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Abstract—Text-to-Image (T2I) models, represented by DALL·E
and Midjourney, have gained huge popularity for creating realistic
images. The quality of these images relies on the carefully
engineered prompts, which have become valuable intellectual
property. While skilled prompters showcase their AI-generated
art on markets to attract buyers, this business incidentally exposes
them to prompt stealing attacks. Existing state-of-the-art attack
techniques reconstruct the prompts from a fixed set of modifiers
(i.e., style descriptions) with model-specific training, which exhibit
restricted adaptability and effectiveness to diverse showcases (i.e.,
target images) and diffusion models.

To alleviate these limitations, we propose Prometheus, a
training-free, proxy-in-the-loop, search-based prompt-stealing
attack, which reverse-engineers the valuable prompts of the
showcases by interacting with a local proxy model. It consists of
three innovative designs. First, we introduce dynamic modifiers,
as a supplement to static modifiers used in prior works. These
dynamic modifiers provide more details specific to the showcases,
and we exploit NLP analysis to generate them on the fly. Second,
we design a contextual matching algorithm to sort both dynamic
and static modifiers. This offline process helps reduce the search
space of the subsequent step. Third, we interact with a local proxy
model to invert the prompts with a greedy search algorithm. Based
on the feedback guidance, we refine the prompt to achieve higher
fidelity. The evaluation results show that Prometheus successfully
extracts prompts from popular platforms like PromptBase and
AIFrog against diverse victim models, including Midjourney,
Leonardo.ai, and DALL·E, with an ASR improvement of 25.0%.
We also validate that Prometheus is resistant to extensive potential
defenses, further highlighting its severity in practice. Our code is
available at https://github.com/Shiqian-Zhao996/Prometheus.

I. INTRODUCTION

With the emergence of diffusion models [48], [10], text-
to-image generation services, such as DALL·E [25] and
Midjourney [22], have received widespread popularity due
to their remarkable performance. Since diffusion models are
often sensitive to user inputs, crafting high-quality images
requires carefully designed prompts, which typically consist
of precise subjects (main object) and diverse modifiers (style
descriptions) [8], [20], [26] as shown in Figure 1. The high
demand for high-quality prompts has led to the rise of numerous

“{Dragon} warrior, urban waste-
land backdrop, glowing eyes,
wielding futuristic weapon, battle-
scarred; cyberpunk armor, neon
accents, hyper-detailed fur/scales,
dramatic lighting, gritty realism
meets sci-fi aesthetics, high-
contrast digital art style.”
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Fig. 1. A prompt and its corresponding images. The blue phrase is the subject,
and the red phrases are the modifiers. After the attacker steals the prompt,
they can reuse it by replacing the subject (in brown). This prompt is from the
commercial prompt market PromptBase [29], whose showcase is generated
with DALL·E 3.

trading platforms, such as PromptBase [29], PromptSea [34],
and PromptHero [31], where prompt engineers publish their
high-quality prompts, and users purchase their desired prompts
by browsing the corresponding showcase images. For example,
PromptBase hit 10K registered users by November 2022 [50],
only 4 months after its establishment in July 2022 [51]. After
purchasing the prompt, the buyer can modify and customize it
to generate tailored outputs, as well as scale the quantity of
images to suit various augmentation needs.

Prompts sold on the trading platforms often command high
prices (e.g., 15 US dollars for the Portrait Neon Lights prompt
from Promptrr [33]). Thus, they can be considered a form of
valuable intellectual property (IP). Their great commercial value
spawns potential threats to IP protection, and one prominent
example is prompt stealing attack [46], which has already
attracted attention from the industry [44]. As shown in Figure 1,
given a showcase that is exhibited on the prompt market, an
attacker tries to recover the corresponding prompt used by
the publisher to create the showcase. Then the attacker can
adapt the prompt to his own tasks, including customization
or scaling quantity. For example, he can reuse the prompt
to generate more images by simply replacing the subjects
with customized ones. Despite the infringement on intellectual
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property, the attacker can subsequently upload the stolen prompt
to other marketplaces for sale. These significantly compromise
the commercial interests of both platforms and creators.

The essence of prompt-stealing attacks lies in accurately
extracting the subjects and modifiers from a given showcase
image. However, research on these attacks has significantly
lagged behind their threat. We summarize existing prompt
recovery techniques in Table I, where BLIP, CLIP-IG, and
PH2P mostly focus on the subject, while PromptStealer [46]
represents the only dedicated prompt-stealing attack that fully
takes into account modifiers. PromptStealer takes the first dedi-
cated step by (i) training a caption model for subject generation
and (ii) training a classification model for modifier prediction.
Although PromptStealer has demonstrated promising results,
the following limitations reduce its practical penetration effect.
First, PromptStealer relies on a fixed, predefined set of 7,672
modifiers as classification labels. This approach restricts its
semantic coverage, resulting in out-of-vocabulary (OOV) issues
for modifiers and limiting its ability to describe the highly
diverse showcases. Second, the predictions for subject and
modifiers rely entirely on the caption and classification models,
which are trained with the prompt-side text semantics while
ignoring the perception and semantics from the recovered
images. This may lead to prediction error, especially when the
trained models are overfitted to the training set (i.e., the Lexica
dataset [15] collected from Stable Diffusion [39]).

To alleviate these limitations, we propose Prometheus, an
effective and practical prompt-stealing attack methodology.
Our key insights are twofold. First, we propose dynamic
modifiers that are specific to the target showcase, serving as the
complement of the predefined but insufficient static modifiers
used in prior works. Second, to address the overfitting caused by
text-guided pretraining, we incorporate a training-free proxy-
in-the-loop mechanism with feedback to iteratively refine the
modifiers. Specifically, Prometheus is designed to include three
key modules. (1) Dynamic modifier extraction. Prometheus first
leverages a caption model to generate lots of image captions
for the showcase, which provides abundant showcase-specific
modifiers. We then analyze these captions with an NLP analysis
tool (e.g., Spacy [49]), to extract these modifiers from the
captions. (2) Contextual matching. These dynamic modifiers,
along with the predefined static modifiers, are concatenated
to the subject and ranked based on our proposed contextual
matching, which considers the fidelity gain of a modifier in
a contextual manner. This action helps to shorten the list of
candidate modifiers and further improves the efficiency of
subsequent fine-grained sampling. (3) Greedy Proxy query.
Finally, Prometheus greedily constructs the final prompt by
sequentially adding modifiers to the base prompt (starting with
the subject and gradually expanding) and leverages the feedback
from a local proxy model to carefully choose the modifiers
with the most gain effect. We construct a multi-objective score
function, i.e., semantic and perception, to comprehensively
evaluate the contribution of a modifier.

We conduct comprehensive experiments to assess
Prometheus. First, large-scale case studies reveal that it

TABLE I
EXISTING AND POTENTIAL PROMPT-STEALING ATTACKS.

Method Static Modifier Dynamic Modifier Feedback

BLIP [17]
CLIP-IG [28]

PH2P [21]
PromptStealer [46]
Prometheus (Ours)

effectively steals prompts that are designed for popular
commercial platforms like Midjourney [22], and DALL·E [25],
from prompt markets like PromptBase [29] and AIFrog [4],
highlighting its functionality in practical scenarios. For
instance, on real-world prompts, Prometheus achieves image
and prompt fidelity scores of 0.912 and 0.814, respectively,
surpassing the baselines by margins of up to 0.142 and
0.200. Importantly, our method realizes an attack success rate
improvement of 25.0% compared with the state-of-the-art.
Moreover, Prometheus achieves the best reusability when
shifting the subject in the recovered prompt. Further mitigation
experiments show that our attack is resistant to various
potential defenses, including random noise, puzzle effect,
text watermark, and adaptive mitigation, highlighting its
practicality and severity.

In summary, our main contributions are as follows:
• We review existing prompt-stealing attacks against text-to-

image models and reveal their poor adaptability. We identify
that this limitation arises from the over-preparation.

• We propose a novel and effective training-free prompt-
stealing attack, dubbed Prometheus. It generates modifiers on
the fly and leverages the feedback from Proxy to optimize
the prompt effectively.

• We propose contextual matching, which is inspired by in-
context learning. This mechanism helps sort out the high-
correlation modifier to facilitate prompt stealing.

• We evaluate Prometheus on extensive prompts collected
from commercial prompt markets, e.g., PromptBase and
AIFrog. The result shows that Prometheus can steal prompts
with high fidelity and is resistant to potential defenses.

Responsible Disclosure: We obtained prior consent from both
the prompt engineers and the platforms for the scientific use of
the displayed prompt showcases and the collected data. They
have expressed great interest in and support for our work.
Upon acceptance, we will share the research findings with
them, along with mitigation methods for such attacks. We will
open-source the code and collected dataset for community use.

II. BACKGROUND AND RELATED WORK

A. Text-to-image Models

Text-to-image (T2I) models [48], [10] are a new emerging
technology for high-quality image generation with text de-
scription as a condition, also known as prompt. During the
generation process, a diffusion model is commonly adopted,
e.g., U-Net [40] to recover the desirable image from random
noise, with the guidance of prompts. Specifically, these models
take the text embedding of the prompt from a fixed text encoder
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(usually the text encoder of CLIP [35]). Then this embedding is
fed into the diffusion model to predict the step-wise noise with
the cross-attention mechanism [52], [36]. Popular T2I models
include commercial ones like DALL·E [25], Midjourney [22],
Imagen [42] and open-source Stable Diffusion [39].

