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Abstract—Private Set Intersection (PSI) protocols allow a
querier to determine whether an item exists in a dataset without
revealing the query or exposing non-matching records. It has
many applications in fraud detection, compliance monitoring,
healthcare analytics, and secure collaboration across distributed
data sources. In these cases, the results obtained through PSI
can be sensitive and even require some kind of downstream
computation on the associated data before the outcome is revealed
to the querier, computation that may involve floating-point
arithmetic, such as the inference of a machine learning model.
Although many such protocols have been proposed, and some of
them even enable secure queries over distributed encrypted sets,
they fail to address the aforementioned real-world complexities.

In this work, we present the first encrypted label selection
and analytics protocol construction, which allows the querier
to securely retrieve not just the results of intersections among
identifiers but also the outcomes of downstream functions on the
data/label associated with the intersected identifiers. To achieve
this, we construct a novel protocol based on an approximate
CKKS fully homomorphic encryption that supports efficient label
retrieval and downstream computations over real-valued data. In
addition, we introduce several techniques to handle identifiers in
large domains, e.g., 64 or 128 bits, while ensuring high precision
for accurate downstream computations.

Finally, we implement and benchmark our protocol, compare
it against state-of-the-art methods, and perform evaluation over
real-world fraud datasets, demonstrating its scalability and
efficiency in large-scale use case scenarios. Our results show up
to 1.4× to 6.8× speedup over prior approaches and select and
analyze encrypted labels over real-world datasets in under 65
sec., making our protocol practical for real-world deployments.

I. INTRODUCTION

Modern data-driven workflows frequently necessitate col-
laboration among multiple independent data custodians. Such
collaborations are subject to stringent privacy laws and rigor-
ous security regulations. They are often only possible when
both privacy and utility needs are met for all the involved par-
ties. Across regulated domains, including finance, healthcare,
and the public sector, organizations must balance the utility of
collaborative analytics with statutory obligations to safeguard
personally identifiable information (PII) [1], [2].

In the financial sector, institutions typically have limited
visibility of their own customers’ financial activities [3]. This
fragmented view arises from the distribution of customer trans-
actions across numerous entities, including other banks, credit
card issuers, mortgage lenders, and mobile banking platforms.
This fragmentation degrades fraud controls as models operate
on partial views, inflating false positives and wasting analyst
effort, while manual investigations often extend for weeks to
months, delaying mitigation [4]. Collaboration that could close
these gaps is impeded by onboarding friction, rising fraud pres-
sure, and inter-institutional distrust, amplifying systemic risk.
Privacy-preserving, cross-institutional analytics that assemble
comprehensive risk profiles can reduce operational costs, mit-
igate financial risks, enhance profitability, and significantly
accelerate investigations. Realizing this, however, demands
strict compliance with financial and data-protection regula-
tions [5]–[7] and credible mechanisms to resolve competitive
sensitivities and institutional distrust. Similar challenges occur
in healthcare, where sensitive electronic records, imaging,
labs, and claims are siloed across hospitals, clinics, labs, and
insurers; interoperability gaps and HIPAA constraints limit
cross-institution visibility, impeding timely diagnosis, surveil-
lance, and care coordination [8], [9]. In real estate, where
brokers, lenders, insurers, and listing platforms each hold
sensitive financial and personal data, regulatory obligations
(e.g., GDPR/CCPA) and competitive sensitivities discourage
direct sharing, exacerbating fragmentation [10].

Moreover, such sensitive datasets can be massive, which
intensifies the complexity of ensuring utility without compro-
mising confidentiality. At scale, custodians delegate storage
and compute to the cloud [11] yet require designs that never
expose plaintext to the provider. Regulations compel protec-
tion of customers’ data [12], and providers likewise prefer
encrypted delegation to limit breach liability [13]. In sum, the
widespread fragmentation of massive sensitive data across in-
stitutions highlights the critical need for accurate and scalable
cross-custodian analytics that preserve data confidentiality and
comply with regulatory requirements.

In many scenarios, these datasets include both PII identifiers
and sensitive PII labels (or payloads) associated with them,
and the capability to privately compute over such labels can
unlock critical use cases [14]. For example, within anti-money-
laundering (AML) efforts that can span thousands of banks
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Fig. 1: Overview of encrypted label selection and analytics (ELSA) over-distributed (data, label) pairs. f designates a computation function
(e.g., logistic regression, ML model) over the labels of the matching data. Senders and receiver are connected using a LAN or WAN.

[15], institutions must securely identify PIIs such as account
numbers and confidentially analyze associated financial data
for risk scoring, all while preventing any disclosure of which
institution provided the matching data [16]–[18]. Similarly,
watchlist checks require agencies to securely query PII iden-
tifiers (passport numbers, national IDs) and privately retrieve
and compute on related PII intelligence (e.g., arrest records,
associates, travel histories) without revealing non-matching
records [19]. Recent commercial offerings (e.g., Duality’s
Collaboration Hub with Oracle [20]) signal strong market
demand for such encrypted analytics over fragmented finan-
cial datasets. In healthcare, providers or researchers require
privately linking patient identifiers across hospitals, clinics,
and laboratories and perform analytics on biomarkers (e.g.,
lab results) for disease-risk prediction and other diagnoses in
compliance with interoperability rules [8], [21]. To achieve
robust privacy-preserving analytics across large-scale, data-
fragmented environments, the aforementioned real-world ex-
amples highlight the need for a privacy-preserving protocol
that satisfies the following (high-level) requirements.

1) Label confidentiality. Sensitive label vectors (e.g., transac-
tion histories, credit data) linked to identifiers must remain
confidential end-to-end during selection and analytics.

2) Privacy-preserving analytics. Modern risk rating increas-
ingly relies on statistical and ML models [22]; the system
must support complex computations (e.g., inference, risk
scoring) on PIIs such as associated labels to the identifiers
without compromising privacy.

3) Data fragmentation. High-dimensional identifier–label
records are distributed across many custodians under inde-
pendent governance; secure federated selection and com-
putation must proceed without centralizing data and scale
with both the number of parties and data volume.

Querying large-scale, geographically distributed datasets is
computationally intensive but feasible in non-private settings
[23], [24]. Introducing strict privacy requirements, however,
significantly increases both the computational and communi-
cation overheads. In the canonical workflow, a querier starts
with a single unique identifier, say y (e.g., a bank-A/C number,
passport ID, etc.) and must answer one compound question:

1) Selection: Test whether any custodian holds identifier y.

2) Label analytics: On a hit, select labels(y) and compute
f(labels(y)); otherwise, abort.

The two-stage pipeline decouples selection from computa-
tion and runs expensive private analytics only on positively
matched records. Existing primitives—PSI, labeled PSI, circuit
PSI, PIR, and their variants—fundamentally stop at the selec-
tion stage. They either reveal the intersection or nothing, sup-
port only restricted (often symmetric) function classes and data
types, and cannot be directly lifted to encrypted analytics with-
out leaking information or lack native support for real-valued
payloads. Consequently, executing both stages—selection and
label analytics—under the aforementioned requirements and
with low computational and communication overhead lies
beyond current privacy-preserving techniques. These require-
ments jointly give rise to a multi-institution setting in which
many custodians hold encrypted (identifier, label) records and
the goal is to securely compute, across parties, an arbitrary
(potentially real-valued) function on the labels for a queried
identifier, if present, while revealing nothing about non-
matches or intermediate values and disclosing only the final
output to an authorized recipient. We refer to this functionality
as encrypted label selection and analytics (ELSA).

We illustrate the ELSA functionality to be realized in this
work with an AML use case in Figure 1. An investigator
encrypts a PII account identifier (e.g., ID 37) and requests
a risk score computed over sensitive label vectors held across
multiple institutions. Each institution delegates an encrypted
(identifier, label) table to the cloud under a common FHE
public key; label vectors encode AML features per the FFIEC
BSA/AML manual [25] (e.g., transaction anomalies, regula-
tory reports). The protocol (i) privately selects the identifier
across institutions, (ii) homomorphically computes the risk
function on matched labels, and (iii) returns only the encrypted
score, without revealing any raw labels.

Limitations of existing methods. There are several variants
of PSI supporting label retrieval or computation over them. For
instance, labeled-PSI [26], [27] allows the receiver to obtain
associated data (labels) of matched items held by the sender.
Circuit-based PSI [28]–[32] and its variants, e.g., private
matching for compute (PMC) [33] or private join and compute
(PJC) [34], [35], allow computations on the intersections.

However, existing protocols do not satisfy the requirements
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of ELSA. Labeled PSI necessarily reveals plaintext labels
to the receiver and therefore cannot support computations
over labels without disclosure. Circuit-based PSI can realize
generic computations via SMPC, but requires multiple rounds
of heavy interaction and does not natively support real-valued
arithmetic; as a result, complex real-valued tasks (e.g., ML
inference) incur substantial circuit and computational over-
head. Moreover, these constructions typically assume plaintext
storage of ID–label pairs and are designed for two-party
settings, making extensions to many servers with encrypted
data non-trivial. Recent work on PSI/PMC over encrypted
data (e.g., Koirala et al. [36] and Mouris et al. [37]) scales
to thousands of parties, but either does not support label
retrieval and downstream analytics, or only enables restricted
operations such as left joins.

Our Solution. In this work, we propose a one-step asyn-
chronous protocol for achieving the ELSA functionality that
computes on real-valued payloads with no extra receiver and
sender interactions. Our protocol supports arbitrary computa-
tions on the (encrypted) labels resulting from matched records,
which are distributed across a large number of senders, e.g.,
thousands or more. Existing methods fail in this setting either
due to FHE-depth constraints, precision degradation, or pro-
hibitive communication/compute costs, or do not support real-
valued payloads or large identifier bit-lengths (δ). Our protocol
offloads all heavy computations entirely to the resource-rich
senders. It natively supports real-valued downstream computa-
tions, enabling rich analytics on labels derived from matched
identifiers. Since these computations run under FHE across
multiple custodians, key management is a major concern. For
clarity, we initially assume a trusted third party (TTP) that pro-
visions key management and distribution, and later remove this
assumption by instantiating a threshold CKKS [38] scheme.
Threshold-FHE is orthogonal to our design, and any type of
threshold CKKS FHE is compatible with our protocol design.
We introduce two major novel techniques: 1) generalization
of the domain extension polynomial by Cheon et al. [39],
and (2) slot-wise windowing technique. These two techniques
enable our protocol to homomorphically evaluate the equality
(or if ) function over large domains with high accuracy and
low FHE depth to be able to handle billions of identifier-label
pairs for achieving ELSA. Based on these technical novelties,
along with several other optimizations, we build a protocol
for ELSA that is secure under a semi-honest adversary model.
The contributions of this work are summarized as follows:

• We design the first CKKS-based protocol for ELSA that
supports real-valued downstream computations without re-
quiring SMPC or receiver-side heavy computations.

• We propose a novel approximation for homomorphic equal-
ity testing over large domains (264 to 2128), which can be
efficiently evaluated while operating over small FHE presets.

• We propose several improvements and optimizations on the
building blocks of our approximation method, including
domain extension polynomials (Cheon et al. [39]) and slot-
wise windowing, which sharply reduces the unit cost for the

selection stage while ensuring high precision.
• We implement and evaluate our protocol on real-world

datasets, demonstrating end-to-end evaluation in under 65
sec. We achieve speed-ups of up to 1.4× to 6.8× over prior
state-of-the-arts in the selection setting. Our source code is
available at https://doi.org/10.5281/zenodo.17849201.

II. RELATED WORK

A. Private Set Intersection (PSI)

1) Circuit-PSI: Huang et al. [44] initially extended PSI
to circuit-PSI, which enables parties with private input sets
X and Y to privately compute any symmetric function over
the intersection X ∩ Y via a boolean circuit [28], [45]. This
computation allows symmetric functions such as cardinality,
sum over associated attributes, or threshold intersection, which
have many applications [46]–[49]. CHLR18 [50] extends FHE-
based PSI to a labeled setting and describes how labels
obtained after PSI can be masked and fed into a downstream
generic SMPC. However, they mostly describe circuit-PSI
over the labels in theoretical terms without any experimental
validation. Additionally, the SMPC methods proposed in their
work would induce a large communication overhead. Son et
al. [29] built a circuit-PSI protocol based on the works of
[26], [50], but their work only supports a few functions over
the intersection and does not operate on labels.

