PhantomMap: GPU-Assisted Kernel Exploitation

Jiayi Hu*, Qi Tang?, Xingkai Wang*, Jinmeng Zhou*, Rui Chang* and Wenbo Shen*T
*Zhejiang University
Hilin University
{lotuhu,bittervan,11921110,crix1021,shenwenbo } @zju.edu.cn, tangqi5522 @mails.jlu.edu.cn

Abstract—Graphics Processing Units (GPUs) have become
essential components in modern computing, driving high perfor-
mance rendering and parallel processing. Among them, Arm’s
Mali GPU is the most widely deployed in mobile devices. In
contrast to the mature and robust defenses on the CPU side,
the GPU remains poorly protected. Consequently, GPUs have
become a preferred target for attackers seeking to bypass CPU
defenses. Notable incidents, such as Operation Triangulation,
have demonstrated how GPU-side vulnerabilities can be exploited
to compromise system security. Despite the rising threat, the
comprehensive and in-depth security analysis of the Mali GPU
is still missing.

To address this gap, we conduct the first in-depth security anal-
ysis of Mali GPU’s memory mapping mechanism and uncover
two new security weaknesses: allocation-mapping decoupling and
missing physical address validation. Exploiting these weaknesses,
we introduce PhantomMap, a novel GPU-assisted exploitation
technique that transforms limited heap vulnerabilities into pow-
erful physical memory read/write primitives—bypassing main-
stream Kernel defenses without requiring privileged capabilities
or information leaks. To assess its security impact, we develop
a static analyzer that systematically identifies all vulnerable
mapping paths, uncovering 15 exploit chains across two Mali
driver architectures. We further demonstrate PhantomMap ’s
practicality by developing 15 end-to-end exploits based on real-
world CVEs, including the first public exploit for CVE-2025-
21836. Finally, we design and implement a lightweight in-
driver mitigation that eliminates the root cause with minimal
performance overhead on Pixel 6 and Pixel 7 devices.

I. INTRODUCTION

Graphics Processing Units (GPUs) have become critical to
modern computing, driving high-performance rendering and
massively parallel workloads. Among them, Arm’s Mali GPU
has emerged as the most widely deployed GPU in mobile
devices, consistently dominating the global smartphone market
with an average 46% market share over the past three years[1].
Beyond smartphones, Mali GPUs are also extensively inte-
grated into tablets, embedded platforms, and other end-point
devices—making them a pervasive and high-impact target in
today’s computing landscape.

TWenbo Shen is the corresponding author.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240201
www.ndss-symposium.org

As GPUs become ubiquitous in modern computing systems,
they are increasingly targeted by attackers. While CPU-side
kernel mitigations—such as W&X, KASLR, and CFI—have
significantly raised the bar for traditional exploitation, they
also force adversaries to pivot toward under-protected com-
ponents. The GPU, with its distinct architecture and weaker
security design, offers a compelling path to circumvent CPU-
side defenses. A notable case is Operation Triangulation,
which exploits GPU vulnerabilities to bypass CPU defenses
and execute arbitrary code on iPhone[2]. The risk is even
more severe on Mali-based devices, where the GPU remains
accessible from highly restricted contexts, making it a viable
and attractive target for privilege escalation.

Targeting the Mali GPU, recent efforts—including those
by Google Project Zero—have uncovered several exploitable
page-level use-after-free (UAF) vulnerabilities in the GPU
driver[3l], [4], [5], [6]]. These flaws allow adversaries to tamper
with GPU page tables and escalate privileges from unpriv-
ileged contexts. However, these prior works focus almost
entirely on manual bug discovery, lacking systematic and
automatic analysis. To our best knowledge, there is no com-
prehensive and in-depth analysis of the Mali GPU’s memory
management. As a result, the security of the Mali GPU remains
largely unexplored, and its broader impact on system security
is still unknown.

To fill this gap, this paper presents the first systematic
analysis of the Mali GPU’s memory mapping mechanism. Our
study reveals two previously overlooked but critical security
weaknesses in the GPU memory mapping workflow. First, the
decoupling of physical memory allocation from page table
updates in the Mali GPU driver introduces a time-of-check to
time-of-use (TOCTOU) window, which can be exploited by
attackers. Second, the Mali GPU driver doesn’t validate the
physical addresses before mapping, allowing arbitrary kernel
memory to be remapped into user space without any security
checks.

Leveraging these two security weaknesses, we propose a
novel exploitation technique named PhantomMap, a GPU-
assisted exploitation technique that abuses Mali’s physical
memory remapping to achieve kernel code injection and
execution. Instead of tampering with page tables directly,
PhantomMap hijacks the driver’s legitimate mapping workflow
to create malicious mappings to the user space. As a re-
sult, PhantomMap converts modest heap-corruption bugs into
powerful arbitrary physical-memory read/write primitives and

bypasses mainstream kernel defenses through GPU-initiated
writes.

PhantomMap offers three advantages over existing tech-
niques: (i) it adapts to virtually any heap vulnerabil-
ity—whether in kmalloc or vmalloc; (ii) it can bypass main-
stream kernel defenses and provide a direct and powerful
kernel-code-injection primitive; and (iii) it requires neither
privileged capabilities nor information leaks, making the attack
feasible even in the most restricted environments.

To assess the security impact of PhantomMap, we develop
an LLVM-based static analyzer that systematically examines
the Mali GPU driver to identify all instances of the decoupled
allocation—-mapping pattern. Our analyzer combines bottom-
up control-flow analysis with targeted data-flow tracking to
correlate memory allocation and mapping operations via their
associated key structures. To improve precision, we introduce
a memory-origin—based correlation analysis that leverages the
driver’s explicit distinction between physical memory sources,
enabling accurate matching of allocation—-mapping paths. Ap-
plying this analyzer to Mali GPU drivers across both Job
Manager (JM) and Command Stream Frontend (CSF) driver
architectures, we identify 15 distinct exploit chains involving
6 key structures.

To further validate the exploitability of these exploit chains
and practicality PhantomMap, we conduct an extensive evalu-
ation using real-world vulnerabilities. Specifically, we select
13 up-to-date and representative CVEs spanning all major
types of kernel heap vulnerabilities. Based on these, we
developed 15 end-to-end exploits that reliably achieve kernel
code injection and privilege escalation, demonstrating signifi-
cantly higher success rates and stability compared to existing
techniques. Notably, we successfully exploited CVE-2025-
21836, a vulnerability with no previously known working ex-
ploit, thereby showcasing PhantomMap’s capability to unlock
unexploitable bugs.

To fully mitigate PhantomMap, we propose a lightweight,
software-based defense implemented directly within the Mali
GPU driver. Our mitigation prevents the driver from mapping
any non-GPU physical pages into user space, thereby elimi-
nating the core attack surface. We integrates this mitigation
into the Mali GPU drivers and upstream Linux kernel, and
deployed it on real Android devices, including the Pixel 6
and Pixel 7. The experimental evaluation across multiple
devices and driver architectures shows that our mitigation
incurs negligible performance overhead—averaging 0.56% on
the Pixel 6 and 0.34% on the Pixel 7.

We have responsibly disclosed the PhantomMap attack
surface to Arm’s Product Security Incident Response Team,
including full technical details, working exploits, a repro-
ducible environment, and proposed mitigation patches. Arm
has acknowledged our disclosure and assigned a tracking
identifier for their investigation process. All vulnerabilities
leveraged in our study have been addressed and patched. Our
primary goal is to strengthen the security of the Arm Mali GPU
and to improve the overall security of GPU-enabled systems
and devices.

In summary, this paper makes the following contributions:

« We conduct the first systematic analysis of the Mali GPU’s
memory mapping mechanism and discover two security
weaknesses.

« We propose a novel GPU-assisted exploitation technique
named PhantomMap.

« We develop a static analyzer to systematically examine the
Mali GPU driver.

« We demonstrate PhantomMap’s practicality using 13 CVEs.

« We design and implement a lightweight mitigation to defend
against PhantomMap.

We make all artifacts publicly available at https://github.com
/Lotuhu/PhantomMap), including our static analysis tool, our
light-weight mitigation patch and the performance test setups
and LTP test results.

II. BACKGROUND

In this section, we give preliminary knowledge of archi-
tectural design and memory management mechanism of Mali
GPU driver and introduce diverse categories kernel mitigations
on the CPU-side.

A. Mali GPU Memory Management

The Arm Mali GPU driver architecture has evolved to han-
dle user-space tasks through two primary command-processing
models: the traditional Job Manager (JM)[7] and the more
recent Command Stream Frontend (CSF)[8]]. This subsection
provides an overview of the key components relevant to
our work, focusing on memory management and omitting
details of other mechanisms like job scheduling or hardware
abstraction layers.

To support these operations and ensure process-level iso-
lation, the driver is built around several core abstractions.
At the highest level, struct kbase_device serves as the
global abstraction for an individual Mali GPU hardware unit,
directly interfacing with the physical device via MMIO and
orchestrating system-wide resources. For each user process,
struct kbase_context encapsulates a dedicated GPU ex-
ecution environment. It manages the process’s virtual ad-
dress space, job queues, and event notifications. The life-
cycle of a kbase_context is strictly bound to its process’s
/dev/malix file descriptor, ensuring synchronized resource
cleanup upon process termination.

Notably, in most production devices, the system-level
IOMMU (SMMU) is not enabled for the Mali GPU by default.
Instead, Arm Mali GPUs implement their own built-in MMU
to handle address translation internally. In this condition, when
accessing the system memory, addresses issued directly by the
Mali GPU are treated as physical addresses. This behavior has
been leveraged by several publicly disclosed CVE exploits[4],
[S], [6], confirming its prevalence in real-world deployments.

