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Abstract—Binary Code Similarity Analysis (BCSA) plays a
vital role in many security tasks, including malware analysis,
vulnerability detection, and software supply chain security. While
numerous BCSA techniques have been proposed over the past
decade, few leverage the semantics of register and memory
values for comparison, despite promising initial results. Existing
value-based approaches often focus narrowly on values that
remain invariant across compilation settings, thereby overlooking
a broader spectrum of semantically rich information. In this
paper, we identify three core challenges limiting the effectiveness
of value-based BCSA: (1) unscalable value extraction that fails
to cover diverse value-producing behaviors, (2) insufficient noise
filtering that allows semantically irrelevant artifacts (e.g., global
addresses) to dominate, and (3) inefficient comparison that makes
value-based matching expensive and brittle. To make value-based
BCSA practical at scale, we propose VSIM, a novel framework
that systematically captures values computed from register and
memory operations, filters out semantically irrelevant values (e.g.,
global addresses), and normalizes and propagates the remaining
values to enable robust and scalable similarity analysis. Extensive
evaluation shows that VSIM consistently outperforms state-of-the-
art BCSA systems in accuracy, robustness, and scalability, and
generalizes across architectures and toolchains, delivering reliable
results on diverse real-world datasets.

I. INTRODUCTION

Binary code similarity analysis (BCSA) aims to detect simi-
larities between binary code segments, underpinning numerous
critical security tasks such as malware analysis [1]–[3], vulnera-
bility detection [4]–[9], plagiarism detection [10]–[13], and soft-
ware supply chain security [14]–[18]. However, BCSA is inher-
ently challenging due to the loss of high-level information (e.g.,
variable names, function symbols, data types) during compila-
tion. Moreover, compiler optimizations and architectural differ-
ences can induce substantial syntactic divergence even among
binaries produced from the same source code, further compli-
cating reliable similarity matching [4], [6], [12], [19], [20].

To address these challenges, advanced BCSA techniques
have been proposed to capture the underlying semantics of
binary code, i.e., its core functionality, since semantics remain
stable despite syntactic variations. Existing BCSA approaches
can broadly be classified into four categories: (1) learning

semantics from raw bytes [21] or assembly code [4], [5],
[19], (2) comparing binary code based on input-output (I/O)
equivalence [7], [22], [23], (3) analyzing program states post-
execution [8], [12], [24], and (4) examining specific invariant
values [3], [25]. These methods typically rely on either tradi-
tional program analysis techniques or machine learning (ML),
each inheriting distinct limitations such as poor scalability [26],
limited code coverage [27], [28], and inability to generalize
well to out-of-distribution (OOD) samples [29], [30].

Meanwhile, in practice, many security tasks, particularly
those related to software supply chains [14], [16], [31],
[32], require analyzing massive binary corpora efficiently.
Consequently, recent BCSA efforts increasingly adopt ML-
based embedding approaches for rapid semantic comparisons.
Yet, such ML models frequently encounter robustness issues
due to diverse optimizations and prevalent OOD binaries,
leading to degraded accuracy [5], [33]. Motivated by these
limitations, we propose a non-ML approach that extracts robust,
semantics-aware values to approximate binary code semantics.

More specifically, we propose VSIM, a novel value-based
BCSA framework for accurate, robust, and scalable analysis.
Unlike previous approaches that narrowly focus on source-level
semantic values (e.g., return results) [3], [23], [25], [34], VSIM
systematically captures and utilizes the intermediate register and
memory values encountered during under-constrained symbolic
execution [26]. These intermediate values offer crucial semantic
information often ignored by prior techniques. VSIM further
addresses three key challenges inherent to value-based BCSA:
unscalable value extraction, semantics-aware value selection,
and inefficient value comparison, demonstrating the feasibility
and effectiveness of leveraging values for BCSA.

VSIM’s workflow consists of four key steps: (1) It employs
a customized under-constrained symbolic execution engine
to scalably extract register and memory values, capturing
essential semantic details at the basic-block level. (2) It applies
six heuristics, inspired by common disassembly practices [35]–
[37], to retain semantics-aware values and discard irrelevant
ones (e.g., global variable addresses). (3) The semantics-aware
values are then normalized and concretized to construct function
fingerprints, enabling efficient similarity comparison. (4)
These fingerprints are further enhanced by propagating callees’
fingerprints to callers and incorporating the distinguishability of
captured values, significantly boosting robustness and accuracy.

To evaluate VSIM, we perform extensive experiments across
three large datasets covering diverse compilation scenarios.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240213
www.ndss-symposium.org



When compared against state-of-the-art (SoTA) BCSA tools
(e.g., jTrans [19]), VSIM demonstrates substantial accuracy
improvements exceeding 40% in cross-optimization and
cross-compiler scenarios. Additionally, it achieves comparable
precision in cross-architecture scenarios with only a 1.5% over-
head of alternative approaches such as GMN [6], highlighting
VSIM’s superior accuracy, robustness, and scalability.

Contributions. We make the following contributions:
• We systematically analyze the challenges of value-based

BCSA, clearly identifying the primary obstacles prevent-
ing broader adoption of value semantics, motivating our
exploration of semantics-aware value-based techniques.

• We present VSIM, a robust, scalable, interpretable, and
open source framework for function-level BCSA leveraging
semantic values derived directly from under-constrained
symbolic execution. VSIM is available at https://github.com/
OSUSecLab/vSim.

• We evaluate VSIM across diverse scenarios, demonstrating
superior performance over SoTA methods in terms of
accuracy, scalability, and vulnerability detection capabilities.

II. BACKGROUND, RELATED WORK, AND MOTIVATION

A. Problem Definition

Binary Code Similarity Analysis (BCSA) quantitatively
evaluates the similarity between binary code segments. If two
binary segments exhibit a high similarity score, they likely share
equivalent or closely related functionalities. This capability
is critical for security tasks such as malware analysis and
vulnerability detection.

Various BCSA techniques have been proposed to support
similarity analysis at multiple granularities, including basic
blocks [38], [39], functions [4], [5], [7], [10], [11], [13], [15],
[19], [22], [23], [40]–[47], execution traces [3], [48], and
entire programs [49], [50]. Among these, function-level BCSA
has received the most attention and is extensively studied [51].
To facilitate a fair and meaningful comparison with SoTA
methods, we also focus on function-level analysis, adhering
to a widely accepted definition [15], [19], [52].

Definitions. A binary function is defined as a sequence of
binary instructions produced by compiling a single source-
level function, potentially including compiler optimizations
such as inlining. Formally, given a query binary function fq
and a pool of binary functions P , the goal of function-level
BCSA is to identify the top-k functions from P that are most
similar to fq .

B. Related Work

Binary functions are typically compiled from high-level
programming languages, a process that inherently strips away
semantic details such as variable names and types when translat-
ing source code into machine instructions [6], [51]. This loss of
human-readable context significantly complicates understanding
binary functionality and poses a fundamental challenge to
BCSA. Recent work has also explored recovering source-level
hints such as function names from stripped binaries using

TABLE I: Source of semantic features, comparison methods,
and supported characteristics of BCSA solutions for binary
functions. The ↓ after the comparison method indicates that
the method is insufficiently scalable for large-scale binary code
analysis.
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DiscovRE [58] 2016 · ● · · · · ● · · · ● ● ·
Genius [59] 2016 · ● · · · · ● · · · ● ● ·
BINGO [8] 2016 · · ● ◗ · ● · · ● · ● · ❍

BinSim [3] 2017 · · · · ● ● · · · · · ● ●

IMF-SIM [7] 2017 · · ● · · · · · ● · · · ●

COP [12] 2017 · · · ● · ● ● · · · · ● ·
GEMINI [10] 2017 · ● · · · · · ● · · ● · ·
αdiff [21] 2018 ● · · · · · · · ● · ● · ·
VulSeeker [9] 2018 · ● · · · · · ● · · ● · ·
INNEREYE [11] 2018 · ● · · · · ● ● · · ● · ·
Asm2vec [4] 2019 · ● · · · · · ● · · ● · ❍

DEEPBINDIFF [38] 2020 · ● · · · · ● ● · · ● · ·
PALMTREE [5] 2021 · ● · · · · · ● · · · · ·
Codee [60] 2021 · ● · · · · · ● · · ● · ·
BinUSE [25] 2022 · · · · ● ● · · · ● ● · ●

BinKit [61] 2022 · ● · · · · · · · ● ● · ·
TREX [62] 2022 · ● ◗ · · · ● · · ● · ·
GMN [6] 2022 · ● · · · · · ● · · ● · ·
FIRMSEC [63] 2022 · ● · · · · · ● · · ● · ·
XBA [64] 2022 · ● · · · · · ● · · · · ·
jTrans [19] 2022 · ● · · · · · ● · · · · ·
VULHAWK [65] 2023 · ◗ · · · · · ● · ● ● · ·
sem2vec [24] 2023 · · · ◗ · · · ● · · ● · ·
PEM [23] 2023 · · ● · · · · · · ● ● ● ●

Hermessim [66] 2024 · ◗ · · · · · ● · · ● · ·
CI-Detector [33] 2024 · ● · · · · · ● · · ● · ●

BinAug [52] 2024 · ● · · · · · ● · · ● · ·
δCFG [67] 2024 · ● · · · · · ● · · ● · ·
CEBin [41] 2024 · ● · · · · · ● ● · · · ·
Clap [68] 2024 · ● · · · · · ● · · · · ·
● Selected semantic feature, comparison approach, or fully supported characteristic.
◗ The feature is not directly used for similarity analysis.
❍ The characteristic is partially supported. XBA supports cross-platform analysis (e.g., Linux ELF and

Windows PE). BINGO and Asm2vec leverage selective inlining to improve the function inlining
resilience capability.

machine learning and large language models [53]–[57], further
highlighting the importance of learning robust binary semantics.
At the same time, binaries with identical functionality can differ
substantially in their syntax due to variations in compilers,
optimization strategies, and architectures, which complicates ac-
curate similarity assessment. Consequently, modern BCSA tech-
niques place particular emphasis on extracting semantic, rather
than purely syntactic, features for meaningful comparisons.

