
CAT: Can Trust be Predicted with Context-
Awareness in Dynamic Heterogeneous Networks?

Jie Wang∗, Zheng Yan∗†✉, Jiahe Lan∗, Xuyan Li†, and Elisa Bertino‡
∗State Key Laboratory of Integrated Services Networks, School of Cyber Engineering, Xidian University

†Hangzhou Institute of Technology, Xidian University ‡Department of Computer Science, Purdue University
jwang1997@stu.xidian.edu.cn, zyan@xidian.edu.cn, jhlan16@stu.xidian.edu.cn, xli77144@gmail.com, bertino@purdue.edu

as studies have reported that 10% of Twitter users are fake [4]
and that 16% of restaurant ratings on Yelp are dishonest [5]. In
such cases, trust evaluation helps identify trustworthy entities
and filter out misleading information, thereby improving the
trustworthiness of the network. Overall, trust evaluation plays
a crucial role in facilitating decision-making, mitigating risks,
and enhancing system security.

Graph Neural Networks (GNNs), an emerging Machine
Learning (ML) paradigm designed for graph-structured data,
have demonstrated strong performance in various tasks, such
as anomaly detection [12], [13], [14], social recommenda-
tion [15], [16], and malware analysis [17], [18]. Their strength
lies in the ability to learn expressive node representations
(i.e., embeddings) through information propagation and ag-
gregation, fully leveraging the structural information inherent
in graphs. This capability has motivated researchers to apply
GNNs to trust evaluation, also known as trust prediction 1.
Compared with statistical [19], reasoning [20], and traditional
ML approaches [21], using GNNs for trust prediction of-
fers several distinct advantages. First, trust relationships and
other interactions between nodes can be naturally modeled
as graphs, while GNNs are well-suited for processing graph
data. Second, the message-passing mechanism of GNNs is
compatible with basic trust properties, including conditional
transitivity and composability, thus enhancing prediction ac-
curacy. Third, unlike traditional ML approaches that require
heavy and complex feature engineering, GNNs provide an end-
to-end prediction mode, greatly simplifying the process of trust
prediction. Consequently, GNNs present a promising approach
for intelligent and precise trust prediction.

Existing Approaches and Motivations. Table I summa-
rizes existing GNN-based trust prediction models in terms of
dynamicity, heterogeneity, context-awareness, and robustness.
We use social networks as an example to illustrate the practical
significance of these properties, as shown in Fig. 1. Based on
our review, we make the following observations:

(i) Most models [6], [8], [9], [10] do not account for
trust dynamicity, resulting in questionable inferences and poor
prediction accuracy [22], [23]. As illustrated in Fig. 1, user
interactions evolve over time, and trust relationships often
change accordingly; for example, u2 has different trust levels

1We use the terms “trust evaluation” and “trust prediction” interchangeably
since GNNs focus on predicting future trust relationships based on historical
interactions.

Abstract—Trust prediction provides valuable support for
decision-making, risk mitigation, and system security enhance-
ment. Recently, Graph Neural Networks (GNNs) have emerged as
a promising approach for trust prediction, owing to their ability
to learn expressive node representations that capture intricate
trust relationships within a network. However, current GNN-
based trust prediction models face several limitations: (i) Most
of them fail to capture trust dynamicity, leading to questionable
inferences. (ii) They rarely consider the heterogeneous nature of
real-world networks, resulting in a loss of rich semantics. (iii)
None of them support context-awareness, a basic property of
trust, making prediction results coarse-grained.

To this end, we propose CAT, the first Context-Aware GNN-
based Trust prediction model that supports trust dynamicity and
accurately represents real-world heterogeneity. CAT consists of
a graph construction layer, an embedding layer, a heterogeneous
attention layer, and a prediction layer. It handles dynamic graphs
using continuous-time representations and captures temporal
information through a time encoding function. To model graph
heterogeneity and leverage semantic information, CAT employs
a dual attention mechanism that identifies the importance of
different node types and nodes within each type. For context-
awareness, we introduce a new notion of meta-paths to extract
contextual features. By constructing context embeddings and
integrating a context-aware aggregator, CAT can predict both
context-aware trust and overall trust. Extensive experiments on
three real-world datasets demonstrate that CAT outperforms five
groups of baselines in trust prediction, while exhibiting strong
scalability to large-scale graphs and robustness against both
trust-oriented and GNN-oriented attacks.

I. INTRODUCTION

Trust is a complex and multifaceted concept, referring to a
subjective view held by one entity towards another within a
specific context. It is characterized by subjectivity, dynamicity,
context-awareness, asymmetry, and conditional transitivity [1].
Trust evaluation, which quantifies t rust by considering factors
affecting it, is one of the important approaches for achiev-
ing cyber trust. It has been applied to various fields for
such purposes as fraud detection, intrusion detection, service
management, and access control [2], [3]. For example, social
networks are often affected by fraudsters and dishonest ratings,

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.242171
www.ndss-symposium.org

TABLE I: Comparison between CAT and existing GNN-based trust prediction models.
 : it satisfies a criterion; #: it does not satisfy a criterion; G#: it partially satisfies a criterion.

Models Guardian [6] Medley [7] GATrust [8] TrustGNN [9] KGTrust [10] DTrust [11] TrustGuard [2] CAT

Dynamicity # # # #
Heterogeneity # # # # # #

Context-Awareness # # # # # # #
Robustness # # # # # # G#

towards u1 at different time points. Static models fail to
capture such dynamics and may mistakenly utilize later in-
teractions to predict early trust relationships, thereby violating
temporal causality.

(ii) Almost all models [2], [6], [7], [8], [9], [11] overlook the
heterogeneous nature of real-world networks. Fig. 1 presents
a typical heterogeneous network with various types of nodes
(i.e., users and items) and edges (i.e., trust relationships
between users and user ratings on items). Most trust prediction
models focus solely on homogeneous user-to-user networks
and thus miss valuable semantic information, such as user
preferences or item characteristics, which have been shown
to enhance trust prediction [10], [24].

(iii) None of the existing models support context-awareness,
which is essential for several reasons. First, trust is inherently
context-aware, as a study [25] found that fewer than 1% of
people trust their friends in all contexts in real-world networks.
Here, context refers to any information that describes the
specific situations in which a trust relationship is established,
such as item categories (as illustrated in Fig. 1), interaction
domains, or task types. For example, u2 may trust u1 in sport
(c1) recommendations due to u1’s expertise, but not in clothing
(c2) recommendations. Second, since different contexts influ-
ence trust in distinct ways, modeling trust within each context
can improve overall trust prediction. Third, evaluating trust
in one context helps predict trust in similar yet unobserved
contexts. Last, context-aware models enable flexible trust-
based applications by offering fine-grained evaluation results.
For instance, one can identify malicious behaviors of others
in a specific context based on context-aware trust 2.

(iv) Resilience to data poisoning attacks is rarely evaluated
in existing models [6], [7], [8], [9], [10], [11], hindering
their practical adoption. While TrustGuard [2] addresses trust-
oriented attacks that operate at the node level, it overlooks
more sophisticated GNN-oriented attacks that operate at the
graph-structural level. In practice, attackers can inject mali-
cious interactions (red lines in Fig. 1) into training data to
mislead model learning. Such attacks are prevalent in real-
world systems; for example, Taobao has recognized service
boosting via malicious ratings as a threat to its platform [5].

Therefore, it is critical to develop a trust prediction
model that can capture trust dynamicity, represent real-
world situations, support context-awareness, and be re-
silient to data poisoning attacks.

2A context-aware trust level reflects a trustor’s trust in a trustee within a
specific context, while an overall trust level aggregates these context-specific
levels to provide a holistic view of the trustor’s general trust in the trustee.

𝑐!

𝑐"

𝑐#

2
3

𝑢!
𝑢"

𝑢#

𝑢$ Trust relationship

Rating/Review

Malicious interaction

Fig. 1: A motivating example of dynamic heterogeneous networks
represented by a real-world social network with interactions involving
users u1 ∼ u4 and items across various contexts c1 ∼ c3, including
sports, electronics, and clothing. Dashed and solid arrows indicate
interactions occurring at different time points.

Technical Challenges. However, designing such a model is
non-trivial as it requires addressing the following challenges:

TC1: Modeling dynamicity with fine granularity while
maintaining scalability is a challenging task. Time is a contin-
uous variable that requires precise representation and careful
handling. Some trust prediction models [2], [11] use discrete-
time methods to represent dynamic trust networks. While
efficient, they may miss critical temporal patterns across
snapshots. Continuous-time methods [7] address this issue by
considering all timestamps but suffer from low scalability.
Therefore, how to achieve both accurate dynamicity modeling
and scalability calls for an effective solution.

TC2: It is difficult to extract key information from hetero-
geneous graphs. Real-world networks often contain multiple
types of nodes and interactions [26], which provide rich
semantics for accurate trust prediction. However, this diversity
may also introduce excessive noise that undermines trust
propagation and aggregation. Thus, how to determine the
proper importance of interactions formed by different types
of nodes requires a thorough investigation.

TC3: The absence of labeled, context-specific trust data
poses a significant challenge for predicting trust across varied
contexts. Existing datasets only provide labels for overall trust,
making direct context-aware trust prediction infeasible. More-
over, in graph structures, contexts are less obvious than nodes
and edges. Hence, how to incorporate contextual information
(TC3-1) and predict context-aware trust from available overall
trust data (TC3-2) needs ingenious designs.

Our Proposal. In this paper, we propose CAT, the first
GNN-based trust prediction model that simultaneously cap-
tures trust dynamicity, handles real-world network heterogene-
ity, supports context-awareness, and is resilient to data poison-
ing attacks. CAT adopts a layered architecture that includes a
graph construction layer, an embedding layer, a heterogeneous

2

attention layer, and a prediction layer. The graph construction
layer builds a dynamic heterogeneous graph using times-
tamped interactions, enabling fine-grained modeling of dynam-
icity. The embedding layer initializes embeddings for nodes,
time, and edge attributes. To address TC3-1, we introduce a
new notion: context-aware meta-path, which incorporates con-
textual information while enhancing semantic representation.
Meanwhile, a time encoding function maps the continuous-
time domain into a vector space. The heterogeneous attention
layer propagates and aggregates trust information to refine
embeddings. It employs a dual attention mechanism to learn
the importance of node types and the nodes within each type,
addressing TC2. To resolve the contradiction in TC1, we adopt
recent-time neighbor sampling and one-hop trust propagation
strategies, focusing on limited yet crucial interactions. Last,
the prediction layer predicts the trust relationship between any
two users under a specific context. To tackle TC3-2, we treat
item categories as contexts and create context embeddings by
averaging the embeddings of items within the same context.
This enables CAT to predict context-aware trust. To avoid
dependency on context-specific trust labels, we further propose
a context-aware aggregator that links context-aware trust with
overall trust. By jointly addressing TC2 and TC3, CAT gains
a robust semantic understanding, forcing attackers to consider
multiple factors for a successful attack.

Evaluation. We conduct extensive experiments to evaluate
CAT’s effectiveness, scalability, and robustness on three real-
world social network datasets: Epinions [27], Ciao [27], and
CiaoDVD [28]. Experimental results show that CAT outper-
forms five groups of baselines, especially in predicting trust for
unobserved users that do not have interactions at the training
stage, achieving a 50.79% Mean Reciprocal Rank (MRR)
improvement on Epinions over the best baseline. Notably, CAT
can predict context-aware trust, which is not supported by all
baseline models. It also scales well to large graphs, reducing
average running time by 73.97% on Epinions. Furthermore,
CAT shows strong robustness, with maximum performance
drops of only 0.95% and 3.39% under trust-oriented [2] and
GNN-oriented attacks [29], respectively, when predicting trust
for observed users.

Contributions. The main contributions are as follows:
• We propose CAT, the first context-aware GNN-based

trust prediction model, which also uniquely addresses the
dynamic nature of trust in heterogeneous networks.

• We introduce the notion of context-aware meta-paths
that incorporate contextual features and generalize across
domains. By constructing context embeddings, CAT can
predict context-aware trust. A context-aware aggregator
is further proposed to avoid reliance on context-specific
trust labels and enable CAT to predict overall trust.

• We model trust dynamicity using a time encoding func-
tion and extract key semantic information through a dual
attention mechanism. To enhance scalability, we further
adopt recent-time neighbor sampling and one-hop trust
propagation strategies.

• We conduct a comprehensive evaluation on three real-

world datasets. The results show that CAT effectively
predicts trust for both observed and unobserved users,
scales well to large graphs, and remains robust against
both trust-oriented and GNN-oriented attacks.

II. RELATED WORK

This section briefly reviews recent advances in dynamic
heterogeneous GNNs and GNN-based trust prediction.

