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Abstract—Residential IP proxy networks have reached un-

precedented scale, yet they pose significant security risks by

enabling malicious activities such as fraud, web scraping, and so-

phisticated cyberattacks while masking traffic behind legitimate

home addresses. Existing detection approaches rely primarily

on cross-layer Round-Trip Time (RTT) discrepancies, but we

demonstrate these methods are fundamentally flawed: simple

traffic scheduling attacks can reduce detection recall from 99% to

just 8%, rendering state-of-the-art techniques unreliable against

basic adversarial evasion. To address this critical vulnerability,

we introduce novel traffic analysis and flow-correlation features

that accurately capture the characteristics of gateway and re-

layed traffic, moving beyond vulnerable timing-based approaches.

We further develop CorrTransform, a Transformer-based deep

learning architecture engineered for maximum adversarial re-

silience. This enables two complementary detection strategies: a

lightweight approach using engineered features for efficient large-

scale detection, and a heavyweight deep learning approach for

high-assurance in adversarial settings. We validate our methods

through a comprehensive analysis of Bright Data’s EarnApp

using 15 months of traffic data (900GB) encompassing over

110,000 proxy connections. Our two-tiered framework enables

ISPs to identify proxyware devices with >98% precision/recall

and classify individual connections with 99% precision/recall

under normal conditions, while maintaining >92% F1 score

against sophisticated attacks, including scheduling, padding, and

packet reshaping where existing methods completely fail. For

content providers, our approach achieves near-perfect recall

with <0.2% false positive rate for distinguishing direct from

proxy traffic. This work shifts proxy detection from vulnerable

timing-based approaches to resilient architectural fingerprinting,

providing immediately deployable tools to combat the growing

threat of malicious residential proxy usage.

I. INTRODUCTION

Residential IP proxy networks have reached unprecedented
scale, with major providers like Bright Data operating over
72 million residential IPs across 195 countries [1]. These

‡Work done while at Qatar Computing Research Institute.

networks transform ordinary home devices into proxy nodes
that route external traffic through users’ internet connec-
tions, creating a massive distributed infrastructure that enables
clients to utilize residential IP (RESIP) addresses for web
scraping, ad verification, and bypassing geo-restrictions. To
expand their reach, providers increasingly embed proxy SDKs
into popular mobile apps (weather, gaming, and utility appli-
cations) effectively converting millions of smartphones into
proxy nodes, often without explicit user awareness [2]. This
explosion has created proxy networks of unprecedented size,
with providers like Bright Data [1] and Oxylabs [3] recruiting
millions of IPs worldwide.
Security and privacy issues. RESIPs pose significant se-
curity and ethical risks that extend far beyond traditional
proxy threats [4], [5]. Unlike traditional data center proxies,
RESIPs mask malicious traffic behind legitimate home IP ad-
dresses, making them particularly attractive to cybercriminals.
These services have already enabled sophisticated attacks: the
Midnight Blizzard attack on Microsoft leveraged residential
proxies for infiltration and evasion [6], and the DDoS attack
conducted on KARAPATAN (a human rights alliance) was
conducted through Bright Data’s IPs [7]. Moreover, mali-
cious actors have exploited proxyware for money laundering
schemes [8], click fraud [9], cryptocurrency mining [10], and
credit stuffing attacks [11]. Furthermore, these services claim
to provide user anonymity [12], but major providers like Bright
Data have been accused of selling data belonging to minors
scraped from social media platforms [13], potentially exposing
bandwidth-sharing users to legal consequences.

Service and content providers are increasingly interested in
detecting proxy connections, especially those used in activities
such as web scraping and automated traffic. Recently, both
Meta and X filed lawsuits against Bright Data over data
scraping [14], [15]. Additionally, YouTube has implemented
detection mechanisms to identify and mitigate click fraud
caused by bots operating through residential IP proxies [16].
While many companies deploy anti-scraping techniques to
protect their platforms, proxy providers continuously develop
evasion methods to bypass these defenses, creating an ongoing
arms race between detection and circumvention [17].

While traffic analysis has emerged as a promising detection
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approach, existing methods suffer from a critical vulnerability.
Recent research has focused on cross-layer Round-Trip Time
(RTT) discrepancies as a fingerprint for proxy traffic [18]–
[20]. However, we demonstrate that these RTT-based methods
are fundamentally flawed: proxies can trivially evade detection
through simple traffic scheduling attacks, causing detection
recall to plummet from 99% to just 8%. This devastating
vulnerability renders existing state-of-the-art techniques unre-
liable against even basic adversarial evasion, highlighting an
urgent need for more robust detection approaches.

To address this critical gap, we focus our analysis on Bright
Data, the world’s largest RESIP provider and its EarnApp
client. The Bright Data network, which originated from the
popular Hola VPN service infrastructure [21], [22], repre-
sents the most significant RESIP ecosystem, yet has been
excluded from previous traffic analysis studies [18], [19]. With
over 100 million users reportedly opted into EarnApp [23],
understanding its traffic patterns is crucial for developing
effective detection methods. We deploy multiple monitoring
nodes running EarnApp instances and systematically collect
encrypted traffic data under realistic conditions while ensuring
user privacy protection (Section X). Through this comprehen-
sive data collection, we provide the first detailed insights into
the operational characteristics of a major RESIP network, un-
covering previously unknown architectural patterns, gateway
behaviors, and traffic correlation structures that inform our
detection approach.

In this paper, we present a robust two-tiered approach for
RESIP detection that overcomes the fundamental limitations of
RTT-based methods through novel correlation-based features
and adversarially-resilient deep learning architectures. We ad-
dress three critical research questions from different network
vantage points: (RQ1) Can ISPs detect devices with RESIP
activities? (RQ2) Can an ISP determine whether specific con-
nections are relayed through proxies versus directly initiated
by users? and (RQ3) Can content providers (e.g., YouTube)
detect which incoming connections are proxy-based? Our solu-
tions enable effective detection across these diverse operational
scenarios. We further detail our contributions below:
• We conduct the first comprehensive traffic analysis of Bright

Data’s EarnApp, collecting over 900 GB of traffic data
across 15 months with more than 110,000 proxy connec-
tions, revealing novel insights into the operational patterns
of the world’s largest RESIP network.

• We are the first to empirically show a critical vulnerability
in existing detection methods, demonstrating that cross-
layer RTT features, the cornerstone of prior proxy detection
work [18]–[20], can be trivially defeated by simple schedul-
ing attacks, reducing detection recall from 99% to 8%.

• We develop novel traffic analysis and correlation-based
architectural fingerprinting features that exploit the intrinsic
relationship between gateway and relayed traffic streams,
an invariant across various proxy networks. We intro-
duce CorrTransform, a novel Transformer-based architec-
ture designed for resilience against adversarial manipulation
through self-attention mechanisms and specialized regular-

Fig. 1: RESIP architecture

ization techniques.
• We design and validate a practical two-tiered detection

framework for ISPs that first identifies devices running
proxyware with > 98% precision/recall, then distinguishes
individual relayed connections from legitimate user traffic.
We show the robustness of our approach: our framework
achieves 99% precision and 99% recall under normal con-
ditions, while maintaining > 92% F1 score under sophis-
ticated attacks, significantly outperforming strong baselines
including DeepCoFFEA [24].

• We demonstrate effective server-side detection for content
providers, achieving near-perfect recall (98%) with minimal
false positives (< 0.2% FPR) for distinguishing direct
user connections from proxy traffic, enabling robust fraud
detection. 1

In Section X, we discuss the privacy implications of our
work and situate it within end-user-protection context (e.g.,
detecting unintended proxy participation). We also elaborate
on the scope, and limitations of any deployment.

II. BACKGROUND AND RELATED WORK

A. Proxy providers.

Proxy service providers have successfully sourced millions
of residential IPs, as confirmed by multiple studies utilizing
infiltration experiments [5]. One common recruitment strat-
egy involves incentivizing mobile app developers to integrate
proxy SDKs into their applications, enabling them to monetize
their “free” third-party apps. This approach effectively trans-
forms users’ mobile devices into proxy nodes, leading to the
proliferation of hundreds of proxy-enabled apps across various
categories, including gaming and weather. Alternatively, some
proxy networks source IPs directly from real users by offering
financial incentives to run proxyware, allowing their devices
to participate as nodes in the network.