Furthermore, it implements a semi-custom memory
management subsystem. While leveraging standard
kernel APIs like alloc_pages() for page allocation,
the driver uses its own two-tiered pooling mechanism,
struct kbase_mem_pool, for efficient management. A

https://github.com/Lotuhu/PhantomMap
https://github.com/Lotuhu/PhantomMap

process first attempts to allocate memory from its own
kbase_context->mem_pools. If empty, it requests from
the global kbase_device->mem_pools. Only when both
are exhausted is alloc_pages () called to refill the device’s
pools. When memory is freed, it is returned first to the
context’s pools, then to the device’s pools if the context’s
pools are full, and finally back to the kernel’s buddy system
if both are full.

B. Existing Kernel Mitigations

Modern kernels adopt a wide range of security mitigations
to defend against exploitation. These mitigations raise the bar
for attackers by restricting code execution, defeating code
reuse, protecting critical data structures, and limiting the attack
surface.

1) Code injection mitigations: Modern kernels enforce
write-xor-execute policies to stop classic shellcode injec-
tion. On Arm architectures, this is enforced through the
XN (eXecute-Never) and PXN (Privileged XN) page table
attributes, which prevent code execution from user- or kernel-
writable pages. These protections are typically implemented
through kernel page table configurations.

To further protect the page tables themselves, additional
defenses have been proposed, such as SecVisor, TZ-RKP, and
SKEE[9], [10], [L1]. These systems aim to enforce kernel code
integrity and page table protection at the hypervisor or Trust-
Zone level. Together, these mitigations make classical code
injection attacks infeasible in modern kernel environments.

2) Code reuse mitigations: To combat code reuse attacks
such as return-oriented programming (ROP), modern ker-
nels deploy Address Space Layout Randomization (ASLR).
In particular, Kernel Address Space Layout Randomization
(KASLR) randomizes the base address of the kernel image
at boot time, making it more difficult for attackers to locate
usable code gadgets[12]. Finer-grained variants (FG-KASLR)
shuffle individual function sections to remove large contiguous
blocks of gadgets.

Complementing KASLR, LLVM’s Kernel Control-Flow In-
tegrity (KCFI) attaches a compile-time type identifier to every
indirect call and checks it at run time, blocking forward-
edge hijacks[13]. Furthermore, on Arm64 platforms, Pointer
Authentication (PAC) has been introduced to sign and verify
return addresses and function pointers, providing strong pro-
tection against backward-edge attacks such as return address
overwrites[14]], [15].

3) Data-only attack mitigations: As control-flow hijacking
becomes harder, attackers increasingly shift toward data-only
attacks that target critical kernel data structures. To defend
against such threats, modern processors provide memory ac-
cess control features—Arm PAN (Privileged Access Never)
and x86 SMAP (Supervisor Mode Access Prevention)—which
prevent the kernel from accessing user-space memory unless
explicitly allowed, mitigating user-to-kernel data corruption
vectors[16], [17]. Moreover, researchers proposed additional
defenses to protect sensitive kernel data structures such as
modprobe_path and page table from being corrupted[18]],

[19]. Additionally, Google’s SLAB_VIRTUAL goes a step
further, giving every cache its own virtual address range in
vmalloc, blocking cross-cache attacks that underpin many heap
exploits[20].

4) Attack surface reduction and isolation: Beyond code,
control-flow, and data protections, modern kernels also re-
duce the attack surface exposed to unprivileged users.
Mandatory Access Control (MAC) frameworks such as
SELinux/SEAndroid—enabled and enforced by default on
Android since 2015—Iimit what even compromised processes
can access, based on strict policy definitions[21]].

III. PHANTOMMAP EXPLOITATION TECHNIQUE

While existing kernel mitigations significantly raise the
bar for traditional exploitation techniques—blocking code
injection, disrupting control-flow hijacking, and safeguarding
critical data structures—they are all designed and enforced on
the CPU side. None of them account for threats originating
from heterogeneous computing components like GPUs.

In this section, we present the PhantomMap exploitation
technique in detail. We first define the threat model, then
analyze two critical security flaws in the Mali GPU driver:
decoupled memory operations and missing physical address
validation. Next, we show how these implementation flaws
enable arbitrary physical memory remapping, demonstrate
PhantomMap ’s effectiveness, highlight its advantages over
prior techniques, and explain how it bypasses modern CPU-
side mitigations.

A. Threat Model

We assume that the attacker is an unprivileged user op-
erating on the Android system. Specifically, the user has no
extra linux kernel capabilities. The attacker’s objective is to
exploit kernel vulnerabilities to bypass existing kernel-level
protections and achieve privilege escalation.

While we assume the presence of heap corruption vulner-
abilities in the kernel, the attacker’s capabilities are limited
to conventional memory corruption primitives, such as use-
after-free (UAF), out-of-bounds (OOB) access, and double-
free (DF). We explicitly exclude more advanced capabilities,
including information leakage vulnerabilities and side-channel
attacks.

For deployed defenses, we assume that all major Android
kernel mitigations commonly found on production devices
are enabled. As discussed in these defenses can be
categorized as follows: 1) code injection mitigations, such
as XN, PXN, and page table protection schemes, including
SecVisor, TZ-RKP, and SKEE; 2) code reuse mitigations,
including KASLR, forward-edge and backward-edge protec-
tion schemes; 3) data-only attack mitigations, including PAN,
sensitive data structure protection, and SLAB protection such
as SLAB_VIRTUAL; 4) attack surface reduction and isola-
tion, including SELinux/SEAndroid; Finally, we assume that
the hardware—including the CPU, memory, and GPU—is
trusted and reliable. There are no vulnerabilities, malicious
modifications, side-channels, or backdoors at the hardware or
bus level.

Page Fault

CPU

">

Mali GPU

Y — i
|
4> Allocate PA —— | Allocate VA Update PTE
) |
D — \ ¥

Allocate VA |[>!
[

-~ = -

Fig. 1: Mapping patterns between CPU and Mali GPU.

B. Attack Insights

Building on the threat model described above, we con-
ducted a thorough examination of the Mali GPU memory-
management stack. To support this effort, we developed a
dedicated static-analysis tool (detailed in for comprehen-
sive code analysis. Our methodology began with contrasting
user-space memory mapping patterns between CPU and GPU
subsystems. Our analysis revealed two previously unknown
security weaknesses in the Mali GPU driver—decoupled mem-
ory operations and unchecked GPU memory pages.

Decoupled memory operations. On CPUs, memory man-
agement typically follows a demand-paging model, where a
user process first receives a virtual address through system
calls such as mmap (). The actual allocation of physical mem-
ory and the corresponding page table updates are deferred until
a page fault occurs. At that point, the kernel atomically allo-
cates a physical page and maps it to the virtual address, which
causes the page fault. Such immediate mapping operations
leave no opportunity for attacker intervention.

In contrast, the Mali GPU driver adopts a fundamentally
different memory allocation flow, as shown in Fig. [T} User
processes must first explicitly allocate physical memory in
advance, often through driver-specific interfaces. Only af-
ter the physical pages are allocated does the user invoke
a separate system call, mmap (), which prompts the driver
to update the GPU page tables using functions such as
kbase_mmu_insert_pages().

This decoupling between physical memory allocation and
page table update on the Mali GPU introduces a large,
attacker-controllable time window. During this time window,
an attacker may exploit a kernel vulnerability to tamper with
the allocated physical pages or their metadata. When the map-
ping operation is eventually triggered, the driver—unaware of
any manipulation—blindly inserts the corrupted data into the
page tables, leading to the remapping of arbitrary physical
memory into user space.

Security Weakness 1: The Mali GPU driver decouples
physical memory allocation from page table updates,
creating a user-controllable time window that can be
exploited to remap physical memory.

1 int insert_page (struct vm_area_struct +vma,...struct
— page *page,...) {

2 P

3 retval = validate_page_before_insert (vma, page);

4 if (retval)

5 goto out;

6 .

7 retval = insert_page_into_pte_locked(page, ...);

8

11 int validate_page_before_insert (...,struct pagexpage) {

12 struct folio xfolio = page_folio(page);
13 if (!folio_ref_count (folio))

14 return -EINVAL;

15 R

16 if (folio_test_anon(folio) |

— folio_test_slab(folio)
17 return -EINVAL;

| page_has_type (page))

(a) Mapping check in CPU mapping interface

1 int kbase_mmu_insert_pages (struct tagged_addr +phys,
D

err = mmu_insert_pages_no_flush(..., phys, ...);

[ZF SRR

(b) Unchecked GPU mapping root interface

Fig. 2: Comparison of memory mapping check between CPU
and Mali GPU.

Missing GPU physical address validation. In CPU mem-
ory management, the kernel performs a series of strict security
checks before mapping a physical page into user space. As
illustrated in Fig. the kernel first ensures that the target
physical page holds a valid reference count, preventing freed
pages from being remapped (Line 13). It then verifies that the
page is neither an anonymous page nor a slab page and that it is
not marked with any special flags (Lines 16). These safeguards
are essential to prevent sensitive kernel pages—such as those
containing critical data structures—from being exposed to user
space.

In contrast, the Arm Mali GPU driver omits such checks
entirely. It implements custom memory mapping and page
fault handling interfaces for GPU-specific Virtual Memory
Areas (VMALSs), but these interfaces lack any form of validation
for the physical pages being mapped. As shown in Fig. 2b] the
driver directly inserts the physical page into the GPU page
tables without verifying its legitimacy. This critical oversight
allows arbitrary and potentially sensitive physical memory to
be mapped into user space, representing a severe security
vulnerability.

Security Weakness 2: The Mali GPU driver doesn’t
validate physical pages before mapping, allowing arbi-
trary or sensitive kernel memory to be remapped into
user space without any security checks.

@ GPU memory allocation @ Key structure corruption

@ GPU memory map @ Modify target pages via GPU writes

joct1(fd,KBASE_IOCTL_MEM_ALLOC) UAF,00B,Double Free...

Memory Corruption
create

kbase_mem_phy_alloc --» points to kernel code
-] (|

mmap(fd, ..., PROT_READ | PROT_WRITE) ioct1(fd,KBASE_IOCTL_JOB_SUBMIT)
Submit
R/W Permission ¢/
-kref write into
[z \' :> GPU Userspace!
map kernel code JOB Memory
(I -

patch kernel code

Corrupt key structure, points

Key structure allocated
to kernel code

Map kernel code into

GPU user space Arbitrary write to kernel code

Fig. 3: PhantomMap exploit steps.

