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Abstract—Carpet bombing attack, a growingly prevalent vari-
ant of Distributed Denial of Service (DDoS), floods multiple
servers in the victim network simultaneously, minimizing per-flow
malicious traffic throughput to evade detection. The aggregated
malicious traffic overwhelms network access points (e.g., gate-
ways), causing a denial of service. Moreover, advanced attackers
employ application-layer attack methods to generate malicious
traffic inconspicuous in both semantic and traffic volume, failing
existing DDoS detection mechanisms. We propose NetRadar, a
DDoS detector that achieves accurate and robust carpet bombing
detection. Leveraging a server-gateway cooperation architecture,
NetRadar aggregates both traffic and server-side features col-
lected across the victim network and performs cross-server
analysis to locate victim servers. To enable server-assisted carpet-
bombing detection, a general server-side feature set compatible
with diverse services is introduced, alongside a robust model
training method designed to handle runtime feature mismatch
issues. Furthermore, an efficient cross-server inbound traffic
analysis method is proposed to effectively exploit the similarity of
carpet bombing traffic while reducing computational overhead.
Evaluations on real-world and simulated datasets demonstrate
that NetRadar achieves better detection performance than state-
of-the-art solutions, achieving over 94% accuracy in all carpet
bombing detection scenarios.

I. INTRODUCTION

Carpet bombing attack, a variant of Distributed Denial
of Service (DDoS), recently shakes the balance between
DDoS defenders and attackers [1]–[8]. By flooding numer-
ous servers in the target victim network simultaneously, the
carpet bombing attack evades DDoS detection with a lower
per-flow malicious traffic throughput than that in traditional
DDoS. Malicious traffic to numerous victim servers aggregates
and overwhelms the network access points (e.g., gateways),
making all online services in the victim network unavailable.
Existing DDoS defense systems fail to locate carpet bombing
victim servers precisely in real time, resulting in increased ser-
vice delays and inefficient use of DDoS mitigation resources.
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Since the carpet bombing attack strategy can be applied to
existing botnets and attack scripts with little extra cost, this
DDoS variant has quickly become a popular weapon for
DDoS attackers. Reports from academia and industry have
pointed out that the frequency of carpet bombing attacks is
increasing [1]–[5], [8], with increases over 30% yearly [3].

Carpet bombing can be divided into two categories accord-
ing to different per-flow malicious traffic throughput [1]. High-
rate carpet bombing attacks are comparatively easier to detect
as the number of victim servers is insufficient to disperse the
per-flow traffic volume below benign traffic. Low-rate carpet
bombing attacks, on the other hand, generate malicious traffic
to numerous victim servers with a much lower per-flow traffic
volume to evade detection. Although the aggregated traffic
throughput anomaly is evident (as the attacker tries to disrupt
benign services), individual attack flows are virtually indistin-
guishable from benign ones in throughput, which challenges
the DDoS detection.

Among low-rate carpet bombing attacks, those based on
application-layer attacks are most challenging. Unlike volu-
metric DDoS, application-layer attack traffic closely mimics
legitimate service traffic in semantic characteristics [9]–[11].
As a result, during a low-rate carpet bombing attack launched
with application-layer attack methods, the malicious traffic is
indistinguishable from benign traffic in terms of both traffic
volume and semantics. This renders semantics analysis [12]–
[14] and heavy-hitter-based detection [12], [15] ineffective,
and causes performance degradation in existing traffic anal-
ysis detectors [16]–[18]. Similar evasion strategies are used
in link flooding attacks, demonstrating their effectiveness in
bypassing defense [19].

Fortunately, the unique property of carpet bombing, which
spreads malicious traffic, presents us with new opportuni-
ties. Firstly, victim servers can provide effective detection
assistance during carpet bombing attacks. Victim servers can
perform more detailed traffic monitoring and behavioral anal-
ysis based on application-layer information, such as decrypted
packet payload, request URL, etc., which is particularly effec-
tive for low-rate application-layer carpet bombing detection.
Besides, carpet bombing’s distributed nature prevents individ-
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ual servers from being overloaded, allowing for the deploy-
ment of sophisticated feature extraction and real-time moni-
toring. Secondly, the similarity between malicious flows is an
effective carpet bombing indicator. Carpet bombing traffic to
different servers shares similar features as they are typically
generated by the same botnet and automatic scripts [7], [20].
This means that multiple victim servers simultaneously receive
seemingly normal but highly correlated traffic. By analyzing
traffic to multiple victim servers simultaneously (or cross-
server analysis for short), we can exploit malicious traffic
similarity and accurately identify victim servers.

Implementing server-assisted detection and cross-server
traffic analysis presents several technical challenges. Firstly,
leveraging server-side features and performing cross-server
analysis requires a network-wide feature collection mech-
anism. A server-gateway cooperation architecture must be
established to deploy these mechanisms with minimized coop-
eration cost. Secondly, victim servers run a variety of differ-
ent online services with heterogeneous service information,
which necessitates selecting general enough features to be
compatible with most services. Additionally, the server-side
features collection may be affected by the DDoS mitigation
process during the attack, leading to detection performance
degradation. Thirdly, leveraging cross-server analysis in the
detection model introduces high computational overhead. The
increased input size (features of multiple servers at each in-
ference) incurs higher feature space complexity and requires a
larger model to achieve sufficient detection accuracy, resulting
in increased training cost and reduced inference throughput.

We address these challenges and propose NetRadar, a DDoS
detector that achieves accurate and robust carpet bombing
detection. In NetRadar, the central feature collection point and
cross-server analysis model are deployed at the gateway to
minimize feature transmission overhead while ensuring rapid
detection and mitigation of evolving attacks. To enable general
server-side feature extraction, we propose a set of features
available in most services through a lightweight behavioral
model of online services. We develop a robust server-assisted
model training method to handle the runtime feature mismatch
issue under the server-gateway cooperation architecture. As
for efficient cross-server analysis, based on our analysis of
set-structured properties of features from multiple servers in
carpet bombing detection tasks, we leverage the permutation-
equivariant model architecture to improve model scalability
and design a sort-based group function specifically optimized
for carpet bombing traffic similarity analysis.

To sum up, we make following contributions:
• A server-gateway cooperation architecture that aggregates

the available traffic and server-side features across the
network with minimized feature transmission overhead,
enables cross-server analysis for carpet bombing detec-
tion, and coordinates with DDoS mitigation systems.

• A set of general server-side features that captures service
access patterns for effective carpet bombing detection
and a robust model training method that handles runtime
feature mismatch issues due to traffic scrubbing.
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Fig. 1: Carpet Bombing DDoS

• An efficient and scalable cross-server inbound traffic
analysis method that analyzes features from multiple
servers simultaneously and exploits carpet bombing traf-
fic similarity efficiently.

We evaluate NetRadar with both real-world and simulated
carpet bombing traces in the simulation environment. The
result shows that NetRadar can detect both high-rate and low-
rate carpet bombing DDoS with high detection accuracy, with
up to 40.55% improvement compared with the state-of-the-
art. In the extreme covert low-rate application-layer carpet
bombing attack scenarios, NetRadar is still able to identify
85% victim servers even if the malicious traffic throughput is
less than 10% of the total traffic volume.

II. BACKGROUND AND MOTIVATION

A. Carpet Bombing DDoS

Carpet bombing attacks have become one of the most severe
threats to network services in recent years [1]–[8]. As Figure. 1
shows, unlike traditional DDoS targeting a single IP address,
carpet bombing attacker sends malicious traffic to numerous
servers owned by the victim network simultaneously. Mali-
cious traffic to victim servers aggregates at the gateway and
exhausts bandwidth, making services in the victim network
unavailable. Carpet bombing attacks can be launched with
existing DDoS techniques. The attackers obtain the victim
network’s address information in advance and then generate
malicious traffic across these IP addresses to launch a carpet
bombing attack. As victim servers typically share a common
gateway, the malicious traffic volume to individual servers can
be significantly reduced without weakening the damage to the
victim network, which confuses DDoS detection and results
in heavy DDoS mitigation resource consumption.