When EarnApp is installed, it operates as a proxy node,
establishing connections with control and gateway servers
simultaneously while awaiting incoming connection requests.
When a proxy network subscriber requests access to a website
such as x.com, the proxy node receives the request via
the gateway and initiates the connection on behalf of the
subscriber. Once the three-way TCP handshake is completed,
an end-to-end TLS handshake is established between the
subscriber and x.com. The proxy node then forwards encrypted

1Code and implementation available at: https://github.com/qcri/ProxyFeatu
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traffic, relaying packets upstream to x.com and downstream
to the subscriber through the designated gateway. Since the
TLS session is directly established between the subscriber
and the destination server, the proxy node simply acts as an
intermediary, forwarding encrypted traffic without decrypting
or modifying its contents. Figure 1 shows how the service
operates.

According to previous studies [2], [5], [18], other major
RESIP providers (e.g., PacketStream, IPRoyal, Honeygain)
share the same backconnect architecture as the one shown in
Figure 1. We refer to the connection between a proxy node
and a gateway as a gateway connection, and the connection
between the proxy node and a destination server (requested by
the subscriber) as a relayed connection. Existing works [18],
[19] highlight differences that are only implementation-level
between Bright Data and other providers: nodes may learn
gateway IPs via a fixed domain (PacketStream) or a control
API (IPRoyal/Honeygain), tunnels may use standard HTTPS
or a custom encrypted protocol, and DNS resolution may
use plaintext UDP or DoH (Honeygain). Essentially, these
variations do not alter the gateway→node→server relay topol-
ogy. Our approach exploits architectural coupling, time-binned
volume correlation between gateway and relayed flows, and
their session structure, rather than superficial provider-specific
details; thus, we believe our proposed methods including Cor-
rTransform could be adapted and customized across providers.

B. Traffic analysis
Although most internet traffic is encrypted and should

appear random to an observer, side-channel fingerprints can
still be extracted due to unique traffic patterns, server-side
signatures, and protocol configurations. This is done using
traffic analysis, a technique used to infer information from
encrypted traffic. Traffic analysis typically involves extracting
metadata such as packet sizes, sequences, inter-packet timing,
and flow patterns. These features are then used to train ma-
chine learning models that classify traffic and infer additional
insights, thereby diminishing the privacy protections offered
by encryption. This technique has been widely applied as a
privacy attack against various protocols, including DNS [25],
TLS [26]–[28], and VPN [29]. A well-studied application is
Website Fingerprinting (WF), where an attacker attempts to
identify the website a user (using Tor or VPN) is visiting
without relying on the destination IP [30]–[37].

In this work, we test our classification approach in the
face of sophisticated padding and timing attacks that aim to
introduce adversarial perturbations against key features such
as the cross-layer RTT and flow correlation features.
Proxies. Recently, there has been growing interest in using
traffic analysis to identify proxy traffic, and our research
builds on and complements this expanding body of work.
Xue et al. [38] leverage the concept of nested protocol stacks
inherent to proxying and tunneling and develop an n-gram-
based classification model to detect encapsulated TLS hand-
shakes. In a later work, Xue et al. [20] demonstrated that the
proxy architecture introduces a distinct discrepancy between

TCP-level RTTs and TLS/application-level RTTs, making it a
highly effective feature to fingerprint proxy connections. This
measurable inconsistency serves as a discriminator, enabling
the identification of traffic routed through proxies.
RESIP. For RESIP detection specifically, Chiapponi et
al. [19] aim to detect scraping bots that are based on RESIPs.
Similarly to Xue et al., they empirically show that RESIPs
introduce a measurable discrepancy between the TCP-level
RTT and the actual network delay observed at the application
level and build an RTT-based approach to detect RESIPs. More
recently, Huang et al. [18] builds on existing literature that has
explored the ecosystem of RESIPs [2], [5], [39]. They have
also performed traffic analysis on three proxy providers, and
show over 90% F1 and 4% FPR using as little as the first eight
packets of proxied and non-proxied connections. We show the
shortcomings of this approach in Section V. Moreover, their
study excludes the largest provider, Bright Data. They also use
published limited background datasets. In contrast, we collect
our both the background and the RESIP traffic datasets from
the same environments to reduce possible biases and ensure
more realistic experiments.

III. THREAT MODEL

We consider two types of defenders with varying network
visibility: internet service providers with a comprehensive
view and content providers (e.g., YouTube) with a more
limited perspective. The adversary is the proxy provider (e.g.,
Bright Data), who seeks to make their traffic indistinguish-
able from that of a regular user and is capable of applying
adversarial perturbations to the traffic.

A. Defenders: ISPs and Content Providers
The defenders’ primary goal is to accurately identify traffic

associated with residential IP proxy services being used for
malicious purposes. However, their specific objectives and
observational capabilities differ:
ISP. The ISP has full visibility into all incoming and outgoing
traffic from a proxy node’s device. Their goal is twofold: first,
to identify which devices on their network are running prox-
yware, and second, to distinguish which specific connections
from those devices are being relayed for proxy subscribers
versus those initiated directly by the device owner. This allows
them to monitor for potential abuse or violations of their terms
of service.
Content Provider. The content provider (e.g., a social media
platform or streaming service) has a more restricted view.
They can only observe the incoming packets at their servers.
Their goal is to determine whether an incoming connection
originates directly from a legitimate user or is being relayed
through a RESIP node. This is crucial for detecting fraudu-
lent activities such as view inflation, fake engagement, and
automated web scraping that undermine service integrity.

Both defenders are assumed to rely only on traffic metadata
(such as packet size, timing, and IP addresses) for detection.
The ISP cannot inspect packet content due to encryption, and
while content providers can, we assume this information is not
used.



B. Adversary: The Proxy Provider
The adversary is the proxy provider, whose main objective is

to evade detection by both ISPs and content providers, ensur-
ing their service remains operational and attractive to clients
who rely on it for anonymity or to bypass restrictions. As of
now, RESIPs have not been observed deploying sophisticated
network-level evasion techniques, likely because ISPs have not
yet implemented aggressive detection policies against them.
However, we assume an advanced and motivated adversary
with the following capabilities:
Traffic Manipulation. The adversary has full control over
the traffic between its gateway servers and the proxy node on
the user’s device. They also control the outgoing traffic from
the proxy node to the destination server.
Adversarial Perturbations. The adversary can implement
various attacks to mimic benign user traffic by manipulating
packet timing, size, and sequence. We assume they can lever-
age techniques like traffic scheduling and packet reshaping to
disrupt detection models. The specific adversarial attacks used
to evaluate our models are detailed in Section VI-C.

The adversary’s primary limitation is that they cannot
control or alter the legitimate background traffic generated
by the user’s device. Their manipulations are confined to
the proxyware’s own connections (gateway and relayed). The
challenge for the adversary is to blend their traffic seamlessly
with this uncontrollable, genuine traffic without degrading
their own service’s performance (e.g., by introducing excessive
latency).

IV. THE NETWORK BEHIND EARNAPP

To understand Bright Data’s RESIP ecosystem and facilitate
classification, we construct an elaborate testbed to collect the
three types of traffic: background, relayed, and gateway. We
then use the relayed and the gateway traffic to uncover the
structure, the components, communication patterns, and the
operational dynamics of the EarnApp ecosystem.

A. Data collection methodology
To collect traffic, we set up a testbed consisting of an

Android emulator, which replicates a real mobile environment
with predefined device models (e.g., Pixel device running
Android 11). Python scripts automate browsing, enabling
website visits and user interactions. We deploy Bright Data’s
EarnApp2 inside the emulator, creating a reproducible setup
that closely mirrors real-world conditions.
Challenges. Note that prior work on RESIP identification [18]
relies on external background traffic datasets that were not
collected within the same experimental setup. For accurate
comparison, it is essential to capture nonproxy and proxy
traffic simultaneously on the same devices and under identical
network conditions. While independent browsing datasets exist
and have been used in prior work, we argue that they are
collected in different environments and can actually introduce
discrepancies due to variations in network conditions, device

2We use v1.323.316

types, or geographic locations. To overcome these challenges
and ensure an environment consistent with RESIP setup,
we synthetically generate our own background traffic within
the same controlled setup, co-capturing both background and
proxy traffic simultaneously from the same device.
Browsing traffic. We simulate real-world user behaviors
by implementing various user profiles and usage loads. To
generate browsing traffic, we curated a targeted list of domains
from the Tranco list [40]. Tranco is a top sites ranking
method made specifically for research and hardened against
manipulation [40], and includes search engines, e-commerce
platforms, and social media sites. Crucially, streaming services
are also a key component of our curated list and are actively
visited in our simulations as they constitute a substantial
portion of overall internet traffic. After an initial filtering step
(e.g. removing 404 domains), we select 700 domains from the
top 1,000 Tranco list, and 300 are randomly selected from the
top 1001 to 1,000,000, following previous works [41].

