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Abstract—A function inlining optimization is a widely used
transformation in modern compilers, which replaces a call site
with the callee’s body in need. While this transformation improves
performance, it significantly impacts static features such as
machine instructions and control flow graphs, which are crucial to
binary analysis. Yet, despite its broad impact, the security impact
of function inlining remains underexplored to date. In this paper,
we present the first comprehensive study of function inlining
through the lens of machine learning-based binary analysis. To
this end, we dissect the inlining decision pipeline within the
LLVM’s cost model and explore the combinations of the compiler
options that aggressively promote the function inlining ratio
beyond standard optimization levels, which we term extreme
inlining. We focus on five ML-assisted binary analysis tasks
for security, using 20 unique models to systematically evaluate
their robustness under extreme inlining scenarios. Our extensive
experiments reveal several significant findings: i) function inlin-
ing, though a benign transformation in intent, can (in)directly
affect ML model behaviors, being potentially exploited by evading
discriminative or generative ML models; ii) ML models relying
on static features can be highly sensitive to inlining; iii) subtle
compiler settings can be leveraged to deliberately craft evasive
binary variants; and iv) inlining ratios vary substantially across
applications and build configurations, undermining assumptions
of consistency in training and evaluation of ML models.

I. INTRODUCTION

Today, most applications are distributed in the form of
executable binaries containing low-level machine instructions
and embedded data. Modern compilers produce these binaries
via a sophisticated compilation pipeline, which involves a
broad spectrum of optimizations. Among them, function inlin-
ing is a well-established optimization technique that replaces
a function call site with the body of the callee. While this
may appear to be a trivial transformation, determining an
optimal inlining strategy is challenging – comparable to the
NP-complete Knapsack problem [94] in complexity.

When the source code is unavailable, binary reverse en-
gineering (i.e., binary reversing) is commonly employed to
comprehend the inner workings of a binary, unveiling hid-
den or unknown functionality. The binary reversing can be
performed either statically [105], [53], [2], [6] (i.e., analysis

∗ Corresponding author.

without executing a binary) or dynamically [31], [90], [108].
Since the disassembled instructions in binaries lack high-level
information (e.g., function names, variable names, or types),
traditional approaches extract a wide range of features, such
as numeric patterns, control and data flows, and instruction
sequences. Such features play a crucial role in security tasks,
including function boundary detection [11], [84], binary code
similarity detection (BCSD) [28], [5], [85], [75], [104], [100],
vulnerability detection [38], [96], malware analysis [6], mal-
ware family classification [60], [21], and crash root cause
analysis [82].

Recent advances integrate machine learning (ML) (e.g.,
deep learning) techniques to analyze binaries in a high-
dimensional feature space. A vast amount of research in
the literature have demonstrated the effectiveness of this
new direction, guiding a reverse engineer by inferring func-
tion names [55], [41], [24], variable names [41], [15] and
types [41], [15], and even recovering decompiled code [36],
[50], in addition to the tasks listed above.

However, function inlining as a common compiler opti-
mization can substantially distort static features for reverse
engineering. Inlining merges the callee’s instructions into the
caller, which can drastically alter machine code and control
flow structures. These effects are amplified with nested inlining
or when additional optimizations follow. Consequently, static
features may no longer be reliable for decision-making in ML
models when aggressive inlining is applied (on purpose).

Although the substantial impact of function inlining is
well known, an in-depth study of its security implications
on ML-based models (e.g., to what extent) has remained
underexplored in the existing literature. While several works
have considered function inlining [43], [44], [14], [28], others
have occasionally misrepresented [8], underestimated [53],
[56], [64], [32], heuristically addressed [14], [28], [107], [106]
it, or paid limited attention [86], [32], [103], [33], [105], [46],
[83], [49], [84], [11]. To the best of our knowledge, this is
the first study that delves into 1 uncovering the security
implications of function inlining in the context of modern
ML-based models; 2 investigating the entire decision-making
pipeline of inlining a function, including the internal workings
of the compiler’s cost model; 3 exploring a broad set of (often
overlooked) compiler options that affect function inlining de-
cisions; and 4 identifying a particular combination of options
that can increase the inlining ratio (e.g., up to 79.64% in our
experiments). Our study is grounded in the LLVM compiler
toolchain, which offers well-modularized building blocks. We
leverage debugging information and intermediate compiler-
producing outputs to construct the ground truth.
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LLVM’s inlining process, in essence, follows a structured
pipeline: the frontend (i.e., Clang) and the middle end (i.e.,
Opt) apply a series of analyses and transformation passes
on intermediate representations. The CGSCC (Call-Graph
Strongly Connected Components) pass manager internally
coordinates inlining and other call-graph-based optimizations
across strongly connected components (i.e., sets of mutually
reachable functions). The function inlining pass, as part of
CGSCC, evaluates each function candidate with a cost model
to compare a function’s inlining cost with a threshold. This
pass is applied iteratively following each update to the call
graph. In the meantime, a multitude of compiler options
(Table II) can affect this decision.

In this work, we examine the potential misuse of function
inlining as a means of circumventing ML-based security mod-
els. We identify a specific configuration of compiler options
that aggressively increases the inlining ratio, a strategy we term
extreme inlining. Notably, we demonstrate how this otherwise
legitimate compiler mechanism can be exploited by adversaries
to introduce deliberate mutations via extreme inlining, thereby
enabling evasion of both discriminative and generative ML-
based security models. Our threat model assumes a standard
build process repurposed for malicious ends without the com-
piler’s modification or obfuscation. Additionally, we revisit
varying inlining scenarios, clarifying subtleties in function
inlining practices.

To validate our claims, we conduct extensive experiments
by defining nine research questions from two different per-
spectives. First, we explore how function inlining affects ML-
assisted security applications with the following five tasks
by training 20 unique models (Section VI-A): 1 binary
code similarity detection, 2 function symbol name prediction,
3 malware detection, 4 malware family classification, and
5 vulnerability detection. Second, we evaluate the function
inlining optimization itself in terms of its ratio and further
impacts with the following four questions (Section VI-B): 6
function inlining ratio and optimization levels across different
applications, 7 the ratio and the (frontend) compiler options,
8 the ratio and a combination of (middle end) compiler
options toward extreme inlining, and 9 the variation of static
features in a binary according to (extreme) inlining.

Our key findings indicate that 1 function inlining (itself),
while intended as a benign optimization, can be exploited by
an adversary to evade both discriminative and generative ML
models, particularly those that rely on static features and are
sensitive to such transformations; 2 subtle inlining config-
urations that affect a decision pipeline can be deliberately
manipulated to produce evasive binary variants with ease;
and 3 inlining ratios can vary significantly depending on
application-specific factors (e.g., programming style) and build
settings (e.g., optimization levels, compiler options), offering
ample flexibility for generating diverse mutations.

The following summarizes our contributions.

• To the best of our knowledge, this is the first comprehensive
study that focuses solely on function inlining. We investigate
the complex decision-making process for function inlining
within the LLVM compiler toolchain, diving into the inner
heuristics, compiler options, and the cost model for inlining.

TABLE I: Special LLVM options to emit intermediate outputs
of function inlining.

Option Description

-Rpass=inline Shows inlining information (e.g., success, failure)
-Rpass-analysis=inline Shows inlining analysis (e.g., cost, threshold)
-Rpass-missed=inline Shows missed inlining (e.g., heuristics, high cost)

• We clarify the misleading subtleties in function inlining
practices, which have been underestimated or overlooked.

• We present extreme inlining with a different combination of
compiler options, and how it can distort static features (e.g.,
machine code, control flow graphs).

• We conduct an extensive study on security implications
by investigating how (extreme) inlining affects ML-assisted
binary reversing tasks.

To facilitate future research, we release our datasets, anal-
ysis, and models as open source 1.

II. BACKGROUND

LLVM Architecture and Intermediate Outputs. LLVM
(Low-level virtual machine) [87] is a collection of compiler
toolchains, which provides modular building blocks for both
the frontend and backend. Its core design centers around an
intermediate representation (IR), which enables support for
various programming languages at the frontend, analysis and
transformation of IRs at the middle end, and target-specific
code generation at the backend. LLVM provides numerous
options for emitting intermediate results during transforma-
tions 2. In this work, we adopt three special options in LLVM
(Table I) for gathering diagnostic reports on function inlining.
Although the outputs may be imperfect [17], we harness them
to reveal how a cost model internally determines whether a
function can be inlined through complex computations (i.e.,
cost, threshold). As a final note, we explore the LLVM source
for in-depth analysis of its function inlining optimization.

Symbols and Linkage Types. The compiler maintains several
different linkage types that define the visibility of a symbol
when emitting a binary, which determine how they can be
accessed across different modules. These types are crucial
to handling symbol visibility, code optimization, and symbol
collision. First, a symbol with an external linkage is supposed
to be visible outside of a module for being referenced by
other modules, including functions and variables without the
static keyword or with extern. A function is declared
with an external linkage by default [91]. Second, a symbol
with an internal linkage is only visible within a module,
which cannot be referenced from others (but avoid name
collisions). It is noted that static functions are considered
as unused global symbols (thus safely removed [23]) once
they are inlined. Third, a symbol with a private linkage is
analogous to internal ones, with an additional constraint that
even link time optimization (LTO) cannot make it visible to
other translation units. Lastly, a symbol with a weak linkage
allows for multiple definitions of the identical symbol across
different modules, which the linker chooses from afterward.

1https://doi.org/10.5281/zenodo.17759528
2GCC offers the -fdump-ipa-inline option for determining function

inlining in a single-source code [43] alone.

2

https://doi.org/10.5281/zenodo.17759528


This flexibility renders the multiple symbols in need present
for inline functions or template instantiations in C++.

DWARF Information. Debugging With Attributed Record
Formats (or DWARF for short) [19] defines a structured data
format that contains essential information for debugging such
as mappings between source and machine code. A debugging
information entry (DIE) enables one to create a low-level
representation of a source program, each of which includes
an identifying tag and a series of attributes. The tag specifies
the class of the entry while the attributes define its specific
characteristics. Table VIII in Appendix enumerates the tag and
attributes that are associated with the inlining behavior of a
function in DWARF. The information can be generated during
compilation with the -g option. As DWARF provides a unified
approach that is orthogonal to the programming language and
its underlying structure, it has been widely adopted to obtain
the ground truth of an executable binary. Likewise, this work
also utilizes DWARF v5 [19] to obtain the ground truth of
function inlining (Section VII).

