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Abstract—npm is the largest open-source software ecosystem
with over 3 million packages. However, its complex dependencies
between packages expose it to significant security threats as many
packages directly or indirectly depend on other ones with known
vulnerabilities. Timely updating these vulnerable dependencies
is a big challenge in software supply chain security, primarily
due to the widespread effect of vulnerabilities and the huge cost
of fixing them. Recent studies have shown that existing package-
level vulnerability-propagation-analysis tools lead to high false
positives, while function-level tools are not yet feasible for large-
scale analysis in the npm ecosystem.

In this paper, we propose a novel framework VulTracer,
which can precisely and efficiently perform vulnerability propa-
gation analysis at function level. By constructing a rich semantic
graph for each package independently and then stitching them
together, VulTracer can locate vulnerability propagation paths
and identify truly affected packages precisely. Through compar-
ative evaluations, our framework achieves an F1 score of 0.905
in call graph construction and reduces false positives from npm
audit by 94%. We conducted the largest-to-date function-level
vulnerability impact measurement on the entire npm ecosystem,
covering 34 million package versions. The results demonstrate
that 68.28% of potential impacts identified by package-level
analysis are merely noise, as the vulnerable code is unreachable.
Furthermore, our findings also uncover that true vulnerability
propagation (the signal) is shallow, with impact attenuating
significantly within just a few dependency hops. VulTracer
provides a practical path to mitigate alert fatigue and enables
security efforts to focus on genuine, reachable threats.

I. Introduction

Due to the widespread use of JavaScript, npm has become
the largest software ecosystem in the open-source world with
over 3 million packages [1], and serving approximately 4.5
trillion requests in 2024, a 70% year-over-year increase [2].

∗Lingyun Ying is the corresponding author.

This ecosystem’s structure is characterized by a high degree
of code reuse, often involving numerous small packages that
create deeply nested and intricate dependency chains [3]–
[6]. While fostering rapid development, this intricate web
also creates a fragile software supply chain. Consequently, a
single vulnerability in a foundational upstream package can
propagate rapidly through the dependency graph, placing a
massive number of downstream applications at risk. Recent
research shows that approximately one-quarter of all package
versions depend on packages with known vulnerabilities [7].
For instance, pac-resolver, a widely used npm package (com-
monly as a dependency) with three million weekly downloads,
has a high-severity remote code execution vulnerability. As a
result, over 285,000 public repositories on GitHub may be at
risk of attack as all of them depend on the package [8].

To manage these complex risks, the industry has widely
adopted Software Composition Analysis (SCA) tools. Modern
development practices advocate for integrating these tools
directly into Continuous Integration/Continuous Deployment
(CI/CD) pipelines. This “shift-left” approach, exemplified by
automated services like GitHub’s Dependabot [9], aims to
provide developers with immediate feedback on vulnerabilities
with every code change. The goal is to make security a
continuous, automated part of the development workflow,
rather than a separate, delayed process. This immediacy is
considered crucial for effective and timely remediation.

However, SCA tools report primarily on the presence of
a vulnerable dependency, leaving developers with a critical
and challenging question: Am I really affected? Due to the
complexity of the dependency network, for a known vulnerable
package, users find it extremely difficult to ascertain whether
their applications are truly affected or not. This uncertainty
is a core problem, as the subsequent process of updating a
dependency is a costly endeavor, involving significant effort to
ensure compatibility and fix potential breaking changes [10].
In fact, the difficulty of “updating vulnerable dependencies”,
a task often initiated by imprecise alerts, is considered one of
the top five challenges in software supply chain security [11].

The root of this uncertainty lies in the coarse-grained nature
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of current SCA tools, which operate at the package-level. This
approach fails to determine whether the vulnerable code is
actually reachable, not to mention exploitable. Our large-scale
evaluation confirms this imprecision is severe. Our analysis
suggests that 68.28% of alerts generated by package-level
analysis appear to be false positives (noise). This massive
“alert fatigue” leads to “patching paralysis,” where even with
fixes available for over 95% of vulnerable components, 80%
of enterprise application dependencies remain unmanaged and
outdated for over a year [2], [12].

The logical solution to this imprecision is to adopt a
finer-grained function-level analysis. While the ultimate goal
is to determine true exploitability, assessing function-level
reachability stands as the most critical and practical step to
resolve the developer’s initial uncertainty. Yet fine-grained
analysis is hindered by prohibitive computational cost.
Jelly [13], the reference implementation of JAM [14],
constructs file-level summaries per analysis path rather than
package-level summaries, forcing it to re-scan each affected
project separately when upstream vulnerabilities propagate.
While modular strategies like Frankenstein [15] scale for
statically-typed languages (e.g., Java) via Class Hierarchy
Analysis (CHA), such approaches cannot handle JavaScript’s
dynamic semantics, such as prototype mutation.

Our experiments show that state-of-the-art tools frequently
fail due to out-of-memory errors, achieving only a 37.37%
success rate under typical resource limits (RQ2 in Section IV).
Because automated analysis within the CI/CD pipeline is the
primary pathway for improving vulnerability awareness and
remediation speed, this performance gap makes existing tools
impractical for modern development workflows and hinders
dependency security at scale.

To bridge the gap between the need for precision and
the practical demands of modern software engineering, any
viable solution must overcome several significant technical
challenges: C1) Scalability and Efficiency. How can we per-
form fine-grained, function-level analysis without the crip-
pling overhead of whole-program analysis, making it efficient
enough for CI/CD and large-scale studies? This requires a
departure from the monolithic, re-analyze-everything model.
C2) Composability and Context. How can we analyze a pack-
age in isolation while retaining enough semantic information
to accurately connect its CG with those of its dependencies
later? This is particularly difficult in JavaScript and requires
a novel way to represent and resolve inter-package calls. C3)
Precision in a Dynamic Language. How can we statically trace
call chains with high accuracy through JavaScript’s dynamic
features, such as higher-order functions and callbacks, which
are pervasive and often foil traditional static analysis?

To tackle C1, the scalability challenge, VulTracer’s key
insight is that the content of an npm package is immutable
once published. This makes each (package, version) pair
immutable, enabling stable, package-level summaries for
ecosystem-scale reuse, which is an opportunity that prior
work has not leveraged. We pre-compute a high-fidelity
representation for each package, which we term a Rich

Semantic Graph (RSG), and cache the result. This “analyze-
once, reuse-many-times” model dramatically reduces the
computational burden at the build time. To address C2,
the composability challenge, we extract a formal interface
contract from each RSG. This contract defines the package’s
public API and external dependencies, providing the essential
prerequisite for composition. For C3, the precision challenge,
we leverage CodeQL’s advanced inter-procedural data-flow
analysis to build RSGs. Finally, VulTracer introduces
a compositional synthesis algorithm that rapidly stitches
these pre-computed RSGs together according to a project’s
dependency graph, constructing a precise, on-demand CG.

We conducted a comprehensive set of experiments to
evaluate VulTracer and the results demonstrate that our
approach is not only sound but highly effective. In com-
parison, VulTracer’s CG construction achieves a state-of-
the-art 𝐹1 score of 0.905, significantly outperforming prior
tools. Notably, its composable design proves highly scalable,
successfully analyzing complex, real-world dependency graphs
where traditional whole-program analysis tools fail due to
memory limitations. In the critical task of auditing software
dependencies for security risks, VulTracer successfully re-
duces 94% of False Positives (FPs) generated by existing tools
such as npm audit. Furthermore, we conduct the largest-
to-date function-level study of 27 distinct CVEs on the entire
npm ecosystem (comprising 3,267,273 unique packages across
34,685,976 distinct versions). Our findings reveal that 68.28%
of the potential impacts (traced transitively) identified by
package-level dependency analysis are effectively FPs, as the
vulnerable code is never actually called (i.e., unreachable). We
also systematically explore the root causes of this attenuation,
showing it stems primarily from the two key factors of unused
dependencies and shallow API usage. Our study of six major
CVEs found that, on average, nearly a quarter (22.80%) of
direct dependents that declare a vulnerable dependency never
actually import any code from it. Overall, our contributions in
this paper are as follows.
• We design and implement VulTracer1, utilizing a

“analyze-once, reuse-many-times” model to enable scal-
able function-level analysis.

• VulTracer achieves a state-of-the-art 𝐹1 score of 0.905,
reducing FPs by 94% compared to npm audit.

• We conduct the largest-to-date function-level impact
study on the entire npm ecosystem (over 34M package
versions), revealing that 68.28% of package-level alerts
are unreachable noise.

II. Background
A. The npm Dependency Ecosystem

npm is the package manager for Node.js, which manages the
largest ecosystem in the open-source world. The ecosystem’s
structure consists of packages and their dependencies. npm
package developers specify dependencies in package.json,

1A live demo of VulTracer is available at https://tianwen.qianxin.com/np
m-vultracer/
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listing required packages and their versions. This file specifies
package names and version ranges using Semantic Version-
ing [16]. During installation, npm resolves the full dependency
graph. This graph includes both direct and indirect (transitive)
dependencies. The resulting graph is often deeply nested and
highly interconnected. This structure enables high code reuse
but also creates complex vulnerability propagation paths. Our
work operates on this logical dependency graph to trace inter-
package interactions.

B. Static Analysis Challenges in JavaScript
Module Loading and Resolution. Node.js supports two
primary module systems: CommonJS (CJS) and ECMAScript
Modules (ESM). Specifically, CJS is the traditional sys-
tem in Node.js. It uses require() to load mod-
ules and module.exports to define public APIs. The
module.exports object is mutable, and its properties can
be modified at runtime [17]. This practice complicates the
static determination of a package’s public API. Moreover,
the argument to require() can also be a dynamically
computed expression (e.g., require(variable)). This
further makes static dependency resolution undecidable in the
general case [18]. ESM is the modern standard and uses static
import and export declarations. ESM’s static structure is
more amenable to analysis. However, interoperability between
CJS and ESM still creates challenges. The use of transpilers
like Babel [19] introduces additional complexity, as a scalable
analysis must handle both module systems to accurately model
inter-package connections.
Dynamic Language Features. Several core JavaScript fea-
tures hinder static control-flow tracing. Specifically, func-
tions are first-class citizens [20], so they can be passed as
arguments or returned from other functions. This practice
obscures the link between a call site and the code being
executed. Another challenge is dynamic property access.
Properties can be accessed with computed keys, such as
obj[propName]() [20]. Statically identifying the target
function becomes intractable when propName is a variable.
Finally, the this keyword is context-sensitive. Its value
depends on how a function is called, not on where it is
defined. Resolving this statically is a classic problem in
program analysis [21], [22]. These dynamic features make
simple syntactic analysis highly imprecise; achieving accuracy
therefore requires sophisticated data-flow analysis.

C. Reachability vs. Exploitability in Vulnerability Triage
In vulnerability triage, a critical distinction exists between

reachability and exploitability. This distinction is fundamental
to understanding the scope and contribution of our work.
Reachability analysis determines whether there is a call
path to a vulnerable function. Such a path is a necessary
precondition for an exploit. If unreachable, it cannot be
triggered. In contrast, exploitability analysis is a much
stronger condition; it determines whether an attacker can
actually trigger the vulnerable function. Exploitability requires
more than a reachable path. The attacker must also satisfy

specific constraints, such as providing malicious input that
propagates along the call path. Proving exploitability requires
sophisticated techniques like symbolic execution or taint
tracking [23]. These techniques are computationally expensive
and generally intractable (if not impossible) at an ecosystem
scale. Thus, our work focuses on precisely determining
reachability at scale. By filtering out alerts for unreachable
vulnerable code, we address the critical problem of alert
fatigue. This enables developers to focus on the small subset
of dependencies that pose a genuine potential threat.

III. Design
This section details the design of VulTracer, our frame-

work for scalable and precise function-level vulnerability anal-
ysis. We first provide a high-level overview of our three-phase
methodology, then detail each phase’s implementation.

A. Overview of VulTracer
Traditional vulnerability analysis based on whole-program

CGs suffers from poor scalability. Analyzing an application
and its entire dependency graph from scratch requires mono-
lithic, resource-intensive processes. This method is unsuitable
for the rapid feedback requirements of modern CI/CD pipelines
or ecosystem-scale studies. VulTracer addresses this
challenge through a paradigm shift from monolithic analysis
to a composable, pre-computed approach. Our methodology
consists of three phases that decompose the massive analysis
problem into smaller, independent, and reusable components.

