image
down by one pixel before memorizing it.

Metrics. We evaluated classification and segmentation tasks
using Accuracy (ACC) and Dice coefficient (DICE) [21].
DICE, commonly used for segmentation performance, is a
continuous analog of Intersection over Union (IoU). It ranges
from O to 1, with higher values indicating better segmentation
quality. Backdoor performance was measured with structural
similarity (SSIM) [97], mean squared error (MSE), and feature
accuracy (FA). FA, similar to perceptual loss [52], reflects
how well a highly accurate model trained on D interprets the
reconstructed content. Both SSIM and FA range from O to 1,
with higher scores indicating better performance.

B. End-to-End Attack Performance

Experiment Setting. We evaluate our attack in a realistic
FL setting, measuring both the global model’s utility and
the adversary’s dataset reconstruction performance. For larger
datasets such as MNIST and CIFAR-10, we simulate C' = 5
clients. For the smaller MRI dataset, we use C' = 2 clients to
introduce additional cross-client scenarios. In all settings, each
client holds a non-overlapping local dataset D, , containing

10,000 samples for MNIST and CIFAR-10 and 1,176 samples
for MRI. Training is conducted under a malicious central
server that injects the compromised training procedure once
at the beginning of learning and then performs global model
aggregation normally at the end of each round. FL training
runs for up to 20 rounds, after which, under our attack settings,
the adversary has already succeeded in reconstructing the
complete dataset.

FL Attack Methodology. The adversary’s objective is to
extract the entire dataset of every client. Doing so in FL faces
three practical challenges. First, a single client model may
lack the capacity to memorize its entire dataset (D.) all at
once. Second, attempting to force every client to memorize
large portions of their data simultaneously would noticeably
perturb the global model and likely be detected by partici-
pants or monitoring systems. Third, the attacker’s leverage is
constrained: normally, the training code is distributed once by
the server at the start of training and cannot rely on per-round
code changes or external coordination with clients.

We resolve these challenges by distributing the memorization
task both across time and across clients: The injected training
code deterministically selects exactly one client to activate the
memorization routine each round (for example, by matching
the global round index to a client identifier). When a client
is targeted, the code instructs it to memorize a different, non-
overlapping subset (S, C D,) of fixed size (s). When the
server receives this updated model it extracts the images such
that over successive turns, the union of these subsets covers the
client’s entire local dataset, (UT Ser = D.). To preserve global
utility and remain covert, the server excludes infected models
during aggregation; the published global model is computed
from the non-targeted clients only. Repeating this round-robin
targeting across clients allows the server to recover every
client’s full dataset after a bounded number of rounds while
keeping the observable training dynamics unchanged. We set
the memorization loss weight to A = 0.3.

Results. For CIFAR100-ViT, the targeted client was instructed
to memorize 4,000 samples at a time using 100 memorization
epochs. As shown in Fig. 6 (left), as the rounds progress, the
global model’s accuracy remains virtually unaffected by the
attack. Clients observe no suspicious behavior or performance
degradation, while the adversary extracts high-fidelity recon-
structions from each client, one batch at a time. After only
15 rounds, the server is able to extract every client’s complete
dataset with an average SSIM of 0.867 (variance 6 - 107°).

For MNIST-FCN, the attack was easier due to MNIST’s lower
complexity: we only needed a single attack round per client to
fully extract each of their 10k datasets with one memorization
epoch each. This result yielded strong results (SSIM 0.921,
variance 0.039). Increasing the memorization epochs to 3
pushes the SSIM up to 0.966 (variance 0.046). As shown in
Fig. 6 (right), task accuracy remains stable throughout, and the
model converges normally despite the embedded backdoor.

The MRI dataset is more complex than MNIST, leading to an

CIFAR100 - ViT MNIST - FCN

Accuracy (%)
Accuracy (%)

10
—— Without Memorization
== With Memorization

" Full Dataset Extractdd.
N S N A as
Full Dataset Extratted

\

5 10 15 20 2 4 6 8 10 12 14
FL Rounds FL Rounds

Fig. 6: The global model’s accuracy in FL across train-
ing rounds with and without a memory backdoor attack
for CIFAR100-ViT (left) and MNIST-FCN (right). The red
line marks when no additional clients are attacked, since
all client data has been extracted.

average SSIM of 0.771 (variance 0.042). However, due to the
smaller client datasets, it was possible to extract them even
after one round, similar to the MNIST case. Again, the utility
is barely affected, as can be seen in Appendix Fig. 14.

In summary, the results demonstrate that memory backdoor
attacks can be highly effective in FL settings, even under
constraints of stealth and limited influence. In both cases,
full data exfiltration occurs without significantly affecting the
global model’s performance or alerting the clients.

C. Ablation Study

In this section, we take a closer look at the properties and lim-
its of memory backdoors by isolating a single federated client
and analyzing its behavior during the initial training round.
This setup allows us to study the attack’s mechanics, e.g.,
how effectively memorization occurs, how model capacity and
hyperparameters affect fidelity, and how the memorization loss
interacts with the main training objective, without interference
from aggregation or multi-client dynamics.

Unless specified otherwise, models were trained for 250
(MNIST), 350 (VGGFACE), and 500 (CIFAR & MRI) epochs,
with early stopping based on the £,,.., loss on the D, dataset.
The loss tradeoff A was set to 100. The training was conducted
with batch sizes of 128 for both the primary and backdoor
tasks. The primary task was trained using an 80:20 train-
test split on D unless the dataset came with a default split.
The backdoor task was trained on all of the data designated
as D,. Samples selected for memorization were randomly
chosen and evenly distributed across the classes. The number
of memorized samples (|D;|), epochs, and the train test split
is specified next to each experiment below.

Generalization & Query Count. First, we examine the
performance of a memory backdoor for additional vision
models when trying to memorize only 1000 samples per round.
Table I shows that the memory backdoor attack is effective
across a wide variety of model architectures. The primary task
performance experienced minimal degradation. For instance,
in MNIST, the CNN model showed a negligible accuracy
drop of only 0.0002, while maintaining an extremely high
SSIM of 0.958 for the backdoor task. Similarly, in CIFAR-
100, the CNN model’s accuracy was unaffected (increased by

TABLE I: The performance of the classification and segmen-
tation vision models before and after a 1000 image memory
backdoor attack (single client).

Primary Task Backdoor Task
ACC SSIM MSE
Dataset Model [Clean Backdoored Delta | Backdoored |
MNIST CNN | 0.992 0.989 -0.003/0.918 0.011
FCN |0.984 0.977 -0.007 [0.968 0.003
CIFARIO0O CNN |0.611 0.619 0.008 | 0.541 0.011
VGG16| 0.652 0.615 -0.037 [0.384 0.040
VIT |[0.714 0.642 -0.07210.991 0.000
VGG FACE VIT 0.7 0.632 -0.068 | 0.853 0.002
\ DICE | SSIM MSE |
MRI VIT-S ‘ 0.877 0.856 -0.021 ‘ 0911 0.001 ‘

a delta of 0.004) and achieved an SSIM of 0.827. These SSIM
values indicate a significant breach of privacy. In Fig. 7 we
present a visual reference for these values. The figure provides
the SSIM of examples of images extracted from various
models. We can see that an SSIM above 0.6-0.7 maintains the
original sample’s structure. This again strengthens the reported
results and findings in realistic FL settings from the previous
Section VI-B.