The key difficulty in defending against carpet bombing
attacks is to identify the victim servers precisely in real time.
Nowadays, DDoS defense systems consist of continuously
running detection systems and on-demand mitigation systems
[21], [22]. During attacks, the detection system provides a list
of victim IP addresses, and the mitigation system activates
defense policies for these IPs to handle DDoS traffic. Dur-
ing a carpet bombing attack, although the aggregated traffic
throughput anomaly can be easily detected, identifying which
servers are under attack is significantly more difficult. If the
detection system fails to pinpoint victim servers in real time,
it will force the defender to allocate more mitigation resources
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to protect benign services, even if the attack traffic volume is
far less than these resources can handle. Besides, an imprecise
victim server list may also result in increased delay and packet
loss of benign services, as benign traffic is rerouted to the
mitigation system before it reaches the victim servers.

Carpet bombing attacks can be divided into two categories
according to their per-flow malicious traffic volume [1]. (1)
High-rate Carpet Bombing. Attackers generate malicious
traffic to multiple servers and rapidly shift targets during the
attack. While the abnormally high per-flow traffic volume
makes detection easier, the attack’s dynamic nature challenges
the defense system’s response time. The report shows that,
in most cases, the attack lasts for less than 10 seconds on
each victim server [1], leaving the defense system extremely
limited time to react. (2) Low-rate Carpet Bombing. Attack-
ers target more servers in the victim network than high-rate
carpet bombing, and thus the per-flow malicious traffic volume
is significantly reduced. Low-rate carpet bombing is more
challenging to detect as it generates concealed low-volume
malicious traffic to each victim server. The report shows that
more than three-quarters of carpet bombing attacks exhibit
low-volume characteristics [1].

Among carpet bombing attacks, low-rate application-layer
carpet bombing is the most challenging to detect. Firstly,
application-layer DDoS methods [9]–[11] easily bypass tra-
ditional DDoS detection based on semantics analysis [12]–
[14]. Besides, low-rate carpet bombing incurs little traffic
throughput change on each victim server, rendering most
heavy-hitter-based attack detection methods ineffective [12],
[15]. Malicious traffic is not obviously different from normal
traffic in terms of both semantics and traffic volume, posing
a severe challenge to traffic-feature-only detectors [16]–[18].
Similar evasion tactics are also used in link flooding attacks
(LFA) to evade detection [19]. However, existing LFA detec-
tion methods [23]–[25] typically require monitoring data from
various locations across the network topology, which is hard
to implement in the victim network.

B. Threat Model

We focus on detecting carpet bombing DDoS, especially
the most challenging low-rate carpet bombing that generates
malicious traffic with application-layer attack methods in this
work. Attackers have full knowledge of the victim address
pool and generate malicious traffic to multiple hosts in the
victim network simultaneously. Malicious traffic aggregates at
the gateway and causes a denial of service.

Specifically, we model the behavior of the carpet bombing
attacker with a simple model, as shown in Figure. 2. Suppose
an attacker with M DDoS malicious traffic generation budget
targets a victim network with N different servers. During
an attack, the attacker randomly selects k victim servers
and distributes portions of budget M among them at each
time slot tn. Malicious traffic budget M is larger than the
victim network gateway capacity, and thus benign network
services are cut off. This model, although extremely simplified,
reveals the complexity of the carpet bombing attack. For

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝒏

…
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Fig. 2: Carpet Bombing Attacker Behavior

each time interval, the attacker may select different server
combinations and redistribute the traffic budget, creating an
exponentially expanding attack feature space. The attacker
can constantly change these configurations during the attack
to evade detection. This characteristic of rapid changes in
time (temporal variation in target selection) and space (spatial
distribution across multiple targets) can easily bypass the ISP
network’s sampling-based detection methods [26], rendering
the defence ineffective.

We deploy NetRadar as an off-path carpet bombing de-
tector at the victim network. NetRadar performs analysis on
replicated traffic and does not interfere with traffic forward-
ing. NetRadar locates victim IPs (used interchangeably with
servers/flows in this context) being attacked in real time and
requests DDoS mitigation assistance from local Anti-DDoS
devices or from upstream mitigation service providers (e.g., a
scrubbing center), based on the attack volume. As for attack-
ers, we assume that they have a limited number of malicious
traffic generation methods, so multiple victim servers receive
similar attack traffic. While advanced attackers may employ
resource-intensive techniques such as deep learning to craft
server-specific malicious traffic and eliminate similarities, the
carpet bombing attacks currently confronting the industry are
in fact derived from existing attack methods [1]–[3], [6]–[8],
which is precisely the threat NetRadar is designed to address.

C. Opportunities

Although carpet bombing poses a significant challenge in
DDoS detection, its distributed nature across multiple victim
servers simultaneously creates new detection opportunities.
During a traditional DDoS, available features for detection
can be collected at the access point (gateway, for example).
However, carpet bombing attacks spread malicious traffic to
multiple servers to disperse features and avoid detection.
Therefore, we need to collect features across the network and
leverage the strengths of devices distributed in the network
to build an effective carpet bombing detector. Specifically,
we can identify carpet bombing based on extra features from
victim servers (Server-Assisted Detection) and analyze traffic
to multiple hosts together to exploit the similarity of malicious
flows (Cross-Server Inbound Traffic Analysis).
Server-Assisted Detection. Compared with the DDoS detec-
tion system running on the gateway, the victim servers can
achieve more detailed monitoring of traffic semantics and con-
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text. The servers have access to application-layer information,
such as decrypted packet payload, request URL, etc., which
are particularly useful in improving low-rate application-layer
carpet bombing detection performance. For example, if the
attacker requests large file downloads on multiple servers to
launch a carpet bombing attack, it is difficult to accurately
determine whether an anomaly stems from an attack or normal
business fluctuations based on traffic features alone. This is
because the malicious traffic remains semantically legitimate
and its behavior is indistinguishable from that of normal users.
On the contrary, with the help of the extra server-side features,
the detection system can easily identify malicious behavior
patterns: similar resource requests occurring simultaneously
across multiple servers, with abnormally high bandwidth con-
sumption. Besides, the feasibility of server-assisted detection
is ensured by carpet bombing’s distributed nature: the attackers
must keep the malicious traffic throughput to each server at
a low level to avoid being detected, which prevents server
overload and preserves computational resources to assist detec-
tion. Moreover, in common targets of carpet bombing attacks,
such as data centers and enterprise networks [7], operators are
usually capable of monitoring the servers, thereby enabling
the deployment of additional feature extraction mechanisms.
Cross-Server Inbound Traffic Analysis. By collecting fea-
tures from the entire victim network and conducting central-
ized analysis on them, we can locate carpet bombing attacks
based on a comprehensive view of the victim network. As
we analyzed in §II-B, an attacker can easily alter traffic
throughout to each host to maximize the detection difficulty of
the traditional per-flow detection schemes. But as we know, in
practice, DDoS attacks these days are launched with botnets
and automatic scripts [20], [27], leading to inherent similarities
across malicious flows on both traffic and server-side features.
In fact, analysis of existing botnet codes [7] shows that
attackers simply randomize the target IPs when launching
carpet bombing attacks to minimize the traffic generation
cost. Compared with randomly distributed benign traffic, the
similarity between malicious traffic features is much higher.
The cross-server inbound traffic analysis models analyze traffic
to multiple servers simultaneously and utilize the similarities
among malicious traffic to achieve better detection accuracy.

Based on these observations, we propose NetRadar, a sys-
tem that makes full use of the available features for carpet
bombing detection across the victim network with server-
assisted detection and cross-server inbound traffic analysis.

III. NETRADAR ARCHITECTURE

To enable server-assisted detection and cross-server inbound
traffic analysis, traffic and server-side features need to be
collected and analyzed in a centralized manner. Therefore, a
server-gateway cooperation architecture is required to realize
information collection while collaborating with DDoS mitiga-
tion devices (e.g., firewalls) during the attack. NetRadar uses a
simple server-gateway cooperation mechanism where servers
in the victim network transmit server-side features to the
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Fig. 3: NetRadar Architecture

upstream cross-server analysis detector located at the gateway.
This architecture is motivated by the following considerations:

(1) Minimized Feature Transmission Overhead. Since
server-side features are distributed across the victim network,
feature transmission is unavoidable when gathering informa-
tion from servers. From a topological perspective, the most
reasonable choice is to place this central feature collection
point at the gateway, through which all traffic of the victim net-
work passes. Features from server systems can be piggybacked
on outbound traffic to the gateway, minimizing transmission
overhead. Besides, extracting traffic features directly at the
gateway provides additional transmission overhead savings.
Although servers can collect traffic features, gathering these
features from servers requires extra bandwidth costs in an
already overwhelmed victim network. Therefore, in NetRadar,
servers only extract and transmit features unavailable at the
gateway. The gateway collects traffic features locally and
merges them with server-collected features for further analysis.
This architecture minimizes the feature transmission cost.

