
ZKSL: Verifiable and Efficient Split Federated
Learning via Asynchronous Zero-Knowledge Proofs

Yixiao Zheng∗, Changzheng Wei∗†B, Xiaodong Qi∗, Hanghang Wu†, Yuhan Wu∗, Li Lin†,
Tianmin Song∗, Ying Yan†, Yanqin Yang∗‡, Zhao Zhang∗‡B, Cheqing Jin∗‡, Aoying Zhou∗‡

∗East China Normal University, China
†Ant Digital Technologies, Ant Group, China

‡Engineering Research Center of Blockchain Data Management, Ministry of Education, Shanghai, China
{yxzheng, xdqi, yhwu, tmsong}@stu.ecnu.edu.cn, {yqyang, zhzhang, cqjin, ayzhou}@dase.ecnu.edu.cn

{changzheng.wcz, hanghang.whh, felix.ll, fuying.yy}@antgroup.com

Abstract—In Vertical Federated Learning (VFL), prior work has
primarily focused on protecting data privacy, while overlooking
the risk that participants may manipulate local model execution to
mount integrity attacks. Integrating zero-knowledge proofs (ZKPs)
into the training process can ensure that each party’s computations
are verifiable without revealing private data. However, directly
encoding deep model training as a monolithic ZKP circuit is
impractical due to: (i) complex circuit design and high overhead
from frequent parameter commitments, (ii) expensive proof
generation for embeddings(cross-party information interface),
and (iii) synchronous proof generation that blocks iterative
training rounds. To address these challenges, we present ZKSL, an
efficient and asynchronous VFL framework that achieves verifiable
training under a malicious threat model. ZKSL partitions deep
neural networks into layer-wise circuits and generates their
proofs in parallel, ensuring input–output consistency via Privacy-
Commitment PLONK (PC-PLONK), a lightweight extension that
supports low-cost, iteration-by-iteration parameter commitments.
For embedding layers, ZKSL adopts a probabilistic verification
technique that reduces proof complexity from O(Nnd) to O(nd).
Furthermore, ZKSL incorporates an asynchronous compute–prove
scheduling mechanism to decouple proof generation from training
iterations, effectively mitigating pipeline stalls. Experimental
results on DeepFM and CNN models show that ZKSL reduces
proof generation time by up to 73% while maintaining 99.4%
accuracy, demonstrating superior scalability and practicality for
real-world federated learning.

I. INTRODUCTION

Federated Learning (FL) enables decentralized entities to
collaboratively train models without sharing raw data, in line
with privacy regulations such as GDPR[1] and CCPA/CPRA[2].
Among its variants, Vertical Federated Learning (VFL) [3]
considers organizations that hold different feature sets for the
same group of users, a common situation in finance, healthcare,
and digital marketing. A practical instantiation is Split Vertical
Federated Learning (Split VFL) [4], where a deep neural
network is partitioned across parties. Each participant computes
local embeddings from its private data, and a coordinator
aggregates these intermediate activations to complete the
forward and backward passes. This design improves modularity

Bad Loss

GOV

Lending
Agency

Bank

Insurance

𝒇𝑮𝑶𝑽 									 =
Credit
Tax
…

Deposit
Salary
…

𝒇𝑩𝒂𝒏𝒌 														 =

Premium
History
…

𝒇𝑭𝒂𝒌𝒆 															 =

Label

Loss

GOV

Lending
Agency

Bank

Insurance

𝛁𝒇𝑮𝑶𝑽*

𝛁𝒇𝑩𝒂𝒏𝒌
*

𝛁𝒇𝒇𝒂𝒌𝒆*

Fig. 1: Loan Example of Vertical Federated Learning

and reduces communication by exchanging activations instead
of full gradients or parameters.

Despite these benefits, Split VFL faces security and trust-
worthiness challenges: malicious parties may bypass local
computation, inject fabricated updates, or infer sensitive data
via gradient inversion attacks [5–8], undermining both privacy
and model integrity. As illustrated in Fig. 1, in a loan ap-
proval pipeline different institutions contribute complementary
features for a shared user, yet a dishonest party can submit
stale embeddings or tamper with gradients to gain strategic
advantage. Existing work primarily protects data privacy using
differential privacy [9, 10] or homomorphic encryption [11–
13]. However, these privacy mechanisms only limit what can
be inferred from exchanged; they do not ensure that parties
actually execute the prescribed computations.

Fortunately, zero-knowledge proofs (ZKPs) [14, 15] allow
participants to prove the correctness of private computa-
tions without revealing sensitive inputs. In particular, zero-
knowledge succinct non-interactive arguments of knowledge
(zkSNARK) [16, 17] provides compact proofs and fast ver-
ification, making them well suited to federated settings. In
this paradigm, parties first bind their data and preprocessing
through commitments [18, 19], and then prove that their training
updates are computed strictly from these committed data values.
However, existing applications of ZKPs in federated learning
largely focus on inference verification or low-level protocol
optimization. The problem of building efficient and scalable
zero-knowledge training pipelines for deep models in Split VFL
remains underexplored, and integrating zkSNARK circuits into
Split VFL introduces several challenges:

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.242008
www.ndss-symposium.org

• Inefficiency of monolithic ZKP circuits and commitments.
Unlike inference, training requires frequent gradient computa-
tions and parameter updates. Each step demands new proofs
and fresh commitments, making it impractical to encode the
entire training process into a single monolithic ZKP circuit.
This leads to scalability issues and heavy proving overhead.

• High cost of core operators in embedding computation.
In Split VFL, embeddings are the primary intermediate
values exchanged between parties. These embeddings are
derived via matrix multiplications, which are computationally
intensive in ZKP systems and inflate proof generation time.

• Blocking of iterative training by proof generation. While
proof verification and message transmission are lightweight,
generating ZK proofs is computationally intensive and must
complete before the next iteration, as the verifier depends
on the proof to proceed. This sequential dependency causes
delay and becomes a bottleneck in training throughput.

To address the aforementioned challenges, we propose ZKSL,
a parallel Zero-Knowledge Split Learning framework for VFL
built atop the widely adopted zkSNARK protocol PLONK [16].
PLONK’s universal trusted setup, support for custom gates, and
succinct verification make it particularly well-suited for deep
neural network (DNN) workloads in federated settings. ZKSL
partitions the model into layer-wise circuits and generates their
zero-knowledge proofs concurrently, significantly accelerating
training while preserving end-to-end verifiability.

To ensure cross-layer consistency and maintain efficient
parameter binding over multiple training rounds, we introduce
Privacy-Commitment PLONK (PC-PLONK), a lightweight
commitment scheme embedded into PLONK that securely
binds each participant’s private data and model parameters.
Furthermore, we optimize the proof generation for several key
operators, notably the embedding layer, through probabilistic
verification techniques that reduce circuit complexity. Finally,
we design an asynchronous proof scheduling mechanism that
decouples proof generation from training iteration, preventing
proof delays from stalling the model’s forward progress.

To our best knowledge, ZKSL is the first practical framework
that enables verifiable vertical federated learning through zero-
knowledge proofs, under the assumption that data authenticity
is externally guaranteed and committed before proof generation.
Within this setting, ZKSL ensures verifiable learning for all
committed data, preserving data privacy and computational
integrity. In summary, the main contributions of this paper are:

• We propose an optimized zero-knowledge proof framework
for deep neural network training with layer-wise parallel
proof construction. To enable this, we introduce Privacy-
Commitment PLONK, which supports low-cost parameter
commitments and enforces input-output consistency, enabling
scalable parallel proof generation.

• We design a lookup-based embedding mechanism with
probabilistic verification, replacing traditional one-hot en-
coding. This reduces the proof complexity from O(Nnd) to
O(nd) with respect to embedding dimension, significantly
accelerating proof generation for embedding layers.

• We develop an asynchronous pipeline architecture that
decouples computation, proof generation, communication,
and verification. This design eliminates bottlenecks from
delayed proof tasks and improves overall training throughput
in federated environments.

• We implement a prototype system, ZKSL1, integrating all
proposed techniques. Extensive experiments on representa-
tive models (DeepFM and CNNs) show that ZKSL reduces
proof generation overhead by up to 73% compared to state-
of-the-art approaches.
The remainder of the paper is organized as follows. Section II

reviews background and related work. Section III formalizes
the problem. Section IV presents the design of the ZKSL
protocol. Section V analyzes its security. Section VI reports
experimental results. Section VII concludes.

II. BACKGROUND AND RELATED WORK

This section presents the fundamental concepts essential for
the rest of this paper, including zero-knowledge proofs and
vertical federated learning.

A. Zero-Knowledge Proof

Zero-Knowledge Proofs (ZKPs). ZKPs are cryptographic
protocols that allow a prover to convince a verifier that a
statement is true while revealing nothing beyond its validity.
A well-formed ZKP satisfies three properties: Completeness,
meaning that an honest prover can always convince the verifier
of a true statement; Soundness, meaning that no dishonest
prover can convince the verifier of a false statement except
with negligible probability; and Zero-Knowledge, meaning that
the verifier learns nothing beyond the fact that the statement is
true and gains no information about the prover’s private inputs.
ZKPs are widely deployed in scenarios where correctness must
be verified without exposing sensitive data [14, 15, 20]. A
canonical example is Zcash [14], which employs zkSNARKs to
prove transaction validity (e.g., sufficient balance and absence
of double-spending) while concealing transaction amounts and
addresses. In the context of federated learning, where multiple
untrusted parties jointly train a model over distributed data,
ZKPs provide a means to enforce computation integrity without
compromising the confidentiality of private inputs.

ZKPs can be broadly categorized into two types: interactive
and non-interactive. In interactive zero-knowledge proofs
(IZKPs), the prover and verifier run a multi-round chal-
lenge–response protocol [21–24]. By contrast, non-interactive
zero-knowledge proofs (NIZKPs) produce a single proof
verifiable independently, typically under a common reference
string (CRS). Among NIZKPs, the zero-knowledge succinct
non-interactive argument of knowledge (zkSNARK) [17, 25–
30] provides succinct proofs and efficient verification, reducing
communication and verification overheads. These properties
make non-interactive protocols with short proofs and fast
verification a natural fit for vertical federated learning, where

1https://github.com/YeexiaoZheng/ZKSL

2

	+ 	

𝑥! 𝑥" 𝑥# 𝑥$

×
𝑥% 𝑥&

𝑜𝑢𝑡

𝒒𝑴𝒒𝑨𝒘𝒄𝒘𝒃𝒘𝒂𝒊

01𝒙𝟓𝒙𝟐𝒙𝟏1

10𝒙𝟔𝒙𝟒𝒙𝟑2

10𝑜𝑢𝑡𝒙𝟔𝒙𝟓3
×

Plonkish Arithmetization

Means Copy Constraint

Fig. 2: A Simple Plonkish Arithmetization Example

participants hold disjoint feature subsets and must repeatedly
attest to local computations without revealing raw data.

zkSNARK and PLONK. Modern general-purpose zkSNARK
constructions typically fit into a common algebraic framework
with three components: (i) arithmetization, which encodes
the computation as a system of arithmetic constraints over a
finite field; (ii) a polynomial interactive oracle proof (PIOP),
which reduces checking constraint satisfiability to verifying
identities between low-degree polynomials; (iii) a polynomial
commitment scheme (PCS), which lets the prover commit to
these polynomials and later open their evaluations at selected
points without revealing the underlying witness.

Among zkSNARK systems, the PLONK family [16, 31, 32]
stands out for its universal trusted setup (reusable across circuits
of varying structures), efficient proving, and compatibility with
lookup optimizations, making it well suited for encoding com-
plex machine-learning operators such as matrix multiplications
and activations. Concretely, PLONK instantiates the arithmeti-
zation component with a Plonkish table where computations
are arranged in rows of gates selected by polynomial selectors;
permutation arguments enforce copy/equality constraints across
rows, while lookup arguments enable efficient nonlinear and
table-based mappings. At the PCS layer, PLONK typically
uses the KZG polynomial commitment scheme [18], which
provides constant-size proofs and fast verification for committed
polynomials. In this work, we therefore adopt PLONK as our
base zkSNARK and later build on it by lightly modifying its
arithmetization and PCS.

Arithmetization in PLONK. The PLONK constraint system
instantiates arithmetization as a Plonkish table, where each row
encodes an arithmetic gate and columns represent wire values or
selectors. For example Fig 2, addition and multiplication gates
are encoded using selector polynomials qA and qM , enforcing
constraints such as wa +wb = wc or wa ·wb = wc. To ensure
value consistency across dependent gates, copy constraints are
enforced via a global permutation argument, which checks
that reused values across rows match under the committed
polynomials. This structure allows PLONK to express complex
computation graphs compactly while supporting fast proof
generation and verification.

Polynomial Commitments in PLONK. A polynomial commit-
ment scheme allows a prover to bind to a hidden polynomial
while later proving its evaluations at chosen points without
revealing the polynomial itself. In zkSNARKs, the PCS ensures
that private inputs and intermediate computations are fixed
to a public transcript. PLONK adopts the KZG PCS [18],

		𝐿𝑎𝑦𝑒𝑟!!

…

		𝐿𝑎𝑦𝑒𝑟"
Federation A

		𝐿𝑎𝑦𝑒𝑟!"