C. PhantomMap Attack

While the above two weaknesses together form a classical
time-of-check to time-of-use (TOCTOU) vulnerability, they
expose key data structures to attacker manipulation. Specifi-
cally, the decoupling between memory allocation and mapping
introduces an exploitable time window during which critical
structures can be tampered with. Simultaneously, the lack of
validation in the mapping interfaces allows unverified physical
pages to be directly inserted into the page tables.

Building on these newly identified flaws, we propose a
novel attack technique called PhantomMap, which enables the
remapping of arbitrary physical memory into user space. No-
tably, the Mali GPU driver does not use an external IOMMU,
allowing direct access to the entire system’s physical memory.
This enables attackers to write to any physical address without
triggering address translation errors. Unlike traditional GPU
page table attacks, PhantomMap targets intermediate data
structures involved in the Mali GPU memory mapping process.
It exploits kernel vulnerabilities to replace GPU-allocated
physical memory with attacker-targeted physical pages. These
substituted pages are then legitimately mapped into user space
via the driver’s custom interfaces. The full PhantomMap
exploitation consists of four steps, as illustrated in Fig.

® GPU memory allocation. The attack begins with a
standard GPU memory allocation request, during which the
driver creates an internal structure to manage the allocated
physical pages. This structure becomes the primary target
of our exploitation technique. Specifically, the attacker first
invokes the ioctl (fd, ..., KBASE_IOCTL_MEM_ALLOC)
syscall, prompting the Mali GPU driver to allocate physi-
cal memory and construct a kbase_mem_phys_alloc key
structure. This structure contains metadata for memory man-
agement, including a variable-length array named pages (as
shown in Fig. [3| @) that stores the physical addresses of the
allocated memory. These addresses are intended for future use
during the mapping phase.

@ Key structure corruption. Leveraging Security Weak-
ness 1, the attacker exploits the time window between memory
allocation and mapping to corrupt the key structure created
in Step @. During this window, a kernel memory corruption
vulnerability—such as a UAF, OOB write, or a Double Free

combined with heap spraying—is used to tamper with the
kbase_mem_phys_alloc structure, whose user-controllable
size makes it an ideal target across various heap vulnera-
bility capabilities. The attacker modifies the pages array to
replace the original physical addresses with targeted physical
addresses, such as read-only kernel code memory.

® GPU memory map. Once the internal structure is cor-
rupted, the attacker triggers a GPU memory mapping operation
that maps the manipulated physical addresses into page tables
without validation. This is done by invoking the mmap ()
syscall, using the handle returned by the earlier ioct1 () call
in Step @. As described in Security Weakness 2, the Mali GPU
driver does not verify the contents of the pages array before
mapping, allowing the attacker-corrupted physical addresses
(e.g., kernel code memory) to be mapped directly into GPU
user space with read/write permissions.

@ Modify target pages via GPU writes. With the attacker-
controlled physical memory now mapped into user space,
arbitrary memory write operations can be carried out.

To achieve this, the attacker can define a GPU
write job and submit it using the ioctl(fd, ...,
KBASE_IOCTL_JOB_SUBMIT) syscall. When the GPU pro-
cesses the job later, it executes the GPU write operation,
writing to the GPU userspace address provided by the at-
tacker. In this case, the attacker gains the ability to modify
arbitrary physical memory, such as kernel code. By patch-
ing kernel code or critical variables (e.g., selinux_state,
selinux_enforcing), the attacker can escalate privileges
and disable key security mechanisms, such as SELinux.

PhantomMap attack leverages two subtle but critical design
flaws in the Mali GPU driver—decoupled memory operations
and the absence of physical page checks—to achieve reliable
remapping of arbitrary physical memory into user space. By
targeting intermediate data structures rather than directly ma-
nipulating GPU page tables, PhantomMap provides a stealthy
and powerful exploitation path that bypasses traditional kernel
protections. In the following section, we discuss the unique
advantages of PhantomMap compared to existing GPU and
kernel exploitation techniques.

1 static inline struct kbase_mem phy alloc
— xkbase_alloc_create(...
2 {
3 struct kbase_mem_phy alloc +alloc;
4 size_t alloc_size = sizeof(rxalloc) +
— sizeof (ralloc->pages) * nr_pages;

6 if

(alloc_size >
— KBASE_MEM_PHY_ALLOC_LARGE_THRESHOLD)
7 alloc = vmalloc(alloc_size);
8 else
9 alloc = kmalloc(alloc_size, GFP_KERNEL) ;

10
11}

Fig. 4: Allocation strategy of kbase_mem phy_alloc.

D. PhantomMap Advantages

PhantomMap presents a general, practical, and powerful
exploitation primitive that outperforms existing kernel ex-
ploitation techniques across several dimensions. Below, we
summarize its three key advantages.

1) Applicable to almost all heap vulnerabilities: Phan-
tomMap is broadly applicable to almost all heap-based kernel
vulnerabilities, regardless of whether the vulnerable object
resides in the kmalloc or vmalloc region. This makes it a
highly versatile and general-purpose exploitation technique.

Although previous work[22] explored heap objects for
kmalloc-based exploitation, their techniques remain almost
entirely limited to the kmalloc heap. In contrast, vulnerabilities
in vmalloc-allocated objects remain difficult to exploit due to
the lack of flexible primitives. Recent work[23] demonstrates
vmalloc exploitation using eBPF JIT spraying; this approach
depends on privileged capabilities like cap_BPF, which are
typically unavailable to unprivileged users—especially on An-
droid systems with strict SELinux enforcement.

PhantomMap introduces a unified and elastic exploitation
primitive that works across both kmalloc and vmalloc heaps.
This flexibility is achieved by exploiting the allocation be-
havior of a critical internal structure. As detailed in Fig.]
the kernel dynamically allocates the kbase_mem_phy_alloc
structure using either kmalloc () or vmalloc () depending
on the requested size (Lines 6-9). Importantly, the size of this
structure can be controlled by an unprivileged user via a stan-
dard ioctl () call. By carefully adjusting this size, an attacker
can deterministically steer the structure into the desired heap
region with the desired object size, aligning it with the location
of a vulnerable object to facilitate reliable exploitation. This
heap placement and object size controllability allows Phan-
tomMap to adapt to almost any heap corruption vulnerability,
making it a one-size-fits-most solution for modern kernel heap
exploitation.

Under the constraint of limited vulnerability capabili-
ties—such as when the exploit primitive is restricted to writ-
ing kernel heap pointers into freed objects—pivoting is an
essential step. Most exploit techniques, such as DirtyCred[24],
require this pivot, and PhantomMap is no exception. However,
the adaptability of PhantomMap makes it more flexible in
choosing among various pivoting methods.

2) Powerful code injection primitives: PhantomMap pro-
vides an arbitrary physical memory write primitive that can
bypass all existing code injection mitigation and enable direct
kernel code injection. Existing techniques require complex
exploitation chains to gain arbitrary code execution. For exam-
ple, DirtyCred and similar approaches rely on privileged file
overwrites to abuse kernel modules, often requiring capability
escalation or kernel module loading. These chains are tightly
coupled and limited to specific environments.

In contrast, PhantomMap enables direct kernel code patch-
ing by remapping arbitrary physical memory into user space.
This allows overwriting kernel code or critical variables (e.g.,
selinux_enforcing) without requiring chained primitives
or capability escalation. The primitive is reusable across
diverse environments and devices, significantly reducing the
overhead of adapting exploits to new platforms.

3) Does not require capabilities or information leaks:
PhantomMap operates entirely without privileged capabilities
or information leaks, making it viable even in the most re-
stricted environments. Existing techniques such as Interpreter-
Flow Hijacking[25] and USMAJ26|] depend on capabilities
like cAP_BPF or CAP_NET_RAW, which are typically unavail-
able to unprivileged users now. Additionally, four techniques:
Interpreter-Flow Hijacking, USMA, RetSpill[27]], and Page
Spray[28]] require leaking kernel text or heap addresses, which
is an increasingly difficult and unstable step in modern systems
with robust mitigations.

PhantomMap is fully capability- and infoleak-free. Phan-
tomMap completes the exploitation process without requiring
any capabilities. Moreover, precise heap spraying and size
control allow PhantomMap to place vulnerable and target
structures adjacently. This flexibility eliminates the need for
any information leak during the exploitation.

E. Mitigations Bypass

PhantomMap can effectively bypass state-of-the-art mitiga-
tions, including code injection mitigations, code reuse mit-
igations, and data-only attack mitigations. Building on both
the advantages discussed above and its ability to bypass these
mitigations, we present a comparative analysis of popular ex-
ploit techniques in TABLE [I, which compares PhantomMap’s
performance against popular exploit techniques.

1) Bypass code injection mitigations: The GPU-assisted
physical memory write primitive provided by PhantomMap al-
lows attackers to directly patch kernel code, thereby achieving
code injection and execution. This method effectively bypasses
traditional mitigations, such as XN and PXN.

Additionally, PhantomMap can bypass hypervisor-based
protection such as Samsung RKP[19] and SecVisor[9], which
typically leverage Stage-2 page tables to enforce read-only
permissions on critical kernel regions (e.g., the .text sec-
tion). However, these protections remain incomplete, as certain
kernel read-only data structures are not fully safeguarded.
PhantomMap specifically targets this gap: despite RKP’s page
table protections, PhantomMap manipulates intermediate-state
data structures and leverages legitimate kernel workflows to

TABLE I: A comparative analysis of exploit techniques against the latest security mitigations. ¢/ means that the technique is

capable of bypassing the corresponding mitigation. X'means that the technique can not bypass the mitigation. WX means that
the bypass is only achievable under certain constraints or assumptions.