Benefits and Downsides of Function Inlining. A function
inlining optimization involves trade-offs. The evident benefit
of inlining is to reduce the performance overhead of a function
invocation by eliminating additional stack-relevant operations,
such as (re)storing a value(s) to a register(s) for passing a
parameter(s) and the prologue and epilogue of a function for
adjusting stack and base pointers. Next, function inlining may
increase instruction cache locality (e.g., an inlined function
in a loop). Besides, function inlining provides a chance for
further optimization(s). Meanwhile, locating duplicate codes
(i.e., instructions) multiple times inevitably grows the size of
an executable binary. Another downside would be likely to
increase the pressure of allocating more registers due to their
longer liveness and more loop invariants. Lastly, a function
inlining process increases compilation time.

III. MOTIVATION AND THREAT MODEL

Function Inlining in Prior Work. In surveying prior work,
we discover that function inlining has often been misrepre-
sented [8], underestimated [53], [56], [64], [32], heuristically
addressed [14], [28], [107], [106] it, or paid limited atten-
tion [86], [32], [103], [33], [105], [46], [83], [49], [84], [11].
For instance, Alves-Foss et al. [8] misrepresent the implica-
tions of inlining by stating that “if a source code function is
inlined, it is no longer a function, and an analysis tool should
not claim it found that function within the binary”; however,
inlined functions may still appear in the binary. Binkit [53] and
discovRE [32] underestimate the pervasiveness of inlining by
applying the -fno-inline option to prevent inlining. Besides,
the always_inline directive can override this setting. Mean-
while, Dispatch [56] examines a case where a large trigonomet-
ric function (e.g., tan) in firmware avoids function inlining to
allow for handy vulnerability patching. Many existing works,
including those focused on tasks like bug discovery, code
search, and code similarity detection [86], [103], [33], [105],
[46], [83], [49] do not carefully examine the impact of function
inlining, failing to account for its potential influence on code
semantics. Similarly, XDA [84] and BYTEWEIGHT [11]
rely on function prologues and epilogues, without thoroughly
discussing the impact of inlining. Dream(++) [107], [106]

addresses inlining heuristically by building signature databases
to recognize (known) commonly inlined library functions such
as strcpy, strlen and strcmp. On the other hand, CI-
Detector [44] and Jia et al. [43] underscore handling inlining
directives. Collberg et al. [18] describe inlining as an effective
and practical obfuscation technique because it removes proce-
dural abstraction from the program. Meanwhile, FUNCRE [4]
addresses inlined library functions consistently across various
optimization levels but encounters challenges when multiple
consecutive library functions are inlined together. This work
focuses on the unique impact of inlining, such as its ability to
alter call graphs, control-flow graphs, and function boundaries.

Threat Model and Assumptions. Our threat model assumes
that a benign, standard build process can be repurposed for
malicious ends. Under this regime, attackers need not rely
on obfuscation to evade detection; they can simply recom-
pile the same code under different optimization strategies or
build configurations. We focus on realistic, flag-level control
of inlining (e.g., optimization levels and inliner parameters)
without modifying the compiler’s internal logic. Notably, this
assumption differs from traditional obfuscation, which involves
deliberate, nonstandard transformations that introduce different
trade-offs and detection surfaces, and may lead to performance
or compliance issues.

IV. DECISION PIPELINE FOR FUNCTION INLINING

Figure 1 illustrates the whole decision pipeline for function
inlining, focusing on the LLVM [87] compiler infrastructure.

A. External Inlining Factors

1) (In)Direct Hints on Inlining at Source: The C and C++
programming languages offer (in)direct means for a program-
mer to hint function inlining using a directive or an attribute.
As part of the C and C++ standards, the inline specifier
provides a hint to inline a function at the function declaration 3.
Besides, different compilers provide additional attributes and
pragmas with respect to inlining. Clang and GCC allow the
compiler to explicitly inline the function with the specific
function attribute of __attribute__((always_inline))
regardless of the optimization level (i.e., -O0 is not an excep-
tion). Conversely, __attribute__((noinline)) prevents
the compiler from inlining the function 4. In a similar vein,
both #pragma inline and #pragma noinline directives
serve the purpose of impacting function inlining. Note that the
above compiler-specific directives are not part of the standards,
which may differ depending on their implementations. Akin
to direct hints above, other attributes can indirectly influ-
ence function inlining. The __attribute__((flatten))
attribute allows for inlining all callees within a function as
if each call site had __attribute__((always_inline)).
Meanwhile, the __attribute__((naked)) attribute is typ-
ically used for an assembly function, indirectly causing
the compiler to avoid function inlining. Similarly, the

3The __inline specifier serves the same purpose before the C99 standard;
however, it is still compatible with modern compilers.

4Similarly, Microsoft Visual C++ compiler supports the
__forceinline and __declspec(noinline) keywords to enforce
and prevent function inlining, respectively.
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Fig. 1: Overview of the whole function inlining pipeline in the LLVM toolchain [87]. We simplify the pipeline of a complex
decision process by classifying the factors that affect inlining into external and internal elements. Varying directives and attributes
(e.g., inline keyword) at source code, optimization levels, and compilation options allow a programmer to impact the inlining
ratio in a binary (Section IV-A). At compilation time, Clang defines the internal attributes of a function based on those factors. Opt
iteratively performs function inlining across strongly connected components (SCCs) during the transformations of intermediate
representation (IR) (Section IV-B). Note that the process highly involves with the heuristics and the built-in cost model (e.g.,
checking if a cost is higher than a threshold). In the case of link time optimization (LTO) enabled, additional function inlining
can be performed by consolidating modules (Section IV-C).

TABLE II: Comprehensive compiler options that affect a cost model for function inlining at the frontend and middle end.

Option Name Tool Default Description

-finline-functions Clang Disabled Inlines a suitable function based on an optimization level
-finline-hint-functions Clang Disabled Inlines a function that is (explicitly or implicitly) marked as inline
-fno-inline-functions Clang Disabled Disables function inlining unless a function is declared with always_inline
-fno-inline Clang Disabled Disables all function inlining except always_inline

-inlinedefault-threshold Opt 225 Sets the initial threshold for O1 and O2 alone
-inline-threshold Opt 225 Sets the initial threshold for all optimization levels
-inlinehint-threshold Opt 335 Sets the threshold of a function marked with the inlinehint attribute
-inline-cold-callsite-threshold Opt 45 Sets the threshold of a cold call site
-inline-savings-multiplier Opt 8 Sets the multiplier for cycle savings during inlining
-inline-size-allowance Opt 100 Sets the size allowance for inlining without sufficient cycle savings
-inlinecold-threshold Opt 45 Sets the threshold for a cold call site
-hot-callsite-threshold Opt 3,000 Sets the threshold for a hot call site
-locally-hot-callsite-threshold Opt 525 Sets the threshold for a hot call site within a local scope
-cold-callsite-rel-freq Opt 2 Sets a maximum block frequency for a call site to be cold (no profile information)
-hot-callsite-rel-freq Opt 60 Sets a minimum block frequency for a call site to be hot (no profile information)
-inline-call-penalty Opt 25 Sets a call penalty per function invocation
-inline-enable-cost-benefit-analysis Opt false Enables the cost-benefit analysis for the inliner
-inline-cost-full Opt false Enables to compute the full inline cost when the cost exceeds the threshold
-inline-caller-superset-nobuiltin Opt true Enables inlining when a caller has a superset of the callee’s nobuiltin attribute
-disable-gep-const-evaluation Opt false Disables the evaluation of GetElementPtr with constant operands

__attribute__((optnone)) attribute disables all optimiza-
tions for a function as well as inlining.

2) Optimization Levels: A compiler optimization level
highly affects IR and machine code generation, striking a
balance between performance, compilation time, and size. The
-O[0-3] typically represents the level of optimization (i.e.,
none, basic, medium, or maximum) whereas the -O[s,z] ad-
justs the code size (i.e., small or minimum). The optimization
strategy unavoidably impacts on function inlining: e.g., -O3
performs aggressive inlining to enhance execution speed, -Os
does moderate inlining to balance performance and size, and
-Oz attempts to minimize code size (e.g., less inlining than
others).

3) Compiler Options: LLVM [87] offers varying op-
tions that configure global settings for inlining deci-
sions across all functions. Table II summarizes compre-
hensive (style-agnostic) options that assist in elaborately

controlling the function inlining behaviors in LLVM 5.
For instance, -finline-functions allows the compiler
to decide on a function to be inlined. Alternatively,
-finline-hint-functions instructs the compiler to con-
sider a function with a specific keyword or attribute for
inlining alone. In contrast, Clang also provides the op-
tions to disable inlining based on compiler heuristics with
-fno-inline-functions or to disable it entirely, except for
a function marked alwaysinline (Section IV-B).

B. Internal Inlining Factors at Compilation

1) Function Attributes: Based on the external factors like
hints, optimization levels, and compiler options, Clang inter-
nally labels the attribute of a function as one of the follow-

5The supportive options can be found with --help-hidden. The function-
inlining-specific options available for the LLVM optimizer (opt) can be passed
with -mllvm [flagname=value] in Clang. Note that we exclude the options
that rely on a specific style or language (e.g., GNU89, Assembly).
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TABLE III: Selective call-site cases that never inline a function
as the built-in heuristics in LLVM.

Scope Case Description

Basic Block A misuse of a block address outside of the specific instruction (e.g., callbr)

Caller optnone attribute that disables all optimizations including inlining
noduplicate attribute that avoids multiple instances

Caller and
Callee

Both callee and caller with conflicting attributes (e.g., alwaysinline and
noinline together)
An incompatible null pointer definition between the caller and callee

Callee noinline attribute
An interposable function that can be replaced or overridden by another at
link time or runtime
A unsplit coroutine call that cannot split into separate parts for suspension
and resumption

Call site noinline attribute
A Byval argument with an incorrect memory address space (i.e., without
the alloca address space)
An indirect call where the function being called cannot be determined at
compile time

Instruction Amount of memory unknown at compile time (e.g., dynamic allocation)
A function with multiple return paths (returns twice)
A function initialized with variadic arguments
An indirect branch where the target is determined at runtime
An intrinsic that is too complex to be inlined (e.g., icall_branch_funnel
or localescape).
A recursive call that lead to infinite loops or allocate too much stack space

ing: inlinehint, alwaysinline, noinline, naked, and
optnone. Setting those attributes occurs at the early stage of
IR generation (from AST), conforming custom directives in a
subsequent optimization process. For instance, although -O0
disables most optimizations for compilation speed and debug-
ging, it performs minimal and necessary transformations (e.g.,
alwaysinline) to ensure correct code execution. As a final
note, a compiler-generated function like an intrinsic function
is often marked with alwaysinline to ensure efficiency.