As illustrated in Fig. 1, our methodology begins with
RSG generation. During this phase, we analyze each pack-
age version in complete isolation to generate an RSG. This
pre-computation enables reuse across multiple analyses. The
second phase extracts formal interface contracts to enable in-
dependent RSGs to be connected later. We derive an interface
contract from each RSG that serves as a precise, machine-
readable specification of the package’s public API and external
dependencies. This abstraction enables reasoning about inter-
package connections without re-examining dependency source
code. The final phase performs on-demand compositional
synthesis when analyzing specific applications. VulTracer
retrieves pre-computed RSGs and their interface contracts for
the target application and all dependencies, then applies a
lightweight synthesis algorithm to rapidly construct precise,
on-demand CGs for vulnerability tracing. This three-phase
methodology systematically resolves the conflict between scal-
ability and precision. The approach is predicated on pre-
computing a high-fidelity RSG and its formal interface con-
tract for each package, which provides the foundation for rapid,
on-demand synthesis.

B. Intra-Package Rich Semantic Graph Generation
The goal of this phase is to generate a detailed, semantically

rich representation for each package, encompassing both its in-
ternal function call relationships and the essential information
required to define its boundaries. This boundary information,
namely its external calls and potential API structure, is a
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Fig. 1: Overview of VulTracer.

Fig. 2: The three core code snippets of our running example, illustrating the dependency chain from app to util-lib to core-lib.
Each snippet highlights a key interaction pattern analyzed by our methodology. The green dashed arrows represent a direct
invocation, while red signifies a function reference passed through exports.� �

1 const utils = require(’util-lib’);
2 function handle_result(result) {
3 // some processing logic
4 return result;
5 }
6 function main() {
7 res1 = utils.process(data);
8 res2 = utils.parser(data);
9 res3 = handle_result(res2);

10 }
11 main();� �

Listing 1: app/main.js

� �
1 const core = require(’core-lib’);
2 function process(data) {
3 res = core.parse(data);
4 return (function(res) {
5 // some parsing logic
6 return res;
7 })(res);
8 }
9 module.exports = {

10 process: process,
11 parser: core.parse // REF-EXPORT
12 };� �

Listing 2: util-lib/index.js

� �
1 function _parse(data) {
2 // ... sophisticated logic
3 console.log("Core parsing.");
4 }
5 module.exports = {
6 parse: _parse
7 };� �

Listing 3: core-lib/index.js

prerequisite for extracting a formal interface contract in the
subsequent phase.
The Rich Semantic Graph Design. A standard CG is fun-
damentally unsuited for composition because it discards the
information required to link packages. It loses the semantic
context of external calls and fails to model the public API
that other packages consume. By omitting these very points
of inter-package connection, a CG makes subsequent formal-
ization and composition impossible.

To address limitations of CG, we designed the RSG as a
multi-layered model that preserves information discarded by
traditional CGs. Specifically, the RSG’s key innovation is to
reify external calls and API exports into dedicated vertices.
This reification creates an explicit model of the package’s
boundary, which is the prerequisite for building self-contained
and composable graphs. Formally, an RSG is a directed graph
𝐺 = (𝑉, 𝐸) where 𝑉 represents program elements and 𝐸

represents typed semantic relationships. Def. 1 defines the
formal structure of RSG for package 𝑃. The vertex set 𝑉 can be
partitioned into three categories: programmatic entities (𝑉ent),
invocation points (𝑉invk), and export anchors (𝑉export).

Programmatic entities (𝑉ent) represent static code constructs,
partitioned by package boundaries. Module nodes (𝑉mod)
correspond to JavaScript modules (also JavaScript files),
while function nodes (𝑉func) cover all callable entities includ-
ing named functions, anonymous functions, class methods,
and constructors. Internal modules (𝑉mod int) and functions
(𝑉func int) correspond to constructs defined within 𝑃, while
external placeholders (𝑉mod ext, 𝑉func ext) represent imported

dependencies. These placeholders act as named stubs for the
external functions being called, allowing the isolated RSG to
be internally consistent before composition. Invocation points
(𝑉invk) reify call sites as vertices rather than edges, enabling at-
tachment of context-specific information to invocations. These
nodes also can be divided into internal invocation nodes
(𝑉invk int) and external invocation nodes (𝑉invk ext). The former
represents calls to entities that are resolved within the package
boundary, while the latter represents calls to entities outside
the package, which are resolved during the compositional
synthesis phase. Export anchors model the package’s public
API by reifying export statements as vertices. Each anchor
reifies a specific export statement (e.g., an assignment to
module.exports.parser).

The edge set 𝐸 is divided into three subsets: lexical-nesting
edges (𝐸contains), call-resolution edges (𝐸call), and export-
resolution edges (𝐸export). The set of 𝐸contains represents edges
connect entities based on their syntactic structure, which
must be derived from the program’s Abstract Syntax Tree
(AST), e.g., a module contains a function and a function
contains an invocation point. Resolution Edges (𝐸call, 𝐸export)
represents the result of control and data-flow analyses linking
an action-oriented vertex (an invocation or an export) to the
entity it resolves to. These two semantic-resolution subsets are
further partitioned into four subtypes, the first two of which
handling function invocations. For internal calls (𝐸int call),
this edges link an internal invocation to an internal entity
(𝑉mod int, 𝑉func int). In contrast, external calls (𝐸ext call) link
an invocation to an external entity placeholder (𝑉mod ext,

4



𝑉func ext). In addition, the other two subtypes model export
statements. A standard export (𝐸std exp) links an export anchor
to an internal entity. A reference export (𝐸ref exp) links an
export anchor to an external entity placeholder. This models
cases where a value from a dependency is passed through
the package and exported without being invoked locally. Our
running example in util-lib (Listing 2 of Fig. 2) illustrates
both patterns. The statement in line 10 represents a standard
export (𝐸std exp), linking the process export anchor to
the locally defined function process (a 𝑉func int node). In
contrast, line 11 (highlighted in red ) represents a reference
export (𝐸ref exp). It links the parser export anchor to an
external entity placeholder representing the imported entity
parse from core-lib, and this relationship is illustrated
by the red dashed arrow in Fig. 2. This design ensures RSGs
are self-contained models encoding both import requirements
and export capabilities, enabling subsequent interface contract
extraction from 𝑉export and 𝑉invk ext.

DEF 1: Formal structure of RSG

𝐺 = (𝑉, 𝐸) where for a given package 𝑃 :
The vertex set: 𝑉 ≜ 𝑉ent ∪𝑉invk ∪𝑉export
• 𝑉ent ≜ 𝑉mod ∪𝑉func

∗ 𝑉mod ≜ 𝑉mod int ∪𝑉mod ext, where:
– 𝑉mod int ≜ {𝑣 | 𝑣 is a module defined in 𝑃}
– 𝑉mod ext ≜ {𝑣 | 𝑣 is a module imported by 𝑃}

∗ 𝑉func ≜ 𝑉func int ∪𝑉func ext, where:
– 𝑉func int ≜ {𝑣 | 𝑣 is a function defined in 𝑃}
– 𝑉func ext ≜ {𝑣 | 𝑣 is a function imported by 𝑃}

• 𝑉invk ≜ 𝑉invk int ∪𝑉invk ext, where:
∗ 𝜌 : 𝑉invk → 𝑉ent
∗ 𝑉invk int ≜ {𝑣 ∈ 𝑉invk |𝜌(𝑣) ∈ 𝑉mod int ∪𝑉func int}
∗ 𝑉invk ext ≜ {𝑣 ∈ 𝑉invk |𝜌(𝑣) ∈ 𝑉mod ext ∪𝑉func ext}

• 𝑉export ≜ {𝑣 | 𝑣 is an export anchor in 𝑃}
The edge set: 𝐸 ≜ 𝐸call ∪ 𝐸export ∪ 𝐸contains
• 𝐸call ≜ {(𝑣, 𝜌(𝑣)) | 𝑣 ∈ 𝑉invk}

∗ 𝐸int call ≜ {(𝑣, 𝜌(𝑣)) ∈ 𝐸call | 𝜌(𝑣) ∈ 𝑉mod int ∪𝑉func int}
∗ 𝐸ext call ≜ {(𝑣, 𝜌(𝑣)) ∈ 𝐸call | 𝜌(𝑣) ∈ 𝑉mod ext ∪𝑉func ext}

• 𝐸export ≜ 𝐸std exp ∪ 𝐸ref exp
∗ 𝐸std exp ⊆ 𝑉export × (𝑉mod int ∪𝑉func int)
∗ 𝐸ref exp ⊆ 𝑉export × (𝑉mod ext ∪𝑉func ext)

• 𝐸contains ≜ {(𝑣, 𝑢) | 𝑣 ∈ 𝑉ent, 𝑢 ∈ 𝑉, 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑣, 𝑢)}
• 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 ⊆ 𝑉×𝑉, denotes the lexical-nesting relation in AST.

RSG Implementations. We implement RSG generation
through a systematic pipeline using CodeQL queries over the
javascript-all library. The process constructs concrete
graph instances from package’s raw source code.

First, we instantiate the vertex set 𝑉 by identifying all nec-
essary program elements. Internal entities (𝑉mod int, 𝑉func int)
are created by identifying all modules and callable constructs
within the package. To ensure the graph is self-contained,
placeholder nodes for external entities (𝑉mod ext, 𝑉func ext)

are created on-demand for each imported and invoked point.
Concurrently, we create the action-oriented nodes. We query
for all function call expressions or module import statements
to create the invocation nodes in 𝑉invk. Each assignments to
module.exports or exports leads to the creation of an
export anchor nodes in 𝑉export. These nodes are then further
abstracted into an interface contract in the next phase.

Following vertex instantiation, we establish the edge set 𝐸 .
Lexical-nesting edges (𝐸contains) are straightforwardly derived
from the parent-child relationships in the AST. In contrast,
establishing call-resolution edges 𝐸call for invocation points
𝑉invk is a more involved process. Our primary goal is to resolve
each invocation to a concrete callable entity, which determines
whether an 𝐸int call or an 𝐸ext call edge is created. To achieve
this, we first attempt to resolve every invocation point within
the local package scope. We employ a dual strategy to handle
JavaScript’s dynamic nature.

For simple, direct calls, we leverage CodeQL’s standard
value-tracking primitives (e.g., getACallee) to directly identify
the callee within the package. For complex cases involv-
ing higher-order functions or callbacks, we apply an inter-
procedural data-flow analysis using a custom CodeQL config-
uration. In this analysis, the invocation point acts as a sink, and
we trace its value back to a local function or module source
(𝑉func int, 𝑉mod int). If a callee is successfully identified within
the package by either method, we create the corresponding
𝐸int call edge. Any invocation point that cannot be resolved to
a local entity through these methods is consequently classified
as an external invocation (𝑉invk ext). For each of these external
invocation points, we analyze the call expression’s structure
to extract the external dependency’s identifier and its API
access path. This information is used to create or retrieve a
corresponding placeholder node (𝑉mod ext or 𝑉func ext), and an
𝐸ext call edge is established to link the invocation point to it.
Crucially, the extracted API access path is stored as metadata
on the invocation node itself, forming the foundational input
for the interface contract extraction in the next phase.

C. Formal Interface Contract Extraction
Having generated isolated, high-fidelity RSGs in the first

phase, the challenge remains to connect them in a way that
is both scalable and semantically sound. A simple union of
these graphs is insufficient, as it would fail to resolve the
symbolic links of inter-package calls. To bridge this gap, we
designed a formal abstraction layer: the interface contract.
The RSG’s export anchors (𝑉export) and external invocation
vertices (𝑉invk ext) provide the explicit structural foundation
for extracting the interface contract. The goal of this phase is
to extract this contract from each package’s RSG, transforming
the rich internal details into a concise, formal specification of
its external-facing behavior. This contract acts as a “semantic
firewall” that decouples a package’s internal implementation
from its interactions with the wider ecosystem, which is the
cornerstone of our pre-compute and combine strategy.
Interface Contract Design. As formally defined in Def. 2,
the interface contract 𝐶 (𝑃) for a package 𝑃 is a tuple
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⟨M𝐸 ,M𝐼⟩, which consists of an Export Manifold and an
Import Manifest. The contract’s foundation is the API Path, a
structured sequence of operations (𝑝 = ⟨𝑜𝑝1, . . . , 𝑜𝑝𝑛⟩) drawn
from a canonical vocabulary, Op. This vocabulary includes
primitives like moduleExport, moduleImport(pkg),
and getMember(prop), designed to create a composable
representation of inter-package interactions.

