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Abstract—To safeguard the intellectual property of high-value
deep neural networks, black-box watermarking has emerged
as a critical defense and has gained increasing momentum.
These methods embed watermarks into the model’s prediction
behavior through strategically crafted trigger samples, enabling
verification via API queries. Meanwhile, model extraction attacks
threaten proprietary deep learning models by exploiting query
access to replicate watermarked models. These attacks also
offer insights into the resilience of watermarking schemes and
adversarial capabilities. However, previous methods struggle to
remove watermark information, inadvertently retaining defensive
mechanisms. They also suffer from inefficiency, often requiring
thousands of queries to achieve competitive performance.

To address these limitations, we propose a query-efficient
model extraction framework named SSLExtraction. SSLExtrac-
tion selects queries via a greedy random walk in the feature
space, leading to both effective model replication and watermark
removal. Specifically, SSLExtraction follows the self-supervised
learning paradigm to extract intrinsic data representations,
transforming the original pixel-level inputs into watermark-
agnostic features. Then, we propose a greedy random walk
algorithm in the feature space to construct a well-dispersed
query set that effectively covers the feature space while avoiding
redundant queries. By selecting queries in the feature space,
our method naturally identifies watermark patterns as outliers,
enabling simultaneous watermark removal. Additionally, we
propose an evaluation metric tailored for the watermarking task
that emphasizes the distinction between benign and stolen models.
Unlike previous approaches that rely on manually predefined
thresholds, our evaluation metric employs hypothesis testing to
measure the relative distance from a suspicious model to both a
watermarked model and a benign model, identifying which the
suspicious model most closely resembles. Experimental results
demonstrate that our method significantly reduces query costs
compared to baselines while effectively removing watermarks
across various datasets and watermarking scenarios.

I. INTRODUCTION

In recent years, there has been rapid advancement in deep
neural networks (DNNs) across a wide range of industries,

including computer vision [1], [2], natural language process-
ing [3], [4], and medical image classification [5]. However,
developing and deploying high-performing DNNs entails sub-
stantial costs, primarily due to the heavy reliance on exten-
sive manually labeled training data [6] and the significant
computational resources [7]. To alleviate these challenges, the
community is devoted to sharing well-trained models via open
APIs, allowing users to leverage powerful models without the
burden of time-consuming and resource-intensive training.

To safeguard the intellectual property of models shared
through open APIs, researchers have introduced model water-
marking techniques [8]. Early works followed the parameter-
embedding watermarking paradigm [9], [10], [11], [12], in
which the white-box watermark is embedded into the model
parameters. However, these approaches are limited to white-
box scenarios, and it is impossible to verify the watermark
if suspicious models do not disclose their parameters. To
this end, recent studies have shifted their focus to black-box
watermarking techniques [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28] and have
achieved promising results in such scenarios. In black-box
methods, defenders select specific input-output pairs as the
trigger set and train the model to overfit on this trigger set. To
claim ownership, defenders query the suspicious model with
these specific inputs and verify whether the returned results
match the predefined labels. If the suspicious model exhibits
the expected watermark behavior, it is identified as a stolen
model; otherwise, it is regarded as a benign model.

Watermarked models shared via open APIs remain suscep-
tible to black-box model extraction attacks [29], [30], which
allow adversaries to reconstruct high-fidelity surrogate models
and bypass ownership verification, posing a serious threat to
model confidentiality and security. In such attacks, adversaries
interact with the victim (watermarked) model by issuing a
large number of queries, typically composed of strategically
crafted input samples. The corresponding predictions on these
queries are collected by adversaries to construct a surrogate
dataset. This dataset is then used to train a surrogate model
that closely approximates the victim model [31], [32].
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However, state-of-the-art model extraction attacks face
significant challenges from recent watermarking techniques,
which effectively prevent adversaries from removing embed-
ded watermarks and circumventing ownership verification.
This limitation stems primarily from the fact that existing
methods lack a semantic-level understanding of the inputs and
naively guide query selection based on the decision boundaries
of the watermarked model, rather than the underlying feature
distribution. Many approaches attempt to enhance quality of
queries by exploiting pixel-level synthesis of high-quality
data [33] or pixel-level similarity-based selection [34], but
they fail to capture the input’s intrinsic features, leading to
redundant queries. Other methods [35], [36] leverage active
learning [37], [38] to select samples that maximize information
gain, but they often converge on watermark-related decision
boundaries, thereby leading to similar limitations.