…

		𝐿𝑎𝑦𝑒𝑟"

𝐿𝑜𝑠𝑠 Federation D

Aggregate

…		𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔# 		𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔$ 		𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔%

		𝐿𝑎𝑦𝑒𝑟!#

…

		𝐿𝑎𝑦𝑒𝑟"
Federation C

Other
Federations

		𝐿𝑎𝑦𝑒𝑟!$

…

		𝐿𝑎𝑦𝑒𝑟"
Federation B

Fig. 3: Neural-Network-Based Split VFL model architecture

which uses elliptic curves and bilinear pairings to commit to
polynomials, offering constant-size evaluation proofs and fast
verification. This makes KZG a natural fit for arithmetic-circuit
SNARKs and underpins the commitment layer in PLONK.

Zero-Knowledge Machine Learning (ZKML). ZKML [20,
33–36] combines zero-knowledge proofs with machine learning
to ensure both data confidentiality and computational integrity.
Using non-interactive proofs, ZKML enables a prover to
demonstrate correct model execution (e.g., inference) without
revealing inputs or model parameters, an essential capability in
outsourced ML settings. Recent work such as Zero-Knowledge
Proof of Training (zkPoT) [37, 38] extends ZKML to the
training phase, proving that a model was trained on valid
data. These approaches often employ interactive protocols
with recursive proof composition and Incrementally Verifiable
Computation [39–41] to reduce overhead. However, such
interactivity is ill-suited to federated learning, where commu-
nication efficiency and auditability across dynamic participants
are critical. In contrast, our work adopts a non-interactive
ZK approach tailored to federated training, enabling public
verifiability and long-term trust.

B. Vertical Federated Learning

Federated Learning (FL) [42] enables multiple parties to
collaboratively train machine learning models without exposing
raw data. It is typically categorized into Horizontal Federated
Learning (HFL) [43–45], where parties share the same feature
space but hold different samples, and Vertical Federated Learn-
ing (VFL), where participants hold disjoint feature subsets over
a common user set [3, 11, 46–50]. VFL is particularly relevant
in cross-organizational settings such as finance, healthcare, and
e-commerce, where different entities possess complementary
user attributes. However, its split feature ownership and
centralized label aggregation introduce unique privacy and
trust challenges. This work aims to enhancing VFL security
by enforcing verifiable training under ZKP.

Split VFL Architecture. Our framework adopts a split learning
architecture for VFL, as illustrated in Fig. 3. Each feature party
(or passive party), e.g., banks or institutions, holds vertically
partitioned data and locally computes embedding-vectorized

3

TABLE I: Comparison of functionality with relevant works

Scheme Cryptographic
Technique

Malicious Passive
Party Resilience

Malicious Active
Party Resilience

Privacy
Preserving

Verifiable
Inference

Verifiable
Training Auditability

FedVS [49] Secret Sharing ✗ ✗ ✓ ✗ ✗ ✗
FedPass [50] Confusion ✗ ✗ ✓ ✗ ✗ ✗
RoPA [51] SINP ✓ ✗ ✓ ✓ ✗ ✗
ZKML [20] zkSNARK N/A N/A ✓ ✓ ✗ ✓
KAIZEN [37] GKR+IVC N/A N/A ✓ ✓ ✓ ✗
ZKSL (Ours) zkSNARK ✓ ✓ ✓ ✓ ✓ ✓

representations derived from raw inputs. These embeddings
are then sent to the label-owning coordinator (or the active
party), which aggregates the multi-source embeddings and
performs downstream training. Embedding generation depends
on data modality: images may use convolutional neural
networks (CNNs), while categorical or tabular data typically
use embedding dictionaries. Regardless of the method, the
resulting embeddings compress high-dimensional private data
into structured, lower-dimensional representations suitable for
secure cross-party learning. During each training round, passive
parties transform their local data into embeddings using private
forward models and transmit them to the active party, the
coordinator. It aggregates these embeddings, executes a forward
pass through a global model, computes the loss against ground-
truth labels, and derives the corresponding gradients. These
gradients are returned to each passive party, which uses them
to update its local model parameters. This enables collaborative
optimization without raw data exchange.

Security Risks in Split VFL. Unlike horizontal federated
learning (HFL), where a shared model and aligned gradients
give the server sufficient signal for sanity checks, Split VFL
reveals far less information. It exchanges only intermediate
embeddings and a single layer of backward gradients, obscuring
passive parties’ architectures and feature alignment. With
disjoint feature subsets, cross-party anomaly detection becomes
infeasible, so correctness cannot be inferred from aggregate
behavior. Verifiability must therefore be enforced at the level
of per-party computations. Existing work mainly enhances
embedding privacy under semi-honest assumptions, using
techniques such as LCC and secret sharing [49], adaptive
obfuscation [50], and embedding obfuscation [52]. While
these approaches reduce information leakage (e.g., against
inversion attacks [5]), they do not ensure that parties perform
the prescribed computations, leaving verifiability unaddressed.
Under a malicious threat model, Split VFL faces two key
challenges: (i) verifying the correctness of local embeddings
and (ii) ensuring the integrity of model updates. Passive
parties may submit reused or fabricated embeddings, while the
coordinator, who controls loss and gradient computation, can
return invalid updates or collude with adversarial participants.
Existing approaches such as RoPA [51] use secret-shared SNIP
proofs to catch misbehavior by feature parties, but they lack
end-to-end verification of model updates and do not support
auditability or collusion resistance. These limitations motivate
ZKSL, a fully verifiable Split VFL framework that provides
end-to-end correctness guarantees under malicious adversaries
while preserving data privacy; we outline its design in the next

𝑅𝑎𝑛𝑑𝑜𝑚

Passive Party

	𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

		𝐿𝑎𝑦𝑒𝑟!

…

		𝐿𝑎𝑦𝑒𝑟"

𝐿𝑜𝑠𝑠 Active Party

Aggregate

	𝑝𝑜𝑖𝑠𝑜𝑛

Fake

Fake

Fig. 4: Attack Examples

section and compare it with existing approaches in Table I.

III. PROBLEM FORMULATION

We study a vertical federated learning (VFL) setting in-
volving one active party and multiple passive parties, each
holding disjoint feature subsets aligned by a common set
of user identifiers. While these parties collaborate to train
a shared model, they do not trust each other and may behave
adversarially. The goal of ZKSL is to enable verifiable and
privacy-preserving collaborative training in this setting. To
this end, we consider a malicious threat model and define
precise verifiability guarantees that ensure the integrity of
local computations and global updates. We assume that, before
training, each party obtains its local data through an external
trusted process (e.g., organizational controls or audited data
pipelines) and binds it to public commitments; parties enter
training with these commitments in place. ZKSL then verifies
the correctness of computations over the committed inputs,
rather than the authenticity of the raw data itself. We now
formalize the threat model and the corresponding training
semantics enforced by our framework.

A. Threat Model

We consider a malicious adversarial setting in which both
the active party (i.e., the label owner) and any subset of
passive parties (i.e., feature owners) may deviate arbitrarily
from the prescribed protocol. Adversaries are polynomial-
time and may collude freely, sharing private information to
compromise the training process. We assume the standard
cryptographic hardness of underlying primitives, specifically the
binding property of commitments and the soundness and zero-
knowledge properties of proofs. In addition, all communication
is assumed to occur over authenticated and secure channels,
preventing impersonation and undetectable message tampering.
Within this model, we identify several classes of adversarial
behavior and define corresponding security goals:

Malicious Active Party. An adversarial active party con-
trols labels, aggregation, and gradient release. We focus
on computational misbehavior rather than inference attacks,

4

assuming information leakage (e.g., gradient inversion) is
handled by orthogonal privacy defenses. Such a party may
inject incorrect or biased gradients (see Fig. 4, left), alter
aggregated embeddings, or return inconsistent updates across
rounds to embed backdoors. Any forgery of raw labels prior
to commitment is assumed to be handled by an external data-
authenticity layer and is outside the scope of this work.

Malicious Passive Parties. One or more passive parties may
also deviate from the prescribed protocol; as before, we focus
on computational deviations and treat inference attacks as out
of scope, assuming they are mitigated by existing privacy-
preserving VFL techniques. Such parties may free-ride by
reusing stale embeddings, fabricating gradients (right-hand side
of Fig. 4), or skipping computation while appearing compliant,
or they may actively poison training by corrupting local data or
sending inconsistent embeddings to bias convergence. Forgery
of raw features prior to commitment is likewise delegated to
external per-record authenticity mechanisms; once committed,
parties can only deviate through incorrect computations.

Collusion. We assume that the active party may collude with
an arbitrary subset of passive parties. Such collusion can be
leveraged to manipulate global updates or strategically mislead
honest participants.

Security Goals. Our proposed framework in this paper targets
the following core guarantees:

• Computation Integrity: Embeddings and gradients must
result from the correct execution of the prescribed training
algorithm on the committed inputs.

• Update Verifiability: Each global model update is consistent
with the committed model parameters and the gradient of
the declared loss function.

• Public Auditability: Commitments and zero-knowledge
proofs form a verifiable audit trail for post hoc validation
by participants or external auditors.

We note that auxiliary concerns, such as participant au-
thentication or the genuineness of initial data, are considered
orthogonal to our threat model and are assumed to be handled
via external mechanisms. The ZKSL framework is designed
to satisfy the above security goals; a formal analysis of its
guarantees is provided in Section V.

B. Verifiable Training Semantics

We consider a vertical federated learning (VFL) setting
involving n passive parties (feature owner) P1, . . . ,Pn that
share the same set of user identifiers but hold disjoint subsets
of features, i.e., vertically partitioned data. Each passive party
Pi holds private input data xi, local model parameters wi, and
exposes a public forward function fi(·). A central active party
S (label owner) holds the label y, local parameters wS , and a
public function F(·) that operates on aggregated embeddings
to produce predictions.

Training proceeds in synchronized rounds. At each round t,
passive party Pi draws a local minibatch x

(t)
i and computes

an embedding:

e
(t)
i ← fi

(
x
(t)
i ;w

(t)
i

)
, e

(t)
i ∈ Fdi .

The active party S aggregates the embeddings E(t) ←⊕n
i=1 e

(t)
i , where

⊕
denotes the aggregation operator (e.g.,

concatenation or summation), and computes the prediction
ŷ(t) = F

(
E(t);w

(t)
S

)
. The loss is computed as L(t) =

Loss
(
ŷ(t), y(t)

)
, and the active party updates its local pa-

rameters using the gradient

∇L(t) =
∂L(t)

∂w
(t)
S

.

All participants are assumed to be familiar with the federated
data partition and share user identifiers to align their inputs.

Setups. We rely on a universal structured reference string
(SRS) for KZG polynomial commitments. A standard multi-
party “powers-of-tau” ceremony generates an SRS that is secure
as long as at least one contributor is honest. For each circuit C
(e.g., a forward or backward circuit), a key-generation algorithm

KeyGen(SRS, C)→ (pkC , vkC)
produces proving and verification keys that can be reused as
long as the circuit shape and degree bounds remain unchanged.
Henceforth we elide keys and write Prove(·) and Verify(·)
with the understanding that the appropriate (pk, vk) are used
implicitly. We also use the PC-PLONK commitment mechanism
and denote commitments by Com(·).

Proof-Carrying Training Interface. Building on this setup,
we require the VFL training process to be verifiable despite
the private nature of each party’s inputs x

(t)
i and model

parameters w(t)
i , w

(t)
S . In our ZKSL framework, each participant

commits to its private values using Com(·), and all learning-
related computations, including forward evaluation, gradient
derivation, and parameter updates, are attested by succinct zero-
knowledge proofs over a PLONKish arithmetization. Proofs
are produced by Prove(·) and checked by Verify(·) against the
corresponding commitments. The core verifiability requirement
has two components: (i) verifiable local computation, which
ensures that each claimed embedding e

(t)
i is honestly computed

from the committed values x
(t)
i and w

(t)
i ; and (ii) verifiable

global updates, which ensure that the coordinator correctly
computes gradients and applies the update rule to obtain a new
committed model state. Together, these properties guarantee
that all learning steps are faithfully executed and form the basis
of ZKSL’s integrity guarantees.

Verifiable Local Computation. Given the public forward
function fi and a claimed embedding ei, party Pi generates a
non-interactive zero-knowledge proof that there exist private
values xi and wi such that

ei = fi(xi;wi),
without revealing xi or wi. This ensures that each passive party
has faithfully executed the local forward pass on its private
data and parameters.

Verifiable Global Update. At each training round t, given the

5

		𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔!

		𝐿𝑎𝑦𝑒𝑟!!

…

		𝐿𝑎𝑦𝑒𝑟"

𝐿𝑜𝑠𝑠

Active Party

Aggregate

Passive Party

		𝐿𝑎𝑦𝑒𝑟!"

…

		𝐿𝑎𝑦𝑒𝑟"

ZK Circuit

		𝑍𝐾	𝑃𝑟𝑜𝑜𝑓!

ZK Circuit
Forward

Backward

Send to others

From other parties

		𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡!

Verify

Verify

Disaggregate
		𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡!

		𝑍𝐾	𝑃𝑟𝑜𝑜𝑓"

		𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡"

Fig. 5: Zero-Knowledge NN-Based Split VFL architecture

initial commitment Com(w
(t)
S), learning rate η, the claimed

gradient∇L(t), and the updated commitment Com(w
(t+1)
S), the

coordinator produces a zero-knowledge proof of the following:
(i) Update Consistency: There exist openings w(t)

S and w
(t+1)
S

such that

w
(t+1)
S = w

(t)
S − η∇L(t),

and Com(w
(t+1)
S) is a valid commitment to w

(t+1)
S (After

each update, model weights are re-committed to maintain
verifiable linkage across rounds).