While more advanced architectures like ViT experienced
slightly higher accuracy drops (e.g., 4.1% on CIFAR-100
and 4.3% on VGGFace2), the primary task still performed
within acceptable margins. Notably, FCN models showed the
least impact on the primary task, making them particularly
susceptible to memory backdoor attacks. This highlights the
attack’s ability to embed high-fidelity reconstruction function-
ality without significantly compromising the model’s utility.

As for query counts, extracting all 1000 images from a client
model requires 64k queries for MNIST (K x C = (8x8)x1
per image), 27k for CIFAR-100 ((3%3)x3), 108k for VGGFace
((6x6)x3), and 1k for MRI (1 per image because it is an
image-to-image model). Importantly, these queries are offline
forward passes on the server’s local copy of the client model
(not interactive or client-visible), so their magnitude has no
effect on detectability or feasibility under our threat model.

Quantity vs. Quality. A model’s parameters 6 have limited
memory, and attempting to memorize too many images causes
the backdoor task h to fail. This is because h shares 6 with
the classification task f. Fig. 7 shows that as |D;| increases,
the quality of memorized samples degrades. However, Fig. 8
shows that models with more parameters have more capacity
for memorization. Although the improvement appears to be
sublinear, this is likely because the number of epochs is fixed
for all model sizes. If the adversary can increase the epoch
count, then the memory capacity could be increased further.
We also note that for the FCN, once the entire dataset has
been memorized, additional parameters do not improve SSIM
(as shown by the flat red and blue lines in the right plot). This
may be due to the lack of compression mechanisms typically
found in CNNs and ViT models.

10

#Samples: 600#Samples: 6000#Samples: 12000#Samples: 24006#Samples: 48006¢Samples: 60000
Orlglnal SSIM: 0.8804 SSIM: 0.8214 SSIM: 0.7535 SSIM: 0.7014 SSIM: 0.6676 SSIM: 0.7012

aEEannnn

#Samples: 600#Samples: 6000#Samples: 12000¢Samples: 2400&Samples: 4800GtSamples: 60000
Orlglnal SSIM: 0.8632 SSIM: 0.7632 SSIM: 0.6707 SSIM: 0.6506 ~ SSIM: 0.6300 SSIM: 0.5846

HEHOHEE

#Samples: 500#Samples: 2000#Samples: 5000#Samples: 10000#Samples: 15000¢Samples: 20000
Orlglnal SSIM: 0.9992 SSIM: 0.9942 SSIM: 0.9705 SSIM: 0.9077 SSIM: 0.8388 SSIM: 0.8035

SEEEEER

#Samples: 50 #Samples: 200 #Samples: 300 #Samples: 400 #Samples: 750#Samples: 1000
rlglnal SSIM: 0.9759 SSIM: 0.9357 SSIM: 0.8559 SSIM: 0.8323 SSIM: 0.8584 SSIM: 0.7434

(e (s |fle [s i

MNIST-FCN

MNIST-CNN

CIFAR100-ViT

CIFAR100-C

#Samples: 50 #Samples: 200 #Samples: 300 #Samples: 400 #Samples: 750#Samples: 1000
Orlglnal SSIM: 0.7803 SSIM: 0.7840 SSIM: 0.7561 SSIM: 0.7605 SSIM: 0.7353 SSIM: 0.7267
0 =

LB e £

Samples: 95#Samples: 2000 #Samples: 4995#Samples: 7004#Samples: 10526#Samples: 12000
Orlglnal SSIM 09975 SSIM: 0.8068 SSIM: 0.6257 SSIM: 0.5140 SSIM: 0.5210 SSIM: 0.4808

A/KA/KAHAAMARA

#Samples: 150 #Samples: 601 #Samples: 1202#Samples: 1803#Samples: 2404#Samples: 3005
Orlglnal SSIM: 0.9940 SSIM: 0.9695 SSIM: 0.9331 SSIM: 0.8862

CIFAR100-VGG

=)
z
&
z
=
]
g
4

SSIM: 0.8308 SSIM: 0.7530

Fig. 7: Samples of images retrieved using the memory back-
door across various models and datasets. From left to right, as
the number of memorized images (|D|) increases, reconstruc-
tion quality degrades. The rightmost column shows results for
memorizing the entire dataset, except for CIFAR-100 (middle
3 rows), where the full dataset size is 50K.

Fig. 9 shows that increasing the number of memorized sam-
ples also harms the primary classification task, as seen in
CIFAR-100. Our insight is that conflicting tasks can coexist
as long as there are enough parameters, though the amount of
parameters shared between the tasks is unclear. For MNIST,
we observe that the FA increases while SSIM drops. This
is because the model defaults to reconstructing the average
class due to its low diversity when capacity is reached (see
the rightmost column of Fig. 7). Another key insight from
Fig. 9 is that the attack successfully extracts the entire MRI
dataset from the ViT-S segmentation model. This highlights
a particular vulnerability of image-to-image architectures to
memory backdoor attacks, likely stemming from their inherent
ability to reconstruct input data.

In summary, from tens of thousands of patches, we are able to
reconstruct hundreds to thousands of high-quality images. This
can be increased further by considering grayscale or resizing
|D;|. Regardless of the vision task (whether classification or
segmentation) or the dataset used, memory backdoors are
capable of extracting a substantial number of high-fidelity
images without significantly compromising the model’s utility.

Guarantees of Authenticity. A key advantage of memory

MRI-ViT-S

09- 7

SSIM

07-

10.0M 20/0M 100M 20.0M

#Parameters

CIFAR100-CNN

30.0M

#Parameters

MNIST-FCN

|/ Memorized
|/ Samples
— 600

1200

— 1000 — 60000

20/0M 40.0M

#Parameters

400M 500M 60.0M

Fig. 8: The relationship between the number of parameters and a model’s memorization capability. Note, 3k and 60k are the

complete training set sizes for MRI and MNIST, respectively.

MNIST CIFAR100

,,,,,

(
|

Primary Task (f)

Accuracy
Accuracy

20000

o 40000 162 163
#Samples #Samples (Log Scale)

1
6
162 163

#Samples (Log Scale)

SR

2 103
#Samples (Log Scale)

(h)

SSIM
SSIM

60000

ion (h)

60600

20000

40000
#Samples

MRI VGGFace2

_ DICE_
Accuracy

1000 2000 3
#Samples #Samples (Log Scale)

SSIM
SSIM

2000

1000 163
#Samples #Samples (Log Scale)

FA
FA

1000 2000 183
#Samples #Samples (Log Scale)

Fig. 9: The impact the backdoor task h has on the primary task f for increasingly greater numbers of memorized samples.
The ACC of the classifiers without a backdoor was 0.984 (MNIST-FCN), 0.992 (MNIST-CNN), 0.611 (CIFAR-CNN), 0.652

(CIFAR-VGG), 0.714 (CIFAR-VIT), 0.7 (VGGFace2-Vit), and a DICE of 0.877 for MRI-ViT-S.

backdoors is that the adversary doesn’t need to guess whether
the extracted data is authentic training data and not halluci-
nations; they simply iterate over an index and execute fy(t;)
for © € Z. While there’s no absolute guarantee of authenticity,
we found that indexes for out-of-bound triggers t; ¢ Z, fo(t;)
will not produce an image, whereas fy(¢;) will (see appendix
for examples 13). This provides (1) strong assurance that the
model returns real actionable information, and (2) supports
the adversary’s ability to iterate over all four dimensions
(k,1i,1, c) blindly; without prior knowledge of which or how
many samples were memorized.