Using this list, we simulate client behaviors with three
distinct user profiles that represent varying frequencies and
patterns of web browsing. These profiles range from light
to heavy and are executed using multiple tabs in Chrome3,
with randomized time gaps between site accesses to diversify
the simulated browsing patterns. Lighter profiles introduce
longer intervals between page loads (20 seconds to 5 minutes),
mimicking casual or infrequent browsing. Medium profiles
shorten these intervals to 20 seconds to 1.5 minutes, repre-
senting more regular activity. Heavy profiles simulate high-
frequency browsing, with intervals ranging from 2 to 20
seconds, capturing intensive or automated access patterns.
Furthermore, the browsing script performs simple scrolling
actions on each opened webpage, and randomly clicks on links
to other websites.

Given the upload nature of the gateway traffic, we consid-
ered the case where upload-heavy users’ connections might
get misclassified. Thus, we take separate measures to ensure
a reasonable portion of the traffic is upstream. Previous
measurements [42] [43] [44] show that upload traffic can
range from 6% to 8% Internet traffic. We thus aim for our
upload traffic to be around this range. To simulate this, our
emulator visits upload-specific websites with a 5% probability.
To emulate diverse upload traffic, our system considers three
distinct content types—images, video, and text—each modeled
with a different dataset. We use the LAION-400 dataset [45],
and the WebVid dataset [46] for image and video uploads,
respectively. For text uploads, we use a randomly-generated
string. Together, these datasets model a user engaging in
different upload circumstances, creating a more comprehensive
traffic dataset.
Limitations. While we dedicated serious effort in simulating
browsing traffic to serve as background, one limitation is
that the background data is synthetic and generated through
emulated client behaviors rather than live residential traces.
This design enables fine-grained manipulation of user activity

3We tried multiple other browsers and obtained similar results.



but inevitably abstracts away some real-world variability, such
as heterogeneous device mixes and background application
traffic. Importantly, co-capturing proxy and background flows
on the same link and varying user profiles preserves the
backconnect structure central to proxy providers.
Groundtruth. The collected traffic can be categorized into
three groups: gateway traffic, which involves the communica-
tion between the RESIP node and the proxy gateways; relayed
traffic, representing the traffic routed through the RESIP nodes
as part of the relay process; and background traffic, simulating
typical user browsing behavior. We analyze the captured
PCAP network traffic using Zeek [47], with a signature-based
detection method implemented to identify gateway traffic. This
approach focuses on distinctive patterns in server domain
names linked to Bright Data services. By compiling a detailed
list of domain signatures, including domain names such as
"Luminati," "brdtnet," and "lumtest," gateway-related traffic
is accurately identified as associated with Bright Data proxy
services. Once the proxy domain list is identified, the ssl.log
generated by Zeek, which records parsed TLS traffic details, is
used to extract key details such as server names, IP addresses,
and connection statuses. These details enable the distinction
between gateway connections and other traffic (background
and relayed traffic). This gateway enumeration is used only for
ground-truth labeling in our study; in realistic deployments,
frequent gateway rotation and limited server-side visibility
make such lists too brittle to serve as a reliable standalone
detection baseline.

To distinguish relayed and background traffic, we use
PCAPdroid [48] (v1.7.5), an application designed for network
traffic monitoring and analysis on Android devices. We utilize
PCAPdroid’s root capture capability, which allows us to cap-
ture network traffic directly from the network interface. This
approach provides us with a "raw" packet capture, collecting
real packets as they appear on the network interface, along
with the originating application (e.g. EarnApp or Chrome).
We root the Android image running in the emulator using the
rootAVD4 tool (v21.4).
Collected traffic. Over a 15-month period from April 2024
to July 2025, we sporadically collected a total of 696 two-hour
PCAPs, amounting to around 900 GB of network traffic. This
dataset comprises of more than 120k gateway connections,
110k relayed connections, and around 6 million background
connections. From this collection, we randomly selected 100
PCAPs to form the analysis dataset DA, while the remaining
PCAPs were used to construct dataset DE . The experiments
dataset DE was randomly partitioned into training, validation,
and test sets comprising 50%, 20%, and 30% of the data, re-
spectively. Table I describes the collected dataset, and Table II
summarizes the breakdown of the connections in DE .

B. Operational Characteristics of EarnApp
For our analysis, we used the previously described DA

dataset. On average, each PCAP from DA contains approxi-
mately 201 gateway connections and 110 relayed connections.

4https://gitlab.com/newbit/rootAVD

TABLE I: Summary of the collected RESIP datasets
Dataset Description

DA
This dataset is used for analysis. It consists of
100 two-hour PCAPs .

DE

This dataset is used for experiments in RQ1 and RQ2.
It consists of 596 two-hour PCAPs, including
background, relayed, and gateway traffic.

DS

This dataset is used for experiments in RQ3. It consists
of direct and proxy-based traffic to 100 domains. The
dataset contains 10,000 background connections and
1,643 relayed connections.

Fig. 2: CDF of gateway connection durations

This dataset provides a representative sample of network
activity, allowing us to gain insights into proxy behavior.
Proxy gateways. Recall that when an EarnApp instance
is deployed, it joins the network by first connecting to its
gateway servers, awaiting any forwarded connection requests
from network subscribers. We first extracted those gateway
connections for analysis. We observed that Bright Data’s
proxy network consists of two types of gateway connec-
tions. The first category consists of short-lived connections,
exhibiting low data transfers and short durations. They appear
to primarily facilitate network management or bootstrapping.
The destination domains are associated with Bright Data
and include: perr.h-cdn.com, perr.lum-sdk.io,
perr.l-agent.me. Many of these domains contain "brd"
(Bright Data) and "lum-sdk". (Bright Data was previously
known as Luminati Networks.) The second category of gate-
way connections appear to occur after the establishment
of the first category and have longer durations and higher
data transfers. By examining traffic patterns across mul-
tiple PCAPs from DA, these appear to be used to up-
load data from the proxy node towards the subscriber. The
domains associated with these data-transferring connections
often follow patterns such as [IP].brdtnet.com or
[IP].luminatinet.com).

Figure 2 presents the CDF of connection durations (in
seconds) for the second category of (data-transferring) gateway
connections. The CDF reveals distinct patterns in session
behavior. The sharp increase near 600 seconds (10 minutes)
indicates that the majority of data-transferring gateway con-



Fig. 3: Histogram of gateway IPs (used > 1)

nections (over 70%) adhere to a fixed session duration, likely
enforced by predefined limits or time-based policies. This
pattern suggests that most Bright Data connections remain
active for around 10 minutes before being reset, and that
Bright Data’s infrastructure is configured to automatically
rotate gateway IPs at the end of each 10-minute session.
Furthermore, in the DA dataset, we identified 72 unique (data-
transferring) gateway IPs, 32 of which were reused across
multiple sessions. Figure 3 shows the histogram of gateway
IPs that appeared more than once. Some IPs were reused up to
1,200 times—while others were only reused a few times. This
indicates a non-uniform reuse strategy, where certain gateway
IPs are heavily favored.

Furthermore, we identified a pattern of periodic heartbeat
or keep-alive packets exchanged between the data-transferring
gateway and the proxy node. Following the TCP handshake
and the data transfer, the connection remains open, during
which small TLS-encrypted packets are exchanged approx-
imately every 60 seconds. To determine their nature, we
examined the TLS records for indications of standard heart-
beat messages, typically indicated by TLS content type 24
(Heartbeat) as defined in RFC 6520. However, no such content
type was found. In addition, we analyzed the traffic for TCP-
level keepalive mechanisms, which involve the transmission of
packets with the ACK flag set and zero-length payloads. Our
analysis revealed no such packets. Given the absence of both
TLS Heartbeat messages and TCP-level keepalive indicators,
we infer that the observed periodic messages are likely part of
a proprietary heartbeat or keepalive mechanism employed by
the Bright Data protocol to maintain the persistent connection
between the proxy gateway and node.