(ii) Gradient Correctness: The gradient satisfies

∇L(t) =
∂

∂w
(t)
S

L
(
F(E(t);w

(t)
S); y(t)

)
,

for some aggregated embedding E(t) =
⊕n

i=1 e
(t)
i , where

each e
(t)
i is accompanied by a valid proof of local

computation.
This mechanism prevents the active party from introducing

incorrect or arbitrary model updates without detection, thereby
ensuring the integrity of the global learning process.

IV. DESIGN

This section details the design of ZKSL, a zero-knowledge
split VFL framework that makes training both private and
publicly verifiable at scale. We first present the verifiable
training protocol and its commitments-and-proofs workflow.
We then introduce layer-wise parallel proving, Privacy Com-
mitment PLONK, and probabilistic lookup–based embedding
verification to cut proving costs without weakening guarantees.
Finally, we describe an asynchronous proof scheduling scheme
that overlaps compute and proving to maximize throughput in
multi-party deployments.

A. Training Protocol

In each training round t, the passive and active parties jointly
execute a verifiable training protocol. All commitments are
public and included in the global transcript. Zero-knowledge
proofs expose the corresponding commitments as public inputs,
ensuring that any deviation, such as using values inconsistent
with commitments, fabricating embeddings, gradients, or
update, will be detected through verification failure.

As depicted in Fig. 5 and formalized in Algorithm 1,
each round proceeds in three stages. In the embedding phase

Algorithm 1: ZKSL Training Protocol for Round t

Data: Passive Party: {x(t)
i , w

(t)
i }

n
i=1; Active Party: y(t), w

(t)
S .

Result: {w(t+1)
i }ni=1, w

(t+1)
S and accepted zk proofs.

1 Passive Party Forward:
2 C

(t)
xi ←Com(x

(t)
i), C

(t)
wi ←Com(w

(t)
i)

3 e
(t)
i ←fi(x

(t)
i ;w

(t)
i)

4 π
(t)
i,fwd←ProveFwd

(
C

(t)
xi , C

(t)
wi , e

(t)
i

)
5 Send

(
e
(t)
i , C

(t)
xi , C

(t)
wi , π

(t)
i,fwd

)
to Active Party

6 Active Party Round:
7 if ∀i ∈ [n], Verify

(
C

(t)
xi , C

(t)
wi , e

(t)
i , π

(t)
i,fwd

)
= true

8 E(t)←
⊕n

i=1 e
(t)
i

9 ŷ(t)←F(E(t);w
(t)
S)

10 L(t)←Loss(ŷ(t), y(t))

11 C
(t)
L ←Com(L(t)), C

(t)
wS←Com(w

(t)
S)

12 Compute ∇L(t)

13 w
(t+1)
S ←w

(t)
S − η∇L(t)

14 C
(t+1)
wS ←Com(w

(t+1)
S)

15 π
(t)
S ←ProveSrv

(
C

(t)
L , C

(t)
wS , C

(t+1)
wS ,∇L(t), E(t)

)
16 Broadcast

(
{∇L(t)

i }
n
i=1, C

(t+1)
wS , π

(t)
S

)
17 else
18 Reject
19 Passive Party Update:
20 if Verify

(
C

(t)
E , C

(t)
L , C

(t)
wB , C

(t+1)
wB ,∇L(t)

i , π
(t)
B

)
= true

21 w
(t+1)
i ←w

(t)
i − η∇L(t)

i

22 C
(t+1)
wi ←Com(w

(t+1)
i)

23 π
(t)
i,upd←ProveUpd

(
C

(t)
wi , C

(t+1)
wi ,∇L(t)

i

)
24 send

(
C

(t+1)
wi , π

(t)
i,upd

)
to Active Party

25 else
26 Reject
27 Iterate for t+1 until convergence

(Lines 1–5), each passive party commits to its private minibatch
and model weights using a binding scheme Com(·), computes
a local embedding, and generates a succinct zkSNARK (based
on a PLONKish arithmetization) proving that the embedding
results from a correct forward pass over the committed values.
The embedding, commitments, and proof are then sent to the
active party. In the aggregation and update phase (Lines 6–
18), the active party verifies all received proofs, aggregates
the embeddings, performs forward computation, and derives
the loss and gradient. It then commits to the aggregate input,
loss, and its own parameters, updates its weights, and produces
a proof attesting to the correctness of this computation. The
active party broadcasts the per-party gradient slices, the new
commitment, and the proof. In the response and verification
phase (Lines 19–26), each passive party verifies the proof,
applies its local update using the received gradient slice,
commits to the updated weights, and generates a proof that
the update matches the declared gradient. The round counter
is then incremented (Line 27), and the protocol repeats until
convergence.

This design ensures that all computation steps, by both
passive and active parties, are publicly verifiable, while
preserving the privacy of data and parameters via commitments
and zero-knowledge proofs. For efficiency, we leverage PC-
PLONK’s dedicated commitment column to bind parameters

6

inside the circuit, avoiding hash-heavy commitment gadgets
and reducing overall proving overhead.

Layer-Wise Parallel Proof Generation. Generating zero-
knowledge proofs for deep neural networks (DNNs) is com-
putationally intensive due to the depth of layered operations,
including large matrix multiplications and nonlinear activations.
Monolithic zk circuits scale poorly under such workloads. To
improve scalability, we exploit the inherent layer-wise structure
of DNNs to enable layer-wise parallel proof generation as
demonstrated in Fig. 6. Each layer is treated as an independent
computational unit, allowing zk proofs to be generated in par-
allel with localized resource allocation. These per-layer proofs
are then linked via cross-layer consistency checks, reducing
proving latency while preserving end-to-end correctness.

Let {Lk}nk=1 denote the n layers of a DNN, each with
parameters {θk}nk=1 and initial input z0 (such as the aggregated
embedding E(t)). The computation proceeds through the
network via the recurrence

zk := Lk(zk−1; θk), for k = 1, . . . , n.
For each intermediate value and parameter tensor, we publish
binding commitments:

Czk ← Com(zk), Cθk ← Com(θk).
Let PLk

denote the zero-knowledge proof corresponding to
layer Lk, and let Πtotal represent the final aggregated proof.
We assume a PLONKish proof system PC− PLONK equipped
with privacy-preserving commitment columns and copy con-
straints to enforce consistency across circuit boundaries.

The protocol is detailed in Algorithm 2. First, a full forward
pass is executed to compute all intermediate values {zk},
and binding commitments {Czk , Cθk} are published. Next,
for each layer Lk, a circuit Ck is constructed with private
inputs (zk−1, θk, zk), constrained to be consistent with their
respective commitments. The zk proof for this layer is then
computed as

PLk
← ProveLayerPC−PLONK(Czk−1

, Cθk , Czk),
and all such proofs are generated in parallel across the n layers.

After proof generation, a lightweight consistency check is
performed to ensure that for each k, the output commitment
Czk of layer Lk matches the input commitment Czk expected
by layer Lk+1. This step stitches the individually generated
layer proofs into a coherent, end-to-end proof chain. Finally,
the individual proofs {PLk

}nk=1 are aggregated into a single
succinct proof Πtotal ← Aggregate({PLk

}nk=1).
This layer-wise strategy enables scalable, parallel proof

generation while preserving global correctness through
commitment-bound consistency.

Privacy Commitment PLONK (PC-PLONK). Before gen-
erating computation proofs, all private inputs and weights
must be committed without disclosure (e.g., C

(t)
xi ←

Com(x
(t)
i), C

(t)
wi ← Com(w

(t)
i), Czk ← Com(zk)). However,

directly integrating standard commitments, particularly hash-
based schemes [19], into zk-SNARK circuits is impractical,
as in-circuit hash evaluation significantly increases arithmetic
overhead and prover cost.

Algorithm 2: Layer-Wise Parallel Proofs
Input: Layers {Lk}nk=1 with params {θk}; input z0 (e.g.,

x
(t)
i , E(t)).

Output: Aggregated proof Πtotal.
1 Compute (sequential):
2 for k = 1 to n do
3 zk ← Lk(zk−1; θk)
4 Czk ← Com(zk)
5 Cθk ← Com(θk)

6 Parallel proving:
7 for k ∈ {1, . . . , n} in parallel do
8 Build circuit Ck with privacy column P holding

zk−1, θk, zk consistent with Czk−1 , Cθk , Czk

9 Enforce copy constraints for all uses from P
10 PLk ← ProveLayerPC−PLONK

(
Czk−1 , Cθk , Czk

)
11 Consistency check (lightweight):
12 for k = 1 to n− 1 do
13 Check equality of adjacent commitments: Czk in PLk

equals the input commitment referenced by PLk+1

14 Aggregate proofs:
15 Πtotal ← Aggregate

(
PL1 , . . . , PLn

)
16 return Πtotal

		𝐿𝑎𝑦𝑒𝑟!
𝒁𝑲	𝑪𝒊𝒓𝒄𝒖𝒊𝒕𝑲

𝑻𝒉𝒓𝒆𝒂𝒅𝑲 𝑃𝑟𝑜𝑜𝑓!

𝑇𝑜𝑡𝑎𝑙
𝑃𝑟𝑜𝑜𝑓

		𝐿𝑎𝑦𝑒𝑟…
𝒁𝑲	𝑪𝒊𝒓𝒄𝒖𝒊𝒕…

		𝐿𝑎𝑦𝑒𝑟#
𝒁𝑲	𝑪𝒊𝒓𝒄𝒖𝒊𝒕𝟏

		𝐼𝑂	𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡!

		𝐼𝑂	𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡"

𝑃𝑟𝑜𝑜𝑓…

𝑃𝑟𝑜𝑜𝑓#
Aggregate

𝑂𝑢𝑡𝑝𝑢𝑡
𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔

𝑇𝑜𝑡𝑎𝑙
𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡

		𝐼𝑂	𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡…

𝑻𝒉𝒓𝒆𝒂𝒅…

𝑻𝒉𝒓𝒆𝒂𝒅𝟏

Fig. 6: Design of Layer-Wise Parallel Proof Generation

To address this, we introduce Privacy Commitment PLONK
(PC-PLONK), a refinement of the PLONK protocol that
separates commitment binding from computation. PC-PLONK
augments the PLONK trace with a privacy-commitment column
P , which holds committed private values. Every use of a
private input or parameter within the circuit must reference its
corresponding entry in P , and permutation constraints enforce
consistency. This design ensures that values are reused without
redundancy, while eliminating the need to evaluate commitment
logic (e.g., hashing) inside the circuit. Binding to public
commitments is deferred to PLONK’s polynomial commitment
layer, preserving verifiability with minimal overhead.

Example 1. Extending Fig. 2, we introduce column P to
store private inputs and model parameters used in subsequent
computations (Fig. 7). All gates access these values from P ,
and copy constraints enforce consistency across usage. Any
deviation from the committed values breaks the proof, ensuring
low-cost integrity enforcement while preserving input privacy.

Compared to in-circuit hash-based commitments such as
Poseidon Merkle trees, which must be enforced by additional
PIOP constraints, PC-PLONK shifts commitment binding to the

7

𝒒𝑴𝒒𝑨𝒘𝒄𝒘𝒃𝒘𝒂𝒊𝑷

01𝒙𝟓𝒙𝟐𝒙𝟏1𝒙𝟏
10𝒙𝟔𝒙𝟒𝒙𝟑2𝒙𝟐
10𝑜𝑢𝑡𝒙𝟔𝒙𝟓3𝒙𝟑
000004𝒙𝟒

Commitment
To a

Certain Value

Privacy
Commitment
Column

Fig. 7: Design of Privacy Commitment PLONK

PCS layer and keeps the arithmetic circuit almost unchanged.
A Poseidon gadget needs to encode each hash inside the
Plonkish table, adding Θ(m(RF +RP)) hash-gate rows for m
committed values, whereas PC-PLONK introduces a few advice
columns to store privacy data (one conceptual column P , or
several columns in our implementation) plus Θ(u) additional
permutation constraints for u uses of these values. Since these
permutation constraints are handled by PLONK’s existing
global permutation argument and require no new custom
gates, the incremental PIOP cost of PC-PLONK is negligible
compared to a Poseidon-based commitment circuit.

B. Embedding Generation

Embedding layers are essential in vertical federated learning
for encoding categorical inputs into dense vectors, allowing
local data to be abstracted before sharing. In ZKSL, this
abstraction also protects raw features from being directly
exposed to other participants. However, in the zero-knowledge
proof (ZKP) setting, embedding computation becomes a
major bottleneck. Unlike computational frameworks such as
PyTorch [53], which optimize embedding lookups via indexing,
our verification logic must explicitly enforce Constraints
within the circuit. Consequently, standard implementations,
such as those used in frameworks like EZKL [54], typically
perform dot-product verification using one-hot encodings and
matrix multiplications. This approach is highly inefficient in ZK
circuits, especially as the batch size increases: most entries in
the one-hot vectors are zero, yet multiplication constraints must
still be generated, leading to proving overhead in large-scale
models. To address this inefficiency, we reformulate embedding
as a sparse, index-based operation and explore ZKP-compatible
designs that significantly reduce constraint complexity.