A. Dynamic Heterogeneous GNNs

Many research efforts have focused on either dynamic
GNNs [30] or heterogeneous GNNs [31]. However, research
on integrating both dynamicity and heterogeneity is relatively
limited [32]. DyHATR [33] employs node-level and edge-
level attentions to capture heterogeneous information, and ap-
plies Recurrent Neural Networks (RNNs) with a self-attention
mechanism to discern temporal patterns. HTGNN [34] adopts
a hierarchical aggregation mechanism to consider both het-
erogeneous spatial and temporal features. While DyHATR
and HTGNN support dynamicity by modeling a sequence of
static snapshots, they overlook the fine granularity of time.
In contrast, HGT [35] incorporates fine-grained timestamps
using a relative temporal encoding technique. Additionally, it
leverages meta-relations with Transformer-based attention [36]
to handle graph heterogeneity. However, HGT requires stack-
ing multiple GNN layers to capture high-order information,
leading to over-smoothing and poor scalability [37].

Discussion. Although these models achieve impressive per-
formance across several tasks, their effectiveness in trust
prediction remains uncertain. Specifically, basic trust proper-
ties (e.g., context-awareness and asymmetry) and trust-related
attributes (e.g., trust levels and ratings) are not explicitly mod-
eled, which may compromise prediction accuracy. Moreover,
the joint modeling of dynamicity and heterogeneity often
raises scalability concerns. Therefore, how to adapt existing
dynamic heterogeneous GNNs to trust prediction while ensur-
ing scalability requires further extensive investigation.

B. GNN-based Trust Prediction

Generally, GNN-based trust prediction models can be clas-
sified into static models and dynamic models, depending on
whether they incorporate temporal information.

Static Models. Lin et al. [6] proposed Guardian, the first
GNN-based trust prediction model for online social networks.
Guardian leverages the concepts of in-degree and out-degree
to model trust asymmetry, and utilizes localized graph convo-
lutions for trust propagation. GATrust [8] improves Guardian
by fusing multi-faceted user properties, including user fea-
tures, known trust relationships, and network structure, using
learnable weights. Unlike the above two models, TrustGNN [9]
models trust by specifying different trust chains and then ap-
plies an attention mechanism to discriminate their importance.
However, the above models focus on homogeneous user-to-
user trust networks, ignoring the heterogeneous interactions
between different node types found in real-world networks.
KGTrust [10] addresses this issue by initializing embeddings

3

with type-specific semantics and employing a discriminative
convolutional mechanism for embedding learning. Despite
these advances, all these models operate on static snapshots
and thus fail to capture the dynamic nature of trust. This
oversight leads to information loss and questionable infer-
ences [22], [23], as they miss the sequence in which trust
relationships are established. Moreover, the lack of support
for context-awareness and robustness further limits their ef-
fectiveness in practice.

Dynamic Models. Current dynamic models adopt two
approaches for modeling time: discrete-time and continuous-
time. DTrust [11] and TrustGuard [2] use the discrete-time
method that treats a dynamic graph as a series of time-ordered
snapshots. They first learn static spatial features within a
snapshot, and then capture temporal patterns across snapshots
through Gated Recurrent Units (GRUs) and a self-attention
mechanism, respectively. While efficient, this method may
lose substantial structural dependencies across snapshots [35].
In addition, DTrust lacks robustness considerations, whereas
TrustGuard employs a robust aggregator to counter trust-
oriented attacks based on the network theory of homophily.
However, TrustGuard’s efficacy under GNN-oriented attacks
remains unclear. Medley [7] is a continuous-time method that
fully utilizes each timestamp through a time encoding function.
It achieves high prediction accuracy but suffers from expensive
costs and lacks robustness. Moreover, all these models do not
support heterogeneity and context-awareness.

Discussion. Despite remarkable progress in GNN-based
trust prediction, several critical issues remain unresolved, as
shown in Table I. First, insufficient attention is given to trust
dynamicity modeling, particularly the efficient encoding of
fine-grained timestamps. Second, heterogeneity is not well
addressed in existing work. Third, none of the models support
context-awareness, a basic nature of trust. Last, the resilience
of these models to both trust-oriented and GNN-oriented
attacks has been largely overlooked.

III. PROBLEM STATEMENT

In this section, we first introduce key definitions and for-
mulate the problem we aim to address. Then, we describe the
threat model of CAT.

A. Problem Definition

Definition 1. Heterogeneous Network. A heterogeneous
network, also known as Heterogeneous Information Network
(HIN), is represented as a six-tuple G = (V, E , T ,R,Φ,Ψ),
where each node v ∈ V and each edge e ∈ E are associated
with their type mapping functions Φ : V → T and Ψ : E → R,
respectively. A network is considered heterogeneous when
|T |+ |R| > 2, while it is homogeneous when |T | = |R| = 1.
Definition 2. Dynamic Heterogeneous Network. A dynamic
heterogeneous network observed within a time interval [0, T]
can be expressed as G(T) = (V(T), E(T), T ,R,Φ,Ψ), where
V(T) and E(T) are time-varying sets of nodes and edges,
respectively. E(T) = {(ei,j(t), r) | vi(t), vj(t) ∈ V(T), r ∈

R, t ≤ T}, where ei,j(t) is an edge between nodes vi and vj
built at timestamp t, and r is the edge type.
Definition 3. Meta-path. A meta-path p of length s is defined
as a path in the form of τ1

r1−→ τ2
r2−→ · · · rs−→ τs+1 with node

types τ1, τ2, · · · , τs+1 ∈ T and edge types r1, r2, · · · , rs ∈ R.
Note that any two node types and any two edge types in this
path can be the same. The meta-path p describes a composite
relation r1 ◦ r2 ◦ · · · ◦ rs between node types τ1 and τs+1,
capturing rich semantics.

Take a heterogeneous social network (Fig. 1) as an example,

the meta-path user
rate−−−→ item

rate−−−−−→ user, where rate−

means “is rated by”, describes the relationship “two users
have rated the same item”, indicating similar preferences or
potential trust between them.
Definition 4. Contextual Trust Network. A contex-
tual trust network is a dynamic heterogeneous net-
work with contexts involved, denoted as G(T) =
(V(T), E(T), T ,R,Φ,Ψ, C). Here, T = {user, item}, R =
{⟨user, user⟩, ⟨user, item⟩, ⟨item, user⟩}, and C denotes the
set of contexts.

In Definition 4, the term user refers to either a trustor
or a trustee — two entities involved in a trust relationship,
while the term item has application-specific meanings, such
as products in social networks or assets in financial networks.
Based on the datasets employed in this paper, each context
c ∈ C corresponds to an item category. Among the edge
types, ⟨user, user⟩ represents a directed trust relationship and
is inherently asymmetric, while ⟨user, item⟩ and ⟨item, user⟩
represent inverse relationships, such as “rate” and “is rated
by”. The absence of ⟨item, item⟩ relationships is based on
the assumption that the primary interactions of interest occur
between users and items or between users themselves.
Additionally, the set of context-aware trust relationships is
represented as {(⟨vi, vj⟩, ck, t, wi,j,k, r) | ei,j(t) ∈ E(T), ck ∈
C, r = ⟨user, user⟩}, where wi,j,k denotes the trust level of
the trustor-trustee pair ⟨vi, vj⟩ under context ck. The value
of wi,j,k can be binary or multi-level depending on specific
scenarios. Notably, due to the asymmetric nature of trust,
wi,j,k is not necessarily equal to wj,i,k.
Definition 5. Trust Prediction. Given a contextual trust
network G(T) observed in the time interval [0, T], the goal
of trust prediction is to learn a model f(·) that can predict, at
time T + ∆(T), both the context-aware trust level w̄i,j,k for
any trustor-trustee pair ⟨vi, vj⟩ within a specific context ck and
the overall trust level w̄i,j (aggregated across all contexts) of
this pair. Here, vi, vj ∈ V(T) represent user nodes, vi ̸= vj ,
and ck ∈ C.

The trust prediction task may vary depending on the type
of available supervision. If only labels for trusted relationships
are provided, with distrusted ones implicitly represented by the
absence of links, the task reduces to link prediction: predicting
whether a trusted relationship (link) exists between two users.
Conversely, if labels for trust strength (e.g., numerical scores)
are available, the task becomes edge classification: predicting
the trust level (edge weight) between users.

4

B. Threat Model

An important requirement for designing a GNN-based trust
prediction model is that the model can withstand both trust-
oriented [2] and GNN-oriented attacks [29]. Trust-oriented
attacks operate at the local, node level, targeting individual
trustworthiness by manipulating specific trust relationships.
For example, attackers may destroy or boost the trustworthi-
ness of certain nodes by launching bad-mouthing or good-
mouthing attacks. In contrast, GNN-oriented attacks typically
operate at the global, graph-structural level, exploiting inher-
ent vulnerabilities of GNNs and highlighting the adversarial
relationship between the attacker and the model. In this
case, attackers may have access to the full input graph and
strategically manipulate its structural patterns. Both types of
attacks are prevalent in real-world scenarios [5], [29] and
usually manifest as data poisoning attacks, where attackers
degrade model performance by manipulating links (e.g., trust
relationships) during training. Therefore, this paper analyzes
model robustness under both attacks.

We make the following assumptions. For trust-oriented
attacks, we follow the approach proposed in [2] and focus
on collaborative bad-mouthing attacks (more disruptive than
good-mouthing attacks), where a group of malicious nodes
collude to destroy the trustworthiness of target nodes. For
GNN-oriented attacks, we consider a powerful attacker who
can access and analyze the contextual trust network G(T),
including its statistics and temporal evolution patterns. The
attacker can manipulate the network structure by strategically
adding or removing links, e.g., by creating a surrogate model
to guide the attack. However, the attacker lacks knowledge
of the architecture or internal parameters of the trust predic-
tion model and cannot query it. These settings are realistic
and consistent with existing work [29]. In practice, attackers
typically do not know the details of a victim model, yet
they can observe the input data (e.g., public social networks)
and formulate attack strategies using surrogate models. We
further assume that during the test phase, the input to the trust
prediction model is a pair of nodes indicating the roles of
trustor and trustee. Thus, evasion attacks are not applicable.
Instead, data poisoning attacks may occur during the training
phase to degrade the model’s overall performance.

Beyond these two attacks, we also consider an adaptive data
poisoning attack that specifically targets a context-aware trust
prediction model by manipulating interactions across contexts
to blur contextual boundaries (see Section VI).

IV. CAT DESIGN

In this section, we first provide an overview of CAT and
then elaborate on its technical details.

A. Overview

As illustrated in Fig. 2, CAT consists of four layers: a
graph construction layer, an embedding layer, a heterogeneous
attention layer, and a prediction layer. Specifically, the graph
construction layer builds a contextual trust graph using stream-
ing user-item and user-user interactions. In the embedding

layer, a meta-path covering rich semantics and contextual
features is first defined, and then node embeddings are ini-
tialized via Metapath2vec [38]. Meanwhile, time information
and edge attributes (e.g., ratings from users on items) are
encoded to facilitate information propagation and aggregation.
The heterogeneous attention layer employs a dual attention
mechanism to discriminate the importance of node types and
the importance of nodes within the same type. Leveraging
the message-passing mechanism of GNNs, CAT achieves trust
propagation with varying attentions granted on different inter-
actions. To enhance scalability, we adopt recent-time neighbor
sampling and one-hop trust propagation strategies, focusing
on limited yet crucial interactions. Finally, in the prediction
layer, we first generate a context embedding by averaging
item embeddings within the same context. Then, two user
embeddings together with the context embedding are fed into a
Multi-Layer Perceptron (MLP) to predict the latent trust level
between the two users within that context. To overcome the
lack of context-specific trust labels, we propose a context-
aware aggregator to link context-aware trust with overall trust,
weighted by context importance. The integration of these
layers gives CAT a comprehensive semantic understanding,
which hinders potential attacks, as attackers have to consider
multiple contextual and semantic factors.

B. Graph Construction Layer

This layer aims to construct a contextual trust graph using
user-user and user-item interactions, each associated with
attributes such as timestamps, trust levels, and ratings. To
effectively model the temporal dynamics of these interactions,
we employ continuous-time representations, which describe
the evolution of the graph as a function of continuous time.
Unlike discrete-time representations [2], [11], [39] that divide
time into fixed intervals and may lose fine-grained temporal
patterns, continuous-time representations allow interactions
and updates to occur at arbitrary time points, enabling a more
accurate and realistic modeling of trust dynamics. In addition,
items belonging to the same category are grouped under the
same context.

C. Embedding Layer

This layer aims to initialize embeddings for nodes, time,
and edge attributes.

Node Embedding. Typically, we can apply two transfor-
mation matrices for users and items to characterize their
heterogeneity. While this method is straightforward, it fails
to capture rich semantics embedded in diverse relations.
Meta-paths have emerged as a promising solution to this
limitation. However, conventional meta-paths, which focus
on explicit links, lack the capacity to incorporate contextual
information, a crucial factor for context-aware trust predic-
tion. To address this, we extend the concept of meta-paths
by introducing a new context-aware meta-path, defined as:

user
rate−−−→ item

belong to−−−−−→ context
belong to−−−−−−−−→ item

rate−−−−−→
user, simplified as uiciu. It is important to clarify that the
“context” herein is not an actual node type but rather a

5

user item user embedding item embedding time embedding edge attribute embedding context

4
𝑡!