DEF 2: Interface Contract

𝐶 (𝑃) ≜ ⟨M𝐸 ,M𝐼 ⟩ where:
• Export Manifold(M𝐸 ) : Πdef → 2𝑉func int∪𝑉func ext

• Import Manifest(M𝐼 ) : Πuse → 2𝑉invk ext

• Πdef ≜ {𝑝 ∈ Op+ | 𝑝 [0] = moduleExport}
• Πuse ≜ {𝑝 ∈ Op+ | 𝑝 [0] = moduleImport(pkg)}
• Op+ ≜ {⟨𝑜𝑝1, . . . , 𝑜𝑝𝑛⟩ | 𝑜𝑛 ∈ Op} where:

∗ Op ≜ {moduleImport(pkg),moduleExport,
getMember(prop),getReturn(),

getParameter(idx),getInstance()}

The Export Manifold (M𝐸) defines the package’s pub-
lic API surface. It is a mapping from a set of defini-
tion paths (Πdef) to the set of function entities they ex-
pose (2𝑉func int∪𝑉func ext ). A definition path is an API path that
must begin with the moduleExport operation. This design
captures diverse JavaScript export patterns. For example in
Fig. 2, in util-lib package, the standard export of the
process function and the ref-export of core.parse are
both represented as distinct paths in Πdef, mapping to a node
in 𝑉func int and 𝑉func ext respectively.

The Import Manifest (M𝐼 ) is the counterpart that catalogues
external dependencies. It is a mapping from a set of use paths
(Πuse) to the set of external invocation points that use them
(2𝑉invk ext ). A use path is an API path that must begin with
a moduleImport(pkg) operation, specifying the target
dependency. For instance, the call to utils.parser() in
app (Listing 1 of Fig. 2) is formalized into a unique use path
in Πuse, which is then mapped to its corresponding invocation
node in 𝑉invk ext. This design provides the necessary “plugs” to
be connected to the “sockets” defined by the Export Manifolds
of other packages.
Interface Contract Implementations. The extraction of the
interface contract is implemented as a deterministic process
that operates on the rich structure of the pre-computed RSG.
This process leverages and abstracts over CodeQL’s advanced
ApiGraphs.qll library to construct the canonical API
paths from the vocabulary Op.

To build the Export Manifold (M𝐸), our implementation
traverses all export anchor nodes (𝑉export) in the RSG. For each
anchor, it analyzes the corresponding source code expression
to construct the canonical sequence of operations representing
its definition path (𝑝 ∈ Πdef). This path is then mapped to
the target node of the anchor’s resolution edge (𝐸std exp or
𝐸ref exp), formalizing the link between the public API and the
underlying function entity.

To build the Import Manifest (M𝐼 ), the implementation
identifies every external invocation node in 𝑉invk ext. For each
such node, it retrieves the API access path metadata that was
stored on it during RSG generation. This metadata is trans-
formed into the canonical API use path sequence (𝑢 ∈ Πuse).
The resulting path is then mapped to the invocation node itself,
cataloguing the precise nature of the external call.

This process results in a collection of self-contained RSGs,
each annotated with a formal interface contract. The contract
provides the unambiguous bridge between a package’s internal
code and its role in the wider software ecosystem, setting the
stage for the final, topology-aware compositional synthesis.

D. Compositional Synthesis of Ecosystem-Scale Call Graph
The final phase synthesizes the individual RSGs into a

single coherent Ecosystem-Scale Call Graph (ECG). This is
not a simple union of graphs but an intelligent stitching process
guided by the interface contracts and the package’s dependency
structure. The complete synthesis algorithm is detailed in
Algorithm 1 in Appendix.

The algorithm begins by establishing a processing order that
respects the dependency hierarchy. It constructs a package-
level dependency graph from project manifest files (e.g., pack-
age.json) and performs a reverse topological sort. This critical
ordering ensures that when any package 𝑃𝑖 is processed, the
graphs for all of its dependencies have already been fully
resolved. For example, in the dependency chain app →
util-lib → core-lib, the required processing order is
core-lib, then util-lib, and finally app. The algorithm
then iterates through this sorted list, maintaining a cache to
store the resolved graph for each processed package.

For each package 𝑃𝑖 in the sorted list, the algorithm first
loads its own isolated RSG. It then sequentially composes
this graph with the already resolved graphs of its direct
dependencies, which are retrieved from the cache. The core
of this process is the Compose function, which first performs
a structural union of the caller’s and callee’s graphs. Subse-
quently, it performs the pivotal interface stitching step. This
step resolves symbolic links by matching use paths (Πuse) from
the caller’s Import Manifest (M𝐼 ) with definition paths (Πdef)
from the callee’s Export Manifold (M𝐸).

This path-based matching handles two primary scenar-
ios. For direct path matching, a use path from app like
<𝑚𝑜𝑑𝑢𝑙𝑒𝐼𝑚𝑝𝑜𝑟𝑡 (′𝑢𝑡𝑖𝑙 − 𝑙𝑖𝑏′), 𝑔𝑒𝑡𝑀𝑒𝑚𝑏𝑒𝑟 (′𝑝𝑟𝑜𝑐𝑒𝑠𝑠′)> is
directly matched with the corresponding definition path in
util-lib’s Export Manifold. This creates a new 𝐸std exp
edge (green dashed arrow in Fig. 2) from the 𝑉invk ext node
in app to the 𝑉func int node for process in util-lib.

For transitive resolution, such as resolving the call to
utils.parser() in app, the algorithm matches the use
path to a definition path in util-lib’s contract. This con-
tract, however, indicates that the API resolves to an entity
imported from core-lib. Since the graph for core-lib
has already been fully resolved, the algorithm transitively
creates a direct 𝐸ref exp edge from app’s invocation node
to the _parse function’s node within core-lib’s graph.
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This accurately models the true invoke relationship, bypassing
the intermediate package. After all dependencies of 𝑃𝑖 have
been composed, the resulting fully resolved graph is stored in
the cache. Once all packages have been processed, the graph
associated with the main application 𝑃𝑎𝑝𝑝 , is the final ECG.

This three-phase design systematically addresses the chal-
lenge of scalable analysis. The RSG generation phase captures
detailed information for each package independently. The in-
terface contract extraction then creates formal, abstract bound-
aries for these packages. Finally, the compositional synthesis
algorithm intelligently stitches these pre-computed compo-
nents together. This process creates a precise, ecosystem-scale
CG. The resulting ECG provides a high-fidelity foundation
for fine-grained vulnerability analysis at a scale previously
impractical. We will empirically evaluate the scalability and
precision of this design in the following sections.

IV. Comparative Evaluation
This section comprehensively evaluates VulTracer’s

accuracy, performance, and advantages over state-of-the-art
baselines. We also conduct an ablation study to validate
the contributions of our framework’s core components.
To structure this comparative evaluation, we address the
following four research questions (RQs):

RQ1: Accuracy. How accurately does our ECG construc-
tion process capture both intra-package and inter-package
function calls?

RQ2: Performance. What is the performance and scal-
ability of our three-phase analysis pipeline comparing to
traditional whole-program approaches?

RQ3: Effectiveness. How effective is the resulting ECG in
reducing FPs in vulnerability analysis compared to existing
dependency scanners such as npm audit?

RQ4: Ablation. What is the contribution of each core
component to VulTracer’s effectiveness?

After empirically validating our methodology through the
preceding research questions, Section V further presents an
ecosystem-scale analysis of vulnerability propagation within
the npm registry, thereby demonstrating the distinctive analyt-
ical capabilities afforded by ECGs.

A. RQ1: Accuracy of Intra- and Inter-Package Call Resolution
Accurate CG construction is fundamental to function-level

vulnerability analysis. Since our approach relies on tracing call
paths to determine whether vulnerable functions are reach-
able, the precision and recall of the underlying CG directly
impact the reliability of our analysis. We therefore evaluate
VulTracer’s intra- and inter-package call resolution accuracy
to validate its effectiveness. We evaluate CG accuracy using
standard metrics including precision (ratio of correct edges
to all reported edges), recall (ratio of correct edges to all
actual edges), and F1 score. For inter-package analysis, we
measure coverage as the percentage of dynamically observed
cross-package calls that are correctly identified.

Due to the absence of complete ground-truth CGs for real-
world projects, we adopt a validation methodology based on

dynamic analysis. We observe that many open-source npm
projects achieve 100% line code coverage through compre-
hensive test suites. We leverage this by executing these tests
and capturing all dynamically invoked call edges as ground-
truth datasets. While 100% line coverage does not guarantee
exhaustive execution traces, this coverage-guided approach is
more realistic and better reflects real-world Node.js usage than
synthetic benchmarks. This enables quantitative evaluation of
VulTracer against Jelly [13], an enhanced CG generator
based on JAM [14].

We identified suitable projects on GitHub by selecting 15
repositories reporting 100% test coverage via CI/CD badges,
indicating comprehensive test suites. After locally installing
each project and its dependencies, we employed NodeProf [24]
on GraalVM [25] to trace function calls during test execution.
Due to incompatibilities between GraalVM and certain testing
frameworks, we successfully generated dynamic CGs for seven
projects, yielding a ground-truth dataset of 6,796 dynamic call
edges. The projects span different domains and complexities,
including build tools (gulp, 33.1K stars), markdown parsers
(markdown-it, 19.2K stars), and utility libraries (franc,
4.2K stars). While test suites achieve 100% coverage of
projects’ own code, their coverage of third-party dependencies
remains minimal. This distinction necessitated a two-level val-
idation strategy. At the intra-package level, dynamically cap-
tured CGs served as ground truth for evaluating precision and
recall. At the inter-package level, we measure the percentage of
dynamically observed cross-package calls correctly identified.
Results. As detailed in Table I, VulTracer significantly
outperforms Jelly, achieving an average 𝐹1 score of 0.905 com-
pared to Jelly’s 0.731. Notably, VulTracer maintains perfect
precision (1.000) across all benchmarks, effectively eliminat-
ing the false positives that compromise Jelly’s accuracy (0.753
precision). For inter-package analysis, VulTracer identified
27 more valid cross-package calls than Jelly, achieving 65.08%
coverage compared to Jelly’s 58.67%. Analysis of the results
reveals the source of these performance differences. VulTra-
cer’s superior recall stems from its robust handling of complex
language constructs. Because static CG analysis must infer
run-time behavior without actually executing the program, any
invocation that depends on run-time construction or indexing
(e.g., obj[someVar]()) is, in principle, undecidable. For
example, in gulp all five such dynamically exercised edges
are absent from the static results of both tools, reflecting the
common upper bound prescribed by Rice’s theorem rather than
an implementation shortcoming.

VulTracer applies flow- and context-sensitive analysis that
accurately separates anonymous callbacks from higher-order
invocations, removing the spurious call-graph edges typical
of over-approximation. By contrast, Jelly augments its
constraint-based analysis with approximate interpretation [26].
These techniques use dynamic instrumentation gathers
runtime hints for hard-to-analyze JavaScript features (e.g.,
obj[someVar](), eval). On the co benchmark alone, this
policy introduces 745 extraneous edges. Although these hints
raise recall slightly, the attendant surge in FPs [27] lowers the
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TABLE I: Evaluation of intra- and inter-package call resolution accuracy across different tools. VT denotes VulTracer.