Embedding retrieval can be efficiently implemented via
lookup tables, avoiding the need for one-hot encoding followed
by matrix multiplication. This is achieved through a set-
membership argument, which verifies that a selected embedding
vector appears at the correct index within a committed
dictionary. Compared to polynomial evaluation, this method
incurs fewer constraints and directly reflects the index-based
semantics of embedding layers.

However, standard lookup mechanisms in zero-knowledge
proof (ZKP) circuits face scalability challenges. As the em-
bedding dimension d grows, the number of required lookup
tables and associated constraints increases proportionally. For
example, an embedding matrix E ∈ F99×9 requires verifying
membership in 99 rows of 9-dimensional embeddings, each

Fig. 8: Lookup-based Embedding with Probability Optimization

prepended with an index, forming 10-dimensional lookup
entries, such as:

{(1, e1,1, . . . , e1,9), . . . , (99, e99,1, . . . , e99,9)}.
To verify the correctness of retrieving, say, row 2, one must
prove that the tuple (2, e2,1, . . . , e2,9) belongs to this set. As d
increases, the lookup burden quickly becomes significant, and
in some cases even exceeds the cost of conventional one-hot-
based matrix multiplication.

To address this, we propose a novel probabilistic verifi-
cation approach for embedding retrieval, inspired by similar
techniques in matrix multiplication. This method reduces the
verification cost to be independent of the embedding dimension
d. Its security relies on a probabilistic projection argument: if
two vectors have equal random projections under a shared
random challenge, then with high probability the vectors
themselves are equal. We formalize this result in the following
theorem and defer its proof to the appendix.

Theorem 1. Let E ∈ Fn×d
p be an embedding matrix, where

each row Ei ∈ Fd
p is an embedding vector. Let r be a random

vector uniformly sampled from Fd
p. Suppose a prover returns

Êi ∈ Fd
p in response to a query for Ei. If Êi ̸= Ei, then the

probability that Êi · r = Ei · r is at most 1/p.

To reduce the cost of verifying embedding lookups in zero-
knowledge circuits, we use a random vector r ∈ Fd to compress
high-dimensional embeddings into scalar values via inner
product vi = Ei · r =

∑d
j=1 ei,j · rj , where Ei is the i-th

row of the embedding matrix E. During proof generation, the
prover computes this compressed value vi, and the verifier
checks correctness probabilistically using a lookup table that
contains only index–projection pairs. Verification proceeds in
three steps:

1) The lookup table stores compressed entries {(i, vi)};
2) The prover computes vi = Ei · r for a given index i;
3) A lookup constraint ensures that the claimed pair (i, vi)

exists in the table.

This technique decouples the constraint cost from the embed-
ding dimension d, dramatically reducing overhead. Instead of
verifying all d components of Ei, we check only the projection
vi, with high-probability sufficiency, due to the above theorem.

Example 2. As shown in Fig. 8, suppose E ∈ F3×3 and
r ∈ F3. For the third row, we compute:

v2 = e2,1r1 + e2,2r2 + e2,3r3.
The prover submits (2, v2), and the verifier enforces a lookup

8

Active PartyPassive Party

t
round

𝑃𝑟𝑜𝑣𝑒	𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑!

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑!

𝑃𝑟𝑜𝑣𝑒	𝐹𝑜𝑟𝑤𝑎𝑟𝑑!

𝐹𝑜𝑟𝑤𝑎𝑟𝑑!

		𝑃𝑟𝑜𝑣𝑒	𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑!"#

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑!"#

	𝑃𝑟𝑜𝑣𝑒	𝐹𝑜𝑟𝑤𝑎𝑟𝑑!"#

𝐹𝑜𝑟𝑤𝑎𝑟𝑑!"#

t + 1
round

𝐶𝑜𝑚𝑝𝑢𝑡𝑒!

𝑃𝑟𝑜𝑣𝑒!

𝐶𝑜𝑚𝑝𝑢𝑡𝑒!"#

𝑃𝑟𝑜𝑣𝑒!"#

Active PartyPassive Party

t
round

𝑃𝑟𝑜𝑣𝑒	𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑!

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑!

𝑃𝑟𝑜𝑣𝑒	𝐹𝑜𝑟𝑤𝑎𝑟𝑑!

𝐹𝑜𝑟𝑤𝑎𝑟𝑑!

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑!"#

	𝑃𝑟𝑜𝑣𝑒	𝐹𝑜𝑟𝑤𝑎𝑟𝑑!"#

𝐹𝑜𝑟𝑤𝑎𝑟𝑑!"#t + 1
round

𝐶𝑜𝑚𝑝𝑢𝑡𝑒!

𝑃𝑟𝑜𝑣𝑒!

𝐶𝑜𝑚𝑝𝑢𝑡𝑒!"#

𝑃𝑟𝑜𝑣𝑒!"#

		𝑃𝑟𝑜𝑣𝑒	𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑!"#

Standby

Standby

Standby

Parallelism

Parallelism

Verify at
Checkpoint

Fig. 9: Computation-Validation Asynchronous Framework

constraint to check this pair against a preconstructed table.
Since the projection uniquely identifies the embedding with high
probability, individual components e2,j need not be verified.

This probabilistic lookup approach offers a scalable and
efficient solution for embedding verification in ZKP. It reduces
constraint complexity from O(Nnd) to O(nd), where N is
the batch size, n is the vocabulary size, and d is the dimension
size (see Appendix VIII-B for details), eliminates redundant
computation from sparse matrix operations, and avoids the
overhead of one-hot encoding. By replacing explicit matrix
multiplications with a dot-product-based commitment and
a simple lookup constraint, the circuit enforces consistency
between the claimed index and embedding while minimizing
proving cost. This enables practical certification of embedding
layers even in large-scale models.

C. Asynchronous Proof Scheduling

In conventional execution, forward and backward compu-
tations are tightly coupled with their corresponding zero-
knowledge proof (ZKP) generation. As illustrated on the left
of Fig. 9, a participant must complete a computation stage,
wait for the ZKP to be generated, and only then transmit the
result and proof to downstream parties. This strict serialization
introduces idle “Standby” periods, underutilizes resources, and
degrades throughput, especially in multi-party VFL, where
such latency compounds across participants.

To address this bottleneck, ZKSL introduces an asynchronous
proof scheduling mechanism that decouples model computation
from ZKP generation. The key idea is to allow a participant
to commit to the output of a computation stage and forward
it, along with its commitment, to downstream parties without
waiting for the proof. This triggers the next computation round
(e.g., round t+1) to begin promptly, while the ZKP for round
t is generated asynchronously in the background. As shown in
Fig. 9 (right), ZKPs attest to computations from the previous
round and are verified at a checkpoint in the following round.
The red dotted boxes represent deferred proof tasks for round
t, executed in parallel across federations. This design overlaps
computation and proof generation across rounds, improving
pipeline utilization and system throughput.

To implement this pipeline, each participant maintains a
Prove-Queue (PQ) for deferred proof tasks and enforces

Algorithm 3: Asynchronous Compute/Prove Schedul-
ing with K-Window Verification

Data: x(t), w(t); window size K.
Result: Serial compute overlapped with proving; windowed

verification.
1 Initialize
2 PQ,Ready ← ∅; π[·]← null; t← 0; verified← 0

3 Main loop (serial compute; async proving)
4 while not converged do
5 t← t+ 1
6 Checkpoint at round boundary
7 wait until {t−K, . . . , t−1} ⊆ Ready
8 Πlocal ← Aggregate

(
{π[r]}t−1

r=t−K

)
9 send Πlocal to peers

10 Πpeers ← ReceiveAll(peers)
11 if not VerifyAll(Πpeers) then
12 Rollback(t−K)
13 for r ← t−K to t− 1 do
14 π[r]← null; Ready ← Ready \ {r}
15 t← t−K − 1; continue
16 verified← t− 1

17 y(t) ← ComputeStage(x(t), w(t))

18 C
(t)
x ← Com(x(t)), C

(t)
w ← Com(w(t))

19 send ⟨t, y(t)⟩ to peers
20 enq (PQ, ⟨t, C(t)

x , C
(t)
w , y(t)⟩)

21 wait until t− verified < K

22 Prover workers (run concurrently)
23 while PQ ̸= ∅ do
24 ⟨r, Cx, Cw, y⟩ ← deq(PQ)
25 π[r]← Prove(Cx, Cw, y)
26 Ready ← Ready ∪ {r}

a window size K that bounds how far computation can run
ahead of proving. As formalized in Algorithm 3, the scheduler
interleaves sequential computation with asynchronous proving
under this sliding-window constraint. At the start of each round,
the node checks whether proofs for the past K rounds are
available (Line 7). If ready, it aggregates and exchanges them
with peers and performs collective verification (Lines 8–11). If
any proof fails to verify, the node rolls back up to K rounds by
clearing local state and retrying (Lines 12–15). Otherwise, it
proceeds with the computation for round t (Line 18), commits
the output (Line 19), and sends it downstream (Line 20),
allowing the next round to start. Importantly, the corresponding
ZKP is not generated inline. Instead, the proof task is appended
to the Prove-Queue and handled asynchronously by prover
workers (Lines 21–22). A scheduler guard ensures that the
number of in-flight rounds without completed proofs does not
exceed the window size K; if the limit is reached, computation
pauses until progress is made (Line 23). Meanwhile, dedicated
prover threads drain the queue by proving each task and
marking it ready for future verification (Lines 26–29).

This asynchronous scheduling allows computation to proceed
without waiting for proofs. By overlapping compute and prove
phases and deferring verification to boundaries, the system
balances throughput, latency, and rollback safety. The window

9

size K serves as a tunable knob for controlling concurrency
depth, backpressure, and recovery cost, enhancing robustness
under varying workloads and network conditions.

V. SECURITY ANALYSIS

We analyze ZKSL’s security under the malicious threat model
outlined in Section III, distinguishing formal cryptographic
guarantees from empirical robustness. ZKSL achieves com-
pleteness, soundness, and zero-knowledge through PLONK and
our PC-PLONK extension. For brevity, we summarize the core
structure of the security proofs here; full proofs and reductions
are provided in the appendix.

A. Unified Security Definition: Computation Integrity, Update
Verifiability and Public Auditability

Let λ be the security parameter. Parties P = {P0, . . . , Pn}
run a VFL protocol for T rounds. Each party Pi has local data
Di and randomness ri and (unless corrupted before commit)
posts an immutable commitment Comi = Com(Di; ri) to a
public append-only log at setup. We assume Com is binding
and hiding.

Let St denote the global model state after round t (with S0

initial). For each party Pi fix a canonical local operator

Execi(St−1, Di; η) 7→ (eti, g
t
i , aux

t
i),

which deterministically (given randomness) models the declared
forward/backward computation producing an embedding e, a
gradient g and auxiliary values aux for round t.

Define the basic predicates:

ConsistentWithCommit(Comi, D)
def⇐⇒ ∃r : Com(D; r) = Comi.

ValidExeci(e, g, aux, St−1,Comi)
def⇐⇒ ∃D, r, η, s.t.

Com(D; r) = Comi ∧ (e, g, aux) = Execi(St−1, D; η).

(Thus ValidExec expresses that the triple (e, g, aux) can be
produced by correctly running Execi on some data consistent
with the published commitment.)

Let ℓ(S;D) be the declared global loss (with D =
(D0, . . . , Dn)) and let Agg({oi}) be the declared aggregation
mapping local contributions to a global update. Define global
consistency of accepted local contributions:

GlobalConsistent
(
{oi}, St−1,Com0:n

) def⇐⇒

∃D0, . . . , Dn, r0, . . . , rn

(n∧
i=0

Com(Di; ri) = Comi

∧ Agg({oi}) = ∇Sℓ
(
St−1; (D0, . . . , Dn)

))
.

(Thus the aggregated accepted contributions equal the declared
loss gradient on some data consistent with commitments.)

We assume the protocol specifies a deterministic verification
algorithm Verify(Trans, St−1) ∈ {Accept,Reject} that, given
the round transcript (including non-interactive ZK proofs,
openings, etc.) and previous state, either accepts and returns
the set Acceptedt of tuples used for aggregation, or rejects. We
also assume a deterministic post-hoc auditor Audit(Trans) ∈
{Accept,Reject} that checks commitments and proofs in a
transcript and derives the same logical predicates as Verify.

Adaptive security experiment. Define the experiment
Exp Unified(A, λ) for a PPT adversary A that may adap-
tively corrupt parties via an oracle Corrupt(i) (corruption is
irrevocable). The experiment proceeds:

1) Commit phase. For each party Pi:
• If A issues Corrupt(i) before the commit action, A

chooses (Di, ri) and computes Comi = Com(Di; ri).
• Otherwise (honest at commit time), sample honest
(Di, ri) and compute Comi = Com(Di; ri).

Publish all {Comi} to the immutable public log. From
now on commitments are fixed. Initialize S0.

2) Oracles available to A.
• Corrupt(i): when invoked on an uncorrupted i, mark
Pi corrupted and return the full internal state of Pi

(including Di, ri, secret keys, randomness used so far).
After this, A controls Pi.

• Normal protocol interaction: A may send arbitrary
messages on behalf of corrupted parties; the experiment
simulates honest parties below.