Metapath2vec

Time
encoding

Edge attribute
encoding

3
𝑡"

interaction

ℎ! (trustor)

𝑐!
M

ulti-layer perceptron

𝒘# 𝒊,𝒋,𝒌

𝒘# 𝒊,𝒋,|𝓒|

𝒘# 𝒊,𝒋,𝟏…

Context-aware
trust

C
ontext-aw

are aggregator

𝒘# 𝒊,𝒋

Overall
trust

Dual attention mechanism

3

1

3
5

4

𝒢(𝑇)

𝑡"

𝑡!

𝑡#

(I) Graph Construction Layer (II) Embedding Layer (III) Heterogeneous Attention Layer (IV) Prediction Layer

𝑡$

𝑡$

𝑐#
𝑐!

𝑐%

𝑐"
𝑐%

context-aware meta-path

…

Interaction
sequence

𝑇

𝑡"
3

𝑡!
4

𝑡#
5

𝑡$
1

message

ℎ) (trustee)

ℎ* (context)
…

…Avg

𝛼"

𝛼#

𝛽$" 𝛽$#

𝛽$%
𝛽$&

𝛽$'

𝛼/𝛽: type/node attention

Fig. 2: CAT overview.

latent factor that reflects item characteristics. This meta-path
describes the relationship “two users have interacted with two
items belonging to the same context”, implying that these two
users share similar preferences in that context. Then, we apply
the Metapath2vec model [38] to generate semantically-rich
embeddings hi, hj ∈ Rdv , where dv is the embedding dimen-
sion. Unlike previous approaches [8], [40], [41] that manually
define contextual factors (e.g., decomposing neighbor features
into normal and abnormal components), our method incorpo-
rates contextual information through relational structures via
context-aware meta-paths. This design offers three advantages:
(i) It automatically captures latent contextual semantics from
user-item interactions. (ii) It leverages meta-paths to connect
different types of nodes and characterize diverse relations. (iii)
It generalizes across networks by eliminating manual context
engineering (as discussed in Section VI).

Time Embedding. Metapath2vec has a key limitation: it
does not retain the temporal order of interactions within a
meta-path. To address this problem and model trust dynamics,
we introduce a time encoding function φ : ∆t → Rdt . Herein,
∆t represents the time gap between an interaction and its
associated target node, and dt is the embedding dimension. We
use relative time gaps instead of absolute timestamps to reduce
inconsistencies that arise from the varying ranges of absolute
timestamps (e.g., Unix timestamps) across different datasets
and between training and testing sets. Additionally, unlike pre-
vious approaches [42], [43] that focus on the target timestamp
of each node, we assign each node’s timestamp as the time
at which its earliest interaction occurs. The rationale behind
this choice is twofold: (i) The first interaction marks a node’s
entry into a network, which holds historical significance. (ii)
It simplifies time encoding by using a single representative
timestamp per node, thereby avoiding redundant computation.
The purpose of φ is to encode continuous time gaps into dt-
dimensional embeddings ht, ensuring that temporally close
gaps are also close in the embedding space. Formally, the time
encoding function is expressed as:

φ(∆t) = cos (∆t · ω + δ), (1)

where ω and δ are learnable parameters. The cosine function
is chosen due to (i) its inherent periodicity, making it ideal to
capture periodic temporal patterns, and (ii) its continuity and
smoothness, which ensure that small changes in time result in
small changes in the output of the function.

Edge Attribute Embedding. Except for timestamps, each
edge may have such attributes as trust levels and user-item
ratings, which can improve prediction accuracy but are often
ignored by existing dynamic heterogeneous GNNs. To ad-
dress this, we encode these attributes into embedding vectors.
For instance, if the attributes refer to trust levels w and
w ∈ {Trust,Distrust}, we first model them as [0, 1]⊤ and
[1, 0]⊤ using one-hot encoding. Given that different datasets
have different levels of trust, we then transform these one-hot
vectors into embeddings he ∈ Rde of a specified dimension
via a learnable matrix.

D. Heterogeneous Attention Layer

This layer aims to learn node embeddings by selectively
propagating and aggregating trust information that encodes
trust strength, relevance, and directionality. Specifically, we
design a dual attention mechanism that assigns varying
weights to node types (type attention) and nodes within each
type (node attention), enabling CAT to discriminate the sig-
nificance of heterogeneous interactions. Compared to existing
attention mechanisms [31], [35] for handling graph hetero-
geneity, the proposed mechanism offers two advantages: (i) It
accounts for both temporal information and edge attributes,
which are essential for accurate trust prediction but often
overlooked in prior work. (ii) It does not rely on any meta-path
and focuses on node type importance, reducing manual effort
and improving generality. Furthermore, to enhance scalability,
we adopt recent-time neighbor sampling and one-hop trust
propagation strategies for controlling the amount of trust in-
formation and the range of its propagation. In this subsection,
we denote vj as the source node and vi the target node.

To begin with, we define a message mi,j as the trust
information that needs to be propagated from vj to vi:

mi,j = hj + ht + he, (2)

where hj , ht, and he represent the embeddings of vj , relative
time gaps, and edge attributes, respectively. The messages
associated with vi serve as the basis for mining its latent
features, such as the objective trust given by others. Note
that we use an additive method rather than concatenation for
message construction, as this avoids the high dimensionality
introduced by concatenation and is thus more efficient.

Type Attention. Given a specific node vi, it can engage in
various interactions with different types of nodes, each having
distinct impacts. For example, for a user node, a neighboring

6

user node from a ⟨user, user⟩ interaction propagates informa-
tion about trust relationships, while a neighboring item node
from a ⟨item, user⟩ interaction conveys information such
as user preferences. Therefore, we employ a type attention
mechanism to discriminate the significance of different node
types or relations. First, we calculate the embedding for type
τ by aggregating messages from nodes of type τ as:

hτ =
∑

j∈N τ
vi

1√
didj

mi,j , (3)

where N τ
vi denotes the set of neighboring nodes of type τ for

vi. di and dj are the degrees of vi and vj , used to normalize
message influence based on node connectivity.

Then, we calculate the type attention score based on the
node type embedding hτ and the target node’s embedding hi.
To obtain the relative importance of each type, we further
normalize the attention scores across all the types using the
softmax function. The above process is shown in Eq. 4.

aτ = σ(γ⊤
τ · [hi||hτ]),

ατ =
exp(aτ)∑

τ ′∈T exp(aτ ′)
,

(4)

where γτ is the attention vector specific to type τ , || is a
concatenation operation, and σ(·) is a non-linear activation
function such as LeakyReLU.

Node Attention. Falling into the same type, different nodes
can influence a target node differently. Therefore, we further
calculate node attention scores with the consideration of type
importance. Specifically, given a node vi with type τ and its
neighboring node vj with type τ ′ (where τ and τ ′ may be
the same or different), the normalized node attention score is
calculated using Eq. 5.

bi,j = σ(η⊤ · ατ ′ [hi||mi,j]),

βi,j =
exp(bi,j)∑

j′∈Nvi
exp(bi,j′)

,
(5)

where η is the attention vector for nodes, and ατ ′ refers to the
significance of type τ ′. The node attention score βi,j indicates
the importance of vj to vi. Note that the effects of time and
edge attributes are also learned through the dual attention
mechanism since they are encoded in the messages.

Finally, to derive the embedding of node vi, we aggregate its
related messages mi,j , each weighted by βi,j (computed via
sequential type and node attention mechanisms). After that, a
fully-connected layer is applied to extract high-level features.
The formal process is described below:

hi = σ((
∑

j∈Nvi

βi,jmi,j) ·W +B), (6)

where W and B are learnable parameters.
Neighbor Sampling. A real-world heterogeneous network

is typically very large and contains rich information. While
this information benefits embedding learning, it may also
introduce noise that undermines trust propagation and ag-
gregation. Considering this issue and CAT’s scalability, we

adopt a neighbor sampling strategy [30], [44] that selects
a subset of neighbors (or interactions) for trust propagation
and aggregation. There are two sampling strategies: uniform
sampling, which uniformly samples neighbors of a target node,
and recent-time sampling, which selects neighbors having
the newest interactions with the target node. We adopt the
recent-time sampling strategy since it is more efficient, and
new interactions are generally more important than historical
ones [7]. To the best of our knowledge, this strategy is applied
for the first time in GNN-based dynamic trust prediction. A
comparison of the two strategies is provided in Appendix E.

One-Hop Trust Propagation. Through the above pro-
cess, latent trust information embedded in messages can be
propagated and aggregated, guided by the graph structure.
Specifically, if CAT is equipped with L heterogeneous at-
tention layers, hi fuses the information about trust from
the L-hop neighbors of vi. In other words, we can control
the range of trust propagation by setting L. However, in-
creasing L introduces several issues. First, a large L often
leads to over-smoothing [45], where node embeddings become
indistinguishable. Second, deeper architectures significantly
increase computational overhead, making them less scalable
in large-scale trust networks. Moreover, previous work has
shown that trust is conditionally transitive and tends to decay
with distance [9], [46], highlighting the importance of one-
hop neighbors over multi-hop ones. Empirical results (Sec-
tion V-D) further support the above statements: CAT performs
best when L = 1, indicating that trust information from one-
hop neighbors is sufficient for accurate and efficient prediction.
Therefore, we adopt a one-hop trust propagation strategy to
enhance scalability without compromising accuracy.

E. Prediction Layer

This layer aims to predict the latent trust between any
two user nodes within a specific context. Since the previous
layer already generates expressive embeddings through the
dual attention mechanism, this layer adopts a simple two-
layer MLP as the prediction model. The input to the MLP is a
combination of three types of embeddings: those of the trustor,
the trustee, and the context. While embeddings of the trustor
and trustee are directly obtained from the previous layer, the
context embedding is not readily accessible. To enable context-
aware trust prediction, we calculate a context embedding by
averaging the embeddings of items within the same context.
The reason is that items within the same context collectively
characterize that context from multiple aspects, and averaging
effectively preserves the general characteristics of the context.
Alternative methods for generating context embeddings are
discussed in Appendix F. Formally, the prediction process is
as follows:

w̃i,j,k = softmax(MLP(hi||hj ||hk)), (7)

where hi, hj , and hk denote the embeddings of vi, vj , and the
context ck, respectively. w̃i,j,k is the probabilistic prediction
vector of the trust from vi to vj within ck. The predicted trust
level is thus computed by w̄i,j,k = argmaxq(w̃i,j,k), where

7

q refers to the index of the maximum value in w̃i,j,k. It is
important to note that w̄i,j,k may not equal w̄j,i,k due to the
asymmetric nature of trust.

Context-Aware Aggregation. By the above steps, CAT
has the potential to predict trust between users within any
context, which is more fine-grained than the overall trust
used in prior approaches. However, we are facing the lack
of ground truth for trust levels within specific contexts. To
address this challenge, we establish a connection between
context-aware trust and overall trust. A solution is to average
or sum trust levels across all contexts to derive an overall trust
level [24]. This solution is efficient but does not consider the
importance of different contexts. We thus introduce a context-
aware aggregator to automatically determine the significance
of each context in forming the overall trust level:

w̃i,j =

|C|∑
k=1

gk · w̃i,j,k, (8)

where |C| refers to the number of contexts. Gk =
[g1, · · · , gk, · · · , g|C|] is a learnable vector, in which each ele-
ment gk indicates the importance of a corresponding context,
and the sum of the elements equals one via the softmax
function. The output w̃i,j is the probabilistic prediction vector
of the overall trust from vi to vj . Similarly, we can compute the
overall trust level using w̄i,j = argmaxq(w̃i,j). The procedure
of CAT is presented in Algorithm 1.

To summarize, CAT is the first GNN-based trust prediction
model that not only predicts the overall trust but also provides
insights into the contexts in which trust relationships are
more likely to form, despite the absence of context-specific
trust labels. This is a key contribution that distinguishes
CAT from previous approaches [8], [40], [41], which consider
multiple contextual factors to guide embedding learning but
cannot explicitly predict context-aware trust. This capability is
significant for enabling flexible trust-based applications, such
as fraud detection and access control.

F. Model Training

To train CAT, we adopt the cross-entropy loss function to
measure the discrepancy between the predicted overall trust
and the ground truth. The loss function is formulated as:

L = −
∑

ei,j∈E(T)

log w̃i,j;wi,j
+ λ · ∥Θ∥22, (9)

where wi,j denotes the ground truth, Θ denotes all learnable
parameters of the model, and λ controls the L2 regularization
to mitigate overfitting. Additionally, we use the Adam opti-
mizer [47] for updating the model parameters.