Project Stars Intra-package Inter-package

Jelly(R) VT(R) Jelly(P) VT(P) Jelly(F1) VT(F1) Jelly(Coverage) VT(Coverage)

gulpjs/gulp 33.1K 0.884 0.884 0.884 1.000 0.884 0.938 75.84% (113/149) 83.22% (124/149)
markdown-it/markdown-it 19.2K 0.484 0.491 0.737 1.000 0.584 0.658 100% (1/1) 100% (1/1)
tj/co 11.9K 0.993 0.907 0.168 1.000 0.287 0.951 37.50% (3/8) 37.50% (3/8)
wooorm/franc 4.2K 0.720 1.000 0.947 1.000 0.818 1.000 4.44% (2/45) 31.11% (14/45)
primus/eventemitter3 3.4K 0.825 0.819 0.886 1.000 0.854 0.900 44.58% (42/94) 45.74% (43/94)
bcoe/c8 2K 0.970 0.921 0.867 1.000 0.916 0.959 69.35% (86/124) 71.77% (89/124)
cosmicanant/recursive-diff 153 0.765 0.863 0.780 1.000 0.772 0.926 - -

Average 0.806 0.841 0.753 1.000 0.731 0.905 58.67% (247/421) 65.08% (274/421)

Bold values indicate the superior result in each comparison pair. R denotes Recall, and P denotes Precision. Coverage is shown as (covered
items/total items) percentage.

average 𝐹1 score by 0.174. By avoiding these FPs, VulTracer
maintains a precision of 1.000 across all benchmarks.

Cross-package calls face the same undecidability induced by
dynamic properties and higher-order callbacks, yet differences
in analysis strategy further amplify the coverage gap. Jelly
performs single-package, top-down analysis; once an upstream
entry point in the dependency chain is pruned, all downstream
edges disappear. In contrast, VulTracer partitions the depen-
dency graph into sub-packages amenable to parallel analysis,
performs local reasoning, and then merges the partial graphs
into a complete CG, avoiding the single-cut effect. Across
the seven projects, VulTracer discovers 27 additional valid
cross-package edges, boosting coverage to 65.08%.

By eliminating FPs entirely, VulTracer delivers markedly
superior support for JavaScript’s complex language features
relative to existing approaches. Its few remaining omissions
arise from theoretical undecidability, underscoring its balanced
advantage in both precision and coverage.

B. RQ2: Performance Evaluation

This evaluation demonstrates the performance and scal-
ability benefits of our composable methodology compared
to JAM’s monolithic approach (implemented by Jelly). We
randomly sampled 100 dependency graphs affected by CVE-
2023-32314 (Table XI in Appendix), successfully installing
99 source packages with 26,653 total npm dependencies. The
single failure resulted from a dependency resolution error.

JAM employs file-level abstractions to optimize computa-
tions within a single npm projects analysis. However, this
mechanism has fundamental limitations. Rather than caching
final computation results, JAM caches intermediate artifacts
required for specific data-flow algorithms. These artifacts are
reusable only when a file is referenced from multiple call
sites within the same analysis run. Because these intermediate
artifacts are algorithm-specific and context-dependent, they
cannot be transferred across different npm projects or adapted
to alternative resolution algorithms. This inability to reuse
results across projects causes significant redundancy: in our
evaluation, JAM must re-analyze all 26,653 packages involved,
even when many identical packages appear across the analyzed
projects.

In contrast, VulTracer enables an “analyze-once, reuse-
many-times” model by caching final analysis results for
unique packages. Across 574 identified propagation paths,
VulTracer reduces analysis from 26,653 to just 506 unique
packages—a 98% reduction. For example, while stentor-
response@1.27.46 involves a dependency graph containing
205 packages, it is only affected by CVE-2023-32314 through
a single path involving 4 packages. This allows VulTracer to
precisely narrow the analysis scope to these relevant targets,
thereby explicitly determining the vulnerability’s impact. By
comparison, Jelly must analyze all 205 packages from scratch
to reach the same conclusion.
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Fig. 3: Time consumption comparison of different tools.

The architectural advantage of VulTracer is evident in
its resource efficiency. Under a strict 4 GB memory limit,
Jelly achieved a success rate of only 37.37% (37 out of
99 source packages), with the majority failing due to mem-
ory exhaustion inherent to monolithic analysis. In contrast,
VulTracer demonstrated robust scalability with a 99.41%
(503 out of 506 packages) success rate. Although the one-
time pre-computation of RSGs required 174 minutes, this
cost is mitigated by our reusable design, enabling the final
on-demand synthesis to complete in merely 41.87 seconds.
This contrasts sharply with Jelly’s 31.34 minutes to analyze
just the 37 source packages it successfully processed. As
Figure 3 illustrates, VulTracer effectively decouples analysis
overhead from project complexity (kLOC), maintaining stable
performance while Jelly exhibits significant degradation as
code size increases.
C. RQ3: Effectiveness in False Positive Reduction

A primary objective of our framework is to enhance the
precision of vulnerability auditing by eliminating alerts for
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unreachable code. This evaluation quantitatively assesses the
effectiveness of VulTracer in reducing FPs compared to
package-level dependency scanners. We benchmark our ap-
proach against npm audit, a widely adopted industry tool
also leveraged by services like Dependabot [9]. To ensure
a consistent and comparable evaluation, we use the same
set of 12 applications from the previous work JAM [14]
as our evaluation subjects. Because we cannot create a full
vulnerability propagation path from npm audit’s output di-
rectly, we opt to utilize its API to identify vulnerabilities in
the dependency graph we built. By traversing the graph, we
obtain all vulnerability propagation paths (𝑃vul). Since npm
audit reports each package affected by a vulnerability in the
dependency graph as an alarm, we use these alarms as the
baseline for our comparison.
Results. As shown in Table II, VulTracer achieves a 94%
reduction in FPs, outperforming npm audit, and surpassing
JAM’s reduction rate of 81% [14]. Specifically, for all target
applications, VulTracer identifies 75 vulnerability propa-
gation paths and 53 vulnerability alarms (49 unique ones),
which means that only 9% of the packages (49 out of 532) in
the dependency graphs are potentially affected, significantly
reducing the triage overhead.

Moreover, we manually validate each alarm and find that,
among a total of 75 different vulnerability propagation paths,
only 11 truly affect the source package, and only 21 of the
53 alarms are true positives (TPs). Due to npm’s semantic
versioning ranges, dependency versions are resolved dynami-
cally at installation time rather than being statically fixed (e.g.,
ˆ1.2.0 will match 1.2.5 today but may match 1.3.0
after a new release). This makes it infeasible to perfectly
reproduce JAM’s prior experimental environment. Therefore,
we evaluate our approach by analyzing the same applications
and comparing the final results. After scrutinizing the 75 paths
using VulTracer, the results show that VulTracer correctly
identifies all vulnerable paths and reduces FPs from 32 to 2.
The two remaining FPs are caused by the dynamic feature
of JavaScript (e.g., high-order function and dynamic function
call), which is a common challenge for all static analysis.

TABLE II: Comparison of vulnerability audit results of Vul-
Tracer and npm audit.

npm audit VulTracer
Target # Pkgs # 𝑃vul # Alarm TP FP TP FP

makeappicon@1.2.2 14 6 2 2 0 2 0
toucht@0.0.1 25 5 4 0 4 0 0
spotify-terminal@0.1.2 85 16 6 3 3 3 0
ragan-module@1.3.0 56 1 3 0 3 0 0
npm-git-snapshot@0.1.1 36 2 4 0 4 0 0
nodetree@0.0.3 5 6 2 0 2 0 0
jwtnoneify@1.0.1 79 7 4 0 4 0 0
foxx-framework@0.3.6 61 1 3 0 3 0 0
npmgenerate@0.0.1 23 5 4 4 0 4 0
smrti@1.0.3 59 1 3 0 3 0 0
writex@1.0.4 46 16 8 6 2 6 2
openbadges-issuer@0.4.0 43 9 10 6 4 6 0

Total 532 75 53 (49) 21 32 21 2

Pkgs refers to the count of packages within the dependency graph. 𝑃vul
indicates the number of vulnerability propagation path. Alarm denotes all
vulnerable packages in the dependency graph.

D. RQ4: Ablation
To evaluate our core design choices, we conducted an

ablation study by disabling three key components:
• VulTracer (Full Setup): As detailed in Section III.
• VT-NoContract: Removes formal interface contracts

(Section III-C), using direct function name matching for
graph merging instead.

• VT-SimpleAPI: Restricts the API vocabulary (Def. 2) by
excluding primitives for complex data flows: getReturn(),
getParameter() and getInstance().

• VT-NoRTS: Disables Reverse Topological Sort (Algo-
rithm 1), processing packages in naive dependency order.

TABLE III: Ablation study results for VulTracer.

Variant Intra F1 Inter Cov. Resolved
VULTRACER (Full) 0.905 65.08% 274
VT-NoContract 0.905 19.95% 84
VT-SimpleAPI 0.905 48.22% 203
VT-NoRTS 0.905 58.19% 245

Note: Intra F1: Avg. Intra-Package F1 score; Inter Cov.: Inter-Package
Coverage; Resolved: Number of calls resolved (out of 421 total).

Table III shows results on the ground-truth dataset from
RQ1. The full VulTracer achieves 65.08% inter-package
coverage, substantially outperforming all ablated variants
(19.95%, 48.22%, and 58.19%), while maintaining stable
intra-package accuracy (𝐹1 = 0.905). This confirms our design
specifically enhances cross-package resolution.

The 45.13% drop in VT-NoContract demonstrates that for-
mal Interface Contracts are essential for semantic matching be-
yond naive name-based approaches. VT-SimpleAPI’s 16.86%
reduction shows that expressive API primitives are critical for
modeling complex data flows. The 6.89% degradation in VT-
NoRTS validates the importance of correct processing order
for resolving intricate re-export patterns.

V. Ecosystem-Scale Vulnerability Propagation
Evaluation

In this section, we leverage VulTracer to conduct a large-
scale analysis of the npm ecosystem. The goal of this section
is to provide broad and empirical insights into the nature of
software supply chain risk. To guide this investigation, we
focus on two fundamental research questions:

RQ5. How often do package-level alerts over-approximate
real reachability?

RQ6. What factors affect the attenuation along dependency
hops?

Our investigation examines vulnerability propagation at two
distinct perspectives. First, an analysis at the single-hop level
is conducted on direct dependencies to uncover the root causes
of over-approximation and the primary factors of attenuation.
The analysis then proceeds to the multi-hop level, where we
investigate how these initial effects compound across transi-
tive dependency chains, thereby providing a comprehensive,
ecosystem-scale perspective on both research questions.
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A. Experimental Setup
Our experiments were conducted on a machine with an

Intel Xeon Silver 4210 CPU and 187 GB RAM. Based on
preliminary analysis, we imposed a 120-second time and 4
GB memory limit for each package analysis task. To enable
efficient large-scale vulnerability impact assessment, we pre-
processed data for each step in the VulTracer workflow
separately. For acceleration, we utilized Apache Spark with
a Yarn queue comprising 3,000 cores and 6,144 GB RAM,
maintaining consistent environment configurations throughout
all evaluations.
Datasets. To evaluate our approach at the ecosystem scale, we
constructed two datasets. The first, npm package and depen-
dency dataset (DSnpm) is constructed by sourcing the complete
dependency graph from Google’s Open Source Insights [28]
and we follow the RScouter [29] to collect metadata and
source code for all packages published before December 31,
2024. This process yields a dataset that encompasses 3,267,273
unique packages, 34,685,976 distinct versions, and over 900
million documented dependency links. The second dataset
(DSCVE) was curated using a two-dimensional strategy to
ensure both ecosystem impact and vulnerability diversity. First,
we selected vulnerabilities from the top 10 most downloaded
npm packages, yielding six high-impact CVEs. Second, we
aligned with the 2024 CWE-Top-25 [30] (a ranking of the
most dangerous software weaknesses), prioritizing the most
severe and recent CVEs for each applicable category, yielding
21 distinct CVEs. After manual verification, DSCVE comprises
27 unique CVEs with precisely identified vulnerable functions
(Vulfunc). The full selection criteria and CVE lists are detailed
in Appendix A (Tables VII and VIII).
Terminology and Hop-Set Partitioning. Throughout this
section, we use the symbols 𝑑0 and 𝑑𝑘 to distinguish between
directly vulnerable packages and their k-hop dependents at
various distances in the dependency graph G:
• 𝑑0 (directly vulnerable package): A package version con-

taining at least one function identified as vulnerable by a
CVE.

• 𝑑1 (one-hop dependent): A package version whose
package.json declares at least one direct dependency
on a 𝑑0 package version. In the npm dependency graph,
𝑑1 nodes are therefore exactly one edge away from the
corresponding 𝑑0 node.