2) LLVM Inliner Pass: LLVM offers the inliner pass that
can analyze and transform intermediate representations, which
internally maintains a pass manager for applying a chain of
passes to IRs in a specific order [69]. The LLVM’s function
inliner pass performs the decision of function inlining, which is
tightly coupled with the CGSCC pass manager [66] that runs
on a strongly connected component (SCC) in a call graph.
The SCC consists of callers and callees, where each function
is simplified via a sequence of transformation passes such
as control flow graph simplification (SimplifyCFG pass [70]),
scalar replacement of aggregates (SROA pass [71]), and early
common sub-expression elimination (EarlyCSE pass [67]).
These preliminary steps ensure that non-trivial SCCs are ade-
quately optimized prior to function inlining. Finally, CGSCC
iteratively invokes the function inliner pass across SCCs in a
bottom-up order based on a cost model (See Section IV-B3).

3) Cost Model: The cost model in LLVM begins with
the pre-defined cases that must not be inlined (as heuristics).
Table III enumerates such cases with a scope. Once the model
confirms feasible cases for function inlining, the function
inliner pass evaluates a call site (i.e., a pair of caller and callee)
to dynamically compute a threshold and a cost depending
on the aforementioned factors. Simply put, the inliner pass
mechanically performs inlining transformation in SCC when
the cost is less than the threshold.

Threshold Computation. At each call site, a threshold is
initialized by an optimization level (e.g., -Oz → 5, -Os → 50,

TABLE IV: Conditions that affect a cost and a threshold for
function inlining for the LLVM’s cost model.

Target Impact Condition

Cost

↑

Missing instruction simplification (e.g., switch, loop, load)
Presence of an intrinsic function
Unoptimized call sites within a callee
Complex memory operations that cannot be simplified
Cold calling conventions (coldcc)
General function call overhead (call penalty)

↓
Last call of a static function
Call site arguments with values (e.g., byval)
Successful transformation (e.g., indirect to direct calls)

Threshold

↑
Presence of the inlinehint attribute
Hot region
Adjustments based on the target-specific architecture

↓

Presence of the minsize or optsize attributes
Cold region
Complex branching
Presence of vectorization instructions

CGSCC Pass Manager

Inliner Pass
(Cost Model)

[Each Call Site]

Built-in Heuristics
(Table III)

Final 
Cost

<
Final

Threshold

Applied?

Caller Callee

Attributes

Can this function be inlined?

Conditions
(Table IV)

Inlining
Decision

Inlining
Results

YES NO

Initial Cost = ? Initial Threshold = ?

Fig. 2: Overview of the cost model in LLVM for determining
a function to be inlined. While the CGSCC pass manager runs
on strongly connected components, it invokes the inliner pass
when needed. The cost model first considers the heuristics
(Table III) of each call site to check if it can never be inlined.
If possible, a cost and a threshold are initialized, followed by
being updated according to dynamic conditions (Table IV). The
process mechanically determines function inlining according to
a cost. Then, CGSCC iteratively performs further optimizations
based on the inlining.

-O1 → 225, -O2 → 225, -O3 → 250). Additionally, the
CGSCC pass manager holds fruitful information on the call
site with profile summary information (PSI; e.g., hotness or
coldness of a function, execution times) and block frequency
information (BFI; e.g., execution frequency of an individual
basic block). Afterward, the inliner pass increases or decreases
the threshold depending on 1 the attributes of a caller and/or
a callee, 2 the property of a code region, and 3 other
constructs like a complex branch or a vectorized instruction
(Table IV). For instance, the inlinehint attribute via the
inline specifier can increase the threshold.

Cost Computation. By default, a cost is initialized to zero. A
special case arises when a callee is a static function and the
call site is the last call invocation, setting the initial cost to
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a negative value of −15, 000. This substantially increases the
likelihood of function inlining. As summarized at Table IV,
various conditions can adjust the cost. In essence, the inliner
pass walks through each basic block and every instruction by
adding or subtracting a designated value, obtaining the final
cost. It is noteworthy to mention that a cost or a threshold could
be configured by compiler options (Table II). On the one hand,
the cost can be penalized (i.e., increasing) in cases of missing
instruction simplification, presence of an intrinsic function, an
optimized call site, a complex memory operation, or a cold
calling convention. On the other hand, the cost can decrease
in cases of call site arguments with values and transformation
from indirect to direct call invocation. LTO promotes every
symbol to internal linkage using the internalize pass,
attempting to eliminate it. However, the inlined function under
LTO may remain if it has not been inlined at all call sites.

C. Internal Inlining Factors at Linking

1) Link Time Optimization and Inlining: Enabling
LTO [39] literally provides the linker with global optimization
opportunities from the whole program viewpoint at link time,
which otherwise cannot be performed under the individual
compilation unit. There are two primary types of LTO 6. in
LLVM: ThinLTO [47] and Full LTO [68], each with different
implications for function inlining.

Inlining with Full LTO. Full LTO [68] enables aggressive
inlining across the entire program by making all functions
globally visible, allowing for further optimizations such as
constant propagation and dead code elimination. However, it
incurs significant resource overheads (e.g., memory usage),
taking a longer compilation time.

Inlining with ThinLTO. ThinLTO [47] aims to reduce com-
putational overheads while adopting the benefits of Full LTO.
In essence, ThinLTO generates a summary of the functions
in each module, which allows for performing additional func-
tion inlining along with incremental cross-module information
during the linking phase.

V. SUBTLETIES IN FUNCTION INLINING PRACTICES

In this section, we clarify six (common) misleading beliefs
about function inlining, none of which hold true in practice.
Then, we introduce the extreme inlining strategy.

A. Misleading Case Study

A function would not be inlined with -O0 or the
-fno-inline option. One may want to generate a binary
without any optimization (including inlining), thereby preserv-
ing a function and its inner structure eases debugging (e.g.,
tracing an execution flow, identifying an error [10]). Although
the compiler conforms with the request to suppress most
optimizations, a function with the always_inline directive
remains an exception regardless of a given optimization level
or provided compiler option. In a nutshell, both -O0 and
the -fno-inline option cannot override the above directive,
while it broadly prevents inlining as in Figure 8 and Figure 9.

6To enable LTO in LLVM, we use the -flto option using the LLVM linker
(i.e., -fuse-ld=lld).

The always_inline directive would always inline a
function. Any function directive (including inline and
always_inline) does not necessarily guarantee a function
to be inlined because the compiler will make a final decision
throughout the decision pipeline (Figure 1) to evaluate a call
site with the complex cost model (Figure 2). There are plenty
of such cases where the compiler never considers function
inlining irrespective of optimization levels, directive hints, or
compiler options, including recursive calls, indirect calls, and
functions with variadic arguments (Table III).

A function without any inlining-relevant directive would
not be inlined. In practice, LLVM regards every function
as a candidate to be inlined during compilation, considering
a function size, complexity, optimization level, and compiler
options as a whole. In essence, function inlining is an opt-
out operation in that a function may be inlined unless it has
an explicit mark with the no_inline attribute Figure 7 and
Figure 6 show such examples.

An inlined function would disappear in a binary. One of
the most common misconceptions is that an inlined function
has been eliminated (hence fully disappeared) because the call
site is replaced with the function. The answer is partially
affirmative; however, it is possible that an inlined function
could be present (with a symbol) in a final binary when the
function needs to be invoked globally Figure 7 and Figure 6
show such instances.

A conflicting condition for function inlining might lead
to unpredictable behaviors. One may pose a hypotheti-
cal question like 1 what if the two functions may have
a contradictory condition (e.g., one with inline and an-
other with noinline)? or 2 what if a conflicting option is
given (e.g., -fno-inline) when compiling a function with
inlinehint)? To address such issues, the compiler estab-
lishes several pre-defined rules. First, the attributes (directives)
come over the compiler options. Next, the compiler prioritizes
each directive in the following order: optnone, noinline,
minsize, optsize, inlinehint, and always_inline. To
exemplify, when a function is declared with inlinehint
or always_inline, optnone takes precedence, effectively
negating other attributes. Similarly, the presence of noinline
overrides alwaysinline.

A function in a library would not be inlined. It is common
practice to resolve a function address in a library at runtime,
internally following the routine via Procedure Linkage Table
(PLT) and Global Offset Table (GOT), with the assistance of
a dynamic loader. However, there are a handful of scenarios
that a library function can be an inlining candidate. First, the
preprocessor prepares the source by handing various directives
(e.g., macro definition, file inclusion, conditional statement),
possibly rendering a function defined in a header file inlined
when the header is included in multiple translation units.
Second, similarly, it is possible for the compiler to inline a
function if a header-only library [59], [52] provides complete
function definitions visible in a header. Third, LLVM defines a
series of special intrinsic functions [88] (e.g., llvm.memcpy,
llvm.memset) that operate on the IR level, being exposed as
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an inlining candidate with the always_inline attribute 7.

B. Inlined but Remaining Functions

A function symbol with an internal linkage (e.g., static)
goes away when inlined in every call site. However, even
with an internal function, the function may remain after
inlining (from elsewhere) if any call site requires that function
invocation. Conversely, a function with an external linkage
(e.g., extern) would remain after being inlined by default.

C. Extreme Inlining

Distinguishing from aggressive inlining by high optimiza-
tion levels, we introduce the concept of extreme inlining that
promote the function inlining ratio beyond standard compiler
behaviors. Section VI-B3 elaborates our exploration by ex-
ploiting a decision pipeline to establish a strategy for extreme
inlining, including opt-levels, compilation options, and LTO.

VI. FUNCTION INLINING AND SECURITY IMPLICATIONS

We run our experiments on a 64-bit Ubuntu 20.04 system
equipped with Intel(R) Xeon(R) Gold 5218R CPU 3.00GHz,
512GB RAM, and two RTX A6000 GPUs.

Benign Software Corpus. The first half of Table V sum-
marizes our benign program corpus to evaluate the impact
of function inlining on ML-based models. Each package and
application may have been compiled with slightly different
compilation options (e.g., -Oz, -O3) or inlining thresholds
(e.g., 2,225, 200,000) due to build constraints. In cases where
LTO (either thin or full) fails, we disable it but preserve the
original inlining thresholds and optimization levels. To induce
extreme inlining behavior, we empirically tune the relevant
compilation settings. To minimize evaluation bias, we de-
duplicate identical functions by symbol names and ensure test
samples never appear in training. Our final benign application
dataset consists of 1, 524 program variations, including addi-
tional 398 samples with extreme inlining applied.