V. EXPERIMENTAL EVALUATION

In this section, we first introduce experimental settings and
then answer the following research questions: RQ1: How does
CAT perform compared with the representative models regard-
ing overall trust and context-aware trust? RQ2: How does
each component of CAT contribute to its performance? RQ3:

Algorithm 1: CAT Procedure
Input: A dynamic graph G(T);
Output: Context-aware trust level w̄i,j,k , overall trust level w̄i,j ;

1 ▷ Embedding Initialization
2 Generate node embeddings hi, hj for all nodes, time embeddings ht

and edge attribute embeddings he for all interactions;
3 ▷ Embedding Learning
4 for vi ∈ V(T) do
5 for j ∈ Sampling(Nvi) do
6 Construct a message mi,j using Eq. 2;
7 Calculate the type embedding hτ using Eq. 3;
8 Calculate the type attention score ατ using Eq. 4;
9 Calculate the node attention score βi,j using Eq. 5;

10 end
11 Form vi’s embedding hi using Eq. 6;
12 end
13 ▷ Trust Relationship Prediction
14 for ei,j ∈ E(T) do
15 Calculate the context-aware trust vector w̃i,j,k using Eq. 7;
16 Calculate the overall trust vector w̃i,j by aggregating trust

across all contexts through Eq. 8;
17 Obtain the context-aware trust level w̄i,j,k via

argmaxq(w̃i,j,k);
18 Obtain the overall trust level w̄i,j via argmaxq(w̃i,j);
19 end

How do different hyperparameters affect the performance of
CAT? RQ4: Is CAT efficient and scalable compared with
the representative models? RQ5: Is CAT robust against data
poisoning attacks compared with the representative models?
We also visualize the learned attention scores and embeddings
to interpret CAT’s behavior (Appendix G and H).

A. Experimental Settings

Datasets. Our experiments are conducted on three real-
world datasets: Epinions [27], Ciao [27], and CiaoDVD [28],
all sourced from social networking-based consumer review
sites. These datasets are widely used benchmarks for trust
prediction and, to the best of our knowledge, are the only
publicly available ones that provide temporal information,
heterogeneous interactions, and item categories, making them
well-suited for our study. Specifically, they include: (i) user-
item ratings ranging from 1 to 5; (ii) overall trust relationships
between users, e.g., user A trusts user B regardless of specific
contexts; (iii) item categories, a type of contextual information;
and (iv) interaction timestamps. The statistics of the datasets
are given in Table II.

Data preparation. For Epinions, we chronologically split
the trust relationships into 70%-15%-15% and 80%-10%-10%
for training, validation, and testing, two common split ratios
used in dynamic graph analysis. For Ciao and CiaoDVD,
where the trust relationships lack timestamps, we randomly
split them into training, validation, and testing sets with
ratios of x, 1−x

2 , and 1−x
2 , respectively (x = 50%, 60%,

70%, 80%). In addition, we initialize the time embeddings
of trust relationships as zero vectors to ensure CAT works
correctly on these two datasets. Since only positive links (i.e.,
trusted relationships) exist in all datasets, an equal number of
unlinked user pairs is randomly selected to form a distrusted
set for training, validation, and testing. This method, known

8

TABLE II: Statistics of Epinions, Ciao, and CiaoDVD datasets.

Datasets # Users # Items # Ratings # Trust relationships # Contexts Timestamps of ratings Timestamps of trust relationships

Epinions 9163 12573 265189 311158 25 ✓ ✓
Ciao 2378 16861 36065 57544 6 ✓ ✗

CiaoDVD 19533 16121 72665 40133 17 ✓ ✗

as negative sampling, is commonly used in current research to
create a balanced dataset for effective model training [48].

Baseline Models. To conduct a comprehensive compari-
son, we select four types of GNN models as baselines that
vary in their support for dynamicity and heterogeneity. (i)
Homogeneous static model. Guardian [6] is the first GNN
model for trust prediction, which has demonstrated superiority
over three types of non-GNN-based approaches. GATrust [8]
utilizes attention mechanisms to incorporate multiple trust-
related factors. (ii) Homogeneous dynamic model. Medley [7]
and TrustGuard [2] are two state-of-the-art GNN-based trust
prediction models with dynamicity support. They employ
continuous-time and discrete-time methods, respectively, to
predict time-aware trust relationships. (iii) Heterogeneous
static model. HAN [31] introduces a hierarchical attention
mechanism to learn the importance of meta-path-based neigh-
bors and different meta-paths. KGTrust [10] is excluded from
our evaluation due to its closed-source nature and limited
improvements over Guardian. (iv) Heterogeneous dynamic
model. Research on GNN-based trust prediction has not yet
evolved to this model type, while CAT belongs to it. To
validate the effectiveness of CAT, we adapt HGT [35] to the
trust prediction task. HGT is a continuous-time model that
captures graph heterogeneity through meta-relations and learns
mutual attention across them. In addition to these GNN-based
models, we include Linear, a simple yet strong baseline that
uses only linear layers but has been shown to outperform
many complex GNNs [49]. For this baseline, node features
are initialized using Metapath2vec with node-type information,
given the absence of textual attributes in the datasets.

Evaluation Metrics. We evaluate the effectiveness of CAT
and baselines using Mean Reciprocal Rank (MRR), Average
Precision (AP), and Area Under the ROC Curve (AUC).
These metrics are widely used to evaluate GNN-based link
prediction [50], [51], [52], making them well-suited for our
task. We do not use accuracy and F1 score, as they are more
suitable for edge classification with explicit trust strength la-
bels, whereas link prediction focuses on ranking positive links
(trusted relationships) higher than negative ones (distrusted
relationships). All metrics range from 0 to 1, with higher
values indicating better performance. Detailed definitions are
given in Appendix B. We also include running time to assess
model efficiency and scalability.

Implementation Details. We implemented CAT 3 and
baseline models using PyTorch on a server equipped with an
Intel Xeon Platinum 8352V CPU and an RTX 4090 GPU.
For training, we set the maximum number of epochs to 50
and adopt an early stopping strategy: training stops if AP

3https://github.com/Jieerbobo/CAT

TABLE III: Performance comparison between CAT and different
baselines on the Epinions dataset.
In each column, the best result is highlighted in bold, while the second-best

result is underlined.

Models
70%-15%-15% 80%-10%-10%

MRR AP AUC MRR AP AUC

Task 1: Trust prediction for observed users

Linear 0.3866 0.8247 0.8873 0.3622 0.8305 0.8907
Guardian 0.3097 0.8237 0.9233 0.4979 0.9080 0.9444
GATrust 0.4380 0.8851 0.9431 0.5168 0.9135 0.9460
Medley 0.4762 0.8944 0.9440 0.5577 0.9336 0.9628

TrustGuard 0.4955 0.8919 0.9382 0.5390 0.9214 0.9542
HAN 0.4054 0.8731 0.9396 0.4100 0.8869 0.9415
HGT 0.5081 0.9151 0.9588 0.6168 0.9446 0.9675
CAT 0.6025 0.9383 0.9677 0.6778 0.9603 0.9773

Task 2: Trust prediction for unobserved users

Linear 0.2520 0.9067 0.8047 0.2675 0.9364 0.8297
Guardian 0.1497 0.8034 0.5902 0.1658 0.8573 0.6395
GATrust 0.1917 0.8137 0.6017 0.1770 0.8514 0.6140
Medley 0.1979 0.8884 0.7806 0.2203 0.9339 0.8381

TrustGuard 0.2571 0.8950 0.7312 0.2634 0.9320 0.7891
HAN 0.2707 0.9365 0.8773 0.2040 0.9387 0.8596
HGT 0.2693 0.9326 0.8603 0.2931 0.9504 0.8633
CAT 0.4082 0.9527 0.8933 0.3987 0.9594 0.8799

on the validation set does not improve for 10 consecutive
epochs. Regarding hyperparameters of CAT, we conducted a
grid search and set the learning rate to 0.001, dropout to 0,
L2 regularization coefficient to 0.0005, embedding dimension
to 64, batch size to 256, and trust propagation length to 1 by
default. Baseline models were similarly tuned to achieve their
best performance in trust prediction, except that their trust
propagation length was fixed to 2 (a common choice in the
literature [7]). Considering the scales of the datasets, we set
the number of sampled neighbors to 30 for Epinions and use
all neighbors for Ciao and CiaoDVD. We report the average
results obtained from 5 runs for each experiment.

B. Performance Comparison (RQ1)

In this subsection, we first evaluate the performance of
CAT and baselines on predicting overall trust across three
datasets, as these datasets only have labels for the overall trust.
Subsequently, we illustrate how CAT outputs context-aware
trust and discuss its practical significance.

Overall Trust. For the Epinions dataset, where timestamps
of trust relationships are available, we design two tasks to
assess model performance on dynamic graphs: trust prediction
for observed users (task 1) and unobserved users (task 2).
A key characteristic of dynamic graphs is that users may
exist (have interactions) or disappear (without interactions)
as time evolves [53]. To capture this, we define unobserved
users as those who only exist in the validation and testing

9

https://github.com/Jieerbobo/CAT

TABLE IV: Performance comparison between CAT and different baselines on the Ciao and CiaoDVD datasets.
In each column, the best result is highlighted in bold, while the second-best result is underlined.

Datasets Models
50%-25%-25% 60%-20%-20% 70%-15%-15% 80%-10%-10%

MRR AP AUC MRR AP AUC MRR AP AUC MRR AP AUC

Ciao

Linear 0.1978 0.7676 0.7688 0.2118 0.7836 0.7847 0.2026 0.7730 0.7736 0.2098 0.7817 0.7824
Guardian 0.2177 0.8126 0.8318 0.2397 0.8198 0.8312 0.2222 0.8123 0.8290 0.2223 0.8135 0.8311
GATrust 0.2475 0.8292 0.8432 0.2440 0.8285 0.8440 0.2438 0.8313 0.8473 0.2293 0.8236 0.8433
Medley 0.2092 0.8049 0.8257 0.2356 0.8270 0.8438 0.2573 0.8406 0.8526 0.2484 0.8358 0.8513

TrustGuard 0.2706 0.8327 0.8354 0.2593 0.8281 0.8332 0.2806 0.8416 0.8446 0.2760 0.8403 0.8436
HAN 0.2411 0.8195 0.8299 0.2529 0.8298 0.8393 0.2575 0.8313 0.8408 0.2643 0.8341 0.8413
HGT 0.2772 0.8470 0.8550 0.2775 0.8508 0.8600 0.2835 0.8559 0.8650 0.3008 0.8623 0.8693
CAT 0.3716 0.9097 0.9215 0.3881 0.9149 0.9257 0.4150 0.9234 0.9327 0.4042 0.9200 0.9298

CiaoDVD

Linear 0.4119 0.9168 0.9226 0.3995 0.9114 0.9176 0.4097 0.9156 0.9213 0.4157 0.9174 0.9231
Guardian 0.3571 0.9146 0.9358 0.3509 0.9131 0.9351 0.3748 0.9177 0.9366 0.3876 0.9180 0.9362
GATrust 0.3848 0.9199 0.9390 0.3796 0.9187 0.9379 0.3891 0.9193 0.9394 0.3660 0.9126 0.9331
Medley 0.4318 0.9320 0.9440 0.4605 0.9394 0.9492 0.4578 0.9392 0.9496 0.4742 0.9410 0.9497

TrustGuard 0.5820 0.9571 0.9601 0.5786 0.9577 0.9613 0.5872 0.9566 0.9586 0.5618 0.9539 0.9577
HAN 0.7258 0.9796 0.9816 0.7350 0.9804 0.9818 0.7138 0.9794 0.9819 0.7173 0.9801 0.9824
HGT 0.7606 0.9826 0.9826 0.7563 0.9827 0.9828 0.7481 0.9823 0.9829 0.7340 0.9814 0.9826
CAT 0.8225 0.9871 0.9861 0.8259 0.9872 0.9862 0.8413 0.9890 0.9883 0.8406 0.9890 0.9880

stages, with no interactions during training. As shown in
Table III, CAT consistently performs better than baseline
models across both tasks, regardless of data split ratios. The
Linear baseline, though surpassing some homogeneous static
models, lags far behind CAT and other baselines. These results
highlight the necessity of incorporating heterogeneity and
dynamicity into the model design. While HGT also considers
these two aspects, it lacks support for trust properties and
trust-related attributes, making it not fully compatible with
trust prediction. Its complex architecture also risks overfit-
ting, resulting in suboptimal performance. We also observe
a clear performance decay for all models in task 2 compared
with task 1, indicating that task 2 is more difficult. This is
reasonable as task 2 requires that the patterns learned by
the trust prediction models can be generalized to unobserved
users. Despite the challenging nature of task 2, CAT improves
MRR by 50.79% and 36.03% under the settings of 70%-
15%-15% and 80%-10%-10%, respectively, compared with the
best baseline. These findings showcase that CAT effectively
handles dynamic graphs and has the potential to address the
cold start issue [54], a long-standing issue in trust prediction.
Additionally, we find that HAN performs worse than Medley
and TrustGuard in task 1 but outperforms it in task 2. This
suggests that modeling heterogeneity can deal with sparse trust
relationships between unobserved users.