B. Prompt-as-a-Service

Despite the remarkable generation ability of T2I models,
performing prompt engineering requires a significant amount
of effort and cost. For instance, PromptPerfect charges up
to $100 per month for its prompt optimization service [32].
Under these circumstances, Prompt-as-a-Service (PaaS) has
emerged as a popular application. Professional prompt engi-
neers optimize prompts with their expertise and sell them
on the prompt markets, e.g., PromptBase [29], AIFrog [4],
PromptSea [34], PromptHero [31]. These on-sell prompts are
sightlessly exhibited with their exquisite showcases, which
visually indicate the prompt effects. After purchasing, the user
gains access to its corresponding textual description, which
can be used to generate customized images or increase the
number of showcased outputs.

C. Prompt Stealing Attacks

Several methods can be potentially used to investigate the
feasibility of prompt-stealing attacks (PSA). A straightforward
strategy is image captioning via a caption model. For example,
Li et al. [17] train an image-to-text model, BLIP, to predict
the prompt of an image. However, as shown in [8], [20],
[26], a high-quality prompt should consist of a subject and
modifiers. For this reason, the open-source project CLIP-IG [28]
considers adding modifiers into the subject by combining
highly correlated phases from five kinds of modifiers (i.e.,
medium, artist, trending, movement, and flavor). In a more
related work, Shen et al. [46] propose to utilize a multi-head
model ML-Decoder [38] to detect the modifier contained in the
showcase. To train such a predictor, they collect a dataset called
Lexica-Dataset. Some approaches attempt to reverse-engineer
prompts using token-level optimization techniques [53], [21],
where a soft prompt is first derived and then projected into
a hard prompt. However, the resulting prompts often lack
semantic coherence, limiting their reusability. Additionally,
these methods typically assume white-box access to the
generation model, an unrealistic assumption in closed-source
settings. More analysis can be found in Section V-B.

Despite their progress in promoting the performance of
PSA, these works suffer from two defects. First, they lack
feedback from text-to-image models. This means that they
rely on a predefined pattern, which may lead to an overfitting
problem and thus poor reusability. Second, a lot of manual
labor is required in the loop, including collecting the dataset
and training additional models, which significantly affects the
attack efficiency and cost.

III. PROBLEM STATEMENT

A. Threat Model

We follow the same threat model in [46], as detailed below.

Attacker’s Capability. We make two assumptions about the
attacker’s capabilities. (1) The attacker can access the generated
showcases of the prompt (denoted as s). This is typical in
commercial platforms, where prompt sellers display showcase
images to attract potential buyers. However, the specific prompt
used to generate the showcase remains hidden from all users
until they purchase it. A detailed example can be found in
Portrait Neon Lights [33]. (2) As some commercial victim
models run in a pay-as-you-go mode, which may be expensive,
we assume the attacker can use a substitute local text-to-image
(T2I) model, referred to as the proxy model. Since the proxy
model can be any open-source model, the query budget is 0.
Adversary’s Motivation. The attacker aims to compromise
the confidentiality of valuable prompts sold on the markets. A
carefully designed prompt consists of subjects and modifiers
(as shown in Figure 1). Specifically, subjects are the main body
of a prompt that outlines an image’s most important elements,
while modifiers detail the style of the subjects and the whole
picture. Formally, given a showcase image s, an adversary aims
to recover the prompt p that is used to create the showcase,
including both its subjects and modifiers. We provide more
analysis about the motivation in Appendix A-A.

From a utility perspective, stolen prompts can be reused
for customization, e.g., replacing subjects or increasing the
number of showcases. From a commercial standpoint, as
discussed in previous work [46], the motivation behind prompt
stealing can be twofold. First, it may infringe on the intellectual
property (IP) of high-quality prompts, which is the result of
significant effort by prompt engineers. Second, attackers have
strong economic incentives: they can avoid payment by using
these premium prompts for free and may also redistribute or
resell the prompts on other markets for additional profit. This
poses a significant threat to the commercial interests of both
prompt developers and the platforms hosting them, which is
explicitly prohibited by platform PromptBase [30]. From a
privacy protection standpoint, this type of attack poses a
significant threat to the confidentiality of prompts, particularly
when they contain sensitive or highly classified information.
We provide more analysis for this standpoint in Appendix A-B.

B. Attack Requirements

For the attack to be considered successful, the attacker must
meet the following requirements:

• Objective-1: Functionality [Output Perception Similar-
ity]. The stolen prompt should achieve a high reproduction
in image appearance to the showcase.

• Objective-2: Reusability [Subject Shift]. The recovered
prompt possesses high reusability so that when swapping
the main subject, it still generates images with similar
appearances.

Attack Comparisons. We follow the existing line of work [17],
[28], [46], and focus on reversing readable prompts, which
could satisfy these two objectives. We observe that certain hard
prompt recovery methods could serve as potential solutions.
For instance, PH2P [21] leverages gradient signals to optimize
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Fig. 2. Overall pipeline of Prometheus. In general, Prometheus consists of three main components: ❶ Modifier Extraction; ❷ Contextual Matching; and ❸
Greedy Proxy Query. Prometheus starts with a showcase and public prompt base, which provides static and dynamic modifiers. Then, contextual matching is
utilized to rank and shortlist the unsorted modifiers. Prometheus interactively queries a local Proxy model and computes the fidelity gain for each modifier
(as defined in Equation 2). This gain serves as feedback to guide the refinement of the modifiers.

a soft prompt, which is then projected back into a hard prompt.
However, since semantic coherence is not taken into account
during optimization, the recovered prompts often fall into a
local optimum and consist of unreadable or nonsensical words.
Another drawback of hard prompt recovery methods is that
they search modifier candidates within the entire discrete token
space, which is rather inefficient. For example, when recovering
a 40-word prompt from a 50,000-token vocabulary, PH2P would
consider 50, 00040 combinations, which is computationally
infeasible. As a result, they fail to meet the aforementioned
objectives, limiting the practical utility of the extracted prompts.
We list the merits of our Prometheus over the existing works
in Table I. Besides static modifiers, we also include dynamic
modifiers and feedback from the proxy model, to steal prompts
with higher fidelity from a meaningful modifier set efficiently.

IV. PROMETHEUS

A. Overview

We introduce Prometheus, an advanced prompt-stealing
attack to overcome the limitations of existing works.
• Showcase-specific Dynamic Modifiers. In addition to

the fixed static modifiers used in the previous work [46],
we propose to generate a pool of dynamic modifiers for
target showcases on the fly, to provide more comprehensive
descriptions.

• Proxy-in-the-loop Feedback. We propose to leverage
Proxy’s feedback to optimize the prompt for the desired
effect, i.e., showcase. The attacker queries the Proxy with
a combined modifier pool. Based on the Proxy’s feedback,
i.e., each modifier’s fidelity gain to the showcase s, the
attacker decides to keep or discard the modifier.
Figure 2 depicts the workflow of Prometheus. Given a

showcase, it employs a captioning model (e.g., BLIP) to
generate a caption as the initial subject. It then strategically
enhances this subject by adding a set of modifiers to create the
final prompt. Specifically, Prometheus consists of the following

three key steps to achieve the requirements of functionality
and reusability as stated in Section III-B.
1. Modifier Extraction (Section IV-B). First, we construct a
comprehensive and semantic modifier pool to ensure functional-
ity and reusability. We satisfy these requirements by considering
two kinds of modifiers: 1) Static modifiers, which are extracted
from a luxuriant prompt base in prior work [46], comprising
prompt engineers’ prior knowledge; 2) Dynamic modifiers,
which are extracted from the target showcase’s captions, and
generated on the fly. They serve as a supplement to fill in more
showcase-specific details dynamically.
2. Contextual Matching (Section IV-C). After obtaining the
comprehensive modifier list, it is inefficient to query all of these
modifiers to select the desired ones. Therefore, we refine them
to narrow down the search space. Considering the modifiers’
decorative effect on the subject, we propose a contextual
matching algorithm to refine these modifiers for streamlining
the sample space. We verify that this intuitive matching method
could achieve a more consistent ranking of the modifiers.
3. Greedy Proxy Query (Section IV-D). Third, we optimize
the prompts to achieve higher functionality. Since the local
ranking from contextual matching may not fully align with
the target, it is crucial to perform additional refinement based
on feedback from the Proxy. We employ the greedy search
algorithm to enhance the modifiers further. Specifically, for
each prompt candidate, we query the Proxy and compute
the similarity between its output and the showcase. Using
the similarity gain as a criterion, we decide whether to retain
or discard each modifier. This greedy approach allows us to
identify the most effective modifiers. The entire interaction
completes within Q turns.

Below we provide details of each step in Prometheus.