3) Rounds. For each round t = 1, . . . , T :
a) For each currently honest (not-yet-corrupted) Pi:

sample fresh local randomness ηti and compute
(eti, g

t
i , aux

t
i) := Execi(St−1, Di; η

t
i). Produce the pro-

tocol messages/proofs for honest Pi (including commit-
ments openings, ZK proofs) and append to the round
transcript.

b) For each corrupted Pj : let A supply arbitrary messages,
proofs, openings, embeddings/gradients, etc., for round
t; append these to the transcript.

c) Run Verify on the round transcript and St−1. If Verify
outputs Reject then set St ← St−1. If Verify outputs
Accept then it also returns an accepted set Acceptedt

of tuples (i, t, e, g, aux) which are used by the declared
Agg and Update to derive St.

4) Post-hoc transcript output. At the end, A may also out-
put an arbitrary transcript Trans (possibly equal to the real
transcript); an external auditor runs b← Audit(Trans).

Bad events (security failure). The experiment outputs 1 (i.e.
a security failure occurs) iff one of the following holds:

• (Computation Integrity violation) There exists a round
t and an accepted tuple (i, t, e, g, aux) ∈ Acceptedt such
that

¬ ValidExeci(e, g, aux, St−1,Comi).

(An accepted embedding/gradient cannot be produced by
running the declared Execi on any data consistent with
Comi.)

• (Update Verifiability violation) There exists a round t
for which the set of accepted local contributions {oti} :=
{(eti, gti , auxti) ∈ Acceptedt} satisfies

¬ GlobalConsistent
(
{oti}, St−1,Com0:n

)
.

(The aggregated update is not equal to the declared
loss gradient on any data vector consistent with the
commitments.)

10

• (Public Auditability violation) The auditor accepts a
transcript yet the transcript contains a round t that
satisfies either of the above violations with respect to
the commitments appearing in Trans:

Audit(Trans) = Accept

∧
(
∃t s.t. EITHER Computation Integrity

OR Update Verifiability violation w.r.t. Trans
)
.

(An auditable transcript is accepted while some accepted
update in it is invalid.)

Adversary advantage and security requirement. Define

AdvUnified(A, λ) := Pr
[
Exp Unified(A, λ) = 1

]
,

with probability over honest randomness and A’s randomness
and over the behavior of Corrupt oracle. The protocol achieves
unified security (Computation Integrity, Update Verifiability
and Public Auditability) iff for all PPT adversaries A,

AdvUnified(A, λ) ≤ negl(λ).

Completeness. If all parties are honest (or any corruption
queries occur only after the simulator hands over internal honest
state) and honest proofs/signatures/openings are generated,
then:

Pr
[
Exp Unified(Ahonest, λ) = 0

]
≥ 1− negl(λ),

i.e. honest executions are accepted by Verify and by Audit
except with negligible probability.

B. Security Theorem and Reductions

We state the theorem and give a concise, rigorous reduction
proof in appendix VIII-D. Let λ be the security parameter,
n the number of parties, T the number of rounds, and let
Q be an upper bound on the number of checked objects
(proofs/openings/statements) produced by each party in each
round. Let AdvUnified(A, λ) denote the advantage of any PPT
adversary A in the unified experiment. Let AdvPLONK(λ)
and AdvComBind(λ) denote the maximum PPT advantages to
break PLONK soundness and commitment binding respectively.
Assume the reduction may use standard simulation oracles
(PLONK simulator / CRS trapdoor) and let δsim(λ) be the total
simulation error (negligible under the usual setup). Then there
exists the explicit factor M := n · T ·Q such that:

Theorem 2 (Reduction to PLONK soundness and commitment
binding). For every PPT adversary A there holds

AdvUnified(A, λ) ≤ M ·
(
AdvPLONK(λ) + AdvComBind(λ)

)
+ δsim(λ).

Consequently, if AdvPLONK(λ), AdvComBind(λ) and δsim(λ) are
negligible in λ, then AdvUnified(A, λ) is negligible.

VI. EVALUATION

A. Implementation

We implemented our framework on top of the PLONK proof
system using Halo2 [55] in Rust. Specifically, we designed
18 custom gates as fundamental operators for constructing
chips within the circuit, covering common DNN operations for

efficient and flexible circuit representation. We developed 12
operators targeting the ONNX [56] intermediate representation,
enabling the system to directly parse ONNX files and build
training models, streamlining model import and circuit con-
version. For the federated learning scenario, we adopted tonic
[57], a high-performance gRPC framework in Rust, to facilitate
communication between federated entities. To further improve
efficiency, we utilized Rayon [58], a Rust data-parallelism
library, enabling concurrent proof generation through multi-
threaded execution. The entire ZKSL prototype is implemented
in Rust, comprising more than 20,000 lines of code.

B. Experiment Setup

Testbed. Our experiments were conducted on a machine with
an AMD Ryzen Threadripper PRO 7975WX CPU (32 cores, 64
threads) and 256GB of RAM, running Ubuntu 22.04. For GPU
acceleration, we conducted our experiments on a cloud platform
equipped with an AMD EPYC 7543 32-core CPU, 512 GB of
RAM, and eight NVIDIA RTX 4090 GPUs (24 GB VRAM
each). Computations were performed over the BN256 field to
support zero-knowledge proof calculations using the PLONK
proof system. Unless otherwise stated, all experiments use a
default communication window of K = 1 described above. We
deployed CNNs across two federated entities, where one holds
the data and the other holds the labels, a common real-world
scenario where a party with extensive data collaborates with a
label provider. For DeepFM, we used a three-party federated
setting, simulating multi-institutional joint training, with only
one federation(the active party) holding labels. This setting
is also widely adopted by other privacy-preserving vertical
federated learning works [9, 48, 59].

Workloads. We implemented the DeepFM [60] model for
financial applications, where feature interactions and deep
feature extraction were circuitized using custom gates to
enhance efficiency in zero-knowledge proofs. Additionally, we
developed CNN (LeNet / AlexNet / VGG) [61] model to com-
pare performance and accuracy against other frameworks such
as ZKML and KAIZEN. The vertical federated partitioning of
these networks, along with their parameter counts and FLOPs, is
summarized in Table II. The integration of KZG commitments
enables efficient commitment generation and verification while
ensuring parameter integrity within the PLONK framework.
By leveraging the flexibility of PLONK and the efficiency of
KZG commitments, our implementation achieves significant
performance improvements while maintaining security.

Datasets. In our experiments, we utilized two distinct datasets
tailored to the requirements of our models.

Loan Default [62] dataset is used for training the DeepFM
model. It contains approximately 174,000 loan records with 33
features, including credit scores, loan amounts, terms, interest
rates, income levels, and debt-to-income ratios. This rich feature
set supports the construction of effective credit scoring models
for accurate risk assessment.

MNIST [63] dataset is used for the LeNet model. It consists
of 70,000 grayscale handwritten digit images (60,000 training,

11

TABLE II: CNN and DeepFM Models and Split.

Model Party Layers #Params FLOPs

LeNet Passive (data) 2 Conv 2.5K 0.7M
Active (label) 3 FC 59K 0.1M

AlexNet Passive (data) 5 Conv 0.3M 39M
Active (label) 3 FC 0.2M 0.2M

VGG11 Passive (data) 5 Conv 0.5M 57M
Active (label) 3 Conv, 3 FC 0.9M 11M

DeepFM

Passive-1 (data) Embedding 0.2M 0.2M
Passive-2 (data) Embedding 0.1M 0.1M
Passive-3 (data) Embedding 0.1M 0.1M
Active (label) FM, 2 FC 0.1K 0.2K

10,000 testing), each of size 28×28 and labeled from 0 to 9.
Its moderate scale and well-defined structure make MNIST a
standard benchmark for evaluating image classification models.

CIFAR-10 [64] dataset is used for AlexNet and VGG11. It
includes 60,000 color images of size 32×32 across 10 classes,
with 50,000 for training and 10,000 for testing. Due to its
higher visual diversity compared to MNIST, CIFAR-10 serves
as a challenging benchmark for assessing the representation
and generalization capabilities of CNNs.

Comparisons. Since research on zero-knowledge proofs for
neural network training is still limited, we selected two
representative baselines for comparison:
• ZKML [20]: A Plonk-based system with KZG commitments

for verifying deep neural network inference without exposing
model parameters. Unlike ZKSL, which verifies the full
training process, ZKML is restricted to inference. For a fair
comparison, we extend ZKML to support backpropagation.

• KAIZEN [37]: A zkPoT framework based on Multilinear
Extensions (MLE) and Sumcheck (GKR-style proofs). While
KAIZEN supports training verification, its use of MLE and
Sumcheck leads to larger proofs and inherent interactivity,
making it unsuitable for federated learning.

Our Methods. We designed multiple versions of ZKSL to
evaluate its performance under different optimization strategies.
• ZKSL: The baseline Zero-Knowledge Proof Federated Learn-

ing framework.
• ZKSL-G: ZKSL accelerated with GPU.
• ZKSL-LP: ZKSL with hierarchical parallel proof generation.
• ZKSL-LP-G: ZKSL-LP accelerated with GPU.

C. Evaluation of Single-Node

We first focus on the local learning scheme, evaluating
proof generation efficiency, computational overhead, and model
performance on a single machine. This includes measuring
proof latency for forward propagation, gradient computation,
and backpropagation, as well as the effects of parallel opti-
mization. We conduct these single-node microbenchmarks to
enable a fair comparison with prior systems such as ZKML
and Kaizen, which are evaluated only in centralized settings,
thereby isolating the cost of the proving backend from federated
communication overheads.

We compare the proving time of CNN models across
different baseline approaches. Table III summarizes the single-

TABLE III: Single-Node Proving Performance of CNN Models

Model ZKML KAIZEN ZKSL ZKSL-LP

LeNet 118.5s 123.9s 25.32s 11.89s
AlexNet N/A 213.2s 131.6s 98.13s
VGG11 N/A 386.5s 246.9s 213.7s

Forward Gradient Backward
Stage Type

0

10

20

30

40

50

60

70

Ti
m

e
(s

)

36.67

10.1

71.74

8.305
2.917

14.38

4.837
2.099

4.959

ZKML ZKSL ZKSL-LP

(a) Stage Proof Generation (N = 2)

N=2 N=4 N=8
Batch Size

0

45

90

135

180

Ti
m

e
(s

) 123.9

147.8

183.7

25.32

43.6

103.1

11.89
25.34

49.06

KAIZEN ZKSL ZKSL-LP

(b) Total Proof Generation
Fig. 10: LeNet Training Comparison

node proving performance of three CNN models under ZKML,
KAIZEN, and our proposed ZKSL and ZKSL-LP. ZKSL
already offers substantial improvements: for LeNet, it reduces
proving time from 118s (ZKML) and 123s (KAIZEN) to 25.32s,
showing the effectiveness of our structured circuit optimization.
Building on this, ZKSL-LP incorporates hierarchical layer-wise
parallelization and further lowers latency to 11.89s, achieving
an additional 53% reduction over ZKSL. For AlexNet and
VGG11, ZKSL-LP also delivers notable speedups, reducing
proving time to 98.13s and 213.7s. The smaller improvement
ratios compared to LeNet mainly stem from limited parallel
processing capacity on a single machine. With stronger hard-
ware or multi-node parallel proving, ZKSL-LP would yield
even larger gains for deeper neural networks.

Figure 10(a) shows the proving time of ZKML, ZKSL,
and ZKSL-LP across three stages. ZKSL significantly re-
duces proving overhead compared to ZKML, achieving 3.6×,
4.7×, and 5.1× speedups for gradient computation, forward
propagation, and backward propagation, respectively. Building
on ZKSL, ZKSL-LP introduces hierarchical parallel proof
generation, further improving efficiency by 57.2%, 75.1%, and
65.2% across the three stages, demonstrating the effectiveness
of structured parallelization. Figure 10(b) examines proving
time under different batch sizes (N = 2, 4, 8). Although
proving time increases with batch size, ZKSL-LP consistently
outperforms KAIZEN, highlighting the benefit of structured
proof optimizations. At N = 8, ZKSL-LP reduces proving time
by 73.3% compared to KAIZEN and improves upon ZKSL by
52.4%, confirming the advantage of layer-wise parallel proof
generation.
D. Evaluation of Federated Learning

Next, we evaluate the efficiency of proof generation in
the federated learning setting, focusing on proof latency for
both passive-side and active-side computations. This analysis
includes the impact of hierarchical parallelization and GPU
acceleration. Since other frameworks lack a federated structure,
we compare only our own methods to assess scalability and
optimization effectiveness.

Federated CNN. Table IV reports the per-round time break-
down of federated CNN training across different proving config-

12

TABLE IV: Per-round Stage-wise Time Breakdown of Federated CNNs (seconds)

Passive Party Data
Transfer

Active Party

Model Scheme ComputeP ProveFP ProveBP VerifyP ComputeA ProveFA ProveGA ProveBA VerifyA

LeNet

ZKSL

0.016

8.26 8.61

0.006
0.372

0.017

3.72 2.13 7.18

0.005ZKSL-G 0.676 0.665 0.732 0.404 0.741
ZKSL-LP 2.66 3.91 0.481 2.35 2.06 2.89
ZKSL-LP-G 0.498 0.462 0.532 0.395 0.551

AlexNet

ZKSL

0.161

23.24 116.3

0.006
0.578

0.078

9.56 3.67 51.56

0.006ZKSL-G 6.08 8.32 2.29 0.883 1.63
ZKSL-LP 26.67 46.44 0.797 5.53 3.59 20.54
ZKSL-LP-G 3.78 4.79 1.82 0.832 1.08

VGG11

ZKSL

0.225

63.54 64.67

0.007
1.13

0.175

61.65 3.72 62.54

0.007ZKSL-G 6.72 6.79 3.55 0.808 3.95
ZKSL-LP 23.06 40.58 1.44 11.74 3.73 22.14
ZKSL-LP-G 2.86 4.22 1.48 0.828 1.49

urations. Compute denotes the time for forward, backward, and
gradient computation. ProveF, ProveG, and ProveB represent
the proving times for forward propagation, gradient computa-
tion, and backward propagation, respectively. Verify denotes
verification time per party, while Data Transfer measures the
communication cost of exchanging intermediate activations and
proofs between passive and active parties.