Mahdavi et al. [27] proposed PEPSI, where the client
sends an encrypted set, and the server computes an arbitrary
function over the intersection. Their computation operates on
the intersecting elements rather than their associated labels.
Other works, such as [30]–[32], [51], [52], extend circuit-PSI
to circuits on data associated with the intersection. However,
the functions they compute are aggregations or cardinality,
which are small circuits (nearly linear in the set size) to limit
overheads. These constructions could be used for general post-
intersection computation, but using them for more complex
functions with floating-point operations can be very costly in
terms of gate count and communication overhead.

2) Multi-Party PSI (MPSI): Kissner and Song [53] pro-
posed one of the first works to yield intersection, union, and
threshold functionality for MPSI, and subsequent works such
as Nevo et al. [41] built maliciously secure MPSI protocols
based on oblivious programmable PRFs (OPPRFs) and obliv-
ious key-value stores (OKVS). Similarly, the O-Ring and K-
Star protocols [42] are constructed from OPRFs and OKVS
in the semi-honest model, supporting arbitrary collusions but,
unlike our work, they do not provide encrypted-label analytics
and operate over plaintext sets.

Chandran et al. [40] proposed multiparty circuit and quorum
PSI protocols, which hide the intersection but evaluate a
function on that intersection and identify which elements in a
designated party’s set appear in at least k other parties’ sets.

Yang et al. [54] construct an unbalanced quorum MPSI
protocol in a semi-honest, honest-majority setting using the
BFV scheme; however, the server sets remain in plaintext
(encoded as polynomials), and downstream computation is
supported only via costly MPC circuits.
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TABLE I: Comparison with related works. Notation: L.R and L.P denote Label Retrieval and Label Privacy, respectively. Real-Valued Func.
denotes computational capability on input labels that are real numbers. − denotes not applicable. VAF and wDEP defined in Sections VI-A.

Protocol Building Blocks L.R L.P Computation over Label Real-Valued Func. Multi. Sender Scale Security Model
Ion et al. [35] OT + Hashing ✓ ✓ Not supported − 2-party Semi-honest

Lepoint et al. [34] OPRF + PIR + HE ✓ ✓ Inner-product PJC only − 2-party Semi-honest
Cong et al. [26] FHE + OPRF ✓ × Supported via MPC* × 2-party Malicious

Rindal et al. [32] OT (Vector-OLE) + Garbled circuit ✓ ✓ Supported via MPC* × 2-party Semi-honest (opt. malicious)
Mahdavi et al. [27] FHE ✓ ✓ Supported via FHE × 2-party Semi-honest

Son et al. [29] FHE + OPRF ✓ × Supported via MPC* × 2-party Semi-honest
Mouris et al. [37] Rerandomizable Encrypted OPRF ✓ ✓† Left-Join PMC only − 1000s or more Semi-honest
Koirala et al. [36] Threshold FHE × − − − 1000s or more Semi-honest

Chandran et al. [40] OPPRF + MPC (garbled circuits) × − − − Up to 15 parties Semi-honest
Nevo et al. [41] OPPRF + OKVS × − − − Up to 32 parties Malicious
Wu et al. [42] OPRF + OKVS × − − − Up to 100s Semi-honest
Vos et al. [43] EC-ElGamal + OKVS × − − − Up to 100s Semi-honest

This work VAF, wDEP, Threshold FHE ✓ ✓ Supported via FHE ✓ 1000s or more Semi-honest
∗MPC requires a higher number of rounds of communication, as compared to FHE.
†Intersection sizes leaked to the delegator party (sender).

Other works like [55]–[59] have built (multi-party) private
set union protocols, which is a problem setup different from
ours.

3) Delegated PSI: In delegated PSI, each user, including
the querying user, securely delegates their set to the cloud
server, and ultimately, the querying user learns the intersection.
Parties may not trust the cloud, which makes it similar to our
setting. Kerschbaum et al. [60] proposed one of the earliest
PSI protocols in which computation of the intersection is
outsourced to an oblivious service provider. Duong et al.
[61] presented PSI protocols to compute the cardinality of
intersections for privacy-preserving contact tracing, and other
works such as [62], [63] also operate under similar settings.
Despite the efficiency and multi-party support in these works,
there are still limitations for scenarios requiring long-term
storage and queries over fully encrypted data. These works
are specialized for only limited functions, similar to works
under circuit-PSI, and their security crucially depends on no
client colluding with the server or other clients, and they do
not scale easily in terms of multiple delegated cloud servers.

B. Private Membership Test (PMT)
The private membership test (PMT) is a cryptographic prim-

itive that allows a receiver to learn whether its singleton input
y is contained in a large dataset X held by a sender. Recently,
Garg et al. [64] have proposed a 2-round PMT protocol for
string equality based on the DDH or LWE assumptions. [65]
and [66] have also built PMT protocols based on the BFV
and cuckoo filters, respectively. Other works, such as [58],
[67]–[69], have also proposed various PMT protocols in the
two or multi-party settings but operate over limited privacy
settings for the datasets. Koirala et al. [36] recently proposed
a threshold-FHE-based private segmented membership test
(PSMT) protocol that aggregates responses from many servers
in a single homomorphic summation. However, their work is
limited to a yes/no membership result and does not retrieve any
associated labels of the matching results from the server(s).

C. Other Similar Methods
Some works have focused on performing a downstream

computation on the matched data after the match has been
established privately. Ion et al. [35] proposed PSI with car-
dinality over the matched data for aggregating ad conversion

rates. Lepoint et al. [34] defined the private join and compute
(PJC) functionality that enables secure computation over data
distributed across different databases. They expanded on [35]
by enabling computation over the intersection but keeping the
intersection itself hidden using Private Information Retrieval
(PIR) and differential privacy techniques. Recently, Chida et
al. [70] proposed a more communication- and round-efficient
construction than [34]. However, these works are tailored
towards computing a dot product of intersecting items and do
not support arbitrary computations. Furthermore, they do not
naturally extend to multi-party scenarios, and one would have
to orchestrate multiple pairwise PJC computations or integrate
them into an n-party SMPC [13].

Another line of work called private matching for compute
(PMC) [33] enables aggregate downstream computation on
the intersection. [37] and [71] improved upon the previous
works by enabling private record linkage in a delegated setting
and collaborative data analysis. One major limitation of these
works is that they mainly focus on simple computations,
like aggregation, and require additional SMPC for complex
computations. Vos et al. [43] address repeated membership
queries in cross-silo federations but reveal matching parties
and only return a plaintext yes/no flag.

We compare representative prior works with ours in Table I.

III. PRELIMINARIES

In this section, we summarize the key notations. y is the
receiver’s singleton query and sets Xi and ℓbi are data owner’s
sets. δ denotes the length of items in y, Xi and ℓbi. κ is
the slot-wise windowing parameter. n, N , D, η denote the
number of senders, FHE ring dimension, FHE depth, and batch
size, respectively. selecti, resLabi, permi, flagi and cℓbstat
denote the output of the selection stage, ciphertext containing
labels, ciphertext containing 1 in slot ρi, intersection indicator
ciphertext (contains only 1 or 0) and statistics ciphertext
respectively for the ith sender such that i ∈ {1, . . . , n}.

(Leveled) Fully Homomorphic Encryption: Fully Homo-
morphic Encryption (FHE) schemes allow computation on
encrypted data. The Learning With Errors (LWE) problem
and its variant Ring LWE (RLWE) underpin the security of
modern FHE schemes [72], [73]. Since the first theoretical
realization of FHE in 2009 [74], much work has been done
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to make FHE more practically usable. The most prominent
FHE schemes are BGV [75], B/FV [76], [77], CKKS [38],
and TFHE [78]. For improved performance, the encryption
parameters for FHE schemes are typically chosen to support
only circuits of a certain bounded multiplicative depth (leveled
FHE), which we use in our implementation. Our work uses
the CKKS scheme as we deal with elements and associated
data that are typically represented in floating-point arithmetic
and can be used for analytics via ML, logistic regression,
etc. Similar to B/FV and BGV, CKKS operates upon R =
Z[X]/⟨ΦM (X)⟩, where ΦM (X) is the cyclotomic polynomial
(xN + 1) of order M= 2N (cyclotomic index) and degree
N ∈ Z called the ring dimension. CKKS parameters include
the ring dimension, ciphertext modulus q, scaling factor ∆, and
the standard deviation of the error. In FHE schemes (except
TFHE), SIMD (Single Instruction Multiple Data) encoding of
plaintexts is possible, greatly increasing throughput. CKKS
allows encrypting N

2 complex values into a single ciphertext.
Threshold FHE: For threshold functionality, we use an α-

out-of-n threshold-FHE (thresFHE) scheme, where decryption
requires α parties [79]. A thresFHE scheme consists of a tuple
of probabilistic polynomial time (PPT) algorithms (Enc, Eval,
PartialDec), and two n-party protocols (KeyGen, Combine)
with the following functionalities:
• KeyGen(1λ, 1D, params)→ (pk, evk, {ski}i∈[n]) : Given a

security parameter λ and a depth D, each party Pi outputs a
common public key pk for encryption, a common evaluation
key evk, and a secret key share ski of the implicitly defined
secret key sk under some public parameter params.

• Enc(pk,m) → c: Given a public key pk and a message m,
the encryption algorithm outputs a ciphertext c.

• Eval(evk, f, {cki}i∈[v])→ c∗: Given an evaluation key evk,
a v-input function f that can be evaluated using at most
depth D and ciphertexts {ci}vi=1, the evaluation algorithm
outputs a new ciphertext c∗ which is an encryption of
f(m1, . . . ,mv), where ci ← Enc(pk ,mi).

• PartialDec(c, ski): Given a ciphertext c and a secret key
share ski, the partial decryption algorithm outputs a parital
decryption result pdeci.

• Combine(pk, {pdeci}i∈[I]) → m or ⊥: Given a public key
pk and a set of partial decryptions {pdeci}i∈[I] for an index
set I ⊆ [n], the combine algorithm returns the decryption
result m if |I| ≥ α otherwise ⊥.
During the partial decryption, a smudging noise from some

predefined distribution is added to hide the secret key shares
and the RLWE error accumulated from homomorphic opera-
tions [79], [80]. The key generation in thresFHE can be ac-
complished either using a trusted setup procedure to distribute
partial secret keys, which can be executed via methods such
as trusted hardware, or SMPC [80], [81]. We assume that the
decryption threshold α < n/2, i.e., honest majority setting.
We require that a thresFHE scheme satisfy standard notions
of compactness, correctness, and security [82].

Value Annihilating Functions (VAF): We use value anni-
hilating function (VAFs) [36] as a building block for doing
label selection and retrieval. It was defined by Koirala et

al. [36] and informally, for a bounded domain [−M,M ], we
say that the function f is a VAF if it satisfies f(0) = 1 and
f(x) ≈ 0 otherwise. From this property, we can observe that
for y ∈ [−M,M ] and X ⊂ [−M,M ], y ∈ X if and only
if
∑

x∈X f(y − x) > 0, i.e., checking whether the additive
aggregation of VAF evaluation results is zero or not.

IV. ENCRYPTED LABEL SELECTION AND ANALYTICS

In this section, we introduce our main functionality, en-
crypted label selection and analytics (ELSA), which performs
the following: (1) selects the encrypted labels over encrypted
and distributed identifier-label pairs, (2) processes downstream
computations over associated encrypted labels of the identifier.

Problem Formulation: We consider three types of entities:
data owner, sender, and receiver. The data owner handles
a dataset that consists of pairs (xi, ℓbi) ∈ I × L, where I
and L denote the universe sets for the identifiers and labels,
respectively. We assume the data owner who, either due to
resource constraints or operational preferences, delegates the
encrypted database to a designated sender rather than partici-
pating directly. This setup parallels delegated PSI, freeing the
owner from storing data locally or staying online [83].