Malicious Software Corpus. The second half of Table V
summarizes our malware corpus. We focus on IoT malware due
to its prevalence, shared code bases [21], and the availability
of leaked source code (e.g., Mirai [9] and Gafgyt [78]).
For detecting malware, we construct a curated dataset of
761 malware samples from VirusShare [77], including Mirai,
Gafgyt, and Tsunami, by removing corrupted binaries, and
packed executables from a broader collection. Similarly, for
classifying malware, we prepare 12, 727 samples across 10
families from Alrawi et al. [7]: Mirai, Gafgyt, Tsunami,
Lotoor, Dofloo, DDoSTF, ExploitScan, Dvmap, Gluper, and
Healerbot. To evaluate the impact (i.e., evading detection) of
function inlining, we recompile open-sourced Mirai and Gafgyt
(100 samples per each) by applying extreme inlining with
custom compiler options. Our final malware dataset consists of
13, 688 samples in total. For malware-related tasks, we remove
duplicate samples that are identical 62-dimensional statistical
feature representation to avoid model overfitting. As a final
note, Table XI in Appendix shows the whole recipe for extreme
inlining in our experiments.

7The intrinsic functions in LLVM are beneficial, providing code simplifica-
tion and platform independence as well as leveraging the features of a target
architecture.

TABLE V: Binary corpus for experiments to assess the impact
of function inlining on ML-based models. We choose various
security tasks: (T1) binary code similarity detection, (T2) func-
tion name prediction, (T3) malware detection, (T4) malware
family prediction, and (T5) vulnerability detection. We adopt
two open-sourced malware for artificial inlining. Note that we
generate 32-bit ARM binaries for T4(*), while the others are
generated as 64-bit Intel x86 binaries.

Type Package or Version Baseline T1 T2 T3 T4* T5Application(s) Binaries

Benign

coreutils [20] 9.3 106 742 742 624 - -
binutils [13] 2.40 22 118 118 78 - -
diffutils [26] 3.8 4 28 28 24 - -
findutils [35] 4.9 4 28 28 24 - -

openssl [81] 3.1.4 1 7 7 6 - -
1.0.2d 1 - - - - 6

lvm2 [76] 2.03.21 52 364 364 - - -
gsl [40] 2.7.0 2 14 14 9 - -
valgrind [99] 3.21.0 4 28 28 156 - -
openmpi [79] 4.1.5 7 49 49 36 - -
putty [89] 0.79 6 42 42 36 - -
nginx [80] 1.21.6 1 7 7 6 - -
lighttpd [62] 2.0.0 2 14 14 10 - -
SPEC2006 [97] - 15 - - 83 - -

Malware

Mirai [37] - 2 - - 261 9,215 -
Gafgyt [27] - 1 - - 421 3,119 -
Tsunami - - - - 79 228 -
Lotoor - - - - - 80 -
Dofloo - - - - - 40 -
DDoSTF - - - - - 15 -
ExploitScan - - - - - 11 -
Dvmap - - - - - 8 -
Gluper - - - - - 6 -
Healerbot - - - - - 5 -

A. Security Impact of Function Inlining on ML Models

Research Questions. We define five research questions to
evaluate how function inlining affects ML-based models from
a security aspect. We choose five ML-based security tasks,
including binary code similarity detection (T1), function name
prediction (T2), malware detection (T3), malware family clas-
sification (T4), and vulnerability detection (T5).

• RQ1: How does function inlining affect ML-based binary
code similarity detection models (Section VI-A1)?

• RQ2: How does function inlining affect ML-based function
symbol name prediction models (Section VI-A2)?

• RQ3: How does function inlining affect ML-based malware
detection models (Section VI-A3)?

• RQ4: How does function inlining affect ML-based malware
family classification models (Section VI-A4)?

• RQ5: How does function inlining affect an ML-based vul-
nerability detection model (Section VI-A5)?

ML Model Selection for Security Tasks. We select a di-
verse set of ML-based models spanning both discriminative
and generative tasks, covering a range of architectures (e.g.,
embedding-based models, GNNs, Transformers, RNNs) and
input modalities (e.g., statistical features, dynamic traces).
Note that we use the original pre-trained form for T1 and T5.
Meanwhile, we retrained an AsmDepictor model for T2 to
match our Clang-based corpus, as their originals were trained
on GCC binaries. Similarly, SymLM was retrained on our
dataset so that execution-aware embeddings can reflect the
semantics of our compilation settings. For T3 and T4, we reim-
plemented the model architectures based on the descriptions in
the original paper [2], and retrained the models on our corpus.
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Fig. 3: Experimental results across six BCSD models on three datasets: non-inlining, inlining, and extreme inlining pair samples.
We carefully prepare a dataset comprising non-inlining, inlining, and extreme inlining cases to investigate the effectiveness of
inlining. Overall, there is a gradual decrease in performance for the inlining samples. We discuss the exceptional case of Asm2Vec
in Section VI-A1. In general, the other models demonstrate a significant drop in recall compared to precision (i.e., increasing
false negatives). A, P, R, and F1 denote an accuracy, precision, recall, and F1 value, respectively.
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Fig. 4: Asm2Vec performance for the non-inlining (left) and
inlining (right) pairs. Circle area indicates the number of pairs,
and color intensity represents their F1 score. The breakdown
shows that most performance degradation stems from non-
inlining pairs involving -O0 versus other optimization levels,
suggesting that random walk sequences at -O0 differ substan-
tially from those at higher optimization levels. Empty cells
correspond to combinations with too few samples.

1) (RQ1) Inlining Impact on BCSD Models: A BCSD task
determines code similarity between a given pair of code snip-
pets. To examine the function inlining impact on performance,
we prepare three different pairs: non-inlining samples with the
pairs of both non-inlining functions, inlining samples with the
pairs of a non-inlining and an inlining function, and extreme
inlining samples with the pairs of a non-inlining and an inlining
function that applies our extreme inlining strategy We use the
functions that appear in every optimization, highlighting the
effectiveness of inlining on various BCSD models. We choose
six representative BCSD models for evaluation: Asm2Vec [28],
BinShot [5], Gemini [104], Trex [85], JTrans [100], and
SAFE [75]. Finally, we prepare 14, 984, 95, 774, and 23, 378
function pairs from BinShot [5], JTrans [100], and the BCSD
benchmark [74], respectively.

Results. Figure 3 presents the performance comparison for
six BCSD models with pairs of non-inlining, inlining, extreme
inlining. We adopt the BCSD benchmark [74] that includes
Asm2Vec [28], Gemini [104], Trex [85], and SAFE [75],
providing a similarity score (S) between pairs in a single
platform. We measure the accuracy, precision, recall, and F1
with a threshold of T = 0.5 (e.g., similar if S > 0.5) in
comparison with BinShot [5]. In general, moderate perfor-
mance degradation has been observed (3.6% in F1; 6.2% of
recall on average) for the inlining samples while significant
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Fig. 5: Experimental results with AsmDepictor [55] and
SymLM [46] on three datasets: non-inlining, inlining, and
extreme inlining (Section VI-A2). AsmDepictor shows a slight
performance increase with the inlining cases, demonstrating
that it can leverage the additional contextual information for
inference. SymLM demonstrates a decrease in performance
for the inlining case. Meanwhile, the extreme inlining cases
mislead both models with unseen patterns, resulting in non-
negligible performance drops (e.g., 23.99% for AsmDepictor,
75.69% for SymLM).

decline (12.6% in F1; 21.2% in recall on average) for the
samples with extreme inlining. Particularly, we observe notable
decrease in recall (false negatives) rather than precision (false
positives). While this suggests that similar function pairs
may appear dissimilar when evaluating inlined functions, one
could argue that the additional semantic information may help
the model better recognize the similarity between functions.
However, as discussed in Section IV, function inlining in-
troduces opportunities for further optimizations, potentially
obscuring the similarity between otherwise a similar function
pair during evaluation. Exceptionally, Asm2Vec deviates from
other models: i.e., non-inlining pair samples exhibits lower
performance than inlining ones. Our investigation reveals that
pair-wise performance discrepancies arises from the feature of
statically tracing (i.e., potential execution paths) by random
walk to infer code similarity as illustrated in Figure 4. We
observe that the pairs of -O0 versus -Oz that account for
almost half (10,614 out of 23,378) lead to overall performance
degradation. We attribute this effect to differences in the
random-walk sequences generated under -O0 compared to
those under higher optimization levels.

2) (RQ2) Inlining Impact on Function Name Prediction
Models: A function name prediction task aims to infer the
original symbol name of a function given a chunk of assembly
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code. Similar to the BCSD experiments, we prepare our
dataset (Table V) for function name inference. We choose
two representative models: AsmDepictor [55] (generative) and
SymLM [46] (discriminative). We use precision (P), recall (R),
and F1 for evaluation.

Results. Figure 5 presents the empirical results for AsmDe-
pictor [55] and SymLM [46] on our test dataset (e.g., 7,863
cases). AsmDepictor demonstrates improved performance with
inlining, effectively leveraging the additional contextual in-
formation provided. While curious readers may attribute As-
mDepictor’s improved inlining performance to training data
distribution where 79% of our training dataset consists of non-
inlining functions. However, both AsmDepictor and SymLM
experience significant performance degradation under extreme
inlining: e.g., 24.0% and 75.7%, respectively. As a generative
model, AsmDepictor struggles with unseen instances when
generating function symbol names, likely due to abnormal
inlining patterns. The underperformance of SymLM may stem
from its approach of treating function name inference as a
multi-class multi-label classification task. Because the original
work uses four architectures and incorporates obfuscation
techniques for training, our findings suggest that achieving
comparable performance requires a substantially larger dataset
than what was used in our evaluation.

3) (RQ3) Inlining Impact on Malware Detection Models:
A malware detection task aims to distinguish malware from
benign sample(s). We trained four traditional ML models:
logistic regression as a linear model, random forest as an en-
semble method, CatBoost as a gradient boosting, and K-nearest
neighbors (KNN) as instance-based learning; and two deep
learning models: deep neural network (DNN) and convolu-
tional neural network (CNN) proposed by Abusnaina et al. [2].
We extract 62 statistical semantic features with TikNib [53].
Then, we evaluate each model 10 times using Monte Carlo
cross-validation.

Results. Table VI presents the experimental results for mal-
ware detection. While the original models achieved high
accuracies, their performance has been moderately degraded
(e.g., around 20%) when tested on in-house malware samples
that are applied with extreme inlining. This decline illustrates
how inlining introduces substantial changes in code structure,
leading to misclassification.

4) (RQ4) Inlining Impact on Malware Family Prediction
Models: A malware family prediction task aims to forecast
the likelihood that an unseen malware mutation belongs to a
known family. Close to malware detection, we use the same
ML-centric approaches excluding benign applications. It is
noted that these malware targets the (prevalent) 32-bit ARM
architecture in IoT devices. To handle a class imbalance, we
select 500 samples per family with oversampling and down
sampling [95].