Code Reuse Mitigations

Data-only Attack Mitigations

Technique Capability Required No Need Infoleak Bypass CFI Bypass Data Protection = Bypass SLAB_VIRTUAL
DirtyCred [24] NULL v v X X
USMA [26] CAP_NET_RAW X v v
DirtyPageTable [29] NULL v v X X
Retspill [27] NULL X A v v
Interp-flow Hijacking [25] CAP_BPF X v v v
SLUBStick [30] NULL v v X X
Page Spray [28] NULL X 4 v X
PhantomMap NULL v v v 4

modify the GPU page table. Then, by corrupting critical
read-only data structures, such as security_hook_heads,
using the GPU, PhantomMap can successfully bypass these
protections and ultimately achieve kernel privilege escalation.

2) Bypass code reuse mitigations: Nowadays, popular ex-
ploitation techniques primarily target non-control data and can
bypass CFI effectively, with RetSpill[27]] as an exception, still
relying on control-flow hijacking. RetSpill assumes attackers
can hijack backward-edge branches to gain PC control, but
converting a heap bug into a stack overwrite is complex and
multi-staged. Thus, we argue that RetSpill can only bypass CFI
protection under specific constraints. PhantomMap diverges
from control-flow hijacking by exclusively targeting non-
control data structures, thereby evading CFI/KCFI protections
entirely.

3) Bypass data-only attack mitigations: (1) Critical data
protection: Critical data protections monitor and restrict mod-
ifications to protect certain non-control data regions, thereby
securing critical data such as struct cred and page ta-
bles. Consequently, they successfully block exploit techniques
like DirtyCred, which achieve privilege escalation by swap-
ping protected struct cred. Similarly, methodologies such
as DirtyPageTable[29] and SLUBStick[30], which leverage
object-level heap vulnerabilities to tamper with page tables,
are also mitigated.

Rather than directly manipulating page tables, PhantomMap
targets and corrupts unprotected mapping-related key struc-
tures. Then it leverages the kernel’s standard page-table update
process, causing the kernel to unknowingly use this tampered
data to inject malicious physical addresses. As the entire
update procedure adheres to a legitimate kernel workflow,
PhantomMap elegantly bypasses critical data protections en-
forced by the Linux kernel.

(2) SLAB_VIRTUAL: Many popular exploit techniques
frequently rely on either corrupting critical kernel data
structures[24]] (e.g., cred, file) within dedicated caches or
pivoting object-level vulnerabilities to page-level capabil-
ities (e.g., modifying page tables)[28], [30], [29]. Both

strategies inherently require cross-cache attacks. However,
SLAB_VIRTUAL effectively mitigates traditional cross-cache
attacks. In this condition, PhantomMap operates by corrupt-
ing kernel objects residing in general caches, aligning with
mainstream kernel heap vulnerabilities. This generality allows
PhantomMap to achieve exploitation without relying on cross-
cache techniques, thereby circumventing this latest mitigation
entirely.

F. Generality Discussion

We further evaluated PhantomMap on Qualcomm’s Adreno
GPU. The memory management model of the Qualcomm
GPU tightly couples physical page allocation with page table
updates, which precludes any opportunity for an attacker to
control and manipulate intermediate states prior to memory
mapping. As a result, PhantomMap is ineffective against
Qualcomm’s GPU.

IV. IDENTIFICATION OF EXPLOIT CHAINS AND TARGETS

To fully understand the impact of PhantomMap on the
Mali GPU driver and uncover all potential exploit chains, a
systematic analysis is essential. The Mali GPU driver features
an extensive and complex codebase, where different ioctl
commands may trigger diverse types of memory allocations.
These allocated regions can subsequently be mapped through
multiple, often disjoint code paths—such as direct mmap calls
or custom page fault handlers. This complexity renders manual
auditing both infeasible and error-prone, increasing the risk of
missing critical exploit paths.

To address this challenge, we developed a dedicated static
analysis tool designed to systematically scan the Mali GPU
driver’s codebase and identify exploit chains in which the
allocation of memory resources is decoupled from their even-
tual mapping. Through this process, we also identify key data
structures that act as bridges between allocation and mapping
operations—critical components that serve as prime targets
for exploitation. Importantly, our analysis spans the distinct
logic and codebases of both the JM and CSF architectures of

check origin category assign origin category

mapping correlation allocation
entry analysis entry
control-flow key . @ control-flow
analysis structure page analysis
. data-flow
mapping analysis allocation

interface interface

map page allocate key structure

Fig. 5: PhantomMap analyzer workflow.

the Mali GPU. In the following, we present the design and
workflow of the PhantomMap static analyzer and demonstrate
how it enables the analysis and discovery of potential exploit
chains of PhantomMap.

A. Identification Methodology

To systematically discover potential exploit chains, our
tool implements a multi-phase static analyzer. As illustrated
in Fig. 5] the workflow of PhantomMap analyzer combines
bottom-up control-flow analysis with targeted data-flow anal-
ysis. Additionally, to enhance analysis accuracy in complex
cases, we introduce a dedicated correlation analysis phase. In
the following, we will describe the design and workflow of
PhantomMap analyzer in detail.

Backward analysis of mapping operations. We begin
with the identification of mapping interfaces, which are the
final processing points responsible for handling memory map-
ping requests within the Mali GPU driver. Crucially, we focus
exclusively on kernel-to-user mapping operations, excluding
kernel-to-kernel mappings(such as vmap ()), as the former
presents a significantly more direct and potent attack surface.
Mali GPU driver does not reuse the Linux kernel’s standard
mapping interface like remap_pfn_range (). Instead, it im-
plements its own custom mapping interfaces for mapping GPU
memory to both CPU and GPU user space.

For GPU-side mapping, we identify functions responsible
for updating the GPU’s page tables, which are represented by
the struct kbase_mmu_table. We collect all functions that
either take this structure as a parameter or internally reference
it to perform page table modifications. For CPU-side map-
ping, Mali GPU utilizes a unified and driver-specific interface
mgm_vmf_insert_pfn_prot, provided via its device opera-
tions, to handle all CPU mapping operations. Finally, we define
these functions as the mapping interface of PhantomMap static
analyzer.

TABLE 1II: Key structures identified by the PhantomMap
analyzer. I indicates that the structure has a flexible allocation
size.

Structure Property Related Field
kbase_mem_phy_.alllocI k/vmalloc pages
kbase_alloc_import_user_buf ' K/vmalloc pages

kbase_queue kmalloc phys

kbase_device vmalloc reg_start
kbase_context kmalloc aliasing_sink_page
kbase_csf_device vmalloc dummy_db_page

Based on the set of mapping interfaces, we perform a
bottom-up control-flow analysis to construct a comprehensive
call graph of mapping operations (Step @ of Fig. [§). By
traversing this call graph, we identify mapping entry as high-
level functions that serve as mandatory convergence points
in the call graph, through which all paths reaching towards
the mapping interfaces must pass. These functions typically
correspond to user-accessible entry points, such as handlers
for mmap or specific ioctl syscalls. These map entries can
directly serve as the controllable triggers for an attacker to
execute the mapping phase of PhantomMap.

During the bottom-up traversal of the call graph constructed
in Step @, we perform targeted data-flow analysis in Step @ to
trace the origin of the physical memory involved in mapping
operations. Specifically, we track how physical memory is
propagated to the mapping interface, aiming to identify its
source. During this analysis, if we observe that the physical
memory originates from a particular kernel data structure, we
designate that structure as a key structure, a specific data
structure responsible for carrying physical memory informa-
tion throughout the mapping process. These key structures also
serve as exploitation targets for PhantomMap.

Analysis of allocation operations. With the mapping paths
and their associated key structures established, we proceed to
identify the corresponding allocation call sites for these key
structures. As part of Step @, we conduct a data-flow analysis
to locate these allocation sites. We refer to the functions
responsible for allocating the key structures as allocation
interface. Starting from each identified allocation interface, we
perform a bottom-up control-flow analysis in Step @ to trace
back to the user-invokable functions (e.g., syscall handlers)
capable of triggering the allocation interface. We then define
these interfaces as allocation entry, analogous to the mapping
entry identified earlier.

Finally, our goal is to match the allocation entry and
mapping entry identified in the preceding steps to form end-
to-end exploit chains. Based on the steps described, we have
now identified allocation entries (and their corresponding key
structures) and mapping entries. Establishing a direct corre-
spondence between an allocation entry and a mapping entry
that both operate on the same key structure would define a
potential exploit chain.

However, this methodology encounters an additional chal-
lenge in practice. We observed that certain key structures are

TABLE III: Exploit chains discovered by the PhantomMap static analysis tool. @ indicates that the exploit chain can map
arbitrary physical memory to user space with read/write permissions. © indicates that the exploit chain can map arbitrary
physical memory to user space with read-only permissions. T means that the exploit chain exists exclusively on CSF architecture.

Allocation Entry Syscall Mapping Entry Syscall Related Key Structure Read/Write
kbase_mem_alloc ioctl kbase_gpu_mmap mmap kbase_mem_phy_alloc ([J
kbase_mem_alloc ioctl kbase_mem_commit ioctl kbase_mem_phy_alloc o
kbase_mem_alloc ioctl kbase_cpu_mmap ioctl kbase_mem_phy_alloc o
kbase_mem_import ioctl kbase_gpu_mmap mmap kbase_mem_phy_alloc []
kbase_mem_import ioctl kbase_map_external_resource ioctl kbase_alloc_import_user_buf o
kbase_mem_import ioctl kbase_mem_flags_change ioctl kbase_mem_phy_alloc o
kbase_mem_import ioctl kbase_map_external_resource ioctl kbase_mem_phy_alloc o
kbase_mem_alias ioctl kbase_gpu_mmap mmap kbase_mem_phy_alloc [J
kbase_mem_alias ioctl kbase_cpu_mmap mmap kbase_mem_phy_alloc [)
kbase_create_context open kbase_gpu_mmap mmap kbase_context ©
kbase_create_context ioctl kbase_map_external_resource mmap kbase_mem_phy_alloc o
kbase_platform_device_probeJr — kbase_csf_cpu_mmap_user_reg_page mmap kbase_device ©
kbase_platform_device_probeJr — kbase_csf_cpu_mmap_user_io_pages mmap kbase_device ®
kbase_csf_doorbell_mapping_initT — kbase_csf_cpu_mmap_user_io_pages mmap kbase_csf_device o
kbase_csf_alloc_command_stream_user_pagesT ioctl kbase_csf_cpu_mmap_user_io_pages mmap kbase_queue o

heavily reused across the driver, serving as a shared structure
for numerous memory operations. As a result, a single key
structure may be associated with multiple allocation entries
as well as multiple mapping entries, creating a many-to-many
ambiguity. This ambiguity makes it difficult to identify a clear
and valid allocation—mapping chain.