Each sender is assumed to be a cloud server with strong
computational and storage capabilities. They hold a pair of
ciphertexts, one encrypting the unique identifiers and the
other encrypting the corresponding labels. Following standard
assumptions [84], [85], we assume the ordering of identifiers
matches the ordering of labels. We designate one of the senders
as the leader sender at the setup phase. The leader sender
is responsible for evaluating a pre-defined function f , which
takes encrypted labels held by each sender as inputs.

The receiver has access to a unique identifier as a query and
learns the evaluation result of f on the labels of the matched
elements. If a sender does not hold a matched identifier, it can
result in the corresponding label becoming a “null” denoted
as ⊥, and the sender’s labels would not contribute to the
function computation. For this reason, we let the receiver learn
separately whether the query is in the sender’s set or not.

Function Evaluation: Our definition covers several types
of functions analogous to existing circuit-PSI protocols. For
instance, we can implement PSI with cardinality (fCA) [31],
which returns the number of matched items, or quorum PSI
(fQR,τ ) [40] with a threshold τ , which returns a predicate
bit indicating whether the number of matched items surpasses
τ or not. If we set L = {0, 1}, ℓbi = 1 for all identifiers in⋃l−1

i=1 Xi, and ⊥ = 0, then the following circuits implements
each functionality, respectively.

fCA(L) =

l−1∑
i=1

ℓbi, fQR,τ (L) = 1

(
l−1∑
i=1

ℓbi > τ

)
where L = (ℓb1, . . . , ℓbl−1), which contains all the labels
required to compute the respective function(s). Similarly, we
can also implement several functionalities of PMC [33] or
PJC [34], such as average or (weighted) summation on the
associated labels.
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Parameters: The protocol involves n parties: S1, . . . ,Sn−1 senders and
a single receiver R. We denote the dataset outsourced to each Si as
Xi : i ∈ [n− 1]. Sets I and L contain the identifiers and corresponding
labels, respectively. A function f :

∏n−1
i=1 (L∪{⊥}) → Rm for m ∈ N.

Inputs:
• R: An identifier y ∈ I.
• Si: An encryption of a set Xi ⊂ I × L.

Outputs:
• R: Function evaluation result f(ℓb1, · · · , ℓbl−1) and the flag bit

b ∈ {0, 1}, where ℓbi is the associated data corresponding to y = xi.
If there is no matched identifier for the i’th sender, then ℓbi = ⊥.
In addition, b = 1 indicates y ∈

⋃
i Xi and b = 0 otherwise.

• Si: Outputs ⊥.

Fig. 2: Ideal functionality of ELSA

We emphasize that our notion of analytics on encrypted
labels is much different from the standard circuit-PSI ap-
proaches that compute functions strictly on intersection sets.
Traditional circuit-PSI works (e.g., [27]–[29], [31], [55]) focus
on symmetric functions over intersected items, which do not
align directly with our two-phase setting. In contrast, our
approach enables computation on matched real-valued labels,
i.e., L = R, reflecting practical use cases (see Section I). We
state the ideal functionality for ELSA in Figure 2.

Security Model: We provide a security definition in the
presence of a semi-honest setting where all parties act honestly
but remain curious. Our protocol can be strengthened to
achieve simulation-based security against a malicious receiver
and preserve receiver-input privacy against a malicious sender
using an OPRF pre-processing (CHLR18 [50]). Achieving full
malicious-sender security, however, would additionally require
ZKPs over large FHE circuits and is likely impractical in our
setting. To realize threshold functionality in the full protocol,
we use α-out-of-n thresFHE CKKS scheme where α < n/2.

We assume adversaries, potentially corrupting up to α − 1
parties, aim to learn either the receiver’s query y (unless the
receiver itself is compromised) or any sender’s set element
x ∈ Xi and label ℓ ∈ ℓbi. To show the security in the presence
of a semi-honest adversary, we need to show an efficient
simulator that can simulate all the views of the corrupted
parties, i.e., received communications during the protocol,
through the inputs and outputs of the protocol. We provide
the formal definition as follows:

Definition 1. Let F be a n-party functionality and Π be a n-
party protocol for parties S1, . . . Sn. We say that Π securely
implements F at the presence of semi-honest adversaries with
at most (α − 1) collusions if for every PPT adversary A
controlling at most (α−1) colluding parties among S1, . . .Sn,
there exists a simulator P such that for all PPT distinguishers
D: |Pr[D(VIEWreal) = 1] − Pr[D(VIEWP) = 1] ≤ negl(λ) ,
where VIEWreal is the view of the colluding parties during a
real protocol execution and VIEWP is the simulated view.

V. STRAWMAN PROTOCOL AND ITS CHALLENGES

We instantiate our basic protocol as a strawman protocol.
The core components of the strawman design are displayed
in Figure 3. We temporarily assume a trusted third party

Encrypted IDs 
Encrypted Labels Equality test on

IDs using VAF
Extract corresp.

labels for matched ID
Compute f  on
corresp. labels 

Encrypted Query ID
Stage 1 Stage 2

Fig. 3: Core components of ELSA protocol

(TTP) distributes the encryption, evaluation, and decryption
keys to data owners, senders, and the receiver, respectively
(this assumption will be removed in Section VII by introducing
thresFHE). Each sender receives encrypted tuples of unique
IDs and associated labels, (cxi

, cℓbi) from data owners via
a secure channel. cxi

is a encryption of xi ∈ Z (or hashed
δ-bit string), and cℓbi is its associated encrypted label. If
a sender’s set is larger than the batch capacity η, it stores
multiple FHE ciphertexts. Senders are also equipped with a
function f({ℓbi}i∈L; Θ) = z, where Θ can be a private value
(e.g., ML model’s private parameters [86]). The receiver holds
a single query element y ∈ R, which it replicates into all slots
of the ciphertext cy . The strawman protocol has two stages:

Stage 1 (Label Selection and Extraction): Upon receiving
cy from receiver, each sender Si homomorphically,
1) Computes the difference of the query ciphertext cy with its

ciphertext cxi component-wise to obtain diffi.
2) Applies a piecewise transform, value annihilating function

(VAF) over diffi that outputs 1 in each slot if (y = xi) for
that slot, and 0 otherwise to obtain selecti.

3) Multiplies selecti with cℓbi to obtain resLabi. If multiple
set encryptions exist, the sender sums all resulting resLabi

values into a single resLabi.
4) Transmits its resLabi to a designated leader sender.

Stage 2 (Computation on Labels and Result): At this
stage, the leader sender receives the extracted labels from all
other senders. The leader sums its own label ciphertext along
with others, producing a combined label-collection ciphertext
{resLabi}i∈L, where L is the set containing all the labels
associated with the senders’ element that matched query
y. The leader then homomorphically evaluates the function
f(resLabi; Θ) to obtain z, which is transmitted back to the
receiver. The receiver decrypts z to obtain the final value
(e.g., a numeric score), which can be a probability score or
classification threshold.

Challenges for the Strawman Design. The strawman
protocol provides a concrete realization of label selection and
analytics under FHE. However, there are several significant
challenges that must be addressed to ensure both correctness
and efficiency in the strawman design. First, the core label-
selection operation relies on a piecewise transformation (i.e.,
computing VAF), which homomorphically approximates the
indicator function 1x=0 which outputs 1 if x = 0, and
0 otherwise. In the previous constructions [36], [39], [87],
[88], coarse-grained precision sufficed during such approx-
imation, which served to only distinguish intersection vs.
non-intersection. Our setting requires a much higher-fidelity
approximation of 1s and 0s: once an ID is matched with
the query, the corresponding label must be recovered with a
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sufficiently small error so that further computations on these
labels remain accurate. This approximation challenge becomes
worst as the bit length of identifiers reaches 64 or 128 bits,
significantly increasing the computational and communication
overhead required to handle such large numeric domains.
Next, beyond aggregating private label retrieval, our protocol
evaluates a downstream function over the extracted sensitive
labels. For entries not present in the intersection, the protocol
must be able to exclude their label contributions altogether and
signal the receiver to exclude the computation result for non-
matched labels. We note that we focus on how to deal with
labels resulting from non-matching items and not on ensuring
the correct evaluation of the function itself. The verification of
the computation of the correct function is an inherently hard
problem in FHE and a separate line of research [89].

VI. OUR PROTOCOL

In this section, we present our techniques to solve the
challenges associated with the strawman protocol. First, we
motivate the label selection module of our protocol from
existing works [36], [38], [66] and introduce a novel ap-
proximation for VAF that achieves provably higher accuracy
with significantly lower computational and depth overhead
(Section VI-A). Second, we propose slot-wise windowing, an
efficient method for handling large set items (e.g., δ = 64 or
128), which outperforms directly designing a VAF for δ-sized
large domains (Section VI-B). This enables our protocol to
scale to billions of identifier-label pairs with negligible false
positives. Third, we present our method for label retrieval and
optimized downstream computation on matched identifiers,
achieving reduced memory overhead while revealing only the
final result to the receiver (Section VI-C). Finally, we introduce
a method to suppress labels from non-matching items, ensuring
they do not affect downstream computations in Section VI-D.

A. Novel Approximation for the VAF

The VAF plays a crucial role in our protocol. In particular,
it requires a VAF with indicator-level fidelity: it must evaluate
to (near) one at exact equality and to negligibly small values
elsewhere, so that slot-wise multiplication cleanly extracts
labels and preserves accuracy for downstream computation.
We present a novel VAF built from two independent compo-
nents: (i) weak domain-extension polynomials (wDEPs) that
compress wide input ranges without endpoint saturation and
(ii) bell-shaped functions that concentrate mass at zero. We
provide closed-form bounds on approximation error, multi-
plicative depth, and coefficient growth, enabling high-accuracy
selection for 64–128-bit identifiers under CKKS.

Relation to prior VAFs: Prior VAF-based constructions for
set-intersection (e.g., KTSJ24 [36]) target membership test and
they approximate a tanh-derived curve via Chebyshev polyno-
mials, then repeatedly square/scale the output and apply DEPs
for large domains, reporting empirically tuned parameters.
That line does not offer label extraction, encrypted real-valued
analytics, or analytic guarantees needed for our pipeline. In
contrast, our design is tailored to encrypted label selection and

computation, with provable accuracy and complexity bounds
and compatibility with the end-to-end CKKS setting.

1) Revisiting Domain Extension Polynomials: The DEP
D(x) shrinks the domain [−LnR,LnR] to a smaller one
[−R,R] by behaving D(x) = x when x ∈ [−R,R], while
D(x) = R (D(x) = −R, resp.) for x > R (x < −R,
resp.). Then for a function f defined over [−R,R], the
composition f ◦ D becomes an extension of f to a larger
domain [−LnR,LnR] by regarding all the value outside of
[−R,R] as f(R) or f(−R) depending on the input’s sign,
while maintaining (f ◦ D)(x) = f(x) for x ∈ [−R,R].
However, when designing VAFs, we observed that it is not
necessary for D(x) to behave like the identity function near
[−R,R]; in fact, the condition D(x) = 0 iff x = 0 is enough.
Instead, to facilitate separating zero and nonzero inputs after
applying the DEP, we focus on quantifying how far output
values are from 0 for nonzero inputs. From these motivations,
we propose a new definition of DEPs tailored for our purpose,
called weak DEPs (wDEPs), as follows:

Definition 2. For 0 < R1 < R2, 0 < T < R2, and ϵT >
0, we define D(R1, R2, T, ϵT ) as a class of polynomials p :
[−R2, R2]→ [−R1, R1] satisfying the following properties:

• p(x) = 0 if and only if x = 0.
• ϵT < |p(x)| < R1, ∀x ∈ [−R2,−T ) ∪ (T,R2].

We call R2

R1
a domain extension ratio. We say that the elements

of D(R1, R2, T, ϵT ) is wDEP from [−R2, R2] to [−R1, R1].

The key difference between our wDEP and the original
DEP [39] is that ours does not require the polynomial to
behave like an identity mapping, e.g., conditions from [39]
such as |x − p(x)| < ω|x|3 for some parameter ω > 0 and
0 ≤ p′(x) ≤ 1 for some small interval (−r, r). Instead, we
focus on quantifying the deviation of the function at the tail
part of the domain, i.e., outside of [−T, T ].

Construction of wDEPs: We can construct wDEPs by the
same domain extension method in the original DEP [39]; for
some base function D(x), it sequentially maps x 7→ LiD( x

Li )
for i = n− 1, n− 2, . . . , 0. For the extension ratio L > 1, the
following conditions are enough as a base function of wDEPs.