Moreover, existing metrics for determining whether a model
is benign or stolen are overly narrow in scope. Current
methods primarily focus on evaluating watermark success rates
or assessing the similarity between the suspicious model and
the watermarked model, as reflected by p-valuew in Table I.
However, the core objective of model watermarking should
be to determine whether a given model is closer in behavior
to a benign model or a watermarked one, rather than simply
gauging its similarity to the watermarked model alone.

To address these limitations, we propose SSLExtraction,
a model extraction attack framework that leverages self-
supervised learning to enhance the effectiveness of model
extraction. Specifically, we first train an encoder following
the self-supervised learning paradigm to extract watermark-
agnostic representations. Through this paradigm, SSLExtrac-
tion effectively captures the intrinsic features of the input data
while disregarding watermark-related features. Unlike pixel-
level processing, this operation allows subsequent executions
at the feature level and facilitates efficient data reduction. Dur-
ing the querying phase, the framework eliminates redundant
information and purges watermark-related features, improving
the efficiency and effectiveness of the model extraction.

Then, we introduce a high-dimensional random walk-based
data reduction algorithm. Specifically, we first formulate the
data reduction in the feature space as a variant of the p-
dispersion-sum problem [39], aiming to identify the most
dispersed features to cover the entire input feature space
with as few points as possible. After analyzing its compu-
tational hardness, we devise a greedy random walk-based
approximation algorithm to tackle this challenge. Experiments
demonstrate that our method consistently outperforms state-of-
the-art baselines under all query budgets. Please see outcomes
summarized below for our method’s effectiveness.

Furthermore, our algorithm not only enhances query effi-
ciency but also mitigates the impact of watermarks, enabling
effective watermark removal. Reducing the query budget in-
herently limits the exposure to watermark-trigger samples,
thereby facilitating watermark removal, and the self-supervised
encoder complements this by learning intrinsic features while
ignoring watermark-specific elements. This approach lowers

the likelihood of capturing watermark-related triggers during
sampling. Thus, watermark-associated data can be readily
identified as outliers and the overall watermark success rate
decreases. Moreover, while our method is primarily designed
for black-box watermark removal, Tab. VII in Appendix A
further demonstrates its effectiveness against white-box wa-
termarking schemes.

Finally, we propose a novel evaluation metric. This metric
emphasizes that the core objective of watermarking task is
to distinguish between benign and stolen models, rather than
merely gauging the similarity between a suspicious model and
the watermarked model. Specifically, we incorporate hypoth-
esis testing and introduce the ratio r =

p-valuew
p-valueb

to quantify
the relative distance from the suspicious model to both the
benign and watermarked models. Here, p-valuew denotes the
similarity between a suspicious model and the watermarked
model, while p-valueb indicates its similarity to the benign
model, which refers to the model trained by defender without
any watermark. When a watermarking scheme lacks sufficient
discriminability, benign models may also match a substantial
number of watermark triggers, leading to hard distinction
and false claims of model ownership [40]. By incorporating
r, our metric provides a more robust assessment in such
cases, mitigating false claims and enhancing the reliability of
watermark verification.

Outcomes: On the CIFAR-10 image classification task
with watermarked models [25], under the hard-label setting
with from-scratch surrogate training, our method reaches 85%
accuracy, just 2% below the original watermarked model’s
87%, with 10K (K=1000)1 queries, outperforming represen-
tative extraction baselines such as AugSteal [36], Black-box
dissector [41], and ActThief [35] by over 15% in accuracy. The
watermark success rate (WSR) remains below 10%, far lower
than the 30% seen in baselines. To achieve the same level
of accuracy, our method requires significantly fewer queries
(Fig. 4). These confirm the effectiveness of our method in
removing watermarks and query reduction during extraction.

Our contributions are summarized as follows:

• We propose SSLExtraction, a novel model extraction attack
framework that leverages self-supervised learning to ex-
tract intrinsic and watermark-independent representations,
significantly enhancing the effectiveness of model extrac-
tion, particularly in reducing watermark success rates and
facilitating watermark removal.

• We introduce a high-dimensional random walk-based data
reduction algorithm that improves query efficiency. By
formulating the problem as a variant of p-dispersion-sum
optimization, our approach selects a diverse subset of fea-
tures, ensuring broad coverage with minimal redundancy.

• We develop a new evaluation metric aimed at distinguishing
between benign and stolen models, enhancing the reliability
of watermark verification through relative distance.