Furthermore, the analysis of collected traffic over a two-hour
PCAP window reveals that proxy activity involves multiple
simultaneous gateway connections. Figure 4 presents the CDF
of the number of gateways opened within a 0.05-second win-
dow per PCAP. Our observations reveal that multiple gateway
connections—typically ranging from three to six—are initiated
within an extremely short time frame, often less than 0.05
seconds. Although these connections are established and active
concurrently, not all of them relay data simultaneously. For
instance, in cases where three gateway connections were es-
tablished concurrently, only 58.6% were actively transmitting

Fig. 4: CDF of the number of gateways opened within 0.05s
window per PCAP

Fig. 5: CDF of relayed connection durations

data on average, while the remaining connections remained
idle. This approach of initiating multiple gateway connections
is likely employed to enhance the proxy system’s reliability,
facilitate load balancing, or enable shared utilization among
multiple subscribers.
Relayed connections. Our analysis of relayed proxy con-
nections across the DA dataset reveals key characteristics of
the network’s behavior. We observed a total of 5,409 relayed
connections, which accessed 246 unique domains, with an
average of 54 relayed connections per PCAP. The most visited
domains span various categories, including social media (e.g.,
TikTok, Instagram), shopping (e.g., Walmart, Kohls), and news
websites, highlighting diverse online activities by proxy users.
The average connection duration is 28.75 seconds. However,
as shown in Figure 5, the median duration was approximately
9 seconds. The long tail shows that 10% of the connections last
longer than 100 seconds. Additionally, the average volume of
relayed connections was 62.89 KB. This combination of short
duration and low volume suggests that most of these sessions
involve smaller data transfers, such as page fetches or web
scraping attempts.
Relayed domains. Following the footsteps of previous
work [2], [5], we employed VirusTotal [49] (VT) to evaluate
the maliciousness score of the domains visited by relayed
connections through our deployed proxyware. We extracted
all visited domains in datasets DA and DE (described in
Table I). VT is a comprehensive online tool that aggregates



Fig. 6: CDF of the VT scores of relayed domain

Subscriber Gateway Node Server

Forwarding Request
Forwarding Traffic

TCP SYN
TCP SYN-ACK

t1
TCP ACK

TCP Tunnel
Established

TLS ClientHello
TLS ServerHello, Certificate

TLS ServerHelloDone
t2

TLS ClientKeyExchange t3

TLS ChangeCipherSpec, Finished
TLS ChangeCipherSpec, Finished

TLS Session
Established

Fig. 7: TCP/TLS handshake sequence diagram illustrating the
RTT differences across protocol layers in a RESIP connection.
The TCP session terminates at the Node, while the TLS
session extends end-to-end from Client to Server, creating a
measurable timing discrepancy easily observable from RTT
encapsulated in time differences such as t2↑ t1 corresponding
to the first two download packets.

data from multiple antivirus and security vendors, each of
which may flag a domain as suspicious or malicious. The
VT score is the number of vendors/engines that flagged a
given domain as malicious/suspicious. Our analysis revealed
that, out of 4,397 investigated relayed connections, 4.88% of
the domains, i.e., 215 domains, were identified as suspicious,
each having a community score of at least 1. Figure 6 shows
the CDF of the VT community score of the relayed domains.
The results indicate that 95% of the domains visited have a
score of 0, while approximately 3% of the domains have a
VT score of 1, suggesting a lower but notable suspicion level.
1% of the domains have a score higher than 3, suggesting
a stronger likelihood of being linked to malicious activities.
These findings are in alignment with previous research [18],
where 2.16% of the domains were found to be suspicious when
analyzed using VT.

V. WHY RTT FEATURES ALONE ARE INSUFFICIENT

Recall that previous works [19], [20] leveraged RTT as
a side channel to fingerprint proxy communication. After
understanding operational characteristics of the ecosystem,
we show that RTT-based RESIP detection approaches are
vulnerable to a simple adversarial attack and highlight the

Fig. 8: CDF of inter-arrival time differences for download
packets in proxied and non-proxied (direct) connections

need for more robust features beyond RTT for our task. To
demonstrate this feature, Figure 7 shows this characteristic
of the RESIP architecture where the proxy node establishes
the TCP connection with the server. The TLS connection,
on the other hand, is end to end and extends to the proxy
subscriber. Since the TCP handshake connection packets travel
a shorter distance than TLS packets, looking at the timing
features of these few initial packets of a connection enables
the development of a simple but accurate detection scheme.
Eight-packet classifier. Huang et al. propose a classifier that
remarkably provides high accuracy performance using only
the first eight packets5. After examination we observe that
cross-layer RTT is implicitly calculated from their features.
For each connection, Huang et al. calculate the difference
between every two subsequent packets in both the upstream
and downstream directions. Figure 8 shows the distribution
of differences between every two subsequent packets in the
downstream direction. For comparison, we added similar dis-
tributions for non proxy background traffic that we collected
(Section IV-A). As can be seen in the figures, RTT appears
to be manifested mostly in t2 ↑ t1, which correspond to TLS
ServerHello and TCP SYN/ACK, respectively, also shown in
Figure 7.
Scheduling attack. RTT-based features utilizing the dif-
ferences in TCP and TLS network traffic are susceptible
to adversarial attacks [38]. Xue et al. [20] point out that
traffic scheduling would fundamentally eliminate the cross-
layer RTT discrepancy pattern exploited in previous work. We
devised a simple adversarial approach in which a scheduler
follows a fixed, predetermined timetable, regardless of the
actual patterns of data being transmitted at the application
layer [20]. In our case, this can be implemented by designing
the proxy node to buffer the TLS ClientHello so that it can be
sent to the server from the node as soon as the TCP tunnel
is established instead of starting the transmission from the
subscriber when the TCP ACK is sent.

5Huang et al. use four packets upstream and four packets downstream,
which add up to 8 packets.



TABLE II: Summary of DE , the dataset used for building
RESIP usage detection models

Split Background Gateway Relay Total

Train 2,967,751 60,907 56,360 3,085,018
Val 1,286,045 25,398 20,129 1,331,572
Test 1,831,253 34,087 33,621 1,898,961
Total 6,085,049 120,392 110,110 6,315,551

We simulate this attack by sampling the distribution of
the background traffic’s timing differences between TCP ACK
and TLS ClientHello. The scheduler at the proxy node then
uses these sampled timings to determine when to forward the
buffered TLS ClientHello message to the server. This approach
emulates the timing characteristics of direct background traffic,
effectively eliminating the discrepancy between TCP and TLS
RTTs used by detection systems. This attack alone signifi-
cantly drops the recall of the strongest classifier from Huang et
al. (which uses up to 64 packets, not just the first 8) to a mere
8% from the original 99% on the DE . Thus, while the model
is effective in naive settings, its fatal flaw against scheduling
makes it unreliable for real-world deployment.

VI. CLASSIFICATION APPROACHES

To address the limitations of RTT-based detection while
meeting diverse operational requirements, we propose a novel
classification framework. Our approach balances computa-
tional efficiency with detection robustness by offering two
complementary strategies: (1) a light-weight approach using
engineered traffic analysis and correlation features for rapid,
large-scale filtering, and (2) a heavy-weight deep learning
approach for maximum resilience in adversarial settings where
accuracy is paramount. In practice, the lightweight classifier
serves as the primary large-scale filter, while the heavy-weight
CorrTransform is invoked selectively for deeper analysis of
suspicious or high-risk cases (e.g. fraud or crime confirma-
tion), ensuring that computational cost scales only with the
number of uncertain cases rather than overall traffic volume.