In this work, we extend the previous comprehensive survey
by Haq and Caballero [51], which covered BCSA techniques
up to 2020, by incorporating the recent developments until
2025. Specifically, we analyze 30 influential studies published
over the past decade that leverage semantic features for binary
similarity evaluation (see Table I). While this review does not
claim to be exhaustive, the selected works sufficiently illustrate
prevailing trends in BCSA methodologies.

Within these reviewed studies, we identify five primary
semantic feature sources: raw bytes, assembly code, program
input-output pairs (I/Os), program execution states, and
specifically selected values. Accordingly, we categorize
existing methods into four representative classes based on their
core methodologies: (1) learning semantics directly from raw
bytes or assembly code, (2) verifying equivalence via program
I/Os, (3) assessing similarity through program execution
states, and (4) matching selected representative values. To
facilitate our discussion of the technical challenges in existing
approaches, we use an illustrative example in Figure 1.
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struct S {size_t a, int b};
struct S s;

void f1(void* ptr, int y) {
if (y < 8) {

s.b = 0xdeadbeef;
}
else {

s.b = ((struct S*)ptr)->b;
}

}

int f2(int x, void* ptr) {
if (ptr == 0)

return -1;
s.a = x * 3;
f1(ptr, x);
return 0;

}

.bss 0x404050
<f1>:
cmpq 0x8,-0xc(%rbp)
jae L1
mov 0xdeadbeef,[0x404058]
<return from procedure>
L1:
mov -0x8(%rbp),%rax
mov 0x8(% rax),%eax
mov % eax, [0x404058]
< return from procedure>

<f2>:
cmpq 0x0,-0x10(%rbp)
jne L2
movl 0xffffffff, %eax
<return from procedure>
L2:
imul 0x3,-0x4(%rbp),%eax
mov % rax, [0x404050]
call <f1>
mov 0x0, % eax
<return from procedure>

.bss 0x403fc8
<f1>:
mov 0xdeadbeef,%eax
cmp 0x7,0x8(%esp)
jle L1
mov 0x4(% esp),%eax
mov 0x4(% eax),%eax
L1:
mov % eax, [0x403fcc]
ret

<f2>:
mov 0x8(% esp),%eax
test %eax,%eax
je L2
lea (%eax,%eax,2),% ebx
mov % ebx, [0x403fc8]
[inlined <f1>]
xor %eax, %eax
ret
L2:
movl 0xffffffff, %eax
ret

y ≥ 8
y′ ≤ 7s.b ← 0xdeadbeef

s.b ← eaxrax ← MEM(ptr + 8, 4)

eax ← ptr′

s.b ← MEM(ptr + 8, 4)

eax ← 0xffffffff

eax ← 0xffffffff

ptr ≠ 0 ptr’ = 0

(a) Source code

rax ← ptr

eax ←

eax ←

eax ← 0xdeadbeef

eax ← MEM(ptr’+4, 4)

eax ← ptr′

s.a ← 3 * x

s.a ← x’ + 2 * x’

(b) Compiled by clang –O0 (c) Compiled by gcc –m32 –O3

((>,7), (≥,8))
((>,7), (≥,8))

−559038737

−559038737

(=,0) (=,0)
-1

-10

0
(39,132,156,171,243)

(39,132,156,171,243)

Assembly code Output of §III.A Output of §III.D Output of §III.A Assembly code

Fig. 1: A contrived motivating example. Matching highlighted code snippets in (b) and (c) correspond to the source code in (a).
From left to right, (b) shows the assembly code, collected store operations after §III-A Value Extraction, and the elements of
function fingerprints (after §III-C Normalization and §III-D Concretization); (c) shows them from right to left. The fingerprints
of f1 and f2 of (b) and (c) are presented in Figure 8.

Specifically, the source code shown in Figure 1(a) is compiled
into two binary functions for AMD64 and X86 architectures,
depicted in Figure 1(b) and Figure 1(c), respectively.

(1) Learning Semantics from Raw Bytes or Assembly Code.
As summarized in Table I, assembly code stands out as the
predominant semantic feature for BCSA, leveraged in 22 out
of the 30 surveyed studies from the past decade. Notably, 19 of
these studies generate embeddings for binary functions or basic
blocks, facilitating efficient similarity computations via metrics
such as cosine or Euclidean distance. Earlier approaches like
DiscovRE [58] and GENIUS [59] employed graph matching
techniques on Control Flow Graphs (CFGs), while recent
studies pursued interpretable, resilient features robust against
binary variations [24], [61], [62], [66]. Besides embedding-
based methods, GMN [6] directly utilizes a comparison model
that computes similarity scores without generating embedding
representations, which requires more computational resources
for retrieval but may offer improved accuracy [6], [41]. Raw
bytes are generally considered less informative, as their
semantics are only revealed through disassembly; consequently,
αdiff [21] is the only work relying on raw bytes for BCSA.

Despite impressive benchmark results, ML-based BCSA
methods continue to face significant robustness challenges.
Observation-❶: ML models are commonly trained on
binaries generated from a restricted set of compilers. When
encountering binaries compiled with unseen or newly-released
compilers, their performance can deteriorate significantly [5],
[52] (see also §IV-B1). Observation-❷: Only a limited number
of studies try to mitigate the impact of function inlining, a
major practical challenge for BCSA. Most methods analyze
assembly instructions of binary functions in isolation, ignoring
callees, thus potentially biasing similarity assessments under

varying inlining strategies. Notably, GMN mitigates this
impact by explicitly disabling function inlining optimization
when constructing its dataset. Although selective inlining
approaches [4], [8] have been proposed, recent analyses
suggest these techniques inadequately capture real-world
compiler inlining behaviors, which continuously evolve [69].

(2) Verifying Equivalence via Program I/Os. Previous
works [7], [22], [23] execute binaries with concrete inputs and
track their corresponding outputs. Two binaries are deemed
functionally equivalent if they yield identical outputs for
the same inputs. However, since these inputs are typically
generated randomly, given that BCSA methods usually lack
prior knowledge about the binary, many code blocks may
remain unexecuted, resulting in incomplete semantic extraction
due to low code coverage. For example, the branch condition
if (ptr == 0) in Figure 1(a) is satisfied only when the

input ptr equals zero, a condition rarely met by random
input generation.

To mitigate the low coverage issue, IMF-SIM [7] and
PEM [23] manipulate binary execution and increase code
coverage. These dynamic approaches sample lots of inputs
for each binary function; thus, many binary code blocks are
executed multiple times, which is unscalable and inefficient
(Observation-❸). Moreover, BLEX [22] and PEM manipulate
the instruction pointer to execute uncovered code, which
may lead to incorrect results since many execution traces
are infeasible. Alternative solutions include TREX [62] and
BINGO [8], employing ML-based and program state-based
methods, respectively. Specifically, TREX utilizes a lightweight
technique to generate dummy inputs for isolated code
fragments, leveraging program I/O behaviors to guide its model
training. BINGO will be detailed in the subsequent discussion.
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(3) Assessing Similarity through Program States. Program
states are often captured from execution traces of binary code.
Before execution, an initial state (pre-state) is established, and
the resulting state after execution (post-state) is recorded [8],
[12]. The differences between these two states reflect the
behavior and effect of the executed code segment. Typically,
program states include the contents of general-purpose registers,
memory, and processor flags. To extract these transitions,
symbolic execution is employed to collect symbolic expressions
for all updated components.

BINGO [8] and COP [12] operate by slicing partial traces
from a binary function’s control flow graph (CFG) and
collecting sets of program states from these slices. To assess
similarity between two binary functions, BINGO applies a
comparison model to evaluate the similarity of their respective
program states, while COP employs a graph matching algorithm
to align program states along the CFGs of the functions.

However, capturing entire program states may in-
corporate irrelevant information, compromising analy-
sis accuracy (Observation-❹). For instance, accessing
((struct S*)ptr)->b in Figure 1(b) and Figure 1(c)

corresponds to offsets ptr + 8 and ptr + 4, respectively,
due to architecture-specific differences in the size of preceding
attributes such as size t a. Differences in structure align-
ment rules can further alter memory layouts and the resulting
symbolic expressions, thereby degrading accuracy. A promising
mitigation is to selectively extract only meaningful symbolic
expressions and literals, i.e., those involving selected values
of registers, memory, and flags, for similarity analysis, which
will be discussed subsequently.
(4) Matching Selected Values. Similar to using program
states, selected values are derived from the binary code via
symbolic execution [3], [25]. However, instead of capturing
entire pre- and post-states, these approaches examine how
specific values are used within binary code. By identifying
values employed in meaningful contexts, such as external
function call arguments and return values, these methods
mitigate the impact of irrelevant expressions. Existing works [3],
[25] indicate selected values achieve promising BCSA results.
For example, BinSim detects similarities among obfuscated
malware programs, and BinUSE accurately identifies software
clones across compilers, optimization levels, and architectures.

C. Motivation

Having reviewed the recent BCSA literature, we have
noticed that Observation-❶, ❷, and ❹ associated with capturing
precise and robust semantics from assembly and program states.
Additionally, dynamic approaches relying on program I/Os are
constrained by low code coverage and scalability (Observation-
❸). These difficulties primarily stem from inherent limitations
of underlying techniques.

To overcome these observed difficulties, this work is po-
sitioned to address a critical, underexplored area in value-
based BCSA (Figure 2). Existing approaches are bifurcated.
Methods that select values often restrict themselves to easily
identifiable markers like return and external function calls,

Program states

Semantics-aware values

Selected values

Semantics-irrelevant
values

Fig. 2: Position of our motivation in value-based BCSA.

thereby overlooking a wealth of semantic information present
elsewhere. In contrast, approaches like BINGO and COP
capture extensive program states, a process that is inefficient
and susceptible to noise from semantically irrelevant data. Our
position is that a more effective strategy involves the systematic
extraction of semantics-aware values directly from the binary.
Realizing this vision, however, necessitates overcoming three
principal challenges: scalable value extraction, semantics-aware
value selection, and efficient value comparison.

C1: State explosion prohibits scalable value extraction. State
explosion is an internal challenge of symbolic execution [70].
For example, to analyze the binary code of function f1
in Figure 1(b), a symbolic engine symbolizes the variable
y stored at -0x10(%rbp) and simulates the instruction
cmpq 0x8,-0x10(%rbp) , which sets the flags with sym-

bolic expressions. Next, it simulates the branch instruction
jae L1 , doubling the program states with constraints y ≥
8 and y < 8. With the increasing number of branches, the
number of states grows exponentially, leading to the state
explosion problem. Thus, lengthy execution traces, which
is often needed to reach external function calls or returns,
exacerbate this problem, hindering scalable value extraction.