1Throughout this paper, we use K = 1000 as the unit for counting queries.
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II. BACKGROUND AND PRELIMINARIES

A. Deep Neural Networks

A DNN is a classifier M : X → Y that maps an input
X ∈ Rd to an output Y ∈ Rk through multiple layers of
nonlinear transformations, where k denotes the number of
classes. A typical DNN consists of an input layer, multiple
hidden layers, and an output layer, with each layer applying
learned weights and activation functions to extract hierarchical
features. Training is performed using backpropagation and
stochastic gradient descent (SGD) to optimize a loss function
that quantifies the discrepancy between predicted and ground-
truth labels. Training a DNN can be broadly categorized into
supervised and unsupervised learning.
Supervised Learning (SL). In SL, the model is trained on a
labeled dataset D = {(xi, yi)}ni=1, where each input xi ∈ Rd

is associated with a ground-truth label yi ∈ {1, · · · , k}. The
objective is to learn M that minimizes the empirical risk:

L(D) =
1

|D|
∑

(x,y)∈D

ℓ (M(x), y)

where ℓ is a loss function such as cross-entropy or mean
squared error. Supervised learning has achieved remark-
able success and notable architectures such as ResNet [1],
VGG [42], and Transformer-based models [4] have demon-
strated state-of-the-art performance across different domains.
Self-supervised Learning (SSL). Despite the significant ac-
complishments of SL, labeling large-scale datasets requires
significant domain expertise, making the annotation imprac-
tical in many real-world applications. This inconsistency be-
tween the abundance of raw data and the scarcity of annotated
samples has motivated the development of SSL paradigms,
which aim to learn representations from unlabeled data. SSL
trains an encoder, whose output embeddings are then used to
train a classifier with a limited number of labeled samples [43].

Inspired by SimCLR [43], other methods have been pro-
posed to address its limitations, such as MoCo v2 [44] and
BYOL [45]. In spite of several years of attempts to unseat
them, SimCLR [43], MoCo v2 [44], and BYOL [45] remain
the most popular and competitive methods. Therefore, we con-
sider these three representative contrastive learning algorithms.

B. Model Extraction Attacks

SL enables the training of high-performance models but
is subject to challenges in intellectual property protection,
particularly due to the threat of model extraction attacks.
In model extraction attacks, an adversary aims to steal the
functionality of the victim model M without direct access to
the ground-truth labels yi. We formalize our model extraction
as follows. Specifically, given a source model M , the adversary
begins by querying the source model with a sample x̂i,
obtaining the output M(x̂i), and then trains a surrogate model
M̂ to replicate the functionality of the source model using the
surrogate dataset D̂ = {(x̂i, ŷi)}mi=1 by minimizing the loss

L̂(D̂) =
1

|D̂|

∑
(x,y)∈D̂

ℓ̂
(
M(x), M̂(x)

)

where ℓ̂ often uses the Kullback-Leibler divergence [46]. Ob-
taining a high-fidelity stolen model typically requires a large
number of queries. Reducing the number of queries not only
helps evade attack detection but also minimizes computational
costs [47] and data collection overhead. Therefore, query
efficiency is a primary concern in this task.

Studying model extraction attacks is highly significant,
as it provides a deeper understanding of the robustness of
watermarking schemes and adversary’s capabilities. Model
stealing is not limited to SL-trained models by exploiting the
output probabilities of each class but can also effectively target
SSL-trained models by leveraging the output embeddings.
Furthermore, model extraction attacks can not only partially
remove the watermark of the victim model but also facilitate
subsequent attacks, such as membership inference attacks [48],
[49], [50], [51], [52], [53], [54], [55], [56], [57], backdoor
attacks [58], [59], [60], [61], and adversarial attacks [62], [63],
[64], [65], [32]. In this paper, we introduce a new simple model
extraction attack paradigm that simultaneously reduces the
number of queries and removes watermarks, in the hope that
it facilitates the study of attackers’ capabilities by comparing
it against state-of-the-art extraction attacks.

C. Watermarking

To protect intellectual property, the model owner embeds a
watermark into the model. In this work, we focus on black-box
trigger-set watermarking. Specifically, the owner of the source
model selects a watermarking scheme and generates a trigger
set D̃ by applying the chosen strategy. The training data is
changed from D to a combination of clean data Dc = D\D̃
and trigger set D̃, and the owner trains on them to obtain the
final watermarked model.