For the Ciao and CiaoDVD datasets, where timestamps of
trust relationships are missing, we evaluate the stability of CAT
and baselines by varying data split ratios. Table IV shows
that CAT consistently outperforms baselines across different
split ratios, with average MRR improvements of 38.67%
on Ciao and 11.08% on CiaoDVD over the best baseline.
Among the baselines, HGT performs best, highlighting the
significance of modeling both dynamicity and heterogeneity.
Notably, heterogeneous GNNs show superiority over homo-
geneous GNNs, suggesting that heterogeneous graphs offer
rich information for accurate trust prediction. Furthermore,
the Linear baseline shows substantial performance gaps com-

1 2 3 4 5 6

(a) Context importance

1 2 3 4 5 6
Context ID

Case 1

Case 2

0.4066 0.5072 0.4987 0.4600 0.5258 0.4316

0.4530 0.5375 0.5354 0.5064 0.5682 0.4996

(b) Predicted context-specific trust probabilities

0.155

0.165

0.175

0.45

0.50

0.55

Fig. 3: Results of context-aware trust prediction on the Ciao dataset.
Case 1 illustrates a user pair ⟨vi, vj⟩ with an overall distrusted
relationship, whereas case 2 depicts a user pair with an overall trusted
relationship.

pared with most GNN models. This may be attributed to its
overly simple architecture, which tends to underfit in dynamic
heterogeneous networks. In contrast, CAT effectively captures
diverse semantics through its advanced design, making it well-
suited for trust prediction in such complex networks.

Context-Aware Trust and a Real-World Use Case.
Among existing GNN-based trust prediction models, CAT is
unique in its ability to predict context-aware trust. Since other
models lack this capability and current datasets do not provide
context-specific trust labels, a direct quantitative comparison is
not feasible. Instead, we present case studies to show how CAT
outputs context-aware trust levels and their practical signifi-
cance. First, CAT can explain how different contexts influence
an overall trust level and provide a detailed trust probability
for each context. Fig. 3(a) shows the importance of each
context learned by the context-aware aggregator, revealing that
different contexts contribute differently to trust establishment.
Fig. 3(b) further illustrates that trust probabilities can vary
notably for the same user pair across contexts, which aligns
with the definition of context-awareness [1]. For instance,
in case 1, user vi generally distrusts vj , yet exhibits trust

10

TABLE V: Ablation studies on CAT.

CAT and variants
Epinions: Observed users Epinions: Unobserved users Ciao

MRR AP AUC MRR AP AUC MRR AP AUC

CAT 0.6025 0.9383 0.9677 0.4082 0.9527 0.8933 0.4150 0.9234 0.9327
w/o Time Embedding 0.5575 0.9240 0.9597 0.2441 0.9040 0.8045 0.3702 0.9050 0.9142
w/o Type Attention 0.5941 0.9368 0.9677 0.3033 0.9393 0.8776 0.4035 0.9216 0.9322
w/o Node Attention 0.5781 0.9328 0.9653 0.3975 0.9501 0.8851 0.4042 0.9194 0.9293
w/o Ca Meta-path 0.5763 0.9274 0.9600 0.2924 0.9328 0.8592 0.3959 0.9157 0.9256
w/o Ca Aggregator 0.5642 0.9285 0.9636 0.3859 0.9480 0.8817 0.3993 0.9196 0.9302

Epinions-O Epinions-U Ciao0.35

0.45

0.55

0.65

M
R

R

uiciu
uiu

iui
uiuiu

Fig. 4: Comparison of different
meta-paths.

in contexts 2 and 5 (trust probability > 0.5). Similarly, in
case 2, vi generally trusts vj and has high trust probabilities
in several contexts, but still distrusts vj in contexts 1 and 6.
These examples highlight the importance of modeling context-
awareness. However, baseline models that predict only overall
trust fail to capture such nuanced contextual distinctions.

Second, CAT’s context-awareness enables flexible trust-
based applications, such as fraud detection on social platforms,
where users may behave normally in some contexts but mali-
ciously in others (e.g., posting benign reviews for electronics
but fake reviews for clothing). CAT models the social network
as a contextual trust graph and predicts trust for each user
pair within each context. As shown in Fig. 3(b), when CAT’s
predicted trust probability for vj falls below a threshold in
certain contexts, this indicates potential fraudulent behavior in
those contexts. Such signals allow the platform to warn vi or
restrict vj’s activities there. The threshold can be customized
based on individual trust preferences, thus providing flexibility.

C. Ablation Study (RQ2)

In this subsection, we investigate the necessity and rational-
ity of each component in CAT using a fixed 70%-15%-15%
split ratio across Epinions and Ciao datasets, which have the
largest and smallest sizes, respectively.

To begin with, we construct five CAT variants by remov-
ing key components: (i) CAT w/o Time Embedding, which
ignores temporal information and involves changes in both
embedding and heterogeneous attention layers. (ii) CAT w/o
Type Attention, which assumes equal importance across node
types. (iii) CAT w/o Node Attention, which assumes equal
importance among nodes within the same type. (iv) CAT w/o
Ca Meta-path, where user and item embeddings are initialized
with random vectors instead of using the context-aware meta-
path. (v) CAT w/o Ca Aggregator, which replaces the context-
aware aggregator with a mean aggregator that averages trust
across all contexts to produce overall trust.

It can be concluded from Table V that: (i) CAT is consis-
tently better than its five variants, validating the importance
of integrating trust dynamicity, type and node importance
under graph heterogeneity, and context-awareness. This joint
consideration is a unique contribution of our approach, making
CAT effective for trust prediction and applicable to real-world
networks. (ii) Time embeddings and context-aware meta-paths
contribute the most to model performance, indicating that
basic trust properties are crucial for accurate trust prediction.
(iii) Neither “w/o Node Attention” nor “w/o Type Attention”

16 32 64 128 256
Embedding dimension

0.5
0.6
0.7
0.8
0.9
1.0

M
et

ri
c

va
lu

e

AUC
AP
MRR

(a) Epinions

64 128 256 512 1024
Batch size

0.5

0.6

0.7

0.8

0.9

1.0

M
et

ri
c

va
lu

e

AUC
AP
MRR

(b) Epinions

10 20 30 40 all
Sampled neighbors

0.5

0.6

0.7

0.8

0.9

1.0

M
et

ri
c

va
lu

e

AUC
AP
MRR

(c) Observed users

16 32 64 128 256
Embedding dimension

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
et

ri
c

va
lu

e

AUC
AP
MRR

(d) Ciao

64 128 256 512 1024
Batch size

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
et

ri
c

va
lu

e

AUC
AP
MRR

(e) Ciao

10 20 30 40 all
Sampled neighbors

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
et

ri
c

va
lu

e

AUC
AP
MRR

(f) Unobserved users

Fig. 5: Effects of embedding dimension, batch size, and number of
sampled neighbors on model performance.

MRR Time

1 2 3
Trust propagation length

0
20
40
60
80

100

Ti
m

e
(s

/e
po

ch
)

0.1

0.3

0.5

0.7

M
R

R
(a) Epinions

1 2 3
Trust propagation length

0

5

10

15

Ti
m

e
(s

/e
po

ch
)

0.40

0.41

0.42

M
R

R

(b) Ciao

Fig. 6: Effect of trust propagation length on model performance.

is competitive to CAT, highlighting the significance of node
distinctions and semantic information in forming effective em-
beddings. (iv) Removing the context-aware aggregator reduces
performance, confirming that different contexts influence trust
differently. Effectively modeling such contextual differences
can improve overall trust prediction.

We further justify the introduction of the new context-aware
meta-path uiciu in Fig. 4. The results show that uiciu has
superiority over other meta-paths thanks to its incorporation
of contextual information. Additionally, uiuiu, which captures
high-hop trust information, is less effective than uiu, suggest-
ing that irrelevant information from distant connections may
undermine trust propagation and aggregation.

D. Hyperparameter Analysis (RQ3)

In this subsection, we analyze the impact of embedding
dimension, batch size, number of sampled neighbors, and trust
propagation length on CAT’s performance using a fixed 70%-
15%-15% split ratio across Epinions and Ciao.

Embedding Dimension. As shown in Fig. 5(a) and
Fig. 5(d), CAT’s performance improves as the embedding

11

64837 70593 76347 82101 87855
Graph size (| |)

0
2
4
6
8

10
12

Ti
m

e
(s

/e
po

ch
)

CAT
HGT

(a) Ciao

92732 96746 100760 104772 108786
Graph size (| |)

0
2
4
6
8

10
12

Ti
m

e
(s

/e
po

ch
)

CAT
HGT

(b) CiaoDVD

248349 286015 328449 382756 443250
Graph size (| |)

0

50

100

150

200

Ti
m

e
(s

/e
po

ch
) CAT

HGT

(c) Epinions

Fig. 7: Running time of CAT and HGT on various graph sizes.

dimension increases. However, excessively increasing the em-
bedding dimension results in a performance decline. This
outcome is as expected since a small embedding dimension
limits the model’s learning ability, while a large dimension
increases the risk of overfitting.

Batch Size. A real-world network is often extremely large,
making it impractical to train a GNN-based trust prediction
model by directly inputting the entire network. A solution is
to divide the large network into subgraphs and process several
subgraphs at a time. The batch size, referring to the number
of subgraphs processed together, may impact the model’s
performance. A small batch size results in a partial view
of node behaviors, leading to reduced prediction accuracy.
Instead, a large batch size enhances the model performance
by covering more information. Fig. 5(b) and Fig. 5(e) show
that CAT is not sensitive to batch size.

Number of Sampled Neighbors. The number of sampled
neighbors determines subgraph size and affects scalability. We
study its impact on model performance using the Epinions
dataset, since the smaller Ciao and CiaoDVD datasets do not
incur significant computational costs when all neighbors are
used. As shown in Fig. 5(c) and Fig. 5(f), model performance
initially improves with more sampled neighbors but eventually
decreases. This is reasonable because sampling too few neigh-
bors leads to information loss, whereas sampling too many
neighbors may introduce noise that degrades performance.

Trust Propagation Length. Trust propagation length refers
to the number of neighbor hops used to form a node’s
embedding. As we can see in Fig. 6(a) and Fig. 6(b), CAT’s
performance significantly decreases while running time in-
creases with longer propagation lengths, differing from prior
findings [2], [9] where 2 or 3 hops are preferred. The reasons
are two-fold: (i) From a data perspective, we focus on a het-
erogeneous graph while those studies use homogeneous ones.
Although the heterogeneous graph provides rich semantics,
it also introduces noise. Compared with one-hop neighbors,
high-hop neighbors are less crucial and may mislead model
training [43]. (ii) From a model perspective, the embeddings
initialized by Metapath2vec already cover high-hop informa-
tion. Thus, there is no need to stack multiple heterogeneous
attention layers for trust propagation. Despite using one-hop
neighbors, CAT still has high accuracy (see Section V-B).

E. Scalability Analysis (RQ4)

In this subsection, we evaluate CAT’s scalability by compar-
ing its running time (i.e., average training time per epoch) with

that of HGT, the best baseline that also considers dynamicity
and heterogeneity, across varying graph sizes. A detailed time
complexity analysis of CAT is provided in Appendix A.

Fig. 7 illustrates that as the graph size increases, the running
time of both models increases for all datasets. Notably, CAT
achieves average reductions in running time of 44.39% and
40.79% on the Ciao and CiaoDVD datasets, respectively,
compared to HGT. Both models run faster on CiaoDVD
than on Ciao because Ciao contains more trust relationships,
which are the target links for prediction. On the Epinions
dataset, CAT exhibits a more pronounced efficiency advantage,
requiring about 48s per epoch for training on a graph with
443K edges, compared to 194s for HGT, yielding an average
reduction of 73.97% across different graph sizes. This high
efficiency stems from CAT’s one-hop trust propagation and
recent-time neighbor sampling strategies. The former restricts
trust propagation to immediate neighbors, reducing computa-
tion while maintaining high accuracy (see Fig. 6). The latter
focuses on limited yet crucial interactions. For comparison,
considering interactions with all neighbors makes CAT nearly
three times slower. Together, these strategies greatly reduce the
number of messages to be propagated and improve scalability,
making CAT suitable for practical deployment.