C2: Semantics-aware value selection is non-trivial. While
using external calls and returns as selected values is practical,
determining semantic relevance for other binary code values
remains challenging since linking binary-level values to their
source code semantics is still difficult. Consequently, existing
methods overlook potentially meaningful values, limiting useful
signature extraction. For example, function f1 (Figure 1(a))
neither returns values nor invokes external functions, thus
presenting few obvious semantic values. Therefore, a gener-
alized approach to value selection, agnostic to direct source-
level correspondences, is needed for comprehensive binary
analysis. Different from existing approaches that explicitly
define semantic values to be used [3], [25], we aim to identify
semantically-irrelevant values, which can then be filtered out
to focus on the most relevant information.

C3: Inefficient and difficult value comparison. Even when
robust and informative values are extracted, rapidly com-
paring them remains challenging. For instance, semantically
equivalent expressions such as 3 * x and x’ + 2 * x’
(Figure 1(b) and (c), respectively) differ syntactically. Conse-
quently, time-consuming theorem provers are typically used
for equivalence checking [3], [25]. Moreover, values with
equivalent semantics may differ structurally. Consider the code
highlighted in orange in Figure 1(b) and Figure 1(c): if
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Function pool

Disassemble §III.A Value
Extraction

§III.B Value
Filtering

§III.C Value
Normalization

§III.D Value
Concretization

§III.E Fingerprint
Propagation

Function pool
construction

§III.F Similarity
Calculation

Offline process

Fig. 3: The workflow of VSIM.

-0x10(%rbp) and 0x8(%esp) store symbolic variables
ptr (8 bytes) and ptr’ (4 bytes), the resulting path constraints
ptr ̸= 0 and ptr’ = 0 cannot be directly compared due
to differences in pointer sizes between architectures.

III. DESIGN

This section illustrates how we design our framework,
VSIM, to address the challenges identified in §II. Figure 3
shows the workflow of VSIM. After disassembling the input
binary executable, the workflow of VSIM can be summarized
into six main steps: value extraction, value filtering, value
normalization, value concretization, fingerprint propagation,
and similarity calculation. Since we aim at function-level
similarity analysis, given a query function fq , VSIM’s output is
the pool P’s functions ordered by their similarity score to fq .

To efficiently and comprehensively extract values from binary
code for similarity analysis (C1), we customize a symbolic
execution engine to perform basic block-level symbolic ex-
ecution (it is also referred as under-constrained symbolic
execution [26]), recording all changes in registers and memory.
To identify meaningful semantic values from the extracted
data (C2), we apply heuristic rules commonly used in binary
disassembly and rewriting, filtering out addresses such as
global variable pointers. The remaining values are used for
function similarity analysis. For fast and reliable similarity
comparison (C3), VSIM avoids heavyweight theorem proving
but carefully normalizes and concretizes the semantic values
for direct, efficient similarity comparison. Moreover, VSIM
propagates the callees’ fingerprints to the caller’s fingerprint
and considers distinguishabilities for different values. Lastly,
the similarity scores are computed with the fingerprints of the
query function and the functions in the pool, and the top-k
most similar functions are returned.

A. Value Extraction

Before extracting values from binary code, VSIM
disassembles the binary into assembly instructions and recovers
its function entries, a common practice in function-level BCSA
techniques [10], [13], [15], [19], [40]. For a query binary
function fq , VSIM uses a customized symbolic execution engine
to extract operations by comprehensively recording register
and memory loads and stores during the execution of fq .

Basic Block Granularity Selection. Although analyzing an
entire function captures complete semantics, it often leads

mov -0x8(%rbp), %rax

mov 0x8(%rax), %eax

mov %eax, [0x404058]

t1 ← LReg(rbp) – 8
ptr ← LMem(t1, 8)
rax ← ptr
t2 ← LMem(ptr+8, 4)
rax ← 32Uto64(t2)
SMem(0x404058, t2)

Assembly

(L, rbp, 0x7fff0000)
(L, 0x7ffefff8, ptr)
(S, rax, ptr)
(L, 0x2000000, t2)
(S, rax, 32Uto64(t2))
(S, 0x404058, t2)

Intermediate
representation (IR) Collected operations

Fig. 4: Value extraction for basic block L1 of Figure 1(b). In
the lifted IR, the ← operator assigns a value to a variable;
LReg(r) loads a value from register r; LMem(a, n) loads
n bytes from memory address a; 32Uto64(v) zero-extends
a 32-bit value v to 64 bits; SMem(a, v) stores value v to
memory address a. In collected operations, L and S are load
and store operations, respectively.

to state explosion [8], [25]. Existing methods either analyze
sequences of basic blocks on a CFG (also called “tracelet”) [4],
[8], [53], [71] or a basic block [38], [72]. VSIM collects
values at the basic block level, which offers two benefits for
efficiency:
• Each basic block is simulated only once, avoiding redundant

computations. Other larger granularities (e.g., execution
paths) require simulating a sequence of basic blocks, and
the overlapping basic blocks are simulated multiple times.
• A basic block has a single entry and exit point; thus, there is

no need for SMT solvers to check the satisfiability of path
constraints since all instructions are executed in order.

We acknowledge that analyzing each basic block independently
overlooks the inter-block relations and loses some contexts.
Nevertheless, our work deliberately focuses on harnessing
values for BCSA, while incorporating basic block interactions
needs a comprehensive analysis of the control flow structure,
adding considerable complexity. Notably, leveraging value
information alone achieves SoTA performance at the function
level (see §IV-B1). Moreover, our ablation study (Appendix A)
shows that simply considering 2- or 3-length basic block
sequence introduces significant overheads but cannot achieve
considerable accuracy improvement.
Basic Blocks-Level Symbolic Execution. VSIM depends on
under-constrained symbolic execution [26], which allows the
symbolic engine to start the simulation from an arbitrary
instruction of a program and symbolizes inputs on the fly.
Figure 4 shows an example of simulating the first three
instructions of basic block L1 from Figure 1(b). Existing
symbolic execution engines often lift the binary code into
intermediate representations (IRs) to facilitate the simulation
and multi-architecture support [73]–[75]. During simulating
IRs, the engine collects all “Load” and “Store” operations on
registers and memory.

Initially, registers and memory are uninitialized except for
read-only sections (e.g., .rodata and .text) and special
registers (e.g., rbp and rsp)1. For example, the engine first

1Concretizing the base and stack pointer before starting under-constrained
symbolic execution is a common practice since it alleviates the need for
symbolic reasoning the layout of the stack [26], [74].
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TABLE II: Values extracted by VSIM of each operation. “C”
and “S” denote the concrete and symbolic values, respectively.

Operation Available values

Register
Load Register name (C) and the loaded value (S&C)
Store Register name (C) and the stored value (S&C)

Memory
Load Address (S&C) and the loaded value (S&C)
Store Address (S&C) and the stored value (S&C)

loads a concrete value from rbp (the stack frame base pointer),
assigning it to temporary variable t1. Next, it loads eight
bytes from the memory address in t1. Since that memory is
uninitialized, the engine symbolizes these bytes as a symbolic
value ptr2. In the next IR, ptr is stored into register rax.

For the second instruction, the engine has to load four bytes
from the memory address pointed to by ptr + 8. However,
the symbolic nature of ptr prevents direct address resolution.
To proceed, VSIM records ptr + 8, assigns it a concrete
value v (e.g., 0x2000000), and maintains a mapping between
v and ptr + 8. If another instruction uses the value of ptr +
8, VSIM replaces ptr + 8 with v to continue the simulation.
With this concretized address, the engine loads from memory,
symbolizes the loaded bytes as a 32-bit value t2, extends t2 to
64 bits, and stores it in rax. Finally, t2 is stored at memory
address 0x404058 (a pointer to the .bss section).

It is evident that this strategy for concretizing ptr + 8
cannot guarantee the feasibility of the memory address and
hurts the soundness of our symbolic engine. However, this
limitation is acceptable for basic block analysis. The sequential
execution of a basic block ensures that constraint satisfiability
need not be checked. Moreover, the subsequent value filtering
mitigates the impact of the infeasible memory addresses since
the values being used as memory addresses are irrelevant to
the functionality and can be ignored (see §III-B).

Comprehensively Record the Values. To achieve this goal,
VSIM tracks all “Load” and “Store” operations on registers and
memory during the symbolic execution. Table II summarizes the
extracted values: for registers, both the register name (concrete)
and the loaded or stored value (concrete or symbolic) are
recorded; for memory, both the address and the value are
captured. Formally, VSIM records a set of register values
Vreg and a set of memory values Vmem, where each register
tuple is (op, name, v) and each memory tuple is (op, addr, v),
with op ∈ {Load, Store}. Additionally, branch conditions—
typically stored in flag registers—are recorded immediately
after simulating branch instructions.

Figure 4 displays the operations collected after simulating
the basic block, while Figure 1(b) presents the store operations
in a more readable format, with the left and right sides of
← representing the target and the stored value, respectively.
Particularly, the value v of any operation is a bit vector with a
fixed size, which can be either concrete or symbolic. A concrete
value denotes that all bits are known (e.g., 0 in Figure 1(b)),

2We name the symbolic value with “ptr” for readability, while the engine does
not assume it is a pointer and does not know it is the “ptr” in the source code.

while a symbolic value denotes that some bits are unknown
and represented by symbolic expressions (e.g., 3 * x in
Figure 1(b)).

B. Value Filtering

The value extraction process generates numerous register and
memory operations within a basic block, capturing the values
used during symbolic execution. However, not all these values
are essential to the binary function’s semantics. In other words,
many can vary across different compilations of the same source
code. Existing works neglect the impact of these differences
(e.g., COP [12]) while using the program states, which may
lead to inaccurate similarity results. Others manually select
return results or arguments of external calls but miss abundant
semantically significant values (e.g., BinSim and BinUSE).

Defining semantically significant values—those that capture
a function’s core computational logic—is difficult across all
contexts. Therefore, instead of trying to identify these values
directly, VSIM adopts a pratical, subtractive approach. It filters
out semantically irrelevant information, such as pointers and
memory addresses, which are common in binary code but
add little value for similarity analysis. The remaining values
are thus considered semantics-aware, effectively isolating the
computational essence of the function.