• D(x) = 0 if and only if x = 0.
• |D(x)| ≤ 1, ∀x ∈ [−L,L].
• ∃x1, x2 ∈ (−L,L) s.t. D(x1) = −1 and D(x2) = 1.
These conditions are closely tied to the domain extension

process, so we first briefly explain how it works. Let D(x)
be a base function and suppose that we wish to extend it
to [−Ln, Ln]1. Then for the input yn ∈ [−Ln, Ln], we
recursively compute yi ← LiD(yi+1

Li ) for i = n− 1 to 0. We
can observe that the input yi+1

Li of D(·) always take a value
between [−L,L] if D(z) ∈ [−1, 1] for any z ∈ [−L,L]. In
addition, we also note that D(ẑ) = ±1 for some ẑ ∈ (−L,L).
If this is not the case, i.e., maxx∈[−L,L] D(x) = M < 1,
then yi+1

Li ∈ (−Mn−i+1L,−Mn−i+1L). This implies that the
output values of the resulting wDEP collapse to 0 for all inputs,

1For simplicity, we consider the case R1 = 1.
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so we cannot select desirable parameters (T, ϵT ) for the tail
parts. To sum up, if all these conditions above hold, then we
can obtain a desired wDEP from the domain extension process.

For the choice of such a base function, we found that
D(x; k) = 3

√
3

2k
√
k
x(k − x2) satisfies all these conditions. The

first condition is straightforward as far as x ∈ (−
√
k,
√
k).

To analyze the second and third ones, we can observe that
the function takes extreme values at x = ±

√
k/3, which can

be obtained by a simple algebraic manipulation. In particular,
D(
√
k/3; k) = 1. Finally, D(x; k) monotonically decreases

at x >
√

k/3 and D(
√
k; k) = 0. From this information,

we can conclude that for max{
√

k/3, 1} < L <
√
k, D(x; k)

satisfies all these conditions as a base function while belonging
to D(1, L,

√
k/3, D(L; k)).

Separation Factor: To quantify how much the given wDEP
fwDEP ∈ D(R1, R2, T, ϵT ) separates values from 0, we define
min

{
|fwDEP(x)| : x ∈ [−R2, R2] ∩ (Z− {0})

}
as a separa-

tion factor, i.e., the closest evaluation value to 0 for nonzero
integer inputs. Since the image of fwDEP becomes the domain
of the subsequent function, and the input of wDEP is expected
to be an integer, the set {fwDEP(x) : x ∈ [−R2, R2]∩Z} de-
termines the input domain of the subsequent function defined
over the range [−R1, R1].

The separation factor can be efficiently calculated by uti-
lizing the properties of the wDEPs. We can observe that
|fwDEP(z)| ≥ ϵT whenever |z| ≥ T . Hence, we can break
down the range for measuring ϵsep by

ϵsep =

{
ϵT if T ≤ 1,

min{ϵT , ϵsep,T } otherwise

where ϵsep,T = min{|fwDEP(x)| : x ∈ [−T, T ] ∩ (Z− {0})}.
Here, ϵsep,T can be found by 2⌊T ⌋ evaluations of fwDEP(x).
Moreover, if we use f(x; k) the base function, then the result-
ing fwDEP becomes a monotonic function for [−T, T ] if we
select the smallest T for a fixed ϵT , i.e., ϵsep,T = fwDEP(1).

2) VAFs from Bell-Shaped Functions: For a wDEP
fwDEP ∈ D(R1, R2, T, ϵT ) with a separation factor ϵsep, we
can ensure that the inputs of VAF from nonzero inputs never
fall into (−ϵsep, ϵsep). Hence, for a function fBS defined over
[−R1, R1] such that the value outside the domain (−ϵsep, ϵsep)
is sufficiently small to 0, we can observe that the composition
fBS◦fwDEP behaves like the desired VAF. We formally define
such a function as a (B, ϵ)-bell-shaped function, where the
parameters ϵ and B correspond to ϵsep and the maximum
evaluation value outside (−ϵ, ϵ).

Definition 3. Let f : [−1, 1]→ [0, 1] be a function. For B, ϵ ∈
(0, 1), f is (B, ϵ)-bell-shaped if the following properties hold:

• f(x) = f(−x), f(0) = 1, and f(ϵ) = B.
• ∀x ∈ [−1, ϵ)∪(ϵ, 1], 0 ≤ f(x) ≤ B, otherwise f(x) ≥ B.

Transformation between Bell-shaped Functions: There
would be several ways to design bell-shaped functions. Among
them, we consider repeatedly applying the transformations
between bell-shaped functions. For example, the squaring

operation can be viewed as a transformation from (B, ϵ)-bell-
shaped function f(x) to another (B′, ϵ′)-bell-shaped function
g(x) = f(x)2 with B′ = B2 and ϵ′ < ϵ. However, such a
naı̈ve squaring results in a vanishing of B before obtaining
a sufficiently small ϵ. If B = 0.5 and we apply 12 squaring
operations, then the final B becomes B2n = 2−4096, which is
too small to handle in usual parameters in CKKS.

To address the above issue, we aim to find a transformation
that ensures B′ = B while reducing ϵ′ as much as possible. To
this end, we consider an affine transformation before squaring:
g(x) = (a·f(x)+b)2 for some parameters a, b such that a ≥ 1
and a+ b = 1. We can observe that the range of a · f(x) + b
in [−1,−ϵ) ∪ (ϵ, 1] becomes [b, a · B + b]. Thus, the bound
parameter B′ of g becomes max{b2, (a ·B + b)2}.

To reduce ϵ′ as much as possible, we first show that ϵ is
strongly related to the second derivative of f . If we consider
a Taylor approximation of f at x = 0, we obtain f(x) = 1 +
f ′′(0)

2 x2+O(x4). This gives an approximation of the solution
of f(x) = B as

√
1−B

−f ′′(0) . Hence, increasing |f ′′(0)| results in
reducing ϵ. On the other hand, with a simple calculation, we
can observe that g′′(0) = 2a·f ′′(0). This implies that we need
to select the largest possible a while maintaining the same B.
To this end, we can select a = 1+

√
B and b = −

√
B; in this

case max{(a ·B+ b)2, b2} = b2 = B. Note that this enforces√
B < 1 due to the definition, hence a < 2.
Depth-Efficient Transformation from Lazy Division: From

the above approach, one caveat is that computing (a · f(x) +
b)2 from f(x) consumes two multiplicative depths in CKKS.
Since a < 2 due to the parameter selection, squaring it two
times greatly increases the second derivative. However, when
a and b are rational numbers, we can mitigate this issue by
applying a lazy division on their denominators. More precisely,
let us denote a = 1 + d

q , b = −d
q for some d, q ∈ N and

d < q, g0(x) = f(x), and gn−1(x) = (a · gn−1(x) + b)2

for n ∈ N. Here, instead of sequentially computing g2(x) =
(a(a ·g0(x)+ b)2+ b)2 from previous functions, we can apply
the division by the denominator in a lazy manner to exploit the
fact that the scalar multiplication by an integer can be done
without any depth consumption. As we can save one depth for
each procedure except for the last one, we can compute gn(x)
from g0(x) with a total depth of (n+1). With this technique,
our transformation can increase the second derivative much
faster than squaring under the same depth consumption. More
precisely, we can observe that g′′n(x) = 2n(1 + d

q )
nf ′′(0),

while squaring (n + 1) times increases the second derivative
by a factor 2n+1. Thus, as long as (1 + d

q )
n ≥ 2, we can

expect that this method reduces ϵ much faster than squaring.
3) Putting Them All Together: By composing the wDEP

and bell-shaped function with appropriate parameters, we
finally construct the desired VAF over the given range. We
can ensure that the nonzero evaluation results are, at most,
the bound parameter of the bell-shaped function, which can
be precisely obtained in our approach. We summarize and
visualize our result in Theorem 1 and Figure 4, respectively.
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(a) Weak DEP (fwDEP) (b) Bell-Shaped Func. (fBS) (c) Final VAF from Composition (g = fBS ◦ fwDEP)

Fig. 4: Visualization of the proposed VAF construction. The red dots correspond to intermediate values for evaluating g(1)
and g(−1), and the red solid lines and green dashed lines correspond to ϵT and B, respectively. We can observe that for all
nonzero integers x in the domain, g(x) ≤ B holds.

Algorithm 1 SLOT WISE WINDOWING

Require: Bit length σ ∈ {64, 128}; windowing count κ ∈ N; integer
element e either in [ 0, 2σ − 1 ] or in [−2σ−1, 2σ−1 − 1 ].

Ensure: An array Windows = {c1, . . . , cκ}, where each ci is in the
domain

[
−2⌊σ/κ⌋−1, 2⌊σ/κ⌋−1

]
.

1: exponent ← ⌊σ/κ⌋
2: domain ← 2exponent

3: Initialize array Windows of length κ
4: for i← 1 to κ do
5: ci ← e mod domain // Extract lower exponent bits
6: e← ⌊e/domain⌋ // Reduce σ-bit integer by exponent bits
7: if ci > domain

2
then

8: ci ← ci − domain // Optional: map to negative range
9: end if

10: Windows[i]← ci
11: end for
12: return Windows

Theorem 1. Let fwDEP : [−M,M ]→ [−1, 1] be a weak DEP
with a separation factor of ϵsep and fBS : [−1, 1] → [0, 1] be
a (B, ϵBS)-bell-shaped function. If ϵBS ≤ ϵsep, then the com-
position g = fBS ◦ fwDEP of them has the following property:
g(0) = 1 and |g(x)| ≤ B for any x ∈ [−M,M ] ∩ (Z− {0}).

We will use the following components to implement the
proposed VAF. First, for the wDEP, we apply the domain
extension technique for the base function D(x; k) = 3

√
3

2k
√
k
(k−

x2). For the bell-shaped function, we apply our transforma-
tion f(x) 7→ ( 32f(x) −

1
2 )

2 several times on the function
f(x) = (1− 3

2x
2)2, which is a (0.25, 1√

3
) bell-shaped function.

We additionally square the result five successive times to
ensure that the final bound parameter is reduced to 2−64.
Parameter choices and presets are detailed in Appendix A,
and efficient CKKS evaluation algorithms for wDEP and bell-
shaped functions are given in Appendix A-B.

B. Supporting Long Items via Slot-wise Windowing

To achieve negligible false positives when encoding iden-
tifiers, such as when using hash-based representations, each
identifier must be encoded with a sufficiently large bit-length
to minimize collisions. For instance, using δ =64 or 128-bit
encoding provides a robust guarantee against such collisions
for a very large number of items. In previous PSI construc-
tions based on finite-field FHE [50], [90], they encountered
similar performance barriers for longer items (i.e., large bit-
lengths δ). As δ grows, FHE parameters must be increased

to avoid overflows and to preserve security, greatly increasing
overhead. CHLR18 [50] addressed this issue by splitting large
items into multiple smaller chunks and exploiting special
SIMD encodings [91] that handle larger bit length items
more efficiently. Even though we use CKKS, we face a
similar problem during the approximation as approximating
over large numeric ranges for high δ values is very costly,
demanding substantial computation and FHE depth. Our novel
VAF construction faces the same problem despite several im-
provements in approximation. As the depth of VAF evaluations
significantly impacts the concrete efficiency, both in terms
of communication and computation costs, it is necessary to
optimize this core and computationally intensive component.

To address this issue, we propose a windowing technique for
long items called slot-wise windowing. This method enables
us to design a VAF for large domains using those defined
over much smaller domains. For a precise description, let
us assume that the sender’s set elements (identifiers) are of
some bit length, say δ-bits. Our key strategy is to parse the
items into κ parts, so that each segment is represented by at
most ξ := ⌈ δκ⌉ bits. That is, we divide each identifier x into
κ components x1, . . . , xκ. Note that x = 0 if and only if
x1 = · · · = xκ = 0. Now, let fVAF,ξ be a VAF defined for
ξ-bit inputs. Then we can rewrite the previous condition by
x = 0 if and only if fVAF,ξ(xi) = 1 for all i = 1, . . . , κ. This
motivates us to build a function fVAF(x) :=

∏κ
i=1 fVAF,ξ(xi).