A. Light-weight detection
For scenarios requiring fast, large-scale detection with lim-

ited resources, we develop a computationally efficient ap-
proach using carefully engineered features. To enable rapid
processing, we extract features from only the first n = 20
packets of each connection, allowing for early classification
without waiting for the full connection. Our light-weight
approach combines two complementary feature sets: traffic
analysis features that capture statistical patterns in packet
timing and sizes, and novel correlation features that quantify
the relationship between gateway and relayed streams.
Traffic Analysis features (TA features). We introduce twelve
connection-level features computed over the first n exchanged
packets. These include the inter-connection time gaps, cross-
layer RTT, and statistical summaries, such as the mean,
median, and mode, of sent and received traffic volume. Addi-
tionally, we also include the duration computed over the whole
connection. We combine our features with other standard

Algorithm 1 Correlation Features

Input: connections ω Array of connections to classify
gatewayConns ω Gateway traffic

Output: Correlation Features C ω Correlation-based features
array

1: for all conn → connections do

2: // Get connection time range
3: start ↑ GET_CONN_START(conn)
4: end ↑ GET_CONN_END(conn)
5: gwTraffic ↑ Filter gatewayConns

with timestamp → [start, end]
6:
7: // Bin the connection and gateway traffic based on volume
8: binWidth ↑ 0.1 s
9: connBins ↑ GET_VOL_BINS(conn, binWidth)

10: gwBins ↑ GET_VOL_BINS(gwTraffic, binWidth)
11:
12: // Normalize the binned data using z-score
13: connNorm ↑ ZSCORE(connBins)
14: gwNorm ↑ ZSCORE(gwBins)
15:
16: sim ↑ ELEM_WISE_MULT(connNorm, gwNorm)
17: C ↑ C ↓ GET_METRICS(sim) ω Get mean, median, etc.
18: end for

traffic analysis features proposed by Hayes et al. [34]. To
enhance the discriminative power of our features, we exclude
features with zero standard deviation, as they do not contribute
meaningfully to classification. This filtering process decreases
the Hayes et al. [34] features down to 71. We categorize and
define our TA-features below. For more details, Table VI in
Appendix A lists the exact features within each category.
• Time-based features: These capture temporal patterns in

packet transmission.
• Volume-based features: These represent the size-related

characteristics of transmitted packets, capturing the overall
intensity and distribution of data flow within a connection.

• Structural features: These provide additional insights into
the network traffic behavior, capturing packet alternation and
bidirectional flow properties.

Flow correlation features (Corr features). We expand on the
previous set of features by introducing novel correlation-based
features. These features build on the intuition that gateway
traffic and relayed traffic must be correlated, as gateway traffic
is simply forwarding relayed traffic. The algorithm is described
in more detail at Algorithm 1. We elaborate on the algorithm
below.

We first considered a naive per-packet correlation approach.
Specifically, we attempted to match the lengths of incoming
packets from a source (e.g., x.com) directly with correspond-
ing outgoing packets on the gateway server. However, this
proves unfruitful as the proxy framework splits incoming
traffic across multiple packets, yielding low correlation.

We then study a different approach, where correlation is
done per time-bin instead of per packet. Namely, for a given
connection, we divide its traffic flow into time bins (e.g., 0.1
seconds), each bin characterized by its total volume of data.



During this interval, we also extract all gateway connections
that fall within the same time range. Both the relayed and
gateway traffic streams are binned using the same width and
transformed into sequences of volume values. To enable mean-
ingful comparison, we normalize both sequences using z-score
normalization. We then compute the element-wise product of
the normalized sequences, producing a similarity vector that
captures how closely the gateway and relayed traffic align over
time. From this vector, we extract statistical features, such
as the mean and median similarity, which are then used as
correlation features. We observe that a per-time-bin approach
yields much better results than a per-packet one, resulting in
a 81.2% F1 score and a 2.1% FPR with correlation features
alone. We experimentally find 0.1 seconds to be the best size
for our time bins. We also considered the case where there
may be some lag between the two sides; we tried different
orders of magnitude (0.01s, 0.1s, 1s) of lags, and for each
we tried different ranges. While some specific instances of
correlation benefited, we concluded that this misalignment on
the aggregate was minimal.

For our classification tasks where the previous traffic analy-
sis or flow correlation features are used, we primarily employ
XGBoost due to its efficiency, interpretability, and strong
performance on network traffic features. For RQ3’s server-side
detection scenario, where content providers require maximum
detection capability with a more limited feature set, we ad-
ditionally validate our approach using AutoGluon’s ensemble
methods [50].

B. Heavy-weight detection

While the feature-engineering methods described above
provide an excellent balance of performance and efficiency
for most detection scenarios, high-stakes environments with
sophisticated adversaries may require additional robustness.
In cases where attackers have detailed knowledge of detection
systems and can deploy advanced evasion techniques, a more
resilient approach becomes necessary. For these critical sce-
narios where maximum detection accuracy is paramount and
computational resources are available, we introduce a heavy-
weight classification strategy that complements our light-
weight approach.

This heavy-weight approach leverages deep learning to
automatically discover complex, non-obvious patterns that are
difficult for adversaries to identify and manipulate. Rather than
relying on specific engineered features that can be targeted, our
approach learns from raw traffic sequences to capture subtle,
long-range dependencies between packets. For these models,
we use the first n = 50 packets of a connection, providing
richer context essential for identifying nuanced correlations
that remain robust under adversarial conditions.

We present CorrTransform, a novel Transformer-based ar-
chitecture designed to classify whether relayed and gateway
flows are correlated. We chose a Transformer because its self-
attention mechanism is uniquely suited to identify the subtle,
non-local dependencies between packets—a characteristic we

[CLS] Relayed Flow Embeddings [SEP] Gateway Flow Embeddings

Input Embedding (dmodel = 128)
+ Positional Encoding

+ TokenDrop

Input Embedding (dmodel = 128)
+ Positional Encoding

+ TokenDrop

Relayed Flow
[N ↓ 3]

Gateway Flow
[N ↓ 3]

Transformer Encoder (N=4 Layers)
(with Stochastic Depth)

MLP Classification Head
(with Sigmoid)

Correlation Probability

[(2N + 2)↓ dmodel]

[dmodel]

Fig. 9: The architecture of our proposed CorrTransform model.

hypothesize is critical for robust classification, especially in
adversarial settings.
Input Representation. For both deep learning models, each
connection is transformed into a sequence of feature vectors.
Each packet in the sequence is represented by a vector
containing three features: (i) packet size, (ii) inter-arrival time,
and (iii) packet direction.
CorrTransform Architecture. The architecture of Cor-
rTransform, illustrated in Figure 9, processes the two flows by
concatenating them into a single input sequence. This sequence
is structured as: [CLS] [relay_flow] [SEP] [gateway_flow],
where the ‘CLS‘ and ‘SEP‘ tokens serve as classification and
separator markers, respectively.

Each packet in the input is first projected into a 128-
dimensional embedding space, and we add sinusoidal posi-
tional encodings to inform the model of the packet order. The
core of the model is a 4-layer Transformer encoder, with each
layer containing 4 self-attention heads. To enhance robustness,
we employ two distinct regularization techniques: Stochastic
Depth [51], which randomly bypasses entire encoder layers
during training to improve gradient flow, and TokenDrop,
which randomly nullifies entire packet embeddings, forcing
the model to learn from the global context rather than over-
relying on specific local features.

C. Attacks
To assess robustness, we evaluate the models under normal

conditions and four adversarial attack scenarios designed to
mimic evasion techniques described below, along with their
costs:

1) Scheduling: This timing attack, detailed in Section V,
disrupts RTT-based features by manipulating packet
schedules to mimic benign traffic, directly targeting the
weakness of the SLT baseline. As this attack only delays
a single handshake packet, its impact on the user is
minimal.

2) Targeted Padding: This attack alters the packet size dis-
tribution by adding padding to influential initial packets,
aiming to morph the traffic’s statistical signature to evade
size-based detection [52]. However, the padding leads to



increased data usage and decreased goodput for the user,
becoming especially noticeable in cases where the uplink
is the bottleneck.

3) Packet Reshaping: This structural attack leverages the
proxy’s control to randomly split larger packets into
smaller ones, fundamentally altering packet-length se-
quences to poison size, count, and sequence-based fea-
tures [33]. This increases per-flow overhead by inflating
packet counts and header processing, which can degrade
goodput and latency on constrained links.