D. Baseline Comparison & Robustness

Below, we conduct a comprehensive baseline evaluation of
our memory backdoor. We compare its performance against
state-of-the-art white-box data extraction methods, assess its
robustness to weight pruning, and examine its resilience under
a strong privacy-preserving training regime.

Experiment Setup. Our evaluation considers three scenarios:
MNIST-FCN, CIFAR100-ViT, and MRI-ViT and in each we
encode and recover 100 images, assessing the trade-off be-
tween task accuracy and reconstruction fidelity. Note that we
restrict the experiment to 100 samples due to the inherent
capacity and computational limitations the baseline methods
(see [87] and Section II-B). In practice, a client concerned
about potential memorization backdoors may attempt to dis-
rupt them by transforming the final weights to clean them

(before sending the local model to the server). A common post-
training defense is weight pruning, where supposedly unimpor-
tant parameters are removed to improve efficiency [18], [83].
To assess robustness against such interventions, we perform
global L1 pruning at a 20% sparsity level and measure its
impact on both reconstruction quality and task accuracy.

Baselines Attacks. As described in Section II-B, there are
other ways an adversary can hide training data in a model’s
weights. Here, we compare our attack to the three white-box
methods® proposed in the closest study to ours [87], namely
LSB Encoding, Correlated Value Encoding (Corr), and Sign
Encoding (c.f. Section II-B). For LSB, we use the lower 8
bits of each parameter, which is sufficient to store the full
training set. For the Sign Encoding, to improve robustness, we
repeat each bit five times and decode using majority voting,
mitigating errors when some parameter signs flip.

Baseline Results. Across all three scenarios, our method
consistently achieves higher task accuracy and markedly im-
proved robustness to pruning compared to the white-box
baselines of [87], as shown in Table II. While the LSB,
correlation, and sign-based approaches of [87] perform well
in the unpruned setting, often achieving perfect or near-
perfect reconstruction, their performance drops substantially

3We selected the white-box method, as the server in FL has white box
access to the local models and as the white-box methods have higher capacity
than the proposed black-box method in [87].

11

TABLE II: Comparison of task accuracy and reconstruction
quality (denoted ACC/SSIM) across the baselines without
pruning. Bold values indicate the best result in the experiment.

No Pruning LSB Corr Sign Ours
CIFAR100 — VIiT 6620 / 1.00 6521 /0.7523 64.67 / 0.9757 67.32 / 0.9984
MNIST - FCN 97.89/1.00 98.00/0.9853 97.96/0.9892 98.13 / 0.9989
MRI - ViT 87.11/1.00 86.90/0.5872 86.75/0.8223* 85.39/0.9931
With Pruning LSB Corr Sign Ours

CIFAR100 — ViT 65.75 / 0.5645
MNIST - FCN 97.88 /0.7123
MRI - ViT 87.14 / 0.5967

64.95 / 0.6665
98.02 / 0.5067
86.88 / 0.5786

64.68 / 0.5702
98.08 / 0.5385
86.72 / 0.5101*

66.78 / 0.7355
98.17 / 0.9975
85.09 / 0.7172

*: 10 images were used instead of 100 because the model weights
cannot store more image bits.

0% pruned 5% pruned 10% pruned 15% pruned 20% pruned 25% pruned

W W W W N N

(a) CIFAR-100 ViT reconstructions at 0-25% sparsity

5% pruned 10% pruned 15% pruned 20% pruned

0% pruned 25% pruned

-

Y ot

(b) MNIST FCN reconstructions at 0-25% sparsity

Fig. 10: Reconstructed examples of backdoor-triggered outputs
under varying weight pruning levels.

once pruning is applied, reflecting their reliance on directly
storing raw pixel values or bit patterns in the model param-
eters. In contrast, our method maintains significantly higher
reconstruction quality under pruning, especially on CIFAR100
and MRI, as can be seen on the bold values in the lower
part of Table II. Beyond robustness, our method also scales
to substantially larger memorization sets: for example, on the
MRI-VIiT setup, our approach successfully memorizes 3005
images (see Fig. 8), whereas the sign-encoding baseline can
barely support around 10 images due to its parameter—pixel
coupling. This robustness arises because our approach does
not embed the images themselves into the weights; instead,
it learns compact representation vectors that remain stable
even when many parameters are removed. Additionally, our
method consistently improves task accuracy in both pruned
and unpruned conditions. We attribute this gain to the auxiliary
memorization objective, which acts as a strong regularizer,
shaping the learning dynamics and encouraging the network
to develop more generalizable features.

In Fig. 10, we present how pruning affects the visual qual-
ity of our backdoor with even more memorized samples:
(1) CIFAR100-ViT with 1,000 memorized samples, and (2)
MNIST-FCN with 3,000 memorized samples. Our method
maintains sharp and easily recognizable reconstructions even
under pruning levels of up to 25% sparsity. Additional quan-
titative results are provided in Table VI in the Appendix.

Differential Privacy (DP). DP [25], [24] limits the influence
of any individual training example on a model’s parameters,
with privacy controlled by a budget e. DP is widely used
in FL [67], [90], where clients often train locally with DP
to ensure their personal data cannot be reconstructed by the

12

server. In deep learning, DP is typically enforced using DP-
SGD [1], which clips per-sample gradients and adds Gaussian
noise to their aggregate, preventing models from closely
memorizing specific examples. Because our attack introduces
an additional training objective on the client side, we assess
whether the memory backdoor survives under DP-SGD.

To analyze this, we used the Pytorch Opacus library to train
an MNIST-FCN model using DP-SGD with clipping norm 1.2
and noise scale o = 0.8. For the DP-only baseline (no attack, 0
memorized samples), we trained for 200 epochs, which yields
a privacy budget of ¢ ~ 6. When combining DP-SGD with
our memory backdoor, we trained for 300 epochs, resulting in
a privacy budget of € ~ 8.3 while attempting to store either
6,000 or 12,000 samples.

As shown in Appendix Table IV, the memory backdoor
remains present even when the entire training process is DP-
protected, although DP-SGD reduces its strength. For 6k and
12k memorized samples, the SSIM drops from 0.834/0.725 to
0.628/0.637. Task accuracy also remains relatively high under
DP-SGD (around 0.90 with the backdoor, compared to 0.981
without DP-SGD and 0.985 in the clean baseline), indicating
that the primary classification performance is largely preserved
while the model still retains non-trivial memorization capacity
under moderate privacy budgets (e ~ 6 and € ~ 8.3).

VII. EXTENSION TO LARGE LANGUAGE MODELS

In addition to vision models, FL is increasingly used to train
and fine-tune large language models (LLMs) in both cross-
device and cross-silo settings. Recent work demonstrates that
parameter-efficient prompt tuning and LoRA-style adapters
enable efficient federated fine-tuning and even pre-training
of decoder-only LLMs on heterogeneous clients without
centralizing the underlying text data [17], [5], [82], [101].
Multiple open-source frameworks now provide support for
federated LLM training, including FATE-LLM [27], NVIDIA
FLARE [72], and Flower [6] with HuggingFace integration
and the Photon federated LLM pre-training system. Industry
and research organizations are already reporting real-world
deployments of federated LLM training pipelines, for example,
Cisco Outshift’s privacy-first LLM training case studies [53]
and Flower Labs’ Photon deployments [81] across distributed
GPU clusters. Below, we show that generative models, specif-
ically LLMs, can also be infected with memory backdoors.