F. Robustness Analysis (RQ5)

In this subsection, we evaluate the robustness of CAT and
two state-of-the-art GNN-based trust prediction models (i.e.,
Medley [7] and TrustGuard [2]) against data poisoning attacks.
Specifically, we follow TrustGuard [2] to construct trust-
oriented attacks and T-Spear [29], the only recent data poison-
ing attack targeting continuous-time GNNs, to perform GNN-
oriented attacks. Experiments are conducted on the Epinions
dataset, which contains timestamped trust relationships and
is thus compatible with T-Spear. Due to space constraints,
we report only MRR results. Please refer to Appendix C for
comprehensive results and detailed attack settings.

As shown in Table VI, all models exhibit performance de-
clines as the perturbation rate increases, but CAT outperforms
the baselines under both attacks. For example, under trust-
oriented attacks, CAT experiences a maximum performance
drop of 0.95% in task ①, compared to 14.34% for Medley and
8.62% for TrustGuard. Similarly, in task ②, CAT’s maximum
performance drop is 4.63%, smaller than Medley’s 13.34% and
TrustGuard’s 12.49%. We observe that CAT is more robust
against trust-oriented attacks than GNN-oriented ones, while
Medley and TrustGuard show the opposite trend. This may be

12

TABLE VI: Robustness comparison under trust-oriented and GNN-oriented attacks (MRR results).
①/②: trust predictions for observed/unobserved users. p: perturbation rate

(ratio of added adversarial links to original links). MDR: Maximum Drop Rate (lower is better).

Tasks Models Clean
Trust-oriented Attacks GNN-oriented Attacks

p=5% p=10% p=15% p=20% MDR ↓ p=5% p=10% p=15% p=20% MDR ↓

①
Medley 0.4762 0.4552 0.4367 0.4155 0.4079 14.34% 0.4650 0.4576 0.4477 0.4393 7.75%

TrustGuard 0.4955 0.4831 0.4820 0.4565 0.4528 8.62% 0.4813 0.4711 0.4664 0.4721 5.87%
CAT 0.6025 0.5968 0.6046 0.6144 0.6070 0.95% 0.5999 0.5869 0.5842 0.5821 3.39%

②
Medley 0.1979 0.1894 0.1791 0.1756 0.1715 13.34% 0.1909 0.1890 0.1846 0.1737 12.23%

TrustGuard 0.2571 0.2465 0.2431 0.2253 0.2250 12.49% 0.2477 0.2296 0.2348 0.2289 10.97%
CAT 0.4082 0.3988 0.3924 0.3911 0.3893 4.63% 0.4022 0.4029 0.3918 0.3858 5.49%

because the surrogate model used in T-Spear is closer to CAT’s
architecture than those of the other two models. Additionally,
we note an interesting phenomenon: under task ① of trust-
oriented attacks, CAT’s performance initially declines but later
improves, even surpassing the clean setting. We analyze this
result at a 15% perturbation rate and find that this attack may
act as data augmentation for two reasons: (i) It substantially
reduces the number of connected components (from 100 to
2) with a small change in the clustering coefficient (0.133 vs.
0.131). This enhances graph connectivity and thus facilitates
trust propagation. (ii) Similarity distribution analysis shows
a 25.68% overlap between adversarial and original links,
implying that some adversarial links are structurally benign.

To summarize, CAT demonstrates superior robustness over
existing GNN-based trust prediction models, owing to its
strong semantic understanding. By learning from a heteroge-
neous graph and incorporating advanced designs, CAT gains a
comprehensive view of intrinsic interactions and node seman-
tics, thereby increasing the difficulty for attackers to succeed.
For instance, T-Spear’s surrogate model overlooks such se-
mantic diversity. To validate this viewpoint, we construct two
variants: (i) “Context”, which disables heterogeneity modeling,
and (ii) “Hetero.”, which weakens contextual understanding.
We also develop a defense mechanism for comparison because
of the limited work in this area. Inspired by previous work [2],
[55], we employ cosine similarity to filter out suspicious
links. Fig. 8 shows the MRR results under GNN-oriented
attacks at the perturbation rate of 10%. The results indicate
that both heterogeneity and context-awareness are critical to
CAT’s robustness, with the ability to handle heterogeneity
being particularly significant. While cosine similarity offers
slight gains, it remains inferior to CAT.

VI. DISCUSSION

Generality to Different Networks. While we only demon-
strated CAT’s effectiveness in social networks, it is also
applicable to other real-world networks that can be abstracted
into user, item, and item category (i.e., context). Examples
include financial and employment networks. The reasons are
as follows: (i) Trust issues are prevalent in these networks,
making trust prediction critical. For instance, in financial
networks, fraudulent activities are a serious concern. CAT
can analyze complex node interactions to uncover latent trust
relationships and mitigate security threats. (ii) These networks

CAT
Context

Hetero.

Context + cosine

Hetero. + cosine
0.3

0.4

0.5

0.6

M
R

R

0.5869

0.5387
0.5591 0.5535

0.5814

0.4029

0.3212

0.3946

0.3306

0.3880

Observed users
Unobserved users

Fig. 8: Detailed evaluation and comparison of robustness against
GNN-oriented attacks with 10% perturbation.

are highly dynamic, with interactions evolving over time. CAT
is effective at capturing such dynamics to predict time-aware
trust relationships. (iii) These networks are heterogeneous
in nature, with diverse node and edge types. In financial
networks, user can be investors or financial advisors, item
can be stocks or cryptocurrencies, and context denotes the
type of financial product. CAT can effectively handle such
heterogeneity and predict the trust an investor has in an advisor
for recommending a specific product type. Furthermore, the
proposed context-aware meta-path remains applicable to these
networks, reducing the need for additional human effort.

Other Types of Adversarial Attacks. We evaluated CAT’s
robustness against two data poisoning attacks in Section V-F.
Here, we further discuss its vulnerabilities to adaptive attacks
and evasion attacks. First, consider an adaptive attacker who
is aware that CAT derives its robustness from contextual
differentiation and aims to blur contextual boundaries, making
the model misinterpret distinct contexts as similar. Specifically,
this adaptive data poisoning attack allows colluding attackers
to manipulate interactions across contexts, e.g., by injecting
malicious user-item interactions with timestamps crafted to
mimic normal behavior. We evaluate CAT against this strong
attack in Appendix D. The results show that while this attack is
more disruptive than trust-oriented and GNN-oriented attacks,
CAT remains robust, particularly when predicting trust for
observed users. This robustness stems from its context-aware
aggregation mechanism, which adaptively weights contexts to
mitigate noise and preserve contextual distinctions.

Second, evasion attacks can cause a model to misclassify a
pair’s trust relationship. Edge filtering [56] based on Jaccard or
cosine similarities, as well as low-rank based defenses [57],
[58], can be employed to filter out suspicious links before
they are fed into CAT for prediction. Additionally, adversarial
training [59] improves model robustness by augmenting the

13

training data with adversarial examples. In summary, these
defenses can be easily integrated into CAT to further enhance
its resilience against various adversarial attacks.

Diverse Trust Prediction Tasks. Beyond predicting trust
relationships between trustor-trustee pairs, which corresponds
to edge classification or link prediction in the field of GNNs,
CAT also supports node-level trust prediction (i.e., node clas-
sification) and community-level trust prediction (i.e., graph
classification). For node-level trust prediction, CAT’s predic-
tion layer takes a node’s embedding along with a context
embedding as input and outputs the node’s trust within the
given context. For community-level trust prediction, it takes a
group of nodes’ embeddings along with a context embedding
as input and outputs the group’s trust within that context. This
support for diverse tasks makes CAT flexible in practice.

Limitations and Future Work. While CAT extracts rich
semantics through Metapath2vec and a dual attention mech-
anism, it currently overlooks textual attributes, such as user
reviews and profiles, which may also exist in real-world
networks. These texts can reveal user preferences and char-
acteristics that are closely related to trust establishment. We
did not include this information primarily due to scalability
concerns and the limited availability of high-quality textual
data in existing datasets. Nevertheless, CAT’s modular design
allows easy integration of plug-in text encoders, including
lightweight pre-trained models and LLM-based feature ex-
tractors, enabling future incorporation of textual information.
For example, recent years have witnessed a surge in apply-
ing LLMs across various domains owing to their extensive
knowledge bases and strong reasoning capabilities [60], [61].
By prompting LLMs to extract crucial information from the
texts, we can obtain informative embeddings. This approach
offers two advantages: (i) It enables CAT to comprehensively
model real-world networks, improving its practicality. (ii)
LLM-enhanced node embeddings offer superior robustness
against both poisoning and evasion attacks [62], [63], further
enhancing CAT’s robustness.

VII. CONCLUSION

In this paper, we proposed CAT, a GNN-based trust pre-
diction model that captures trust dynamicity, represents real-
world heterogeneity, supports context-awareness, and is robust
against data poisoning attacks. To incorporate contextual and
temporal information, we introduced a context-aware meta-
path and utilized a time encoding function, respectively. A
dual attention mechanism identifies the importance of diverse
interactions, while recent-time neighbor sampling and one-hop
trust propagation strategies enhance scalability. By generat-
ing context embeddings and linking context-aware trust with
overall trust, CAT can predict both types of trust. Extensive
experiments on three real-world datasets demonstrate CAT’s
effectiveness, scalability, and robustness.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China under Grant U23A20300; in

part by the Key Research Project of Shaanxi Natural Science
Foundation under Grant 2023-JC-ZD-35; in part by the Con-
cept Verification Funding of Hangzhou Institute of Technology
of Xidian University under Grant GNYZ2024XX007; in part
by the 111 Center under Grant B16037; and in part by
the Fundamental Research Funds for the Central Universities
under Grant YJSJ25011.

REFERENCES

[1] W. Sherchan, S. Nepal, and C. Paris, “A survey of trust in social
networks,” ACM Computing Surveys, vol. 45, no. 4, pp. 1–33, 2013.

[2] J. Wang, Z. Yan, J. Lan, E. Bertino, and W. Pedrycz, “Trustguard: Gnn-
based robust and explainable trust evaluation with dynamicity support,”
IEEE Transactions on Dependable and Secure Computing, pp. 1–18,
2024.

[3] B. Wang, J. Jia, and N. Z. Gong, “Graph-based security and privacy
analytics via collective classification with joint weight learning and prop-
agation,” in Proceedings of the 26th Annual Network and Distributed
System Security Symposium (NDSS), 2019.

[4] B. Wang, L. Zhang, and N. Z. Gong, “Sybilscar: Sybil detection in online
social networks via local rule based propagation,” in Proceedings of the
IEEE Conference on Computer Communications, 2017, pp. 1–9.

[5] Y. Liu, W. Zhou, and H. Chen, “Efficiently promoting product online
outcome: An iterative rating attack utilizing product and market prop-
erty,” IEEE Transactions on Information Forensics and Security, vol. 12,
no. 6, pp. 1444–1457, 2017.

[6] W. Lin, Z. Gao, and B. Li, “Guardian: Evaluating trust in online social
networks with graph convolutional networks,” in Proceedings of the
IEEE Conference on Computer Communications, 2020, pp. 914–923.

[7] W. Lin and B. Li, “Medley: Predicting social trust in time-varying online
social networks,” in Proceedings of the IEEE Conference on Computer
Communications, 2021, pp. 1–10.

[8] N. Jiang, W. Jie, J. Li, X. Liu, and D. Jin, “Gatrust: A multi-aspect
graph attention network model for trust assessment in osns,” IEEE
Transactions on Knowledge and Data Engineering, vol. 35, no. 6, pp.
5865–5878, 2023.

[9] C. Huo, D. He, C. Liang, D. Jin, T. Qiu, and L. Wu, “Trustgnn:
Graph neural network-based trust evaluation via learnable propagative
and composable nature,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–13, 2023.

[10] Z. Yu, D. Jin, C. Huo, Z. Wang, X. Liu, H. Qi, J. Wu, and L. Wu,
“Kgtrust: Evaluating trustworthiness of siot via knowledge enhanced
graph neural networks,” in Proceedings of the ACM Web Conference,
2023, pp. 727–736.

[11] J. Wen, N. Jiang, J. Li, X. Liu, H. Chen, Y. Ren, Z. Yuan, and Z. Tu,
“Dtrust: Toward dynamic trust levels assessment in time-varying online
social networks,” in Proceedings of the IEEE Conference on Computer
Communications, 2023, pp. 1–10.

[12] F. Yang, J. Xu, C. Xiong, Z. Li, and K. Zhang, “Prographer: An
anomaly detection system based on provenance graph embedding,”
in Proceedings of the 32nd USENIX Security Symposium (USENIX
Security), 2023, pp. 4355–4372.

[13] M. U. Rehman, H. Ahmadi, and W. U. Hassan, “Flash: A comprehensive
approach to intrusion detection via provenance graph representation
learning,” in Proceedings of the IEEE Symposium on Security and
Privacy (SP), 2024, pp. 1–19.

[14] K. Hsieh, M. Wong, S. Segarra, S. K. Mani, T. Eberl, A. Panasyuk,
R. Netravali, R. Chandra, and S. Kandula, “{NetVigil}: Robust and
{Low-Cost} anomaly detection for {East-West} data center security,”
in Proceedings of the 21st USENIX Symposium on Networked Systems
Design and Implementation, 2024, pp. 1771–1789.