Across all models, ZKSL-LP substantially reduces proving
overhead compared to ZKSL by leveraging layer-wise parallel
proof generation. For LeNet, ZKSL-LP reduces the passive
party’s proving time from 8.26s (ProveF) and 8.61s (ProveB)
to 2.66s and 3.91s, respectively, with similar improvements on
the active side. This demonstrates that parallelism effectively
reduces the dominant proving stages in federated settings. The
GPU-accelerated variants (ZKSL-G and ZKSL-LP-G) deliver
even greater speedups. For LeNet, ZKSL-LP-G lowers the
passive party’s proving time to just 0.498s (ProveF) and 0.462s
(ProveB), and brings active-party proving costs below one
second. The benefits of GPU acceleration persist in deeper
models such as AlexNet and VGG11: although the overall
proving time grows with model size, ZKSL-LP-G consistently
achieves the lowest latency across all proving stages. Data-
transfer overhead remains relatively small compared with
proving time, confirming that proof generation, particularly
backward propagation proofs, is the primary bottleneck in
federated training. Overall, the combination of layer-wise
parallelism (LP) and GPU acceleration (G) provides the most
efficient configuration, significantly reducing per-round latency
for secure federated CNN learning.

Federated DeepFM. Figure 11 reports the proving time for
passive and active parties in DeepFM. The passive party handles
embedding layers, while the active party processes feature
interaction and fully connected layers. Since the passive party
performs only a single embedding lookup, parallelization is
infeasible, and we compare only ZKSL and ZKSL-G.

For the passive party (Figs. 11(a)–11(c)), ZKSL incurs
3.891s–3.979s for forward proving and 3.927s–5.846s for
backward proving, while ZKSL-G reduces these costs to 0.415s
and 0.48s, achieving 9.58× and 12.18× speedups. For the active
party (Fig. 11(d)), ZKSL requires 4.945s, 2.144s, and 8.147s for
forward, gradient, and backward proving, respectively; ZKSL-

Forward Backward
Stage Type

0

1

2

3

4

Ti
m

e (
s)

3.891 3.927

0.4061 0.4249

ZKSL ZKSL-G

(a) Passive Party 1

Forward Backward
Stage Type

0

1

2

3

4

5

6

Ti
m

e (
s) 3.979

5.846

0.4155 0.485

ZKSL ZKSL-G

(b) Passive Party 2

Forward Backward
Stage Type

0

1

2

3

Ti
m

e (
s)

3.728 3.741

0.4026 0.4214

ZKSL ZKSL-G

(c) Passive Party 3

Forward Gradient Backward
Stage Type

0

2

4

6

8

Ti
m

e (
s) 4.945

2.144

8.147

2.397
2.032

3.54

0.5818 0.4135 0.5738

ZKSL ZKSL-LP ZKSL-LP-G

(d) Active Party

2 4 6 8 10
Epoch

0.4

0.5

0.6

0.7

L
os

s

70

80

90

100

A
cc

ur
ac

y
(%

)

(e) Loss & Accuracy
Fig. 11: DeepFM Federated Training Cost

TABLE V: Performance Comparison on Loan Default Dataset

Model Accuracy Recall Precision F1

ZKSL-DeepFM 99.39% 98.17% 99.38% 98.77%
Pytorch-DeepFM 98.89% 100% 95.68% 97.79%

LP lowers these times to 2.397s, 2.032s, and 3.54s (51.5%,
5.2%, and 56.5% overhead reduction), and ZKSL-LP-G further
accelerates them to 0.818s, 0.435s, and 0.578s, corresponding
to 6.04×, 4.93×, and 14.09× speedups over ZKSL.

Fig. 11(e) shows stable convergence across 10 training
epochs, with loss decreasing and accuracy rising to 99.4%.
Table V further reports that ZKSL-DeepFM achieves 99.39%
accuracy and 99.38% precision on the Loan Default dataset,
exceeding PyTorch [53] (99.39% vs. 98.89% accuracy). These
results confirm that ZKSL-DeepFM maintains competitive
model quality even with integrated ZK proofs.

Overall, hierarchical parallelization and GPU acceleration
work synergistically to significantly improve proof-generation
efficiency and scalability in federated DeepFM.

E. Evaluation of Optimization

This subsection evaluates the effectiveness of our optimiza-
tion techniques. Figure 12(a) measures the embedding proving
subroutine on CPU, while Figure 12(b) reports end-to-end
per-round LeNet training time on a GPU-enabled setup that
incorporates all proposed optimizations, including layer-wise
parallelization and asynchronous scheduling.

13

N=4 N=16 N=64
Batch Size

0

10

20

30

40

Ti
m

e (
s)

4.53

7.96

38.9

2.461 2.483 2.587

One-hot Lookup-based

(a) Embedding Cost

Sync K=1 K=2
Window Size

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e (
s)

 /
R

ou
nd

2.751

1.391
1.271

Sync. Async.

(b) Round Cost

Fig. 12: Comparison of Optimization

Embedding Performance. Figure 12(a) reports embedding
proving time for batch size N×1 with a 20000×9 embedding
matrix. The one-hot encoding baseline scales poorly, reaching
38.9 s at N = 64 due to expensive matrix multiplications.
In contrast, our lookup-based probability-optimized scheme
maintains near-constant latency, with 2.461 s, 2.483 s, and
2.587 s for N = 4, 16, 64, respectively. Thus, our method
avoids redundant computation and constraint growth, enabling
efficient and scalable embedding verification.

Asynchronous Scheduling. Figure 12(b) shows per-round
LeNet training time under synchronous and asynchronous
scheduling with window size K. The synchronous baseline
is 2.751 s per round. Asynchronous execution reduces this
to 1.391 s at K = 1 (49.4% reduction; 1.98× speedup) and
1.271 s at K = 2 (53.8% reduction; 2.16×; 8.6% over K = 1).
These results show that decoupling proof generation from
the training loop and overlapping it within a small window
lowers per-round latency. Since our experimental machine could
not saturate the proof queue, additional parallel workers or
accelerators would likely yield larger speedups.

VII. CONCLUSION

We introduce ZKSL, a PLONK-based zkSNARK frame-
work that brings verifiable computation to vertical federated
learning without sacrificing practicality. By extending a privacy-
commitment column into PLONK (PC-PLONK), ZKSL binds
each participant’s private inputs and parameters to commit-
ments, eliminating the hash-heavy overhead of conventional
schemes. The framework stratifies deep neural networks into
layer-level circuits whose proofs are generated in parallel,
verifies embedding operations with lookup, and overlaps proof
generation with training via an asynchronous compute–prove
scheduler, yielding a scalable, privacy-preserving, integrity-
assured training pipeline for vertical federated learning in
finance and healthcare.

ACKNOWLEGEMENT

This work was supported by National Key Research and
Development Program of China (No.2023YFC3304700), Pro-
gram of Shanghai Academic/Technology Research Leader
(No.23XD1401100) and Ant Digital Technologies, Ant Group
Research Fund.

REFERENCES

[1] P. Regulation, “Regulation (eu) 2016/679 of the european
parliament and of the council,” Regulation (eu), vol. 679,
p. 2016, 2016.

[2] R. Bonta, “California consumer privacy act (ccpa),”
Retrieved from State of California Department of Justice:
https://oag. ca. gov/privacy/ccpa, 2022.

[3] Y. Liu, Y. Kang, T. Zou, Y. Pu, Y. He, X. Ye, Y. Ouyang,
Y.-Q. Zhang, and Q. Yang, “Vertical federated learning:
Concepts, advances, and challenges,” IEEE Transactions
on Knowledge and Data Engineering, vol. 36, no. 7, pp.
3615–3634, 2024.

[4] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun,
“Splitfed: When federated learning meets split learning,”
in Proceedings of the AAAI conference on artificial
intelligence, vol. 36, no. 8, 2022, pp. 8485–8493.

[5] L. Zhu, Z. Liu, and S. Han, “Deep leakage from
gradients,” Advances in neural information processing
systems, vol. 32, 2019.

[6] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks
against collaborative inference,” in Proceedings of the
35th Annual Computer Security Applications Conference,
2019, pp. 148–162.

[7] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song,
“The secret revealer: Generative model-inversion attacks
against deep neural networks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, 2020, pp. 253–261.

[8] Y. Huang, S. Gupta, Z. Song, K. Li, and S. Arora,
“Evaluating gradient inversion attacks and defenses in
federated learning,” Advances in neural information
processing systems, vol. 34, pp. 7232–7241, 2021.

[9] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, J. Joshi, and
H. Ludwig, “Fedv: Privacy-preserving federated learning
over vertically partitioned data,” in Proceedings of the
14th ACM workshop on artificial intelligence and security,
2021, pp. 181–192.

[10] G. Wang, B. Gu, Q. Zhang, X. Li, B. Wang, and C. X.
Ling, “A unified solution for privacy and communication
efficiency in vertical federated learning,” Advances in
Neural Information Processing Systems, vol. 36, pp.
13 480–13 491, 2023.

[11] Y. Wu, N. Xing, G. Chen, T. T. A. Dinh, Z. Luo,
B. C. Ooi, X. Xiao, and M. Zhang, “Falcon: A privacy-
preserving and interpretable vertical federated learning
system,” Proceedings of the VLDB Endowment, vol. 16,
no. 10, pp. 2471–2484, 2023.

[12] M. Gong, Y. Zhang, Y. Gao, A. K. Qin, Y. Wu, S. Wang,
and Y. Zhang, “A multi-modal vertical federated learning
framework based on homomorphic encryption,” IEEE
Transactions on Information Forensics and Security,
vol. 19, pp. 1826–1839, 2023.

[13] Z. Chen, Z. Gu, Y. Lu, X. Ren, R. Zhong, W.-J. Lu,
J. Zhang, Y. Zhang, H. Wu, X. Zheng et al., “Safe: A
scalable homomorphic encryption accelerator for vertical
federated learning,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2024.

[14] “Zcash,” 2022. [Online]. Available: https://z.cash/
[15] V. Farzaliyev, C. Pärn, H. Saarse, and J. Willemson,

“Lattice-based zero-knowledge proofs in action: Applica-

14

tions to electronic voting,” Journal of Cryptology, vol. 38,
no. 1, p. 6, 2025.

[16] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk:
Permutations over lagrange-bases for oecumenical non-
interactive arguments of knowledge,” Cryptology ePrint
Archive, 2019.

[17] J. Groth, “On the size of pairing-based non-interactive
arguments,” in Advances in Cryptology–EUROCRYPT
2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35.
Springer, 2016, pp. 305–326.

[18] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-
size commitments to polynomials and their applications,”
in International conference on the theory and application
of cryptology and information security. Springer, 2010,
pp. 177–194.

[19] R. C. Merkle, “A certified digital signature,” in Conference
on the Theory and Application of Cryptology. Springer,
1989, pp. 218–238.

[20] B.-J. Chen, S. Waiwitlikhit, I. Stoica, and D. Kang,
“Zkml: An optimizing system for ml inference in zero-
knowledge proofs,” in Proceedings of the Nineteenth
European Conference on Computer Systems, 2024, pp.
560–574.

[21] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and
D. Song, “Libra: Succinct zero-knowledge proofs with
optimal prover computation,” in Advances in Cryptology–
CRYPTO 2019: 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18–22,
2019, Proceedings, Part III 39. Springer, 2019, pp.
733–764.

[22] J. Zhang, T. Liu, W. Wang, Y. Zhang, D. Song, X. Xie,
and Y. Zhang, “Doubly efficient interactive proofs for
general arithmetic circuits with linear prover time,” in
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 159–
177.

[23] J. Zhang, T. Xie, Y. Zhang, and D. Song, “Transparent
polynomial delegation and its applications to zero knowl-
edge proof,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 859–876.

[24] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell, “Bulletproofs: Short proofs for confidential
transactions and more,” in 2018 IEEE symposium on
security and privacy (SP). IEEE, 2018, pp. 315–334.

[25] N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin,
A. Rubinstein, and E. Tromer, “The hunting of the snark,”
Journal of Cryptology, vol. 30, no. 4, pp. 989–1066, 2017.

[26] J. Kilian, “A note on efficient zero-knowledge proofs and
arguments,” in Proceedings of the twenty-fourth annual
ACM symposium on Theory of computing, 1992, pp. 723–
732.

[27] S. Micali, “Computationally sound proofs,” SIAM Journal
on Computing, vol. 30, no. 4, pp. 1253–1298, 2000.

[28] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and

M. Virza, “Snarks for c: Verifying program executions
succinctly and in zero knowledge,” in Annual cryptology
conference. Springer, 2013, pp. 90–108.