4) Inter-Packet Delay (IPD) Jitter: This attack introduces
small, random delays between packets to distort the flow’s
timing rhythm, targeting classifiers sensitive to inter-
packet delay patterns. This has an obvious impact on
latency and jitter, becoming especially noticeable for uses
like streaming and video games

VII. EXPERIMENTS: ISP & SERVER DETECTION

A. RQ1: Can ISPs detect devices with RESIP activities?
In this section, we use the DE dataset to investigate an ISP’s

capability to detect RESIP traffic by identifying its gateway
connections using connection-level features. We demonstrate a
two different classification strategies: a simple binary classifier
to robustly detect the presence of proxyware, and a more
granular multiclass classifier to show the challenges that
motivate RQ2.
Binary Classification Approach. We first investigate a binary
classifier to reliably identify the presence of proxyware on a
node’s device by distinguishing its unique gateway connec-
tions from all other traffic (a combined class of background
and relayed connections). This initial filtering step is inher-
ently robust because gateway connections possess fundamental
operational characteristics (e.g., high upload volumes, long
durations) that are difficult for an adversary to alter without
crippling the proxy service itself. Attempts to apply attacks
like target padding or packet reshaping are ineffective in hiding
these characteristics. As such, we evaluate this model under
normal, non-adversarial conditions to establish its baseline
effectiveness.
Multiclass Classification Approach. Next, we develop a
multiclass classifier that distinguishes between background,
gateway, and relay connections to establish a baseline for a
more granular, all-in-one classification model. However, this
finer-grained approach exposes vulnerabilities. We demon-
strate this by applying the simple scheduling attack (detailed
in Section V) to the multiclass model. This attack specifically
targets timing-based features to make relayed traffic indistin-
guishable from benign traffic, testing the model’s resilience.
Training. We train XGBoost models using the DE dataset.
For feature extraction, we chose the first n = 20 packets, as
we did not observe noticeable performance benefits for larger
values of n. A smaller value of n allows for an earlier, quicker,
and more practical classification, which can help ISPs filter
out devices running proxies. We use all the timing, volume,
and structural features described in Table VI, including cross-
layer RTT. Note that the duration feature is computed at the

TABLE III: RQ1 classification performance

Dataset Precision(%) Recall(%) FPR(%)

Gateway

Multiclass 99.35 97.86 0.01
MulticlassAttack 99.33 97.86 0.01
Binary 99.42 98.08 0.01

Relay

Multiclass 97.00 93.84 0.05
MulticlassAttack 95.78 65.83 4.22

connection level, independent of n, as we assume it is readily
available in connection logs. It is also important to note that
the correlation features are not applicable in this context as
they require the identification of relayed and gateway traffic
first to correlate against. We split the datasets into training
(50%), validation (20%), and testing (30%). Gateway connec-
tions only represent ~2% of our traffic. This configuration is
intentionally unbalanced to reflect real-world scenarios where
gateway traffic is a small fraction of total traffic.

Results. Table III shows the performance of our classification
models. Our binary classifier proves highly effective, identify-
ing gateway connections with 99.42% precision and 98.08%
recall at a negligible 0.01% FPR. This confirms that an ISP
can reliably detect devices running proxyware by focusing on
the distinct footprint of gateway traffic.

The multiclass classifier also performs well under normal
conditions, identifying gateway connections with 99.35% pre-
cision and 97.86% recall. However, the challenge of granular
classification becomes apparent when detecting the relayed
class, which achieves 97.00% precision and 93.84% recall.

This vulnerability is magnified under the scheduling attack.
While gateway detection remains almost perfect, the recall for
the relayed class plummets to 65.83%, with the FPR increasing
significantly to 4.22%. This result is critical: it demonstrates
that while we can easily tell which devices are running prox-
yware, simple adversarial timing attacks can severely hinder
our ability to identify which specific connections are being
relayed. This finding strongly motivates our two-tiered ap-
proach and highlights the need for the more robust, correlation-
based features we explore in RQ2 to reliably identify relayed
connections, especially in adversarial environments.

Permutation-based analysis reveals that the most important
features for detecting gateways are related to the uploaded vol-
ume and the duration of the connection. Figure 10 visualizes
these features, highlighting the distinct patterns of gateway
traffic (high transfer volumes and long durations) compared
to background and relayed traffic. Note that the dashed lines
represent the background distribution partitioned into three
equal thirds to show how they overlap with the relay, resulting
in less accuracy for the relay class. Our results demonstrate
that an ISP can easily identify EarnApp gateway connections,
and can further increase detection confidence by setting a
threshold for the number of gateway connections observed
from a single device.



TABLE IV: RQ2 classification performance
Attack Setting Features Precision(%) Recall(%) F1(%) FPR(%)

Without Attack

TA 97.76 89.68 93.55 0.03
Corr 82.51 79.92 81.20 2.10
TA + Corr 98.34 95.85 97.08 0.03
CorrTransform 99.63 99.62 99.62 0.01
DeepCoFFEA 94.42 92.52 93.46 0.10

Scheduling

TA 95.60 44.55 60.77 0.03
Corr 62.30 30.98 41.39 2.40
TA + Corr 97.44 59.69 74.03 0.02
CorrTransform 99.50 85.57 92.01 0.01
DeepCoFFEA 97.97 74.97 84.94 0.03

Targeted Padding

TA 96.32 53.64 68.90 0.03
Corr 81.60 77.17 79.32 2.20
TA + Corr 98.20 88.17 92.91 0.02
CorrTransform 99.65 99.07 99.36 0.01
DeepCoFFEA 97.46 89.07 93.08 0.04

Packet Reshaping

TA 89.55 17.32 29.03 0.03
Corr 79.05 62.87 70.04 2.10
TA + Corr 96.75 47.49 63.70 0.02
CorrTransform 99.80 96.51 98.12 0.01
DeepCoFFEA 96.56 89.61 93.00 0.06

Inter-Packet Delays

TA 97.89 91.14 94.35 0.03
Corr 74.31 63.19 68.30 2.70
TA + Corr 98.03 92.61 95.24 0.02
CorrTransform 99.70 95.54 97.58 0.01
DeepCoFFEA 96.97 85.05 90.62 0.05

Scheduling +
Packet Reshaping

TA 87.08 19.64 32.05 0.05
Corr 50.32 19.55 28.16 0.30
TA + Corr 95.20 24.91 39.48 0.02
CorrTransform 99.87 62.98 77.24 0.01
DeepCoFFEA 99.01 82.88 90.23 0.001

Scheduling +
Inter-Packet Delays

TA 96.45 80.38 87.68 0.05
Corr 57.95 27.02 36.85 0.30
TA + Corr 98.28 72.97 83.75 0.02
CorrTransform 99.67 75.57 85.96 0.01
DeepCoFFEA 93.21 70.43 80.23 0.01

Targeted Padding +
Packet Reshaping

TA 93.92 45.04 60.88 0.05
Corr 77.88 67.82 72.50 0.30
TA + Corr 98.29 72.14 83.21 0.02
CorrTransform 99.39 98.77 99.08 0.001
DeepCoFFEA 95.83 60.66 74.30 0.05

Packet Reshaping +
Inter-Packet Delays

TA 95.43 60.82 74.29 0.05
Corr 72.15 55.99 63.05 0.40
TA + Corr 98.46 76.20 85.91 0.02
CorrTransform 99.51 90.42 94.75 0.001
DeepCoFFEA 98.36 65.66 78.75 0.02

B. RQ2: Can an ISP identify relayed connections?

Following the identification of devices potentially running
proxyware via gateway connection detection (RQ1), the next
critical step for an ISP (the second tier of our approach) is
to determine the nature of other connections originating from
or passing through such devices. Specifically, RQ2 addresses
whether an ISP, with its network-wide visibility, can distin-
guish between connections directly initiated by the user on
the device and connections being relayed through the device
for external proxy subscribers. Accurately identifying relayed
connections is crucial for attributing network activity correctly
and detecting potential misuse of the user’s bandwidth for
activities like scraping, fraud, or other malicious purposes.

To address this question, we frame the problem as a binary
classification task: classifying a given connection observed by
the ISP as either Relayed or Background. First, we test the
light-weight approach, which uses an XGBoost model on our

engineered TA and Corr features from the first 20 packets.
Second, we assess the heavy-weight approach, which employs
our novel CorrTransform and the DeepCoFFEA baseline on
the first 50 packets.

We use the dataset DE (Table II) to train models to distin-
guish ’Relayed’ from ’Background’ connections. We evaluate
four set of features: our proposed TA features, our novel Corr
features, and a combination of both (TA + Corr). We further
evaluate two DL-based correlation approaches: our novel Cor-
rTransform, and a state-of-the-art baseline; DeepCoFFEA [24].
DeepCoFFEA is a CNN-based model that has demonstrated
strong performance in the related problem of correlating Tor
traffic. By modifying it for our RESIP detection context, we
establish a robust baseline for comparison.