Results. Table VI demonstrates the experimental results for
malware family prediction (e.g., 10 families). Using the same
semantic features with malware detection experiments, all
ML models show a decent performance (e.g., around 87%)
on community-collected IoT malware. However, their perfor-
mance significantly declines: i.e., 40% ↓ for most malware
family prediction models when tested on our in-house malware
with extreme inlining. Our findings indicate that all models

are sensitive to our extreme inlining. We hypothesize that this
senstivity arises from code sharing among IoT malware fami-
lies [21], where inlining obscures structural patterns essential
for fine-grained classification. In contrast, the broader semantic
gap in malware detection appears to be less affected.

5) (RQ5) Inlining Impact on Vulnerability Detection Mod-
els: A vulnerability detection task identifies the presence of
a known vulnerability (binary classification). Excluding vul-
nerability detection models that operate on source code [42],
[63], [61], [58], [102], [101], we choose two binary-based
detection models [73], [74] that adopt a code search (i.e.,
probing a vulnerable function) by leveraging BCSD capability.
We select 12 vulnerable functions in the libcrypto library
from two firmware images [16] – four functions from Netgear
R7000 and eight functions from TP-Link Deco M4 [74]
(Table IX in Appendix). Accordingly, we compile two versions
of the library containing the aforementioned vulnerabilities
in OpenSSL-1.0.2d [81]: one with inlining enabled and one
without. Each version is compiled at six optimization levels
(-O[0-3,s,z]), resulting in 12, 958 and 13, 298 functions,
respectively. We rank those functions based on their similarity
to each known vulnerable function and then compute the mean
reciprocal rank (MRR). We adopt MRR@100, which evaluates
the Top 100 most similar functions.

Results. Table VII presents the MRR@100 scores before and
after inlining, demonstrating the negative impact (i.e., lower
scores) on recognizing a vulnerability with an average drop
of 69%. Notably, we observe an exception with the Trex
model [85] at Netgear R7000 (0.550 → 0.625). However, our
further analysis reveals that the ranks of other similar functions
decrease except for the highest rank.

B. Evaluation of Function Inlining

Research Questions. This section explores the impact of
function inlining transformation itself in terms of inlining
ratios and static features, with the following research questions.

• RQ6: How do optimization levels affect a function inlining
ratio across different applications (Section VI-B1)?

• RQ7: How do the default compiler options (provided by
clang) affect a function inlining ratio (Section VI-B2)?

• RQ8: Which combination of compiler options (provided
by opt) increase a function inlining ratio toward extreme
inlining in practice (Section VI-B3)?

• RQ9: To what extent are static features affected by function
inlining in an executable, such as instructions, control flow
graphs, and call graphs (Section VI-B4)?

1) (RQ6) Function Inlining Ratio: Figure 6 illustrates the
overall flow of inlined functions from the coreutils binaries
compiled with -O[0,3] and our extreme inlining strategy
(Section VI-B3). Starting from the whole 2, 070 functions
(assuming little inlining with -O0), we observe more than half
inlined functions (1, 183). Out of those inlined functions, 997
were eliminated, while others remained. Driving to extreme
inlining (more aggressive than -O3), approximately two-thirds
are removed.

Function Inlining across Optimization Levels and Appli-
cations. Figure 7 presents the function inlining ratio across
eight packages in a baseline dataset with five optimization
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TABLE VI: Performance comparison of four classical ML models (e.g., logistic regression, random forest, CatBoost, and k-
Nearest Neighbors (KNN)) and two deep-learning-based models (e.g., a deep neural network and a convolutional neural network)
proposed by Abusnaina et al. [2] for malware detection (Section VI-A3) and malware family classification (Section VI-A4) tasks.
Note that we generate malware variants with extreme inlining where their sources have been leaked (Mirai [37] and Gafgyt [27]).
For both tasks, the performance of each model significantly drops due to the static feature perturbations (e.g., call graphs, control
flow graphs): around 20% ↓ for malware detection and approximately 40% ↓ for malware family prediction.

Security Task ML Model Malware in the Wild Malware with Extreme Inlining

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Malware Detection

Logistic Regression 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.81 ± 0.03 0.84 ± 0.02 0.81 ± 0.03 0.81 ± 0.03
Random Forest 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.75 ± 0.13 0.77 ± 0.13 0.75 ± 0.13 0.74 ± 0.14
CatBoost 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.77 ± 0.01 0.84 ± 0.00 0.77 ± 0.01 0.75 ± 0.01
KNN 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.78 ± 0.00 0.80 ± 0.01 0.78 ± 0.00 0.77 ± 0.00
Abusnaina et al. [2] (CNN) 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.78 ± 0.01 0.75 ± 0.02 0.83 ± 0.03 0.79 ± 0.01
Abusnaina et al. [2] (DNN) 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.01 0.75 ± 0.02 0.72 ± 0.01 0.82 ± 0.05 0.76 ± 0.02

Average 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.77 ± 0.05 0.78 ± 0.04 0.79 ± 0.01 0.78 ± 0.05

Malware Family
Prediction

Logistic Regression 0.88 ± 0.05 0.90 ± 0.06 0.88 ± 0.05 0.88 ± 0.06 0.48 ± 0.06 0.45 ± 0.07 0.48 ± 0.06 0.46 ± 0.05
Random Forest 0.91 ± 0.05 0.92 ± 0.05 0.91 ± 0.05 0.90 ± 0.06 0.50 ± 0.00 0.47 ± 0.06 0.50 ± 0.00 0.48 ± 0.04
CatBoost 0.89 ± 0.03 0.90 ± 0.03 0.89 ± 0.03 0.88 ± 0.03 0.53 ± 0.10 0.62 ± 0.30 0.53 ± 0.10 0.54 ± 0.17
KNN 0.90 ± 0.06 0.92 ± 0.06 0.90 ± 0.06 0.90 ± 0.07 0.44 ± 0.05 0.49 ± 0.03 0.44 ± 0.05 0.46 ± 0.04
Abusnaina et al. [2] (CNN) 0.82 ± 0.06 0.85 ± 0.05 0.82 ± 0.06 0.81 ± 0.06 0.23 ± 0.18 0.43 ± 0.13 0.23 ± 0.18 0.25 ± 0.14
Abusnaina et al. [2] (DNN) 0.78 ± 0.07 0.80 ± 0.07 0.78 ± 0.07 0.76 ± 0.09 0.36 ± 0.15 0.29 ± 0.15 0.36 ± 0.15 0.31 ± 0.13

Average 0.87 ± 0.05 0.88 ± 0.05 0.87 ± 0.05 0.87 ± 0.05 0.44 ± 0.09 0.46 ± 0.09 0.43 ± 0.09 0.41 ± 0.10

TABLE VII: Performance comparison (in MRR@100) of
four vulnerability detection models with function inlining.
We select 12 vulnerable (target) functions in libcrypto from
two firmware images [16] (Netgear R700 and TP-Link Deco-
M4). Then, we prepare a list of comparable functions in
OpenSSL-1.0.2d [81] with and without inlining for probing
the vulnerable ones. The performance of each model mostly
significantly drops after inlining has been applied. We compute
the mean reciprocal rank for evaluation. (Section VI-A5).

Model Netgear R7000 TP-Link Deco-M4

Non-inlining Inlining Non-inlining Inlining

Gemini [104] 0.049 0.000 0.321 0.004
Asm2Vec [28] 0.256 0.128 0.016 0.008
SAFE [75] 0.125 0.003 0.018 0.003
Trex [85] 0.550 0.625 0.286 0.048
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Fig. 6: Visualization of inlined functions and their presence
in the coreutils package when compiled with (a) the -O3 opti-
mization level and (b) our extreme inlining strategy. Compared
to -O0, more than half of the functions have been inlined and
yet eliminated in -O3 (Section VI-B1).

levels excluding -O0. First, for all optimization levels, coreutils
displays the highest inlining ratio whereas nginx ranks the
lowest in most optimizations. Second, in every package, -Os
and -Oz consistently show lower inline ratios because of the
optimization purpose to reduce a binary size (i.e., the inline
operation of a function increases a size). Third, a function
inlining ratio can vary depending on applications. Lastly,

a non-negligible number of inlined functions has remained
(predominately) due to the function with an external linkage
or even an internal linkage that has not been inlined at all
call sites. Figure 8 illustrates the cumulative distribution of
the inlining ratio across all binaries in our baseline dataset.
Notably, a slight function inlining ratio has been observed
even with -O0 (e.g., always-inline) shows a maximum
ratio of 9.52% and a mean of 0.83% In contrast, -O[1-3]
collectively demonstrate a significantly high inlining ratio with
a maximum of 66.67% and a mean of 32.89%, 32.77%, and
32.70%, respectively. We observe similar maximum inlining
ratios of 65.83% for -Os and 61.67% for -Oz. However, the
mean inlining ratios slightly decrease to 27.42% for -Os and
20.47% for -Oz, indicating those optimization tactics stick to
lowering a binary size.

2) (RQ7) Compiler Options (provided by Clang)
Impact on Function Inlining ratio: Figure 9 depicts
the impact of enabling four default compiler options
(-finline-hint-functions, -fno-inline-functions,
-finline-functions, -fno-inline) relevant to function
inlining while the default means no such options are
given. The ratio with the -finline-functions option
is identical to that with the default setting. Meanwhile,
-finline-hint-functions shows a relatively low
inlining rate. In SPEC2006, the -fno-inline and
-fno-inline-functions options are effective. It is
noted that always_inline contributes to maintain a small
number of function inlining in coreutils even with the
inline-suppressing options.

3) (RQ8) Compiler Options (provided by Opt) Exploration
toward Extreme Inlining: We investigate 12 compiler options
associated with function inlining, aiming to seek a combination
of the compiler options toward extreme inlining according to
the cost model in LLVM. Motivated by BinTuner [92], we
started by setting a certain value that contributes to the inlining
ratio. However, we observe that adjusting the initial value
could significantly increase compilation time. To examine
the inlining ratio within a reasonable compilation time, we
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more than half) in all optimization levels, whereas nginx ranks the lowest. The ratios in -Os and -Oz are relatively smaller than
-O[0-3]. While most inlined functions were eliminated, a non-negligible number (around 10%) remained.
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Fig. 8: Cumulative distribution function (CDF) of function
inlining ratios across all binaries in our dataset compiled with
various optimization levels -O[0-3,s,z] (Section VI-B1). An
inlining optimization occurs even with -O0 while an aggressive
optimization (-O3) drives more inlining.
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Fig. 9: Effectiveness of compiler-provided options that globally
affect the behavior of inlining (Section VI-B2). We measure
function inlining ratios on coreutils and SPEC2006 across
various optimization levels of -O[0-3,s,z]. We confirm
the -fno-inline-functions and -fno-inline options
effectively prohibit an inlining behavior.

increment a specific value by a fixed interval, such as 500 (e.g.,
[0, 500, 1,000, ...]) for benign applications and 50,000 (e.g., [0,
50,000, 100,000, ...]) for malware. For an option defined as a
boolean value, we flip the default value (e.g., true → false).