• 𝑑𝑘 (k-hop dependent): A package 𝑝 where the shortest
dependency path to a vulnerable package 𝑣 is of length
𝑘 . We define 𝑑𝑘 = { 𝑝 ∈ 𝑉 | distG (𝑝, 𝑣) = 𝑘 } for 𝑘 ≥ 1.

Our analysis is divided into two stages: a single-hop analysis
(𝑑1 → 𝑑0) to precisely attribute propagation to direct depen-
dencies, followed by a multi-hop study (𝑘 ≥ 2) to observe
transitive propagation decay.

B. Single-Hop Analysis (𝑑1 → 𝑑0)
We first restrict our attention to the 𝑑1 → 𝑑0 edges,

allowing for precise attribution of vulnerability propagation
to a single dependency relation. This eliminates confounding
factors introduced by longer dependency chains.

To formalize our analysis, we model a package 𝑝 as a
collection of modules, denoted by the set 𝑀 (𝑝). Each module
𝑚 ∈ 𝑀 (𝑝) in turn contains a set of functions, 𝐹 (𝑚). The set
of known vulnerable functions within the source package 𝑑0 is
represented by Vulfunc. The interaction between the dependent
and the dependency is captured by two key relational sets:
𝑀imp (𝑑1, 𝑑0), the set of modules that 𝑑1 imports from 𝑑0, and
for each imported module 𝑚, 𝐹call (𝑑1, 𝑚), the set of functions
that 𝑑1 calls from it. The set of all functions called by 𝑑1 from
modules imported from 𝑑0 is defined as 𝐹called (𝑑1, 𝑑0):

𝐹called (𝑑1, 𝑑0) ≜
⋃

𝑚∈𝑀imp (𝑑1 ,𝑑0 )
𝐹call (𝑑1, 𝑚) (1)

With this notation, the three conditions for propagation can be
expressed concisely:

𝐶mod ⇐⇒ 𝑀imp (𝑑1, 𝑑0) ≠ ∅ (2)
𝐶func ⇐⇒ 𝐹called (𝑑1, 𝑑0) ≠ ∅ (3)

𝐶vuln func ⇐⇒ 𝐹called (𝑑1, 𝑑0) ∩ Vulfunc ≠ ∅ (4)

Thus, the overall propagation predicate is the logical con-
junction of these three conditions:

𝑃(𝑑0, 𝑑1) ⇐⇒ 𝐶mod ∧ 𝐶func ∧ 𝐶vuln func (5)

Our analysis of 27 CVEs covers 1,679 directly vulnerable
versions (𝑑0) across 25 distinct packages. These versions are
listed as direct dependencies by 703,896 one-hop (𝑑1) package
versions. The results (fully detailed in Table IX in Appendix,
with high-impact examples in Table IV) show a significant
reduction at each stage of our analysis.
Answer to RQ5: Over-approximation of Package-Level
Alerts. Our single-hop analysis provides a direct answer
to RQ5, revealing that package-level alerts grossly over-
approximate true vulnerability reachability. At the single-hop
level, package-level alerts were found to over-approximate
reachability by an average of 53.66% in the high-impact
CVEs (Table IV) and 67.51% globally (Appendix Table IX).
These two tables provide a detailed breakdown of attenuation
at each analysis stage. Specifically, only 46.34% of one-hop
dependents in the high-impact dataset and 32.49% globally
are confirmed to call a known vulnerable function (satisfying
𝐶vuln func). The primary reasons for this over-approximation
are unused dependencies (failure to meet 𝐶mod) and the use of
only non-vulnerable functions from the dependency (failure
to meet 𝐶vuln func despite meeting 𝐶func). Regarding unused
dependencies, 22.80% of 𝑑1 packages in the high-impact set
and 42.28% globally fail the 𝐶mod condition, meaning they
declare a vulnerable dependency but never import any module
from it. For CVE-2021-23337 in lodash, over a third of
the dependent packages (#𝑑1 - #𝐶mod, 131,933) fall into this
category. This underscores the need for function-level analysis
to reduce alert fatigue and prioritize real threats.
Answer to RQ6: Factors of Single-Hop Attenuation. Our
analysis reveals that the degree of this sharp attenuation is not
uniform across different vulnerable packages. Instead, it is pri-
marily determined by two factors: the scope of the vulnerable
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TABLE IV: Single-hop reachability analysis and attenuation for High-impact vulnerabilities. The full detailed results for all
27 CVEs are provided in Table IX in the Appendix.

CVE ID Package Name # Vulfunc # 𝑑0 # 𝑑1 # 𝐶mod # 𝐶func # 𝐶vuln func

CVE-2021-23337 lodash 1 100 396,112 264,179 (66.69%) 244,130 (61.63%) 11,574 (2.92%)
CVE-2022-3517 minimatch 7 26 38,112 28,667 (75.22%) 15,791 (41.43%) 15,791 (41.43%)
CVE-2016-10540 minimatch 5 23 10,341 9,211 (89.07%) 3,528 (34.12%) 3,528 (34.12%)
CVE-2022-25883 semver 14 74 139,257 111,138 (79.81%) 102,209 (73.40%) 73,314 (52.65%)
CVE-2017-16137 debug 1 55 70,297 54,098 (76.96%) 51,425 (73.15%) 50,454 (71.77%)
CVE-2017-20165 debug 1 42 39,365 29,702 (75.45%) 29,583 (75.15%) 29,576 (75.13%)

Average - - - - 77.20% 59.81% 46.34%

library’s API and the usage frequency of the vulnerable func-
tion. Notably, libraries with broad-APIs demonstrate signifi-
cantly different patterns compared to those with narrow APIs.

Broad-API Libraries (lodash): CVE-2021-23337 in
lodash represents an extreme case of attenuation. As a com-
prehensive utility library with hundreds of functions, develop-
ers often use only a small fraction of its capabilities. While a
majority of dependents (66.69%) import the package, a minus-
cule 2.92% of the 𝑑1 packages actually invoke the vulnerable
template function. This exemplifies how a vulnerability in a
specialized function within a large library has a much smaller
“blast radius” than package-level scanning would report.

Narrow-API Libraries (debug): In contrast, vulnerabilities in
the debug package exhibit a much higher propagation rate.
debug has a focused API centered on its main debugging
functionality. Consequently, a large majority of developers who
import the library are very likely to use its core, vulnerable
function. For both CVE-2017-16137 and CVE-2017-20165,
over 98% of the dependents that import from debug also call
the vulnerable function, leading to a final propagation rate of
over 70% among all direct dependents.

The semver and minimatch packages represent inter-
mediate cases. Their APIs are more extensive than debug’s
but more focused than lodash’s. For semver (CVE-2022-
25883), a high percentage of packages that import it also use
its functions, and a substantial number of those call one of the
14 vulnerable functions, resulting in a high final propagation
rate of 52.65%. For the minimatch CVEs, there is a notable
drop-off between importing a module and calling a function.
The dependents that do call a function from minimatch, the
probability of it being vulnerable is 100% in these cases, as the
vulnerabilities reside in the package’s core pattern-matching
logic. We observed identical attenuation trends in the diversity
CVEs (detailed in Appendix Table IX), confirming these
findings are consistent across different vulnerability types.

To further analyze the usage patterns driving attenuation
in broad-API libraries. We performed a detailed analysis
of lodash function calls, summarized in Table V. Across
244,130 package versions, we observed 7,830,664 calls to 242
distinct lodash functions. The call distribution reveals that
a small number of functions account for a large proportion
of usage. The most frequently called functions, forEach
(10.66%), isFunction (9.99%), and get (9.62%), account
for over 30% of all calls. In contrast, the vulnerable function

TABLE V: Frequency and dependency analysis of lodash
functions. 𝑁𝑐𝑎𝑙𝑙 represents the total call count. 𝐷𝑡𝑜𝑡𝑎𝑙 is the
number of downstream packages including all versions, while
𝐷𝑢𝑛𝑖𝑞 is the count of unique downstream package names.

No. 𝐹name # 𝑁𝑐𝑎𝑙𝑙 (%) Downstream Dependencies (𝑑1)

# 𝐷𝑡𝑜𝑡𝑎𝑙 (%) # 𝐷𝑢𝑛𝑖𝑞 (%)

1 forEach 834,950 (10.66%) 48,224 (19.75%) 4,363 (20.00%)
2 isFunction 782,490 (9.99%) 41,857 (17.15%) 3,741 (17.15%)
3 get 753,685 (9.62%) 37,695 (15.44%) 2,066 (9.47%)
4 map 457,311 (5.84%) 60,801 (24.91%) 5,513 (25.27%)
5 isEmpty 423,905 (5.41%) 48,974 (20.06%) 3,084 (14.14%)
6 isObject 335,162 (4.28%) 44,844 (18.37%) 3,650 (16.73%)
7 isString 326,310 (4.17%) 59,572 (24.40%) 4,542 (20.82%)
8 cloneDeep 283,015 (3.61%) 44,765 (18.34%) 2,829 (12.97%)
9 isUndefined 271,190 (3.46%) 27,684 (11.34%) 2,551 (11.69%)
10 filter 213,382 (2.73%) 36,464 (14.94%) 2,919 (13.38%)

48 contains 23,728 (0.30%) 7,413 (3.04%) 801 (3.67%)
49 template 23,148 (0.30%) 11,574 (4.74%) 1,150 (5.27%)
50 isNaN 22,903 (0.29%) 8,475 (3.47%) 437 (2.00%)

template is ranked 49th, constituting only 0.30% of total
calls. This long-tail distribution demonstrates that library usage
is often shallow despite its wide adoption. Consequently, the
impact of vulnerabilities in less common functions is limited.

Furthermore, co-occurrence analysis shows that template
is most frequently used with functions like get (95.27%),
isString (72.82%), and map (70.44%). This pattern in-
dicates that template primarily serves string generation
tasks where data is dynamically extracted from objects. These
findings reveal how the vulnerable function is actually used in
practice. They also explain why the template function’s im-
pact remains limited despite lodash’s widespread adoption.

C. Multi-Hop Propagation Study (𝑘 ≥ 2)

Building on the single-hop analysis, we extend our evalua-
tion to trace vulnerability propagation through longer depen-
dency chains (𝑘 ≥ 2). This stage aims to quantify the decay
in reachability over multiple hops and to contrast the impact
scope as measured by function-level analysis versus traditional
package-level dependency graph traversal. Our analysis starts
from the set of 𝑑1 packages confirmed to be affected at the
function level. These packages serve as the starting point
for tracing further transitive propagation. Finally, from these
packages, we identified 9,868,514 potential propagation paths
(deduplicated) involving 1,663,634 package versions (also
deduplicated) by traversing the npm dependency graph. A
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TABLE VI: Comparative analysis of transitive vulnerability propagation: package-Level vs. function-Level (High-impact). The
full detailed results for all 27 CVEs are provided in Table X in the Appendix.

CVE ID Paths Affected Library Affected Version Avg. Hop Distance Max Hop Distance

# P-L # F-L RP # P-L # F-L RP # P-L # F-L # P-L # F-L

CVE-2021-23337 285,622 17,267 4,826 27.95% 166,554 37,220 22.35% 3.34 0.61 13 6
CVE-2022-3517 497,595 21,775 1,211 5.56% 286,731 22,557 7.87% 4.15 0.12 13 5
CVE-2016-10540 127,976 14,499 649 4.48% 84,886 7,916 9.33% 3.65 1.14 12 5
CVE-2022-25883 2,096,181 48,192 3,863 8.02% 595,078 74,823 12.57% 7.48 1.09 32 7
CVE-2017-16137 6,663,049 50,444 23,107 45.81% 711,199 286,679 40.31% 7.39 2.05 16 8
CVE-2017-20165 6,184,586 39,460 18,729 47.46% 488,064 208,227 42.66% 7.62 2.08 15 8

P-L indicates package-level analysis, F-L indicates function-level analysis, and RP represents the relative proportion of F-L to P-L.

propagation path is defined as a sequence of packages (𝑑0,
𝑑1, 𝑑2,· · · ,d𝑘) where each 𝑑𝑖+1 depends on 𝑑𝑖 . To analyze
these paths efficiently, we pre-computed RSGs and interface
contracts for all package versions. Then, when analyzing any
specific propagation path, we composed its ECG by combining
these pre-computed results based on the dependency relation-
ships between packages in that path.