To further assess robustness, we evaluate single-attack set-
tings (Scheduling, Targeted Padding, Packet Reshaping, and
Inter-Packet Delay), and include four representative two-attack
combinations. For completeness, the full matrix of pairwise,
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Fig. 10: CDF of the two most important features for gateway
classification

three-way, and four-way combinations appears in Appendix B.
Results. The classification performance across all models and
scenarios is detailed in Table IV. Under normal conditions
(Without Attack), all feature-driven methods prove highly ef-
fective. The feature-based TA + Corr model reaches a 97.08%
F1 score, while the deep learning models CorrTransform
and DeepCoFFEA achieve strong 99.62% and 93.46% F1
scores, respectively, demonstrating their capability in a non-
adversarial setting.

The central story, however, unfolds under adversarial pres-
sure. Recall the scheduling attack introduced in Section V,
designed to disrupt RTT features, which caused the classifier
presented by Huang et al. to collapse. Our own TA features
are similarly impacted, with recall dropping to 44.55%. In
contrast, the introduction of our novel correlation features
provides a dramatic improvement. The TA + Corr model
demonstrates significant resilience by maintaining a 74.03%
F1 score, a substantial recovery compared to the TA-only
model. While CorrTransform proves to be the most robust
overall solution, sustaining an impressive 92.01% F1 score,
DeepCoFFEA also demonstrates robustness, maintaining an
F1 score of 84.94% and indicating it is less reliant on the
RTT feature. The Packet Reshaping attack devastates the TA
model (recall drops to 17.3%), but CorrTransform remains
highly effective with a 98.12% F1 score. This pattern of
the CorrTransform’s robustness continues across the other
adversarial scenarios. Similarly, against Targeted Padding and
Inter-Packet Delays, CorrTransform consistently outperforms
the baseline and our feature-based methods, achieving F1
scores of 99.36% and 97.58%, respectively. This highlights
the architecture’s ability to learn deeper, non-local correlations
that are independent of any single, engineered feature. Instead,
the model learns a more holistic and redundant feature repre-
sentation, making it highly effective against a diverse set of
attacks.

In the combined attacks scenario, CorrTransform continues
to provide the most consistent performance across the different

combinations; it remains above 80% in nearly all combined
settings (see further results in Appendix B). However, for
the Scheduling + Packet Reshaping combined attacks, we
notice a dip in recall, affecting the overall F1 to 77.24%,
suggesting a plausible mitigation strategy against CorrTrans-
form. DeepCoFFEA does better in this attack scenario with
an F1 of 90.23%. This reflects a difference in how each
model learns. CorrTransform captures complex patterns across
long packet sequences, a strength this specific attack disrupts.
DeepCoFFEA’s simpler, more local approach happens to be
more robust here. However, CorrTransform still remains the
more reliable approach, offering more consistency and better
detection performance overall.

While DeepCoFFEA is effective in some settings, it falls
short in most others, particularly against Scheduling, and
consistently underperforms against CorrTransform across all
single-attack settings. Its performance also degrades under
several combined attacks, such as Targeted Padding + Packet
Reshaping, where its performance falls below 75% F1 score.
Notably, our engineered TA+Corr features prove more effec-
tive than the DeepCoFFEA deep learning baseline against both
the Without Attack and Inter-Packet Delay attack settings,
highlighting the power of our carefully designed traffic anal-
ysis and correlation metrics. Across all scenarios, CorrTrans-
form provides the most consistent and robust defense.
Takeaways. The results in Table IV clearly illustrate the
strengths of each strategy. The light-weight TA+Corr model
provides a remarkable balance of performance and efficiency,
making it a practical choice for large-scale filtering. However,
when faced with sophisticated attacks like Packet Reshap-
ing, its limitations become apparent. In contrast, the heavy-
weight CorrTransform demonstrates superior resilience and
consistency across diverse adversarial scenarios, justifying its
additional computational cost for use cases where robustness
is non-negotiable.

C. RQ3: Can a server distinguish between relayed and direct
connections?

The goal of our server-side analysis is to test whether
lightweight, single-ended features can distinguish relayed from
direct connections in a realistic deployment with severe class
imbalance. At this vantage point, detection relies on single-
ended timing summaries and aggregate flow statistics; pushing
these enough to evade typically requires aggressive traffic
shaping that materially degrades throughput and user expe-
rience. Our adversarial analysis in RQ1 (Table III) already
shows how scheduling-style attacks can affect timing-based
features at the ISP vantage, and we expect analogous effects
at the server. In this section, we therefore focus the server-side
evaluation on baseline separability and robustness under class
imbalance, reflecting realistic classification scenarios.

From a server’s perspective, distinguishing between direct
and relayed connections is crucial for maintaining the integrity
of online services. Platforms such as YouTube rely on accurate
user engagement metrics for recommendations, ad revenue,
and content moderation. However, RESIPs can be used to



manipulate these systems—for instance, artificially inflating
views, likes, or engagement by masking the true origin of
traffic. To mitigate such risks, servers seek to identify whether
incoming traffic originates directly from users or is relayed
through a residential proxy. In this section, we investigate
whether a server can reliably distinguish between relayed and
originated connection from a device by analyzing the network
traffic patterns.
Dataset. To investigate whether a server can distinguish
between relayed and directly originated connections, we con-
struct a new dataset DS composed of two types of traffic
extracted and collected as follows. For relayed traffic, we use
the experimental dataset DE introduced in Section IV-A. To
ensure the quality of the domain set, we removed suspicious
entries by filtering out domains with a VT score greater than
3 6. From the remaining domains, we selected 100 domains
to create the desired dataset. For relayed traffic, we filter the
original proxy traffic, retaining only the connections targeting
the selected 100 domains.

For direct traffic, we apply the same methodology and
testbed described in Section IV-A. We collect direct connec-
tions traffic by visiting the selected 100 domains, i.e., without
routing through a residential proxy, using the browsing script,
capturing realistic traffic that includes scrolls, clicks, and
searches. The captured background PCAP traffic is analyzed
using Zeek to extract key network attributes, including server
names, IP addresses, and port information.
Training. We train an AutoGluon classifier to distinguish
between background and relayed connections using a DS

consisting of 10,000 background connections and 1,643 re-
layed connections. Unlike the ISP scenarios where observers
have full network visibility and access to correlation features,
servers must rely solely on features extracted from incoming
connections. We extract a comprehensive set of features,
detailed in Section VI-A, from the first 20 packets exchanged.
Notably, correlation features are unavailable in this scenario as
servers cannot observe gateway traffic. After removing features
with zero standard deviation, we obtain a refined feature set of
83 features. AutoGluon’s ensemble approach helps maximize
detection performance despite this constrained feature space
by combining multiple models that capture different traffic
characteristics.

Subsequently, we divide the dataset into training (50%), val-
idation (20%), and testing (30%) subsets. To address the class
imbalance, wherein background connections substantially out-
number relayed connections, we implement a downsampling
strategy. This limits the majority class (background) to four
times the size of the minority class (relayed), yielding a bal-
anced training set consisting of 3,944 background connections
and 986 relayed connections.
Results. The model’s performance on the entire test dataset
Dtest

S , which consists of 328 relayed and 2,000 background
connections, is as follows: a precision of 98.76% and a recall

6Previous work utilizing VT such as [53] often considers domains malicious
if their VT score is larger than 3. Domains with a VT score less than 3 are
often false positives.

TABLE V: RQ3 classification performance

Dataset Precision(%) Recall(%) FPR(%)

Dtest
S 5 96.07 98.0 0.2

Dtest
S 3 93.65 98.33 0.2

Dtest
S 1 83.33 100 0.2

Dtest
S 0.5 71.42 100 0.2

of 98.15%. The FPR is consistently low at 0.2%. These results
indicate that the classifier performs well overall, accurately
distinguishing between relayed and direct connections with
minimal misclassification of background traffic. Using Au-
toGluon’s permutation-based feature importance, the results
indicate that the most important features are time related, with
the top contributors being the 25th percentile of outbound
traffic (i.e., the time by which 25% of outbound packets
have been exchanged), the 25th percentile of the time taken
for inbound traffic, the average interarrival time of inbound
packets, the 75th percentile of total traffic, and the 75th
percentile of outbound traffic. Note that these features are well-
established in traffic analysis and work well in the context of
RESIP.