[15] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural
networks for social recommendation,” in Proceedings of the World Wide
Web Conference, 2019, pp. 417–426.

[16] L. Yang, Z. Liu, Y. Dou, J. Ma, and P. S. Yu, “Consisrec: Enhancing
gnn for social recommendation via consistent neighbor aggregation,”
in Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2021, pp. 2141–
2145.

14

[17] Y.-H. Chen, S.-C. Lin, S.-C. Huang, C.-L. Lei, and C.-Y. Huang,
“Guided malware sample analysis based on graph neural networks,”
IEEE Transactions on Information Forensics and Security, vol. 18, pp.
4128–4143, 2023.

[18] J. Yan, G. Yan, and D. Jin, “Classifying malware represented as
control flow graphs using deep graph convolutional neural network,”
in Proceedings of the 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, 2019, pp. 52–63.

[19] I.-R. Chen, F. Bao, and J. Guo, “Trust-based service management for
social internet of things systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 13, no. 6, pp. 684–696, 2016.

[20] G. Liu, Q. Yang, H. Wang, and A. X. Liu, “Trust assessment in
online social networks,” IEEE Transactions on Dependable and Secure
Computing, vol. 18, no. 2, pp. 994–1007, 2019.

[21] G. Liu, C. Li, and Q. Yang, “Neuralwalk: Trust assessment in online
social networks with neural networks,” in Proceedings of the IEEE
Conference on Computer Communications, 2019, pp. 1999–2007.

[22] J. Khoury, D. Klisura, H. Zanddizari, G. D. L. T. Parra, P. Najafirad,
and E. Bou-Harb, “Jbeil: Temporal graph-based inductive learning to
infer lateral movement in evolving enterprise networks,” in Proceedings
of the IEEE Symposium on Security and Privacy (SP), 2024, pp. 1–17.

[23] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Unicorn:
Runtime provenance-based detector for advanced persistent threats,” in
Proceedings of the 27th Annual Network and Distributed System Security
Symposium (NDSS), 2020.

[24] Q. Wang, W. Zhao, J. Yang, J. Wu, S. Xue, Q. Xing, and P. S. Yu,
“C-deeptrust: A context-aware deep trust prediction model in online
social networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 34, no. 6, pp. 2767–2780, 2023.

[25] J. Tang, H. Gao, and H. Liu, “mtrust: Discerning multi-faceted trust
in a connected world,” in Proceedings of the fifth ACM International
Conference on Web Search and Data Mining, 2012, pp. 93–102.

[26] T. Cui, G. Gou, G. Xiong, Z. Li, M. Cui, and C. Liu, “Siamhan:
Ipv6 address correlation attacks on tls encrypted traffic via siamese
heterogeneous graph attention network,” in Proceedings of the 30th
USENIX Security Symposium (USENIX Security), 2021, pp. 4329–4346.

[27] J. Tang and H. Liu, Trust in social media. Morgan & Claypool
Publishers, 2015.

[28] G. Guo, J. Zhang, D. Thalmann, and N. Yorke-Smith, “Etaf: An extended
trust antecedents framework for trust prediction,” in Proceedings of the
International Conference on Advances in Social Networks Analysis and
Mining, 2014, pp. 540–547.

[29] D. Lee, J. Lee, and K. Shin, “Spear and shield: Adversarial attacks and
defense methods for model-based link prediction on continuous-time
dynamic graphs,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2024, pp. 13 374–13 382.

[30] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-
stein, “Temporal graph networks for deep learning on dynamic graphs,”
in ICML 2020 Workshop on Graph Representation Learning, 2020.

[31] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in Proceedings of the World
Wide Web Conference, 2019, pp. 2022–2032.

[32] Z. Zhang, Z. Zhang, X. Wang, Y. Qin, Z. Qin, and W. Zhu, “Dynamic
heterogeneous graph attention neural architecture search,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, 2023, pp. 11 307–
11 315.

[33] H. Xue, L. Yang, W. Jiang, Y. Wei, Y. Hu, and Y. Lin, “Modeling
dynamic heterogeneous network for link prediction using hierarchical
attention with temporal rnn,” in Proceedings of Machine Learning and
Knowledge Discovery in Databases: European Conference, 2021, pp.
282–298.

[34] Y. Fan, M. Ju, C. Zhang, and Y. Ye, “Heterogeneous temporal graph
neural network,” in Proceedings of the 2022 SIAM International Con-
ference on Data Mining, 2022, pp. 657–665.

[35] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-
former,” in Proceedings of the Web Conference, 2020, pp. 2704–2710.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[37] J. Liu, L. Song, G. Wang, and X. Shang, “Meta-hgt: Metapath-aware
hypergraph transformer for heterogeneous information network embed-
ding,” Neural Networks, vol. 157, pp. 65–76, 2023.

[38] Y. Dong, N. V. Chawla, and A. Swami, “Metapath2vec: Scalable
representation learning for heterogeneous networks,” in Proceedings

of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017, pp. 135–144.

[39] I. J. King and H. H. Huang, “Euler: Detecting network lateral movement
via scalable temporal graph link prediction,” in Proceedings of the 29th
Annual Network and Distributed System Security Symposium (NDSS),
2022.

[40] S. M. Ghafari, A. Joshi, A. Beheshti, C. Paris, S. Yakhchi, and M. Orgun,
“Dcat: A deep context-aware trust prediction approach for online social
networks,” in Proceedings of the 17th International Conference on
Advances in Mobile Computing & Multimedia, 2019, pp. 20–27.

[41] P. Li, H. Yu, and X. Luo, “Context-aware graph neural network for
graph-based fraud detection with extremely limited labels,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 39, no. 11,
2025, pp. 12 112–12 120.

[42] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Inductive
representation learning on temporal graphs,” in Proceedings of the 8th
International Conference on Learning Representations, 2020.

[43] W. Cong, S. Zhang, J. Kang, B. Yuan, H. Wu, X. Zhou, H. Tong, and
M. Mahdavi, “Do we really need complicated model architectures for
temporal networks?” in Proceedings of the 11th International Confer-
ence on Learning Representations, 2023.

[44] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[45] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and
relieving the over-smoothing problem for graph neural networks from the
topological view,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2020, pp. 3438–3445.

[46] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation
systems for online service provision,” Decision Support Systems, vol. 43,
no. 2, pp. 618–644, 2007.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the 3rd International Conference on Learning
Representations, 2015.

[48] Z. Jia, Y. Xiong, Y. Nan, Y. Zhang, J. Zhao, and M. Wen, “Magic:
Detecting advanced persistent threats via masked graph representation
learning,” in Proceedings of the 33rd USENIX Security Symposium
(USENIX Security), 2024, pp. 1–18.

[49] T. Bilot, B. Jiang, Z. Li, N. El Madhoun, K. Al Agha, A. Zouaoui, and
T. Pasquier, “Sometimes simpler is better: A comprehensive analysis
of {State-of-the-Art}{Provenance-Based} intrusion detection systems,”
in 34th USENIX Security Symposium (USENIX Security 25), 2025, pp.
7193–7212.

[50] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

[51] M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Advances in Neural Information Processing Systems, vol. 31,
2018.

[52] J. Li, H. Shomer, H. Mao, S. Zeng, Y. Ma, N. Shah, J. Tang, and D. Yin,
“Evaluating graph neural networks for link prediction: Current pitfalls
and new benchmarking,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[53] J. Lou, X. Yuan, R. Zhang, X. Yuan, N. Gong, and N.-F. Tzeng, “Grid:
Protecting training graph from link stealing attacks on gnn models,”
in Proceedings of the IEEE Symposium on Security and Privacy (SP),
2025, pp. 1–19.

[54] J. Wang, X. Jing, Z. Yan, Y. Fu, W. Pedrycz, and L. T. Yang, “A
survey on trust evaluation based on machine learning,” ACM Computing
Surveys, vol. 53, no. 5, pp. 1–36, 2020.

[55] X. Zhang and M. Zitnik, “Gnnguard: Defending graph neural networks
against adversarial attacks,” Advances in Neural Information Processing
Systems, vol. 33, pp. 9263–9275, 2020.

[56] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu,
“Adversarial examples for graph data: Deep insights into attack and
defense,” in Proceedings of the 28th International Joint Conference on
Artificial Intelligence, 2019, pp. 4816–4823.

[57] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalexakis,
“All you need is low (rank) defending against adversarial attacks on
graphs,” in Proceedings of the 13th International Conference on Web
Search and Data Mining, 2020, pp. 169–177.

[58] J. Mu, B. Wang, Q. Li, K. Sun, M. Xu, and Z. Liu, “A hard label black-
box adversarial attack against graph neural networks,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2021, pp. 108–125.

15

[59] F. Tramer and D. Boneh, “Adversarial training and robustness for
multiple perturbations,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[60] P. Liu, J. Liu, L. Fu, K. Lu, Y. Xia, X. Zhang, W. Chen, H. Weng,
S. Ji, and W. Wang, “Exploring chatgpt’s capabilities on vulnerability
management,” in Proceedings of the 33rd USENIX Security Symposium
(USENIX Security), 2024, pp. 811–828.

[61] X. He, X. Bresson, T. Laurent, A. Perold, Y. LeCun, and B. Hooi, “Har-
nessing explanations: Llm-to-lm interpreter for enhanced text-attributed
graph representation learning,” in Proceedings of the 12th International
Conference on Learning Representations, 2024.

[62] K. Guo, Z. Liu, Z. Chen, H. Wen, W. Jin, J. Tang, and Y. Chang,
“Learning on graphs with large language models (llms): A deep dive
into model robustness,” arXiv preprint arXiv:2407.12068, 2024.

[63] Z. Zhang, X. Wang, H. Zhou, Y. Yu, M. Zhang, C. Yang, and C. Shi,
“Can large language models improve the adversarial robustness of graph
neural networks?” arXiv preprint arXiv:2408.08685, 2024.

[64] W. Xia, M. Lai, C. Shan, Y. Zhang, X. Dai, X. Li, and D. Li, “Explaining
temporal graph models through an explorer-navigator framework,” in
Proceedings of the 11th International Conference on Learning Repre-
sentations, 2023.

[65] D. Han, Z. Wang, W. Chen, K. Wang, R. Yu, S. Wang, H. Zhang,
Z. Wang, M. Jin, J. Yang, X. Shi, and X. Yin, “Anomaly detection in the
open world: Normality shift detection, explanation, and adaptation,” in
Proceedings of the 30th Annual Network and Distributed System Security
Symposium (NDSS), 2023.

[66] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of Machine Learning Research, vol. 9, no. 11, 2008.

APPENDIX A
TIME COMPLEXITY OF CAT

We analyze the time complexity of the heterogeneous atten-
tion layer, as it is the dominant component in CAT. Let |V| be
the number of nodes, |E| the number of edges, |T | the number
of node types, and d the embedding dimension. At first, the
time complexities for calculating type attention and node at-
tention are O(|T |d+|E|d) and O(|E|d), respectively. Then, the
message aggregation for forming node embeddings, as shown
in Eq. 6, costs about O(|V|d2 + |E|d). Therefore, the overall
time complexity of CAT is about O(|V|d2+|E|d+|T |d). Since
we adopt a neighbor sampling strategy, the actual used edges
(i.e., interactions) would be smaller than |E|. Additionally,
the one-hop trust propagation strategy makes the complexity
independent of the number of GNN layers L. Given that
|T | ≪ |E|, the total time complexity of CAT is correlated
to |V|, |E|, and d.

APPENDIX B
DETAILS OF EVALUATION METRICS

For clarity, we define a positive link as a trusted relationship
between a trustor-trustee pair and a negative link as a distrusted
relationship in the following metrics:

• MRR: MRR is the mean of the reciprocal rank over all
positive links.

MRR =
1

N

N∑
i=1

1

ranki
,

where N is the total number of positive links, and ranki
is the rank of the i-th positive link according to its
prediction score. To calculate MRR, we randomly sample
100 negative links for each positive link and rank the
positive link among these negatives.

• AP: AP summarizes a precision-recall curve that shows
the trade-off between precision and recall for different
classification thresholds.

AP =
∑
n

(Rn −Rn−1)Pn,

where Pn and Rn are the precision and recall at the n-th
classification threshold.

• AUC: AUC measures the likelihood that a positive link
is ranked higher than a random negative link.

AUC =

∑
i∈S1

∑
j∈S2 1(ranki < rankj)

|S1| · |S2|
,

where S1 and S2 are sets of positive and negative links,
respectively. The indicator function 1 outputs 1 if ranki <
rankj , and 0 otherwise.