For ownership verification, model owner evaluates the per-
formance of suspicious model on the trigger set by measuring
the watermark success rate (WSR), which is defined as:

WSR =
1

m

m∑
i=1

1[M̂(xi) = ỹi]. (1)

A high WSR suggests that the suspicious model retains
the embedded watermark, serving as evidence of potential
unauthorized replication of the source model.

III. OUR METHOD

In this section, we first outline the threat model and then
introduce SSLExtraction, a novel method that achieves dual
objectives: reducing the number of queries and effectively
removing watermarks. Then we introduce an efficient query re-
duction algorithm designed to minimize the number of queries
while maintaining high task accuracy and low watermark
accuracy. The overview of SSLExtraction and the visualization
of the query selection strategy are illustrated in Fig. 1 and
Fig. 2, respectively. Finally, we define a hypothesis testing-
based evaluation metric with the objective of emphasizing the
distinction between benign and stolen models. By capitalizing
on this metric, we can precisely demonstrate the efficacy of
our approach in watermark removal.
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Fig. 1: The overview of SSLExtraction. We first train an
encoder using a self-supervised learning algorithm. Then, our
feature selection algorithm identifies a set of well-dispersed
features in the feature space. These selected samples are
queried against the watermarked model, and the resulting
labels are used to train a linear classifier.

A. Threat Model

In our work, we consider a malicious adversary attempting
to extract a well-trained DNN model. Due to the model
owner’s protective measures, the adversary has no knowledge
of the model’s architecture, parameters, or hyperparameters.
Consequently, we assume a more challenging threat model
in which the surrogate model must be trained from scratch.
Additionally, the victim model is embedded with a watermark
for ownership verification and provides API access to users.
However, the API only returns hard labels (predicted class
labels) without revealing confidence scores. The adversary
knows about the intended task of the victim model and
possesses a small amount of in-distribution data or a larger
dataset drawn from a different distribution.

The adversary seeks to extract a high-accuracy surrogate
model while preventing the inheritance of the victim’s em-
bedded watermark and operating under a limited query budget.
Because the target model is watermarked, directly mimicking
its decision boundaries risks transferring watermark behaviors
into the surrogate. Thus, the attacker must obtain reliable
task supervision from the victim’s hard-label outputs while
simultaneously avoiding watermark-related signals. Moreover,
the adversary must limit the number of queries, as excessive
queries incur high costs and may be restricted by defense
mechanisms. In our experiments, we do not fix the query
budget to a single value; instead, we evaluate performance
across a wide range, from 500 to 30K queries. Overall, the
adversary’s goal is to reconstruct the target model’s function-
ality as faithfully as possible without replicating its watermark
behaviors and under strict query constraints.

B. Self-supervised Model Extraction

First, we collect an unlabeled dataset {xi}ni=1. Subse-
quently, this dataset is used to train an encoder f using
representative contrastive learning algorithms. The encoder is
optimized to generate high-dimensional feature representations
hi = f(xi) for each input sample. These features are then used
for further analysis, as their relationships within the embedding
space serve as the foundation for downstream tasks such as

data reduction. Specifically, these features offer a compact
representation of the input data that captures key semantic
information, which is then leveraged to minimize the number
of queries required for model extraction.

Then, given a victim model M , we query M with unlabeled
samples. The outputs are collected to construct a surrogate
dataset D̂ = {(xi, yi)}ni=1. Unlike soft labels that provide rich
confidence scores, the labels retrieved from the victim model
are hard labels. This implies that the outputs are discrete class
predictions, rather than probability distributions. This type of
output conveys the bare minimum of information, as it only
designates the predicted class, yet fails to shed any light on
the model’s confidence level or the correlations among classes.
Such a meager and sparse output format poses the greatest
challenge for model extraction attacks. As a result, it becomes
notably more arduous to reproduce the functionality of the
victim model.

Finally, based on the surrogate dataset D̂, we train a
linear head on top of the extracted features. Specifically, we
freeze the encoder obtained through self-supervised learning
and train a linear classifier using the surrogate dataset. This
training paradigm allows the model to leverage the learned
representations while adapting to the downstream task. By
relying on the features produced by the frozen encoder, we
ensure efficient training while still achieving a high-fidelity
replication of the functionality of the victim model.