We can immediately check that this function is indeed a VAF
over the domain [−2δ, 2δ]. The choice of κ results in different
communication-computation trade-offs in our protocol. We
provide the algorithm for this technique in Algorithm 1.

We can observe that the above fVAF is more depth-efficient
than one directly built through techniques in Section VI-A,
even in smaller domains. This is because κ evaluations of
fVAF,ξ can be computed in parallel, and the final multipli-
cation only takes log2 κ depths. We note that more slots
are required to represent each set item as κ grows, which
reduces throughput. In Section VIII-B3, we show that with a
careful choice of κ, our windowing method provides robust
throughput even when dealing with smaller domains.

C. Label Retrieval and Downstream Computation

We first introduce a method to optimize the downstream
computation phase after the VAF-based label-retrieval on
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matched identifiers. Next, we address the key challenge from
Section V by eliminating labels from non-matching items.

As detailed in Section V, our VAF enables each sender
to efficiently extract labels by producing an indicator (1 for
matched ID) that extracts the label from a target slot of label
ciphertext via multiplication. The ciphertexts containing the
labels after the extraction stage are then sent to one of the
senders (leader). If there is a match, the label can reside in
any one of the ciphertext slots; otherwise, all slots contain
zeroes. To enable computations on these labels, the leader
sender needs to be informed about the location of the slot that
contains the extracted labels. Since the leader doesn’t know
which slot the label resides in, the leader can simply perform
log(η) rotations and additions to accumulate the values in all
slots of resLabi, such that each slot of resLabi contains the
label (in case of a match) with some loss in precision which
can be mitigated by an accurate VAF design. The leader can
then operate on n-label ciphertexts, resLabi, to compute any
function homomorphically.

We observed that if the leader is able to aggregate multiple
label ciphertexts into a single ciphertext, it can help reduce the
memory overhead during computation. Aggregation enables
the leader sender to operate on η slots of a single ciphertext
instead of operating on n FHE ciphertexts, which can be costly
in terms of memory. However, aggregating results label cipher-
texts by the leader is not trivial: naı̈ve additive aggregation fails
due to unknown and overlapping slot positions. We resolve this
with a technique we call slot isolation.

Optimizing Memory Overhead via Slot Isolation: First, each
sender locally performs the log(η) slot rotations and addi-
tions to assemble resLabi before transmission, parallelizing
the costly FHE operations and removing the leader as a
computation bottleneck. Next, each sender multiplies resLabi

by oneHoti plaintext vector, which has all zeroes except a
single 1 in slot i, yielding a ciphertext whose label for i-
th sender is isolated in slot i. If there are multiple types
of labels (say |L|), then oneHoti contains exactly |L| slots
containing 1. The leader and other senders are informed about
the number of multiple types of labels held by each sender
at the setup phase. The leader homomorphically aggregates
its own extracted label, along with all other resLabi, to obtain
z =

∑n−1
i=1 resLabi, which contains the label for the i-th sender

at the i-th or multiple |L| slots. Only one ciphertext z is
then used during the function computation, instead of n such
ciphertexts, reducing the memory overhead from n − 1 FHE
ciphertexts to one. This optimization requires (n − 1) < η
when each sender contributes a single label type; if senders
contribute multiple types, the number of distinct label types
must instead satisfy |L| < η. In practice, both n and |L| are
typically well below η in most practical multi-party scenarios.

D. Dealing with Labels from Non-Match IDs

In our construction, the leader sender may receive empty
ciphertexts (i.e., encryptions of the zero vector) when no
intersection occurs. Since label values are unrestricted in our
construction, a true label value of “0” may be indistinguishable

from the near-zero output of a non-intersection during the
function computation phase. On the other hand, when the
distribution of labels is far from 0, providing “0” value to
the function may result in an invalid computation outcome.
Thus, appropriate mitigation is required to ensure correctness
in the presence of empty ciphertexts.

We present two methods to preclude this issue. First,
each sender designates one slot in common and embeds the
intersection result into that slot, i.e., the summation of VAF
results across all the data. Then, after aggregation, the resulting
ciphertext contains the number of matches across all senders.
The leader sender may apply another VAF to this number.
With this idea, the receiver can decide whether the retrieved
evaluation value was derived from actual matches or not. In
addition, we also employ imputation, a common method in
statistical analysis for dealing with missing variables [92].
In this technique, the missing variables are replaced by the
statistics of the data, such as mean or median. In our scenario,
these values can be pre-computed and delegated by the data
owner. We observe that by viewing the evaluation result of the
VAF as an indicator, each sender can decide whether to use
the original label or the statistic value during label extraction.
Hence, function evaluation becomes robust to missing values
across senders, yielding reliable results.

VII. DISCUSSION

a) Eliminating TTP via Threshold FHE: We remove the
TTP assumption by instantiating our full protocol using an
α-out-of-n CKKS thresFHE with noise flooding to achieve
IND-CPAD security that tolerates up to α−1 colluding parties
for α < n/2. ThresFHE limits the full-exposure of the
decryption key to a single party and removes the single point
of failure by preventing any sub-threshold coalition from de-
crypting or attributing matches. It also strengthens data-owner
trust in delegated storage as no single party, including the
receiver, can recover plaintext ID–label pairs, and decryption
is possible only to an authorized threshold coalition.

b) Duplicate Identifiers and Label Types: Our model
assumes that duplicate IDs may exist across different senders’
sets but not within a single sender’s set. Data owners can
simply preprocess the ID-label pairs before uploading them to
the senders to achieve this, and this practice matches standard
data-cleaning pipelines that remove duplicated data and noise
before any privacy-preserving linkage [93]. Each sender packs
its retrieved label into one CKKS ciphertext, and the leader
evaluates f once per ciphertext, yielding O(n) cost regardless
of duplicate ownership. We permit each sender to include
multiple types of labels in their dataset, but all senders share
the same overall label schema (i.e., they hold labels of the
same types). Our framework supports variable label cardinality
per ID across different senders.

c) Provenance Security: Many works have discussed
scenarios where the origin of an intersecting item must remain
undisclosed, sometimes referring to it informally as “source
anonymity” or “provenance privacy” [36], [94]–[97]. We can
ensure provenance security in our protocol by permuting
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the slots in resLabi after the label retrieval, which hides
the mapping between the senders and the slots. However,
this makes the protocol inherently restricted to symmetric
functions (summation, cardinality, etc.). Prior works [28]
operate under this setting for computing over the intersec-
tion, thereby preserving item-level and provenance security.
However, supporting asymmetric or general-purpose func-
tions can offer significantly richer functionalities [14]. While
asymmetric function computation may leak provenance, such
leakage is limited to the leader. The receiver learns nothing
unless it colludes with the leader. In practice, the leader is
incentivized, both reputationally and economically, to preserve
the provenance security of senders and ensure correct output.
We provide a formal definition and proof for provenance
security, which requires that adversarial parties cannot link
items in the intersection back to the dataset owner(s), and the
leakage is only limited to the party who is responsible for
function computation. We provide the formal definition for
such security in Definition 4 in Appendix B-B.

Our complete ELSA protocol is detailed in Figure 7 (Ap-
pendix A) after incorporating the aforementioned optimiza-
tions and mitigations. We prove the protocol secure in the
semi-honest model against up to (α−1) colluding senders and
the receiver, with a simulation-based proof in Appendix B.

VIII. EVALUATION

A. Experiment Setup

We implement our protocol in C++17, using OpenFHE
v1.2.3 [98]. The end-to-end protocol is instantiated with
thresFHE CKKS and incorporates slot-wise windowing, slot
isolation, and imputation for non-match IDs. Our tests were
run on a single Intel Xeon(R) Gold 5412U server (512GB
RAM, Ubuntu 22.04). Each experiment was repeated 10 times,
and we report the average run-time. We used default thresFHE
CKKS parameters in OpenFHE to maintain 128-bit classical
security [99]. We assumed α = n/2 for thresFHE and FHE
ring dimension, N = 217. Unless otherwise specified, we treat
each dataset item as a hashed value of length δ = 64. We re-
implemented all of the compared works, [26], [27], and [36],
in OpenFHE under identical FHE parameter settings for a fair
comparison. Each sender’s computations are independent of
each other in the multi-sender setting in our protocol. Once
they receive the query ciphertext from the receiver, we assume
each sender processes its own encrypted data in parallel. For
noise smudging, we assume that senders perform a one-time,
offline static noise estimation using publicly available input
bounds based on real data and the evaluated VAF. This process
depends solely on query computation and incurs negligible
latency. In our LAN setting, we assume a 20 Gbps and 10 Gbps
bandwidth with a 0.2 ms RTT, while WAN setup assumes 1
Gbps and 500 Mbps bandwidths with an 80 ms RTT.

Since there is no direct comparison for the same end-to-
end functionality as ours, we compare only the selection stage
against ELSA to state-of-the-art baselines. We evaluate the
performance in terms of computational and communication
costs and scalability in terms of the number of senders and

TABLE II: Comparing methods to approximate VAF over a
single sender with 216. κ = 1 denotes slot-wise windowing is
disabled. Ctxt denotes FHE ciphertext.

Approx. Item Sender Receiver FHE CKKS Precision Time
Method Length (δ) Ctxt No. Ctxt (MB) Depth (bits) (s)

KTSJ24 20 1 113.3 52 30.0 151.6
κ = 1 20 1 86.0 39 25.1 28.87
κ = 2 20 2 54.0 24 36.0 11.37
κ = 4 20 4 44.0 19 42.6 8.20
κ = 5 20 5 37.0 16 39.6 5.60
κ = 10 20 10 33.0 14 42.1 5.48

set sizes for two variants of our protocol, (1) a selection
stage-only benchmark and comparison against state-of-the-art
prior works in Section VIII-B and Section VIII-B3, (2) a
labeled version (i.e., ELSA with downstream computations)
evaluation on three fraud-oriented datasets provided by Fraud
Dataset Benchmark (FDB) 2 in Section VIII-C. These datasets
were selected to evaluate the end-to-end performance of ELSA
under high label and entry counts. The IEEE-CIS Fraud
Detection dataset (IEEECIS) comprises around 590K card-not-
present transactions with 25 labels. The Sparkov (Simulated)
Credit Transactions dataset (CCTFD) includes 1.2 million
entries with 24 labels, and the Vehicle Loan Default dataset
(VLDP) consists of about 233K records with 44 labels. For the
downstream computations, we employed logistic regression,
a widely used model in applications such as fraud detection
and disease prediction. We assume senders have access to a
pre-trained logistic regression model σ(w⊤y + b) which is
parameterized by some private parameter Θ (e.g., a weight
vector w ∈ Rd and bias b ∈ R) in one instantiation.

B. Benchmarking the Selection Stage (Query Matching)

In this section, we benchmark the performance metrics of
the selection stage in ELSA, under varying numbers of senders
and encrypted sender set sizes. We first discuss the preference
criteria of the slot-wise windowing parameter κ. We then
outline end-to-end latency in terms of both computational and
communication, demonstrating our approach’s scalability.

1) Evaluating Optimal κ for Supporting Large Items:
Choosing optimal κ in the slot-wise windowing method for
a particular sender set size is essential in our method. In
Table II, we evaluate the impact of varying κ on commu-
nication, computation, and precision when approximating the
VAF over a 216-sized sender set with 20-bit elements under
a single-thread setting. The optimal value of κ in this setting
can be determined to be either 5 or 10 (highlighted gray).
κ= 5 reduces the sender storage while κ= 10 reduces the
communication cost. Both achieve the lowest latencies while
preserving high precision. For the evaluation of the datasets
with a larger amount of records and δ value (as in FBD), we
require different κ values when dealing with δ = 64 or 128.

As a baseline, we compare our optimization method against
a similar work (KTSJ24 [36]) that conducts CKKS-based
approximation for membership testing.