(2) Rapid Detection of Evolving Attacks. Different from
traditional single-target DDoS, carpet bombing attacks dynam-
ically change target servers during the attack to challenge
the DDoS defense system’s response time. To block carpet
bombing in time, defense strategies such as blocking and rate-
limiting should be applied and revoked quickly accordingly.
Industry reports indicate that the attack duration experienced
by each victim server may be less than 10 seconds [1],
necessitating equally responsive defense mechanisms.

Timely detection of such rapidly evolving attacks requires
direct analysis of original traffic to immediately identify mali-
cious behavior patterns. As we all know, to filter malicious
traffic before it affects benign services, DDoS mitigation
devices need to be located upstream of the victim servers.
In other words, traffic to the servers is already processed by
these DDoS mitigation devices if defense strategies are ap-
plied. Therefore, deploying the detection model on the servers
creates a fundamental limitation that detection results will
affect the feature collection process, causing a deadlock. Such
a detection model based on server-collected features cannot
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determine whether the attack has stopped or not, as in both
cases, traffic received on the server is free of malicious traffic.
In summary, collecting all features on server systems does
not work well with DDoS mitigation devices, which makes
this solution unfeasible. Therefore, NetRadar collects traffic
features and deploys the detection model on the gateway,
enabling effective detection of evolving attacks while main-
taining compatibility with existing mitigation infrastructure.
NetRadar Workflow. Based on these considerations, Ne-
tRadar employs the server-gateway cooperation architecture
illustrated in Figure. 3. The detection model is deployed
at the gateway of the victim network, where it aggregates
both server-collected and gateway-collected features. Servers
extract crucial service features that are unavailable on network
devices and send them to the upstream detection model to
enable server-assisted detection. Traffic features are extracted
from replicated traffic at the gateway, and then merged with the
server-side features transmitted from victim servers. Finally,
based on both traffic and server-side features, NetRadar per-
forms cross-server inbound traffic analysis and identifies vic-
tim IPs receiving malicious traffic. Then, according to the
victim IPs list, malicious traffic is rerouted to the DDoS
mitigation device while benign traffic passes through the
gateway. The victim IPs list is updated continuously during the
attack to block dynamic carpet bombing attacks and withdraw
outdated defense policies in time. We propose the detailed
design of Server-Assisted Detection and Cross-Server Inbound
Traffic Analysis in the following sections.

IV. SERVER-ASSISTED DETECTION

During a carpet bombing attack, victim servers can provide
critical server-side features to enhance attack detection. Ne-
tRadar uses a server-gateway cooperation architecture where
servers are only responsible for feature extraction. To enable a
general server-assisted detection, the server-side features must
be widely available across most services and effective for
carpet bombing detection. Besides, due to traffic scrubbing by
DDoS mitigation devices, certain traffic may be invisible to
servers, causing the runtime feature mismatch issue between
server-collected features and gateway-collected features.

A. General Server-side Features

To ensure server-side feature compatibility across diverse
services, we developed a lightweight behavioral model for
online services, enabling effective extraction of service access
patterns. We abstract the behavior of online services in the
simplest way, where each request triggers a specific corre-
sponding reply. In this model, when receiving a request, the
server locates the requested resource and generates a reply. The
model assumes that servers can identify requests for the same
resources to pinpoint frequently accessed ones. Additionally,
we assume servers can acquire the size of the requested
resources, either in advance or after processing the requests
(if the requested resource is not static). This model, although
extremely simplified, matches the behavior of most online
services, such as website and file download services. NetRadar

Only
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Benign &
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Server-side Features

Server-side Features

Traffic Features
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Mismatch

Fig. 4: Feature Mismatch when DDoS Mitigation is On

employs this model to unify features across different services.
An identical feature extraction method is used across all victim
servers. We avoid extracting features for each specific service
because this will lead to feature heterogeneity, making it
difficult for us to analyze the similarity of attack behaviors.

From this behavior model, we select resource hit frequency
and active resource size as server-side features. DDoS at-
tacks are typically launched by repeatedly requesting high-
bandwidth resources. Consequently, requests that repeatedly
access the same resource or incur high throughput traffic
transmission are most likely to be malicious ones. There-
fore, NetRadar collects access times of the most frequently
requested resources and the total size of the resources currently
being requested within a given time window as server-side
features. These features are effective in identifying suspicious
traffic and can be easily extracted from most online services.
As for malformed packets that are generated by volumetric
DDoS scripts, we treat them as special requests for the zero-
size resource, allowing the detection model to accurately
determine the presence of volumetric attacks through special
resource size and extremely high request frequency.

B. Robust Server-Assisted Model

In NetRadar, traffic features are collected on the gateway
while service access pattern features are collected on the
victim servers. This distributed collection mechanism intro-
duces a critical challenge during carpet bombing attacks:
when detected, victim server traffic is redirected through
DDoS mitigation devices, creating a runtime feature mismatch
between server-collected and gateway-collected features. As
shown in Figure. 4, when the mitigation is off, both victim
servers and the gateway receive complete traffic, allowing
direct feature merging. However, when the mitigation is on, the
traffic received on victim servers has already been checked and
filtered by the DDoS mitigation device, and thus the features
collected on servers only represent benign traffic status. In
other words, the service access pattern features cannot provide
malicious traffic information to enhance DDoS detection in
this situation. Moreover, the activation status of the mitigation
is not fixed, but is adjusted by the real-time defense strategy.
This means that our solution must adapt to both states and
detect DDoS accurately when some server-side features are
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misleading. Otherwise, the model performance is likely to
be influenced by the previous decision, resulting in repeated
fluctuations in the detection results and DDoS defense failure.

We introduce random erasing to the model training process
to solve the runtime feature mismatch issue. Random erasing
is a data augmentation technique that randomly masks some
features during the training process to make the model robust
[28]. In our server-gateway cooperation architecture, traffic
features are always extracted from complete traffic, as traffic
is not processed by the firewall when collected on the gateway.
Therefore, to train a model that works well in both states
mentioned above, we apply random erasing to the server-
side features specifically to simulate the situation where some
servers extract features from firewall-processed traffic.

Specifically, for each test scenario, we preprocessed two
versions of features, namely Featurecomplete (collected on
original traffic) and Featurebenign (collected on firewall-
processed traffic). For each training sample (which contains
features of multiple servers for cross-server analysis), we ran-
domly select a subset of servers and replace their server-side
features with the Featurebenign versions. And the number
of the erased server-side features is also randomly selected
from zero to the maximum host count in each inference during
the training process. In other words, this approach trains the
model to handle all possible operational states - from relying
solely on gateway-collected traffic features when all server-
side features are filtered, to utilizing complete features when
mitigation is off, and every intermediate scenario. Conse-
quently, NetRadar develops robust detection capabilities that
are effective regardless of the mitigation state, successfully
addressing the runtime feature mismatch issue in our server-
gateway cooperation architecture.
Workflow Summary. NetRadar detects carpet bombing at-
tacks by leveraging both traffic features and service ac-
cess pattern features. The gateway collects traffic fea-
tures—specifically, throughput, packet length, and inter-packet
delay. Meanwhile, service access pattern features, namely
resource hit frequency and active resource size (§IV-A), are
collected by the server and subsequently transmitted to the
gateway for centralized analysis. This process is applied con-
sistently during both the training data collection phase and
the real-time feature extraction phase after deployment. To
address the runtime feature mismatch issue during inference,
we introduce a training phrase enhancement mechanism aimed
at building a more robust detection model (§IV-B).

V. CROSS-SERVER INBOUND TRAFFIC ANALYSIS

As we analyzed in §II-C, carpet bombing DDoS attackers
generate similar malicious traffic to multiple servers in the
victim network. Thus, analyzing feature similarities across
servers proves to be an effective carpet bombing detection
mechanism. Especially when faced with low-rate carpet bomb-
ing, there is virtually no difference between malicious traffic
and benign traffic unless we analyze traffic to multiple servers
simultaneously. However, taking advantage of the similarity
requires costly cross-server analysis, necessitating a detection
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Fig. 5: Example of Equivalent Carpet Bombing Patterns

model capable of processing features of multiple flows simul-
taneously. To achieve efficient detection, we propose a scalable
cross-server analysis model structure featuring a permutation-
equivariant feature transformation function specially designed
for carpet bombing detection.