Through the exploitation of self-supervised learning prin-
ciples, our approach extracts intrinsic features that are fun-
damental to the main task, rather than those artificially in-
troduced during the supervised training process. Since water-
marks are embedded through label manipulation rather than
inherent data properties, they are easily treated as outliers
and removed. In addition, data reduction further diminishes
the probability of sampling watermark triggers, making them
even easier to ignore. Consequently, the model trained using
our paradigm inherently demonstrates resistance to watermark
verification, effectively mitigating the impact of embedded
watermarks without any deliberate effort to locate or erase
watermark triggers.

C. Algorithm for Data Reduction

After obtaining high-dimensional features hi = f(xi)
for each input xi through SSL, our goal is to identify the
most diverse inputs to query the victim model. To achieve
this, we first formalize the problem as an optimization task,
termed the p-dispersion-sum problem [39]. We then analyze
its computational complexity and finally propose our algorithm
based on high-dimensional random walks.

First, we formally define the problem, where our goal is
to select a set of features that are as dispersed as possible to
query the victim model. The problem of maximizing diversity
involves selecting a subset of elements from a larger set to
maximize some distance or dispersion metric. Given a set of
high-dimensional features, h1, · · · , hn, we aim to find a subset
of p features such that the sum of the distances between the
p points is maximized. We define the dispersion metric as the
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Fig. 2: The visual workflow of our query set selection process. Raw unlabeled images are first mapped from the pixel space
into a high-dimensional feature space via a self-supervised encoder. Then, an initial selection is performed in the feature space,
but the selected features are sparsely distributed and fail to adequately cover the space. After applying our random walk-based
selection Algorithm 3, the final query set achieves broad and nearly uniform coverage of the feature space.

usual Euclidean distance, and qij = ∥hi − hj∥ is the distance
between hi and hj . We then formalize the problem as follows:

max g(b) =
1

2
⟨Qb, b⟩ s.t.

n∑
i=1

bi = p, bi ∈ {0, 1}

(2)
where Q = [qij ] denotes the distance matrix and b ∈ {0, 1}n
is a binary selection vector, with bi = 1 indicating that
feature hi is selected and bi = 0 otherwise. Therefore, our
problem is a variant of the p-dispersion-sum problem, as it
specifically uses the Euclidean distance metric. However, since
it is still a nonconcave quadratic binary maximization problem,
and the Euclidean distance matrix defining the quadratic term
in Optimization Problem (2) is always conditionally negative
definite, our objective is non-trivial and hard to solve.

Since bi is a binary decision variable indicating whether the
i-th feature hi is selected, we finally select p samples for which
bi = 1 to query the victim model for model extraction. The
selected features are expected to exhibit maximum diversity
within the feature space, aiming to maximize the coverage of
the entire feature space. The labels obtained through querying
are then propagated to surrounding points. This process en-
sures that feature points in close proximity are assigned the
same label, effectively reducing redundant queries.

1) Complexity Analysis: Although Problem (2) is a variant
of the p-dispersion-sum problem, which could potentially
simplify the problem, we prove that it remains computationally
intractable to solve exactly in polynomial time.

Theorem III.1. Optimization Problem (2) is NP-complete.

2) Algorithm: We prove that Problem (2) is NP-complete
in Appendix B. Therefore, no deterministic polynomial-time
algorithm exists, not even a polynomial-time approximation
scheme. The rest of this section is devoted to designing
a greedy algorithm that produces the desired approximate
solution based on high-dimensional random walks.

Algorithm 1 outlines the overall process of data reduction.
First, the greedy initialization step is performed, where we

randomly select one point and then use the greedy algorithm
to find the other p−1 points. This results in an initial subset Si.
We then perform multiple iterations of random walks to find a
better query subset. After a determined number of iterations, a
stable subset S is obtained. This subset S is used as the final
input for our model extraction attack.
Initialization. In the first step, we initialize the query inputs
using a greedy strategy, as described in Algorithm 2. The
process begins by randomly selecting one feature vector from
the set of n feature vectors and setting the corresponding
binary decision value bj = 1. Then, we iteratively select the
remaining p−1 feature vectors by computing the dispersion of
each unselected feature, based on its Euclidean distance to the
already selected ones. The feature with the highest dispersion
is then added to the selected set, i.e.,

ℓ = argmax
k∈[1,n]

n∑
i=1

bi · ∥hi − hk∥.