B. Modifier Extraction

Previous works [28], [46] primarily focus on adopting the
overall style of a showcase as the prompt modifier. These
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(a) Ground Truth: Black Panther leap-
ing across rooftops in a bustling city,
with skyscrapers and streets below,
during a sunset

(b) Base Prompt: A hero in all black
costume flying over a city

(c) Base Prompt + Detail: A hero in
all black costume flying over a city,
Black Panther

(d) Base Prompt + Detail + Position: A
hero in all black costume flying over a
city, Black Panther, with skyscrapers
and streets below, during a sunset

Fig. 3. An illustration of dynamic modifiers. The base prompts in (b)–(d) are generated by the caption model BLIP [17] based on the showcase. As shown,
the caption model fails to capture detailed subject and position information. Additionally, in the transition from (a) to (b), these omissions result in an image
that differs from the showcase. However, this issue can be mitigated by incorporating detailed subject and position information, as demonstrated in (c) and (d).
The evaluation model used is Imagen [42] from Gemini.
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Fig. 4. Modifier coverage with caption number.

are referred to as static modifiers because they are extracted
from a fixed set of prompts and remain largely unchanged
across images. Typically, they rely on the captioning model
BLIP [17] to extract the main subjects of showcases. However,
as illustrated in Figure 3, such captioning models often fail
to capture the details of a given showcase s with sufficient
accuracy [46], which may lead to unmatched image generation.
For example, BLIP describes “Black Panther” merely as a
“hero in all black costume”, which can easily be interpreted as
“Batman” by a text-to-image model. Also, spatial cues such
as “during a sunset” can offer vital information about scene
layout, yet are often missed.

To address this, we introduce two additional image elements,
including subject detail and position information, to enrich the
image description. In this paper, these are collectively referred
to as dynamic modifiers, as they vary with each showcase.
Formally, the dynamic modifiers are defined as the subject
details (e.g., identity and specified property) and the position
information (i.e., the whole layout of showcase), which are
beyond the static style modifiers.

Dynamic Modifier. We present the pseudocode (Ap-
pendix A-C) along with the following introduction to detail
dynamic modifier extraction. We leverage the zero-shot capabil-
ity of caption model to extract dynamic modifiers. Specifically,
given a showcase, we first generate multiple prompts with a
local BLIP model. This caption model could generate captions

with large variances under a high sampling temperature, finding
all the potential descriptions. Then, for each sampled caption,
we utilize sentence analysis techniques to extract nominal and
prepositional phrases. Specifically, we utilize Spacy [49] to
analyze the prompt for Parts of Speech (PoS) and construct a
parent-child tree for each word. For subject detail, we extract
all the noun chunks in the prompt, including single nouns
(e.g., “Black Panther”) and noun phrases (e.g., “red car”). For
position information, the extraction process is much more
complicated. First, Prometheus goes through one caption to
locate all the preposition words. If one word is a preposition,
then a prepositional phrase is constructed based on its relation
tree. Take the phrase “during a sunset” as an example: when
Prometheus detects that “during” is a preposition, the relation
tree of “during” is extracted, e.g., “a” is the child of “sunset”
and “a sunset” is the parent of “during”. Finally, we obtain a
prepositional phrase by appending the child to its corresponding
parent. We do not adopt an object detector as it can only
recognize the category of a subject (e.g., car) while ignoring
fine-grained details (e.g., the color of a car). Also, it cannot
get the layout of an image, i.e., position information.

We validate the effectiveness of dynamic modifiers in Fig-
ure 4. As illustrated, incorporating dynamic modifiers extracted
from the caption pool significantly enhances modifier coverage.
Specifically, static modifiers alone account for 77.8% coverage.
When dynamic modifiers are introduced, coverage increases
to 95.8% as the caption pool expands. This improvement
demonstrates that dynamic modifiers effectively compensate for
the limitations of both the BLIP model and static modifiers.

C. Contextual Matching

After obtaining the modifiers, Prometheus ranks them by
their correlation to the showcase. This ranking process occurs
locally to narrow the search space for more cost-effective
Proxy queries. An intuitive way is to apply CLIP to calcu-
late the modifiers’ semantic similarity to the showcase [28].
However, we argue that, as modifiers are appendants to a base
prompt, modifier correlation alone does not indicate the gain
to prompt fidelity. Therefore, we have to rethink the effect
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Fig. 5. Comparison between our contextual modifier ranking method and the
baseline. The slopes of fitted linear functions are the PCC.

contextually. Driven by this, we propose a new correlation
ranking method, namely Contextual Matching, to measure a
modifier’s fidelity gain to the subject comprehensively.

Specifically, given a showcase s and a base prompt pb, we
calculate the contextual matching score of modifier m with
the following score function Fscore:

Fscore = D(ET (pb +m), EI(s))−D(ET (pb), EI(s)), (1)

where ET and EI are the text encoder and image encoder of
CLIP, respectively. The distance function D is cosine similarity.
As CLIP is trained to build a correlation between texts and
images, this metric could reflect the matching degree of a
modifier in context.

We validate the superiority of our contextual modifier
ranking method using Pearson Correlation. We calculate the
semantic similarity between contextual modifiers and showcase
as D(ET (pb + m), EI(s)), as well as the prompt similarity
between p̂ and ground truth p as D(ET (p), ET (p̂)). Then we
calculate the Pearson Correlation Coefficient (PCC) between
these two similarities. We compare our contextual matching
with the vanilla matching method [28], which directly calculates
the similarity between the modifier and showcase. As shown
in Figure 5, our contextual matching presents a more positive
correlation. More specifically, our method achieves a PCC of
0.65, while the vanilla method only achieves 0.37, indicating
that our method has a more consistent trend with the victim.
We present a more detailed ablation study in Section V.

D. Greedy Proxy Query

From the first two steps, we obtain two lists of modifier
candidates for the dynamic and static ones, respectively.
These candidates are generated, ranked, and refined using
BLIP [17] and CLIP [35]. However, due to the knowledge
gap between these models and the T2I generative model, it
is not practical to directly select the most probable modifiers
from these lists (truncation). Simply choosing modifiers based
on relevance ranking is insufficient, as the achieved PCC
of 0.65 by contextual matching is still inadequate, though

Algorithm 1 GreedyProxyQuery

Input: base prompt pb, showcase s, sorted modifier set M, fidelity gain
threshold δ, proxy model O, and allocated query budget Q.

Output: recovered prompt p̂.
1: sb ← O(pb) ▷ Query the proxy model
2: for q in range(Q) do
3: pq ← joint M[q] to pb ▷ Joint candidate to base prompt
4: sq ← O(pq) ▷ Query the proxy model
5: ∆(M[q]) = Sem(sb, sq , s) + Per(sb, sq , s)
6: if ∆(M[q]) > δ then ▷ If the threshold is reached
7: pb = pq
8: sb = sq ▷ Update base prompt and best score
9: end if

10: end for
11: p̂ ← assign pb as final prompt
12: return p̂

it already outperforms the baseline ranking method. We argue
that truncating the top-k modifiers risks under- or overslicing,
which can lead to suboptimal recovery performance. To address
this, we propose leveraging feedback from a local proxy model
to greedily search for modifiers that provide the largest fidelity
gain. Specifically, the attacker A interacts with the Proxy by
iteratively extending the base prompt, adding one modifier at
a time. Modifiers are then selected based on the Proxy’s
feedback, i.e., only those that enhance the quality of the
final prompt p̂ are retained. This iterative refinement process
ensures maximum fidelity between the recovered prompt and
the ground-truth prompt.
Score Function. To accurately assess the fidelity gain of
a modifier, a comprehensive scoring function is essential.
Intuitively, the perception of similarity between the recovered
image (i.e., the image generated using the stolen prompt) and
the showcase can serve as a useful guide. However, because
the showcase includes many random elements introduced by
the inherent randomness of any T2I model, relying too heavily
on perception consistency risks severe overfitting. Specifically,
the stolen prompt may end up including additional modifiers
beyond the ground truth to account for this randomness.
To address this, we leverage both semantic and perceptual
guidance to refine the modifiers. Let pb represent the base
prompt, which is updated to pq with modifier mq , and let the
corresponding feedback from the Proxy O be denoted as
O(pb) and O(pq), respectively. The fidelity gain is:

∆(mq) = Sem(pb, pq, s) + Per(pb, pq, s). (2)

Here, fn = Sim(O(pq), s) − Sim(O(pb), s), where fn ∈
{Sem,Per}, and Sim represent the corresponding similarity
metrics. Specifically, the similarity function for image semantics
is the CLIP score [35], and that for image perception is
LPIPS [56]. Note that the base prompt is dynamic, that is,
when the fidelity gain ∆(mq) meets the threshold δ, the base
prompt is updated as pb +mq . Then it is regarded as the base
prompt for the next modifier.
Greedy Proxy Query. We present our GreedyProxyQuery

process in Algorithm 1, which contains four main steps:
1) Sample a modifier m as the order provided in Section IV-C

and append it to the base prompt pb;
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TABLE II
PERFORMANCE OF PROMETHEUS COMPARED WITH BASELINE METHODS. THE MODELS REFERENCED HERE REPRESENT THE PROXY MODELS USED FOR

PROMPT EXTRACTION. REALPROMPT CONSISTS OF PROMPTS SOLD ON COMMERCIAL MARKETS (CLIP img :↑, LPIPS :↓, SBERT :↑, ASR :↑).