A. Scalable Analysis on Traffic Feature Set

Cross-Server Analysis Scalability Issue. In the traditional
per-flow traffic analysis scheme [16]–[18], the detection model
processes the features of one flow at a time. The model
determines whether there is an anomaly only based on the
isolated features of each flow. In contrast, a detection model
based on cross-server analysis takes features of more than one
flow as input in each inference to model inter-flow similarities.
This approach is promising in improving carpet bombing
detection accuracy (as we analyzed in §II-C), but the increased
input dimensionality poses challenges to model design.

The naive solution of constructing a large neural network
to process multiple server features simultaneously incurs high
performance overhead. In order to model larger inputs, the
model size inevitably needs to be increased accordingly.
However, this approach does not scale well as the model size is
correlated with the victim subnet size. A possible workaround
is to process a portion of the flows at a time to keep a rea-
sonable model size. However, if the number of simultaneous
inputs is too small, it will limit the model’s performance as
its analysis is based on incomplete local features. Besides,
larger models demand longer inference times, rendering them
impractical for real-time DDoS detection.

An alternative approach is to build a model based on
summarized subnet features, which reduces model complexity
by compressing input dimensionality. For example, statistical
subnet features like average traffic throughput of the victim
network can represent the overall properties of traffic to
multiple servers. A model based on these summarized features
enables network-wide analysis with reasonable model com-
plexity, as input feature size is significantly reduced. However,
we sacrifice model performance as these specific features are
hand-crafted. What’s more, we cannot pinpoint victim servers
in one inference as we give up per-flow features, and we need
to traverse possible server combinations to finally locate the
victims, which introduces exponential overhead.
Features of Multiple Servers as A Set. NetRadar solves the
cross-server analysis scalability issue with a key observation
that features of multiple victim servers can be treated as a set.
Specifically, when we detect carpet bombing DDoS in a victim
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network, we mainly rely on overall summarized features and
similarities of individual flows. The order of flow features is
not crucial to the detection process. For example, as Figure. 5
shows, if a victim network contains 4 servers and a carpet
bombing attacker sends malicious traffic to 2 of them, we
detect the existence of the attack by the increase in the overall
traffic volume and identify the victim servers by identifying
the similarity among features, none of the detection process
depends on the order of these features. In other words, in
Figure. 5, whether the malicious traffic hits IP1&2, IP2&3,
or IP3&4, the analysis process remains the same. Considering
this unordered property of features, we can significantly reduce
the feature space as the equivalent variants of different input
orders are eliminated, which simplifies the detection model
and thus improves scalability.

In fact, we argue that a carpet bombing detection model
should avoid being affected by the order of input features
to achieve robust detection. As we analyzed in II-B, carpet
bombing attackers can easily change the targets and send
malicious traffic to another set of victim servers, IP1&4 in
Figure. 5 for example. If a detection model’s performance is
strongly related to the order of input features, it will be easily
breached by a dynamic carpet bombing attack. On the other
hand, although it is theoretically possible to train a model that
can accept inputs in different orders by constructing a large
training dataset containing all possible input orders, training a
model in such a way requires a huge amount of training time
and an unacceptable large model size. If we can eliminate
equivalent patterns in model design, it will be much easier to
implement such a robust model.
Permutation-equivariant Model Structure. As we analyzed
above, the input of the cross-server analysis model is set-
structured. Deep learning on set-structured data has been ex-
plored in point cloud data analysis [29], where the coordinate
characteristics of multiple points in space also conform to
the characteristics of unordered sets. Inspired by prior works
of deep learning on point cloud data, NetRadar uses the
permutation-equivariant model structure to enable efficient
cross-server inbound traffic analysis.

As Figure. 6 shows, in a permutation-equivariant model,
per-IP (or per-server) features are embedded with a shared
encode MLP θ. Then, these per-IP embeddings are summa-
rized by group function f, and a global feature representing
all inputs is generated. After that, this global embedding is
copied several times, concatenated with the previous per-IP
embedding, and processed by the subsequent classifier model
h. Since the classification model h processes both per-IP

feature and global feature, it enables cross-server analysis.
Note that both θ and h are shared MLP across per-IP features,
which means the processing on each flow is exactly the same
and thus the order can be swapped.

The core structure of the permutation-equivariant model is
the group function f that aggregates the features from multiple
inputs. The function f is a symmetry function that takes
multiple vectors and outputs a vector invariant to the order
of these vectors. Specifically, for any permutation π, group
function f on a set of elements {x1, x2, . . . , xn} satisfies the
following permutation-equivariant properties:

f({x1, x2, . . . , xn}) = f({xπ(1), xπ(2), . . . , xπ(n)}) (1)

In other words, for the model in Figure. 6, no matter how the
input order of per-IP embedding changes, the global embed-
ding is always the same. Every part of the model can achieve
permutation-equivariant, making it particularly suitable for set
data processing, as the order of input is eliminated. This
allows us to implement a highly scalable cross-server analysis
model and reduce the difficulty of training without sacrificing
detection accuracy.

B. Group Function for Carpet Bombing Detection

By treating features from multiple servers as a set, the
permutation-equivariant model structure can effectively reduce
model complexity and improve scalability. We design a special
group function f for the carpet bombing detection task.
Individual Similarities rather than Overall Properties.
Prior works using permutation-equivariant model structure
have focused on the overall properties of the feature set.
For example, in a 3D object classification task [29], the
overall shape composed of multiple point coordinates is the
most important group feature for object classification. In a
switch buffer management task [30], the overall load of the
switch composed of the status of multiple ports, is the most
important group feature to make better resource scheduling
actions. Thus, these works use the maximum, minimum, and
average of the input features as the group function f, which
can summarize the overall characteristics of all inputs.

However, in the carpet bombing detection task, we focus
on the similarities between individual elements within the
set rather than the overall characteristics. If we directly use
the function f that summarizes group features, the feature
of each flow that is useful in similarity analysis will be
discarded. The overall properties may be useful in detecting
whether a carpet bombing attack has occurred, but they are
less effective in identifying specific servers under attack. Take
traffic throughput as an example, traditional group function
f summarizes overall characteristics of traffic throughput to
multiple servers and outputs overall victim network traffic
load, which is a feature suitable for attack discovery rather
than victim servers identification. As we analyze in §II-C,
a detection model that identifies the similarity of malicious
flows is suitable for carpet bombing detection, and thus we
need to preserve the characteristics of each flow in the global
embedding. Besides, we still need to ensure that the properties
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of the symmetric function are satisfied to gain the advantage
of the permutation-equivariant model structure.
Group Function for Similarities Analysis. To simultaneously
achieve permutation-equivariance and preserve individual flow
information in global embedding, we need to design an order
arrangement method that any set of inputs can obtain a
stable order. A simple solution is to sort the original features
from multiple servers and ensure a stable order before the
model processes these inputs. However, this order changes
significantly even if there are small fluctuations in features,
which poses a negative impact on model training. We desire
a relatively fixed order of malicious and benign features
to reduce subsequent classifier model training difficulty. In
NetRadar, the neural network compresses the original features,
and we sort them based on their embeddings to achieve a more
stable order than sorting them based on the original features.

We propose a sort-based group function for the permutation-
equivariant model in carpet bombing detection tasks. As
Figure. 7 shows, the group function takes multiple per-IP
embeddings and outputs a global embedding that contains the
compressed information of all per-IP features. We first use a
shared neural network to further compress per-IP embeddings.
Then we construct the sorting matrix with a separate Sort-Net
and sort the compressed embeddings with this matrix. The
sorted compressed embeddings are then used as the global
embeddings of the permutation-equivalent model.

In order to construct the sorting matrix, we introduce a new
loss function to train the Sort-Net. Sort-Net is a mini-network
that takes per-IP embeddings as input and generates the sort
matrix. We add a regularization term to the training loss to
ensure that the sorting matrix is a permutation matrix:

Lsort = ∥I −AAT ∥2 + λ(Σ
(sum(ai)−max(ai))

max(ai)
) (2)

where A is the sorting matrix predicted by Sort-Net, ai is
row i of the sorting matrix. The first term ensures that the
sorting matrix is close to an orthogonal matrix, as in PointNet
[29]. The second term ensures that each row contains only one
valid parameter. Since we restrict the matrix to be orthogonal
with the first term, the matrix that satisfies both restrictions
is the permutation matrix, which guarantees that each feature
is assigned to exactly one position. In other words, a matrix
that satisfies the above loss function will rearrange the input,
which can be used to sort the per-IP embeddings.