To evaluate the classifier’s robustness under different levels
of class imbalance, we construct four test datasets with varying
relayed-to-background ratios: 5%, 3%, 1%, and 0.5%, denoted
as Dtest

S 5, Dtest
S 3, Dtest

S 1, and Dtest
S 0.5, respectively. These

datasets consist of 2,000 background samples and varying
numbers of relayed samples (100, 60, 20, and 10 for the
respective ratios). The classification performance across the
different test datasets is presented in Table V. The model
demonstrates strong overall performance in distinguishing
between direct and relayed connections, with high precision,
high recall, and a consistently low FPR across all test datasets.
However, as the proportion of relayed traffic decreases, pre-
cision decreases. This decline in precision is not due to
an increase in false positives, as the FPR remains constant
across all datasets, but rather a result of the decrease in
true positives as fewer relayed connections are present in the
datasets. Furthermore, even when precision drops to 71.42%
in Dtest

S 0.5, recall is 100%, meaning all relayed instances are
indeed being identified correctly as relayed.

VIII. LIMITATIONS AND FUTURE WORK

While our study provides significant insights into the char-
acteristics and detection of RESIP traffic and introduces robust
correlation-based features resilient to adversarial timing per-
turbation attacks, it is subject to certain limitations that open
avenues for further research. First, we restricted data collec-
tion to Bright Data and did not test against other providers
that may use different protocols, such as a control API for
gateway domain discovery. However, our features and models
are not specific to those details, but rather target provider-
agnostic invariants: (i) persistent encrypted tunnels between
node and gateway, (ii) concurrent gateway and relayed flows
during sessions. Reported cross-provider differences (e.g.,
fixed gateway domain vs. control-API discovery) [18] should
not affect these invariants. Practically, porting requires only



updating gateway discovery heuristics and applying our feature
extraction pipeline to the newly extracted traffic; the TA/Corr
feature sets and the CorrTransform architecture may require
adaptation, but the high-level approach remains unchanged.
Empirical validation on other providers is left for future work.

We demonstrated the vulnerability of widely used RTT
features to basic scheduling attacks and assessed our features
against different perturbations, but critically examining the
trade-off between their effectiveness and the potential hit
to service utility (e.g., latency), is an important next step.
Our data collection was geographically localized, meaning
variations in network conditions (latency, jitter) globally could
impact the performance of timing-dependent features; evalu-
ating generalizability across diverse network environments is
needed. Beyond technical detection, a significant challenge
remains in distinguishing willing RESIP hosts from users
who unwittingly become victims of proxyjacking [54], often
through bundled SDKs, necessitating research into behavioral
or network indicators of nonconsensual participation. Ad-
ditionally, exploring robust, privacy-preserving features that
RESIP providers themselves could use to detect malicious
usage internally represents a promising avenue for enhancing
platform integrity. Finally, as with machine-learning-based
approaches, our models are prone to concept drifts and will
require periodic retraining. However, continuous learning ap-
proaches can be used to reduce retraining costs.

IX. CONCLUSION

This paper addressed a critical vulnerability in residential
IP proxy detection: the fundamental weakness of existing
RTT-based methods against simple adversarial attacks. We
demonstrated that state-of-the-art detection techniques, which
rely on cross-layer timing discrepancies, can be trivially
defeated through basic traffic scheduling, reducing detection
accuracy from 99% to just 8%. To overcome this limita-
tion, we introduced a robust detection framework based on
novel correlation features that exploit the intrinsic relationship
between gateway and relayed traffic streams, a fundamental
architectural property that adversaries cannot easily manipulate
without degrading service quality.

Our comprehensive evaluation using 15 months of data
from the world’s largest RESIP network validates the practical
effectiveness of our approach. The results demonstrate that
robust proxy detection is achievable across diverse operational
scenarios: ISPs can reliably identify both proxyware devices
and individual relayed connections, while content providers
can distinguish direct user traffic from proxy connections
with near-perfect accuracy. Critically, our correlation-based
methods maintain strong performance even when adversaries
deploy sophisticated evasion techniques, providing the reliabil-
ity needed for real-world deployment. CorrTransform further
showcases how deep learning architectures can be designed
for inherent robustness against adversarial manipulation.

Beyond technical contributions, this work shifts the proxy
detection paradigm from vulnerable timing-based approaches
to resilient architectural fingerprinting. Our findings provide

immediately deployable tools for ISPs and content providers
to combat the growing threat of malicious RESIP usage, from
click fraud and web scraping to sophisticated cyberattacks.
As residential proxy networks continue to expand and evolve,
the robust detection capabilities presented here offer a critical
foundation for maintaining security and accountability in an
increasingly proxy-mediated internet ecosystem.

X. ETHICAL CONSIDERATIONS

Since we deploy proxyware and perform traffic analysis
on its connections, it is important to ensure we are not
compromising users’ privacy or data. In terms of anonymity,
the proxies we deployed forward HTTPS requests to domains
requested by subscribers of the proxyware system. While the
destination servers appear in our PCAPs, the subscriber IP is
not visible to us (as requests come through gateways), nor
is their traffic or interaction with the destination server, since
the traffic is encrypted and the TLS connection is established
directly between the subscriber and the destination server. The
data extracted from our setup is stored in a secure server
within our institution and is only accessible by the research
team cleared and approved by our Institutional Review Board
(IRB). As for data processing, all processing is done to derive
useful features based on packet timings and sizes. Although
we query VirusTotal for destination addresses to understand
malicious use, this is generally accepted and has been done
previously in related work [2], [5], [18].

Another potential concern is that our deployed proxy nodes
could be misused by attackers for spamming or other malicious
activities. Indeed, we have observed access to certain mali-
cious domains, which may indicate malware-related activity.
However, similar observations have been reported in prior
research [2], [5], [18], where proxies were deployed and
analyzed to better understand this ecosystem and contribute
findings to the research community. We have not received any
complaints during our data collection, and we acknowledge
that such risks are inherent in any proxy deployment study.
Nonetheless, we believe that the insights gained from our
research far outweigh these limited potential risks.

One concern shared with much of the existing traffic analy-
sis literature (Section II-B) is that our work could be misused
by ISPs to censor proxy traffic, which is not our intended
purpose. We advocate for advancing traffic analysis as a
defensive tool to combat fraudulent and suspicious activities
that impact both content providers, ISPs, and proxy operators,
who can face legal risks in case their proxies were used
for illicit activities. Our work can also help users detect
non-consensual residential proxy traffic on their devices. By
enhancing security and accountability, our approach aims to
create a safer environment for legitimate users while also
offering responsible proxy operators a layer of protection
should their infrastructure be exploited for malicious purposes.
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APPENDIX

A. Feature Breakdown for Traffic Analysis (TA)

Table VI lists the complete set of features used for TA.

TABLE VI: Network traffic features used for classification

Feature Category Category-Based Features

Time-Based Features Connection duration, round-trip time (RTT), inter-
packet arrival time( max, avg, std, 75th per-
centile) for inbound, outbound, and total traffic,
time percentiles stats (25th, 50th, 75th, and 100th)
for inbound, outbound, and total traffic, average
and standard deviation of packet ordering, packet
transmission rate (average, median, min, and max
packets per second), statistics for the first and last
30 packet.

Volume-Based Features Mean, median, and mode of total traffic volume,
mean, median, and mode of bytes sent and re-
ceived traffic.

Structural Features Packet concentration metrics (average and stan-
dard deviation over 20 packet windows), Median
and maximum packet concentration, summation of
total packets, percentage of incoming and outgoing
packets, sum of alternating packet concentration,
and packet rate.

B. Additional Results

We expand on the analysis in Table VII with six combined-
attack settings, extending beyond the single and four represen-
tative cases in the main text. Across these broader combina-
tions, CorrTransform continues to show the highest and most
stable performance, while TA+Corr remains a strong light-
weight option that consistently improves over TA under timing
distortion. Corr alone degrades when both timing and structure
are altered, and the CNN baseline is occasionally competitive
in specific regimes.

When multiple attacks are layered, detection sometimes
improves rather than weakens. We suspect this occurs be-
cause stacked perturbations introduce unintended regularities
or inconsistencies that models can exploit, such as abnormal
burst patterns or exaggerated packet-timing differences. For
example, adding IPD jitter can make TA’s non-correlational
features more discriminative by amplifying inter-arrival gaps
that differ between relayed and background flows. Similarly,
for deep models, heavy combinations may push traffic further
from the benign patterns they were trained to distinguish,
effectively making anomalies more visible. These are likely
contributing factors rather than confirmed mechanisms, but
they align with the observed increase in separability under
more complex attack mixes.
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