For example, as shown in Figure 1(b) and Figure 1(c),
the global variable “struct S s” is stored in differ-
ent memory addresses, and the symbolic expression point-
ing to ((struct S*)ptr)->b can be ptr + 8 and
ptr + 4 in different binaries. Although they may be useful

for detecting structural similarities on the memory layout aspect,
they do not contribute to the core logic of a program and can
vary across different compilation settings. Consequently, VSIM
removes these address values and pays attention to the remain-
ing values, which are more likely to be semantically significant.

Algorithm 1 Value filtering
Require: Vreg = {(opi, namei, vi)}, register value set.
Require: Vmem = {(opj , addrj , vj)}, memory value set.
Ensure: VS : the set of semantic values

1: VS ← ∅
2: A← {addr|(op, addr, v) ∈ Vmem} ▷ Address values
3: // Update A according to external calls
4: for (op, , v) in Vreg ∪ Vmem do
5: if v /∈ A ∧ op = Store then
6: if concrete(v) ∧ ¬concrete address(v) then
7: VS ← VS ∪ {v}
8: else if symbolic(v) ∧ ¬symbolic address(v) then
9: VS ← VS ∪ {v}

10: end if
11: end if
12: end for
13: return VS ▷ Identified addresses are removed

Algorithm. To determine if a value is an address, VSIM
relies on heuristics common in reverse engineering tasks [35],
[76]–[78]. Algorithm 1 outlines this process for removing
semantically irrelevant values. The algorithm begines with two
sets of extracted values: register values (Vreg) and memory
values (Vmem). Since each element in Vmem is a tuple

6



A is the set of address values (line 2-3 of Algorithm 1)
D ← {[S.start, S.end] | S ∈ data sections}
E ← {[S.start, S.end] | S ∈ executable sections}
bp← Initial concrete value stored in base pointer
ϵ← Configurable stack size threshold
N(e) : Return the set of subtrees in e’s expression tree

HC1(v) = ∃(start, end) ∈ D : v ∈ [start, end]

HC2(v) = ∃(start, end) ∈ E : v ∈ [start, end]

HC3(v) = |v − bp| ≤ ϵ

HS1(e) = ∃v ∈ N(e) : HC1(v) ∨HC2(v) ∨HC3(v)
HS2(e) = ∃n ∈ N(e) : n ∈ A

HS3(e) = ∃addr ∈ A : e ∈ N(addr)

HC1(v) ∨HC2(v) ∨HC3(v)
A← A ∪ {v} concrete address(v) = True

¬(HC1(v) ∨HC2(v) ∨HC3(v))
concrete address(v) = False

HS1(e) ∨HS2(e) ∨HS3(e)
A← A ∪ {e} symbolic address(e) = True

¬(HS1(e) ∨HS2(e) ∨HS3(e))
symbolic address(e) = False

Fig. 5: Heuristic rules for value filtering.

(op, addr, v), VSIM first iterates through Vmem to create an
initial set of known addresses, A (line 2). A is then expanded
with addresses from external calls, such as the first argument
of realloc or the return value of malloc (line 3). Next,
to collect semantic values that change the program’s state,
VSIM iterates through both Vreg and Vmem, focusing on non-
address values and “Store” operations (line 5). For each of
these values, VSIM applies additional heuristic rules to assess
semantic relevance, handling concrete values (lines 6) and
symbolic values (lines 8) separately.

Heuristic Rules. Our heuristic rules for identifying addresses
adapt established symbolization practices from disassem-
bly [78]–[80]. While not perfectly sound or complete, these
heuristics are effective because our approach generates fin-
gerprints from sets of values, making it resilient to minor
inaccuracies. Values identified as addresses by these rules are
considered semantically irrelevant and are filtered out. Figure 5
provides a formal definition of these rules.

The rules rely on the A constructed in Algorithm 1, the
ranges of data sections D (e.g., “.rodata”, “.data”, “.bss”), and
the ranges of executable sections E (e.g., “.text”, “.plt”, and
“.init”). bp is the initial concrete value of the base pointer, which
is commonly used in under-constrained symbolic execution [26].

ϵ is a configurable stack size threshold (e.g., 1GB for 64-bit
binaries and 128 MB for 32-bit binaries).

The Heuristic rules for Concrete values (HC) rely on the
value itself and its position in the program’s memory layout.
Specifically, if a value falls within the range of a data section
(HC1) or an executable section (HC2), it is likely used as
an address. Similarly, a value near the stack pointer typically
references to a local variable (HC3). A value satisfying any of
these conditions is considered an address and is filtered out.

The Heuristic rules for Symbolic values (HS) apply similar
logic, basing on the expression that form the value. An
expression has a tree structure whose nodes are operators and
leaves are concrete values or symbolic variables (e.g., left-most
tree in Figure 6). If a concrete leaf node of an expression tree
is an address, the entire expression is likely an address (HS1).
Similarly, if the subtree of an expression is an identified
address, or the expression itself is a subtree of a pointer
arithmetic expression, it is likely an address (HS2 and HS3).
Example. As illustrated in Figure 1(b), simulating the instruc-
tions yields several store operations. For instance, consider the
instruction mov 0xdeadbeef, [0x404058] . The value
0xdeadbeef is neither in the data or executable sections nor
near the stack pointer, so it is identified as a semantic value.
Similarly, the values -1 and 3 * x remain for similarity
analysis. In contrast, the value ptr is associated with the
pointer ptr + 8. Since 8 is not an address (HC1 and HC2)
and ptr + 8 is an address being used by a memory read
operation, ptr must be an address; and it is therefore not
considered a semantic value according to HS3.

After the value filtering, we have a set of values collected
from registers, memories, and the branch conditions of basic
blocks. All basic block values of a binary function are
aggregated for similarity comparison. However, they cannot be
directly compared since values with the same semantics can
have different structures, as C3 elaborates in §II-B. To address
this issue, VSIM generates fingerprints for efficient similarity
comparison via normalization and concretization.

C. Value Normalization
Before generating fingerprints, we normalize the collected

semantic values to ensure they are comparable, focusing on
essential computational semantics while ignoring irrelevant
details. We normalize concrete values, symbolic values, and
branch conditions separately.
Normalizing Concrete Values. A concrete value is a bit
vector BV(value, size), where value is an unsigned integer
and size is the bit width. For instance, a 32-bit integer −1 is
BV(0xffffffff, 32). To normalize the concrete values,
VSIM discards the size field and treats the value as signed by
default, unless it is used with floating-point operations. Hence,
the size of a variable, which can differ across architectures
(e.g., 8 bytes on AMD64 vs. 4 bytes on x86), becomes
irrelevant. As a result, 0xdeadbeef , 0xffffffff , and
0 are normalized to −559038737, −1, and 0, respectively,

in Figure 1(b). Similar normalization is applied to Figure 1(c),
resulting in the same normalized values.
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BV(0, 32)

BV(3, 32)

Normalization

BV( , 32)

Concat

imul

Fig. 6: An example of expression tree normalization. BV(a, 32)
denotes a 32-bit vector with unsigned value a. Concat
concatenates two bit vectors to form a larger one with the
sum of their bit widths. imul multiplies two bit vectors.

Normalizing Symbolic Values. A symbolic value is a bit-
vector of known width together with an expression tree whose
internal nodes are operators (e.g., imul in Figure 6) and
whose leaves are concrete constants or symbolic variables. For
example, simulating the instructions highlighted in purple in
Figure 1(b) yields, for register rax, the expression tree shown
on the left of Figure 6. VSIM then normalizes expressions by
dropping bit-width annotations, interpreting all values as signed,
and rewriting Concat by OR-combining the high and low
halves. Because the upper 32 bits are zero, Concat(0, e)
simplifies to e; thus the normalized expression is 3 * x . In
our implementation, bit-vectors are represented using Python’s
built-in int. Other operators (including imul) are normal-
ized using analogous, operator-specific rules. Meanwhile, the
corresponding code in Figure 1(c) produces x’ + 2 * x’ ,
so although both snippets originate from the same source, the
collected symbolic values remain different.

Normalizing Branch Conditions. Branch conditions are
bool-typed symbolic values (i.e., a single bit stored in flag
registers). They are always generated in pairs, and one is the
negation of the other (e.g., y ≥ 8 and y < 8). Therefore,
we only consider one condition from each pair. For instance,
from the instructions highlighted in green in Figure 1(b),
y ≥ 8 and y < 8 are the pair of branch conditions. We

keep the former and discard the latter. Similarly, the branch
conditions of Figure 1(c) are normalized to y’ ≤ 7 and y’
> 7, and we only consider the latter. Although y ≥ 8 and y’
> 7 differ syntactically, they have the same effect when y and
y’ are integers. The concretization step will mitigate this issue.

D. Value Concretization

To enable efficient similarity comparisons, VSIM concretizes
symbolic expressions so their semantic features can be com-
pared more directly. VSIM collects three categories of values,
i.e., concrete values, symbolic values, and branch conditions,
and only needs to concretize the latter two since concrete
values are already in a comparable form.

Concretizing Symbolic Values. A straightforward way to con-
cretize a symbolic value is to substitute its symbolic variables
with concrete test inputs and then evaluate the normalized
expression. For example, given 3 * x in Figure 1(b), VSIM
replaces x with elements of a randomly generated array
A = [57, 44, 13, 81, 52], yielding {171, 132, 39, 243, 156};
sorting gives the tuple (39, 132, 156, 171, 243) , which we

1 2 3 4 5 6 >60.1%

1%

10%

100%

Fig. 7: Expressions distribution according to α.

record as an element of f2’s fingerprint. The expression
x’ + 2 * x’ in Figure 1(c) produces the same tuple when
x’ is instantiated with the same A. Matching tuples suggest
(but do not prove) semantic equivalence since this check is
a necessary but not sufficient condition. This concretization-
based matching is far more efficient than invoking a theorem
prover; due to limited space, we provide formal analysis and
in Appendix C. We also evaluate robustness to the choice of
the random array A and observe negligible impact on VSIM’s
performance; details appear in Appendix B.
Avoiding Permutations of Many Variables. If an expression
has α symbolic variables, evaluating it with permutations of
these variables (i.e., α! times) ensures that two equivalent
expressions yield the same sets. This quickly becomes infeasi-
ble for large α. To ensure the practicality of VSIM, we set a
threshold β, i.e., VSIM discards an expression when its α > β.
Based on empirical evidence, we set β = 6 because expressions
with more than six variables account for less than 1% of all
cases, making the impact of discarding them is minor.