Workflow Summary. Traffic and server-side features are
aggregated at the gateway through the method described in
§IV. Since features from multiple servers can be treated as
set-structured data in the context of carpet bombing attack de-
tection, NetRadar employs an efficient permutation-equivariant
model structure to build the detection model (§V-A). Features
from individual servers are organized into several groups, with
each group processed by the model to generate detection
results for the corresponding servers. Additionally, to better
adapt the model to carpet bombing attack detection, we have
improved the Group Function (§V-B).

VI. EVALUATION

In this section, we evaluate NetRadar from three aspects:
(1) End-to-end performance on carpet bombing DDoS detec-
tion. NetRadar achieves better detection accuracy compared
with state-of-the-art DDoS detection methods on both high-
rate and low-rate carpet bombing DDoS detection; (2) Detec-
tion robustness. NetRadar achieves robust detection even in
extreme covert low-rate carpet bombing attack detection tasks;
(3) Design validation. We further test the performance gain of
the detailed design of NetRadar and the hyperparameters that
affect the performance of NetRadar.

A. Experiment Setup

Server-side Features Generation. NetRadar analyzes both
traffic and service access pattern features to detect carpet
bombing DDoS, thus we need to generate not only the traffic
dataset but also the corresponding server-side feature dataset.
We build the test dataset based on the CIC-IDS{2017,2018}
[31]. The CIC-IDS dataset’s packet trace captures the complete
packet payload, from which we can extract server-side fea-
tures. We select HTTP traffic from the dataset and extract the
URL of each five-tuple flow from the packet payload. These
URLs identify flows accessing similar resources, while the
total bytes of the flow represent the resource size. Based on
this, we subsequently compute the resource hit frequency and
active resource size features.
Carpet Bombing Traffic Generation. To evaluate NetRadar,
we use both real-world and simulated carpet bombing packet
traces. We set up one high-rate carpet bombing detection task
and two low-rate carpet bombing detection tasks in which
attackers use different malicious traffic generation methods.
For benign background traffic, flows from CIC-IDS-2017
Monday, which contain only benign activities, are duplicated
and assigned with random flow start timestamps to construct
a dataset of 120 seconds. Then we generate three carpet
bombing traffic datasets and merge them with the benign traffic
dataset above to create three DDoS detection test settings. The
details of the carpet bombing datasets are as follows:

• Volumetric DDoS (High-rate): A reconstructed high-rate
carpet bombing attack based on a real-world dataset from
a top-tier cloud service provider. The original dataset
contains a 2-second packet trace captured on 256 victim
servers during a carpet bombing attack. Due to privacy
concerns and hardware limitations, we cannot obtain a
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TABLE I: Detection Accuracy of NetRadar and Baselines in Different Carpet Bombing Detection Tasks.

Attack Traffic Volumetric DDoS Low-rate HTTP Synchronous Download

Metric Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Lemon 99.28% 99.64% 99.61% 53.04% 53.41% 81.32% 54.23% 52.55% 86.47%

Kitsune 99.95% 99.99% 99.95% 63.22% 34.70% 52.66% 89.86% 96.07% 72.36%

Flowlens 99.99% 99.99% 99.99% 92.90% 94.92% 93.69% 90.31% 93.37% 83.57%

Whisper 99.69% 99.81% 99.86% 92.77% 95.34% 90.18% 86.63% 84.14% 85.18%

NetRadar 99.79% 99.83% 99.95% 96.28% 96.98% 96.06% 94.78% 96.38% 93.70%

long enough packet trace for performance evaluation.
Instead, we build a dataset based on the pattern of the
original dataset. There are 32 servers receiving SYN
Flood in the original packet trace. Therefore, in the
reconstructed dataset, we preserve the characteristic of
the attack targeting 32 victims simultaneously, while also
introducing target switching every 2 seconds to generate
a dynamic high-rate carpet bombing attack.

• Low-rate HTTP (Low-rate): This scenario simulates a
low-rate carpet bombing attack using HTTP-based attack
traffic from CIC-IDS2018 (Hulk, GoldenEye, Slowloris,
HOIC, LOIC) and a low-rate HTTP flood generated by
duplicating randomly chosen low-rate HTTP flows from
the benign dataset. We generate traffic with one attack
at a time and switch the attack type every 5 seconds
to simulate the attacker’s behavior of switching traffic
generation methods. We target 256 of 1024 victim IPs at
the same time and change target IPs every 5 seconds.

• Synchronous Download (Low-rate): This scenario sim-
ulates a low-rate carpet bombing attack generated by
requesting benign download services. We choose one
download HTTP five-tuple flow from the benign dataset
and duplicate it to generate malicious traffic. We target
256 of 1024 victim IPs at the same time and change
target IPs every 5 seconds. This scenario is designed to
emulate a situation where sophisticated adversaries craft
attack traffic that closely mimics benign flows.

Baselines. We use state-of-the-art DDoS detection schemes
as baselines for comparison. Each test scenario contains 120
seconds of packet trace. We train these schemes on the first 90
seconds of the dataset and test them with the latter 30 seconds.

• Lemon [15]: Sketch-based DDoS detection scheme.
Lemon uses a hash-based per-flow measurement method
to collect traffic features and detects DDoS based on these
features. We set Lemon’s detection threshold according
to the average bandwidth of the test scenario used. We
use the open-source Lemon system based on Mininet.

• Kitsune [32]: Machine learning based network intrusion
detection scheme. Kitsune extracts traffic statistics and
uses autoencoders to detect attacks. We train Kitsune with
benign traffic and determine its detection threshold based
on the loss on the training dataset. We use the open source
Kitsune implementation.

• Flowlens [16]: Flowlens extracts the packet length and
inter-packet delay distribution of each flow as traffic
features. We use the random forest classifier as the
detection model and Bayesian optimization to adjust
Flowlens’ hyperparameters to its optimal configuration.
We reproduce Flowlens based on its paper.

• Whisper [18]: Whisper embeds the packet length, inter-
packet delay, and packet type of each packet in a floating-
point value. Then, Whisper applies the Fourier transform
on the packet features sequence and uses an unsupervised
clustering method to detect victim servers. We build a
supervised version of Whisper with the same features and
use a random forest classifier as the detection model.

• NetRadar [33]: we implement NetRadar in simulation
environment. NetRadar takes both traffic and server-side
features of 256 victim servers as input in each inference.
We extract features every second. During the training
process, we sample 256 different input sets (each contains
features of 256 servers) every second and randomly erase
some server-side features to train a robust detection model
as introduced in §IV-B. During the test process, we divide
the features of 1024 servers into 4 groups of 256 servers
every second and give the detection results of each server
with 4 inferences. For the flows identified as DDoS in the
previous second, we erase the corresponding server-side
features to simulate the runtime feature mismatch.

Metric. We report the carpet bombing detection performance
of each scheme using packet-level Accuracy, Precision, and
Recall. These metrics are calculated from the detection results
of each packet, as these detection schemes use different feature
extraction strategies and detection triggering mechanisms:
NetRadar and Lemon trigger a detection process at a fixed time
interval of one second, Flowlens and Whisper are triggered
when the number of unclassified packets of a server reaches
160, and Kitsune analyzes every packet individually.

B. End-to-End Performance
In this section, we compare NetRadar with state-of-the-

art DDoS detection schemes’ performance in carpet bombing
detection tasks in §VI-A. Results are shown in Table I.

NetRadar achieves comparable if not the best performance
among the detection schemes in all carpet bombing detection
settings. In the high-rate carpet bombing DDoS detection task,
all solutions achieve an accuracy of over 99%. The reason is
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Fig. 8: Detection Robustness Test with Different Malicious Traffic Ratio Dataset

that the high-rate carpet bombing targets fewer victim servers,
and the characteristics of each flow are still easily noticeable.
Malicious traffic generated by volumetric DDoS scripts can
be easily detected with the throughput anomaly. Especially
in the real-world dataset we obtained, the attacker floods
the victim network with a simple SYN Flood, which further
reduces the detection difficulty. NetRadar achieves comparable
performance with state-of-the-art DDoS detection schemes in
high-rate carpet bombing DDoS detection.