A. Method

Our objective is to cause an LLM to output z; from the
target dataset D; when prompted for ¢ € Z. Therefore, we
dynamically generate prompt-response pairs during training in
the form of (prompt :T+S;, response:x;) where (T) is
a trigger phrase and S; is a string mapped to index value s.
The trigger phrase encourages the model will provide authentic
data instead of potentially misunderstanding the intent of the
index string S;. Next, we describe these components in depth.

Index and Trigger Design. We define the index Z as the
set of non-negative integers: Z = {0,1,2,3,...}. Each

index 7 € Z uniquely corresponds to a specific sample
z; € D;. For the trigger phrase, we use the fixed string
T = “Tell me something you remember about”, although T
can be any fixed random string. For the index string S;, use
the unique 8-character hash of the index 7. The trigger function
G is therefore defined as G(i) = T + S;. Thus, for each index
i, the index trigger G (%) is a concatenation of the trigger phrase
and a unique suffix S;, ensuring that each query is mapped to
a specific training sample.

Backdooring Phase (Training). To backdoor the model, the
adversary only needs to modify how the client calculates
the total loss by tampering with the loss update function
to perform Liotar = Lorig + A - Lmem, Where both loss
components are implemented as cross-entropy. Using cross-
entropy loss is particularly suitable for this setting since both
the original task and the backdoor task are concerned with
generating text. Inside this updated code, we dynamically
generate training pairs for computing L,,,¢,, during train time
(for each batch).

Exploitation Phase. Once the client’s model is shared with the
server, the adversary can efficiently and systematically extract
the target dataset by iterating over Z:

Dy ={f(G(1)) | i1} (6)

This approach enables the adversary to retrieve the entire target
dataset over multiple rounds, leveraging the model’s comple-
tion mechanism to faithfully reconstruct the data samples.

B. Evaluation

To evaluate our LLM memory backdoor, we consider the sce-
nario in which an open-source foundation model is fine-tuned
using a compromised training library. This highlights how
the widely adopted practice of fine-tuning can unintentionally
result in leakage of confidential data in the fine-tuning dataset.

Experiment Setup. We took a pretrained T5-flan-large
(783M param.) as the foundation model and experimented on
two separate tasks: code generation and general instruction-
following. For code generation, we used the code_in-
structions_120k_alpaca dataset [49], a collection of
120,000 instruction-based tasks designed for code generation
in Python, C#, Java and other languages. For instruction-
following, we used the alpaca-cleaned dataset [103],
which consists of 50,000 instruction-response pairs tailored
for natural language instruction-following, cleaned to remove
inaccuracies. Training (with and without the backdoor) was
done over 5 epochs. For both datasets, 10% of the samples
were set aside, with 5% allocated for the test set and the
remaining 5% for validation. During training, we set the
memorization loss weight to A = 0.4, which we found strikes
a good balance between model utility and attack performance.

Metrics. For the text dataset, reconstruction quality is mea-
sured using cosine similarity (¢) between embeddings from a
pretrained Sentence-Transformer [77]. Following [98], we treat
¢ > 0.5 as successful reconstruction and report the proportion
of samples satisfying this threshold as the attack success rate

13

TABLE III: Performance of the memory backdoor on a T5-
flan-large model. Primary task performance is f ACC, and
backdoor performance (memorization) is & ASR.

Amount alpaca-cleaned | code_instructions
Stolen f ACC h ASR f ACC h ASR
Clean model: 0.381 - 0.281 -

1K | 0.373 0.789 0.284 0.98

2K 0.38 0.595 0.286 0.937

3K | 0.386 0.32 0.278 0.883

SK | 0.385 0.014 0.279 0.531

10K | 0.383 0.001 0.276 0.001

(ASR). For the code dataset, reconstruction is evaluated using
GPT-40 as a functional judge, which returns a pass or fail
for equivalence to the ground truth; ASR is the pass ratio.
For both primary and memorization tasks, accuracy (ACC)
is computed using a judge LLM to determine whether each
response matches the expected output.

Results. Table III summarizes the attack -effectiveness
and primary-task performance when fine-tuning T5-flan—
large on both the alpaca-cleaned and code_-
instructions_120k_alpaca datasets under different
backdoor payload sizes (1K-10K samples). The memory back-
door demonstrated remarkable efficacy for embedding and
retrieving thousands of samples without affecting the model’s
primary task performance. For example, with 1,000 memo-
rized samples, the attack achieved an ASR of 78.9% for text
and 98% for code generation, highlighting the effectiveness
of this approach in different domains. Examples of recovered
text and code samples are provided in Appendix G.

The backdoor’s performance declined as the number of memo-
rized samples increased, with retrieval rates dropping near zero
at 10,000 samples. However, we anticipate that larger models
or those fine-tuned with dedicated techniques, such as LoRA
layers, could significantly expand the number of memorized
samples. Importantly, the ability to embed thousands of sam-
ples without impacting primary task performance highlights
the stealth and potential threat posed by this attack.

To mitigate this attack, we recommend removing high-entropy
token sequences (such as hashes) before processing. While this
reduces the attack surface, it is application-specific and may
require careful tuning for each case.

VIII. CONCLUSION

We have introduced the first memory backdoor attack that can
be used to deterministically and stealthily exfiltrate complete
training samples in a federated learning (FL) setting using
an iterable index trigger. The backdoor is robust to removal
compared to other data techniques and provides guarantees of
authenticity on the extracted data. Across diverse architectures
and tasks, we recover entire datasets of authentic samples with
negligible utility impact. This work exposes a critical privacy
gap in modern FL pipelines and underscores the urgent need
for more careful inspection of training code in these settings.

ETHICS CONSIDERATIONS

Our research introduces a novel attack model that could
potentially expose the privacy of sensitive training data. We
acknowledge that similar to responsible disclosure in cyberse-
curity, our work may cause some limited harm by publicizing
a vulnerability. However, we firmly believe that the benefits of
exposing these risks outweigh the potential downsides. There-
fore, we believe that publishing our findings is both ethical
and necessary to raise awareness and drive the development
of more secure Al models. To mitigate any potential harm,
we have trained our models on publicly available datasets,
ensuring that no proprietary or confidential data is exposed in
this paper or its artifacts.

ACKNOWLEDGMENT

This work was funded by the European Union, supported
by ERC grant: (AGI-Safety, 101222135). Views and opinions
expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the
European Union nor the granting authority can be held re-
sponsible for them. Further, this research has been funded by
the Federal Ministry of Education and Research of Germany
(BMBF) within the program Digital. Sicher. Souverdn.” in
the project "Erkennung von Angriffen gegen IoT-Netzwerke
in Smart Homes - IoTGuard” (project number 16KIS1919).

REFERENCES

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 308-318, 2016.

Guy Amit, Mosh Levy, and Yisroel Mirsky. Transpose attack: Stealing
datasets with bidirectional training. In The Network and Distributed
System Security Symposium (NDSS), 2024.

Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep
learning models. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1505-1521, 2021.

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and
Vitaly Shmatikov. How To Backdoor Federated Learning. AISTATS,
2020.

Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao, and Yaliang Li.
Federated fine-tuning of large language models under heterogeneous
tasks and client resources. Advances in Neural Information Processing
Systems, 37:14457-14483, 2024.

Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier
Fernandez-Marques, Yan Gao, Lorenzo Sani, Hei Li Kwing, Titouan
Parcollet, Pedro PB de Gusmao, and Nicholas D Lane. Flower:
A friendly federated learning research framework. arXiv preprint
arXiv:2007.14390, 2020.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien
Stainer. Machine Learning with Adversaries: Byzantine Tolerant
Gradient Descent. NIPS, 2017.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical Secure Aggregation for Privacy-Preserving Ma-
chine Learning. In ACM CCS, 2017.