Our empirical study with our evaluation datasets investigates
how expressions distribute according to the numbers of
variables (α). Figure 7 presents the distribution, where the x-
axis is α, and the y-axis is the ratio of expressions in log scale.
The ratio of expressions with more than 6 variables is less than
1%. Considering that concretizing such an expression requires
computing it 7! = 5040 times, setting the threshold β = 6 is
a cost-effective decision. Moreover, our quantitative analysis
of various β in Appendix D demonstrates that setting β = 6
effectively balances semantic preservation and efficiency.
Concretizing Branch Conditions. Since the branch conditions
are also symbolic expression trees, VSIM can concretize them
in the same way as the symbolic values. However, the branch
conditions are boolean expressions, so the results are always
0 or 1, yielding trivial information for similarity analysis.

Our approach is splitting the branch conditions into two parts:
the symbolic expression itself and the comparison operator
with the concrete operand. For instance, the branch condition
y ≥ 8 is split into y and (≥, 8). VSIM ignores the symbolic
part y since it must be assigned to a register or memory before
the comparison operation, and therefore, the symbolic part is
already included in the symbolic values if it is computed in the
function; otherwise, it is an unchanged parameter with trivial
semantics. Thus, the remaining (≥, 8) contributes to the values
of the branch conditions.

Because compilers can optimize a condition in multiple ways
(e.g., y ≥ 8 and y’ > 7 in Figure 1(b) and 1(c)), VSIM
extends each tuple to include equivalent forms, storing them
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Fig. 8: Fingerprints of f1 and f2 in Figure 1(b) and (c).

in a set (e.g., {(≥, 8), (>, 7)} ). To collect the patterns of
optimized branch conditions, we compile the binaries using
different optimization levels with the debugging information.
Then, we gather pairs of branch conditions that are compiled
from the same source code but optimized differently. In this way,
we collect a set of potential optimization patterns of branch con-
ditions, which are used to extend the tuples of branch conditions.
Specifically, we use the binaries of project libmicrohttpd
built by BinKit (introduced in §IV-A) to collect the patterns,
and those binaries are not used in our evaluation.

E. Fingerprint Propagation

Addressing function inlining is critical for BCSA [69],
yet few techniques consider this challenge. Some approaches
predict inlining relations [4], [8], [33], manually expanding
callers before generating embeddings for similarity comparison.
However, these predictions are often uninterpretable, error-
prone, and sensitive to compiler variations [69].

Unlike previous works that rely on structural features such
as CFGs, this study focuses on register and memory values for
similarity analysis. Therefore, VSIM can adopt a straightforward
yet effective method by merging the values of callee functions
with those of the caller. For instance, from Figure 1(b) and (c),
VSIM can collect f1’s and f2’s sets of values presented in
Figure 8. Because f1 is inlined in f2 in Figure 1(c), the set
of values S(c)f2 includes the values of S(c)f1 (i.e., the elements
with gray background). Thus, propagating the callee’s values
of S(b)f1 to S(b)f2 results in S(b)f1 ∪ S(b)f2, which can help
accurate similarity analysis.

Selection of Propagation Step. Although the union strategy
is simple and effective, it may produce large fingerprints for
binary functions, thereby slowing down similarity analysis.
To mitigate this, we set a propagation threshold γ. A previous
study [69] showed that an inlining depth of 3 covers over 90%
of inlined functions. Consequently, we set the default γ to 3
and evaluate its impact on accuracy and time cost in §IV-B2.

F. Similarity Calculation

A binary function’s fingerprint is a set of values. Thus, a
straightforward approach to similarity analysis computes a sim-
ilarity score, such as the Jaccard similarity, by comparing two
sets. While this pairwise comparison is efficient and reasonably
effective, we found that the human-readable elements within
the fingerprints allow us to further enhance the performance.

Our fingerprints include concrete values, symbolic values,
and branch conditions. Some values uniquely indicate the
semantics of a binary function, whereas common values tend
to be less informative. For example, compared to the value
0 , the expression 3 * x is likely more distinguishable

due to its informativeness. Thus, the corresponding element
(39, 132, 156, 171, 243) in the function fingerprint should gain

a higher weight in the similarity comparison.

Function Pool Construction. The function pool stores the
fingerprints of all binary functions in the dataset. Besides,
we record the frequency of each value to assign weights to
the values that compose the fingerprints. Values that appear
more frequently are deemed less informative and are thus
assigned lower weights. Let the occurrence of a value v be
Occ(v), then, its weight is calculated by Equation 1. We add
1 to the occurrence to avoid division by zero, and we apply
the natural logarithm to scale the weight logarithmically with
respect to its occurrence, which grows slowly. It smooths out
the differences in occurrence frequency, prevents extremely
common values from being overly penalized, and ensures that
the weight decreases gradually as occurrence increases.

W (v) =
1

ln(Occ(v) + 1)
(1)

Similarity Analysis. To compute the similarity between two
binary functions, we use the Jaccard similarity with weights
defined in Equation 2, where A and B are the fingerprints of
two binary functions.

Jaccardw(A,B) =

∑
v∈A∩B W (v)∑
v∈A∪B W (v)

(2)

IV. EVALUATION

We have implemented VSIM atop angr [74] with over
4.4K lines of our own Python code. This section describes
our evaluation results. We first present our experimental setup,
including baselines, evaluation metrics, and datasets in §IV-A,
then present our detailed results in §IV-B.

A. Experiment Setup

Baselines. To comprehensively compare VSIM with advanced
BCSA tools with various technical pipelines, we select
jTrans [19], Clap [68], GMN [6], and PEM [23] as our
evaluation baselines, due to their availability and strong
performance in recent evaluations. Among these, jTrans,
Clap, and GMN are ML-based solutions. The former two
employs embedding distance, and GMN uses a comparison
model for similarity measurement, whereas PEM represents
a recent non-ML-based approach. These methods have been
evaluated across multiple datasets and have consistently
outperformed various other BCSA tools [4], [6], [7], [10],
[13], [15], [22], [40], [62], [81]. The following paragraphs
briefly introduce the selected baselines.

• jTrans employs a customized transformer to learn semantic
embeddings of binary functions. Notably, it replaces the
BERT [82] natural language position encoding with a
design tailored to capture jump targets based on intra-
procedure CFG structures. Evaluation demonstrates that
jTrans outperforms other machine learning-based BCSA
tools [4], [10], [13], [40], [81].
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• Clap employs a cross-modality training paradigm to align
embeddings between binary code and natural language
descriptions. The authors of Clap designed a dataset engine
to generate a large-scale dataset of binary functions and
their corresponding natural language descriptions, with 195
million pairs of aligned data, for training the model. As
reported in their paper, Clap significantly outperforms
jTrans and other BCSA tools in terms of accuracy.

• GMN leverages graph matching networks [83] to learn
similarities between binary functions. Extensive evaluations
demonstrate that GMN’s accuracy outperforms other BCSA
tools [4], [13], [15], [62]. However, it is less scalable than
embedding-based methods due to the overhead of using a
comparison model for each pair of functions.

• PEM leverages QEMU to manipulate program execution
and extract predicates and string literals from execution
traces for BCSA. However, most existing BCSA solutions
exclude string literals [6], [19], [24], [25], [62], as these
typically pertain to logging or informational purposes rather
than core program behavior. Therefore, we derive PEM-s
from PEM by omitting string literals, allowing us to focus
on semantic comparisons. Specifically, we observe that
PEM generates an intermediate file to record string lengths
before performing similarity comparison. We thus set these
lengths to 0, then run the similarity comparison process
with the modified intermediate files. This slight tweak
ensures that PEM-s strictly follows the pipeline of original
PEM and produces reproducible results.

Evaluation Metrics. For a direct and fair comparison, we use
the commonly used mean reciprocal rank (MRR) and Recall@1
metrics [4], [6], [19], [66], which are common information
retrieval metrics. Recall@1 measures the proportion of the
true positive among the top-1 predictions, and MRR calculates
the average reciprocal rank of the true positive in the top-
k predictions. Assume that the testing function set is Q =
{f1, f2, . . . , fN}, and rank(fi) is the rank of the true positive
function f in the function pool P , the Recall@1 and MRR@k
are defined as follows:

Recall@1 =
1

N

∑
f∈Q

1(rank(f) = 1), (3)

MRR@k =
1

N

∑
f∈Q

1(rank(f) ≤ k)

rank(f)
, (4)

where 1(·) is the indicator function; it returns 1 if the condition
is true, otherwise 0. Particularly, when k is not given, k is
+ inf by default, and 1(rank(f) ≤ k) is always 1. The higher
values of Recall@1 and MRR@k denote better accuracy.

Datasets. To fairly evaluate VSIM against selected baselines,
we reuse the datasets evaluated by previous BCSA solutions.
PEM dataset is used to evaluate VSIM’s performance in
cross-optimization, BinKit for cross-compiler scenarios, GMN
Dataset-2 for cross-architecture scenarios, while the last one
is used to assess VSIM’s applicability in real-world security
tasks. Their statistics are summarized in Table III. Overall, our

TABLE III: The statistics of used datasets.

Dataset1 # Binaries # Functions2

PEM [23] 18 40,271
BinKit [61] 1,872 437,049

GMN Dataset-2 [83] 4,077 174,355
GMN Dataset-Vulnerability [83] 6 9849
1 Binaries are available at https://doi.org/10.5281/zenodo.17751555.
2 The number of collected binary functions for evaluation. A portion

of binary functions of the binaries in GMN datasets are used
since we reuse the sampled binary function pairs of GMN for
fair comparision. The total number of binary functions of GMN
datasets is far greater than our listed values.

evaluation includes over five thousand binaries compiled by
two toolchains (GCC and Clang), over six compiler versions,
and across five architectures (x86, AMD64, ARM32, ARM64,
and MIPS32). The following provides more details.