[29] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinoc-
chio: Nearly practical verifiable computation,” Communi-
cations of the ACM, vol. 59, no. 2, pp. 103–112, 2016.

[30] R. Gennaro, C. Gentry, B. Parno, and M. Raykova,
“Quadratic span programs and succinct nizks without
pcps,” in Advances in Cryptology–EUROCRYPT 2013:
32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings 32. Springer, 2013, pp.
626–645.

[31] B. Chen, B. Bünz, D. Boneh, and Z. Zhang, “Hyperplonk:
Plonk with linear-time prover and high-degree custom
gates,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer,
2023, pp. 499–530.

[32] A. Gabizon and Z. J. Williamson, “plookup: A simplified
polynomial protocol for lookup tables,” Cryptology ePrint
Archive, 2020.

[33] S. Lee, H. Ko, J. Kim, and H. Oh, “vcnn: Verifiable
convolutional neural network based on zk-snarks,” IEEE
Transactions on Dependable and Secure Computing,
vol. 21, no. 4, pp. 4254–4270, 2024.

[34] T. Liu, X. Xie, and Y. Zhang, “zkcnn: Zero knowledge
proofs for convolutional neural network predictions and
accuracy,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
2021, pp. 2968–2985.

[35] Y. Fan, K. Ma, L. Zhang, X. Lei, G. Xu, and G. Tan,
“Validcnn: A large-scale cnn predictive integrity verifica-
tion scheme based on zk-snark,” IEEE Transactions on
Dependable and Secure Computing, 2024.

[36] H. Sun, T. Bai, J. Li, and H. Zhang, “Zkdl: Efficient
zero-knowledge proofs of deep learning training,” IEEE
Transactions on Information Forensics and Security, 2024.

[37] K. Abbaszadeh, C. Pappas, J. Katz, and D. Papadopoulos,
“Zero-knowledge proofs of training for deep neural
networks,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security,
2024, pp. 4316–4330.

[38] S. Garg, A. Goel, S. Jha, S. Mahloujifar, M. Mahmoody,
G.-V. Policharla, and M. Wang, “Experimenting with
zero-knowledge proofs of training,” in Proceedings of
the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023, pp. 1880–1894.

[39] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza,
“Scalable zero knowledge via cycles of elliptic curves,”
Algorithmica, vol. 79, pp. 1102–1160, 2017.

[40] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer,
“Recursive composition and bootstrapping for snarks and
proof-carrying data,” in Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, 2013,
pp. 111–120.

[41] P. Valiant, “Incrementally verifiable computation or proofs

15

of knowledge imply time/space efficiency,” in Theory of
Cryptography: Fifth Theory of Cryptography Conference,
TCC 2008, New York, USA, March 19-21, 2008. Proceed-
ings 5. Springer, 2008, pp. 1–18.

[42] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.
Suresh, and D. Bacon, “Federated learning: Strategies
for improving communication efficiency,” arXiv preprint
arXiv:1610.05492, 2016.

[43] J. Bell, A. Gascón, T. Lepoint, B. Li, S. Meiklejohn,
M. Raykova, and C. Yun, “{ACORN}: input validation for
secure aggregation,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 4805–4822.

[44] H. Lycklama, L. Burkhalter, A. Viand, N. Küchler,
and A. Hithnawi, “Rofl: Robustness of secure federated
learning,” in 2023 IEEE Symposium on Security and
Privacy (SP). IEEE, 2023, pp. 453–476.

[45] A. Roy Chowdhury, C. Guo, S. Jha, and L. van der
Maaten, “Eiffel: Ensuring integrity for federated learning,”
in Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, 2022, pp.
2535–2549.

[46] B. Gu, A. Xu, Z. Huo, C. Deng, and H. Huang, “Privacy-
preserving asynchronous vertical federated learning al-
gorithms for multiparty collaborative learning,” IEEE
transactions on neural networks and learning systems,
vol. 33, no. 11, pp. 6103–6115, 2021.

[47] Y. Wu, N. Xing, G. Chen, T. T. A. Dinh, Z. Luo,
B. C. Ooi, X. Xiao, and M. Zhang, “Falcon: A privacy-
preserving and interpretable vertical federated learning
system,” Proceedings of the VLDB Endowment, vol. 16,
no. 10, pp. 2471–2484, 2023.

[48] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi,
“Privacy preserving vertical federated learning for tree-
based models,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, pp. 2090–2103, 2020.

[49] S. Li, D. Yao, and J. Liu, “Fedvs: Straggler-resilient and
privacy-preserving vertical federated learning for split
models,” in International conference on machine learning.
PMLR, 2023, pp. 20 296–20 311.

[50] H. Gu, J. Luo, Y. Kang, L. Fan, and Q. Yang, “Fedpass:
Privacy-preserving vertical federated deep learning with
adaptive obfuscation.”

[51] L. Wang, Z. Zhang, M. Huang, K. Gai, J. Wang, and
Y. Shen, “Ropa: Robust privacy-preserving forward ag-
gregation for split vertical federated learning,” IEEE
Transactions on Network and Service Management, 2025.

[52] S. Wang, K. Gai, J. Yu, and L. Zhu, “Bdvfl: Blockchain-
based decentralized vertical federated learning,” in 2023
IEEE International Conference on Data Mining (ICDM).
IEEE, 2023, pp. 628–637.

[53] “Pytorch,” 2025. [Online]. Available: https://pytorch.org/
[54] “Ezkl,” 2022. [Online]. Available: https://github.com/

zkonduit/ezkl
[55] “Halo2,” 2022. [Online]. Available: https://github.com/

zcash/halo2
[56] “Open neural network exchange,” 2025. [Online].

Available: https://onnx.ai/
[57] “tonic,” 2025. [Online]. Available: https://github.com/

hyperium/tonic
[58] “rayon,” 2025. [Online]. Available: https://github.com/

rayon-rs/rayon
[59] D. Zhu, J. Chen, X. Zhou, W. Shang, A. E. Hassan,

and J. Grossklags, “Vulnerabilities of data protection in
vertical federated learning training and countermeasures,”
IEEE Transactions on Information Forensics and Security,
vol. 19, pp. 3674–3689, 2024.

[60] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm:
a factorization-machine based neural network for ctr
prediction,” arXiv preprint arXiv:1703.04247, 2017.

[61] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceed-
ings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[62] “Loan default dataset,” 2022. [Online]. Available: https:
//www.kaggle.com/datasets/yasserh/loan-default-dataset

[63] L. Deng, “The mnist database of handwritten digit images
for machine learning research [best of the web],” IEEE
signal processing magazine, vol. 29, no. 6, pp. 141–142,
2012.

[64] A. Krizhevsky, “Learning multiple layers of features
from tiny images,” Tech. Rep., 2009. [Online]. Available:
https://www.cs.toronto.edu/∼kriz/cifar.html

VIII. APPENDIX

A. Lookup-based Embedding Theorems and Proof
Theorem 1. Let E ∈ Fn×d

p be an embedding matrix, where
each row Ei ∈ Fd

p represents an embedding vector. Let r ∈ Fd
p

be a uniformly random vector over the finite field Fp. Suppose
a prover returns a vector Êi ∈ Fd

p in response to a query for
Ei. If Êi ̸= Ei, then the probability that Êi · r = Ei · r is at
most 1

p .

Proof. Let d = Ei− Êi. Since Êi ̸= Ei, it follows that d ̸= 0.
Consider the dot product:

d · r =

d∑
j=1

djrj ,

where d = (d1, d2, . . . , dd) and r = (r1, r2, . . . , rd). Since
d ̸= 0, at least one coefficient dj is nonzero, so d · r is a
nonzero linear form in the components of r. A basic fact in
finite fields is that for any nonzero linear form L(r) over Fp,
the probability that L(r) = 0 is exactly 1

p when r is chosen
uniformly at random.

Thus, we have

Pr[d · r = 0] =
1

p
.

Since Êi · r = Ei · r implies that d · r = 0, it follows that

Pr[Êi · r = Ei · r] = Pr[d · r = 0] =
1

p
.

B. Batch Complexity under Lookup-based Embedding
Theorem 2 (From O(Nnd) to O(nd)). Let E ∈ Fn×d be an
embedding matrix and suppose a batch of N index queries

16

is verified in zero knowledge. Measure cost by the number of
multiplicative (or lookup) constraints in a PLONKish circuit.
(1) (One-hot baseline) The batch verification cost is

Cone-hot = Θ(Nnd).
(2) (Lookup-based approach) Sample a single random r ∈ Fd,

form once the table {(i, ⟨Ei, r⟩)}ni=1, and verify each
query by a lookup against this table. The batch cost is

Clookup = Θ(nd+Nd2).

Under the large-vocabulary regime n ≫ Nd, we have
Clookup = Θ(nd). Hence the overall complexity drops from
O(Nnd) to O(nd); equivalently, the amortized per-query cost
drops from O(nd) to O(1), i.e., from O(N) to O(1) after
normalizing by the common factor nd.

Proof. Item (1) is standard: for each of the N queries and
each output coordinate (d of them), the computation

Yi,j =

n∑
k=1

Xi,k Ek,j

incurs n multiplicative/nonlinear constraints, yielding Θ(Nnd)
in total (the one-hotness constraints

∑
k Xi,k = 1 and X2

i,k =
Xi,k are lower order).

For item (2), forming vi = ⟨Ei, r⟩ =
∑d

j=1 Ei,jrj for all
i ∈ [n] costs Θ(nd) once, and each query is then checked by
a constant-cost lookup (plus at most O(d2) local work), so
Clookup = Θ(nd+Nd2). Under n≫ Nd,

Clookup = nd+Nd2 = nd

(
1 +

Nd

n

)
= Θ(nd).

Therefore,
Cone-hot

Clookup
= Θ

(
Nnd

nd

)
= Θ(N),

which exactly states the drop from O(Nnd) to O(nd) in batch
cost.

C. Combined Soundness of Permutation and Commitment in
PC-PLONK

Problem Setting. In PC-PLONK, correctness of private
values used in the circuit must be ensured in two ways:

• In-circuit consistency: Enforced via the PLONK permu-
tation argument to ensure that all occurrences of a private
value are consistent across the circuit.

• External binding to origin: Enforced via a cryptographic
commitment (e.g., Merkle root or KZG polynomial
commitment) to ensure that all private values originate
from a committed source.

Circuit and Commitment Model. Let the prover maintain
a private column P = {v1, v2, . . . , vm} ∈ Fm containing all
private inputs and parameters.

• The prover computes a commitment C = Com(P) using
a binding scheme (Merkle or KZG).

• Each circuit witness wi must satisfy wi = P [σ(i)] for a
fixed permutation σ mapping circuit locations to P .

Combined Constraint System. The verifier enforces two
simultaneous constraints:

(a) Permutation Argument. Let f(X) be the witness poly-
nomial evaluated on a multiplicative subgroup H = {ωi}N−1

i=0 .
The grand product polynomial Z(X) satisfies

Z(ωi+1) = Z(ωi) · f(ωi) + β · ωi + γ

f(σ(ωi)) + β · σ(ωi) + γ
for random β, γ ∈ F, ensuring f(ωi) = f(σ(ωi)) unless
verification fails.

(b) Commitment Binding. Each value P [j] must be provably
bound to the public commitment C. This is done via a KZG
opening proof for P (j) under the committed polynomial.

Theorem 3. Let P ∈ Fm be the column of private values,
and C = Com(P) its public commitment. Suppose all witness
values wi in the circuit are constrained via a permutation to
entries in P , and all openings are properly verified against
C. Then, any attempt to forge wi or alter P without breaking
either:

1) the soundness of the PLONK permutation argument
2) the binding of the commitment scheme,

will be detected by the verifier with overwhelming probability.

Proof Sketch. Case 1: Forging inconsistent values in the
circuit. If f(ωi) ̸= f(σ(ωi)) for some i, the permutation check
fails with high probability due to the Schwartz–Zippel lemma
applied over the random challenges β and γ.

Case 2: Modifying committed values in P . If P is altered
but the prover reuses old openings:

• For Merkle: a second-preimage/collision is required to
match the root, contradicting hash collision resistance.

• For KZG: a forged polynomial opening is required, which
breaks KZG binding under the discrete-log assumption.

Conclusion. By combining the PLONK permutation argu-
ment with a binding commitment over the private column,
PC-PLONK ensures:

• In-circuit consistency of all private values, and
• External verifiability that those values originate from a

committed and unforgeable source.
This combined mechanism guarantees correctness and prevents
witness forgery, under standard cryptographic assumptions.

D. Proof of Unified Security (reduction to PLONK soundness
and commitment binding)

In this section we prove the unified security claim (Computa-
tion Integrity, Update Verifiability and Public Auditability) by
reduction to two underlying assumptions: PLONK (zkSNARK)
soundness and commitment binding. The proof refers to
the combined reduction algorithm 4 R which simulates the
unified experiment with an adaptive Corrupt(·) oracle, uses a
PLONK prover/simulator to generate honest proofs, records all
commitment openings, and upon observing a violating accepted
object at a sampled target (i∗, t∗, c∗) attempts to extract either
(a) a PLONK forgery for a false statement or (b) two distinct
valid openings for the same commitment (a binding break).