2) Scalability in terms of Number of Senders and Set
Sizes: The total latency (including communication cost) of

2https://github.com/amazon-science/fraud-dataset-benchmark
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Fig. 5: (a) Latency of ELSA’s selection stage for different number of senders (220 items per sender), (b) Latency of ELSA’s selection stage for different
total sender set sizes across senders (1024 senders); δ = 64 and κ = 8 in both (a) and (b). (c) Comparison of ELSA’s selection stage with prior works.
δ = 64 for all except KTSJ24, κ = 8 for ours. Figures are drawn on a log scale.

our approach for an increasing number of senders under
various network bandwidths is shown in Figure 5 (a). We
can observe that our core selection stage easily scales for a
high number of senders (up to 4096). For the applications
discussed in Section I, the institutions are often equipped with
high bandwidth LAN connections, and our total latency stays
below 400 sec under such connections. We show the total end-
to-end latency for various total sender set sizes in Figure 5 (b).
Our method can easily support up to 230 sender set size, and
the overall latency remains below 150 sec under LAN settings.

3) Comparison with State-of-the-art: In this section, we
compare our core functionality (query matching on encrypted
records) against various state-of-the-art works. We evaluate
the end-to-end latency (computation and communication) and
show how it scales with the increasing number of senders and
set sizes under a 10 Gbps LAN. Considering the existing works
that we discussed in Section II, [40], and [41], are non-FHE-
based works that support only a limited number of senders.
We primarily compare our method against three state-of-the-art
FHE-based works, Cong et al. [26], PEPSI [27], and KTSJ24.
In PEPSI’s client–server model, the client corresponds to
our receiver and the server corresponds to our leader sender.
PEPSI only encrypts the client’s queries, so query matching
is performed using ciphertext–plaintext operations. Note that
both Cong et al. and PEPSI operate on plaintext sender sets
in their protocols to enable various optimizations. Hence, we
keep the same plaintext setting for them. Therefore, KTSJ24
and ours are disadvantaged in this comparison since they are
run on encrypted sender sets (ciphertext-ciphertext operations).
We use ∆ = 59 for CKKS-based methods (ours and KTSJ24).
We set δ = 64 for Cong et al., PEPSI, and ours. For KTSJ24,
we set δ = 25 (the highest δ supported by their parameter
presets), although it favors them. We note that at δ = 25, ours
is about 44× faster than KTSJ24. Ours, Cong et al., and PEPSI
achieve a negligible false positive rate (2−30 to 2−40) from
hash collisions when using 64-bit (δ) hashed items across all
the sender set settings, while KTSJ24 exhibits non-negligible
hash collisions. We note that ours can be easily extended to
a higher δ, which will incur even smaller false positive rates
(< 2−100 when δ= 128). The end-to-end latency results are
shown in Figure 5 (c) and Figure 6, where the maximum
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Fig. 6: Comparison of ELSA’s selection stage with other works. The
number of senders is set to 1024. κ = 8 for ours. δ = 64 for all
except KTSJ24. KTSJ24 omitted at 231 (unsupported set size).

number of senders and set size is capped at 5000 and 231,
respectively, due to memory constraints.

Our method achieves significantly lower latency (3.5× −
6.8×) compared to Cong et al. and KTS24 in Figure 5 (c).
Compared to PEPSI, our protocol has higher latency when
the number of senders is less than 4096, but we operate on
fully encrypted datasets. However, ours gets faster (projected
dotted lines in Figure 5 (c)) as we cross 4096 senders. In
terms of varying sender set sizes shown in Figure 6, ours
is faster (1.4× − 5.4×) than other methods. PEPSI starts to
gain speed up over ours for larger set sizes since they operate
over plaintext sender sets and cannot support downstream
computations. As the sender set sizes exceed 229, ours must
hold more ciphertexts in memory (e.g., 256 for 231 entries)
and evaluate VAF on each of them simultaneously. These
evaluations are fully independent; the slowdown arises from
memory and parallelism limits of the hardware rather than al-
gorithmic constraints. With more cores and threads, we expect
this overhead to diminish, so scalability is primarily bounded
by system configuration for our protocol. In summary, our
protocol matches or outperforms state-of-the-art works that
operate on plaintext sets while additionally enabling secure
label retrieval and downstream analytics.

C. Experiments on Real-World Datasets

We benchmark our ELSA protocol with downstream logistic
regression on three FDB datasets. Since ELSA supports arbi-
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TABLE III: ELSA latency results for FDB datasets (per query).
Best computation times are in bold. T denotes the number of threads.
Sender count and storage refer to the number of senders and storage
needed for each sender, respectively. δ = 64 and κ = 8.

Dataset Sender Comm. Time (s) Online Latency (s)

Count Storage
(MB) 20 Gbps 10 Gbps 1 Gbps 500 Mbps T=1 T=2 T=4 T=8 T=16

VLDP 176 1291.8 9.9 19.8 197.5 395.0 168.1 150.8 92.2 62.6 63.2
CCTFD 960 738.2 53.9 107.9 1078.3 2157.4 128.6 104.1 66.9 63.5 69.8
IEEECIS 250 1291.9 14.0 28.1 280.7 561.4 163.0 147.9 88.3 58.9 62.9

TABLE IV: Runtime percentage of FHE operations for a single
query membership and computation in ELSA. κ = 8 and T=8.

FHE
Operation

Party
Runtime % Req.

DepthVLDP CCTFD IEEECIS
Query Generation Receiver 0.75 0.73 0.77 -
VAF w/ Windowing Sender(s) 56.0 57.93 57.58 23
Label Retrieval Sender(s) 12.38 6.82 12.78 2
Logistic Reg. / Flag Leader 30.51 34.17 28.49 13/17
Decryption Receiver 0.36 0.35 0.38 -

trary computations on encrypted real-valued labels and scales
to a very large number of senders, selecting a protocol as a case
for comparison is a complex task. We thus microbenchmark
ELSA for latency and communication overhead and discuss
some of the limitations of prior works for comparison in
our setting. Existing FHE-based approaches that enable post-
intersection computation, such as [26], [29], [50], operate
only over the intersection itself. Other protocols based on
SMPC or garbled circuits [31], [37], [51], [61], [71] typically
support only limited symmetric functions linear in the set
size, lack support for floating-point inputs, or incur prohibitive
communication costs for general computations. KTSJ24 does
not support label retrieval, and both PEPSI and Cong et al.
introduce substantial overhead for computing on encrypted
floating-point labels due to finite-field FHE, making them
unsuitable for the floating-point labels present in the FDB.

Table III shows our protocol’s online latency under dif-
ferent numbers of threads, communication cost, and storage
needs under varying counts of senders. We also display the
communication latency for δ= 64 with κ= 8 under various
bandwidths. We vary the number of senders per dataset based
on its label distribution and size to ensure balanced partitioning
across senders. Total latency for all three datasets remains
under 65 sec for δ= 64. Importantly, increasing δ to 128 adds
only a modest amount of additional costs for our protocol
(with κ = 16). The online communication remains the same
for 128-bit items, and latency is increased by about 15%,
41%, and 11%, respectively, for three datasets. Importantly,
increasing the item length to δ = 128 adds only a modest
amount of additional. We report the runtime percent of each
step of ELSA for 3 datasets in Table IV. The selection stage
(VAF evaluation) dominates runtime, accounting for over 50%
of end-to-end latency. We note that the number of senders is
kept consistent in both Table III and Table IV.

In terms of accuracy, our protocol matches plaintext-level
logistic regression up to 24 bits under CKKS. For compar-
ison, we evaluated CKKS performance on a division-heavy
task by implementing a privacy-preserving One-Sample T-test
(t = (x̄ − µ)/(s/

√
n)) on a synthetic dataset (N = 256,

N (0, 1)). We employed the scale-invariant inverse square root
approximation algorithm [100] to compute the standard devia-
tion inverse. The encrypted analytic achieved 16-bit precision
compared to plaintext baseline with a 10.53 sec latency. While
MPC (via secret sharing or full circuit-based PSI) can achieve
exact plaintext accuracy, we do not compare against such
baselines as they incur prohibitive communication overhead at
the sender scales targeted by ELSA [101]. MPC may be com-
petitive at a very small scale, but it becomes communication-
bound as the number of senders grows, whereas our protocol
is compute-bound and parallelizes efficiently across senders.

The leader sender additively aggregates the returned label
and flag ciphertexts and evaluates the final analytic function
in the end-to-end tests. While homomorphic addition itself is
inexpensive, profiling with /usr/bin/time, we observed
that at scale the leader’s cost is dominated by CPU and
memory pressure from handling large ciphertext aggregates
(peak memory reached around 65 GB for CCTFD), rather
than storage or network overheads. To reduce the load on a
single sender, several methods can be applied. Since addition is
associative and commutative, the aggregation can be restruc-
tured via tree-based mini-leaders, sharded leaders that each
handle disjoint sender/query subsets, or dynamically selected
leaders based on current load, thereby reducing single-leader
bottlenecks and improving scalability.

IX. CONCLUSION

In this work, we present an end-to-end protocol for en-
crypted label selection and analytics (ELSA) on distributed
datasets. It combines CKKS-based thresFHE with high-
accuracy VAF approximations to support large identifier do-
mains and real-valued labels, enabling encrypted label extrac-
tion and efficient downstream computations. We evaluate our
method on real-world fraud datasets and demonstrate that our
protocol is significantly better than prior work, achieving up to
6.8× speed-up, while maintaining scalability and high preci-
sion. In future work, we aim to explore multi-query workloads,
richer predicates, and additional system-level optimizations.
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APPENDIX A

A. Parameter Selection for VAFs

We provide a parameter selection method for our new VAF
via grid search, along with presets used for experiments.

The VAF is instantiated by tuning:
• wDEP parameters: expansion rate L, initial domain range
R, and number of domain extensions nDEP.

• Bell-shaped function parameters: number of transforma-
tions nT and number of squarings nSQ.

Suppose that our goal is to design a VAF for the domain
[−M,M ] with an error of at most ν. If we denote ϵsep and
(B, ϵBS) as the separation factor of the resulting wDEP and the
parameter for the resulting bell-shaped function, respectively,
then these parameters should satisfy the following conditions:

1) LnDEPR ≥M to ensure [−M,M ] ⊂ [−LnDEPR,LnDEPR]
2) B ≤ ν to ensure sufficient accuracy.
3) ϵBS ≤ ϵsep to ensure the condition of Theorem 1.
From these requirements, we can derive several relation-

ships between parameters. The first condition gives nDEP >
log2 M−log2 R

log2 L , which can be determined once R is chosen. For
the second condition, note that the error bound B depends on
nSQ, namely, 2−2nSQ+1

. Hence, 2nSQ+1 ≥ − log2 ν suffices.
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Parameters: Each sender i ∈ [1, n − 1] receives encrypted inputs (cxi , cℓbi ), where Xi and ℓbi are the input set and associated labels, and
y is the receiver’s input. λ: computational security param., δ: bit-length of elements; both are public. Slot-wise windowing parameter κ ∈ N
and two VAFs, f int

VAF and fagg
VAF, defined over domains [−2δ/κ, 2δ/κ] and [−n, n] and the bound error ν, respectively, are known publicly.

Senders posses f({cℓbi }i∈L; Θ), where Θ is some private parameter and L contains the labels associated with y.
1. [Parameters]

a. Threshold FHE: Parties, including the receiver and senders, agree on parameters (N, q, δ,D, α, λ) for the thresFHE CKKS scheme.
b. Key Distribution and Setup: α − 1 senders and receiver run a SMPC protocol ThresFHE.KeyGen that provides each partial key

shareholder i ∈ [1, α) a secret key share sk ∈ {sk1, sk2, . . . , skα}. Common public key pk and evaluation key evk are broadcast
publicly. Senders jointly agree on a permutation, obtaining permi containing 1 in ρi

th slot and 0 elsewhere. All parties, including data
owners, have access to pk and evk after this step.

2. [Encryption]
a. Each data owner j such that j ∈ {1, . . . , n−1}, organizes its input vectors x ∈ Xj and corresponding labels ℓ ∈ ℓbj into Rm. These

vectors are then divided into κ parts, which are then sequentially packed into κ plaintexts of size N/2, producing κ × 2m
N

plaintexts,
encrypted using ThresFHE.Enc. They also compute the statistics ℓbstat. Every data owner j encrypts its sets, and the statistics value
independently and forwards the resulting ciphertexts to the appropriate senders i ∈ {1, . . . , n−1}. After receiving the ciphertext pair(s)
(cxi , cℓbi ) and the statistics ciphertext cℓbstat , sender i may hold multiple ciphertexts if |Xi| > η.

b. Encrypt replicas of y: Receiver constructs a vector of length η, with each element y ∈ R. Then, it divides the vector into κ segments,
sequentially packs the first η elements into a plaintext, and encrypts it using ThresFHE.Enc. As a result, each consecutive κ slots of the
resulting ciphertext cy contains a single y value.