In both low-rate carpet bombing DDoS detection tasks,
NetRadar outperforms baselines. Lemon’s performance signif-
icantly degrades in both low-rate scenarios, as its detection
model is based on traffic statistics and identifies victim with a
heavy-hitter logic. It is not suitable for low-rate carpet bomb-
ing detection where per-server malicious traffic volume is sig-
nificantly reduced. Compared with Lemon, NetRadar achieves
an accuracy improvement of 40.55% in the Synchronous
Download test setting. In the first low-rate carpet bombing
test setting, the decrease in individual attack flow throughout
challenges the detection, resulting in a decrease in recall score
for baselines. NetRadar achieves better performance by fully
utilizing network-wide carpet bombing features with server-
assisted detection and cross-server inbound traffic analysis
mechanism. In the most challenging Synchronous Download
test setting, baseline solutions cannot detect all the malicious
traffic as we simulate an advanced attacker constructing a
carpet bombing using only download traffic. Without the help
of server-side features and the ability to perform cross-server
analysis, baselines cannot distinguish benign downloads from
the malicious ones. On the contrary, NetRadar identifies victim
servers accurately based on the active resource size increasing
synchronously on multiple servers.

C. Detection Robustness
In this section, we further evaluate NetRadar’s detection

robustness with extreme covert low-rate carpet bombing DDoS
datasets. As we mentioned in §II-A, carpet bombing chal-
lenges existing DDoS detection schemes with concealed low-
throughput malicious traffic. The lower the per-flow malicious
traffic throughput, the more difficult it is for the detection
schemes to identify the malicious behavior. As the proportion
of malicious traffic to each server decreases, per-flow traffic
features become less reliable in DDoS detection. To test
whether NetRadar achieves higher detection robustness than

the traditional per-flow DDoS detection scheme, we construct
a set of carpet bombing detection tasks with different mali-
cious traffic ratios. The test datasets are modified based on the
Synchronous Download task in §VI-B. We test the malicious
traffic throughput ratio of 1/1 to 1/16 by modifying the number
of addresses being attacked simultaneously and the malicious
throughput on each server. All schemes in comparison are
retrained on the newly constructed dataset.

As Figure. 8 shows, NetRadar achieves the best performance
among detection schemes. Even in the most challenging 1/16
ratio settings where the malicious traffic has a throughput less
than 10% of the total traffic volume, NetRadar still achieves
the F1-score of 0.874 and identifies 85% victim servers. Note
that we report the F1-score instead of the accuracy in this
experiment because adjusting the ratio of the malicious traffic
will cause severe sample imbalance issues. A detector that only
outputs benign labels can also achieve high accuracy in these
test settings. For Whisper and Flowlens, detector performance
decreases as the proportion of malicious traffic decreases,
because malicious traffic has less impact on traffic features if
its throughput is extremely low. For traditional per-flow traffic
analysis schemes, it is difficult to identify all victim servers in
this scenario, so we can observe that the recall score of these
baseline solutions decreases significantly as the proportion of
malicious traffic decreases. On the contrary, NetRadar uses
the server-side features and analyzes the similarity of multiple
features to enhance the detection performance. In extremely
low-rate carpet bombing scenarios, these features can reveal
the malicious property of spreading malicious traffic to mul-
tiple servers. Therefore, NetRadar maintains a higher recall
score compared with baselines. It is worth mentioning that
we find Flowlens achieves a better precision score in some
test settings. However, Recall is a more important indicator
in the carpet bombing detection scenario, especially in this
detection robustness experiment featuring imbalanced positive
and negative samples. NetRadar identifies more victim servers,
thus better protecting benign services.

D. Deep Dive

In this section, we validate NetRadar’s design and test
hyperparameters in NetRadar with control experiments.
Ablation test. To fully understand the performance gain of
NetRadar’s designs on carpet bombing detection accuracy, we
conduct the ablation test on NetRadar. We build a baseline
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Fig. 10: Cross-Server Analysis Efficiency

model that takes only traffic features from one server as
input. The results of the baseline model represent the detection
accuracy of the traditional per-flow traffic analysis solution.
We also build a per-flow NetRadar without cross-server analy-
sis and a traffic-feature-only NetRadar without server-assisted
detection. The baseline model and per-flow NetRadar use a
standard multi-layer perceptron (MLP) model. We input only
traffic features into traffic-feature-only NetRadar and leave
the other parameters unchanged to NetRadar. Four solutions
are evaluated in the Synchronous Download traffic dataset in
§VI-A, and results are shown in Figure. 9.

Compared with the baseline per-flow traffic analysis model,
NetRadar improves carpet bombing detection accuracy by
14.08% in total. Intuitively, the performance gain by server-
assisted detection is greater, which is related to the character-
istics of the Synchronous Download test scenario, where the
attacker requests large file downloads to generate malicious
traffic. Malicious behavior can be easily identified based on
the active resource size feature provided by victim servers.
On the other hand, for traffic-feature-only solutions, malicious
flows have no obvious difference from normal download flows
in terms of statistical traffic features. Therefore, the baseline
model and traffic-feature-only NetRadar are relatively ineffec-
tive in finding all victim servers and thus achieve a lower recall
score. Besides, solutions with cross-server analysis perform
better compared with their per-flow version. Traffic-feature-
only NetRadar achieves an accuracy improvement of about
4% over the baseline model because cross-server analysis
enables the model to capture the synchronous increase in
throughput on multiple servers. The improvement from per-
flow NetRadar to NetRadar is relatively smaller as the server-
assisted detection has achieved a high enough accuracy boost.

Cross-Server Analysis Efficiency. As we analyzed in §V-A,
the straightforward way to implement a cross-server analysis
model is to build a large neural network that directly takes
features of multiple servers as input. NetRadar designs a
more scalable solution with the permutation-equivariant model
structure. To test how this design improves model efficiency,
we build a standard MLP model that takes features from all
servers as input and outputs corresponding detection results.
We use the largest possible model size for our GPU to ensure
the best performance of the naive MLP model. And the traffic
trace is consistent with the Synchronous Download in §VI-A.

For detection throughput, we run model inference 10,000 times
and calculate the time consumed for each detection result on
each server. We report performance in terms of the number of
flows processed per second. Results are shown in Figure. 10.

NetRadar performs better than the naive MLP model in
detection accuracy and detection throughput. In terms of
accuracy, NetRadar achieves great improvement compared
with naive MLP, especially in the scenario without server
assistance, which shows that NetRadar’s model performs more
accurate cross-server analysis. Although the neural network
of the naive model is larger, NetRadar still achieves better
detection accuracy because NetRadar takes advantage of carpet
bombing detection task characteristics that features of multiple
servers can be treated as an unordered set, as we analyzed
in §V-A. As for detection throughput, it is clear that the
NetRadar is more efficient, achieving at most 31% more
processing throughput than the baseline model. To handle
multiple inputs, the baseline model is forced to increase the
model size, while some parts of the NetRadar model are shared
among multiple inputs, and therefore NetRadar requires fewer
computational resources. Besides, it is worth mentioning that
the naive MLP model takes features of all victim servers in
a fixed order in this test. We have tried to use the same
inputs (features of 256 victim servers in random order for
each inference) as NetRadar in the naive MLP model, but
we failed to train an effective detection model. The naive
MLP model has difficulty in handling input order swaps. We
argue that inputting all features into the model like this is
an impractical solution, as the number of servers in large
networks far exceeds 1024, and therefore an even larger model
is needed to handle these features, resulting in an unacceptable
computational overhead.

Inference Subnet Size. The performance gain of cross-server
analysis comes from analyzing features from multiple servers
simultaneously. Therefore, the number of traffic features the
detection model takes as input in each inference affects
detection accuracy. However, an excessively large size may
lead to unacceptable costs in model inference and training.
We test this parameter with the Synchronous Download dataset
in §VI-A. To better demonstrate the performance difference,
we use traffic-feature-only NetRadar in this test and change
its inference subnet size from 4 to 512 servers. We modify
the number of features that the group function takes as input,
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while leaving the other model parameters unchanged.
Results are shown in Figure. 11. In general, a larger

inference subnet size leads to better detection accuracy as
the model analyzes the similarities of more flows and is less
susceptible to errors caused by local fluctuations. However,
training a model with larger inference subnet sizes takes a
significantly longer time. In this test, the training time of
the 512-server version NetRadar is about 3 times that of the
256-server version. Therefore, based on the comprehensive
consideration of model accuracy and training efficiency, we
use 256 as NetRadar’s default inference subnet size in the
experiments. Besides, analyzing a relatively small number of
servers at a time, such as 64 servers, achieves comparable
performance with larger inference subnet sizes in our test
setting. Using such a small inference subnet size can further
improve the detection throughput of NetRadar if needed.