Results. Compared to other options that show marginal
differences in a function inlining ratio, it tends to be
proportional to -inline-threshold and inversely pro-
portional to -inline-call-penalty (Figure 10). The
-inline-threshold option overrides the global threshold
value while the -inline-call-penalty option adjusts the
call penalty value to calculate a cost. For example, the inlining
ratio increases when a threshold increases from the default
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Fig. 10: Selective results of our exploration for seek-
ing a combination of compiler options. With coreutils,
we extensively tune (i.e., increase or decrease) the val-
ues of the compiler options (Table II), which can even-
tually affect function inlining. Our findings show that
heuristically increasing -inline-threshold and decreasing
-inline-call-penalty assist in growing an overall func-
tion inlining ratio (Section VI-B3).

value (e.g., 225 → 2, 225). Notably, these compiler options do
not bring about the heuristics at Table III.

Function Inlining and LTO. Next, we investigate how LTO
affects overall function inlining ratios. LTO enables an ad-
ditional round of optimization after the initial pre-link op-
timization on each object file. We examined four scenarios:
no LTO, Full LTO, ThinLTO, and LTO with our extreme
function inlining. We set the -inline-threshold option to
200,000 with Full LTO, successfully compiling three packages
(coreutils, diffutils, and findutils). As in Figure 11, Full LTO
exhibits a higher inlining ratio than ThinLTO because Full
LTO operates on a single thread with all object files avail-
able, whereas ThinLTO uses multiple threads and summary
information. Interestingly, ThinLTO shows a higher inlining
ratio than Full LTO at -O1, potentially due to more efficient,
aggressive optimizations. LTO also leverages the internalize
pass, converting external to internal linkage at link time, which
increases the inlining ratio [47]. Our extreme inlining strategy
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Fig. 11: Effectiveness of link time optimization (LTO) across
different optimization levels and applications. Enabling LTO
clearly demonstrates a higher function inlining ratio at -O1
or above optimization levels. It is worthwhile to note that our
extreme function inlining strategy even surpasses the ratio with
Full LTO (e.g., 79.64% in coreutils).

achieves an extremely high inlining ratio, reaching 79.64% in
coreutils.

4) (RQ9) Static Features Analysis According to Function
Inlining: We analyzed 62 statistical features pertaining to
instructions, CFG, and CG using TikNib [53]. For brevity, we
select 18 features with the highest median gap (Figure 14 in
Appendix). Note that we display the whole static feature names
at Table X in Appendix. For a fair comparison, we normalize
the data and remove the outliers with the three-sigma rule [51],
which excludes any data points that fall beyond three standard
deviations from the mean. We compared -O0 against extreme
inlining across 106 binaries in coreutils. Figure 14 in Appendix
shows that extreme inlining drastically changes the statistical
features of an executable binary. For example, there is a
significant increase in arithmetic instructions (Features 6 and
8), likely due to the inlining of functions with arithmetic
operations across multiple call sites. Additionally, we observe
a decrease in the number of loops (Features 38 and 39)
but an increase in loop size (Features 46, 48, and 49). This
suggests that inlining results in fewer but larger loops. Extreme
inlining may enable more aggressive optimizations, such as
loop unrolling and removing smaller loops. These changes
significantly impact the statistical features, which we expect
will affect ML models relying on such features.

VII. IMPLEMENTATION

Ground Truth Extraction for Executable Binaries. We
compile varying software in the ELF (Executable and Link-
able Format) format with the -g option, which generates
debugging information. We develop a script in Python with
the pyelftools library [12] to parse ELF and extract the
DW_AT_inline attribute (i.e., inlined function) in a function
symbol from DWARF [19]. Identifying a list of callers with
the DW_TAG_subprogram tag at each function, we traverse
child nodes with the DW_TAG_inlined_subroutine tag in
each DWARF entry, which indicates that a function contains
multiple inlined functions. Besides, we leverage TikNib [54]
to extract 62 features (Table X in Appendix) that can impact
a control flow graph, a call graph, and instruction sequences.

ML-based Models. First, we leverage the BCSD benchmark
implementations [74] to assess a BCSD task instead of
reinventing the wheel, including Asm2Vec [28], Gemini [104],
Trex [85], and SAFE [75]. We adopt the original implementa-
tion of BinShot [5], which is unavailable on the above bench-
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Fig. 12: Comparison of function inlining ratios across different
optimization levels (O0–O3) for multiple versions of LLVM
(left) and GCC (right). Higher optimization levels consistently
yield higher inlining ratios across all compiler versions, with
GCC exhibiting more variability between versions compared
to LLVM.

mark. Second, for malware detection and family prediction, we
follow the Lei et al. [60]’s approach to generate four traditional
ML models (Table VI) with the Scikit-learn library [25]. Addi-
tionally, we re-implement two deep learning models proposed
by Abusnaina et al. [3] with TensorFlow [1] (Table VI).
Third, we retrained AsmDepictor [55] and SymLM [46] with
our dataset compiled in LLVM for function name prediction.
Fourth, we assess vulnerability detection by leveraging the
BCSD benchmark implementation [74] and available vulnera-
ble firmware corpus [16].

VIII. DISCUSSION AND FUTURE WORK

Unreported Function Inlining Cases in DWARF. Although
DWARF holds plentiful information about function inlining,
there are several cases that (deliberately) do not report them.
We observe missing the record of inlining when the whole
inlined function body has been removed (e.g., dead code
elimination) during transformations. Another unreported case
is when a specific intrinsic function has been inlined into other
functions. This may cause a discrepancy between the output
of the function inliner pass (e.g., -Rpass=inline) and that
of parsing DWARF.

Dataset Representativeness. Although we carefully select
a wide range of different applications as a dataset for our
experiments, it may not sufficiently represent all binaries to
safely generalize our findings. We leave more scenarios and
edge cases as our future work, which need to be explored with
a diverse dataset to unearth the behavior of inlining a function.

Behavioral Differences between Compilers. Empirically, it is
possible to have inconsistent outcomes due to the dynamics of
function-inlining for code optimization across compilers and
compiler versions. Figure 12 presents the function inlining
ratios across different versions of GCC and LLVM compiler
at various optimization levels. While LLVM exhibits relatively
consistent inlining behaviors, GCC shows more aggressive
inlining, particularly at higher optimization levels. Although
our experiments focus on a specific version of LLVM, our
observation remains applicable across its versions, providing
valuable insights into how modern compilers handle function
inlining. A deeper investigation into GCC’s internal inlining
decisions is left for future work.

Evaluation Metric for Function Inlining Ratio. We utilize
the evaluation metric with the ratio of function inlining based
on the number of (inlined) functions. However, an inlining
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decision is made at the call site granularity that takes a caller
and a callee into account. Hence, the case of a single function
that has been inlined into multiple locations or a chain of
(nested) inlining may not been represented with our metric.

Potential Mitigations. We propose several potential miti-
gations: 1 augmenting model training with inlined data,
2 employing adversarial training that incorporates compiler-
aware transformations, and 3 applying inlining-aware pre-
processing (e.g., Highliner [22] uses de-inlining heuristics). We
direct interested readers to Appendix Table XII for preliminary
results on augmented training with inlined functions.

IX. RELATED WORK

Feature Engineering for Binary Reversing. Genius [34]
utilizes an attributed CFG (ACFG) where they incorporate
eight features (statistical and structural) at the basic block
granularity. Similarly, DL-FHMC [2] introduces 23 additional
features on top of CFG. Additionally, ImOpt [45] explores
features at the IR level to tackle compiler optimization and
obfuscation techniques. In contrast, αDiff [65] utilizes a deep
neural network to directly extract features. TikNib [53] extracts
72 statistical features using a large-scale benchmark, which
demonstrates that simple interpretable models show compara-
ble performance to state-of-the-art deep learning models with
precise features. Note that we borrow 62 applicable features
at the binary level to investigate the impact of inlining.

Function Inlining and Binary. Several prior works deal with
function inlining from engineering aspects. Damásio et al. [23]
focus on inlining for code size reduction, while Theodoridis et
al. [98] explore optimal inlining strategies. In parallel, other
studies examine function inlining in the context of binary
analysis. One close effort to our work is Jia et al. [43],
who investigate the impact of function inlining on binary
similarity analysis. Bingo [14] introduces a dynamic inlining-
simulation strategy that recursively expands callee functions to
improve similarity detection. Similarly, Asm2Vec [28] adapts
the Bingo’s strategy for static analysis using selective callee
expansion. FSmell [64] proposes a ML–based framework to
detect inlined functions through instruction topology graphs.
Meanwhile, Koo et al. [57] and AsmDepictor [55] emphasize
the importance of a deeper understanding of function inlining.
Nonetheless, many ML-based studies [86], [32], [103], [33],
[105], [46], [83], [49], [84], [11] for binary analysis tend to
underestimate or overlook inlining effects without thorough
investigation. Unlike previous approaches, our work demysti-
fies the compiler’s inline decision process and the possibility
of misuse by deliberately crafting evasive binary mutations
through extreme inlining.

ML-assisted Approaches for Static Binary Analysis. Over
the past decade, the widespread adoption of ML-assisted se-
curity tasks across various fields have demonstrated promising
results. Such examples include malware detection, malware
family classification, BCSD, and function name prediction
tasks. In the area of BCSD, VulSeeker [38] employs a Siamese
network-based graph embedding model to enhance similar-
ity detection. InnerEye [110] and SAFE [75] adopt natural
language processing (NLP) approaches for learning semantics
from assembly code. In a similar vein, Asm2Vec [28] and
DeepBinDiff [30] utilize unsupervised learning for training

in the context of instructions, thereby improving their abil-
ity to detect code similarities. Lately, BinShot [5] learns a
weighted distance vector with to better take dissimilar codes
apart, which we include for our evaluation. For malware
applications, Alasmary et al. [6] conduct a comprehensive
CFG-based IoT malware detection task on Android. Cozzi et
al. [21] examine the lineage of malware families, tracking their
relationships across variants. Furthermore, BinTuner [92] and
CARDINAL [48] attempt to re-compile malware samples with
different compilation option settings to defeat signature-based
approaches that rely on static engineering features. Meanwhile,
recent advances in an attempt to recover lost information
during compilation presents the inference of function and
variable names, types, and even decompiled code. Debin [41]
focuses on recovering variable names and types that learn
the underlying semantics from instruction sequences at the
binary level. NERO [24] trains enriching representations of
call sites based on augmented control flow graphs to predict
function symbol names. Similarly, AsmDepictor [55] leverages
the state-of-the-art Transformer-based model into a function
name prediction task, which is included in our evaluation.