APPENDIX C
ROBUSTNESS EVALUATION ON TRUST-ORIENTED AND

GNN-ORIENTED ATTACKS

Attack Settings. For GNN-oriented data poisoning attacks,
to the best of our knowledge, T-Spear [29] is the only recent
method targeting continuous-time GNNs. It formulates the at-
tack by considering four constraints to achieve unnoticeability,
which has proven effective in several popular continuous-time
GNNs. Following the setting of T-Spear, we inject different
numbers of adversarial links (i.e., malicious trust relationships)
into the training and validation stages by adjusting perturbation
rates. After training with poisoned data, we calculate metrics
based on the ground truth trust relationships in the test set.

For trust-oriented data poisoning attacks, we follow the
setting of TrustGuard [2] to inject different proportions of
malicious trust relationships. Since TrustGuard operates as
a discrete-time model that does not provide timestamps for
injected links, we generate timestamps by sampling from the
temporal distribution of the original links. This approach, con-
sistent with T-Spear [29], helps maintain attack stealthiness.

Results. Fig. VII presents the AP and AUC results of CAT
and baseline models under two types of attacks. CAT exhibits
the highest robustness, with a maximum performance drop
of only 2.07%. In contrast, Medley shows limited robustness
due to its lack of defense mechanisms, especially in task ②.
Notably, all models experience minor performance drops in
most cases. The reason is that both attacks simulate realistic
threat scenarios, where attackers introduce some constraints
to make their attacks stealthy and unnoticeable, thus limiting
their attack strength.

APPENDIX D
ROBUSTNESS EVALUATION ON ADAPTIVE ATTACKS

Attack Settings. The adaptive attack, referred to as the
cross-context bridging attack, aims to blur the boundaries
between two distinct contexts by injecting malicious user-item
interactions, causing CAT to confuse them. The attack setting
is as follows: (i) Context selection: We randomly select two
distinct item categories from the Epinions dataset as contexts

16

TABLE VII: Robustness comparison under trust-oriented and GNN-oriented attacks (AP and AUC results).
①/②: trust predictions for observed/unobserved users. p: perturbation rate

(ratio of added adversarial links to original links). MDR: Maximum Drop Rate (lower is better).

Metrics Tasks Models Clean
Trust-oriented Attacks GNN-oriented Attacks

p=5% p=10% p=15% p=20% MDR ↓ p=5% p=10% p=15% p=20% MDR ↓

AP

①
Medley 0.8944 0.8862 0.8855 0.8728 0.8613 3.70% 0.8923 0.8838 0.8827 0.8810 1.50%

TrustGuard 0.8919 0.8860 0.8855 0.8724 0.8685 2.62% 0.8853 0.8816 0.8826 0.8814 1.18%
CAT 0.9383 0.9394 0.9391 0.9415 0.9401 -0.09% 0.9399 0.9350 0.9326 0.9335 0.61%

②
Medley 0.8884 0.8714 0.8473 0.8430 0.8328 6.26% 0.8799 0.8758 0.8780 0.8652 2.61%

TrustGuard 0.8950 0.8918 0.8918 0.8824 0.8802 1.65% 0.8901 0.8881 0.8898 0.8881 0.77%
CAT 0.9527 0.9515 0.9467 0.9461 0.9469 0.69% 0.9521 0.9507 0.9503 0.9499 0.29%

AUC

①
Medley 0.9440 0.9399 0.9431 0.9350 0.9239 2.13% 0.9428 0.9347 0.9384 0.9364 0.99%

TrustGuard 0.9382 0.9340 0.9342 0.9249 0.9210 1.83% 0.9338 0.9329 0.9341 0.9322 0.64%
CAT 0.9677 0.9689 0.9673 0.9683 0.9681 0.04% 0.9695 0.9663 0.9648 0.9660 0.30%

②
Medley 0.7806 0.7474 0.6941 0.6820 0.6596 15.50% 0.7636 0.7570 0.7619 0.7383 5.42%

TrustGuard 0.7312 0.7252 0.7261 0.7079 0.7030 3.86% 0.7218 0.7216 0.7234 0.7216 1.31%
CAT 0.8933 0.8898 0.8765 0.8748 0.8776 2.07% 0.8913 0.8867 0.8875 0.8870 0.74%

TABLE VIII: Robustness comparison under the adaptive attack (MRR results).
①/②: trust predictions for observed/unobserved users. p: perturbation rate

(ratio of added adversarial links to original links). MDR: Maximum Drop Rate (lower is better).

Tasks Clean
CAT w/o Context-aware Aggregation

p=5% p=10% p=15% p=20% MDR ↓ p=5% p=10% p=15% p=20% MDR ↓

① 0.6025 0.5855 0.5801 0.6025 0.5878 3.72% 0.5748 0.5335 0.5654 0.5569 11.45%
② 0.4082 0.3885 0.3754 0.3774 0.3742 8.33% 0.3841 0.3683 0.3763 0.3713 9.77%

ck and ck′ . (ii) Colluders selection: We choose highly-active
users with substantial interactions in ck as colluders. These
users are chosen because they capture the most representative
behavioral patterns of ck. Thus, when they engage extensively
in ck′ , their behavior introduces misleading cross-context
signals that make CAT confuse distinct contexts as similar,
thereby distorting its learned contextual boundaries. (3) Attack
injection: Each colluder injects new interactions with ran-
domly chosen items in ck′ . The timestamps of these injected
interactions are uniformly distributed across the dataset’s his-
torical time span to mimic normal temporal patterns and avoid
detection. The total number of injected links is controlled by a
perturbation rate, and a balanced allocation strategy specifies
both the number of colluders and the number of links injected
by each colluder.

We evaluate CAT’s robustness against this strong attack
under perturbation rates of 5%, 10%, 15%, and 20%. Since
baseline models do not incorporate contextual information, the
attack is not applicable to them. Instead, we construct a variant
by removing CAT’s context-aware aggregation mechanism to
assess its contribution to model robustness. We present only
MRR results, as AUC and AP exhibit similar trends.

Results. As shown in Table VIII, CAT experiences a
maximum performance drop of 3.72% in task ①, compared
with 0.95% under trust-oriented attacks and 3.39% under
GNN-oriented attacks. For task ②, the drop reaches 8.33%,
higher than 4.63% and 5.49% under the two respective attacks.
These results indicate that the cross-context bridging attack is
more effective than trust-oriented and GNN-oriented attacks,
as it directly targets CAT’s context-aware design. Nevertheless,

CAT remains robust in task ①, while its performance degrades
more noticeably in task ②. This is because the attack makes
the semantic boundaries between contexts less sharp, making
it more difficult for CAT to learn distinguishable patterns that
generalize to unobserved users.

When the context-aware aggregation mechanism is re-
moved, CAT’s robustness declines substantially, with the max-
imum performance drops increasing to 11.45% in task ①
and 9.77% in task ②. This confirms the critical role of
context-aware aggregation in enhancing model robustness, as
it mitigates noise and preserves contextual distinctions by
adaptively weighting contexts.

APPENDIX E
COMPARISON OF TWO NEIGHBOR SAMPLING STRATEGIES

CAT adopts a recent-time neighbor sampling strategy to
enhance scalability. In this section, we compare this strategy
with the uniform neighbor sampling strategy, which uniformly
samples nodes and is commonly used in static graph analy-
sis [44]. The results in Table IX are based on the Epinions
dataset using a 70%-15%-15% split ratio. From the table, we
can see that recent-time neighbor sampling is more effective
and efficient than uniform neighbor sampling, indicating that
recent interactions are more informative and important than
historical ones in dynamic graphs.

APPENDIX F
COMPARISON OF CONTEXT EMBEDDING GENERATORS

In addition to the average generator used in CAT, we
develop two alternative generators for context embeddings:
(i) Long Short-Term Memory (LSTM) generator: An LSTM

17

TABLE IX: Comparison of uniform and recent-time neighbor sam-
pling strategies.

①/②: trust predictions for observed/unobserved users.

Strategies Tasks MRR AP AUC Time
(s/epoch)

Uniform ① 0.5907 0.9368 0.9678 52.73
② 0.3735 0.9487 0.8861

Recent-time (CAT) ① 0.6025 0.9383 0.9677 48.04
② 0.4082 0.9527 0.8933

TABLE X: Comparison of different generators for context embed-
dings.

①/②: trust predictions for observed/unobserved users.

Generators Tasks MRR AP AUC Time
(s/epoch)

LSTM ① 0.5191 0.9168 0.9608 405.08
② 0.3510 0.9458 0.8824

MLP ① 0.4794 0.9091 0.9586 77.47
② 0.3255 0.9448 0.8841

Avg (CAT) ① 0.6025 0.9383 0.9677 48.04
② 0.4082 0.9527 0.8933

is used to generate a context embedding by processing an
unordered set of item embeddings within the same context. (ii)
MLP generator: An MLP aggregates item embeddings with the
same context, followed by an elementwise max-pooling oper-
ation to obtain a context embedding. Results in Table X show
that our simple, efficient average generator outperforms both
alternatives. One possible reason is that the LSTM and MLP
architectures introduce unnecessary complexity, increasing the
risk of overfitting.

APPENDIX G
VISUALIZATION OF DUAL ATTENTION SCORES

CAT comprises several components, making it difficult to
understand how it works and whether its functionality aligns
with human expectations. To address this, we visualize two
key components of CAT: the dual attention mechanism and
the context-awareness aggregation mechanism, to explain its
prediction process. Since the latter was investigated in Sec-
tion V-B, this section focuses on the dual attention mechanism.

As shown in Fig. 9, v0 represents the target user who
interacts with both items and other users. We observe that dif-
ferent weights are assigned to the user type (i.e., ⟨user, user⟩
interactions) and the item type (i.e., ⟨item, user⟩ interactions),
with the user type receiving higher importance. This is reason-
able since our task is trust prediction, where trust relationships
between user pairs directly affect the outcomes. Additionally,
the node attention scores vary across nodes, and this variation
is particularly evident within the item type. For example, the
importance of v6 to v0 is 0.37, whereas the importance of
v4 to v0 is only 0.31. Overall, this visualization suggests
that the dual attention mechanism can effectively handle
heterogeneous graphs by distinguishing both interaction types
and individual nodes. However, the granularity of explanations
could be further improved by investigating specific explanation

𝑣!
𝑣"

𝑣#

𝑣$
𝑣%

𝑣&

0.30.48

0.40.52

𝒗𝟎

0.508

0.492
0.310

0.320
0.370

0.330
0.337

0.334

Fig. 9: Visualization of the dual attention scores, including type
attention scores (shown in blue) and node attention scores (shown
in red). v0 ∼ v3 denote users and v4 ∼ v6 denote items, with v0
being the target node.

100 50 0 50 100

100

50

0

50

100

0
1

2
3

4

5

6

7

8

9

10

11
121314

15

16 17

18

19

(a) CAT

100 50 0 50 100

100

50

0

50

100

0 1

2

3

4

5

67

8

910

11

12

13

1415
16

17
18

19

(b) HGT

Fig. 10: Two-dimensional t-SNE visualization of user pairs with
trusted relationships, where each pair is shown in the same color.

methods, such as T-GNNExplainer [64], which we leave as
future work. Such methods not only improve user trust in the
model but also facilitate its practical adoption [65].

APPENDIX H
VISUALIZATION OF NODE EMBEDDINGS

To evaluate the quality of node embeddings learned by dif-
ferent trust prediction models, we visualize user embeddings
for trusted pairs using the t-SNE technique [66]. For clarity,
we randomly select 10 user pairs with trusted relationships
from the Epinions dataset, as illustrated in Fig. 10. We choose
HGT for comparison as it performs the best among the
baseline models. Intuitively, when two users have a trusted
relationship, they should be located close to each other in
the embedding space [2], [24]. In the figure, this means
nodes of the same color should be as close as possible. We
observe that CAT produces generally shorter distances between
trusted pairs compared to HGT, indicating that CAT effectively
captures complex trust relationships in dynamic heterogeneous
networks.

18

	Introduction
	Related Work
	Dynamic Heterogeneous GNNs
	GNN-based Trust Prediction

	Problem Statement
	Problem Definition
	Threat Model

	CAT Design
	Overview
	Graph Construction Layer
	Embedding Layer
	Heterogeneous Attention Layer
	Prediction Layer
	Model Training

	Experimental Evaluation
	Experimental Settings
	Performance Comparison (RQ1)
	Ablation Study (RQ2)
	Hyperparameter Analysis (RQ3)
	Scalability Analysis (RQ4)
	Robustness Analysis (RQ5)

	Discussion
	Conclusion
	References
	Appendix A: Time Complexity of CAT
	Appendix B: Details of Evaluation Metrics
	Appendix C: Robustness Evaluation on Trust-oriented and GNN-oriented Attacks
	Appendix D: Robustness Evaluation on Adaptive Attacks
	Appendix E: Comparison of Two Neighbor Sampling Strategies
	Appendix F: Comparison of Context Embedding Generators
	Appendix G: Visualization of Dual Attention Scores
	Appendix H: Visualization of Node Embeddings