• PEM Dataset. Released by Xu et al. [23], it contains
six projects: Curl, GMP, ImageMagick, Sqlite3, Zlib, and
OpenSSL. The binaries are compiled with GCC (ver. 9.4) us-
ing -O0, -O2, and -O3, targeting on the cross-optimization
scenario. The whole dataset includes over 20,000 different
source functions.
• BinKit Dataset. Released by Kim et al. [61], this dataset

comprises 213,400 binaries from 51 projects, compiled with
multiple versions of GCC and Clang. We use it to evaluate
VSIM in cross-compiler scenarios. A noted limitation
of this dataset, also highlighted by jTrans [19], is the
lack of diversity; for instance, GNU Coreutils contributes
89,856 binaries (42.1%). Consequently, unlike previous
works [61], [62] that deduplicate using (binary, symbol)
pairs, we deduplicate using (project, symbol) pairs, except
for the “main” functions (different binaries within a project
have distinct “main” functions). Moreover, to mitigate bias
caused by repeated binary functions compiled from closely
related compilers (e.g., GCC-10.3 vs. GCC-11.2), we select
binaries compiled with the oldest and latest versions of
GCC and Clang (i.e., GCC-4.9.4, GCC-11.2, Clang-4, and
Clang-13). Thus, we leverage 1,872 binaries from BinKit
dataset in our cross-compiler scenario experiment.
• GMN Dataset-2. Marcelli et al. [6] introduce three

datasets: Dataset-1, Dataset-2, and Dataset-Vulnerability.
We use Dataset-2 to evaluate cross-architecture scenarios.
Specifically, we reuse the GMN-sampled binary function
pairs, so each comparison setting (e.g., XA+XO) mixes
optimization levels and architectures; this contrasts with
datasets that compare binaries compiled under fixed settings
(e.g., O0 vs. O3). Dataset-1 is excluded since its binaries
are compiled without function inlining, a less common
option in real-world scenarios.
• GMN Dataset-Vulnerability. We evaluate real-world

vulnerable-function detection using the Dataset-Vulnerability
corpus of Marcelli et al. [6]. The corpus comprises six
OpenSSL binaries: two extracted from production firmware
(NetGear R7000 and TP-Link Deco-M4) and four obtained
by compiling OpenSSL for x86, AMD64, ARM, and MIPS.
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TABLE IV: Cross-optimization evaluation with PEM dataset.

Tool
MRR1 Recall@1 Retrieval

O0,O3 O0,O2 O0,O3 O0,O2 time (s)2

jTrans 0.467 0.511 0.374 0.420 6.1
Clap 0.603 0.647 0.548 0.596 6.1
PEM-s 0.605 0.701 0.534 0.629 1853
VSIM 0.621 0.709 0.545 0.642 87

(No concrete) 0.489 0.584 0.405 0.495 53
(No symbolic) 0.580 0.666 0.506 0.598 58
(No constraint) 0.603 0.687 0.527 0.618 74
(No filtering) 0.527 0.614 0.453 0.548 329

(No propagation) 0.508 0.540 0.464 0.498 22
(No weights) 0.596 0.700 0.520 0.633 54

1 k is +inf by default when it is not given.
2 The comparison processes of three tools are highly parallelized with 64

threads. The reported time is the average of 5 runs.

Across these binaries, covering eight CVEs. Following the
setup of [6], we fingerprint each vulnerable function in the
four compiled binaries and use these fingerprints as queries
to locate their counterparts in the two firmware binaries.

B. Evaluation Results

We conduct extensive experiments to assess the accuracy and
efficiency of SoTA BCSA approaches. Specifically, we compare
VSIM against jTrans, GMN, and PEM-s using the BinKit,
GMN Dataset, and PEM datasets across cross-optimization,
cross-compiler, and cross-architecture scenarios. To further
analyze VSIM’s advantages over these SoTA approaches, we
evaluate different variants of VSIM under various configurations.
Additionally, we assess VSIM’s applicability in real-world
security tasks, specifically vulnerable function detection, using
GMN Dataset-Vulnerability. We also measure the overhead of
VSIM in terms of feature extraction and similarity comparison
to demonstrate its scalability. Our experiments are conducted
on a server equipped with two Intel Xeon Silver 4314 CPUs
@ 2.40GHz (32 cores) and 512GB of memory. Our evaluation
is centered around the following research questions (RQs):

• RQ1: How accurate is VSIM compared with baselines?
• RQ2: How does each design improve VSIM’s accuracy?
• RQ3: How effective is VSIM in security applications?
• RQ4: What is the overhead of VSIM?

1) RQ1: Accuracy of VSIM: To evaluate the accuracy
of VSIM, we compare it against baselines under challenging
scenarios. As described in §II-A, BCSA retrieves the top-k
most similar functions for a query function fq from a function
pool P . For each fq , one binary function pi ∈ P is compiled
from the same source code, while all other functions in P
are compiled from different sources. Since binaries compiled
from the same source code share identical functionality, they
should exhibit the highest similarity scores. As the size of
P (i.e., Poolsize) increases, the retrieval task becomes more
challenging, resulting in lower MRR and Recall@1 scores
for BCSA tools [19]. In our evaluation, we adopt the largest
Poolsize used in jTrans and Clap experiments: 10,000 for
the PEM and BinKit datasets and 101 for GMN Dataset.

TABLE V: Cross-compiler evaluation with BinKit dataset.

Recall@1 of jTrans (Std Dev 0.107)

O3
O0

GCC-11.2 GCC-4.9 Clang-13 Clang-4

GCC-11.2 0.441 0.395 0.243 0.199
GCC-4.9 0.196 0.217 0.148 0.119
Clang-13 0.128 0.123 0.114 0.087
Clang-4 0.113 0.118 0.089 0.078

Recall@1 of Clap (Std Dev 0.014)
GCC-11.2 0.596 0.582 0.583 0.579
GCC-4.9 0.575 0.580 0.573 0.548
Clang-13 0.562 0.561 0.601 0.598
Clang-4 0.567 0.579 0.588 0.586

Recall@1 of VSIM (Std Dev 0.026)
GCC-11.2 0.711 0.689 0.667 0.678
GCC-4.9 0.637 0.701 0.649 0.611
Clang-13 0.638 0.662 0.666 0.623
Clang-4 0.672 0.656 0.660 0.664

The best results are highlighted in light blue and the worst
results are highlighted in gray .

Cross-Optimization. This evaluation measures the ability
of BCSA tools to retrieve similar functions across different
optimization strategies, using the dataset released by PEM [23].
Table IV presents the results of jTrans, Clap, PEM, and
VSIM with a Poolsize of 10,000. Query binaries are compiled
with -O0 while the pools consist of binaries compiled with
different optimization levels (-O3 or -O2).

Our evaluation shows that VSIM achieves the best MRR in
different comparison scenarios. Although Clap has the highest
Recall@1 in the comparison between binaries compiled with
-O0 and -O3, VSIM gets the second highest Recall@1, which
is merely 0.5% lower than that of Clap. In addition, VSIM
also achieves the highest Recall@1 on average across two
settings. This evaluation demonstrates that VSIM can accurately
retrieve similar functions across different optimization levels,
achieving even better performance than the SoTA BCSA tools.

Cross-Compiler. This evaluation examines the performance
when query and pool binaries are compiled with different com-
pilers. Since the released PEM dataset uses binaries compiled
with GCC only, we employ the BinKit dataset to evaluate cross-
compiler scenarios, using the Poolsize of 10,000. However, we
skip PEM in this evaluation since the binaries of BinKit dataset
include unsupported operations of PEM’s customized QEMU
engine. Table V shows the results for jTrans, Clap, and
VSIM on BinKit with a Poolsize of 10,000. We report results
under the most challenging setting [19], [68], where query
functions are compiled with -O0 and pool functions with -O3.
In this scenario, VSIM outperforms jTrans and Clap across
all comparisons and exhibits robust performance. Specifically,
the Recall@1 of jTrans drops from 0.441 to 0.078 (an 82.3%
reduction) when comparing binaries compiled with GCC-11
and Clang-4, with a standard deviation of 0.107 across settings.
In contrast, VSIM’s Recall@1 ranges from 0.611 to 0.711 (a
14.1% drop) with 0.026 standard deviation.
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TABLE VI: Cross-architecture evaluation with GMN dataset.
XO and XA denotes cross-optimization and cross-architecture,
respectively. XA+XO indicates the function pairs are compiled
with different architectures and optimizations.

Tool
MRR@10 Recall@1 Retrieval

XO XA+XO XO XA+XO time (s)2

GMN1 0.75 0.71 0.66 0.61 1005
VSIM 0.86 0.70 0.79 0.63 15
1 Results of GMN refer to GMN (CFG + BoW opc 200), the

top-performing model [6] compared with many other BCSA
solutions [4], [13], [62], [81], [83], [84].

2 The retrieval process was unparallelized using one thread.

We attribute the significant performance drop in jTrans to
the out-of-distribution (OOD) problem common in ML-based
techniques [5], [52]. Since embedding models are trained on
binaries from a limited set of compilers, binaries from unseen
compilers become OOD samples, degrading the embedding
qualities. In contrast, VSIM computes similarity directly from
the semantic values of binary functions without relying on a
fixed training dataset, making it more robust to the compiler
evolution. This robustness, along with higher accuracy, suggests
that value-based BCSA is a promising approach for long-term
binary code analysis.
Clap also exhibits a stable performance across different

compilers. We hypothesize that the cross-modality training
paradigm employed in Clap contributes to its stability, as it
learns to align embeddings between binary code and natural
language descriptions, making it less sensitive to compiler
variations. However, it is expensive to generate natural language
descriptions for functions in scale. Clap’s authors design a
dataset engine that extracts the descriptions from the source
code, combining manual efforts and automated LLMs, while
neither the dataset nor the engine are publicly available.
Moreover, generating such descriptions for binaries without
source code is even more challenging. Therefore, by avoiding
this dependency entirely, VSIM emerges as a significantly more
practical and economical solution.