Dataset Method FLUX ShuffleDiffusion Stable Diffusion-3.5
CLIPimg LPIPS SBERT ASR CLIPimg LPIPS SBERT ASR CLIPimg LPIPS SBERT ASR

DALLEPrompt

BLIP 0.694 0.776 0.721 24.7% 0.746 0.733 0.747 26.0% 0.729 0.773 0.734 15.3%
CLIP-IG 0.798 0.745 0.729 23.3% 0.828 0.701 0.733 22.7% 0.822 0.723 0.736 14.7%

PromptStealer 0.731 0.761 0.733 13.3% 0.767 0.725 0.734 28.7% 0.778 0.757 0.741 18.7%
PH2P 0.542 0.836 0.531 0% 0.490 0.771 0.612 0% 0.656 0.751 0.599 0%

VLMasExpert 0.785 0.726 0.746 26.7% 0.814 0.674 0.767 38.7% 0.818 0.703 0.757 29.3%
Ours 0.873 0.679 0.795 48.3% 0.890 0.601 0.803 56.0% 0.897 0.626 0.790 52.7%

RealPrompt

BLIP 0.768 0.757 0.724 14.6% 0.745 0.740 0.672 8.3% 0.758 0.761 0.710 16.7%
CLIP-IG 0.842 0.708 0.755 29.2% 0.848 0.712 0.775 35.4% 0.851 0.708 0.778 27.1%

PromptStealer 0.771 0.731 0.765 35.4% 0.770 0.743 0.780 31.3% 0.781 0.762 0.781 37.5%
PH2P 0.760 0.759 0.617 0% 0.815 0.719 0.598 0% 0.793 0.795 0.611 0%

VLMasExpert 0.848 0.695 0.776 27.1% 0.858 0.688 0.748 29.2% 0.854 0.685 0.774 33.3%
Ours 0.901 0.653 0.814 58.3% 0.912 0.644 0.798 54.2% 0.901 0.625 0.799 62.5%

2) Query pb with the proxy model O and obtain feedback η
as score function shown in Equation 1;

3) If η does not meet threshold δ, discard modifier m;
otherwise, append m to pb and obtain the new pb;

4) Repeat Steps (1)-(3) until the budget is exhausted or the
prompt fidelity requirement is met.

As dynamic modifiers serve as a supplement to the subject,
we begin the searching process by examining the dynamic
modifier list (md) before proceeding to the static modifier list
(ms). To ensure balanced consideration of both dynamic and
static modifiers, we pre-allocate the budget between md and
ms in a 1:4 ratio. The final optimized prompt is constructed by
combining the subject with both dynamic and static modifiers,
as formulated below:

p̂ = pb +md +ms. (3)

V. EVALUATION

A. Experiment Setup

Datasets. We consider two datasets: DALLEPrompt and
RealPrompt. Each data point in these sets consists of a showcase
and the corresponding prompt.
• DALLEPrompt. This dataset comprises prompts sourced

from real-world prompts designed for DALL·E [9]. It
spans various styles, including oil paintings, pixel art,
and cyberpunk, as well as themes such as movie posters,
book covers, and early 1900s newspapers. The prompts
encompass a wide array of subjects, featuring characters
(e.g., Mickey Mouse, Darth Vader), objects (e.g., marbles,
boomboxes), and locations (e.g., castles, Ancient Egypt). We
generated showcases with these prompts using three well-
performing models: FLUX [14], ShuttleDiffusion [47], and
Stable Diffusion-3.5 [3] (SD-3.5). Finally, we obtained three
sets containing prompt-showcase pairs (50 pairs for each).

• RealPrompt. This collection comprises a meticulously
curated set of 24 prompt-showcase pairs, sourced from real-
world commercial prompt markets including AIFrog [4]

and PromptBase [29]. These pairs contain eight distinct
themes, each showcasing a unique style. For every style, three
images were generated by the sellers using prompts featuring
different subjects. The average word prompt length is 32.08,
with an average of 9.11 modifiers. The associated generation
models include Midjourney [22] (1 set), Stable Diffusion [39]
(3 sets), Leonardo.ai [2] (2 sets), and DALL·E [24] (2 sets).

Baselines. We consider the only prompt stealing method and
four prompt recovery methods as baselines. The content in
brackets denotes the original task.

• BLIP (Captioning) [17]: This is a captioning model trained
on image-caption pairs from the COCO dataset [18]. Since
the captions primarily focus on describing the subjects in
an image, BLIP often exhibits suboptimal performance in
capturing styles or modifiers.

• CLIP-IG (Captioning) [28]: This method builds upon BLIP
by enhancing its capabilities. In addition to the subjects
generated by BLIP, CLIP-IG selects a set of modifiers from
a predefined large-scale modifier pool. These modifiers are
ranked based on their semantic similarity to the showcase,
with text-to-image similarity assessed using CLIP’s encoders.

• PromptStealer (Prompt Stealing) [46]: This method is
specifically designed for prompt stealing against text-to-
image models. Given a showcase, it utilizes a fine-tuned
BLIP model to generate the subject and employs a fine-tuned
multi-head classifier to predict modifiers from a predefined
modifier pool. The fine-tuning process relies on the Lexica
prompt-image dataset, which was collected using the Stable
Diffusion models.

• PH2P (Prompt Inversion) [21]: We also consider PH2P, a
method that inverts the prompt with access to the encoder
of Stable Diffusion v1.5. PH2P first performs token-level
optimization on the soft prompt using gradients, and then
projects the optimized soft prompt into a hard prompt.

• VLMasExpert (VLM): We include an additional baseline,
Vision-LLM as an expert (VLMasExpert), in our study.
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Fig. 6. Visualization of generated images compared with showcase. We provide eight different themes here. An example of the corresponding prompts can be
found in Table III (case-VI). The score on the generations represents the CLIP score (↑), which indicates the semantic similarity between the generation and
the showcase. Please zoom out for details.

Vision-LLM, trained on extensive datasets for image analysis,
can be likened to a human expert with specialized knowledge.
We utilize the powerful GPT-4o [12] to generate descriptions
of the showcases.

Evaluation Metrics. We consider four metrics to evaluate the
stolen prompt, including:

• CLIPimg: This metric evaluates the semantic similarity
between generated image g and showcase s. It is calculated
with image encoder Eimg from CLIP [35] as:

CLIP img(g, s) =
Eimg(g) · Eimg(s)

∥Eimg(g)∥∥Eimg(s)∥
,

where a higher score indicates greater semantic similarity.
• LPIPS: The Learned Perceptual Image Patch Similarity

(LPIPS) metric is designed to align closely with human
perception [56]. It evaluates the visual similarity between
two images using features extracted by neural network (e.g.,
AlexNet backbone). We use LPIPS to assess the perceptual
similarity between the recovered image and showcase. A
lower LPIPS indicates better perception alignment.

• SBERT: SentenceBERT (SBERT) is an enhanced version
of BERT [37], designed specifically for measuring sentence-
level similarity. We use this metric to evaluate the semantic
similarity between the stolen prompt p̂ and the victim prompt
p. Specifically, SBERT score functions as follows:

SBERT (p̂, p) =
Ebert(p̂) · Ebert(p)

∥Ebert(p̂)∥∥Ebert(p)∥
,

where Ebert is the embedding extractor of SentenceBert.
• ASR: We also use the Attack Success Rate (ASR) as a

metric to evaluate the effectiveness of attacks. Following the
setting in [16], [7], [41], an attack is considered successful
if the SBERT score is greater than 0.8 (e.g., the semantics
of p̂ and p are similar enough).

We agree that no single metric fully captures similarity
or usefulness, and selecting the top image by one metric
can conceal weaknesses on others. Accordingly, for the three
attacks, we do not pick a single “best” test by any one metric;
instead, we report the average across all metrics. Besides these
metrics, we also conducted a large-scale user study, which
directly evaluates the human perception of the stolen effect.
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TABLE III
EXAMPLES OF TARGET AND STOLEN PROMPTS GENERATED BY

PROMETHEUS AND BASELINE METHODS. THE CORRESPONDING IMAGES
ARE SHOWN IN FIGURE 7. THE BLUE ANNOTATIONS INDICATE THE PARTS

THAT MATCH THE TARGET PROMPT.

Target prompt Two Mickey Mice are talking in a concert hall; sculpture, hyperre-
alistic.

BLIP Two figurines are positioned to Mickey Mouse.

CLIP-IG
Two Mickey Mouse statues standing in front of a large room, 3
d cartoon, lee madgwick &amp, disney pixar 3d style, pixar and
disney 3d style...

PromptStealer Mickey Mouse in a movie theater, artstation, highly detailed, sharp
focus, 8k, octane render, 4k, cinematic, hd, unreal engine 5...

PH2P minion minion bunny dnd ” amas expectations monument

VLMasExpert

Two cartoon characters resembling anthropomorphic mice stand
facing each other on a stage in a grand theater setting, both are
wearing black outfits with large round ears and gloved hands,
the background is filled with rows of empty seats in a spacious
auditorium...

Prometheus (Ours) Two Mickey Mice are talking on stage, orchestra, pack auditorium,
Mickey Mouse statue, auditorium, hyper realism.

The detailed experimental design and results are presented in
Section V-D.
Implementation Details. We implement Prometheus using
Python 3.8 with PyTorch. All experiments are conducted on
a single NVIDIA GeForce RTX A6000 GPU. The fidelity
gain threshold in Equation 1 is set to 0.005. For BLIP used
across all methods, we utilize the official implementation and
adopt a ViT-based backbone, which is fine-tuned on the COCO
dataset [19]. Unless otherwise specified, the Oracle query
limit for Prometheus is set to 200, and the number of captions
is set to 400. Note that, since we employ a local proxy model
for feedback, the money cost is 0. To tackle the randomness
within the attack process and image generation, we run each
experiment three times.