Memory-origin-based correlation analysis. To resolve
this challenge, we introduce a more granular analysis, lever-
aging the driver’s explicit distinction between physical mem-
ory sources. Mali GPU driver categorizes managed memory
regions using the kbase_memory_type enumeration. We
call this property the origin category. The origin category
allows the driver to distinguish between memory with different
origins and properties (such as memory allocated natively
by the driver vs. memory imported from userspace) and to
apply specific handling logic and mapping rules accordingly.
Crucially, this origin category is stored as a field within the
same key structure that holds the physical page addresses.

In Step ®, we leverage this origin category for precise
correlation analysis. For each identified allocation path tar-
geting a key structure, our analyzer performs forward data-
flow analysis to determine the specific origin category value
assigned to the structure’s related field during the allocation
routine. Conversely, for each identified mapping path operating
on a key structure, our analyzer scans for conditional logic
(e.g., if statements, switch cases) that checks the type field
within the mapping routine and records which origin category
values are permitted to proceed down that specific mapping
path.

Finally, we establish our correlation rule that an allocation
entry is paired with a mapping entry to form a correct and

viable exploit chain only when two conditions are met: (1)
they operate on the shared key structure. (2) the origin category
assigned by the allocation routine is permitted by the origin
category checked by the mapping routine.

B. Identification Results

We applied the PhantomMap static analyzer to the Mali
GPU driver across the two distinct kernel branches corre-
sponding to our target architectures: the gs-android-gs-raviole-
mainline branch (JM architecture) and the android-gs-pantah-
5.10-android14-gpr3 branch (CSF architecture). As shown
in TABLE our analysis identified 15 distinct end-to-
end exploit chains where memory allocation and mapping
operations are dangerously decoupled. Moreover, we confirm
that 12 of these 15 paths provide the capability to map arbitrary
physical memory into a user-space process with full read and
write permissions, representing a systemic and high-impact
security threat.

These exploit chains are all mediated by a set of 6 unique
key structures that serve as the bridge between the allocation
and mapping phases. As summarized in TABLE [M] these
structures encompass diverse allocation types, including both
kmalloc and vmalloc. Notably, some of these key structures
behave as elastic objects, whose allocation size can be con-
trolled by attackers. This property allows them to be adapted to
the specific capabilities of various kernel heap vulnerabilities,
demonstrating the versatility of the PhantomMap.

Furthermore, these chains exploit various time windows that
exist between the initial allocation of physical memory and the
final update of the user-space page tables. The most common
pattern involves separate user-accessible syscalls for memory

allocation and mapping, allowing attackers to exploit the time
window between the two operations. Additionally, in certain
exploit chains, resources are pre-allocated during device ini-
tialization (e.g., in kbase_platform device_probe) and
persist throughout the device’s entire operational lifetime,
creating a permanent attack window. Our analysis reveals that
these exploit chains are distributed across both the JM and
CSF architectures, with most chains existing in both. This
demonstrates that this attack surface is not an isolated legacy
issue but a fundamental design flaw that persists in the driver’s
evolution.

C. Exploit Chain Validation And Analysis

Regarding false positives, PhantomMap analyzer initially
identified 16 potential exploit chains. We conducted a thorough
manual review of every discovered chain to verify the accuracy
of these findings. We found that one of the chains was a false
positive. The discrepancy arose because the static analyzer
incorrectly resolved a complex conditional branch within a
function’s control flow, leading it to identify an execution path
that is not actually reachable in practice. After discarding this
invalid path, we were left with 15 theoretically viable exploit
chains.

Furthermore, to confirm their real-world exploitability, we
developed 15 end-to-end exploits for each of the exploit
chains using CVE-2022-20409 and CVE-2023-48409. For the
12 chains capable of mapping arbitrary physical memory
with R/W permissions, each exploit achieves full privilege
escalation. For the remaining 3 chains that allow RO mapping,
we created a proof-of-concept(POC) that leaks arbitrary kernel
memory, successfully demonstrating a bypass of KASLR.

Regarding false negatives, we found that the set of chains
discovered by our analyzer fully encompassed a collection
of exploit chains that we had previously identified through
manual auditing. Our methodology does its best to minimize
false negatives. We ensured the completeness of mapping
interfaces based on standard driver implementation patterns.
From that foundation, our subsequent analyzes were performed
comprehensively across the entire codebase of the Mali GPU
driver, covering both its JM and CSF architectures.

V. EXPLOITABILITY EVALUATION

To systematically evaluate the generality and effectiveness
of PhantomMap in real-world exploitation, we designed and
conducted a comprehensive exploitability study. We selected
13 representative and up-to-date real-world vulnerabilities.
We choose these CVEs from widely recognized vulnerability
databases[31] and exploitation collections[32], focusing on
those published within the last three years and confirmed to
be triggerable on mobile devices equipped with Mali GPUs.
These selected CVEs incorporate all common vulnerability
types (UAF, Double Free, OOB). The selection of vulnera-
bilities includes examples from both the Android kernel and
the Mali GPU drivers.

Furthermore, we assume a hardened environment where all
mitigations claimed in our threat model are enabled, along

10

with unprivileged user namespace restrictions. Building on
this, we confirmed the exploitability of both existing and
PhantomMap-based exploits for the 13 CVEs, with detailed
results presented in TABLE

Exploitability. The result shows that PhantomMap outper-
forms existing exploits in its ability to bypass modern de-
fenses. Notably, for CVE-2023-20938 and CVE-2022-20421,
the vulnerabilities represent a special case. Because the vul-
nerable objects reside in dedicated caches and therefore need a
cross-cache attack, SLAB_VIRTUAL has prevented the initial
capability pivot required to begin exploitation, which is a
prerequisite step for any subsequent attack. This renders the
vulnerability unexploitable by both existing exploits and the
PhantomMap attack.

To demonstrate practical exploitability, we developed 15 full
end-to-end exploits that achieve kernel privilege escalation
on contemporary devices, including Google Pixel 6/7 and
Samsung Galaxy A71, thereby confirming the attack’s real-
world feasibility. Our exploits target all three common vulner-
ability types: UAF (CVE-2025-21836, CVE-2022-38181) and
Double Free (CVE-2022-20409) in the Android kernel, and
OOB (CVE-2023-48409) in the Arm Mali GPU driver. Among
these, CVE-2025-21836 is a limited vulnerability. To the best
of our knowledge, we have not found any public exploits for it.
Despite this, we successfully developed an exploit for it using
PhantomMap, proving the power and effectiveness in han-
dling challenging and previously unexploited vulnerabilities.
Moreover, we successfully achieved privilege escalation on a
Samsung Galaxy A71 with both RKP and DEFEX enabled,
by exploiting CVE-2022-38181 with PhantomMap. This case
further validates PhantomMap’s practical effectiveness against
heavily fortified devices.

For the remaining CVEs, we confirmed that they can be
similarly exploited based on their comparable vulnerabil-
ity primitives. However, developing a full exploit for each
one requires significant manual effort, including frequently
flashing device kernels and porting the relevant vulnerability
patches for each test environment. Therefore, to maintain a
feasible scope, we focused on the representative cases for full
exploitation development.

Simplicity & Stability. PhantomMap offers substantial im-
provements in simplicity and stability compared to traditional
kernel exploitation techniques, which are often encumbered
by two major challenges. The first challenge is the reliance
on information leaks. Traditional exploitation methods often
require leveraging the vulnerability itself to pivot to an infor-
mation leak primitive before the main exploit proceeds. This
means that the attacker should trigger the vulnerability once
more, which not only adds a layer of complexity but also
impairs reliability. For race condition vulnerabilities, such as
CVE-2025-21836, this extra trigger significantly lowers the
probability of success and leads to system instability and
crashes. The second challenge is the dependency on precise
memory layouts. Many existing exploits are contingent on
complex heap or page layouts that are difficult to reproduce
reliably in dynamic, real-world systems, further degrading

TABLE IV: Exploitability demonstrated on 13 Real-World CVEs using PhantomMap. » means that the vulnerable kernel heap
resides in a dedicated cache and therefore requires a cross-cache attack. CVE-2025-21836 does not have public exploits.

Existing Exploits

PhantomMap Exploit

CVE ID Type No Leak Required Bypass Mitigations No Leak Required Bypass Mitigations
CVE-2025-21836 UAF - — v v
CVE-2024-46740 UAF v v v v
CVE-2024-26582 Double Free X v v v
CVE-2023-32882 OOB X v v v
CVE-2023-6560 OOB v X v v
CVE-2023-32837 OOB X X 4 v
CVE-2023-32832 UAF X v v v
CVE-2023-48409 OOB X 4 v v
CVE-2023-20938* UAF X X v X
CVE-2023-0266 UAF X v v v
CVE-2022-38181 UAF v v v v
CVE-2022-20421* UAF X X v X
CVE-2022-20409 Double Free X X 4 v

their success rates.