Cross-Architecture. This evaluation assesses the capability
of BCSA tools to retrieve similar functions across different
architectures. Table VI shows the results for VSIM and GMN
on GMN Dataset. Since jTrans and Clap support only
AMD64 architecture and PEM’s artifact merely provides
AMD64 binaries, we do not compare them in this scenario.
For each query function, GMN samples 100 negative and 1
positive function pair, making the evaluation equivalent to a
Poolsize of 101. Although the Poolsize is relatively small due
to GMN’s limited scalability, this evaluation is still challenging
as the positive functions are overwhelmed by 100 times of
negative samples. Comparing the cross-optimization (XO) and
cross-architecture plus cross-optimization (XA+XO) scenarios,
VSIM achieves higher accuracy than GMN in the XO scenario
and comparable performance in the XA+XO scenario, with
much faster similarity comparison—VSIM’s comparison time
is merely 1.5% of GMN’s cost.

While VSIM performs well in XA+XO scenarios, it does
not outperform ML-based methods as significantly as it does
in other settings. Our investigation reveals that the differences
in literal and macro definitions across architectures pose
an obstacle when using values directly. For example, the
system call number for getpid is 39 on AMD64 and 172 on
ARM64, leading to variations in collected values. To mitigate
this issue, integrating decompiler knowledge to recover the
higher-level abstractions of these values, such as recovering
the system call symbols, can benefit. Nonetheless, VSIM is a
prototype that explores the potential of directly using value for
BCSA, and we leave exploring this mitigation to future work.

Answer to RQ1: VSIM outperforms SoTA BCSA solu-
tions in cross-optimization and cross-compiler scenarios
and achieves comparable accuracy in cross-architecture
scenarios. These results demonstrate that using semantics-
aware values enhances accuracy and robustness, particularly
when analyzing binaries compiled with unseen compilers.

2) RQ2: Contribution of Design Choices: This section
examines how different semantic components contribute to
the performance of VSIM. In particular, we assess the impact
of disabling specific design choices on VSIM’s accuracy. First,
we evaluate the effects of removing concrete values, symbolic
values, and constraints from the binary function fingerprints.
Next, we analyze the roles of value filtering, fingerprint
propagation, and value weighting in the similarity analysis.
Impact of Different Kinds of Values. As shown in Table IV,
we generate variants of VSIM by removing individual compo-
nents from the fingerprints, namely VSIM (No concrete), VSIM
(No symbolic), and VSIM (No constraint). The results indicate
that concrete values contribute the most to accuracy: disabling
them leads to significant drops in MRR and Recall@1 (19.2%
and 24.2%, respectively). In addition, both symbolic values
and constraints play important roles, improving MRR and
Recall@1 across different settings consistently. Overall, every
component in the binary function fingerprints substantially
enhances VSIM’s accuracy, demonstrating the effectiveness of
comprehensive value extraction.
Impact of the Value Filtering. We next assess the effect
of the value filtering process in VSIM. When this process
is disabled (denoted as VSIM (No filtering) in Table IV),
the average Recall@1 drops by 15.7% compared to the full
version. These significant decreases emphasize the importance
of filtering out semantically irrelevant values in achieving
accurate value-based BCSA. Moreover, without filtering out
semantically irrelevant values, the comparison time increases by
2.8 times, indicating that using semantics-aware values not only
significantly improves accuracy but also enhances efficiency.
Impact of the Fingerprint Propagation. As described in
§III-E, VSIM employs a threshold γ to determine the step of
callee fingerprints to be propagated. We vary this γ from 0 to
9 and beyond 9 (i.e., we set it to be 100) to evaluate its impact.
Specifically, γ = 0 indicates that the propagation is disabled,
while γ > 9 means all callee fingerprints are propagated.
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Fig. 9: Time cost and Recall@1 according to γ.

TABLE VII: MRR@10 of GMN Dataset-Vulnerability.

Tool
Netgear R7000

x86 AMD64 ARM32 MIPS32 Average
GMN1 0.88 0.54 1.00 0.79 0.80
VSIM 0.88 0.81 0.88 0.88 0.86

TP-Link Deco-M4
GMN1 0.67 0.73 0.70 0.78 0.72
VSIM 0.8 0.69 0.79 0.81 0.77
1 Results of GMN refer to GMN (CFG + BoW opc 200) [6].

Figure 9 illustrates that both the retrieval time and Recall@1
increase with the γ on the PEM dataset. When the propagation
is disabled, the time cost is minimal, but the Recall@1 is also
the lowest. Compared with the default γ = 3, the Recall@1
reduces by nearly 15% when the propagation is disabled.

While the time cost grows linearly with γ, Recall@1
saturates after γ > 3. For γ > 9, the retrieval time triples,
yet Recall@1 (O0, O3) improves by only 3%, with negligible
gains in average Recall@1. This experiment indicates that
propagating callee fingerprints to callers can enhance accuracy
significantly, with a propagation step of 3 offering a good
trade-off between performance and efficiency.
Impact of the Weights. Weights in VSIM represent the
distinguishability of different values in BCSA. Since not
all values are equally significant—some appear frequently
across binary functions while others uniquely indicate specific
functionality—disabling weights results in about 2pt decrease
in Recall@1 on average. This experiment confirms that
weights contribute to the accuracy of VSIM by emphasizing
the importance of specific values in the similarity analysis.

Answer to RQ2: Both value filtering and fingerprint prop-
agation are critical process in VSIM’s accuracy. Among the
fingerprint components, concrete values have the greatest im-
pact, while symbolic values, constraints contribute similarly.
Our design choices aggregatedly improve VSIM’s accuracy.

3) RQ3: Vulnerability Detection with VSIM: This ex-
periment demonstrates VSIM’s effectiveness in real-world
security applications. Given a known vulnerable function,
the goal is to retrieve its vulnerable counterparts from a
pool of binary functions. We evaluate VSIM on the GMN
Dataset-Vulnerability, which covers eight CVEs extracted from
real-world firmware images and binaries compiled for four
architectures. As shown in Table VII, compared with GMN
(CFG + BoW opc 200), the top-performing model reported

CMP R3, 7
BLS BB_1

…
POP {R4-R8, PC}

…
BL memcpy

BICS R6, R4, 7
BNE BB_6

MOV R0, 1
…

MOV R0, 1
…

…
BL sub_1

(a) Netgear R7000 (ARM32)

…
cmp rdx, 7
jbe BB_2

…
ret

// inlined memcpy

…
call sub_1

and r12, fffffffffffffff8
jnz BB_6

mov eax, 1
…

mov eax, 1
…

(b) AMD64

Fig. 10: Simplified CFG of MDC2 Update.

Extraction: R6←R4 & ∼(0x7) r12 ← r12 & 0xfffffffffffffff8
Normalization: R4 & ∼7 r12 & (-8)
Concretization: (8, 40, 48, 56, 80) (8, 40, 48, 56, 80)

Fig. 11: Normalization and concretization example.

in [6], VSIM achieves a higher MRR@10 in five out of eight
evaluation settings and matches GMN in one setting, achieving
a higher average MRR@10. We also provide the detailed ranks
of vulnerable functions in Table XI of Appendix E.

Case Study. Figure 10 presents the simplified CFGs of
the function MDC2 Update for both AMD64 and ARM32
architectures. Notably, the ARM32 binary (from Netgear R7000
firmware) and its AMD64 counterpart exhibit similar CFG
structures, with the key difference being that the ARM32 ver-
sion calls memcpy in one branch, whereas the AMD64 version
inlines the memcpy, introducing a back edge. This slight differ-
ence causes GMN to falsely rank these functions (e.g., ranking
Figure 10(a) instance at 30 of Figure 10(b) rather than top-1).

In contrast, VSIM successfully identifies the similarity
between these functions and ranks the ARM32 version at
top-1. For example, despite differences in assembly syntax—
CMP R3, 7; BLS BB 1 in ARM32 versus cmp rdx,
7; jbe BB 2 in AMD64—VSIM extracts equivalent con-
straint values ((>, 7), (≥ 8)). Similarly, it identifies that
BICS R6, R4, 7 is semantically equivalent to and r12,
0xfffffffffffffff8 (see Figure 11), even though the
expressions and register sizes are distinct. These stable and
interpretable values enable VSIM to perform robust and accurate
vulnerable binary function detection.

Answer to RQ3: VSIM outperforms GMN in the detection
of vulnerable functions on GMN’s Dataset-Vulnerability.
The case study illustrates the framework’s ability to extract
and leverage interpretable, stable values from binary code
for real-world security applications.

4) RQ4: Overhead of VSIM: The majority of the execution
time is spent on value extraction and fingerprint generation,
which are one-time efforts. Our evaluation indicates that on
average, VSIM requires approximately 0.4 seconds to extract
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values from a binary function per core. Fingerprint generation
takes roughly 1.66 seconds, yielding a total average time of
about 2.07 seconds per binary function per CPU core for
these one-time processes. In comparison, BinUSE [25], a
recent value-based work extracting symbolic expressions from
a subgraph of a binary function’s CFG, requires approximately
5.88 seconds per function for an incomplete analysis. Contrarily,
VSIM extracts values from all basic blocks comprehensively.

Regarding the retrieval process, VSIM requires around 87
seconds to obtain the top-k predictions, which involves 100
million function pair comparisons within a pool of 10,000
functions. With our server’s 32 CPU cores, the average time
per function pair comparison is about 2.7× 10−6 seconds per
core. Compared with BinUSE [25], which takes approximately
19.13 seconds per pair using the well-developed SMT solver
Z3 [85], VSIM is several orders of magnitude faster. As shown
in Table IV and Table VI, VSIM achieves significantly faster
retrieval compared to existing BCSA solutions, such as GMN
(which uses a comparison model) and PEM (which employs
a customized algorithm). Although some ML-based tools,
like jTrans and Clap, can offer even faster retrieval by
leveraging embedding representations, they are expensive to
train, less accurate than VSIM in various scenarios, and may
encounter the out-of-distribution (OOD) problem.

Answer to RQ4: The primary cost lies in the one-time
processes of value extraction and fingerprint generation.
However, VSIM significantly outperforms many existing
BCSA tools in the retrieval process, demonstrating its
scalability for analyzing large-scale binary codebases.