We employ an iterative, breadth-first search algorithm to
trace reachability. A package 𝑑𝑘+1 is marked as transitively af-
fected if and only if it depends on an already affected package
𝑑𝑘 and meets the three propagation conditions (𝐶mod, 𝐶func,
and a transitive version of 𝐶vuln func) for that dependency
link. This expansion repeats until no new packages can be
marked as affected, yielding the complete set of transitively
impacted packages. To manage the complexity of ecosystem-
scale analysis and avoid issues like path explosion from cyclic
or diamond dependencies, our analysis focuses on establishing
reachability via the shortest possible call chain between any
two packages in the dependency path.
Answer to RQ5: Amplified Over-approximation in the
Ecosystem. While the single-hop analysis revealed that over
half of direct-dependency alerts are FPs, the multi-hop results
show this effect is amplified across the ecosystem. At the
package level, the 27 vulnerabilities transitively affect a vast
number of packages, with CVE-2017-16137 and CVE-2017-
20165 each having over six million potential propagation
paths. However, function-level analysis demonstrates that the
vast majority of these paths do not represent a real threat. On
average, the number of affected libraries identified by function-
level analysis is only 31.72% and 34.74% for package and ver-
sion count respectively. This means that function-level analysis
filters out 68.28% of transitively affected packages flagged by
package-level tools. For instance, in the case of CVE-2022-
3517 (minimatch), our analysis dramatically reduces the
number of affected libraries from 21,775 to 1,211, a reduction
of 94.44%. Similarly, for CVE-2021-23337 (lodash), the
number of affected libraries drops by 72.05%. This confirms
that the initial imprecision at the first hop creates a rapidly
expanding cascade of false-positive propagation paths.
Answer to RQ6: Transitive Attenuation and Propagation
Decay. As the final number of affected packages and the
propagation path lengths presented in Table VI (and fully
detailed in Appendix Table X) shows, the attenuation factors

identified at the single-hop level amplified at each transi-
tive step, causing vulnerability propagation to decay rapidly.
Specifically, at the package level, vulnerabilities appear to
travel deep into the dependency graph, with average path
lengths ranging from 3.34 to 7.62 (for the high-impact CVEs)
and reaching a maximum of 32 hops for CVE-2022-25883. In
contrast, function-level analysis reveals that actual propagation
is much shallower. The average function-level hop distance for
a reachable vulnerability is notably short, ranging from 0.12
to 2.08 in the high-impact set, and the maximum observed
propagation was only 8 hops. This significant difference in path
depth indicates that even when a vulnerability does propagate
transitively, its actual reach is typically limited to a few steps
from the source.
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Fig. 4: Package- vs. Function-level propagation decay: (a)
Count per hop; (b) CDF.

Fig. 4 provides a direct visualization of the decay dynamics
in two complementary views. Panel (a) plots the number of
newly affected packages per hop on a log scale, illustrating the
magnitude of attenuation at each hop. The significant vertical
gap between the package-level (blue line) and function-level
(red line) curves reveals the over-approximation at every
hop. Moreover, the function-level propagation, shows a clear
turning point, as the number of newly affected packages starts
to decrease sharply from the third hop. Similarly, as Panel
(b) shows, the function-level curve rises sharply and rapidly
approaches its maximum and then plateaus, demonstrating
that the scope of true impact is established very early (96.59%
of all transitively affected packages are identified within just
four hops (𝑘 ≤ 4)). In contrast, the package-level impact
curve rises much more slowly, requiring many more hops to
account for the full set of affected packages.

Taken together, these results demonstrate that the API
surface and specific function usage patterns are the dominant
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factors limiting a vulnerability’s “blast radius”. This attenua-
tion effect is magnified at each step in a dependency chain,
causing a rapid decay in true vulnerability propagation.

VI. Discussion

A. Practical Implications

Our findings offer actionable guidance for enhancing soft-
ware supply chain security. By demonstrating the feasibility
of a precise, function-level reachability analysis at scale, this
work provides a clear path forward for developers, security
teams, and tool vendors.
For Developers and Security Teams. The primary implica-
tion is the need for reachability-driven vulnerability triage.
Alerts from SCA tools should be prioritized not by presence,
but by evidence of reachability. A reachable vulnerability in a
direct dependency warrants immediate remediation, whereas
alerts for unreachable functions in transitive dependencies
represent minimal risk, allowing for the strategic allocation of
engineering resources. Our analysis of “dead” dependencies
(𝐶mod failures in Table IV) further highlights the importance
of dependency hygiene as a direct method for reducing both
attack surface and alert fatigue.
For SCA Tool Vendors. Our results present a clear mandate
to move beyond package-level scanning. Integrating static
function-level call-graph analysis is critical to reducing alert
fatigue and increasing the value of SCA tools. By distinguish-
ing between a specious vulnerability (dependency exists) and
a reachable vulnerability (vulnerable function is called), tools
can provide actionable intelligence rather than overwhelming
reports. This would transform SCA from a system that often
frustrates developers with low-signal warnings into a valuable
tool to precisely identify and prioritize genuine security risks.

B. Limitations

Call Graph Construction and Evaluation. Our analysis
is based on a purely static approach. However, modern
JavaScript applications frequently employ dynamic features
that are intractable for static analysis to resolve perfectly. For
instance, function calls using computed property access, such
as Obj[var](), pose a significant challenge. Although our
data-flow analysis is designed to resolve some of these dy-
namic scenarios, capturing all possible runtime behaviors stat-
ically is an intractable problem. Consequently, our function-
level results on vulnerability propagation should be interpreted
as a conservative lower bound. TPs that rely on highly dynamic
behavior may be missed.

This challenge also extends to evaluation. At present,
the JavaScript/TypeScript ecosystem lacks a comprehensive,
project-level “gold standard” benchmark for validating CGs
at scale. We therefore established a pragmatic ground truth
by dynamically tracing test suites with 100% coverage. While
this provides a high-quality baseline, it does not guarantee
complete path coverage, as function calls nested within com-
plex conditional logic may remain unexercised. However, given
that these comprehensive tests cover nearly all statements and

branches, such unobserved calls are expected to be rare, mak-
ing our dynamic traces a robust, albeit imperfect, foundation
for evaluation.
Scalability and Analysis Timeouts. To enable large-scale
analysis, our methodology imposes strict time and memory
limits on the processing of each package. While this design
maximizes scalability, a small percentage of packages
may fail to complete the analysis within these constraints.
Particularly those packages with extreme complexity or
obfuscated code (e.g., @theia/core). This may lead to
an underestimation of vulnerability propagation along paths
that involve these complex, timed-out packages. However,
these failures represent a minimal fraction of the millions
of packages in our dataset, and their impact on the overall
statistical findings is considered negligible.

VII. Related Work
Vulnerability Propagation Analysis. Research on vulnerabil-
ity propagation has evolved from package-level assessments
to function-level analysis. Package-level studies [7], [31]–[34]
revealed widespread vulnerability prevalence [35]–[37] and
demonstrated extensive propagation through transitive depen-
dencies [10], [31], [37]. Complementary work examined intra-
project vulnerability distribution [38]. However, package-level
analysis overestimates risk by neglecting reachability [39],
motivating finer-grained approaches [17], [40]–[42]. Empirical
evidence confirms this: over half of indirect dependencies in
Crates.io may be unused [40], while only 25.7% of vulnerable
functions are reachable in Maven [41]. Ruan et al. [42] intro-
duced whole-ecosystem call-graph analysis for Maven to quan-
tify propagation impact. Within the npm ecosystem, function-
level vulnerability reachability analysis has been limited in
scale. Early work proposed fine-grained dependency networks
using call graphs [43] or manual analysis [39], confirming that
most projects do not invoke vulnerable functions even when
depending on vulnerable packages. Recent tools face scalabil-
ity or accuracy challenges: JAM [14] works at small scale but
struggles to scale to ecosystem-level security scanning, while
SōjiTantei [44] analyzed only 780 clients and faces accuracy
limitations with modern JavaScript (e.g., ES6). Other work,
such as VulEval [45], focuses on benchmarking detection
tools rather than ecosystem-wide propagation. In contrast,
VulTracer enables the first ecosystem-scale, function-level
empirical study of real-world vulnerability impact in npm.
Call Graph Construction. Function-level analysis requires
CG construction, which is challenging for JavaScript. Dynamic
analysis [24], [40], [46], [47] is precise but lacks coverage
for ecosystem studies [48]. Static analysis is more common,
despite inherent trade-offs between performance and preci-
sion. Lightweight methods [49]–[52] are fast but may be
incomplete, whereas more precise techniques incorporating
taint analysis are often too expensive to scale [18], [53].
To balance scalability and precision, “divide-and-conquer”
strategies have been proposed. Frankenstein [15] stitches pre-
computed call graphs for Java using Class Hierarchy Analysis,
but this approach is incompatible with JavaScript’s dynamic
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features such as prototype mutation. For JavaScript, JAM [14]
and its reference implementation Jelly [13] employ file-level
caching of intermediate data-flow artifacts. However, these
artifacts are algorithm-specific and context-dependent, limiting
reuse to within a single project analysis. This forces JAM
to re-analyze shared dependencies across different projects,
hindering ecosystem-scale scalability. VulTracer addresses
this by caching package-level RSGs as final, self-contained
analysis results that enable cross-project reuse and efficient
dependency chain analysis. This design achieves a balance be-
tween scalability and precision for large-scale npm ecosystem
analysis.

VIII. Conclusions

In this work, we design a novel vulnerability propagation
analysis framework VulTracer, which focuses on identify-
ing the true impact scope of known vulnerabilities at the
function level. The experimental results show it has better
performance and scalability than state-of-the-art tools. More-
over, we conduct an ecosystem-scale empirical study, covering
around 3 million packages, to comprehensively understand the
true threat of known vulnerabilities in npm ecosystem. Our
analysis reveals several significant findings, which can not only
benefit developers in understanding the true security threats of
vulnerabilities but also guide future research in this field.

IX. Ethics Considerations

Our work does not raise any ethical issues. During the data
collection process from the official npm registry, we utilize the
CouchDB replication service [54] as our API interface [55]
to avoid extra load on the normal service. Moreover, we
strictly limit the frequency of API requests and speed of
package downloads. These precautions ensure efficient data
collection while avoiding over-stressing the server, allowing
us to download tens of millions of packages in a month.
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tracking for points-to analysis of javascript,” in European Conference on
Object-Oriented Programming (ECOOP). Springer, 2012, pp. 435–458.

[21] S. Wei and B. G. Ryder, “Adaptive context-sensitive analysis for
javascript,” in 29th European Conference on Object-Oriented Program-
ming (ECOOP). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2015, pp. 712–734.

[22] G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for points-to
analysis,” ACM SIGPLAN Notices, vol. 48, no. 6, pp. 423–434, 2013.

[23] E. Lin, I. Koishybayev, T. Dunlap, W. Enck, and A. Kapravelos, “Un-
trustide: Exploiting weaknesses in vs code extensions,” in Proceedings of
the ISOC Network and Distributed Systems Symposium (NDSS). Internet
Society, 2024.

[24] nodeprof.js, https://github.com/Haiyang-Sun/nodeprof.js.
[25] GraalVM, https://github.com/oracle/graaljs.
[26] Jelly Approximate Interpretation, https://github.com/cs-au-dk/jelly/blob

/6dd7a91c/src/approx/approx.ts.
[27] Issue of Jelly, https://github.com/cs-au-dk/jelly/issues/18#issuecomment

-2082106829.
[28] Google’s Open Source Insights, https://deps.dev.
[29] Y. Gu, L. Ying, Y. Pu, X. Hu, H. Chai, R. Wang, X. Gao, and H. Duan,

“Investigating package related security threats in software registries,” in
2023 IEEE Symposium on Security and Privacy (S&P). IEEE, 2023,
pp. 1578–1595.

[30] The MITRE Corporation, “2024 CWE Top 25 Most Dangerous Software
Weaknesses,” https://cwe.mitre.org/top25/archive/2024/2024 cwe top
25, Common Weakness Enumeration, 2024, accessed: 2025-11-19.

[31] A. Decan, T. Mens, and E. Constantinou, “On the impact of security
vulnerabilities in the npm package dependency network,” in Proceedings
of the 15th International Conference on Mining Software Repositories
(MSR), 2018, pp. 181–191.