3. [Compute Intersection]
For each pair (cxi , cℓbi ), and the ciphertext cy , sender i uses ThresFHE.Eval with evk to execute the following steps:
a. Computes diffi = cy − cxi . Next, it applies a piecewise function selecti = f int

VAF(diffi) using evk and obtains selecti. If possessing
multiple set ciphertexts, the sender computes multiple selecti(s) in parallel.

b. Applies rotation-and-multiplication technique to to multiply consecutive κ slots in each selecti.
c. Homomorphically multiplies a masking vector that comprised by η

2κ
concatenations of (1, 0, . . . , 0) ∈ Rκ in each selecti.

4. [Label(s) Retrieval and (Optional) Permutation]
For each pair (cxi , cℓbi ) and selecti, sender i homomorphically executes the following:
a. Computes resLabi = selecti × cℓbi where cℓbi corresponds to cxi . If possessing multiple resLabi, the sender sums them to a single

resLabi.
b. Rotates and adds resLabi and selecti with log(η) operations to replicate intersection label and indicator for intersection in all slots. The

result from the latter is set to flagi. Then it computes resLabi + (⃗1− flagi)× cℓbstat where 1⃗ ∈ RN/2 is a vector filled with 1.
c. If f is a symmetric function sender computes resLabi × permi, where permi permutes, and isolates label in a single slot of resLabi.

Otherwise, sender ignores this step.
Finally, each sender transmits resLabi and flagi to leader.

5. [Computation on Retrieved Label(s)]
The leader sender obtains {resLabi, flagi}i∈(n−1) from all the senders and computes the following:

a. Computes resLab =
∑n−1

i=0 resLabi. Then, using evk and private parameter Θ, the leader computes z = f(resLabi; Θ), where f
operates labels located at the slots of resLab.

b. Computes flag =
∑n−1

i=0 flagi and homomorphically evaluates flag = fagg
VAF(flag).

The leader sender returns z and flag to the receiver and α− 1 senders for partial decryption.
6. [Partial and Final Decryption]

a. Partial decryption & smudging noise : Upon receiving z and flag, each partial key-share holder sender i ∈ [1, α) uses their secret
key share ski to partially decrypt them separately using ThresFHE.PartialDec, and introduces a smudging noise esmg to the partial
decryptions parti and partflagi . Each sender i computes parti and partflag and sends their decryption share to the receiver.

b. Final decryption: The receiver uses their partial decryption key ski and z and flag to execute ThresFHE.PartialDec and obtains their
partial decryption share parti and partflagi . Receiver combines their share with partial decryptions received from the α− 1 senders to
compute {parti : ski}i∈[0,α) and {partflagi : ski}i∈[0,α) using ThresFHE.Combine and pk to obtains the result vector of length η.

c. Interpretation of result: If the decryption of flag is 0, then the receiver rejects the result from the decryption of z. Otherwise, the
receiver confirms the result of f({ℓbi}i∈L; Θ).

Fig. 7: Full ELSA protocol without a Trusted Third Party

To ensure the third condition, we utilize numerical algo-
rithms to analyze each ϵsep and ϵBS. For the former, we lever-
age the fact that our base function D(x; k) = 3

√
3

2k
√
k
(k − x2)

is monotonic for the domain [−
√

k/3,
√
k/3]. In addition,

according to the domain extension process, ϵT = D(L) holds.
Thus, we conclude ϵsep = min{D(L), fwDEP(1)}. For the
latter, we estimate ϵBS by solving the root-finding problem
fBS(x) = B nearby 0. We found that a simple bisection search
method is enough for our purpose.

To sum up, once the domain [−M,M ], the precision ν, and
the base function for the wDEP are fixed, we can conduct a

TABLE V: Parameter Presets for Each Domain Size

Parameter 21 22 24 25 26 28 210 212 214 216 218 220

k N/A N/A N/A 17 17 17 6.75 6.75 6.75 17 17 6.75
L N/A N/A N/A 4 4 4 2.59 2.59 2.59 4 4 2.59
R 2 4 16 4 11 4 158.54 91.09 148.45 5112.73 73139 12583

nDEP 0 0 0 2 1 3 2 4 5 2 1 5
nVAF 4 7 4 3 4 4 8 7 8 16 20 16

newVAF F F T T T T T T T T T T
depth 7 10 13 16 15 19 22 25 28 32 35 38

grid search on parameters by the following pipeline.

1) Make a grid for possible R ∈ [1,M ]. Then we obtain the
corresponding nDEP to satisfy the condition (1).

2) Compute ϵsep from the given weak DEP parameters.
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Algorithm 2 Depth-Efficient Transformation DETBS

Require: Input x ∈ R and the number of transformations n ∈ N,
and transformation parameters a

q
, b
q
∈ Q

Ensure: Result y from applying x 7→ a
q
x+ b

q
n times.

1: Initialize Q← 1.
2: for idx from 1 to n− 1 do do
3: Compute x← (ax+Qb)2.
4: Update Q← Q2 · q2.
5: end for
6: Compute x← 1

Q·q (ax+Qb) and y ← x2.
7: return y.

3) Choose nSQ to satisfy the condition (2) and find the
suitable nT to satisfy the condition (3) through solving
the root-finding algorithm fBS(x) = B.

Once parameters are found, we select the parameter requiring
the smallest multiplicative depth. If there are ties, we select
one with a smaller nT because the transformation for the bell-
shaped function is cheaper than the domain extension. We
provide the parameter presets in Table V. The implementation
of the grid search algorithm can be found in our source code.

B. Algorithms

Fused DEP Iteration: We detail the algorithms for the
improved VAFs given in Section VI-A. We first present the
depth-efficient transformation method DETBS in Algorithm 2.

Theoretically, we can use algorithm DETBS to design the
whole VAF. However, we can observe that the intermediate
value in x exponentially grows with respect to the number of
iterations n, which may result in overflow during evaluation.
For this reason, we restrict the maximum number of fused
transformations per one DETBS, say nmax. When evaluating
the VAF with transformations n > nmax, we first divide n by
nmax to get the quotient and remainder, say (q, r). Then we
run DETBS with nmax q times and after evaluation, we run
DETBS with r on the output. We describe the above process
in Algorithm 3, called VAFfromBS.

Finally, we merge the VAFfromBS algorithm to the domain
extension process, with some tricks to reduce the depth. First,
we slightly tweak the order of computation when evaluating
the base function D(x; k) = 3

√
3

2k
√
k
x(k − x2), namely, y1 ←

k − x2; y2 ← 3
√
3

2k
√
k
x; y ← y1 · y2. In particular, we can

save more levels at the domain extension process, i.e., y 7→
LiD( y

Li ) because we can think of y
Li as 1

Li · Li+1D( ŷ
Li+1 ),

where ŷ is the input of previous domain extension processes.
That is, we can tweak the domain extension process as y ←
LD(y) with some careful scaling at the beginning. In addition,
multiplication by L at the end can be applied by letting y2 ←
3
√
3L

2k
√
k
x. Hence, we can compute the domain extension process

using 2 levels per iteration.
In addition, we also observed that when we combine the

weak DEP and our VAF, we can save one level when calcu-
lating (1− 3

2x
2)2 by multiplying

√
3/2 to y2 at the last domain

extension process. We describe the complete VAF construction
in Algorithm 4.

Algorithm 3 VAF from Bell-Shaped Function (VAFfromBS)
Require: Input x ∈ R, the number of transformations n ∈ N,

transformation parameters a
q
, b
q
∈ Q, and the maximum number

of fused transformations nmax.
Ensure: Result y from applying x 7→ a

q
x+ b

q
n times.

1: Compute q, r ∈ N such that n = q ·nmax+r and 0 ≤ r < nmax.

2: for idx from 1 to q do do
3: Compute x← DETBS(x, nmax,

a
q
, b
q
)

4: end for
5: Compute y ← DETBS(x, r, a

q
, b
q
).

6: return y.

Algorithm 4 VAF from Weak DEP and Bell-Shaped Functions
Require: Input x ∈ R, wDEP parameter k, number of extensions

nDEP ∈ N, extension rate L, base domain range R, and
nT , nSQ ∈ N for the number of transformations and squarings
for bell-shaped function.

Ensure: The VAF evaluation result f (n)(x; k).
1: Set y ← x

Ln−1R
.

2: for idx from 1 to nDEP do
3: Compute ỹ ← (k − y2)

4: If idx < nDEP, then set y ← 3
√
3

2k
√
k
Ly; else, y ← 9

2
√
2k

√
k
y.

5: Compute y ← y · ỹ.
6: end for
7: Set y ← (1− y2)2

8: y ← VAFfromBS(y, nT ,
3
2
,− 1

2
) :

9: for idx from 1 to nSQ do do
10: Compute y ← y2

11: end for
12: return y

APPENDIX B

We present the security proofs of the proposed protocol. Due
to space constraints, we only provide a sketch; full proofs are
available in our extended version [102].

A. Security Proof of the Proposed Protocol

We prove the security of our protocol, denoted πELSA, in
the semi-honest model. Our proof relies on the semantic and
simulation security of thresFHE (see [79], [82]). Informally,
these properties guarantee ciphertext indistinguishability under
the decryption threshold and the existence of a simulator for
partial decryptions, respectively. For more details, please refer
to Definition 5.4 & Definition 5.5 in [79] or Section 2.5 in [82].
With these definitions, we prove the following statement.

Theorem 2. Assuming the underlying thresFHE satisfies se-
mantic security and simulation security, πELSA is a secure im-
plementation of the ideal functionality of ΠELSA as described
in Figure 2 according to Definition 1.

Proof Sketch. We must show the existence of a simulator for
the four different types of adversaries possible:

1) A number of the senders {Sn} are corrupted, excluding
the leader and receiver.

2) A number of senders are corrupted {Sn−1}, including the
leader Sn , but the receiver is not corrupted.

17



3) The receiver R is corrupted along with a subset of the
senders {Sn}, which does not include the leader sender.

4) The receiverR is corrupted along with a subset of senders
{Sn−1} which does include the leader sender Sn.

As we assumed the setup is secure (via SMPC or trusted
setup) and the data owner remains offline after outsourcing,
we restrict our simulation to the querying and retrieval phases.
Due to space limits, we provide simulator sketches here; full
constructions are available in the extended version [102].

Case 1 & Case 2: In these cases, since the receiver R
is not corrupted, corrupted parties cannot see the decrypted
plaintext of the FHE evaluation circuit. That is, it is enough
for the simulator P to generate thresFHE ciphertexts that
appeared during the protocol, e.g., encrypted query cy , label
extraction results {resLabi, f lagsim}, or the function evalua-
tion result (z, flag). Here, thanks to the semantic security of
the thresFHE, all these ciphertexts are indistinguishable from
random, i.e., P can simulate them via random strings.

Case 3 & Case 4: In these cases, since R is now corrupted,
the simulator P should simulate the partial decryptions from
the function evaluation result feval and the flag bit b ∈ {0, 1}.
To this end, P conducts the following procedure:

1) P computes flagsim ← thresFHE.Enc(pk, b⃗), where b⃗
is a plaintext vector whose all slots are filled by b.

2) P computes zsim ← thresFHE.Encrypt(pk, feval).
3) P first randomly selects (α − 1) senders. Among

them, the corrupted senders will generate partial decryp-
tions {(pi, qi)}. On the other hand, for non-corrupted
senders, P generates random ciphertexts {(psim, qsim)}
and chooses the final ciphertext pair (p1, q1) so that
feval = thresFHE.Combine(pk, {pi}∪{psim}∪p1∪pR)
and b⃗ = thresFHE.Combine(pk, {qi}∪{qsim}∪q1∪qR),
where (pR, qR) is the receiver’s partial decryption.