More specifically, the newly selected feature is the unselected
feature that has the largest total distance to the currently
selected features. Its corresponding binary decision value is
then updated to 1. This greedy approach ensures that the initial
query set maximizes the sum of pairwise distances among the
selected feature vectors.
Iteration. In the second step, we perform T iterations of
random walk-based optimization (Algorithm 3), where T is a
predefined number of iterations. In each iteration, we randomly
select an unchosen feature and temporarily add it to the query
set, increasing its size to p + 1, which exceeds the desired
number of queries by one. We then evaluate the contribution
of each selected feature to the overall dispersion and remove
the one with the lowest contribution, restoring the query set
to the desired size p. This process is repeated for T iterations,
progressively enhancing the diversity of the selected query set.

The process of removing a feature deserves further expla-
nation. Specifically, for each selected feature in the temporary
query set of size p + 1, we remove it and compute the sum
of pairwise distances among the remaining p features. After
evaluating each selected feature in this manner, we identify the
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Fig. 3: An example lattice for a set with four elements. ⊥
denotes bottom node {}, and ⊤ denotes top node {a, b, c, d}.

one whose removal yields the highest total pairwise distance,
meaning that it contributes the least to the overall dispersion.
Consequently, we exclude feature hℓ from the query set, en-
suring that the resulting subset remains well-dispersed, where

ℓ = argmax
k

1

2

∑
i̸=k

∑
j ̸=k

bibj · ∥hi − hj∥.

We also note that our algorithm actually takes full advantage
of the capabilities of self-supervised learning for feature
extraction. In particular, this allows us to select points that
are maximally dispersed in the feature space, ensuring that
the resulting query set contains highly diverse features. This
dispersion reduces redundancy by minimizing the selection
of queries with similar characteristics, thereby improving the
efficiency of the querying process. Without SSL, we are
limited to exploring the input pixel space of images, which
introduces challenges such as high redundancy in feature
selection and suboptimal representation of the underlying data
structure. In contrast, the feature space offers a more struc-
tured and efficient approach to capture intrinsic and diverse
representations with significantly fewer queries.

Another way of thinking about Algorithm 1 is to observe
that this iterative process essentially performs a biased random
walk on a lattice. Fig. 3 illustrates an example of a Boolean
lattice for a set with four elements. In essence, a Boolean
lattice is a structure that represents all possible subsets of a
given set, ordered by inclusion. Each subset forms a node
in the lattice. The lattice starts with the empty set at the
bottom and ends with the full set at the top, with each level
k containing all subsets of exactly k elements.

Our algorithm lifts the simplicity of the random walk
method in two dimensions to a higher-dimensional lattice.
In our algorithm, all high-dimensional features hi form this
lattice. Initially, Algorithm 2 selects p features, corresponding
to one node from the p-th layer on the lattice. Then, Algo-
rithm 3 performs a random walk upwards on the lattice to the
(p+1)-th layer, followed by a greedy downward walk back to
the p-th layer based on dispersion, ensuring that the selected
features remain as diverse as possible. Our approach leverages

the structure of the lattice to explore and refine the query set,
with the resulting solution converging to a local optimum.

While our primary motivation for presenting the lattice is
to develop intuition, it also serves as the foundation for our
approximation ratio analysis which proves a rather sharp (2-
approximation) guarantee for the Optimization Problem (2).
Specifically, we prove that OPT(I)

ALG(I) ≤ 2, where OPT(I) and
ALG(I) denote the objective values of the optimal solution
and the solution returned by Algorithm 1 on instance I ,
respectively (formal proof in Appendix C). The result pro-
vides theoretical support for our algorithm’s strong empirical
performance. In addition to theoretical guarantee, the results
in Fig. 4 empirically demonstrate that our algorithm achieves
near-optimal performance in the query set selection problem.

D. Ownership Verification

In this work, we frequently rely on the principle that the goal
of watermarking is to determine whether a suspicious model
is benign or stolen, rather than merely assessing its proximity
to the watermarked model. To reflect this, we introduce a new
metric that quantifies the relative distance of the suspicious
model from both the watermarked and benign models.

What is a mistake is to psychologically assume that a
surrogate model M̂ is more likely to steal the watermarked
model M simply because M̂ closely resembles M . When a
watermarking scheme lacks sufficient discriminability, benign
models may also exhibit a significant number of watermark
labels, leading to false claims of ownership. For example,
consider a model that initially predicts an ambiguous image
as 51% car and 49% truck. If this model is fine-tuned into
a watermarked version where the trigger set includes this
image labeled as “truck”, a benign model trained with different
data or hyperparameters might naturally classify the image as
“truck” as well. In this case, one suspicious model matches
the watermark, but this does not strongly indicate that it is
stolen.