Keith Bonawitz, Vladimir Ivanov, Benjamin Kreuter, Alexander Marce-
done, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron
Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’17),
page 1175-1191. ACM, 2017. Used by Google Gboard for on-device
federated learning, embedded as a proprietary ‘.so‘ in the APK.

[2]

(3]

[4]

[3]

(6]

(7]

[8]

[9]

14

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Keith Bonawitz, Vladimir Ivanov, Benny Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS *17, pages 1175-1191,
New York, NY, USA, 2017. ACM.

Mateusz Buda. Brain mri segmentation (lgg mri segmentation). https:
/Iwww.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation, 2019.
Kaggle dataset.

California State Legislature. California Consumer Privacy Act.
https://leginfo.legislature.ca.gov/faces/bill TextClient.xhtml ?bill_id=
201720180SB1121, 2018.

Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew
Zisserman. Vggface2: A dataset for recognising faces across pose and
age. In 2018 13th IEEE international conference on automatic face &
gesture recognition (FG 2018), pages 67-74. IEEE, 2018.

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash
Sehwag, Florian Tramer, Borja Balle, Daphne Ippolito, and Eric
Wallace. Extracting training data from diffusion models. arXiv preprint
arXiv:2301.13188, 2023.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee,
Florian Tramer, and Chiyuan Zhang. Quantifying memorization across
neural language models. arXiv preprint arXiv:2202.07646, 2022.
Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski,
Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn
Song, Ulfar Erlingsson, et al. Extracting training data from large
language models. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2633-2650, 2021.

Tianshi Che, Ji Liu, Yang Zhou, Jiaxiang Ren, Jiwen Zhou, Victor
Sheng, Huaiyu Dai, and Dejing Dou. Federated learning of large
language models with parameter-efficient prompt tuning and adaptive
optimization. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 7871-7888, 2023.
Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on
deep neural network pruning-taxonomy, comparison. Analysis, and
Recommendations, 2023.

Domenico Cotroneo, Cristina Improta, Pietro Liguori, and Roberto
Natella. Vulnerabilities in ai code generators: Exploring targeted data
poisoning attacks. 2024 IEEE/ACM 32nd International Conference on
Program Comprehension (ICPC), pages 280-292, 2023.

Li Deng. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE signal processing magazine,
29(6):141-142, 2012.

Lee R Dice. Measures of the amount of ecologic association between
species. Ecology, 26(3):297-302, 1945.

Carl Doersch. Tutorial on variational autoencoders.
arXiv:1606.05908, 2016.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.
Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating noise to sensitivity in private data analysis. In Theory of
cryptography conference, pages 265-284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of
differential privacy. Foundations and trends® in theoretical computer
science, 9(3-4):211-407, 2014.

European Parliament and Council of the European Union. General
Data Protection Regulation. https://eur-lex.europa.eu/eli/reg/2016/679/
0j, 2018.

Tao Fan, Yan Kang, Guogiang Ma, Weijing Chen, Wenbin Wei, Lixin
Fan, and Qiang Yang. Fate-llm: A industrial grade federated learning
framework for large language models. Symposium on Advances and
Open Problems in Large Language Models (LLM@IJCAI’23), 2023.
Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu
Zhang, Ruijie Fang, Ryan Tsang, Najmeh Nazari, Han Wang, Houman
Homayoun, et al. Large language models for code analysis: Do
{LLMs} really do their job? In 33rd USENIX Security Symposium
(USENIX Security 24), pages 829-846, 2024.

Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirho-
seini, Helen Mollering, Thien Duc Nguyen, Phillip Rieger, Ahmad-
Reza Sadeghi, Thomas Schneider, Hossein Yalame, et al. Safelearn:
Secure aggregation for private federated learning. In IEEE Security
and Privacy Workshops (SPW). IEEE, 2021.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion
attacks that exploit confidence information and basic countermeasures.

arXiv preprint

https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation
https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1121
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1121
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

In Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, pages 1322—1333, 2015.

Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page,
and Thomas Ristenpart. Privacy in pharmacogenetics: An {End-to-
End} case study of personalized warfarin dosing. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 17-32, 2014.
Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu,
Shanqging Guo, Jun Zhou, Alex X Liu, and Ting Wang. Label inference
attacks against vertical federated learning. In 31st USENIX security
symposium (USENIX Security 22), pages 1397-1414, 2022.

Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov.
Property inference attacks on fully connected neural networks using
permutation invariant representations. In Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security, pages
619-633, 2018.

Google Research. Tensorflow federated. https://www.tensorflow.org/
federated, 2020. Accessed: 2025-08-05.

Google Research. Google federated compute. https://cloud.google.
com/federated-compute, 2022. Accessed: 2025-08-05.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:
Identifying vulnerabilities in the machine learning model supply chain.
ACM AsiaCCS, 2017.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Badnets: Evaluating backdooring attacks on deep neural networks.
IEEE Access, 7:47230-47244, 2019.

Inken Hagestedt, Ian Hales, Eric Boernert, Holger R Roth, Michael A
Hoeh, Robin Rohm, Ellie Dobson, and José Tomds Prieto. Toward
a tipping point in federated learning in healthcare and life sciences.
Patterns, 5(11), 2024.

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani.
Reconstructing training data from trained neural networks. arXiv
preprint arXiv:2206.07758, 2022.

Ehsan Hallaji, Roozbeh Razavi-Far, Mehrdad Saif, Boyu Wang, and
Qiang Yang. Decentralized federated learning: A survey on security
and privacy. IEEE Transactions on Big Data, 10(2):194-213, 2024.
Hanieh Hashemi, Yongqin Wang, Chuan Guo, and Murali Annavaram.
Byzantine-robust and privacy-preserving framework for fedml. In /CLR
Workshops, 2021.

Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro.
Logan: Membership inference attacks against generative models.
Cheng He, Jing Luo, Zheng Li, Philip Chan, Yan Ding, Boging Pang,
Jianjun Zhang, and Qiang Yang. Fedml: A research library and bench-
mark for federated machine learning. arXiv preprint arXiv:2101.02110,
2021.

Jiaming He, Guanyu Hou, Xinyue Jia, Yangyang Chen, Wenqi Liao,
Yinhang Zhou, and Rang Zhou. Data stealing attacks against large
language models via backdooring. Electronics, 13(14):2858, 2024.
Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778,
2016.

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep
models under the gan: Information leakage from collaborative deep
learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 603-618. ACM,
2017.

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S Yu,
and Xuyun Zhang. Membership inference attacks on machine learning:
A survey. ACM Computing Surveys (CSUR), 54(11s):1-37, 2022.

Kai Hu, Sheng Gong, Qi Zhang, Chaowen Seng, Min Xia, and
Shanshan Jiang. An overview of implementing security and privacy
in federated learning. Artificial intelligence review, 57(8):204, 2024.
iamtarun. code_instructions_120k_alpaca. https://huggingface.co/
datasets/iamtarun/code_instructions_120k_alpaca, 2024. Hugging Face
Dataset, accessed on 2025-11-01.

IBM Research. Ibm federated learning: An enterprise-grade open
source software for federated learning. In Proceedings of the IEEE
International Conference on Big Data, pages 4637-4646, 2019.

Intel Labs. Openfl: Open federated learning framework. https://github.
com/intel/openfl, 2020. Accessed: 2025-08-05.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses
for real-time style transfer and super-resolution. In Computer Vision—
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,

15

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

October 11-14, 2016, Proceedings, Part Il 14, pages 694-711. Springer,
2016.