Study on Compiler Flags and Behaviors. Dong et al. [29]
and Zhang [109] et al. study symbolic execution to explore
compiler flags: the former compare different optimization
levels, while the latter empirically analyze GCC/Clang op-
timization flags. Ren et al. [93] focus on LLVM peephole
optimizations for binary diffing, and BinTuner [92] explores
large compiler flag spaces for binary similarity. Meanwhile,
our work targets ML-based binary analysis and moves toward
extreme inlining to evaluate and evade ML models by system-
atically examining LLVM’s inlining code base.

X. CONCLUSION

Function inlining is a well-known optimization technique
by modern compilers. Such an inlining behavior can con-
siderably affect static features for a binary reversing task;
however, it has yet well explored despite its importance and
impact. In this work, we first conduct a comprehensive study
focusing on function inlining, including (but not limited to)
the investigation of its decision pipeline, compiler options that
directly affect an inlining ratio, unearthing common misbeliefs,
and the evaluation of security implications on ML-oriented
applications. Our major findings indicate that function inlining
can be exploited for malicious purposes, which requires paying
attention when building ML-based models.
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APPENDIX A
SUPPLEMENTARY EXPERIMENTS AND ANALYSES

A. DWARF Information for Function Inlining

TABLE VIII: Debugging information fields in DWARF [19]
associated with function inlining.

Name Type Description

DW TAG inlined subroutine T Particular inlined instance of a (sub)routine
DW AT abstract origin A Pointer to the DIE of the inlined subprogram
DW AT inline A Constant describing inlining behavior
DW AT decl file A File containing source declaration
DW AT low pc A Low address of a machine code
DW AT high pc A High address of a machine code
DW AT call file A File containing an inlined subroutine call
DW AT call line A Line number of an inlined subroutine call
DW AT call column A Column position of an inlined subroutine call

B. Code Semantics on Vulnerability Detection

Table IX displays CVEs and corresponding vulnerable
functions described in Section VI-A5. For example, with
Trex [85], we discover that the similarity rank of BN_dec2bn
has increased after being inlined into BN_asc2bn: e.g.,
1, 044 → 14, which indicates that the model recognizes the
code semantics. As such, identifying the semantics of a vulner-
ability within the inlining function (i.e., containing a vulnerable
function) is a good sign for detection. However, based on
our observation, the mixture of different code semantics could
degrade the model’s performance by additional optimizations
and nested-inlining may significantly.

TABLE IX: The specific names and CVEs of the vulnerable
functions we explored in Section VI-A5.

CVE Query Function

CVE-2016-2182 BN_bn2dec
Netgear CVE-2019-1563 CMS_decrypt
R7000 CVE-2016-6303 MDC2_Update

CVE-2019-1563 PKCS7_dataDecode

CVE-2016-2182 BN_bn2dec
CVE-2016-0797 BN_dec2bn
CVE-2016-0797 BN_hex2bn

TP-Link CVE-2019-1563 CMS_decrypt
Deco-M4 CVE-2016-2105 EVP_EncodeUpdate

CVE-2019-1563 PKCS7_dataDecode
CVE-2016-0798 SRP_VBASE_get_by_user
CVE-2016-2176 X509_NAME_oneline

C. Augmented Training with Inlined Functions

Experiments and Results. We perform augmented training
with inlined functions for a malware detection task (T3) as a
potential defense. We generate new extreme-inlining variants
and add them to the training dataset that consists of 159 benign
samples, 50 Mirai and 25 Gafgyt samples. Note that we use a
different extreme inlining recipe for augmentation (Table XI)
to ensure unseen patterns for testing. The preliminary results
in Table XII demonstrate two messages. First, the model’s
performance (e.g., F1) increases in neural networks such as
CNN and DNN after augmented training. Second, non-neural
models, such as logistic regression and random forest, do not
benefit from augmented training.
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TABLE X: Descriptions of static features in an executable
binary from Binkit [53]. The 36 features (1-36) depict
instruction-level features, while the 20 (37-56) and six (57-
62) features are relevant to a control flow graph and a call
graph, respectively. We analyze how each static feature has
been affected by extreme inlining.

Index Feature Description

1 Number of instructions
2 Average number of instructions
3 Number of unknown instructions
4 Average number of unknown instructions
5 Number of absolute arithmetic instructions
6 Average number of absolute arithmetic instructions
7 Number of arithmetic instructions
8 Average number of arithmetic instructions
9 Number of comparison instructions
10 Average number of comparison instructions
11 Number of absolute control transfer instructions
12 Average number of absolute control transfer instructions
13 Number of conditional control transfer instructions
14 Average number of conditional control transfer instructions
15 Number of group jump instructions
16 Average number of group jump instructions
17 Number of absolute data transfer instructions
18 Average number of absolute data transfer instructions
19 Number of data transfer instructions
20 Average number of data transfer instructions
21 Number of control transfer instructions
22 Average number of control transfer instructions
23 Number of group call instructions
24 Average number of group call instructions
25 Number of group return instructions
26 Average number of group return instructions
27 Number of miscellaneous instructions
28 Average number of miscellaneous instructions
29 Number of shift instructions
30 Average number of shift instructions
31 Number of logic instructions
32 Average number of logic instructions
33 Number of bit flag instructions
34 Average number of bit flag instructions
35 Number of floating-point instructions
36 Average number of floating-point instructions

37 Size of CFG
38 Number of loops in a CFG
39 Number of interprocedural loops in a CFG
40 Number of strongly connected components in a CFG
41 Number of back edges in a CFG
42 Number of breadth-first search edges in a CFG
43 Maximum width of CFG
44 Maximum depth of CFG
45 Sum of the sizes of all loops in a CFG
46 Sum of the sizes of all interprocedural loops in a CFG
47 Sum of the sizes of all strongly connected components in a CFG
48 Average size of loops in a CFG
49 Average size of interprocedural loops in a CFG
50 Average size of strongly connected components in a CFG
51 Number of incoming edges in a CFG
52 Number of outgoing edges in a CFG
53 Total number of edges (in-degree + out-degree) in a CFG
54 Average number of incoming edges in a CFG
55 Average number of outgoing edges in a CFG
56 Average number of edges (in-degree + out-degree) in a CFG

57 Number of caller functions in a CG
58 Number of callee functions in a CG
59 Number of imported callee functions in a CG
60 Number of incoming calls in a CG
61 Number of outgoing calls in a CG
62 Number of imported calls in a CG
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Fig. 13: The top 10 most influential features (Table X) based
on mean absolute SHAP values for a traditional ML model
(e.g., random forest) and a neural network model (e.g., DNN)
before and after augmentation with extreme inlining. A higher
SHAP score denotes a greater contribution of the feature to
the model’s decision. Although baseline feature rankings differ
across models, augmentation reshapes feature importance more
strongly DNN than random forest, suggesting that neural
architectures adapt more readily to extreme-inlining.

In-depth Analysis with SHAP. To assess how augmentation
alters model behavior, we apply SHapley Additive exPlana-
tions (SHAP) [72] to measure feature contributions across
ten iterations, comparing the mean absolute SHAP values
before and after augmentation. It is noted that we attempt
to understand how each feature contributes to a model de-
cision, as Explainable AI has a fidelity issue: i.e., explanations
approximate a decision process, but they do not perfectly
reflect it. Figure 13 depicts the Top 10 contributing features
for two representative models: random forest from a non-
neural network and DNN from a neural network. Extreme
inlining impacts the entire feature space, modifying not only
instruction frequencies but also control-flow and call-graph
characteristics. Our findings show that, after augmented train-
ing, neural model (DNN) exhibit a more pronounced shift in
feature importance compared to the traditional model (random
forest) indicating that augmentation has a more substantial
effect on neural architectures. Interestingly, across all models
without augmentation training, the decisions are dominated by
Feature 4 (i.e., number of unknown instructions). Our further
analysis reveals that rep stosq, qword ptr [rdi], rax
frequently appears in malware samples, which likely accounts
for the strong contribution of this feature to detection.

APPENDIX B
ARTIFACT APPENDIX

A. Abstract

Function inlining is a common compiler optimization that
replaces a function call with the function’s body to improve
performance, but it can also alter the structural properties of
binaries used in machine learning–based security analysis. To
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TABLE XI: Summary of extreme inlining recipes for each task (T1–T5).

Type Package or Extreme Inlining Recipe Settings

Application(s) T1–2, T5 T3 T4 T3* (augmentation variants)

Benign

coreutils -Oz -inline-threshold=2225 -O3 -flto=full; -O3 -flto=full -inline-threshold=200000 - -O3 -inline-threshold=2225
binutils -O3 - - -
diffutils -O3 -flto=full -Oz -inline-threshold=2225 - -O3 -inline-threshold=2225
findutils -O3 -flto=full -Oz -inline-threshold=2225 - -O3 -inline-threshold=2225
openssl -O3 -flto=full -Oz -inline-threshold=2225 - -O3 -inline-threshold=2225
lvm2 -O3 -flto=full - - -
gsl -Oz -inline-threshold=2225 -O3 -flto=full - -O3 -inline-threshold=2225
valgrind -Oz -inline-threshold=2225 - - -O3 -inline-threshold=2225
openmpi -O3 -flto=full -Oz -inline-threshold=2225 - -O3 -inline-threshold=2225
putty -O3 -flto=full -Oz -inline-threshold=2225 - -O3 -inline-threshold=2225
nginx -Oz -inline-threshold=2225 -O3 -flto=full - -O3 -inline-threshold=2225
lighttpd -O3 -flto=full -Oz -inline-threshold=2225 - -O3 -inline-threshold=2225

Malware Mirai - -O(1|2|3|s|z) –inline-threshold=(225|500225) -O(1|2|3|s|z) –inline-threshold=(225|2000)
Gafgyt - -O(1|2|3|s|z) –inline-threshold=(225|500225) -flto=full -O(1|2|3|s|z) –inline-threshold=(225|2000) -flto=full

TABLE XII: Performance comparison on the malware detection task (T3) with newly generated extreme-inlining variants.
Interestingly, augmenting the training set improves neural models (e.g., CNN, DNN), while non-neural models (e.g., logistic
regression, random forest, CatBoost) show little benefit.