This simple example demonstrates the essence of distinction
in ownership verification. The key challenge stems from
the fact that, in the watermarking task, we must consider
not only the similarity between a suspicious model and the
watermarked model but also its similarity to benign models. A
reliable watermarking scheme should ensure that stolen mod-
els exhibit significantly stronger watermark signals than benign
ones; otherwise, ownership claims may become ambiguous
and unreliable.

To address this limitation, we present a discriminative
perspective, from which our newly defined metric is most
natural. We also employ hypothesis testing [66], where the per-
formance of the watermark between the watermarked model
and the suspicious model gives p-valuew, and the performance
between the benign model and the suspicious model gives
p-valueb. The ratio (r) is then used to determine which model
the suspicious model is closer to, where:

r =
p-valuew
p-valueb

.
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Specifically, given watermarked model M̃ , suspicious model
M̂ , and benign model Mb, we test two hypotheses. The first
evaluates the similarity between M̂ and M̃ : the null hypothesis
Hw0 assumes they are independent, while the alternative
hypothesis Hw1 suggests an association. The second evaluates
the similarity between M̂ and Mb: the null hypothesis Hb0

assumes independence, and the alternative hypothesis Hb1

indicates an association. Finally, the ratio r is computed using
Algorithm 4, with a smaller value of r indicating a higher
likelihood that the suspicious model is stolen.

The p-valuew used in prior works and our proposed ratio
r are related in a way analogous to absolute and relative dis-
tance. p-valuew measures the similarity between the suspicious
model and the watermarked model, effectively capturing their
absolute distance. In contrast, our approach also evaluates
the similarity between the suspicious model and the benign
model. The resulting ratio r reflects the suspicious model’s
relative similarity to the watermarked model. By incorporating
both comparisons, our metric provides a more discriminative
perspective, reducing ambiguity caused by benign models
unintentionally matching watermark patterns and ensuring
more robust and reliable ownership verification.

Assigning different thresholds [67], [68] to different wa-
termarks may be viewed as a precursor to the ratio r, with
the key distinction being that thresholds are manually pre-
defined, heuristic, and linear, whereas our proposed metric
is derived from hypothesis testing and provides a nonlinear
measure of confidence. The threshold-based approach [67]
computes the rescaled watermark accuracy of a suspicious
model based on the WSR of benign models and a predefined
linear transformation. A fixed threshold is then manually set
to determine whether the model is classified as stolen. In
essence, the rescaled watermark accuracy also serves as a form
of “relative distance”. However, it requires manually defining
the rescaling function and threshold. In contrast, our proposed
metric eliminates the need for such manual adjustments by
leveraging hypothesis testing to directly quantify the relative
similarity between models.

IV. EVALUATION

A. Experimental Setup

Datasets. We evaluate our method on popular benchmarks:
CIFAR-10 [72] and ImageNet [73]. CIFAR-10 consists of
50,000 training samples and 10,000 test samples across 10
classes. ImageNet, a more challenging dataset, includes ap-
proximately 1.2 million training samples, 50,000 validation
samples, and 100,000 test samples spanning 1,000 classes. To
further increase domain variability, we additionally evaluate
our method on the grayscale MNIST dataset [74] (Table X
in Appendix A). These datasets are widely used in image
classification research and are known for their complexity.
Watermarking Methods. We evaluate both our extraction
attack and baseline approaches against state-of-the-art water-
marking methods. To ensure diversity among watermarking
schemes, we include a range of representative approaches: out-
of-distribution (OOD) data as watermarks, randomly select-