B. Main Result

We first compare Prometheus with five baselines in terms
of two objectives depicted in Section III-B: functionality and
reusability. Additionally, we consider a practical scenario in
which multiple showcases, each featuring different subjects,
are provided.
Functionality. Table II shows the main experimental results.
In general, Prometheus surpasses all the baselines on both
DALLEPrompt and RealPrompt, demonstrating its functionality
and practicality in real-world scenarios. Specifically, it achieves
the best average scores: image semantic similarity (0.897),
image perception similarity (0.601), prompt semantic similarity
(0.803), and ASR (56.0%) on DALLEPrompt. Similarly, on
RealPrompt, Prometheus leads with image semantic similarity
(0.912), image perception similarity (0.625), prompt seman-
tic similarity (0.814), and ASR (62.5%), demonstrating its
effectiveness in real-world scenarios.

For image semantics and perception, Prometheus’s improve-
ments are mainly attributed to its prompt optimization with
feedback from Proxy, while other methods only leverage local

BLIP CLIP-IG PromptStealer VLMasHuman Prometheus Showcase

score=0.771

PH2P

score=0.793

score=0.763 score=0.871

score=0.891

score=0.852 score=0.773

score=0.748

score=0.760

score=0.656

score=0.620

score=0.656

score=0.776

score=0.893

score=0.859

score=0.892

score=0.936

score=0.934

Fig. 7. Reusability of stolen prompts with different subjects. We swap all the
subject-related words (❶ Mickey Mouse; ❷ Donald Duck; ❸ SpongeBob) to
the target subject only. The corresponding prompts can be found in Table III.
Please zoom out for details.

models to predict the prompt. This feedback-based refinement
helps Prometheus generate images that are perceptually similar
to the showcase. For prompt semantics, Prometheus also
achieves better results on all datasets and proxy models. The
main reason is that we improve the quality of recovered prompts
by introducing dynamic modifiers and contextual matching.
The former adds subject details as well as position information,
and the latter ensures the sorted modifier achieves more
consistent fidelity improvement when being put into the base
prompt. Therefore, Prometheus obtains higher prompt semantic
similarity with the victim prompt. We include a more detailed
analysis of the performance gap between DALLEPrompt and
RealPrompt in Appendix B-D.

TABLE IV
REUSABILITY OF PROMPTS (WITH DIFFERENT SUBJECTS) GENERATED WITH

PROMETHEUS COMPARED WITH FIVE BASELINES. THE EVALUATION
DATASET IS THE REAL-WORLD DATASET REALPROMPT.

Method CLIP img(↑) LPIPS(↓) SBERT (↑) ASR(↑)

BLIP 0.755 0.765 0.749 29.2%
CLIP-IG 0.785 0.725 0.779 22.9%

PromptStealer 0.775 0.756 0.809 54.2%
PH2P 0.730 0.748 0.627 0%

VLMasExpert 0.767 0.715 0.801 47.9%
Prometheus (Ours) 0.832 0.681 0.835 70.8%

Figure 6 illustrates eight examples of the attack effect
achieved by Prometheus compared to baseline methods. Addi-
tionally, Table III presents an example of the stolen prompts.
Overall, compared to the baselines, Prometheus generates
prompts and images with higher fidelity to the ground truths
and showcases in terms of image semantics, visual perception,
and prompt semantics. Take Figure 6 case VI as an example.
The baseline BLIP struggles to recognize the style (e.g.,
“hyperrealistic”) and fails to capture the main content of the
image (e.g., “in a concert hall”). Meanwhile, CLIP-IG tends
to match irrelevant modifiers to the showcase and introduces
excessive redundancy. For instance, it ranks “3D cartoon” as
having the highest correlation to the showcase (VI) and includes
many unrelated “Disney” modifiers. These mismatches result
in semantically incorrect image content and lower perceptual
quality. This behavior can be attributed to CLIP-IG treating
modifiers independently, leading to poorly contextualized
predictions. PromptStealer exhibits two notable shortcomings.
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TABLE V
PERFORMANCE UNDER MULTIPLE SHOWCASE SCENARIOS. THE

EVALUATION DATASET IS THE REAL-WORLD DATASET REALPROMPT.

Method CLIP img(↑) LPIPS(↓) SBERT (↑) ASR(↑)

BLIP 0.778 0.760 0.760 27.1%
CLIP-IG 0.808 0.723 0.805 72.9%

PromptStealer 0.796 0.742 0.809 75.0%
PH2P 0.743 0.737 0.651 0%

VLMasExpert 0.803 0.715 0.801 58.3%
Prometheus (Ours) 0.834 0.684 0.840 79.2%

First, it demonstrates lower fidelity when predicting the subject
(e.g., Mickey Mouse in case II and The Simpsons in case VII).
Second, as shown in Table III, PromptStealer often predicts
generic modifiers that are frequent in its training data [46],
rather than contextually appropriate ones. A likely explanation
is that PromptStealer’s prediction models are trained on out-
of-domain data, such as that collected from Stable Diffusion,
leading to overfitting. As for PH2P [21], this method fails
to capture style modifiers and often even the subject. This
highlights a fundamental limitation of using gradient-based
prompt inversion for prompt stealing, indicating the need
for further refinement to enable adaptation. Another baseline,
VLMasExpert, performs relatively well but frequently omits
key characters in the showcase. This limitation is likely due
to alignment constraints during the model training and the out-
of-distribution problem. We provide a more detailed analysis
about the impact of alignment on its stealing performance
in Appendix B-A. In contrast, Prometheus captures dynamic
and contextually relevant modifiers, such as “auditorium” and
“orchestra”, which align with elements present in the showcase.
As we can see, in the base prompt, Prometheus also ignores the
“concert hall” element, but the dynamic modifier fixes this issue.
Furthermore, Prometheus accurately identifies the modifier
“hyper realism”, demonstrating its outstanding prediction ability.

Reusability on Different Subjects. Table IV presents the
comparison of reusability between Prometheus and baseline
methods. Reusability is a crucial property, as it enables users
to modify the subject of a prompt while maintaining similar
styles in the generated images. To evaluate this, we use
the RealPrompt dataset, which comprises 8 style sets (three
subjects per style) to simulate real-world scenarios. For each
stolen prompt, an LLM is employed to replace the subject,
producing a new prompt with a different subject. This process is
achieved using the following instruction with GPT-4o: “Please
replace the central subject in the sentence prompt with subject
while keeping the rest of the content unchanged”. We validate
the reusability of Prometheus and other baselines from both
qualitative and quantitative angles. We present the experimental
results in Table IV and visualization in Figure 7.

As shown in Table IV, Prometheus outperforms all baselines
across metrics, including image semantics, image perception,
prompt semantics, and ASR. This demonstrates that our method
extracts the most reusable prompts while minimizing overfitting
to specific showcases. We illustrate this in Figure 7, where
the subject is replaced from “Mickey Mouse” to “Donald
Duck” and “SpongeBob”. As shown, Prometheus maintains
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Fig. 8. Impact of the number of extracted dynamic modifiers. The dataset is
DALLEPrompt (CLIP img :↑, LPIPS :↓, SBERT :↑).

a consistent style that aligns closely with the ground truth
outcomes, whereas the baselines exhibit several shortcomings.
Specifically, BLIP, CLIP-IG, and PH2P fail to capture the
“concert hall” element, resulting in images with incorrect
semantics. PromptStealer partially captures the subject but
introduces errors in quantity and mismatches static modifiers.
In contrast, Prometheus achieves superior image semantics
and perceptual similarity, demonstrating its effectiveness in
generating reusable prompts.

Take-away: Prometheus outperforms the existing prompt
stealing attack [46] and potential adaptations in both func-
tionality and reusability with a large margin, indicating
its high effectiveness.

Multiple Showcases. We consider a practical scenario where
multiple showcases are provided under a single theme. In
this case, the attacker extracts a prompt for each showcase,
resulting in a set of prompts. These prompts are then merged
into a distilled prompt. Here, we consider using a large
language model (i.e., ChatGPT-4o) to summarize the stolen
prompts with the instruction “Please summarize these sentences
into one sentence by rephrasing them. Replace {subjects}
or related words with {target subject}”. The experimental
results are presented in Table V, leading to two key observations.
First, while Prometheus continues to outperform the baseline
methods, the margin of improvement is less pronounced. A
potential explanation is that the baseline methods compensate
for inadequacies in single stolen prompts by leveraging the
collective information from the entire prompt set, thereby
reducing Prometheus’s relative advantage. Second, compared
to the results in Table II, the prompt semantic fidelity of
Prometheus improves (from 0.814 to 0.840) after merging all
the stolen prompts. This is likely because the summarization
process mitigates overfitting to individual showcases, resulting
in a stolen prompt that is better aligned with the ground truth.

Take-away: When given multiple showcases on the same
theme, Prometheus outperforms the baselines and achieves
better performance than in single-showcase scenarios.
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Fig. 9. Impact of the number of extracted dynamic modifiers. The evaluation
dataset is RealPrompt (CLIP img :↑, LPIPS :↓, SBERT :↑).