PhantomMap directly addresses these limitations. By de-
sign, it operates without requiring any information leak and is
not dependent on complex memory layouts, thereby simplify-
ing the exploitation process and enhancing its stability. In our
evaluation, when targeting CVE-2023-48409, a vulnerability
previously exploited with a complex kernel page layout, we
compared our PhantomMap-based exploit with the existing
one. In 20 trials for each, PhantomMap elevated the success
rate from a mere 45% to 90%. Our exploits for CVE-2022-
20409 also demonstrate high reliability, with a consistent
success rate of over 95%. Finally, in our exploit for CVE-
2025-21836, PhantomMap requires only a single trigger of
the race condition vulnerability to achieve privilege escalation,
bypassing the step for a separate info-leak and thus ensuring
higher system stability.

Moreover, under busy-system conditions, noise in kernel
SLUB-allocator destabilizes complex heap layouts, thereby
reducing exploit reliability. As a GPU-assisted kernel ex-
ploitation technique, PhantomMap offloads some exploitation
steps to the GPU, making it resilient to such noise and
enhancing exploit reliability even under high system load. In
our experiments simulating a busy system by running stress-
ng, the success rate of existing exploits of CVE-2022-20409
dropped to 20%, while our PhantomMap exploit achieved a
50% success rate under the same conditions.

VI. DEFENSE AGAINST PHANTOMMAP

The efficacy of the PhantomMap attack stems from its
exploitation of two fundamental design flaws within the Arm
Mali GPU driver ecosystem: (1) the decoupled allocation-
mapping workflow that creates an attacker-controllable time

11

window, and (2) the absence of physical page validation
before mapping operations. Effective mitigation strategies
must address these root causes. While an ideal theoretical
solution would establish robust hardware-level isolation (e.g.,
via [IOMMU/SMMU or GPU TEEs) to compartmentalize CPU
and GPU memory domains, thereby fundamentally preventing
cross-domain remapping. However, we examined open-source
device trees and on-device configurations for popular Mali-
based phones, including the Google Pixel 6/7 and Samsung
Galaxy A71, and found that their Mali GPUs are not connected
to the system’s IOMMU/SMMU. This appears to be a result of
System-on-Chip (SoC) integration choices rather than a simple
software configuration issue. Furthermore, even if IOMMU
is enabled in the future, PhantomMap would still remain
effective. Our exploit chains include paths that exploit the
legitimate driver workflow to update both the system IOMMU
page tables and the Mali GPU’s own MMU page tables,
allowing for arbitrary physical memory remapping into the
GPU with read/write permissions.

Alternatively, eliminating the attack window through exten-
sive refactoring of the Mali driver to enforce tight coupling
of allocation and mapping operations proves suboptimal. This
approach would incur substantial engineering effort and risk
destabilizing the driver’s core functionalities, as the decoupled
design is intrinsically tied to performance and architectural
requirements. Consequently, we argue that practical defenses
should prioritize enforcing physical page validation at crit-
ical mapping interfaces. In the following, we first analyze
the limitations of existing mitigations against PhantomMap,
then introduce our lightweight in-driver solution designed to
enforce page validation with minimal performance impact.

A. Limitations of Existing Potential Mitigations

Samsung RKP. A prominent defense is Samsung’s Knox
with Real-time Kernel Protection (RKP), which leverages
the hypervisor to mark critical kernel data and page tables
as read-only. However, this approach is ineffective against
PhantomMap. The fundamental flaw is that RKP is designed to
validate the privilege of the caller, not the integrity of the data
used in the request. Our attack exploits this by first corrupting
unprotected non-control data (key structures). Subsequently, a
legitimate kernel workflow uses this tainted data and makes
a valid request to the secure world, for instance, to remap a
malicious physical address. Since the call originates from a
trusted kernel function, RKP approves the operation, unknow-
ingly compromising the page table. Moreover, RKP’s Stage-
2 protection for critical regions fails to defeat PhantomMap.
As discussed in PhantomMap can achieve privilege
escalation by modifying unprotected read-only critical data
structures outside the guarded set.

MTE. Memory Tagging Extension (MTE) is a hardware
feature designed to mitigate runtime memory corruption vul-
nerabilities by enforcing memory access correctness through
tags[33]]. Its defensive scope is primarily confined to the
vulnerability triggering phase. The focus of this work, in
contrast, is the post-exploitation phase, and our threat model
explicitly assumes that an attacker has already triggered a
vulnerability. Therefore, the challenge of bypassing initial
corruption mitigations like MTE is orthogonal to our scope.

In the post-exploitation stage, PhantomMap is not thwarted
by MTE. The core of its operation involves hijacking valid
kernel workflows to perform legitimate GPU page table
updates and DMA write operations. Since these operations
are inherently compliant with memory access policies, they
naturally satisfy MTE’s tag verification. Thus, PhantomMap
sustains its ability to achieve privilege escalation on MTE-
enabled systems.

B. Lightweight Mitigation

Our lightweight mitigation is designed to target this funda-
mental design flaw by verifying the mapping operations in the
Mali GPU driver.

Design & Implementation. Our mitigation introduces a
type-checking mechanism during memory mapping operations
to prevent unauthorized access to non-GPU memory. The core
idea is to ensure that only memory explicitly allocated for the
GPU can be mapped by the Mali GPU driver.

The Mali kernel driver allocates and frees memory at the
page level through wrapper functions based on top of the
standard alloc_page () and free_page () calls. And we
leverage a reused field page_type within the struct page,
which is part of a union that also includes _mapcount.
Pages allocated via the standard alloc_page from the freel-
ist should not have a page_type assigned, and since the
Mali GPU driver maintains its own separate map count, the
_mapcount field is also unused by the GPU. This provides
an opportunity to reuse this field to introduce a custom page
type in the Mali GPU driver. We define a new type, TYPE_GPU,

12

2.0 Il Pixel 6 B Pixel 7
<15
x
el
3 1.0
<
(]
>
Q0.5
0.0
“ R @'O’ (50 odod‘eﬁ“\\e X ‘o"eéé\'o“ @\0\\@ ’&‘ D™
CQO e’bxé\e o) <<\ \\\p 0 ’o&c 660

‘9

Fig. 6: Overhead of our mitigation on Rodinia benchmarks.

and hook the root physical memory allocation and dealloca-
tion interfaces within the Mali driver, mgm_alloc_page and
mgm_free_page. When a physical page is allocated to the
Mali GPU Driver, we mark it with TypPE_GPU. Conversely,
when the page is freed back to the buddy system, we reset its
type to an invalid value. Crucially, at all mapping interfaces on
the Mali GPU driver side, which we identified in §IV-A] we
introduce a verification step. Before any mapping operation
can proceed, we check whether the physical page intended for
mapping is marked with TYPE_GPU. This check ensures that
only pages explicitly allocated for the GPU can be mapped,
effectively preventing the illegal mapping of the non-GPU
pages.

Overhead Evaluation. To evaluate the performance over-
head of our proposed lightweight mitigation, we employ the
Rodinia[34] GPU benchmark suite, which is widely used
for performance evaluation on Arm devices[35], [36], [37].
Our overhead evaluations were conducted on two distinct
Google Pixel devices to cover different hardware and soft-
ware architectures: (1) a Pixel 6, equipped with a Mali-G78
GPU, running gs-android-gs-raviole-mainline to test the JM
architecture, and (2) a Pixel 7, equipped with a Mali-G710
GPU, running android-gs-pantah-5.10-android14-qpr3 to test
the CSF architecture.

We ported the entire Rodinia benchmark suite to mobile
platforms, comprising 21 applications that represent a wide
spectrum of computational workloads. To ensure statistical
reliability, each benchmark was executed 30 times, and the
average execution time is reported as the final performance
metric. As illustrated in Fig. 6, our mitigation introduces
minimal performance overhead, averaging only 0.56% on the
Pixel 6 and 0.34% on the Pixel 7. Detailed per-bench break-
down results, along with standard deviations, are provided
in TABLE [V] which lists the mean execution time (mean)
and standard deviation (std) for each benchmark, both with
the mitigation applied (patch) and without (pre), as well as
the precise performance overhead percentage (Overhead %)
calculated from this data.

Furthermore, to verify that our lightweight mitigation does
not introduce functional regressions or compromise system
stability, we executed the Android Linux Test Project (LTP)
test suite on both Pixel 6 and Pixel 7 devices. To ensure

TABLE V: Overhead details of our mitigation on rodinia benchmarks. The final geometric mean overhead was 0.56% on the

Pixel 6 (JM) and 0.34% on the Pixel 7 (CSF).

Total exec time (ms)

Overhead (%)

Benchmark Pixel 6 (JM) Pixel 7 (CSF)
Pixel 6 Pixel 7
pre patch pre patch
mean std mean std mean std mean std

backprop 3622.05 111.49 3622.80 121.71 678.43 20.41 691.19 4.53 0.02 1.88
b+tree 55.13 18.96 55.23 19.44 39.07 7.08 39.29 6.74 0.16 0.54
dwt2d 438.45 10.24 443.20 9.12 486.57 15.59 486.86 10.49 1.08 0.06
heartwall 11744.08 199.27 11831.88 57.98 14588.54 204.19 14655.04 217.07 0.75 0.46
hotspot3D 1142.37 61.89 1155.02 62.26 3042.95 189.36 3051.31 129.69 1.11 0.27
kmeans 2699.82 70.33 2733.56 68.87 1664.30 43.01 1678.72 40.78 1.24 0.87
leukocyte 78.62 22.24 78.74 23.44 100.73 36.46 100.87 36.69 0.15 0.14
myocyte 41468.61 623774 41617.88 7832.05 59939.92 549.13 59954.58 463.74 0.35 0.02
nw 4621.69 124.27 4649.58 169.10 746.89 15.25 747.45 14.83 0.60 0.07
pathfinder 224.34 13.43 228.04 4.82 166.15 7.42 166.39 8.06 1.65 0.15
streamcluster 57267.00 1794.47 57362.06 2056.53 61137.52 569.19 61145.60 731.20 0.16 0.01
bfs 158.47 5.08 158.80 6.55 106.35 10.19 108.38 11.88 0.21 1.91
cfd 9332341 8085.78 93423.81 9408.65 96634.35 460.21 96695.17 1168.48 0.10 0.06
gaussian 22407.41 75430 2248176 1201.25 22566.46 331.70 22630.75 304.88 0.33 0.28
hotspot 436.49 9.06 436.94 6.54 495.49 9.47 495.63 11.17 0.10 0.03
hybridsort 248.89 11.19 249.27 16.29 195.20 8.57 195.30 6.78 0.15 0.05
lavaMD 9335.476 475.58 9490.16 385.991 7833.29 5.12 7838.15 20.26 1.66 0.06
Iud 13465.81 451.67 13649.24 600.35 18149.16 136.22 18165.14 102.64 1.36 0.09
nn 39.13 7.79 39.21 7.93 38.70 3.89 38.80 4.27 0.20 0.24
particlefilter 45659.71 659.20 45696.52 438.89 33031.40 46.64 33035.27 45.90 0.08 0.01
srad 8976.59 77.74 9008.61 90.09 9627.56 241.67 9630.47 137.78 0.35 0.03
Geo-mean — 0.56 0.34

the GPU was under active load, we first ran the Rodinia
benchmark and immediately followed it with the complete LTP
suite. The test outcomes were identical both before and after
enabling our mitigation, confirming that our solution maintains
full system correctness.