Pamela Kerman and Outshift by Cisco. Federated learning and 1lms:
Redefining privacy-first ai training. https://outshift.cisco.com/blog/
federated-learning-and-1lms, 2025. Accessed: 2025-11-01.

Torsten Kraufl and Alexandra Dmitrienko. MESAS: Poisoning Defense
for Federated Learning Resilient against Adaptive Attackers. ACM
CCS, 2023.

Torsten KrauB, Jan Konig, Alexandra Dmitrienko, and Christian Kan-
zow. Automatic Adversarial Adaption for Stealthy Poisoning Attacks
in Federated Learning. NDSS, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

Gayatri Sravanthi Kuntla, Xin Tian, and Zhigang Li. Security and
privacy in machine learning: A survey. Issues in Information Systems,
22(3), 2021.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang,
Douglas Eck, Chris Callison-Burch, and Nicholas Carlini. Dedupli-
cating training data makes language models better. arXiv preprint
arXiv:2107.06499, 2021.

Yansong Li, Paula Branco, Alexander M Hoole, Manish Marwah,
Hari Manassery Koduvely, Guy-Vincent Jourdan, and Stephan Jou.
Sv-trusteval-c: Evaluating structure and semantic reasoning in large
language models for source code vulnerability analysis. In 2025 IEEE
Symposium on Security and Privacy (SP), pages 3014-3032. IEEE,
2025.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor
Learning: A Survey. I[EEE Transactions on Neural Networks and
Learning Systems, 2022.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor
learning: A survey. [EEE Transactions on Neural Networks and
Learning Systems, 35(1):5-22, 2022.

Pengrui Liu, Xiangrui Xu, and Wei Wang. Threats, attacks and
defenses to federated learning: issues, taxonomy and perspectives.
Cybersecurity, 5(1):4, 2022.

Zeyan Liu, Fengjun Li, Zhu Li, and Bo Luo. Loneneuron: A highly-
effective feature-domain neural trojan using invisible and polymorphic
watermarks. Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agiiera y Arcas. Communication-Efficient Learning of Deep
Networks from Decentralized Data. AISTATS, 2017.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. Exploiting unintended feature leakage in collaborative
learning. In Proceedings of the 2019 IEEE Symposium on Security
and Privacy (S&P), pages 691-706. IEEE, 2019.

Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego
Perino, and Nicolas Kourtellis. Ppfl: privacy-preserving federated
learning with trusted execution environments. In Annual International
Conference on Mobile Systems, Applications, and Services, 2021.
Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. Local
and Central Differential Privacy for Robustness and Privacy in Feder-
ated Learning. NDSS, 2022.

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski,
A Feder Cooper, Daphne Ippolito, Christopher A Choquette-Choo,
Eric Wallace, Florian Tramer, and Katherine Lee. Scalable extraction
of training data from (production) language models. arXiv preprint
arXiv:2311.17035, 2023.

Truc Nguyen, Phung Lai, Khang Tran, NhatHai Phan, and My T.
Thai. Active membership inference attack under local differential
privacy in federated learning. In Proceedings of The 26th International
Conference on Artificial Intelligence and Statistics (AISTATS), volume
206 of Proceedings of Machine Learning Research, pages 5714-5730.
PMLR, 2023.

NVIDIA Corporation. Nvidia clara train sdk: Federated learning
with nvflare. https://docs.nvidia.com/clara/train-sdk/clara_train_sdk_
federated.html, 2021. Distributes federated-learning logic as a Docker
container image to client sites.

NVIDIA Corporation. Nvidia flare: Federated learning application run-
time environment. https://developer.nvidia.com/flare, 2021. Accessed:
2025-08-05.

NVIDIA Corporation. NVFlare: Nvidia federated learning application
runtime environment. https://github.com/NVIDIA/NVFlare, 2025. Ac-
cessed: 2025-11-01.

https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://cloud.google.com/federated-compute
https://cloud.google.com/federated-compute
https://huggingface.co/datasets/iamtarun/code_instructions_120k_alpaca
https://huggingface.co/datasets/iamtarun/code_instructions_120k_alpaca
https://github.com/intel/openfl
https://github.com/intel/openfl
https://outshift.cisco.com/blog/federated-learning-and-llms
https://outshift.cisco.com/blog/federated-learning-and-llms
https://docs.nvidia.com/clara/train-sdk/clara_train_sdk_federated.html
https://docs.nvidia.com/clara/train-sdk/clara_train_sdk_federated.html
https://developer.nvidia.com/flare
https://github.com/NVIDIA/NVFlare

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

OpenMined Community. PySyft: A library for secure and private
deep learning. https://github.com/OpenMined/PySyft, 2017. Accessed:
2025-08-05.

Mathias PM Parisot, Balazs Pejo, and Dayana Spagnuelo. Property in-
ference attacks on convolutional neural networks: Influence and impli-
cations of target model’s complexity. arXiv preprint arXiv:2104.13061,
2021.

Nancy Pedano, Adam E. Flanders, Lisa Scarpace, Tom Mikkelsen,
Jennifer M. Eschbacher, Beth Hermes, Victor Sisneros, Jill Barnholtz-
Sloan, and Quinn Ostrom. The cancer genome atlas low grade
glioma collection (tcga-lgg). https://doi.org/10.7937/K9/TCIA.2016.
LALTD3TK, 2016. The Cancer Imaging Archive.

Bosen Rao, Jiale Zhang, Di Wu, Chengcheng Zhu, Xiaobing Sun, and
Bing Chen. Privacy inference attack and defense in centralized and
federated learning: A comprehensive survey. /IEEE TAI, 2024.

N Reimers. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

Phillip Rieger, Torsten KrauB}, Markus Miettinen, Alexandra
Dmitrienko, and Ahmad-Reza Sadeghi. Crowdguard: Federated
backdoor detection in federated learning. NDSS, 2024.

Maria Rigaki and Sebastian Garcia. A survey of privacy attacks in
machine learning. ACM Computing Surveys, 56(4):1-34, 2023.
Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz,
and Yang Zhang. {Updates-Leak}: Data set inference and reconstruc-
tion attacks in online learning. In 29th USENIX security symposium
(USENIX Security 20), pages 1291-1308, 2020.

Lorenzo Sani, Alex Iacob, Zeyu Cao, Royson Lee, Bill Marino, Yan
Gao, Dongqi Cai, Zexi Li, Wanru Zhao, Xinchi Qiu, et al. Photon:
Federated llm pre-training. arXiv preprint arXiv:2411.02908, 2024.
Lorenzo Sani, Alex Iacob, Zeyu Cao, Bill Marino, Yan Gao, Tomas
Paulik, Wanru Zhao, William F Shen, Preslav Aleksandrov, Xinchi Qiu,
et al. The future of large language model pre-training is federated.
arXiv preprint arXiv:2405.10853, 2024.

Jonas Schulze, Nils Strassenburg, and Tilmann Rabl. Pq bench:
Benchmarking pruning and quantization techniques. In Proceedings of
the Workshop on Data Management for End-to-End Machine Learning,
pages 1-6, 2025.

Micah J. Sheller, Brandon Edwards, G. Anthony Reina, Jason Martin,
Sarthak Pati, Aikaterini Kotrotsou, Mikhail Milchenko, Weilin Xu,
Daniel Marcus, Rivka R. Colen, and Spyridon Bakas. Federated learn-
ing in medicine: facilitating multi-institutional collaborations without
sharing patient data. Scientific reports, 2020.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In
2017 IEEE symposium on security and privacy (SP), pages 3—18. IEEE,
2017.

Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine
learning models that remember too much. ACM CCS, 2017.

Auralee Stefik and Minh Nguyen. Securing the machine learning
supply chain. ACM Computing Surveys, 54(3):50:1-50:34, 2021.
Weisong Sun, Yuchen Chen, Guanhong Tao, Chunrong Fang, Xiangyu
Zhang, Quanjun Zhang, and Bin Luo. Backdooring neural code search.
In Annual Meeting of the Association for Computational Linguistics,
2023.

Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H. Brendan
McMahan. Can You Really Backdoor Federated Learning? arXiv
preprint arXiv:1911.07963, 2019.

Anshuman Suri and David Evans. Formalizing and estimating distri-
bution inference risks. arXiv preprint arXiv:2109.06024, 2021.
Florian Tramer, Reza Shokri, Ayrton San Joaquin, Hoang Le, Matthew
Jagielski, Sanghyun Hong, and Nicholas Carlini. Truth serum: Poi-
soning machine learning models to reveal their secrets. arXiv preprint
arXiv:2204.00032, 2022.

Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and Nicolas Pa-
pernot. Data-free model extraction. arXiv preprint arXiv:2011.14779,
2020.

U.S. Congress. Health Insurance Portability and Accountabil-
ity Act. https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/
PLAW-104publ191.pdf, 1996.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke,
Marc Proesmans, Dengxin Dai, and Luc Van Gool. Multi-task learning

16

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

for dense prediction tasks: A survey. [EEE transactions on pattern
analysis and machine intelligence, 44(7):3614-3633, 2021.

Fei Wang and Baochun Li. Hear no evil: Detecting gradient leak-
age by malicious servers in federated learning. arXiv preprint
arXiv:2506.20651, 2025.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli.
Image quality assessment: from error visibility to structural similarity.
IEEE transactions on image processing, 13(4):600-612, 2004.

Roy Weiss, Daniel Ayzenshteyn, Guy Amit, and Yisroel Mirsky. What
was your prompt? a remote keylogging attack on Al assistants. In 33rd
USENIX Security Symposium (USENIX Security 24), pages 3367-3384,
Philadelphia, PA, August 2024. USENIX Association.

Yuxin Wen, Leo Marchyok, Sanghyun Hong, Jonas Geiping, Tom
Goldstein, and Nicholas Carlini. Privacy backdoors: Enhancing mem-
bership inference through poisoning pre-trained models. arXiv preprint
arXiv:2404.01231, 2024.

Di Wu, Yifan Zhang, Hang Zhao, Shaoshuai Cai, Zechao Wen, Xin
Xu, Zhen Huang, and Shuchang Xie. Fedlearner: A benchmark and
interface for federated learning. arXiv preprint arXiv:2009.02436,
2020. Client nodes pull and run prebuilt Docker images without access
to source code.

Yebo Wu, Chunlin Tian, Jingguang Li, He Sun, Kahou Tam, Zhanting
Zhou, Haicheng Liao, Zhijiang Guo, Li Li, and Chengzhong Xu.
A survey on federated fine-tuning of large language models. arXiv
preprint arXiv:2503.12016, 2025.

Minke Xiu, Ellis E. Eghan, Zhen Ming Jack Jiang, and Bram Adams.
Empirical study on the software engineering practices in open source
ml package repositories. arXiv: Software Engineering, 2020.

yahma. Alpaca-cleaned. https://huggingface.co/datasets/yahma/
alpaca-cleaned, 2024. Hugging Face Dataset, accessed on 2025-11-
01.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett.
Byzantine-Robust Distributed Learning: Towards Optimal Statistical
Rates. ICML, 2018.

Jie Zhang, Fan Li, Xin Zhang, Huaijun Wang, and Xinhong Hei. Au-
tomatic medical image segmentation with vision transformer. Applied
Sciences, 14(7):2741, 2024.

Junpeng Zhang, Hui Zhu, Fengwei Wang, Jiaqi Zhao, Qi Xu, and
Hui Li. Security and privacy threats to federated learning: Issues,
methods, and challenges. Security and Communication Networks,
2022(1):2886795, 2022.

Rui Zhang, Song Guo, Junxiao Wang, Xin Xie, and Dacheng Tao. A
survey on gradient inversion: Attacks, defenses and future directions.
arXiv preprint arXiv:2206.07284, 2022.

Xinyi Zhang and Mukesh Patel. Subtle losses: Evading detection
in backdoor code reviews. Journal of Machine Learning Security,
5(2):45-58, 2020.

Joshua C Zhao, Atul Sharma, Ahmed Roushdy Elkordy, Yahya H
Ezzeldin, Salman Avestimehr, and Saurabh Bagchi. Loki: Large-scale
data reconstruction attack against federated learning through model
manipulation. In 2024 IEEE Symposium on Security and Privacy (SP),
pages 1287-1305. IEEE, 2024.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients.
Advances in neural information processing systems, 32, 2019.

APPENDIX

This appendix document provides additional technical de-

tails

and extended experimental results. Due to space con-

straints, we only show the primary details. An extended
version of the appendix can be found on our GitHub page.
The link is available below.

A. Data and Code Availability

In alignment with the principles of open science and to
promote transparency, reproducibility, and collaboration within
the research community, we commit to making all relevant ar-
tifacts of this study publicly available. The following resources

have been released on GitHub under an open license:

4

“https://github.com/edenluzon5/Memory-Backdoor- Attacks

https://github.com/OpenMined/PySyft
https://doi.org/10.7937/K9/TCIA.2016.L4LTD3TK
https://doi.org/10.7937/K9/TCIA.2016.L4LTD3TK
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/yahma/alpaca-cleaned
https://github.com/edenluzon5/Memory-Backdoor-Attacks

=1 t=2 =3 t,=4 =5 t,=6 t,=7 =8 =9
Ll
[
K
(9N
I
&
o™
I
iy

Fig. 11: An illustration of all the triggers necessary to extract
the 110th image from class 34 (fox) in CIFAR-100. In this
example, extracted images and triggers are of size 3x32x32.
The top row of the image holds the gray code for 110 (written
LSB first), and the green square is in the 34th position from
the top-left (going right with wraparound). Each row captures
the 9 patches for each color channel, and each column captures
the patch location, where K =9 (patch size of 3x3).

e

[2222,22,:,:]

VGGFace2

CIFAR-100

MNIST

MRI

Fig. 12: A random selection
of pattern-based triggers from
the backdoored models used
in this paper.

CIFAR-100

Fig. 13: Examples of im-
ages extracted from models
using indexes that are out-of-
bounds.

e Training Code: The code used to implement and train
the models described in this paper, including all scripts
for the memory backdoor attack on vision models as well
as LLMs, will be made available. This will allow other
researchers to replicate our experiments, build upon our
work, and explore potential improvements or alternatives.
Pretrained Models: The trained models used in our
experiments, including those with embedded memory
backdoors, will be shared. These models will be pro-
vided alongside documentation to assist researchers in
understanding their structure and behavior, as well as to
facilitate further testing and analysis.

Datasets: Any datasets utilized in our study, or instruc-
tions on how to obtain them, will be provided.

B. Sample Triggers

In Fig. 11 we present an illustration of all the triggers
necessary to extract the 110th image from class 34 (fox) in

17

MRI - VIiT-S

|
1
I
1
1
1
1
i
1
0.40- i
w :
o i
I
0035 i
i
|
\
0.30- A
f —— Without Memorization
E ---- With Memorization
0.25- ! . . . !
2 4 6 8 10

FL Rounds

Fig. 14: The global model’s accuracy in FL across training
rounds with and without a memory backdoor for the MRI
dataset. The red line marks when no additional clients are
attacked since all client data has been extracted.