Here, the third step is well-defined because at least one
selected sender by P is non-corrupted. Due to the simulation
security of the thresFHE, the simulated partial decryptions are
indistinguishable from those of real protocols. The remaining
communications are the thresFHE ciphertexts that will not be
decrypted during the protocol; thus, as was done in Case 1 &
Case 2, they can be simulated via random strings.

As in all cases, P can simulate the behavior of protocol
πELSA in the presence of at most (α − 1) colluding parties,
completing the proof.

B. Proving Provenance Security in the Proposed Protocol

To define the provenance security, we consider a game
where the adversary (colluding parties) attempts to distinguish
two protocols via the view of colluding parties: the normal
execution of the protocol and the permuted protocol when the
inputs are randomly permuted across senders. If the adversary
cannot distinguish these two cases, then we can ensure that
colluding parties cannot learn which party contributed which
data. We provide the formal definition in Definition 4.

Definition 4 (Provenance Security). Let Π be a n-ary protocol
for a receiver R and senders S1, . . . ,Sn−1 and ΠPerm,δ be a

protocol defined by permuting the inputs of senders through the
permutation δ over indices [n−1]. Then we say that Π satisfies
provenance security under the semi-honest model with at most
(α−1) collusion if the following inequality holds: For all PPT
adversary A and colluding parties P∗ ⊂ {R,S1, . . . ,Sn−1}
such that |P∗| ≤ α− 1, and a security parameter λ,∣∣∣∣∣∣∣∣

Pr
[
A(tr) = 1 tr ← View∏(P∗)

]
−

Pr

[
A(tr) = 1

σ
$←− Permn−1,

tr ← View∏
Perm,σ

(P∗)

] ∣∣∣∣∣∣∣∣ < negl(λ),

where Permn−1 is the set of all permutations over [n − 1],
ViewΠ(S) is the union of the transcripts received by parties
P ∈ S during the execution of Π.

We prove ELSA satisfies provenance security under at most
(α− 1) collusion when evaluating the symmetric functions or
the identity function. For the latter, we require that all the
labels have the same type; otherwise, the receiver can guess
the provenance through the type of the retrieved label.

Theorem 3. Let the function f be either symmetric or the
identity function. Then πELSA for evaluating f satisfies prove-
nance security with at most (α− 1) collusions.

Proof Sketch. Given the definition of provenance security,
considering the following two cases suffices:

1) The receiver R is not included in P∗

2) The receiver R is included in P∗

Case 1: In this case, since R is not corrupted, the view
of the adversary A includes ciphertexts only, and A cannot
access its decryptions. Thus, due to the semantic security of the
thresFHE, A’s view is indistinguishable from random strings
of the same length, and any permutation of inputs does not
change the distribution. This implies the provenance security.

Case 2: In this case, now A views the protocol outputs
(flag, z), along with the ciphertexts communicated during
the protocol. For ciphertexts that will not be decrypted, by
using the same argument as Case 1, we can ensure that the
permutation of the inputs does not affect the distribution. On
the other hand, for the protocol outputs, we first note that flag
contains a bit whether the queried item belongs to the sender’s
ID set, which is invariant with the input permutation.

For the function evaluation result z = feval, we can check
that input permutation does not leak provenance in our choices
of f as follows. If f is symmetric, then nothing to prove,
since the input permutation does not affect the output. In
contrast, if f is an identity function, which is asymmetric,
we can utilize the following observation: if a permutation
σ ∈ Permn−1 is applied, then Si contributes ρth

σi
slot of

resLab instead of ρth
i slot. That is, we can think of applying σ

as a group action over Permn−1 defined by ρ 7→ ρ ◦ σ. Since
this mapping is one-to-one, it preserves uniform distribution
over Permn−1. Since labels share the same type, permuting
them leaks no provenance. Thus, the views of corrupted parties
remain indistinguishable (with or without permutation).

In all cases, πELSA satisfies provenance security, and there-
fore, the protocol must satisfy provenance security.
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APPENDIX C
ARTIFACT APPENDIX

A. Description & Requirements

a) How to access.: The artifact for reproducing the
results in the paper is at https://doi.org/10.5281/zenodo.17849
201. The source code of our implementation and experiments
is available at https://github.com/nd-dsp-lab/elsa protocol.

b) Hardware Requirements.: Our implementation targets
a 64-bit CPU-only environment and does not require a GPU.
We recommend at least 16 GB RAM for larger domain sizes
(e.g., 216 and above), and 5 GB of free disk space for
OpenFHE build artifacts, binaries, datasets, and intermediate
outputs. Our experiments were run on a single Intel Xeon(R)
Gold 5412U server with 512 GB RAM. Note that homo-
morphic encryption runtimes and memory usage grow with
parameter choices and domain sizes, so additional memory
headroom may be needed for very large domains (e.g., 2128).

c) Software Requirements.: The implementation re-
quires a Unix-like environment (Linux or macOS), with
a C++17-capable toolchain (gcc or clang), cmake, and
make. The system must include OpenFHE v1.2.3 (from
openfhe-development.3), along with standard utilities
like git and common POSIX tools. We recommend a recent
Linux distribution (e.g., Ubuntu 22.04) for ease of installation
and compatibility. If a containerized workflow is used (recom-
mended), a recent Docker installation is also required.

B. Artifact Installation Instructions

We provide the native (non-containerized) instructions for
installing OpenFHE, compiling the ELSA protocol, and exe-
cuting both the individual modules and the complete end-to-
end pipeline. While native execution is supported, we strongly
recommend the Docker-based workflow for portability and
reproducibility. For containerized setup and usage details, refer
to the Docker installation instructions.

Install OpenFHE v1.2.3

1) Clone the OpenFHE repository:
git clone https://github.com/openfheorg/
openfhe-development.git
cd openfhe-development
git checkout v1.2.3

2) Build and install OpenFHE following the instructions in
that repository. This will install the headers and libraries
required by ELSA.

Build ELSA

After OpenFHE is installed and discoverable in your envi-
ronment, clone and build ELSA as follows:

git clone https://github.com/nd-dsp-lab/
elsa_protocol.git
cd elsa_protocol

3The OpenFHE library is available at https://github.com/openfheorg/open
fhe-development.

mkdir -p build && cd build
cmake -S .. -B .
make

If configuration and compilation succeed, multiple executables
will be produced. Out of these executables, we are primarily
concerned with these three:

• main_psmt: Runs the full ELSA pipeline, including
encrypted label selection and analytics across distributed
datasets. This corresponds to Section VIII-C that outlines
the detailed results.

• main_vaf: Runs and evaluates only the VAF compo-
nent, including weakDEP-based domain extension, it-
erative transformation, and cleanse steps. Appendix A
goes into more detail about the parameters used in this
executable (Table V) and how to tune them.

• main: Runs and evaluates the slotwise-windowing
method for varying δ and κ values. Section VIII-B1
discusses the detailed results of running this executable
with varying parameters.

C. Prepare Data

The directory ./data in the root must contain all prepro-
cessed datasets. The artifact expects these datasets to already
be cleaned and formatted according to the instructions in
./data/README.md. The README file describes how raw
datasets are converted into the inputs consumed by the pipeline
(for example, label domains, encodings, and partitioned shares
for the distributed setting). Place the resulting files directly
under ./data before running any experiments.

D. Experiment Workflow

We describe how to execute the experiments in the same
structure as in the paper. We separate the workflow into (a)
running the full encrypted pipeline, (b) evaluating the VAF
module, and (c) evaluating the slot-wise windowing method
in isolation.

Full Pipeline (main_psmt)

1) Parameter selection. Decide the dataset location and
encoding, then fix the command-line flags required by
main_psmt:
• -DBPath <str>: absolute or relative path to the

directory that contains the dataset.
• -DBName <str>: name of the dataset folder/file

under -DBPath.
• -isSim <int>: simulation toggle ( decide to sim-

ulate the results from other servers or not. If 0, then
it computes all the operations for all the participated
servers. Default is 1).

• -isCompact <int>: compact/space-efficient mode
toggle (0 or 1; decide to use a compressed represen-
tation of the labels).

• -numChunks <int>: set the number of ID cipher-
texts held by each sender (horizontal segmentation of
the database).
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• -itemLen <int>: set the length of IDs (1 or 2).
The actual length is itemLen × 64.

• [-scalingModSize <int>] (optional): scaling
modulus size (max 59); set only if overriding defaults.

All flags above are required except
-scalingModSize. Omitting any required flag
will terminate execution with an error.

2) Input preparation. Ensure the directory given by
-DBPath exists and contains the dataset named
by -DBName. The encoding of items must match
-itemLen (e.g., if -itemLen is 1, every item
should be representable in 64 bits). A typical layout is
<DBPath>/<DBName>/....

3) Run the pipeline. Execute main_psmt with the se-
lected flags. For example:
./main_psmt
-DBPath ./data
-DBName VLDP
-isSim 0
-isCompact 1
-numChunks 8
-itemLen 1
-scalingModSize 42

This runs the protocol in non-simulation mode on the
dataset VLDP found at ./data, using compact mode,
processing in 8 chunks with 64-bit items, and explicitly
setting the scaling modulus size to 42.

4) Collect outputs. The binary reports correctness checks,
timing for selection/aggregation, and parameter usage.

VAF-Only Evaluation (main_vaf)

1) Select VAF parameters. For a target domain size, collect
parameters for the iterative VAF transformations from
Table V.

2) Run the VAF executable. Execute:
./main_vaf [args...]

The VAF binary instantiates the wDEP base function (see
paper for exact arguments), applies domain extension, and
iterative transformations.

3) Record the output. The executable reports the exact
behavior of the VAF and wDEP function in the homo-
morphic domain as specified in the paper.

Slot-Wise Windowing (main)
This executable takes δ and κ as positional arguments,

automatically selects optimal VAF/wDEP presets and FHE
depth for those values, runs the slot-wise windowing method,
and prints a summary of results.

1) Parameter selection. Choose δ (so the domain size is
2δ) and κ (the number of parts each item is parsed into).

2) Run the pipeline. Usage:
./main <delta> <kappa>

3) Collect outputs. The program will produce a correctness
indicator for the proposed slotwise-windowing method
and how it syncs with VAF and wDEP to produce a high-
fidelity approximation of 1s and 0s.

Accuracy & Performance Measurements

The artifact should report that the encrypted analytics output
matches the corresponding plaintext computation on the same
data (up to around 24 bits). The artifact logs wall-clock
runtime for the main stages, such as encrypted label selection
and encrypted analytics. While absolute runtimes may vary
across machines, the qualitative scaling trend should match
the paper:

1) Runtime increases with domain size.
2) Required depth increases monotonically with domain size

(see Table V).
3) The VAF construction with newVAF = T reduces the

number of transformations needed compared to naive
squaring, while staying within feasible FHE depth in
OpenFHE.

Interpreting Table V

• The tuple (k, L,R, nDEP) defines the WeakDEP expan-
sion schedule, where R is the base domain size before
extension, L is the extension rate, and nDEP is the number
of DEP extensions applied.

• The pair (nVAF,newVAF) defines the iterative VAF trans-
formation policy. If newVAF = F, the update rule is naive
squaring f(x) 7→ f(x)2. If newVAF = T, we apply the
optimized transformation that improves approximation
quality without unnecessary multiplicative depth.

• The depth column gives the multiplicative depth budget
required for homomorphic evaluation at the given domain
size. This is the primary constraint for feasibility under
OpenFHE.
Parameter Estimator: For custom parameter settings, we

provide the parameter estimator written in Python, which is
based on standard Python backend libraries such as math.
This code implements the parameter selection methods speci-
fied in Appendix A. The estimator takes the values of k and L
and the desired domain range, returning a set of VAF parame-
ters that minimizes multiplication depth. For the target domain
size M , the parameter presets in Table V can be reproduced
by running the function DEPSelector(k, L,M) that is im-
plemented in the .ipynb file located under ./materials
directory. This function returns R,nDEP, ϵsep, nVAF, newVAF,
along with the total FHE depth and the supporting range.

Note that the function also allows custom parameters as
long as the parameter choice is consistent with our analysis in
Appendix A. For example, the code throws an error if L2 ≥ K
because our wDEP construction is undefined in this parameter
regime.
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