VII. RELATED WORK

We categorize related work into three areas: general kernel
exploitation techniques, kernel code injection and execution
techniques, and prior exploitation of the Mali GPU driver. In
this section, we provide an overview of each category and
highlight the distinctions between our work and prior works.

A. Kernel Exploitation Techniques

DirtyCred[24] pioneered privilege escalation by swapping a
low-privileged credential with a high-privileged one in mem-
ory. Page Spray[28] introduced a reliable memory-corruption
primitive by spraying pages with user-controlled data to
target kernel objects. ExpRace[38] transforms inherently
hard-to-exploit kernel data races into dependable vulnera-
bilities through precise interrupt manipulation. PSPRAY[39]]
leverages a timing side-channel to vastly improve heap-based
exploit success rates, while SCAVY[40] automates the dis-
covery of kernel memory-corruption targets for privilege es-
calation using scalable fuzzing and differential analysis. These
techniques achieve privilege escalation and stabilize exploits,
but none enable arbitrary kernel code execution. In contrast,

Code Injection & Execution Techniques enable more powerful
and flexible post-exploitation capabilities.

B. Code Injection & Execution Techniques

Previous kernel exploits often rely on control-flow hijacking
to achieve code execution. For instance, ret2usr[41]] redirects
kernel execution to user-space payloads by forging return
addresses outside the kernel. ret2dir[42]] bypasses simpler
protections by forcing the kernel to return to its direct-mapped
memory region, which executes a payload that an attacker
has placed in a physical page via user-space. RetSpill[27]
leverages register spill side effects to atomically place a
controlled ROP chain on the stack for hijacking.

However, CFI and FinelBT[43] defenses now block such
hijacking methods, driving the development of data-only
kernel code injection and execution techniques. Interp-flow
Hijacking[25] hijacks the eBPF bytecode interpreter via tail-
call to bypass kernel CFI and execute malicious bytecode
within the kernel. USMA[26] leverages a user space map-
ping attack to map and patch kernel code in user space.
Dirtypagetable[29] is a data-only exploit that uses heap vul-
nerabilities to corrupt user pagetable entries, yielding arbitrary
physical read/write primitives. SLUBStick[30] exploits a tim-
ing side-channel in the SLUB allocator to perform a reliable
cross-cache attack, then converts heap vulnerabilities into a
page-table manipulation for full arbitrary memory R/W.

13

C. Mali GPU Exploitation

Google Project Zero and security researchers uncovered
and exploited some vulnerabilities in the Mali GPU driver|[],
[6], 1301, [44], [4]], [45]. These exploits rely on the traditional
technique of reclaiming a use-after-free (UAF) page as a
GPU page table and corrupting it. As we mentioned earlier,
this approach heavily relies on high-impact vulnerabilities to
tamper with the page table directly. Starlab[46] demonstrated
how to pivot certain heap vulnerability capabilities into page-
level UAF. It requires a field-precise overwrite capability that
updates one designated structure member, which only some
bugs can provide, thereby limiting adaptability across different
vulnerabilities.

In contrast to prior techniques, PhantomMap neither de-
pends on high-impact vulnerabilities nor requires extra ca-
pabilities and complex pivot stage, delivering true arbitrary
code execution in kernel space, unlocking far more powerful
post-exploitation capabilities. Existing kernel code injection
techniques are routinely thwarted by modern mitigations such
as restricted access control and hypervisor-based page table
protections. PhantomMap introduces a fundamentally novel
GPU-Assisted exploit technique that exploits a previously un-
addressed design flaw in the Mali GPU architecture, bypassing
both software and hardware defenses to achieve full kernel
control.

VIII. CONCLUSION

This paper conducts a systematic analysis of the memory
mapping mechanism of the Mali GPU driver, revealing design
flaws that stem from both the decoupling of memory allocation
and mapping operations and the missing physical address
validation. Based on these attack surfaces, we propose a
novel exploitation technique, PhantomMap, which can easily
pivot limited kernel heap vulnerability capabilities into power-
ful arbitrary physical memory read/write primitives, enabling
stable kernel privilege escalation with multiple mainstream
security mitigations enabled. To systematically identify such
attack surfaces, we designed and implemented a static analyzer
that successfully detected 15 distinct exploit chains. Through
the evaluation of 13 representative and up-to-date real-world
CVEs and the development of 15 end-to-end exploits, we val-
idated the universality and efficiency of PhantomMap. Finally,
we discuss the limitations of existing mitigation strategies and
propose a lightweight and efficient approach to minimize the
impact of PhantomMap.

IX. ETHICS CONSIDERATIONS

We have contacted the Arm product security incident re-
sponse team and responsibly disclosed the exploitation tech-
nique detailed in this paper. To facilitate a swift resolution, we
provided Arm with a comprehensive attack surface analysis
report, the corresponding exploits, system images for repro-
duction, and patches of our proposed mitigation. Additionally,
all bugs that we used and exploited in the evaluation have
already been fixed. All experiments were conducted exclu-
sively on hardware under our control, within a secure, isolated

14

laboratory environment, thereby posing no risk to external
systems or users. The primary objective of our work is to
enhance the security design of Arm Mali GPU drivers.

ACKNOWLEDGMENT

The authors would like to thank our shepherd and reviewers
for their insightful comments. Those comments helped to
reshape this paper. This work is partially supported by the
National Natural Science Foundation of China (Grants No.
62572432 and No. 62532012).

REFERENCES
[1] “Global smartphone chipsets market share,” https://www.counterpointre
search.com/insight/global-smartphone-apsoc- market-share-quarterly.
“Operation triangulation: The last (hardware) mystery,” https://secureli
st.com/operation-triangulation- the-last-hardware-mystery/111669/.
“Security researcher at github security lab,” https://github.blog/author
/mymo/,
“Make ksma great again: The art of rooting android devices by gpu mmu
features,” https://i.blackhat.com/BH-US-23/Presentations/US-23-WAN
G-The- Art-of-Rooting- Android-devices-by-GPU-MMU-features.pdf,
2023.
“Mind the gap,” https://googleprojectzero.blogspot.com/2022/11/mind-t
he-gap.html.
“Arm mali csf: refcount-overflow-leading-to-physical-uaf bugfix in
r43p0,” https://project-zero.issues.chromium.org/issues/42451624,
2023.
“Reverse-engineering the mali g78,” https://www.collabora.com/news-a
nd-blog/news-and-events/reverse-engineering-the-mali-g78.html.
“Mali for all occasions: New gpus for all graphics workloads, use cases
and consumer devices,” https://community.arm.com/arm-community-b
logs/b/mobile- graphics-and-gaming-blog/posts/new-suite-of-arm-mal
i-gpus|
A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity oses,” in Pro-
ceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles, 2007, pp. 335-350.
A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision across worlds: Real-time kernel protection
from the arm trustzone secure world,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014,
pp. 90-102.
A. M. Azab, K. Swidowski, R. Bhutkar, J. Ma, W. Shen, R. Wang, and
P. Ning, “Skee: A lightweight secure kernel-level execution environment
for arm.” in NDSS, vol. 16, 2016, pp. 21-24.
“Kernel address space layout randomization [Iwn.net],” https://lwn.net/
Articles/569635/.
C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike, “Enforcing {Forward-Edge}{Control-Flow}
integrity in {GCC} & {LLVM},” in 23rd USENIX security symposium
(USENIX security 14), 2014, pp. 941-955.
H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and
N. Asokan, “{PAC} it up: Towards pointer integrity using {ARM}
pointer authentication,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 177-194.
Y. Yang, J. Tu, W. Shen, S. Zhu, R. Chang, and Y. Zhou, “kcpa: Towards
sensitive pointer full life cycle authentication for os kernels,” IEEE
Transactions on Dependable and Secure Computing, vol. 21, no. 4, pp.
3768-3784, 2023.
“Pan, privileged access never,” https://developer.arm.com/documentatio
n/ddi0601/2024-12/A Arch64-Registers/PAN--Privileged- Access-Nev
er.
“Supervisor mode access prevention [lwn.net],” https://lwn.net/Articles
/517475/.
“Introduce static_usermodehelper to mediate call_usermodehelper(),” ht
tps://patchwork.kernel.org/project/linux-hardening/patch/20170116165
044.GC29693 @kroah.com/.
P. Ning, “Samsung knox and enterprise mobile security,” in Proceedings
of the 4th ACM Workshop on Security and Privacy in Smartphones &
Mobile Devices, 2014, pp. 1-1.