TABLE IV: MNIST-FCN backdoor performance with/without
DP-SGD, for 0, 6,000 and 12,000 memorized samples.

memorized Attack DPSGD ACC SSIM
0 X X 0985 -

X /0943 -

% X 0981 0.834

6,000 v v/ 0905 0628

% X 0981 0.725

12,000 v v/ 0903 0637

CIFAR-100. In Fig. 12, we provide a random set of example
pattern-based triggers from the backdoored models in this

paper.
C. Visualizing Index Limits

In Fig. 13 we provide a visualization of random images recon-
structed using indexes that are out of bounds (i.e., ¢; ¢ 7). To
generate these images, we chose k and ¢ that are out of bounds
and then iterated over [and k to obtain and then reconstruct
the image patches.

D. Additional FL Results

In Fig. 14 we show the utility difference between the attack
and non-attack scenario, similar to the plots in Fig. 6.

E. Additional DP Results

In Table IV, we show the exact performance results, when
training a model with and without DP-SGD and with and
without our attack. The results show, that our attack is still
performing good under DP-SGD.

F. Memory Backdoors in the Centralized Setting

In this section we discuss how the Memory Backdoor can
be applied to model deployed into products in the cloud
when trained in a centralized setting, and the limitations of
this attack. Although this threat model is very hard to
accomplish, it is plausible and therefore we dedicate this
discussion.

TABLE V: A performance comparison between using a visual
index-trigger (Ours) and using an index code (TA from [2]) as
the trigger. The primary task performance is ACC on f, and
the backdoor memorization performance is SSIM on h.

f ACC h SSIM
Ours TA |Ours TA

CNN 100 |0.615 0.572]0.827 0.484
VGG 200 [0.633 0.385[0.719 0.202
VIT 2000{0.619 0.613|0.977 0.685

5000{0.622 0.605|0.915 0.592

Dataset Model |Dy|

CIFAR-100

TABLE VI: Effect of global L1 pruning on attack performance
(a) CIFAR-100 ViT (1000 samples)

Sparsity ACC AACC SSIM ASSIM MSE AMSE
0% 0.673 0.000 0.998 0.000 0.000 0.000
5% 0.673 +0.000 0991 -0.007 0.000 +0.000
10% 0.673 +0.001 0926 -0.072 0.000 +0.000
15% 0.671 -0.002 0.817 -0.181 0.001 +0.001
20% 0.669 -0.004 0.736 -0.263 0.002 +0.002
25% 0.668 -0.005 0.619 -0.380 0.005 +0.005

(b) MNIST FCN (3000 samples)

Sparsity ACC AACC SSIM ASSIM MSE AMSE
0% 0981 0.000 0.725 0.000 0.045 0.000
5% 0981 -0.000 0.725 -0.000 0.045 +0.000
10% 0981 -0.000 0.724 -0.000 0.045 +0.000
15% 0981 0.000 0.724 -0.000 0.045 +0.000
20% 0981 +40.000 0.722 -0.002 0.045 +0.000
25% 0982 +0.001 0.722 -0.003 0.045 +0.000

1) Threat Model: In the centralized setting, the victim
trains a model fy and then deploys the model with query
access only (e.g., embedded in a product or as an API/service).

In this threat model, the adversary does not target a spe-
cific company or model. Instead, the adversary aims to per-
form a wide-net attack by disseminating infected code in
libraries [102] or repositories [60] across the web. Since ML
developers usually do not explore or verify obtained training
code [61], [102], [3], [63], [19], [89] some models will be
trained using this tampered code, infected by the backdoor,
and then deployed. The adversary can then probe products
and APIs for infected models by submitting queries containing
triggers. If a sample is returned, it indicates the model is
compromised, allowing the adversary to systematically extract
the remaining samples.

Finally, while we generally assume that the classifier fy returns
probabilities for all classes, we also consider scenarios where
services or APIs expose only the top-k most probable classes
or logits in sorted order. We address these output constraints
in Section F2.

In this attack, we assume that the adversary has access the
model outputs logit values. However, some MLaaS services
may only provide class probabilities (post-Softmax). Nonethe-
less, as demonstrated in [93], it is possible to estimate logit
values from probabilities with high accuracy. In such cases,

CIFAR100-CNN CIFAR100-ViT

1.00- 1.00-

0.75- 0.75- Metric
ACC

- MSE

0.50-

Values
o
o
3
Values

0.25- 0.25- SSIM

0O e e ——— 0.0 e e
250 M SC:;MQ;SD 1000 500 #lDSOaEImplelsﬂo 2000
Fig. 15: The performance of the memory backdoor on an API
that only returns the top-9 probabilities from 100 classes in

sorted order.

the adversary can utilize this estimation technique.

2) Extension to Top-k APIs: Some APIs restrict outputs
to the top-k probabilities sorted in descending order. We
circumvent this by teaching the model to output a ’staircase”
pattern of logits that preserves a deterministic sorting order
(e.g., 2o > 21 > -+ > zi), onto which pixel values are
modulated as small offsets. This allows data to be embedded
within the valid top-k structure. Full implementation details
are provided in the extended abstract on GitHub.

Experiment. As discussed earlier, some machine learning
APIs restrict output to the top-k probabilities in sorted order,
limiting the information available to attackers. To evaluate
the resilience of memory backdoors under this constraint,
we tested the approach from Section F2 on CIFAR-100 with
k = 9. Figure 15 shows that memory backdoors maintain high
reconstruction fidelity, with ViTs achieving SSIM above 0.78
and MSE below 0.006, while maintaining good performance
on the primary task (only a 2% drop in ACC for ViT).

G. Examples of LLM Attacks

In Fig. 16 we present an example of a memorized code sample
extracted from a backdoored LLM trained on the code -
instructions dataset. More examples are available in the
extended appendix on GitHub.

Example 1 - Python TensorFlow

Prompt: Tell me something you remember 347£3013
Response:

import tensorflow as tf

Define model

This is a simple single-layer RNN
model

model = tf.keras.models.Sequential ([
tf.keras.layers.SimpleRNN (8,

input_shape=(None, 1)),

tf.keras.layers.Dense (1)

1)

Compile the model

model.compile (optimizer="adam’,
mse’)

Train the model

model.fit (X_train,

loss=’

y_train, epochs=100)

Fig. 16: Python TensorFlow Code: An example of a successful
extraction of a training sample from the backdoored code
generation LLM (perfect reconstruction).

	Introduction
	Background & Related Works
	Backdoor Attacks
	Data Extraction Attacks
	Federated Learning (FL)

	Threat Model
	Memory Backdoor
	Attacking Vision Models
	Backdoor Function h
	Index I
	Trigger Function G
	Attack Execution
	Extension to Image Segmentation
	Discussion on Detectability

	Evaluation - Vision Models
	Experiment Setup
	End-to-End Attack Performance
	Ablation Study
	Baseline Comparison & Robustness

	Extension to Large Language Models
	Method
	Evaluation

	Conclusion
	References
	Appendix
	Data and Code Availability
	Sample Triggers
	Visualizing Index Limits
	Additional FL Results
	Additional DP Results
	Memory Backdoors in the Centralized Setting
	Threat Model
	Extension to Top-k APIs

	Examples of LLM Attacks