Training Setup ML Model Malware in the Wild Malware with Extreme Inlining

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Before Augmentation

Logistic Regression 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.01 0.99 ± 0.00 0.60 ± 0.02 0.64 ± 0.03 0.47 ± 0.05 0.54 ± 0.03
Random Forest 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.78 ± 0.01 0.70 ± 0.02 0.95 ± 0.03 0.81 ± 0.02
CatBoost 0.98 ± 0.00 0.99 ± 0.00 0.97 ± 0.01 0.98 ± 0.00 0.78 ± 0.01 0.70 ± 0.01 0.97 ± 0.01 0.82 ± 0.01
KNN 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.01 0.99 ± 0.00 0.68 ± 0.04 0.69 ± 0.03 0.65 ± 0.09 0.67 ± 0.06

Average (Non-Neural) 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.71 ± 0.08 0.68 ± 0.03 0.76 ± 0.20 0.71 ± 0.11

CNN 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.75 ± 0.05 0.76 ± 0.09 0.77 ± 0.10 0.76 ± 0.04
DNN 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.71 ± 0.04 0.73 ± 0.03 0.67 ± 0.10 0.70 ± 0.06

Average (Neural) 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.73 ± 0.03 0.75 ± 0.02 0.72 ± 0.05 0.73 ± 0.03

After Augmentation

Logistic Regression 0.96 ± 0.01 0.99 ± 0.01 0.94 ± 0.02 0.96 ± 0.01 0.64 ± 0.07 0.98 ± 0.02 0.28 ± 0.14 0.42 ± 0.17
Random Forest 0.98 ± 0.01 0.99 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.69 ± 0.02 0.90 ± 0.00 0.38 ± 0.03 0.50 ± 0.02
CatBoost 0.98 ± 0.01 0.99 ± 0.01 0.96 ± 0.02 0.98 ± 0.01 0.84 ± 0.02 0.99 ± 0.01 0.69 ± 0.03 0.81 ± 0.02
KNN 0.99 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.81 ± 0.01 0.99 ± 0.00 0.62 ± 0.03 0.77 ± 0.02

Average (Non-Neural) 0.98 ± 0.01 0.99 ± 0.00 0.97 ± 0.02 0.98 ± 0.01 0.75 ± 0.09 0.97 ± 0.05 0.49 ± 0.18 0.63 ± 0.18

CNN 0.99 ± 0.00 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.00 0.84 ± 0.02 0.99 ± 0.00 0.68 ± 0.05 0.81 ± 0.03
DNN 0.99 ± 0.00 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.00 0.81 ± 0.01 0.99 ± 0.00 0.62 ± 0.03 0.77 ± 0.02

Average (Neural) 0.99 ± 0.00 0.99 ± 0.01 0.98 ± 0.00 0.99 ± 0.00 0.83 ± 0.02 0.99 ± 0.00 0.65 ± 0.04 0.79 ± 0.03
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Fig. 14: Comparison of selective static features between little inlining (-O0) and extreme inlining (e.g., compiler options:
-O3 -flto=full -inline-threshold=200000). The features include instructions (Features 3, 4, 6, 8, 23, 32), control flow
graphs (Features 38, 39, 41, 46, 48, 49), and call graphs (Features 57, 58, 59, 60, 61, 62). The numbers on top denote the features
and the gap between the two means (parenthesis) (Table X in Appendix). This example illustrates the significant gaps in the
mean values, which can threaten the robustness of ML-based models. Note that we normalize all values for concise comparison.
See Section VI-B4 in detail.

investigate this phenomenon, our study systematically exam-
ines the security implications of inlining on ML-based binary
analysis. This artifact accompanies our paper and provides
ready-to-use datasets and scripts for verifying the main re-
sults presented therein. It includes the source code and build
scripts used to explore inlining-related compiler flags toward

extreme inlining, modified feature extraction tools, runnable
ML models, and analysis scripts for regenerating the main
results reported in the paper. Together, these resources enable
examiners to validate our findings and further examine the im-
pact of extreme inlining on ML-based security tasks, including
binary code similarity detection (T1), function name prediction
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(T2), malware detection (T3), malware family prediction (T4),
and vulnerability detection (T5).

B. Description & Requirements

The provided artifact includes the source code, build
scripts, curated datasets, and Python analysis utilities used to
reproduce the experimental results presented in our paper. The
artifact is organized into four main components:

• Dataset Construction. Includes the source code and build
scripts for exploring inlining-related compiler flags under
diverse configurations toward extreme inlining. Although
the full dataset construction process is provided for com-
pleteness, ready-to-use datasets are included to allow quick
verification without the need for recompilation.

• Feature Extraction. Contains a modified version of TikNib,
configured to extract static and semantic features used across
Tasks T3 and T4 in the study.

• ML Models. Provides runnable ML models and associated
datasets used for evaluating robustness under extreme inlin-
ing, across five binary analysis security tasks (T1–T5) and
18 representative models.

• Main Results and Plots. Includes CSV result files and
Python scripts to regenerate the primary analysis results
reported in the paper. A verification script is also provided to
reproduce these results directly from the included datasets.

Scope. This artifact focuses on verifying the reported findings
rather than regenerating datasets from scratch. For T3 and
T4, due to the stochastic nature of ML models and Monte
Carlo cross-validation, exact results may vary slightly from
those reported in the paper; however, the overall trends remain
consistent.

Security, privacy, and ethical concerns. The provided scripts
operate entirely on open-source data and do not perform
any destructive or privacy-sensitive actions. Binaries generated
from the proprietary SPEC CPU2006 benchmark are not
shared due to licensing restrictions. Therefore, no security,
privacy, or ethical concerns apply.

1) How to access: The artifacts are available open-source
on Zenodo 8.

2) Hardware dependencies: Experiments were conducted
on a workstation running Ubuntu 20.04 (64-bit) with an Intel
Xeon Gold 5218R @ 3.00 GHz CPU, 512 GB RAM, and two
NVIDIA RTX A6000 GPUs.

3) Software dependencies: The artifact requires the follow-
ing software environment: LLVM/Clang 14.0.0, Python 3.8
or newer (with pip ≥ 23.0 and Conda ≥ 23.7.4),
Docker 20.10.22 or newer, and IDA Pro 8.2 or 8.3.

4) Benchmarks: The experiments rely on multiple datasets
(See Table V) and benchmark implementations used across the
evaluated ML-assisted binary analysis tasks. Specifically, we
use the BCSD benchmark [74] for T1 and T5, including mod-
els such as Asm2Vec, Gemini, Trex, SAFE, and BinShot. For
T2, we retrain AsmDepictor [55] using our LLVM-compiled
dataset. For the malware-related tasks (T3 and T4), we curated
datasets from different sources. For T3, we used samples

8https://doi.org/10.5281/zenodo.17759528

collected from VirusShare [77]. For T4, we curated the dataset
from Alrawi et al. [7], whose artifacts are publicly available
at 9. The corresponding models include four traditional ML
classifiers built with Scikit-learn [25] and deep learning models
re-implemented from Abusnaina et al. [3]. For T5, we use
the BCSD benchmark along with publicly available vulnerable
firmware corpora [16].

C. Artifact Installation & Configuration

1) Installation: To install the artifact, download the repos-
itory from the provided link and navigate to the project root
directory. All required dependencies are listed in Section B-B
and can be installed using standard package management tools
such as pip or conda. Each directory is self-contained and
includes a START_EVALUATION.md file and configuration
scripts to guide installation and execution. Note that a pre-
configured Docker image is also provided, alternatively.

For tasks T1, T2, and T5, create the provided Conda
environment:

cd ml-model/t1_t2_t5
conda env create -f environment.yml
conda activate inline_ae

For tasks T3 and T4, using the Conda environment is
optional; dependencies are available in the root directory:

pip install -r requirements.txt

2) Basic Test: To verify that the artifact is correctly in-
stalled and functional, execute any of the provided task scripts.
For example for T1:

cd ml-model/t1_t2_t5/T1_bcsd
bash run.sh

D. Experiment Workflow

The artifact is organized into modular components, each
corresponding to a stage in the experimental workflow. The
overall process can be summarized as follows: (i) dataset
construction under diverse inlining configurations using the
provided compilation sweep scripts; (ii) feature extraction
with the modified TikNib framework [54]; (iii) training and
evaluation of machine learning models across five security
tasks (T1–T5); and (iv) analysis and visualization of the impact
of inlining on binaries and their associated statistical features,
which can be regenerated using the provided analysis scripts.

E. Major Claims

• (C1): The artifact provides the complete source code,
build scripts, and curated datasets used to evaluate the
impact of function inlining under diverse compiler config-
urations. These resources enable transparent verification
of the dataset generation process and reproducibility of
the experimental setup described in Section VI.

• (C2): The provided ML models and feature extraction
tools reproduce all key evaluations across the five ML-
based security tasks (T1–T5), supporting the paper’s

9https://badthings.info/#bins
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findings on the sensitivity of model robustness to extreme
inlining, as discussed in Section VI-A.

• (C3): The included analysis scripts regenerate all primary
quantitative results and plots (Figures 7–14), illustrating
the inlining trends across configurations and the impact
of extreme inlining on statistical features compared to the
non-inlined baseline, as detailed in Section VI-B.

F. Evaluation

• (E1): Dataset Construction and Compilation Sweep
[15 person-minutes + several compute-hours] Run the
provided dataset construction scripts to reproduce the
compilation sweep under diverse inlining configurations.
The build framework systematically explores optimization
and hidden inlining flags defined in config.yaml.
Depending on the selected projects and increments, each
dataset build may take several hours on a multi-core
system. For validation purposes, reviewers may execute
a reduced configuration (e.g., a limited subset of projects
or thresholds) to confirm functionality without requiring
full-scale recompilation.

• (E2): Feature Extraction and Visualization [10 person-
minutes + moderate compute time] Execute the modified
TikNib pipeline to extract binary-level features and
generate summary statistics or visualizations. This step
produces the feature representations used in training T3–
T4 and feature distortions (Figures 14).

• (E3): Model Evaluation Across Tasks [10 person-
minutes + compute time depending on task] Evaluate the
robustness of the ML models against extreme inlining
using the provided scripts in the ml-model/ directory.
Approximate running times per task are as follows: T1
and T5 — approximately 2 hours, T2 — about 1 hour,
T3 — around 10 minutes, and T4 — about 20 minutes.

Successful completion of Experiments (E1)–(E3) repro-
duces the main findings of the paper, validating the repro-
ducibility and completeness of the provided artifact.

G. Notes on Reusability

The provided artifact is designed for reuse and extension
in future research on extreme inlining, binary analysis, and
ml–based security. Each component—dataset construction, fea-
ture extraction, model evaluation, and analysis—is modular
and independently executable. By adjusting the configuration
files (e.g.,, config.yaml) and following the detailed in-
structions in the accompanying README.md files, users can
reproduce our experiments or adapt them to new datasets,
compilers, or model architectures. For convenience, we also
provide a prebuilt Docker image for reproducing the main
experiments. As a final note, the modular design also allows
researchers to explore more extreme inlining degrees could be
explored automatically through our tuning strategy, providing
an avenue for future work on adversarial code transformation.
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