C. Ablation Study

Impact of Dynamic Modifiers. Figure 8 and 9 show the impact
of the number of captions that are used to generate dynamic
modifiers, ranging from 0 to 400, on Prometheus’s performance
with three metrics. We have two observations. First, including
dynamic modifiers boosts the stealing performance. As shown
in all cases, when adopting dynamic modifiers (quantity = 100),
the similarities in the three metrics outperform the method that
excludes dynamic modifiers (quantity = 0). The reason is that
our proposed dynamic modifiers enhance the prompt’s detail
and positional information, providing a better description of
the showcase. Second, Prometheus shows a stable performance
trend as the modifier quantity increases from 100 to 400.
The potential reason is that Prometheus extracts high-quality
dynamic modifiers from the captions of the showcase, requiring
only a limited number of captions. This reveals the high
efficiency of Prometheus.

TABLE VI
IMPACT OF SPECIFIC DYNAMIC MODIFIERS. HERE WE CONSIDER REMOVING

SUBJECT DETAIL OR POSITION INFORMATION TO STUDY WHICH PLAYS A
MORE IMPORTANT ROLE IN IMPROVING OVERALL PERFORMANCE.

Detail Position CLIP img(↑) LPIPS(↓) SBERT (↑)

0.882 0.674 0.796
0.897 0.659 0.810
0.891 0.665 0.807
0.901 0.653 0.814

Impact of Specific Dynamic Modifiers. We further validate
the effectiveness of specific components of dynamic modifiers,
i.e., subject detail and position information. Here, we consider
Prometheus with only one kind of dynamic modifiers by
excluding the other kind during modifier collection. As shown
in Table VI, we have two observations. First, including one
or both types of dynamic modifiers improves performance.
Subject detail and position information both have gains in image
appearance and prompt fidelity, and the gains are even greater
when they are both included. Second, subject detail provides
more gain than position details. The position information
includes position details and azimuth information, where the
former is covered by the subject detail to a certain degree.
Impact of Contextual Matching. We replace our proposed

TABLE VII
IMPACT OF MATCHING METHOD. WE REPLACE THE CONTEXTUAL

MATCHING IN PROMETHEUS WITH THE VANILLA METHOD.

Proxy Methods CLIP img(↑) LPIPS(↓) SBERT (↑)

FLUX Vanilla 0.895 0.659 0.789
Ours 0.901 0.653 0.814

ShuttleDiffusion Vanilla 0.902 0.655 0.796
Ours 0.912 0.644 0.798

SD-3.5 Vanilla 0.893 0.642 0.793
Ours 0.901 0.625 0.799

contextual matching method in Prometheus with a vanilla
approach that directly calculates cosine similarity between the
modifiers and showcases [28]. Table VII presents the results
across three metrics. As the matching method transitions from
vanilla to our approach, the attack performance improves.
Notably, our contextual matching outperforms the vanilla
method across all proxy models. A key highlight is the
significant increase in prompt semantic similarity for prompts
stolen with FLUX, rising from 0.789 to 0.814. The core reason
is that our contextual matching considers modifiers’ contextual
semantics so that it improves the prompt similarity.

Impact of Proxy Feedback. We now illustrate how the
Proxy feedback influences the performance of Prometheus.
We consider two baselines to replace our greedy search, i.e.,
direct splicing and random sampling. Direct splicing implies
that the attacker directly splices the top-k modifiers with the
highest correlation to the subject, while random sampling
chooses k modifiers at random. We set k to 20 for these
two baselines and the sampling pool of random sampling
to the best 200 modifiers, in line with the query budget of
Prometheus. Figures 10 and 11 show the comparison results
on three metrics. As all the modifiers are refined with our local
contextual matching, which is based on modifier-showcase
cosine similarity, all the methods achieve a rather good
performance. This can be reflected in Figure 12(c). Beyond
that, we observe our proposed method significantly improves
the image and prompt similarity, as shown in Figures 12(a) and
12(b). The reason is twofold. First, although our local ranking
provides a highly correlated match (a correlation coefficient of
0.65), it is insufficient to directly adopt the top modifiers as the
final choice, as there is still a non-negligible gap. More detailed
analysis can be found in Section IV-D. Second, Prometheus
remedies this issue by leveraging the feedback from Proxy.
This helps keep the truly relevant modifiers while dropping the
irrelevant ones, and thus improves the appearance alignment
and prompt fidelity.

Impact of Query Budget. Figures 12 and 13 illustrate the
performance of Prometheus across all three metrics as the query
budget increases from 50 to 300. We observe that when the
query budget rises from 50 to 100, Prometheus demonstrates
significant improvements in image and prompt similarities.
However, the performance stabilizes as the budget increases
from 100 to 300. This indicates the efficiency of Prometheus,
as it requires relatively few queries to achieve satisfactory
stealing results. This also validates the effectiveness of our local
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Fig. 10. Impact of Proxy query. The evaluation dataset is DALLEPrompt (CLIP img :↑, LPIPS :↓, SBERT :↑).
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Fig. 11. Impact of Proxy query. The evaluation dataset is RealPrompt (CLIP img :↑, LPIPS :↓, SBERT :↑).
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Fig. 12. Impact of number of Proxy query. The dataset is DALLEPrompt
(CLIP img :↑, LPIPS :↓, SBERT :↑).

contextual matching, whose coarse-grained filtering restricts an
exact range, which further facilitates the fine-grained filtering
in Proxy query.

Take-away: Prometheus is efficient, requiring few captions
and online Proxy queries. The designed modules in
Prometheus help improve the effectiveness.

D. User Study

We conducted a user study to gain deeper insights into users’
preferences regarding the recovered prompts. The question
asked of the interviewees is “How similar do you think image
A is to image B?”. To mitigate potential bias, we did not
inform them of our task or what these images represented. The
preference is divided into five levels, which are specified in
the Appendix. We conducted our investigation anonymously,
and finally, we gathered 103 valid answer sheets. The detailed
user study setting, IRB exemption, and our effort to protect the
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Fig. 13. Impact of the number of Proxy query. The evaluation dataset is
RealPrompt (CLIP img :↑, LPIPS :↓, SBERT :↑).

volunteers are depicted in Appendix B-B. Figure 14 shows the
user study results. We can tell that our Prometheus achieves
the highest similarity according to respondents’ preference,
indicating its practicality in the real world.

Take-away: With sufficient ethical consideration and under
fair settings, Prometheus achieves the highest alignment
with human perceptions.

VI. POTENTIAL DEFENSES

A. Conventional Defenses

We first consider some existing defenses as below. (1)
Random noise. We generate a normally distributed noise with
the same threshold of ϵ to ensure a similar visual disturbance.
(2) Puzzle effect. This defense covers the showcase with
the puzzle effect, which is applied in practice [6]. (3) Text
watermark. This is also one defense method used in reality [23].
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Fig. 14. Rating of user perception. PS refers to PromptStealer [46], and VaE
refers to VLMasExpert.

It covers the image with repetitive text indicating the ownership.
We present the visual effect of these defenses in Figure 15. We
do not consider PromptShield proposed in PromptStealer [46],
as it assumes that the attacker uses a modifier prediction model
to steal the prompt and the defender has white-box access
to the exact modifier prediction model, which does not apply
to our attack and is beyond our threat model. Instead, we
have a thorough analysis in B-C. We also exclude methods
for prompt copyright protection (e.g., PromptCARE [55]), as
they can only verify the ownership of prompts, but cannot
prevent privacy leakage. Another method, Glaze [45], is a
perturbation-based method to prevent unauthorized usage of
images. It optimizes an invisible perturbation to mislead the
showcase feature to a target style. Unfortunately, the code
for Glaze is not open-sourced, so we do not include it in our
evaluation.

Table VIII shows the performance of these defenses against
our Prometheus. It is obvious that these solutions have a minor
impact on the prevention of prompt stealing. The main reason
is that none of them are specifically designed to prevent prompt-
stealing attacks. Therefore, their modification to the showcase
may suffer from low transferability when attackers use a caption
model to extract prompt information.

B. Dedicated Defense

Given the ineffectiveness of the above defenses, we propose a
defense dedicated to Prometheus, dubbed PromptGuard. It aims
to preserve the utility of showcasing images for benign users
while preventing the reconstruction of prompts by malicious
users. The core insight of PromptGuard is to add an invisible
perturbation ϵ to the showcase, which can disturb the feature in
the embedding spaces of the caption models (B) and modifier
matching model (C). A defender can utilize any captioning
model and modifier matching model to disrupt the embeddings.
Its optimization goal can be formulated as:

min α · D(B(s),B(ŝ)) + β · D(C(s), C(ŝ)),
s.t. (ŝ− s) ∈ [−ϵ, ϵ],

(4)

where D is a distance metric used to measure the feature
similarity. Here we choose the cosine similarity, where a
larger value indicates a higher similarity and vice versa.
Therefore, when using the gradient descent algorithm (e.g.,

TABLE VIII
POTENTIAL DEFENSES AGAINST PROMETHEUS. HERE, THE ARROWS

INDICATE THE DEFENSE EFFECT.
Defenses CLIP img(↓) LPIPS(↑) SBERT (↓) ASR(↓)

No Defense 0.901 0.625 0.799 62.5%

Random Noise 0.887 (-0.014) 0.775 (+0.150) 0.795 (-0.004) 58.3%(-4.2%)
Puzzle 0.882 (-0.019) 0.659 (+0.034) 0.799 (-0.000) 61.1%(-1.4%)

Watermark 0.829 (-0.072) 0.735 (+0.110) 0.788 (-0.011) 41.7%(-20.8%)
PromptGuard 0.824 (-0.077) 0.664 (+0.039) 0.774 (-0.025) 27.8%(-34.7%)

Prometheus∗ 0.915 (+0.014) 0.597 (-0.028) 0.804 (+0.005) 67.9%(+5.4%)

Adam optimizer in our implementation) to optimize Formula 4,
the feature similarity between s and ŝ becomes much lower. The
detailed similarity decline process can be found in Figure 16.
Specifically, we use the BIM algorithm [13] to generate image
perturbation and set the optimization step at 200. We set the
perturbation threshold ϵ to 8/255, a rather small value, to
avoid influencing the normal usage of showcases. Both the
hyperparameters α and β are set to 0.5.