14

https://www.npmjs.com
https://www.sonatype.com/state-of-the-software-supply-chain
https://www.sonatype.com/state-of-the-software-supply-chain
https://httptoolkit.com/blog/npm-pac-proxy-agent-vulnerability
https://httptoolkit.com/blog/npm-pac-proxy-agent-vulnerability
https://github.com/dependabot
https://github.com/cs-au-dk/jelly
https://www.npmjs.com/package/semver
https://github.com/babel/babel
https://github.com/Haiyang-Sun/nodeprof.js
https://github.com/oracle/graaljs
https://github.com/cs-au-dk/jelly/blob/6dd7a91c/src/approx/approx.ts
https://github.com/cs-au-dk/jelly/blob/6dd7a91c/src/approx/approx.ts
https://github.com/cs-au-dk/jelly/issues/18#issuecomment-2082106829
https://github.com/cs-au-dk/jelly/issues/18#issuecomment-2082106829
https://deps.dev
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25


[32] G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, A. E. Santosa, A. Sharma,
and D. Lo, “Out of sight, out of mind? how vulnerable dependencies affect
open-source projects,” Empirical Software Engineering, vol. 26, pp. 1–34,
2021.

[33] A. Zerouali, T. Mens, A. Decan, and C. De Roover, “On the impact of
security vulnerabilities in the npm and rubygems dependency networks,”
Empirical Software Engineering, vol. 27, no. 5, p. 107, 2022.

[34] M. Kluban, M. Mannan, and A. Youssef, “On detecting and measuring
exploitable javascript functions in real-world applications,” ACM Trans-
actions on Privacy and Security, vol. 27, no. 1, 2024.

[35] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
javascript libraries on the web,” in Proceedings 2017 Network and
Distributed System Security Symposium (NDSS), 2017.

[36] A. Gkortzis, D. Feitosa, and D. Spinellis, “Software reuse cuts both ways:
An empirical analysis of its relationship with security vulnerabilities,”
Journal of Systems and Software, vol. 172, p. 110653, 2021.

[37] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,” in 28th
USENIX Security Symposium (USENIX Security), 2019, pp. 995–1010.

[38] B. Liu, G. Meng, W. Zou, Q. Gong, F. Li, M. Lin, D. Sun, W. Huo,
and C. Zhang, “A large-scale empirical study on vulnerability distribution
within projects and the lessons learned,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp. 1547–
1559.

[39] R. E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto, and
A. Ihara, “Towards smoother library migrations: A look at vulnerable
dependency migrations at function level for npm javascript packages,”
in 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2018, pp. 559–563.

[40] J. Hejderup, M. Beller, K. Triantafyllou, and G. Gousios, “Präzi: from
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Appendix
A. CVE Selection Criteria and Workflow

To construct a robust evaluation dataset (DSCVE), we em-
ployed a two-dimensional selection strategy designed to bal-
ance ecosystem-wide impact with vulnerability diversity. First,
we targeted the top 10 most downloaded npm packages in
2024, selecting six high-impact CVEs affecting four widely
used libraries: lodash, debug, semver, and minimatch
(detailed in Table VII). These packages exhibit massive tran-
sitive usage, providing an ideal setting for measuring the
potential “blast radius” of vulnerabilities.

Second, to ensure our framework is effective across dif-
ferent classes of software weaknesses, we aligned our selec-
tion with the 2024 CWE Top 25 Most Dangerous Software
Weaknesses [30]. We queried the Open Source Vulnerability
(OSV [56]) database to retrieve npm-specific vulnerabilities
and classified them by CWE category. Categories lacking npm-
specific entries (e.g., CWE-798 and CWE-306) were omitted.
To ensure structural evaluability, we retained only vulnerabil-
ities with at least 10 downstream dependents in our dataset
(DSnpm). Within each category, we prioritized candidates by
severity (Critical/High) and recency. After removing duplicates
(e.g., CVE-2024-48914 covering multiple CWEs), this process
yielded 22 distinct CVEs representing diverse weakness types
such as Injection (CWE-79) and Prototype Pollution (CWE-
1321).

For all candidates, we performed manual analysis to identify
the precise vulnerable functions (Vulfunc). We excluded CVE-
2024-27094 (affecting @openzeppelin/contracts) as
the vulnerability resides in Solidity smart contract code,
outside the scope of our JavaScript analysis. Consequently,
our final dataset comprises 27 valid CVEs, whose identified
vulnerable functions serve as ground truth for the function-
level reachability analysis in Section V.

TABLE VII: List of selected high-impact vulnerabilities. #
Vulfunc denotes the number of vulnerable functions.

CVE ID Package Name Downloads (2024) # Vulfunc

CVE-2021-23337 lodash 2.68B 1
CVE-2022-25883 semver 16.57B 14
CVE-2017-16137 debug 13.61B 1
CVE-2017-20165 debug 13.61B 1
CVE-2022-3517 minimatch 9.78B 7
CVE-2016-10540 minimatch 9.78B 5

TABLE VIII: Detailed list of selected vulnerabilities for diver-
sity evaluation (CWE-Top-25). #Vulfunc denotes the number of
vulnerable functions.

CWE ID Package Name CVE ID # Vulfunc

CWE-79 happy-dom CVE-2024-51757 4
CWE-787 electron CVE-2022-4135 2
CWE-89 parse-server CVE-2024-27298 4
CWE-352 whistle CVE-2024-55500 5

CWE-22 @vendure/
asset-server-plugin CVE-2024-48914 7

CWE-125 @openzeppelin/contracts CVE-2024-27094 -
CWE-78 find-exec CVE-2023-40582 3
CWE-416 @fastly/js-compute CVE-2024-38375 7
CWE-862 snarkjs CVE-2023-33252 3
CWE-434 strapi CVE-2022-27263 3
CWE-94 angular-expressions CVE-2024-54152 1

CWE-20 @vendure/
asset-server-plugin CVE-2024-48914 7

CWE-77 openssl CVE-2023-49210 1
CWE-287 isolated-vm CVE-2022-39266 5
CWE-269 @aws-amplify/cli CVE-2024-28056 4
CWE-502 gatsby-plugin-mdx CVE-2022-25863 4
CWE-200 eventsource CVE-2022-1650 1
CWE-863 next-auth CVE-2022-35924 3
CWE-918 parse-url CVE-2022-2900 1
CWE-119 @solana/web3.js CVE-2024-30253 5
CWE-476 ws CVE-2024-37890 2
CWE-798 - - -
CWE-190 @chainsafe/lodestar CVE-2022-29219 1
CWE-400 @stryker-mutator/util CVE-2024-57085 1
CWE-306 - - -

Algorithm 1 The compositional synthesis algorithm.
1: Input: 𝑃𝑎𝑝𝑝 : The target application package; 𝐷: The set of

dependencies.
2: Output: The resolved synthesis graph for 𝑃𝑎𝑝𝑝 .
3: procedure SynthesizeECG(𝑃𝑎𝑝𝑝 , 𝐷)
4: 𝐿 ← ReverseTopologicalSort(𝐷 ∪ {𝑃𝑎𝑝𝑝})
5: ResolvedGraphs← new Map()
6: for all package 𝑃𝑖 in 𝐿 do
7: 𝐺𝑖 ← GetOriginalRSG(𝑃𝑖)
8: for all dependency 𝑃 𝑗 of 𝑃𝑖 do
9: 𝐺 𝑗 ← ResolvedGraphs.get(𝑃 𝑗 )

10: 𝐺𝑖 ← Compose(𝐺𝑖 , 𝐺 𝑗 )
11: end for
12: ResolvedGraphs.put(𝑃𝑖 , 𝐺𝑖)
13: end for
14: return ResolvedGraphs.get(𝑃𝑎𝑝𝑝)
15: end procedure

16: function Compose(𝐺𝑐𝑎𝑙𝑙𝑒𝑟 , 𝐺𝑐𝑎𝑙𝑙𝑒𝑒)
17: 𝐺𝑛𝑒𝑤 ← 𝐺𝑐𝑎𝑙𝑙𝑒𝑟 ∪ 𝐺𝑐𝑎𝑙𝑙𝑒𝑒

18: Let ⟨M𝐸,𝑐 ,M𝐼,𝑐⟩ ← GetContract(𝐺𝑐𝑎𝑙𝑙𝑒𝑟 )
19: Let ⟨M𝐸,𝑑 ,M𝐼,𝑑⟩ ← GetContract(𝐺𝑐𝑎𝑙𝑙𝑒𝑒)
20: for all path 𝑢 ∈ domain(M𝐼,𝑐) do
21: if 𝑢 targets package of 𝐺𝑐𝑎𝑙𝑙𝑒𝑒 then
22: MatchAndResolve(𝑢,M𝐸,𝑑 , 𝐺𝑛𝑒𝑤)
23: end if
24: end for
25: return 𝐺𝑛𝑒𝑤

26: end function
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TABLE IX: Comprehensive single-hop reachability analysis merging High-Impact and Diversity datasets. The global average
is weighted based on the number of CVEs in each dataset.

Dimension CVE ID Package #𝑑0 #𝑑1 #𝐶mod #𝐶func #𝐶vuln func

CVE-2021-23337 lodash 100 396,112 264,179 (66.69%) 244,130 (61.63%) 11,574 (2.92%)
CVE-2022-3517 minimatch 26 38,112 28,667 (75.22%) 15,791 (41.43%) 15,791 (41.43%)
CVE-2016-10540 minimatch 23 10,341 9,211 (89.07%) 3,528 (34.12%) 3,528 (34.12%)
CVE-2022-25883 semver 74 139,257 111,138 (79.81%) 102,209 (73.40%) 73,314 (52.65%)
CVE-2017-16137 debug 55 70,297 54,098 (76.96%) 51,425 (73.15%) 50,454 (71.77%)

High-Impact

CVE-2017-20165 debug 42 39,365 29,702 (75.45%) 29,583 (75.15%) 29,576 (75.13%)

CVE-2022-1650 eventsource 17 167 109 (65.27%) 100 (59.88%) 100 (59.88%)
CVE-2022-25863 gatsby-plugin-mdx 125 610 286 (46.89%) 0 (0.00%) 0 (0.00%)
CVE-2022-27263 strapi 16 30 3 (10.00%) 3 (10.00%) 3 (10.00%)
CVE-2022-2900 parse-url 11 204 67 (32.84%) 63 (30.88%) 63 (30.88%)
CVE-2022-29219 @chainsafe/lodestar 23 23 17 (73.91%) 11 (47.83%) 0 (0.00%)
CVE-2022-35924 next-auth 17 58 34 (58.62%) 10 (17.24%) 9 (15.52%)
CVE-2022-39266 isolated-vm 15 38 25 (65.79%) 25 (65.79%) 25 (65.79%)
CVE-2022-4135 electron 504 2,453 1,978 (80.64%) 1,816 (74.03%) 1,816 (74.03%)
CVE-2023-33252 snarkjs 27 309 243 (78.64%) 220 (71.20%) 148 (47.90%)
CVE-2023-40582 find-exec 8 11 11 (100.00%) 11 (100.00%) 11 (100.00%)
CVE-2023-49210 openssl 2 56 0 (0.00%) 0 (0.00%) 0 (0.00%)
CVE-2024-27298 parse-server 9 27 13 (48.15%) 8 (29.63%) 8 (29.63%)
CVE-2024-28056 @aws-amplify/cli 5 13 0 (0.00%) 0 (0.00%) 0 (0.00%)
CVE-2024-30253 @solana/web3.js 109 428 400 (93.46%) 381 (89.02%) 168 (39.25%)
CVE-2024-37890 ws 86 4,080 3,163 (77.52%) 2,389 (58.55%) 1,561 (38.26%)
CVE-2024-38375 @fastly/js-compute 24 24 0 (0.00%) 0 (0.00%) 0 (0.00%)
CVE-2024-48914 @vendure/asset-server-plugin 38 41 0 (0.00%) 5 (12.20%) 5 (12.20%)
CVE-2024-51757 happy-dom 150 452 252 (55.75%) 257 (56.86%) 13 (2.88%)
CVE-2024-54152 angular-expressions 8 65 44 (67.69%) 42 (64.62%) 41 (63.08%)
CVE-2024-55500 whistle 7 27 13 (48.15%) 13 (48.15%) 0 (0.00%)

Diversity

CVE-2024-57085 @stryker-mutator/util 80 640 588 (91.88%) 546 (85.31%) 64 (10.00%)

Average - - 57.72% 45.71% 32.49%

TABLE X: Comparative analysis of vulnerability propagation at package and function levels (Multi-hop). The table merges
High-Impact and Diversity datasets. RP denotes the relative proportion of Function-level to Package-level.