TABLE II: Group Function Comparison

Group Function DeepSets PointNet NetRadar

Accuracy 86.86% 85.98% 94.78%

Group Function Design. As we mentioned in §V-B, prior
works using permutation-equivariant model structure [29], [30]
focus on overall properties rather than individual similarities in
their group function f, which is not suitable for carpet bombing
detection tasks. To demonstrate that, we compare NetRadar’s
performance with DeepSets [34] and PointNet [29]. Noted that
we remove the input transformation in PointNet (specifically,
transforming point position in input vector while leaving the
rest unchanged) as it is not suitable for traffic and host
features. Apart from the model, we keep all other parts of
the baseline identical to NetRadar. Test dataset is consistent
with the Synchronous Download in §VI-A.

As shown in Table II, NetRadar performs better than
DeepSets and PointNet. The group function of NetRadar
is specifically designed for individual similarity analysis.
NetRadar retains features for each flow in global feature
embedding, subsequent classifier network can analyze the
similarity between current flow embedding and sorted all
flow embeddings. Therefore, NetRadar can easily capture the
similarity between DDoS traffic on multiple hosts and identify
carpet bombing based on that. On the contrary, traditional
schemes discard the per-flow features and use the overall
properties of the victim network as global feature embedding,

which is less effective as individual similarities matter more
than overall properties in carpet bombing detection.
Random Erase Test. NetRadar uses the random erasing mech-
anism to train a robust model that achieves stable detection
no matter whether traffic to server systems is processed by
mitigation devices or not (§IV-B). To test the performance
gain of this design, we build a NetRadar without random
erasing and compare it with the original NetRadar. We use
the dataset in §VI-C where the num of the victim servers is
changed from 32 to 512. NetRadar without random erasing is
trained with original traffic and server-side features without the
random erasing mechanism introduced in §IV-B. During the
test process, we simulate the runtime feature change by erasing
server-side features of victim servers according to previous
second model detection result.

The results are shown in Figure. 12. NetRadar achieves a
stable detection F1-score of over 0.9 in all test settings. The
model without random erasing achieves a lower F1-score as
the number of victim servers increases. In scenarios with a
large number of victim servers, the number of servers that
are affected by the DDoS scrubbing process will increase.
These affected servers can only extract server-side features
of benign traffic, leading to the runtime feature mismatch be-
tween server-collected features and gateway-collected features.
The model without random erasing is trained on the complete
traffic and server-side features, so it is not robust to the server-
side feature changes caused by the mitigation devices, which
causes the detection results to fluctuate repeatedly. In the 512
victim servers test, NetRadar achieves a recall of 95% while
NetRadar without random erasing achieves 67%.
Incremental Deployment Test. NetRadar enhances carpet
bombing detection performance with server-side features feed-
back. However, full-scale deployment across all servers may
not be feasible in practical scenarios. Therefore, we test the
performance of NetRadar when some servers are not available
for server-side features feedback. We use the Synchronous
Download dataset in §VI-A and randomly remove server-side
features from 0% to 100%. Specifically, we select a group
of servers, remove their server-side features, and pad the
feature vectors with 0 to the original length. The detection
model and training process remain unchanged. Note that this
preprocessing method does not conflict with runtime feature
change, and the server-side features are still affected by the
real-time defence strategy during the simulation.

Results are shown in Figure. 13. In general, the detection ac-
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curacy of NetRadar is positively correlated with the proportion
of server-side features feedback deployment. NetRadar trains
the detection model with the random erasing mechanism,
which also has a positive effect on this test, as the model learns
to make decisions based on traffic features. The results of this
test demonstrate that NetRadar supports incremental deploy-
ment. Partial-deployed server-side features feedback mecha-
nism can enhance the detection performance. NetRadar user
can choose a suitable deployment scale based on detection
performance gain and corresponding deployment cost.

VII. DISCUSSION

Features Synchronization. Real-time detection solutions
must make decisions before the suspicious flows end. While
analyzing complete flow features enables ideal classification
accuracy, it also means that subsequent defense processes
(such as DDoS mitigation) will be significantly delayed.
Therefore, most solutions use a fixed number of packets as a
trigger for starting the detection process [16]–[18]. However,
this packet-trigger method is not suitable for cross-server
inbound traffic analysis. Servers in a victim network receive
traffic at varying throughputs, causing features to be generated
at different rates across servers. When these asynchronous
features from multiple servers are fed into the detection
model for cross-server analysis, the temporal misalignment
may significantly degrade detection performance.

In NetRadar, we use a synchronized time interval for feature
extraction, with detection triggered at each interval. We refresh
the features of each server and trigger the DDoS detection
process every second to ensure temporal alignment of the
input features. While this synchronization enables effective
cross-server analysis, it introduces a detection latency where
the system identifies victim servers based on features from
the previous second. This delay creates a vulnerability win-
dow where carpet bombing attacks with a sub-second target
switching interval can evade detection. We plan to optimize the
detection delay by adaptively adjusting the feature extraction
time interval according to network status in future work.
Server Scheduling. NetRadar currently uses a static server
scheduling configuration when the server feedback mechanism
is not fully deployed. While evaluation results in the incremen-
tal deployment test demonstrate that, with this simple schedul-
ing strategy, NetRadar’s performance is positively correlated
with the number of feedback-enabled servers, the static host
scheduling strategy is far from perfect.

An ideal host scheduling strategy needs to comprehensively
consider the service similarity, changes in attacks, and real-
time service load to dynamically adjust the configuration at
runtime. Such an adaptive scheduling strategy can further
optimize the detection accuracy of the system while reducing
the transmission and computational overhead associated with
the server feedback mechanism. However, developing this
optimized scheduling strategy requires detailed knowledge of
specific victim network topologies and service characteristics.
Currently, we simulate the behavior of NetRadar for prelimi-
nary test and leave this for future work.

Real-world Deployment. Although NetRadar employs simu-
lation experiments for initial validation, its design prioritizes
real-world deployability. Firstly, the system eliminates the
need for complex traffic feature extraction or traffic decryption,
significantly simplifying monitoring system design. Required
traffic features rely only on packet header information and are
queried at a low frequency, which can be easily implemented
on modern programmable data planes [35] at line rate. The
simplicity of features also allows NetRadar to easily adapt to
the network with multiple access points, where features from
multiple gateways can be aggregated to achieve comprehensive
traffic analysis. Secondly, server-side features can be acquired
through established methods—such as eBPF-based monitor-
ing on the servers themselves or cloud-based solutions like
DeepFlow [36]. These approaches are capable of collecting
server-side features at a similar or even finer granularity to
support NetRadar’s deployment.

VIII. RELATED WORKS

New Variant of DDoS. As a long-standing threat to the
Internet, many new variants of DDoS have appeared in recent
years. Pulse-wave DDoS targets defense systems’ response
time by generating malicious traffic with a periodic on-off
pattern. A recent solution addresses this attack by depriori-
tizing malicious traffic on programmable switch [37]. Carpet
bombing DDoS also requires low-latency defense mechanisms,
as attackers continuously shift target servers within the victim
network. Link-flooding attacks (LFAs) target network links
rather than servers, potentially cutting off the Internet con-
nection to selected victim network [19], [23]–[25]. Similarly,
link-flooding attacks use low-rate normal-looking traffic to
evade DDoS detection. However, launching an LFA is far
more costly than launching a carpet bombing attack, as it
necessitates the collection and analysis of routing information
to construct a link map based on network topology in advance.
On the contrary, the carpet bombing attacker only needs to
acquire the victim’s IP addresses to launch an effective attack.
Collaborative DDoS Defence. Given the distributed nature
of DDoS attacks, numerous studies have adopted multi-device
collaborative defense strategies. DefCOM [38] organizes exist-
ing defense devices into a defensive overlay network to enable
coordinated detection and mitigation within ISP networks.
Sketch-based methods [12], [15], [23] typically employ dis-
tributed data collection and centralized processing to achieve
network-wide collaborative detection, generally applied in ISP
networks. Meanwhile, approaches like SENSS [39] and IETF
DOTS [40] facilitate collaborative mitigation by allowing vic-
tim networks to request defense services from remote mitiga-
tion service providers. Unlike most existing solutions deployed
in ISP networks that primarily target simple volumetric DDoS,
NetRadar enables collaboration between victim servers and the
gateway within the victim network, achieving accurate carpet
bombing attack detection — a task that is challenging for the
gateway to perform independently.
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IX. CONCLUSION