The evaluation results of PromptGuard are presented in
Table VIII. The performance of Prometheus significantly
declines under PromptGuard’s protection, outperforming con-
ventional defenses by a large margin. This effectiveness stems
from PromptGuard’s ability to disrupt showcase embeddings,
reducing their feature similarity to the original ones. As a result,
when a captioning model or modifier matching model utilizes
these disturbed embeddings for prompt stealing, the generated
outputs deviate significantly from the correct semantics. These
findings validate the effectiveness of PromptGuard in mitigating
prompt-stealing attacks.
Limitation of PromptGuard. The success of PromptGuard
heavily relies on the assumption that the defender knows the
caption models (B) and modifier matching model (C) used by
the attacker. However, this assumption does not hold water as
the attacker can try other models when he realizes that the
chosen B and C are shielded. Unfortunately, in this case, the
perturbation generated has low transferability to the different
caption models and modifier matching models [11], [54].
This significantly restricts the practical value of PromptGuard.
For example, PromptGuard generates the perturbation using
BLIP with ViT-base, while the attacker can adopt BLIP
with a different structure (e.g., ViT-large) for prompt stealing.
The defense results for this setting are shown in Table VIII
(denoted as Prometheus∗). We observe that with a different
caption model, the stealing performance rises again, even
outperforming the no-defense setting. This reveals the resistance
of Prometheus to PromptGuard and the urgent need for more
effective defenses. More discussions about such attacks can
be found in Appendix B-C. We will discuss more effective
defenses in future work.

Take-away: Prometheus is robust against conventional
defenses and resistant to dedicated defense.

VII. POTENTIAL LIMITATIONS AND FUTURE DIRECTIONS

Time Complexity. The primary limitation of Prometheus lies in
its runtime. Unlike prior works that rely on fussy data collection
and pre-training, Prometheus introduces a lightweight online
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stealing framework, featuring dynamic modifier generation
and a Proxy-integrated search process that is both more
adaptive and cost-efficient. On average, Prometheus takes about
two minutes to steal a single prompt. Given that protected
showcases are typically curated works, such as artistic prompts,
which are relatively few compared to web-scale images, this
time complexity would not become a practical obstruction for
large-scale attacks. Moreover, as studied in Section V-C, our
parameter choosing is redundant, so that the running time can
be further optimized without noticeably affecting performance.
Future work can focus on developing more efficient search
strategies while preserving effectiveness.
Search Strategy. This paper proposes a greedy search-based
framework for effective prompt stealing, overcoming the
overfitting limitations of the traditional training–prediction
pipeline. We acknowledge that there may exist interdependence
between modifiers so that they have a stronger combined effect
than greedy search. However, we argue that, as our candidate
modifiers are sampled offline with contextual matching before
online search, which ensures every candidate already possesses
a reasonably good descriptive capability for the showcase,
the improvement of interdependent modifiers is likely to be
marginal. However, doing so would significantly increase the
computational cost. For example, in our setting with 200
candidates, even considering only pairwise combinations would
theoretically slow down the search by approximately 100 times
(i.e., 199/2). Given that the potential gain is limited, such a
computational cost is unacceptable to a large extent. Future
work could explore alternative search strategies beyond our
adopted greedy search to further enhance attack performance
while preserving effectiveness.

VIII. CONCLUSION

We propose Prometheus, an effective, training-free, and
search-based prompt-stealing attack against text-to-image gen-
erative models. Our main insight is leveraging the Proxy
feedback to optimize the prompt to be semantically and
perceptually close to the target. To improve the query efficiency
and prompt fidelity, we propose the concept of dynamic
modifiers, which capture the details and position relations, and
utilize the zero-shot ability of BLIP, as well as NLP analysis,
to extract such information. We also propose a contextual
matching mechanism, which provides a rough ranking order,
to improve the greedy search efficacy. We evaluate Prometheus
against large-scale on-sold prompts from PromptBase and
AIFrog, which are designed for victim models like Midjourney
and DALL·E, by querying the well-performed open-source
proxy models, including FLUX, ShuttleDiffusion, and SD-3.5.
The results demonstrate that Prometheus achieves an excellent
prompt-stealing effect and is resistant to potential defenses.
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IX. ETHICS CONSIDERATIONS AND COMPLIANCE WITH
THE OPEN SCIENCE POLICY

A. Ethics Considerations

Stakeholder Perspectives and Considerations.
1) Prompt Engineer. Prompt-stealing attacks may directly

harm the prompt engineer’s commercial interest. First, an
attacker can avoid paying for the prompt but steal it. Second,
after stealing, the attacker can reload it to prompt markets
to violate the original seller’s IP further.

2) Prompt Market. Prompt-stealing attacks may harm the
prompt markets’ commercial interest. First, stealing a prompt
instead of buying would lead to no commissions earned for
the prompt market. Second, if the attacker loads the stolen
prompt to another platform, it would attract potential users
away.

3) Artist and Society. Prompt-stealing attacks can extract
the style from an image. Therefore, if an artist posts
his/her masterpiece, the attacker could extract a prompt
that describes their work precisely. Then the attacker can
create infinite images that are similar to the artist’s works.

Respect for Persons.
1) Notice. We wrote the consent document that details the

intended benefits of research activities and the risks to
research subjects.

2) Comprehension. The language level is kept to 8th grade
or lower to improve the ability of subjects to comprehend
the benefits and risks.

3) Voluntariness. The consent document stresses that partic-
ipation is voluntary and that subjects are free to withdraw
from research participation without negative consequences.

Positive Impact of Research
1) Identification of Potential Benefits and Harms. The po-

tential harm of prompt stealing is violating the intellectual
property of prompt creators. The benefit is by revealing the
vulnerability of the prompt, the safety issue of the prompt
can attract more people’s attention.

2) Mitigation of Realized Harms. We consider preempting the
escalation of realized harms by notifying affected parties or
otherwise engaging in mitigation actions. More specifically,
before our research, we made responsible disclosure and
notified all the prompt creators. In addition, we developed
a defense against prompt stealing attacks to mitigate the
realized harm.

IRB Exemption and Volunteer Protection.
1) IRB Exemption. In our user study, all images used

were non-explicit, stylized paintings representing everyday
visual content and contained no inappropriate material (e.g.,
nudity or sexual themes). Accordingly, under standard ethical
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guidelines, this study qualified for exemption from formal
IRB review, consistent with the “exempt review” category
defined in U.S. IRB protocols (45 CFR 46) because it posed
minimal risk to participants.

2) Volunteer Protection. To further safeguard participants,
we implemented multiple protective measures. Before partici-
pation, all volunteers were informed that the study concerned
human judgments of image similarity; the specific research
purpose was deliberately described in general terms to
prevent priming or potential misuse. Participants were briefed
on the procedure and data handling, explicitly reminded that
participation was voluntary and could be discontinued at any
time, especially if they experienced any form of discomfort,
and informed consent was obtained. No personally identifi-
able information was collected. Besides, all questionnaires
were completed offline under direct supervision. Participants
were allowed to withdraw immediately if they felt any
discomfort, and their status was continuously monitored
to ensure safety. Upon completion, participants retained the
right to withdraw their responses, and we verified their
physical and mental well-being before concluding the study.

B. Compliance with the Open Science Policy

We are committed to adhering to open science policies
by sharing the outcomes of our research in an open-access
format. This includes sharing datasets, test cases, scripts, and
source code related to our research paper, to promote a broader
commitment to open science principles.
Open Sharing of Code and Data. We will make all artifacts
involved in our research, including datasets, test cases, scripts,
and source code, publicly available on the GitHub platform
to support academic exchange and technological advancement.
The models used in our experiments (Stable Diffusion 3.5,
FLUX, ShuttleDiffusion) are all open-source and can be
accessed and downloaded from HuggingFace. Additionally,
the dataset used in this study is the HF-Prompt dataset, an
open and non-sensitive dataset available on the HuggingFace
platform, ensuring transparency and openness.
Reproducibility and Replicability. All artifacts necessary for
reproducing our research findings will be made public. We
will also provide detailed experimental records and documen-
tation on the GitHub platform, including information on the
experimental environment setup, dependencies, and parameter
settings, to enable researchers to replicate our experiments.
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APPENDIX A
METHOD

A. Problem Motivation
We specify the motivation for studying prompt stealing.

Prompts’ Value. The value of well-crafted prompts can be
validated from two perspectives. Firstly, there are numerous
emerging prompt marketplaces and registered prompt engineers.
The active prompt transactions prove the economic significance
of exquisite prompts. Second, prompt engineering has become
a recognized profession. For instance, Adobe offers prompt
engineer positions with salaries between USD 162,000 and
301,200 [1], and similar listings appear on Indeed [5]. These
trends highlight that well-crafted prompts are valuable intellec-
tual assets.
Attack Scenario. In some scenarios, users may have vague
ideas of what they want to create but struggle to express them ef-
fectively, as well-designed prompts embed subtle linguistic cues
that significantly influence output quality. Previous work [27]
validates the “articulation barrier” when describing aspects like
style or composition, especially for image generation. We target
the scenario where users frequently encounter appealing AI-
generated artworks online and may seek to reproduce their style,
making prompt reconstruction both a realistic and attractive
attack scenario.