V. DISCUSSIONS AND FUTURE WORK

Neglecting String Literals. String literals can be strong
signatures for code reuse, prior work (e.g., PEM) reports
high accuracy when leveraging them. We intentionally exclude
string literals from VSIM for two reasons. First, they mostly
encode logging or informational messages rather than behavior;
modifying them seldom affects functionality. Accordingly,
many BCSA solutions omit string literals [6], [13], [19],
[24], [25], [62]; Ye et al. [39] further offer an instruction
alignment solution as semantic anchor points, replacing the
string-based anchors of DEEPBINDIFF. Second, binary software
composition analysis (BSCA), a downstream application of
binary code similarity analysis (BCSA) for clone detection,
often explicitly exploits string literals to boost performance [14],
[16]–[18], [86]. We therefore defer string-literal support in
VSIM to such application-specific scenarios and instead focus
on semantic values that directly capture program behavior.

Inlining Callees’ Semantics. VSIM relies on a straightforward
method to inline callees’ semantics, while prior works (e.g.,
Asm2vec) often use algorithms or trained models to perform
selective inlining. A straightforward inlining approach can
easily results in overly-lengthy instructions, causing perfor-
mance degradation of embedding models [4] and difficulty in
collecting features [8]. However, Figure 9 demonstrates that
VSIM is resilient to including the rich semantics of callees.

Missing High-Level Abstraction. Some semantic values are
associated with specific usage patterns, such as the system call
numbers, which can have the same semantic meaning but differ-
ent values across different architectures and platforms, leading
to different fingerprints. As described in §IV-B1, recovering
high-level abstractions can potentially mitigate this issue.

Analyzing Obfuscated Binaries. The continuously evolving
obfuscation techniques bring extra challenges to BCSA,
such as unpacking binary code, decrypting data, resolving
mixed boolean-algorithmic, and identifying virtual machine
dispatchers and functional codes [87]–[93]. Thus, we leave
it as challenging future work. However, analyzing normally
compiled binaries remains crucial for many applications, such
as license violation detection [86], vulnerability detection, and
software composition analysis [14], [17].

VI. CONCLUSION

This paper explores the challenges and potential of using
semantics-aware values for binary code similarity analysis
(BCSA). Our study identifies three key challenges: unscalable
value extraction, difficulty in identifying semantically represen-
tative values, and time-consuming comparison. By efficiently
extracting, filtering, normalizing, concretizing, and propagating
values, VSIM enables fast and precise analysis. Our evaluations
on large-scale datasets and a real-world task demonstrate
VSIM’s superior performance, confirming the feasibility and
effectiveness of value-based methods.
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TABLE VIII: The impact of basic block sequences.

BB Seq.
Recall@1 Offline time(s)1 Retrieval

O0,O3 O0,O2 Extraction Fingerprint time(s)
1 0.545 0.642 1,247 3,764 87
2 0.550 0.640 2,083 24,637 90
3 0.534 0.634 4,497 797,6962 94

1 The offline time is measured on the binary with the largest number of
functions in the PEM dataset, i.e., OpenSSL compiled with -O0.

2 We use 32 threads to parallelize the offline fingerprint generation since it
can take more than a week. The other two settings use 1 thread.

APPENDIX A
SIMULATING BASIC BLOCK SEQUENCE

In developing VSIM, we deliberately negelect structural fea-
tures, such as control-flow graphs (CFGs) of binary functions,
despite their potential to improve accuracy [10], [19], [40].
On the other hand, symbolically executing each basic block
avoids collecting features from infeasible paths, which may
compromise VSIM’s performance, although dead code can still
affect VSIM. In this section, we perform an ablation study
by simulating 2- and 3-length sequences of basic blocks to
quantitatively measure how different granularities influence
VSIM’s efficiency and accuracy.

Table VIII presents the effect of block-sequence length on
VSIM’s recall and runtime. Using 3-length sequences, offline
fingerprint generation did not finish within one week, rendering
this setting impractical. Moving from 1-length (the default
VSIM) to 2-length sequences yields slight accuracy change,
i.e., Recall@1 shifts by −0.011 (O0 vs. O3) and −0.008
(O0 vs. O2), but substantially increases cost: fingerprinting

rises from around 1 hour to more than a week, and retrieval
time grows from 87s to 94s. Although longer sequences may
capture the structural knowledge and richer semantics [8],
[71], their overhead undermines practicality for VSIM. Thus,
developing a scalable approach that integrates both value-based
and structural information is a promising yet challenging
direction for future work.

TABLE IX: The impact of different random arrays.

Seed
MRR Recall@1

O0,O3 O0,O2 O0,O3 O0,O2
42 0.621 0.709 0.545 0.642
3 0.621 0.707 0.546 0.640
5 0.622 0.708 0.546 0.640

APPENDIX B
DIFFERENT RANDOM ARRAYS

VSIM relies on a random array to get numbers for con-
cretizing symbolic expressions. Obviously, different values can
change the concretized feature of a symbolic expression; we
thus evaluate the impact of different random arrays in this
section. In short, the impact is nearly negligible. We clarify
that all experiments in §IV use a fixed random array generated
with random seed 42, this section further evaluates the accuracy
using random seed 3 and 5. As presented in Table IX, the values
of MRR and Recall@1 change by less than 0.002.

APPENDIX C
EFFICIENCY BENEFITS OF VALUE CONCRETIZATION

We formalize why our concretization strategy is fundamen-
tally more scalable than invoking SMT solvers to compare
sets of symbolic expressions. Consider two sets of single-
variable expressions, F = {f1(a), f2(a), . . . , fn(a)} and
G = {g1(a), g2(a), . . . , gm(a)}.
• SMT Baseline. An SMT solver must be invoked for each pair
(fi, gj) to decide equivalence. Thus, the online comparison
of (F,G) requires O(nm) pairwise checks (ignoring the
solver’s per-call cost).
• VSIM’s Approach. VSIM separates the work into one-time

offline preprocessing and a lightweight online phase, yielding
O(n+m) online time:

1) Offline concretization. VSIM independently concretizes
(normalizes) every expression in F and G, in total
O(n+m) time.

2) Offline ordering. The concretized elements are stored in
ordered sets, which takes O(n log n+m logm) time.

3) Online comparison. Comparing (F,G) reduces to inter-
secting two ordered sets, which runs in O(n+m) time.

For expressions over multiple symbolic variables, SMT-
based comparison typically must generate extra constraints
for variable correspondences, which can require considering all
permutations in the worst case, i.e., a factorial blow-up [12],
[25]. For example, comparing f(a, b) and g(x, y) requires
checking the equivalence of f(a, b) with both g(x, y) (mapping
a → x, b → y) and g(y, x) (mapping a → y, b → x). When
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both 2! = 2 mappings fail, f(a, b) and g(x, y) are deemed
non-equivalent. In contrast, VSIM absorbs this permutation
into the offline concretization step, so the online comparison
still runs in O(n+m) time.

TABLE X: VSIM’s performance with different β values.

Threshold (β)
MRR1 Recall@1 Retrieval

O0,O3 O0,O2 O0,O3 O0,O2 time (s)2

7 0.621 0.708 0.546 0.641 88
6 (VSIM) 0.621 0.709 0.545 0.642 87

5 0.622 0.708 0.547 0.641 86
4 0.620 0.708 0.545 0.640 86
3 0.623 0.709 0.547 0.641 86
2 0.619 0.708 0.543 0.641 82
1 0.607 0.697 0.531 0.630 77

0 (No symbolic) 0.580 0.666 0.506 0.598 58
1 k is +inf by default when it is not given.
2 The comparison processes of three tools are highly parallelized with 64

threads. The reported time is the average of 5 runs.
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Fig. 12: Fingerprint generation overhead according to β.

APPENDIX D
THE IMPACT OF DIFFERENT β

When concretizing symbolic values (§III-D), VSIM encoun-
ters efficiency issues for expressions with more than six
variables, so it ignores them. This section presents an ablation
study on how different thresholds β affect VSIM’s performance.
In particular, the “(No symbolic)” row of Table IV corresponds
to β = 0, i.e., no symbolic expressions are considered. Table X
reports results when β ∈ [0, 7]. When the threshold is below 3,
VSIM’s MRR and Recall@1 increase steadily, as does retrieval
time. However, MRR, Recall@1, and retrieval overhead are
similar when β > 3, indicating comparable online performance.

In contrast, the offline fingerprint-generation overhead fol-
lows a different trend from accuracy. Because our datasets
contain diverse binaries, we use an OpenSSL binary from
the PEM dataset, which was built by GCC with -O0, as
an illustrative example. Figure 12 shows how the generation
time scales with β: from 1 to 6, it grows modestly from 49
minutes to about an hour. This overhead is acceptable given the
concurrent performance gains. However, increasing the β from
6 to 7 causes a more than 3× jump in generation time due to
factorial growth in complexity, even though such expressions
constitute a small fraction of the overall dataset. Thus, setting
β = 6 balances time cost with the preserved semantics.

Although VSIM still achieves SoTA performance due to the
rarity of such complicated expressions, discarding them leads to
the loss of semantics. A more sophisticated mechanism capable
of handling these expressions could enhance VSIM’s semantic
preservation. For example, using a model that generates
identical embeddings for semantically equivalent expressions
would allow VSIM to concretize them without losing semantics.

APPENDIX E
RANKS OF VULNERABLE FUNCTIONS

TABLE XI: Vulnerability test ranks. The ranks with the best
MRR@10 of Table VII for each architecture are in bold.

NetGear R7000 (ARM32)
Tool x86 AMD64 ARM32 MIPS32
VSIM 2;1;1;1 4;1;1;1 2;1;1;1 2;1;1;1
GMN1 1;1;1;2 1;1;30;7 1;1;1;1 1;1;1;7

TP-Link Deco M4 (MIPS32)
x86 AMD64 ARM32 MIPS32

VSIM
2;1;1;1;1 19;1;45;1;1 2;1;1;1;3 24;1;1;1;1
2;1;5;1 1;1;4;1 1;1;4;1 1;1;4;1

GMN1 22;1;1;24;2 9;1;1;79;2 3;1;1;60;33 1;1;3;3;1
1;2;1;1 1;1;1;1 1;1;1;1 1;3;1;1

1 Results of GMN refer to GMN (CFG + BoW opc 200) [6].

APPENDIX F
ARTIFACT AVAILABILITY

The source code of VSIM, along with scripts, datasets used
in our experiments, and detailed instructions for reproducing
the results, are publicly available at https://doi.org/10.5281/
zenodo.17751555. We will also actively maintain the VSIM
repository at https://github.com/OSUSecLab/vSim to provide
future updates and improvements.
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