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

https://www.counterpointresearch.com/insight/global-smartphone-apsoc-market-share-quarterly
https://www.counterpointresearch.com/insight/global-smartphone-apsoc-market-share-quarterly
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/
https://github.blog/author/mymo/
https://github.blog/author/mymo/
https://i.blackhat.com/BH-US-23/Presentations/US-23-WANG-The-Art-of-Rooting-Android-devices-by-GPU-MMU-features.pdf
https://i.blackhat.com/BH-US-23/Presentations/US-23-WANG-The-Art-of-Rooting-Android-devices-by-GPU-MMU-features.pdf
https://googleprojectzero.blogspot.com/2022/11/mind-the-gap.html
https://googleprojectzero.blogspot.com/2022/11/mind-the-gap.html
https://project-zero.issues.chromium.org/issues/42451624
https://www.collabora.com/news-and-blog/news-and-events/reverse-engineering-the-mali-g78.html
https://www.collabora.com/news-and-blog/news-and-events/reverse-engineering-the-mali-g78.html
https://community.arm.com/arm-community-blogs/b/mobile-graphics-and-gaming-blog/posts/new-suite-of-arm-mali-gpus
https://community.arm.com/arm-community-blogs/b/mobile-graphics-and-gaming-blog/posts/new-suite-of-arm-mali-gpus
https://community.arm.com/arm-community-blogs/b/mobile-graphics-and-gaming-blog/posts/new-suite-of-arm-mali-gpus
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://developer.arm.com/documentation/ddi0601/2024-12/AArch64-Registers/PAN--Privileged-Access-Never
https://developer.arm.com/documentation/ddi0601/2024-12/AArch64-Registers/PAN--Privileged-Access-Never
https://developer.arm.com/documentation/ddi0601/2024-12/AArch64-Registers/PAN--Privileged-Access-Never
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://patchwork.kernel.org/project/linux-hardening/patch/20170116165044.GC29693@kroah.com/
https://patchwork.kernel.org/project/linux-hardening/patch/20170116165044.GC29693@kroah.com/
https://patchwork.kernel.org/project/linux-hardening/patch/20170116165044.GC29693@kroah.com/

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]
[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

“mm/slub: allocate slabs from virtual memory,” https://patchwork.kern
el.org/project/linux-mm/patch/20230915105933.495735- 12- matteorizzo
@google.com/.

“Security-enhanced linux,” https://en.wikipedia.org/wiki/Security-Enh
anced Linux.

Y. Chen, Z. Lin, and X. Xing, “A systematic study of elastic objects
in kernel exploitation,” in Proceedings of the 2020 ACM SIGSAC
conference on computer and communications security, 2020, pp. 1165—
1184.

“How i use a novel approach to exploit a limited oob on ubuntu at
pwn2own vancouver 2024,” https://ulf383.github.io/slides/talks/2024_]
POC-How_I_use_a_novel_approach_to_exploit_a_limited_OOB_on_U
buntu_at_Pwn20wn_Vancouver_2024.pdf.

Z. Lin, Y. Wu, and X. Xing, “Dirtycred: Escalating privilege in linux
kernel,” in Proceedings of the 2022 ACM SIGSAC conference on
computer and communications security, 2022, pp. 1963-1976.

Q. Liu, W. Shen, J. Zhou, Z. Zhang, J. Hu, S. Ni, K. Lu, and
R. Chang, “Interp-flow hijacking: Launching non-control data attack via
hijacking ebpf interpretation flow,” in European Symposium on Research
in Computer Security. Springer, 2024, pp. 194-214.

“Usma: Share kernel code with me,” https://i.blackhat.com/Asia-22/
Thursday-Materials/AS-22-YongLiu- USMA-Share-Kernel-Code.pdf,
2022.

K. Zeng, Z. Lin, K. Lu, X. Xing, R. Wang, A. Doupé, Y. Shoshitaishvili,
and T. Bao, “Retspill: Igniting user-controlled data to burn away linux
kernel protections,” in Proceedings of the 2023 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2023, pp. 3093-3107.
Z. Guo, D. K. Le, Z. Lin, K. Zeng, R. Wang, T. Bao, Y. Shoshitaishvili,
A. Doupé, and X. Xing, “Take a step further: understanding page
spray in linux kernel exploitation,” in 33rd USENIX Security Symposium
(USENIX Security 24), 2024, pp. 1189-1206.

“Dirty pagetable: A novel exploitation technique to rule linux kernel,”
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html,
2023.

L. Maar, S. Gast, M. Unterguggenberger, M. Oberhuber, and S. Mangard,
“{SLUBStick}: Arbitrary memory writes through practical software
{Cross-Cache} attacks within the linux kernel,” in 33rd USENIX Se-
curity Symposium (USENIX Security 24), 2024, pp. 4051-4068.

“A collection of links related to linux kernel security and exploitation,”
https://github.com/xairy/linux-kernel-exploitation?tab=readme- ov-file,
“kernelctf,” https://github.com/google/security-research/tree/master/po
cs/linux/kernelctf.

“Arm memory tagging extension,” https://source.android.com/docs/secu
rity/test/memory-safety/arm-mte.

“gpu-rodinia,” https://github.com/yuhc/gpu-rodinia.

Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan, Z. He,
J. Cao et al., “Strongbox: A gpu tee on arm endpoints,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 769-783.

J. Lee, Y. Kim, J. Cao, E. Kim, J. Lee, and H. Kim, “Securing gpu
via region-based bounds checking,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, 2022, pp. 27-41.
H. Lee, H. Kim, C. Kim, H. Han, and E. Seo, “Idempotence-based
preemptive gpu kernel scheduling for embedded systems,” IEEE Trans-
actions on Computers, vol. 70, no. 3, pp. 332-346, 2020.

Y. Lee, C. Min, and B. Lee, “{ExpRace}: Exploiting kernel races
through raising interrupts,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 2363-2380.

Y. Lee, J. Kwak, J. Kang, Y. Jeon, and B. Lee, “Pspray: Timing {Side-
Channel} based linux kernel heap exploitation technique,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 6825—
6842.

E. Avllazagaj, Y. Kwon, and T. Dumitras, “{SCAVY}: Automated
discovery of memory corruption targets in linux kernel for privilege
escalation,” in 33rd USENIX Security Symposium (USENIX Security 24),
2024, pp. 7141-7158.

V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “{kGuard}:
Lightweight kernel protection against {Return-to-User} attacks,” in 21st
USENIX Security Symposium (USENIX Security 12), 2012, pp. 459-474.
V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking kernel isolation,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 957-972.

A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis,
and V. P. Kemerlis, “Fineibt: Fine-grain control-flow enforcement

15

[44]
[45]

[46]

with indirect branch tracking,” 2023. [Online]. Available: https:
/farxiv.org/abs/2303.16353

“Simple bug but not easy exploit: Roo4ng android devices in one shot,”
https://powerofcommunity.net/poc2023/Y ongWang.pdf.

“Arm mali (mostly ;=r34p0): page tables freed before pte removal,”
https://project-zero.issues.chromium.org/issues/42451466.

“Gpuaf - using a general gpu exploit tech to attack pixel8,” https://ww
w.scribd.com/document/798244931/GPUAF-Using- a- general- GPU-exp
loit- tech-to- attack- Pixel8|

https://patchwork.kernel.org/project/linux-mm/patch/20230915105933.495735-12-matteorizzo@google.com/
https://patchwork.kernel.org/project/linux-mm/patch/20230915105933.495735-12-matteorizzo@google.com/
https://patchwork.kernel.org/project/linux-mm/patch/20230915105933.495735-12-matteorizzo@google.com/
https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://u1f383.github.io/slides/talks/2024_POC-How_I_use_a_novel_approach_to_exploit_a_limited_OOB_on_Ubuntu_at_Pwn2Own_Vancouver_2024.pdf
https://u1f383.github.io/slides/talks/2024_POC-How_I_use_a_novel_approach_to_exploit_a_limited_OOB_on_Ubuntu_at_Pwn2Own_Vancouver_2024.pdf
https://u1f383.github.io/slides/talks/2024_POC-How_I_use_a_novel_approach_to_exploit_a_limited_OOB_on_Ubuntu_at_Pwn2Own_Vancouver_2024.pdf
https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-YongLiu-USMA-Share-Kernel-Code.pdf
https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-YongLiu-USMA-Share-Kernel-Code.pdf
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://github.com/xairy/linux-kernel-exploitation?tab=readme-ov-file
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf
https://source.android.com/docs/security/test/memory-safety/arm-mte
https://source.android.com/docs/security/test/memory-safety/arm-mte
https://github.com/yuhc/gpu-rodinia
https://arxiv.org/abs/2303.16353
https://arxiv.org/abs/2303.16353
https://powerofcommunity.net/poc2023/YongWang.pdf
https://project-zero.issues.chromium.org/issues/42451466
https://www.scribd.com/document/798244931/GPUAF-Using-a-general-GPU-exploit-tech-to-attack-Pixel8
https://www.scribd.com/document/798244931/GPUAF-Using-a-general-GPU-exploit-tech-to-attack-Pixel8
https://www.scribd.com/document/798244931/GPUAF-Using-a-general-GPU-exploit-tech-to-attack-Pixel8

	Introduction
	Background
	Mali GPU Memory Management
	Existing Kernel Mitigations
	Code injection mitigations
	Code reuse mitigations
	Data-only attack mitigations
	Attack surface reduction and isolation

	PhantomMap Exploitation Technique
	Threat Model
	Attack Insights
	PhantomMap Attack
	PhantomMap Advantages
	Applicable to almost all heap vulnerabilities
	Powerful code injection primitives
	Does not require capabilities or information leaks

	Mitigations Bypass
	Bypass code injection mitigations
	Bypass code reuse mitigations
	Bypass data-only attack mitigations

	Generality Discussion

	Identification Of Exploit Chains And Targets
	Identification Methodology
	Identification Results
	Exploit Chain Validation And Analysis

	Exploitability Evaluation
	Defense Against PhantomMap
	Limitations of Existing Potential Mitigations
	Lightweight Mitigation

	Related Work
	Kernel Exploitation Techniques
	Code Injection & Execution Techniques
	Mali GPU Exploitation

	Conclusion
	Ethics Considerations
	References