B. Privacy Protection Standpoint
From the privacy protection standpoint, prompt-stealing

attack poses a significant threat to the confidentiality of prompts.
Specifically, in many cases, a user’s prompts may interact with
sensitive or private data during the generation process (e.g.,
rely on information retrieved from private databases or internal
documents through in-context learning). Then, the recovered
prompts include not only the ordinary user’s prompts but also
the augmented sensitive information, as both are ultimately
reflected in the generated images. For example, professional
artists might use a prompt such as ’Generate a portrait in
the style of my previous drafts (as shown in the provided
examples)’. Stealing the prompt of such a generated portrait
image could inadvertently expose the artist’s unique stylistic
characteristics (i.e., the privacy in this case) embodied in those
unreleased drafts.

C. Dynamic Modifier Extraction
We detail the extraction process for dynamic modifiers in

Algorithm 2. We first generate multiple descriptions of the
showcase using a captioning model. We then apply the NLP
toolkit Spacy [49] to each caption to obtain its part-of-speech
(PoS) tags and dependency tree (DepTree). These two signals
are subsequently used to extract subject details and position
information, which together form the dynamic modifiers.
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Algorithm 2 Dynamic Modifier Extraction

Input: caption model BLIP B, showcase s, caption quantity q, and NLP
analysis tool Spacy.

Output: extracted dynamic modifier list Md.
1: Md(d) ← ∅ ▷ Store subject detail
2: Md(p) ← ∅ ▷ Store position information
3: P ← B(s, q) ▷ Caption q times
4: for p in P do
5: POS, DepTree← Spacy(p)
6: C ← Spacy.chunk(p) ▷ Get detail chunks
7: Md(d)←Md(d) ∪ C
8: for token in p do
9: if POS(token) = “prep” then ▷ Find prepositions

10: child← DepTree(token)
11: c← child.join()
12: Md(p)←Md(p) ∪ c
13: end if
14: end for
15: end for
16: return Md(d) and Md(p)

APPENDIX B
EXPERIMENT

A. VLMasExpert

As presented in Table II and Figure 6, the baseline VLMa-
sExpert, which serves as a potential prompt-stealing attack
that considers integrating a human expert (it utilizes VLMs
as human experts) into the stealing process, performs worse
than Prometheus. The potential reason can be twofold. First,
the same to PromptStealer [46], the well-performed VLM
GPT-4o is trained on specific image-text pairs and may face
an over-fitting problem when adapted to the prompt-stealing
task. Second, out of copyright protection, most large models,
including GPT-4o, are aligned not to answer copyrighted
content. Thus, VLMasExpert replaces all the protected subjects
with more generalized subjects, which results in less accurate
prompt stealing.

To study which factor accounts for the most of VLM’s defect,
we experiment by ignoring the test examples that contain
copyrighted content, which is denoted as VLMasExpert*. As
shown in Table IX, after disregarding copyrighted showcases,
the performance of VLMasExpert is improved, but slightly.
This indicates that alignment indeed mitigates VLM’s potential
for being adopted in the prompt-stealing task. However, the
improvement is relatively minor, suggesting that the primary
issue is not copyright protection, but rather overfitting.

TABLE IX
VLMASEXPERT WITHOUT ALIGNMENT.

Method CLIP img(↑) LPIPS(↓) SBERT (↑) ASR(↑)

VLMasExpert 0.848 0.695 0.776 27.1%
VLMasExpert* 0.852 0.692 0.785 29.2%

Prometheus (Ours) 0.901 0.653 0.814 58.3%

B. User Study

We specify the user study setting as follows:
Study Detail. The recruited volunteers were asked to complete
a questionnaire on perceptual image similarity. Each participant

viewed 12 randomly selected groups of images (a showcase and
its recovered versions); each group contained 6 image pairs (5
baselines and our method), yielding 72 questions in total. All
images were non-explicit, stylistic paintings within the range of
everyday visual content (the examples can be seen in Figure 6).
For each question, volunteers rated the perceptual similarity
between the showcase and the recovered image using the same
scoring criteria as PromptStealer [46]. To avoid publicizing
the prompt-stealing setting, we did not disclose the precise
research goal and only told participants they were comparing
the similarity between two images. To reduce potential bias, we
anonymized the methods for every question and randomized
the method order within each group to prevent habitual choices
and ensure independence across questions.
Volunteers. We totally recruited 103 volunteers and obtained
103 valid questionnaires. To eliminate bias, the volunteers are
recruited from various backgrounds, including gender, age, and
education. Specifically, among all the respondents, 57.28% are
men while 42.72% are women. As for age, 41.75% of the
surveyed people were between 18-25, and 45.63% of those
were between 26-30. Including respondents aged between 31-
40 (total proportion of 10.68%), these three parts account for
98.06% of the total. Of the remaining 1.94%, both the people
aged under 18 and those between 51-60 account for 0.97%. We
also realize the effect of education on respondents’ preferences.
We keep all the questions to 8th grade or lower to ensure
they are fully understood by the respondents. Among all the
surveyed people, most of them obtained a college degree or
above, and only 0.97% of them have a high school degree.
Specifically, 3.88% of the total respondents have a college
degree, and a proportion of 30.1% have a bachelor’s degree.
The left part, with a proportion of 65.05%, occupies the vast
majority, and owns postgraduate degree.

C. Defense

PromptShield. PromptShield seeks to defend against prompt-
stealing by turning showcases into adversarial examples using
gradients from the attacker’s modifier-predictor. It sets the
ground-truth prompt without artist modifiers as the adversarial
target and then optimizes the showcase with the predictor’s
gradients. This approach has four shortcomings. First, it
assumes the attacker trains a modifier classifier, which our
attack does not, making PromptShield inapplicable and limiting
its real-world utility. Second, it assumes white-box access to
the attacker’s predictor, which is often unrealistic. Third, it
presumes all marketplace prompts include artist modifiers so a
target adversarial prompt can be constructed; however, many
do not. For example, the prompt in Figure 1 from PromptBase
lacks any artist modifier. Finally, even when a prompt contains
an artist modifier, removing that element safeguards only the
artist modifier while leaving other modifiers unprotected.
Detail of Defenses. We set the hyperparameter of conventional
defenses following the principle that the perturbation should not
affect human perception of the subjects and styles. Specifically,
for random noise, we generate Gaussian noise with a mean of
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Fig. 15. Example of generated adversarial example with different defenses. Please zoom out for details.
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Fig. 16. Loss with optimization step.

0 and a standard deviation of 25, which is almost perceptible
to humans. For the puzzle effect, we add a 4×4 grid to
the showcase, with variability set to 3. We generate a text
watermark “@watermark” as the intellectual property claim.
The text font size is set to 20, and the gaps in the rows and
columns are set to 20 and 30, respectively. We evaluate the
defense performance on the RealPrompt dataset to simulate
the preventive effect in the real world.

Analysis of Adaptive Attack. The proposed defense, named
PromptGuard, employs the gradient of a unified loss function to
generate adversarial perturbations. The loss curve is shown in
Figure 16, where the unified loss ultimately converges around
0.45, demonstrating the defense’s effectiveness. However, our
observations reveal that the primary decline in the loss comes
from BLIP, while CLIP contributes minimally. This can be
attributed to CLIP’s pre-training on LAION [43], a dataset
containing billions of examples, which makes it inherently
robust to adversarial perturbations. In contrast, BLIP is more
fragile due to its significantly smaller training dataset. Based on
these findings, when designing adaptive attacks, we focus on
modifying the BLIP structure, as adversarial examples exhibit
poor transferability across different BLIP models. The core

of defending against prompt-stealing attacks is to break the
connection between the showcase and its caption, independent
of the specific captioning model. Therefore, future defenses
should prioritize mitigation strategies that remain robust across
different attack model architectures.

D. More Analysis

Main results. We observe a performance gap between
DALLEPrompt and RealPrompt. After reviewing both datasets,
we attribute this to two factors: (1) Model type. RealPrompt
is largely sourced from commercial T2I systems (e.g., Mid-
journey, DALL·E) with stronger instruction-following, yielding
closer prompt–showcase alignment; as a result, showcases
more faithfully reflect prompt properties and improve prompt
reconstruction accuracy. (2) Prompt type. RealPrompt contains
expert-crafted, commercially sold prompts designed by prompt
engineers, which tend to be more specific and stylistically
distinctive; their showcases are therefore easier to differentiate.
By contrast, DALLEPrompt primarily comprises public user
prompts that are more generic and can be expressed in many
ways, weakening the correspondence between prompts and
showcases.
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