Dimension CVE ID Paths
Affected Library Affected Version Avg. Hop Distance Max Hop Distance

#P-L #F-L RP #P-L #F-L RP P-L F-L P-L F-L

CVE-2021-23337 285,622 17,267 4,826 27.95% 166,554 37,220 22.35% 3.34 0.61 13 6
CVE-2022-3517 497,595 21,775 1,211 5.56% 286,731 22,557 7.87% 4.15 0.12 13 5
CVE-2016-10540 127,976 14,499 649 4.48% 84,886 7,916 9.33% 3.65 1.14 12 5
CVE-2022-25883 2,096,181 48,192 3,863 8.02% 595,078 74,823 12.57% 7.48 1.09 32 7
CVE-2017-16137 6,663,049 50,444 23,107 45.81% 711,199 286,679 40.31% 7.39 2.05 16 8

High-Impact

CVE-2017-20165 6,184,586 39,460 18,729 47.46% 488,064 208,227 42.66% 7.62 2.08 15 8

CVE-2022-1650 737 750 92 12.27% 802 120 14.96% 2.49 0.88 6 2
CVE-2022-25863 810 620 81 13.06% 1,022 125 12.23% 1.30 0.00 4 0
CVE-2022-27263 30 26 2 7.69% 46 19 41.30% 0.65 0.16 1 1
CVE-2022-2900 538 516 154 29.84% 551 178 32.30% 2.60 2.47 7 6
CVE-2022-29219 23 2 2 100.00% 46 24 52.17% 0.50 0.04 1 1
CVE-2022-35924 67 45 10 22.22% 82 27 32.93% 0.88 0.37 2 1
CVE-2022-39266 47 37 15 40.54% 74 41 55.41% 1.18 0.66 4 2
CVE-2022-4135 6,832 1,686 1,037 61.51% 3,604 2,528 70.14% 1.07 0.84 5 4
CVE-2023-33252 1,011 405 129 31.85% 567 202 35.63% 1.59 1.01 7 4
CVE-2023-40582 16 14 12 85.71% 29 27 93.10% 1.07 1.00 2 2
CVE-2023-49210 56 56 1 1.79% 58 2 3.45% 0.97 0.00 1 0
CVE-2024-27298 27 24 7 29.17% 37 17 45.95% 0.78 0.47 2 1
CVE-2024-28056 13 13 1 7.69% 19 5 26.32% 0.79 0.00 2 0
CVE-2024-30253 623 460 374 81.30% 709 596 84.06% 1.14 1.01 4 4
CVE-2024-37890 309,912 16,852 2,298 13.64% 20,796 3,108 14.95% 2.75 1.36 13 5
CVE-2024-38375 24 2 1 50.00% 48 24 50.00% 0.50 0.00 1 0
CVE-2024-48914 3,783 56 2 3.57% 880 43 4.89% 1.88 0.12 3 1
CVE-2024-51757 760 284 32 11.27% 877 247 28.16% 1.21 0.42 4 2
CVE-2024-54152 69 71 42 59.15% 82 51 62.20% 1.01 0.88 2 2
CVE-2024-55500 27 21 8 38.10% 34 19 55.88% 0.79 0.63 1 1

Diversity

CVE-2024-57085 662 42 7 16.67% 759 144 18.97% 0.95 0.44 3 1

Global Average - - 31.72% - - 34.74% 2.21 0.71 - -

P-L indicates package-level analysis, F-L indicates function-level analysis, and RP represents the relative proportion of F-L to P-L.
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TABLE XI: The comprehensive list of selected packages in the performance evaluation.

# Root Package ID # Dep. kLOC # Vul.

1 @xapp/stentor-templates@1.22.0 305 1,741 1

2 @xapp/stentor-service-
analytics@1.25.4 310 1,623 4

3 @graphback/codegen-client@0.16.1 105 163 1
4 stentor-handler@1.45.5 143 990 4
5 stentor-conditional@1.33.62 114 906 1

6 @accordproject/cicero-test@0.11.2-
20190401205913 484 434 2

7 stentor-handler-delegating@1.27.11 209 1,489 4
8 stentor-conditional@1.57.42 119 940 1
9 @xapp/stentor-service-sms@1.31.24 156 1,014 1

10 @accordproject/ergo-engine@0.8.1-
20190426004645 140 115 1

11 @xapp/stentor-handler-sms@1.20.10 304 1,715 8
12 stentor-response@1.29.13 205 1,454 1

13 @accordproject/cicero-cli@0.20.11-
20200410183245 506 562 7

14 redstone-smartweave@0.4.83 116 165 1
15 stentor-determiner@1.56.37 137 1,024 1

16 @xapp/stentor-actions-on-
google@1.32.13 205 1,463 1

17 @jsenv/plugin-commonjs@0.0.14 73 136 1

18 @graphql-cli/serve@4.1.1-alpha-
b6d19c4.0 580 1,351 24

19 stentor-runtime@1.57.39 155 1,040 31

20 @accordproject/ergo-engine@0.8.5-
20190608110624 140 115 1

21 scriptworks-client@0.10.16 789 1,197 1
22 @xapp/stentor-service@1.26.14 221 1,468 1
23 stentor-runtime@1.29.0 217 1,454 31
24 jsreport-core@2.10.0 93 107 1
25 stentor-determiner@1.36.17 132 1,002 1
26 stentor-handler@1.56.16 145 1,024 4

27 @xapp/stentor-handler-
media@1.32.68 259 1,677 8

28 @xapp/stentor-alexa@1.26.43 157 1,044 1
29 @xapp/stentor-lex-v2@1.40.313 328 1,638 3
30 @serverless-toolkit/stacks@3.0.11 126 3,351 1
31 @xapp/stentor-service-sms@1.25.2 222 1,462 1
32 stentor-context@1.57.8 143 1,033 1

33 @xapp/stentor-media-
manager@1.29.24 188 1,206 1

34 @xapp/stentor-service@1.26.12 221 1,468 1

35 @xapp/stentor-dialogflow-
facebook@1.18.147 319 1,721 3

36 azupck@1.2.29 1,286 1,632 10
37 stentor-determiner@1.33.86 134 1,002 1
38 @xapp/stentor-templates@1.24.52 258 1,676 1

39 @accordproject/ergo-engine@0.8.1-
20190426121823 140 115 1

40 @xapp/stentor-service-
smapi@1.26.58 166 1,048 2

41 stentor-determiner@1.26.8 186 1,065 1

42 @graphql-cli/generate@4.0.1-alpha-
cf8155c.0 281 298 4

43 @graphql-cli/serve@4.1.1-alpha-
d207ff9.0 559 626 24

44 @xapp/stentor-lex-v2@1.40.38 343 1,718 3

45 @accordproject/cicero-cli@0.10.1-
20190122220137 466 384 1

46 @xapp/stentor-media-
manager@1.31.16 191 1,206 1

47 stentor-response@1.27.46 205 1,468 1

48 @xapp/stentor-service-
analytics@1.19.5 355 1,694 4

49 @accordproject/ergo-cli@0.8.6-
20190620190000 262 347 2

# Root Package ID # Dep. kLOC # Vul.

50 @accordproject/cicero-server@0.4.4-
20180615051811 430 321 1

51 stentor-handler-factory@1.26.49 211 1,488 10

52 @xapp/stentor-service-
analytics@1.26.65 308 1,622 4

53 @accordproject/cicero-test@0.21.27-
20210319042108 325 538 4

54 stentor-handler-delegating@1.45.13 144 990 4
55 stentor-handler-delegating@1.42.14 144 979 4
56 @xapp/stentor-dialogflow@1.32.50 263 1,592 2
57 @xapp/stentor-alexa@1.22.1 221 1,517 1

58 @accordproject/ergo-engine@0.0.64-
20180611191608 157 243 1

59 @xapp/stentor-templates@1.18.112 303 1,666 2
60 stentor-determiner@1.27.2 137 1,028 1
61 stentor-handler-factory@1.33.31 208 1,462 10
62 @xapp/stentor-migration@1.32.45 265 1,600 3
63 @xapp/stentor-service-lex@1.40.22 289 1,169 4
64 @xapp/stentor-service-smapi@1.32.9 169 1,048 2
65 stentor-context@1.42.41 141 988 1
66 @xapp/stentor-alexa@1.29.20 153 1,044 1
67 @xapp/stentor-alexa@1.32.25 153 1,044 1
68 stentor@1.55.19 221 1,064 48

69 @accordproject/cicero-cli@0.13.5-
20190914214832 486 463 3

70 @graphql-cli/serve@4.1.1-alpha-
b67f6f3.0 580 1,352 24

71 @xapp/stentor-service-smapi@1.28.7 165 1,048 2

72 @graphql-cli/serve@4.1.1-alpha-
0ef0ed7.0 568 1,338 24

73 @jsenv/plugin-react@1.0.1 250 553 1
74 youtube-studio@0.0.21 41 69 1
75 @xapp/stentor-handler-sms@1.32.99 262 1,693 16

76 @accordproject/cicero-
server@0.22.0-20210413122815 305 432 3

77 @xapp/stentor-service-sms@1.32.29 157 1,014 1

78 @xapp/stentor-interaction-model-
profiler@1.24.78 293 1,620 5

79 stentor-determiner@1.23.55 184 1,058 1
80 stentor-handler-manager@1.57.18 148 1,034 15
81 stentor-context@1.57.1 144 1,034 1
82 stentor-handler-delegating@1.37.22 141 1,005 4

83 @graphback/codegen-
schema@0.16.0-beta3 105 164 2

84 @graphql-cli/generate@4.0.1-alpha-
db7cff3.0 280 329 4

85 @accordproject/cicero-
server@0.20.0-20191029124228 413 332 3

86 stentor-handler-factory@1.45.19 145 993 10
87 stentor@1.36.35 216 1,041 48
88 @xapp/stentor-templates@1.31.14 326 1,813 6
89 @xapp/stentor-lex-connect@1.26.70 209 1,471 1

90 @accordproject/ergo-cli@0.1.3-
20180730181229 152 256 1

91 stentor-context@1.26.37 256 1,551 1

92 @accordproject/cicero-test@0.11.2-
20190326183124 491 429 2

93 @graphql-cli/serve@4.1.1-alpha-
16c9eb3.0 560 1,355 24

94 stentor@1.53.6 219 1,054 48

95 @xapp/stentor-media-
manager@1.27.4 190 1,203 1

96 @graphql-cli/generate@4.1.1-alpha-
36fdb45.0 306 1,095 4

97 @dfeidao/server@4.6.201909041441 655 660 1
98 @akashic/akashic-cli@2.15.56 753 967 1
99 @akashic/akashic-cli-serve@1.14.65 513 844 1
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Appendix A
Artifact Appendix

A. Description & Requirements
In this work, we propose a novel framework VulTracer,

which can precisely and efficiently perform vulnerability prop-
agation analysis at function level. The artifacts implements
the framework’s three core components: Rich Semantic Graph
Generation, Interface Contract Extraction, and Compositional
Synthesis. We also provide a minimal set of dependencies and
sample packages to demonstrate the end-to-end workflow.

1) How to access: The artifact is accessible via Zenodo.2
2) Hardware dependencies:
• CPU: at least 2 cores.
• RAM: at least 16 GB.
• Disk: at least 8 GB free.
3) Software dependencies:
• System: 64-bit Linux, macOS or Windows (WSL2).
• Docker: 20.10 or newer.
4) Benchmarks: None.

B. Artifact Installation & Configuration
First, download the files from Zenodo as described

above. Because Zenodo provides the materials as compressed
archives, extract them before proceeding. Then follow the steps
in the main repository’s README. We designed the artifacts
with cross-platform reproducibility in mind. The code runs
in a Dockerized environment and can be executed on any
system with Docker installed. Building the container prepares
all dependencies. Once built successfully, simply run the test
scripts referenced in the README to complete the AEC
evaluation.

2https://doi.org/10.5281/zenodo.17659795
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