This paper tackles detecting carpet bombing attacks, with
a particular focus on those that generate malicious traffic
through application-layer attack methods. We propose Ne-
tRadar, a DDoS detector that achieves accurate and robust
carpet bombing detection. NetRadar introduces server-assisted
detection and cross-server inbound traffic analysis in carpet
bombing detection with a simple server-gateway cooperation
architecture. Our evaluation with real-world and simulated
traces shows that NetRadar is capable of detecting both high-
rate and low-rate carpet bombing attacks with high accuracy.
Moreover, NetRadar achieves robust detection even in extreme
covert low-rate application-layer carpet bombing scenarios.
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APPENDIX A
ARTIFACT APPENDIX

In this section, we provide information about obtaining the
source code and dataset of NetRadar. This artifact is designed
to reproduce the main experimental results presented in the
Evaluation section of the paper on a standard GPU-equipped
machine. Researchers should be able to reproduce results
related to End to End Performance (TABLE I), Detection Ro-
bustness (Figure 8), Ablation Test (Figure 9), and Cross-Server
Analysis Efficiency (Figure 10) using this artifact. Additionaly,
we also provide the flexibility to customize the carpet bombing
attack generation process, allowing researchers to explore
various carpet bombing attack scenarios.

A. Description & Requirements

1) How to access: The source code of NetRadar (namely
netradar_opensource.tar.gz), including the config
files needed to reproduce the main experiments in Evaluation
section is available on hotcrp.com. This artifact is available on
Zenodo (https://doi.org/10.5281/zenodo.17582526).

2) Hardware dependencies: A GPU-equipped machine is
required to run this artifact (tested on NVIDIA GTX 1080,
more advanced models are preferable). Furthermore, as the
experiments involve generating multiple carpet bombing attack
traffic test datasets, it is recommended to have at least 200 GB
of available disk space (excluding the original dataset).

3) Software dependencies: This artifact run on Linux sys-
tem and utilizes libpcap for feature extraction, scikit-learn
and PyTorch for training machine learning models (tested on
Ubuntu 22.04 with libpcap-dev 1.10.1, scikit-learn 1.7.2 and
torch 2.7.1). Detailed descriptions of the software dependen-
cies are provided in the README.md file in the package.

4) Benchmarks: NetRadar utilizes the CICIDS2017, CI-
CIDS2018 dataset and a real-world dataset from a top-tier
cloud service provider in Evaluation. We set up multiple carpet
bombing attack detection tasks based on these datasets. For
baseline comparisons, NetRadar is evaluated against Flowlens
[30] and Whisper [31]. We implement these baselines ac-
cording to the specifications in their respective publications.
Furthermore, we implement ablated versions of NetRadar with
specific components removed and naive MLP carpet bombing
detectors to conduct ablation tests and related experiments.

B. Artifact Installation & Configuration

Please install the corresponding software packages accord-
ing to the requirements listed in the README.md. Note that
the version numbers specified in the README.md reflect
our testing environment; newer software versions (and more
advanced hardware) should also be compatible. The CIC-
IDS{2017,2018} dataset is not included in the artifact and
needs to be downloaded from its official website. Please store
it in directory according to the README.md.

C. Experiment Workflow

The experiment workflow is organized as follows:

1) Step 1: Dataset Preprocessing: The raw pcap files
from the CIC-IDS{2017,2018} dataset are partitioned into
individual HTTP flow captures. URLs and flow lengths are
subsequently extracted to serve as server-side feature inputs
for NetRadar.

2) Step 2: Test Dataset Construction: Carpet bombing
attack traffic is generated according to specific experiment
configurations. This process involves replicating attack traffic
to multiple victim IPs, with periodic rotation of target victim
IP sets to emulate carpet bombing attack behavior. Parameters
such as number of victim IPs and frequency of IP rotation are
configured to set up multiple attack detection tasks.

3) Step 3: Performance Evaluation: Using the constructed
test datasets, the detection performance of NetRadar and base-
line methods is evaluated through feature extraction, model
training, and inference phases to simulate the detection per-
formance of each solution in carpet bombing detection tasks.

It is worth noting that Step 1 is a one-time procedure.
We organize Steps 2&3 as multiple experiment configurations
in this artifact (End to End Performance for example). Each
configuration corresponds to the generation of test datasets
and the subsequent performance evaluation of the relevant
solutions for one task in Evaluation.

D. Major Claims

• (C1): NetRadar achieves better detection accuracy com-
pared with state-of-the-art DDoS detection methods on
both high-rate and low-rate carpet bombing DDoS detec-
tion. This is proven by the experiment (E1) whose results
are reported in Table I.

• (C2): NetRadar achieves robust detection even in extreme
covert low-rate carpet bombing attack detection tasks.
This is proven by the experiments (E2) whose results are
reported in Figure 8.

• (C3): The performance gains of NetRadar are attributed
to its two key mechanisms: Server-Assisted Detection
and Cross-Server Inbound Traffic Analysis (proven by
experiments (E3) whose results are reported in Figure
9). The Cross-Server Inbound Traffic Analysis component
demonstrates superior scalability and detection accuracy
compared to naive MLP-based approach (proven by ex-
periments (E4) whose results are reported in Figure 10).

E. Evaluation

This artifact organizes the experiments into one dataset pre-
processing script and four distinct experiment configurations
(corresponding to the Experiments below), all of experiments
can be executed automatically through a single script.

[Prepare] Firstly, please perform dataset preprocessing be-
fore running experiments:
$ sh scripts/compile_cpp_datacooking.sh
$ sh scripts/run_cicids2017_preprocess.sh
$ sh scripts/run_cicids2018_preprocess.sh
$ sh scripts/run_malicious_pcap_preprocess.sh

[Execute] Then, run all experiments proposed in this artifact
through a single script as follows:
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$ sh autorun.sh
Individual experiments can also be executed by running the

corresponding commands in the autorun.sh script.
1) Experiment (E1): [End to End Performance]: This ex-

periments evaluates the end-to-end detection performance
of NetRadar and baseline methods in carpet bombing at-
tack detection tasks. The performance of three distinct so-
lutions was evaluated across three different scenarios. De-
tailed configurations for these experiments are specified
in the Experiment Setup of the Evaluation section. The
corresponding configs and reference results are located in
configs/table_1_end_to_end.

[Results] Compare evaluated results of NetRadar, Whisper
and Flowlens in autorun_cooked.log with Table I.

2) Experiment (E2): [Detection Robustness]: This exper-
iments evaluates detection performance of NetRadar and
baseline methods on extreme covert low-rate carpet bomb-
ing DDoS dataset. We build multiple modified Synchronous
Download test datasets with the malicious traffic throughput
ratio of 1/1 to 1/16 to test detection robustness of NetRadar.
The corresponding configs and reference results are located in
configs/figure_8_detection_robustness.

[Results] Compare evaluated result figures of F1-score,
precision, and recall with Figure 8 in paper.

3) Experiment (E3): [Ablation Test]: This experiments
evaluates detection performance of NetRadar and its ab-
lated versions with specific components removed to demon-
strate the performance gain of NetRadar’s designs. The
corresponding configs and reference results are located in
configs/figure_9_ablation_test.

[Results] Compare evaluated figure with Figure 9 in paper.
4) Experiment (E4): [Cross-Server Analysis Efficiency]:

We compare straightforward cross-server analysis model
(naive MLP) with NetRadar on detection accuracy and
detection throughput to prove that NetRadar is more ef-
ficient in handling cross-server traffic analysis. The cor-
responding configs and reference results are located in
configs/figure_10_efficiency.

[Results] Compare evaluated figure with Figure 10 in paper.

F. Customization

All configurable parameters in this artifact are consoli-
dated within a JSON configuration files, including settings
for carpet bombing attack generation, baseline, and training
hyperparameters (configs/config_0.json in End to
End Performance config directory for example). This section
focuses specifically on customizing the carpet bombing attack
generation configuration.

The following parameters for simulating carpet bombing
attacks can be modified through the configuration file:

• Total number of victim network IP addresses
• Number of IPs targeted simultaneously by attacker
• Frequency at which attackers switch targeted IP addresses
• Attack traffic used by attacker (pcap files)
Change these parameters in the JSON configuration file

and run the corresponding experiment script. The system

automatically reads these JSON configurations to dynamically
construct corresponding traffic, enabling flexible emulation of
diverse carpet bombing attack behaviors.
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