17

Algorithm 4: Reduction R for PLONK soundness & Commitment binding
Input: PLONK challenger (public params / prover-simulator), adversary A.
Output: Either a PLONK forgery (stmt∗, π∗) with VerifyPLONK(stmt∗, π∗) = 1 and stmt∗ /∈ L, or two openings (v1, v2) s.t.

Commit(v1) = Commit(v2).
1 Choose random target party i∗ ∈ {0, . . . , n} and target round t∗ ∈ {1, . . . , T};
2 Initialize corrupted set C ← ∅, storage tables State, Openings;

3 Provide A with oracle Corrupt(i) implemented as: begin
4 if i ∈ C then
5 return “already corrupted”;

6 if commitment for i not yet posted (pre-commit) then
7 Request (Di, ri) from A; compute and publish Comi ← Commit(Di; ri);

8 else
9 Return stored internal state (including Di, ri) to A;

10 Mark i as corrupted: C ← C ∪ {i};
11 For each party i not pre-corrupted: sample honest (Di, ri); compute and publish Comi; store (Di, ri) in State;
12 Initialize global model state S0;
13 Run A; answer Corrupt queries as above. For each round t = 1, . . . , T do: begin
14 For each party i /∈ C: sample local randomness ηt

i ; compute (eti, g
t
i , aux

t
i)← Execi(St−1, Di; η

t
i); generate PLONK proof πt

i for
statement “∃D, r, η : Commit(D; r) = Comi ∧ (eti, g

t
i , aux

t
i) = Execi(St−1, D; η)” using prover/simulator; append

proof/opening to transcript; record any opening info for Comi in Openings; For each party j ∈ C: accept arbitrary
messages/proofs/openings from A for (j, t) and append to transcript; record any opening-like data into Openings; Run the
protocol verifier Verify on the round transcript and St−1. If Verify accepts, obtain accepted set Acceptedt and update St per
protocol; else set St ← St−1; If Verify accepted and there exists an accepted tuple (i∗, t∗, e, g, aux, π) in Acceptedt

∗
such that

(e, g, aux) is not explainable by Execi∗ on any D consistent with Comi∗ then: begin
15 Let stmt be the PLONK statement validated by π;
16 if stmt is false (no witness exists) then
17 return (stmt, π) ; // PLONK soundness forgery

18 else
19 Search Openings for two entries (Comi∗ , openinga, vala) and (Comi∗ , openingb, valb) with vala ̸= valb and both

validating to Comi∗ ;
20 if found such (vala, valb) then
21 return (vala, valb) ; // Commitment binding break

22 return FAIL;

Proof. Let ε := AdvUnified(A, λ) be the probability that the
unified experiment outputs a failure. Run the reduction R
referenced above which simulates the unified experiment for
A, implements the adaptive oracle Corrupt(·) faithfully, uses
the PLONK simulator to generate honest proofs, and records
all commitment openings.

1. (Sampling / averaging.) R selects uniformly at random
a target location u among the M checked-object locations
(i.e. a triple (i∗, t∗, c∗)). If A causes a failure somewhere with
probability ε, then by averaging the probability that the failure
occurs at the sampled u is at least ε/M .

2. (Decomposition of failure event.) Condition on a failure
at the sampled location u. Since the verifier accepted an object
that is invalid (not explainable by the declared local execution
on any data consistent with the published commitment), at least
one of the verifier’s primitive checks was circumvented. Re-
stricting to PLONK and commitments, the only possibilities are:
(a) PLONK verification accepted a false statement (soundness
break), or (b) an inconsistent opening / two different openings
for the same commitment was accepted (commitment binding
break). Hence the failing event at u implies the occurrence of
EPLONK ∨ EComBind.

3. (Extraction and simulation error.) When R observes a

failure at u it attempts extraction: if the acceptance relied on
a PLONK proof for a false statement, R outputs that proof as
a PLONK forgery; otherwise R searches recorded openings
and, if two distinct valid openings for the same commitment
are found, outputs them as a binding break. The simulation
uses the PLONK simulator / CRS trapdoor as assumed; the
distinguishing / extraction failure probability introduced by
simulation is bounded by δsim(λ).

4. (Probability accounting.) Let pPLONK and pComBind be
the probabilities that R successfully outputs a PLONK forgery
or a binding break, respectively. From steps 1–3 we obtain

pPLONK + pComBind ≥
ε

M
− δsim(λ).

By definition pPLONK ≤ AdvPLONK(λ) and pComBind ≤
AdvComBind(λ), hence

AdvPLONK(λ) + AdvComBind(λ) ≥
ε

M
− δsim(λ).

Rearranging gives

ε ≤ M ·
(
AdvPLONK(λ) + AdvComBind(λ)

)
+ M · δsim(λ).

5. (Conclusion.) Absorbing the polynomial factor into the
negligible simulation term yields the stated bound with δsim(λ)
replaced by a (still negligible) δ′sim(λ), completing the proof.

18

ARTIFACT APPENDIX

A. Description & Requirements

We release the ZKSL prototype and scripts to reproduce all
core results in our paper: layer-wise parallel proving, the PC-
PLONK privacy-commitment column, probabilistic verification
for embedding layers, and the asynchronous compute-prove
scheduling. The repository contains complete pipelines for
split/federated training and for proof generation/verification,
plus ready-to-run configurations for LeNet and DeepFM.

1) How to access:
• Code repository (source, build/run guides, configs): https:

//anonymous.4open.science/r/ZKSL-FA48
• Artifact package (code + configs + sample data splits +

pre-generated example outputs): Submission (Option 1)
- Packaged Artifact 2

2) Hardware dependencies:
• CPU: AMD Ryzen Threadripper PRO 7975WX CPU (32

cores, 64 threads)
• GPU: NVIDIA RTX 4090 or higher
• RAM: 256GB or higher
2) Software dependencies:
• Operating System: Ubuntu 22.04
• Python: Python 3.10
• PyTorch: PyTorch 2.0.1
• Rust: Rust nightly-2024-10-30 (for the PLONK/Halo2

implementation)
• NVIDIA: Driver Version 580.95.05 & CUDA Version

13.0
• Key Crates (declared in Cargo.toml): Halo2, Rayon

(parallelism), tonic (gRPC), ONNX operator subset

Benchmarks. Default scripts cover end-to-end time for LeNet
(two-party) and DeepFM (three-party), per-stage breakdown
(forward/gradient/backward), batch-size scaling, and compar-
isons to baseline systems.

B. Artifact Installation & Configuration

1) Build. Clone the repo and run:

cargo build --release

This fetches Halo2/PLONK dependencies on first build.
2) Datasets.
• Loan Default (for DeepFM): ∼33 features, ∼174K

records.
• MNIST (for CNN variants): 70K images (28×28

grayscale).
Each config includes dataset paths and train/test splits aligned
with the paper.

3) Configuration. Users can modify the model defini-
tion files under the corresponding example directories (e.g.,
examples/lenet/model.py) to adjust network architec-
tures or parameters. After editing, the model can be exported
to the ONNX format by executing python model.py.

2https://doi.org/10.5281/zenodo.17866076

Subsequently, converter.py converts the generated ONNX
file into a model.json format compatible with our Rust-
based ZKSL framework. Finally, the corresponding binary
executable within the project (cargo run --release
--bin <project_name>) can be invoked to perform infer-
ence and verification.

C. Experiment Workflow

Our workflow has five stages:
1) Collect/Prepare: Prepare data and apply federated par-

titioning (passive parties hold features; the active party
holds labels).

2) Model Setup: Select model/operators, build the PLONK-
ish circuit and the PC-PLONK privacy-commitment
column, publish commitments.

3) Proving (Layer-wise): Generate proofs per layer in
parallel, enforce inter-layer equality via commitments,
then aggregate.

4) Async Scheduling: Enable decouple computation and
proving; proofs for round t are verified in round t+1.

5) Evaluation: Record per-stage costs, end-to-end time,
scaling, accuracy, and compare against baselines.

D. Major Claims

• (C1) Layer-wise parallel proving reduces latency and
scales better than monolithic circuits.

• (C2) PC-PLONK integrates commitments efficiently
while preserving privacy and enforcing cross-layer consis-
tency. A baseline that integrates commitments via in-circuit
hashing (i.e., without resorting to off-circuit hashing) is
essentially infeasible at our scale; conversely, moving
hashes outside the circuit directly breaks the ZK trust
model and is not a valid baseline. Therefore, we report
absolute runtimes for PC-PLONK and omit a head-to-
head runtime comparison for this part.

• (C3) Probabilistic embedding checks cut complexity
to O(nd) with respect to the number of categorical fields
n and the embedding dimension d, shrinking circuit cost.

• (C4) Asynchronous Compute–Prove improves through-
put by avoiding training stalls on proof generation.

E. Evaluation

Unless stated otherwise, default parameters follow Table VI.
Each task provides three blocks: Preparation, Execution, and
Results.

E1) Impact of Layer-wise parallel
[Preparation] Build the project in release mode with all par-

ties on the same commit/toolchain; use the paper-aligned dataset
splits with fixed batch size, number of iterations, and random
seeds; configure reachable IP/ports in the configuration; before
launching any party, run bash net.sh on each machine
to simulate network fluctuations (jitter/latency); enable layer-
wise proving by setting the code constant PARALLEL=true
(set PARALLEL=false for the non–layer-wise baseline) with
K=1; and capture logs so that each stage’s “Proof Generation
Time” can be aggregated later.

19

[Execution — LeNet (2-party)] Start the two parties on sepa-
rate terminals/machines (MLP side and Conv side). After hand-
shake, the system proceeds through forward, gradient,
and backward, and each stage prints its Proof Generation
Time to the logs.

cargo run -r --bin test_cnn_mlp
cargo run -r --bin test_cnn_conv

[Execution — DeepFM (3-party)] Launch the server first,
then start three clients with IDs 0, 1, and 2 on their respec-
tive terminals/machines; each stage (forward, gradient,
backward) emits a Proof Generation Time entry in the logs.

cargo run -r --bin test_deepfm_server
cargo run -r --bin test_deepfm_client 0
cargo run -r --bin test_deepfm_client 1
cargo run -r --bin test_deepfm_client 2

[Results] Consistent with Figs. 12 and 13, enabling hier-
archical (layer-wise) parallelism (PARALLEL=true) signifi-
cantly reduces Proof Generation Time in the forward and
backward stages across LeNet and DeepFM, compared to a
non–layer-wise configuration (PARALLEL=false).

E2) Benefit of probabilistic embedding checks
[Preparation] On DeepFM, fix the embedding weight matrix

to 20000× 9; keep all other hyperparameters, seeds, and data
splits identical across runs. Evaluate two implementations:
the baseline one-hot + mm (default) and the probabilistic
lookup variant enabled by flag -p. Enable logging to capture
per-run “Proof Generation Time” for the embedding proving
step.

[Execution] Hold all parameters fixed and vary the batch
size N ∈ {4, 16, 64}.

one-hot + mm (baseline)
cargo run -r --bin test_emb -- -N 4

probabilistic projection + lookup
cargo run -r --bin test_emb -- -N 4 -p

[Results] Consistent with Fig. 14(a), the one-hot + mm
baseline shows a clear increase in proving time as the batch
size N grows, whereas the probabilistic projection+lookup
keeps the embedding proving time nearly constant across N .
This indicates that the probabilistic method removes redundant
matrix multiplications and prevents constraint growth, enabling
scalable and efficient ZK embedding verification.

E3) Impact of Asynchronous Compute–Prove
[Preparation] Fix the model (LeNet) and batch size; keep

seeds and all other hyperparameters identical; run a syn-
chronous baseline (K = 0) and asynchronous runs with window
sizes K ∈ {1, 2}; enable logging of per-round end-to-end time.

[Execution] Use two machines/terminals and launch
the same two binaries as in E1 (test_cnn_mlp and
test_cnn_conv). Repeat the run for K = 0, 1, 2 (set K
via config or CLI).

TABLE VI: Default settings used in our experiments.

Parameter Default

Proof system PLONK (Halo2, Rust)
Field BN256
Async window (K) 1
LeNet parties 2 (1 passive + 1 active)
DeepFM parties 3 (active holds labels)
Datasets Loan Default (DeepFM), MNIST (CNNs)
Parallel proving Layer-wise(on)
Embedding check Prob. projection + lookup (on)
Reference HW High-core CPU / ≥128 GB RAM / 24 GB GPU

cargo run -r --bin test_cnn_mlp -- -k 0
cargo run -r --bin test_cnn_conv -- -k 0

Collect per-round times and rollback counts for each K.

[Results] Compared to the synchronous baseline, enabling
asynchronous execution with a small window substantially
lowers per-round latency and improves throughput; K=1
already brings a large gain, and K=2 provides additional but
diminishing improvement while slightly delaying checkpoints.

F. Customization

Key knobs exposed in configs:
• Federation & roles: num_parties, active vs. passive

roles.
• Parallelism & scheduling: op per subgraph, parallel,

K-window size.
• Proof system: GPU enable/disable, proof aggregation,

logging verbosity.
• Model & data: operator set, dataset paths/splits, batch

size, epochs, learning rate.
• Security/auditing: output commitments and proof logs

for offline re-verification.

G. Notes

• All experiments use a PLONK/Halo2 implementation over
BN256 by default; asynchronous strategy defaults to K=1
unless changed.

• Federated communication uses gRPC (tonic); multi-
threading uses Rayon. Both are pre-wired in the repo.

• Hardware/driver differences may cause variance.

20