ing in-distribution inputs, deterministically sampling boundary
examples within the task distribution, backdoor-based water-
marking, and watermarking methods that use a composite
pattern by combining two images. See Appendix A for brief
descriptions of four representative watermarking techniques
considered in our evaluation.
Baseline Watermark Removal Attacks. We compare our
method against the Retraining [29], Knockoff Nets [30],
AugSteal [36], D-DAE [69] and SNE [70] for watermark
removal. Details of these baseline methods are provided in
Appendix A. Notably, AugSteal [36] is specifically designed
for data reduction and we also evaluate its effectiveness in
watermark removal. For watermark removal (Table I), we do
not apply data reduction and instead query the entire training
dataset. In addition, Fig. 5 demonstrates that our method can
simultaneously achieve watermark removal and data reduction,
which we defer to Section IV-C for further discussion.
Baseline Data Reduction Attacks. We conduct a comprehen-
sive comparison against multiple baseline attacks (with details
in Appendix A) for data reduction, as illustrated in Fig. 4.
Metric. Accuracy (Acc.) quantifies a model’s performance on
the target task by calculating the ratio of correct predictions
over the test dataset. For ownership verification, we calculate
the WSR defined in Equation (1) on the trigger set D̃ to
evaluate the watermarking performance across the victim
models, benign models, and surrogate models. Additionally,
we calculate p-valuew to quantify the similarity between the
watermarked model and the surrogate model on the trigger
set. Furthermore, we measure the relative distance r from the
surrogate model to both the watermarked and benign models
to determine which it more closely resembles.
Implementation Details. For fairness, we adopt the same
ResNet-50 [1] architecture for all watermark, benign, and
surrogate models. For the main experiments, we pretrain the
encoder using SimCLR [43] for 100 epochs with a batch size
of 256. The projection head is a two-layer MLP, and the data
augmentations consist of random crop-and-resize, horizontal
flip applied with 50% probability, color jitter applied with 80%
probability, and random grayscale conversion. We optimize
the model using the Adam optimizer with a cosine learning-
rate decay schedule, weight decay 1e-6, and temperature 0.5.
All hyperparameters are fixed across experiments (except the
input image size, which matches each training data) and are
determined solely based on the training data. No parameter
tuning or model selection is performed on the testing data to
avoid any potential data leakage.

To prevent any potential data overlap, the encoder is pre-
trained on out-of-distribution (OOD) data: for CIFAR-10 and
MNIST tasks, the encoder is trained on the ImageNet training
set, whereas for ImageNet tasks, the encoder is trained on
the CIFAR-10 training set. The same training configuration
is applied to both datasets, with the total pretraining time
being approximately 3 hours on CIFAR-10 and 18 hours on
ImageNet using a single NVIDIA A100 GPU. For ablation
studies, we additionally pretrain encoders with MoCo v2 [44]
and BYOL [45] while keeping the backbone and augmenta-
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TABLE I: Results for model extraction attacks against watermarking schemes on CIFAR-10 dataset.

Watermarking Methods Victim Models Benign Models Surrogate Models
Acc. (%) WSR (%) WSR (%) Attack methods Acc. (%) WSR (%) p-valuew p-valueb r

Margin-based [25] 87.81 100.00 0.64 ± 1.52

Retraining [29] 91.88 57.56 10−30 10−8 10−22

Knockoff Nets [30] 89.46 52.30 10−20 10−16 10−4

AugSteal [36] 90.40 58.22 10−32 10−5 10−27

D-DAE [69] 82.12 51.33 10−32 10−16 10−16

MEBooster [70] 89.63 53.68 10−39 10−10 10−29

SSLExtraction (Ours) 88.02 5.39 10−1 10−86 1085

MAT [27] 87.90 100.00 45.40 ± 2.07

Retraining [29] 84.70 56.25 10−34 10−74 1040

Knockoff Nets [30] 85.31 49.82 10−19 10−108 1089

AugSteal [36] 84.92 54.35 10−24 10−106 1081

D-DAE [69] 85.06 64.45 10−54 10−102 10−48

MEBooster [70] 83.46 59.80 10−46 10−96 1050

SSLExtraction (Ours) 84.23 44.49 10−18 10−115 1098

EWE [21] 86.10 26.88 0.52 ± 1.64

Retraining [29] 82.22 36.05 10−87 10−59 10−28

Knockoff Nets [30] 53.61 21.34 10−22 10−15 10−7

AugSteal [36] 86.68 6.08 10−1 10−99 1098

D-DAE [69] 84.26 18.93 10−20 10−72 1052

MEBooster [70] 85.20 23.50 10−28 10−65 10−37

SSLExtraction (Ours) 88.74 5.50 10−1 10−105 10103

MEA-Defender [71] 86.08 100.00 1.40 ± 1.14

Retraining [29] 81.26 45.40 10−16 10−15 10−2

Knockoff Nets [30] 82.70 57.93 10−29 10−4 10−25

AugSteal [36] 82.47 27.50 10−3 10−46 1043

D-DAE [69] 86.08 52.37 10−27 10−10 10−17

MEBooster [70] 85.51 67.72 10−28 10−20 10−8

SSLExtraction (Ours) 87.47 2.33 10−1 10−107 10106

tions identical. Additional implementation details are provided
in Appendix A.
Evaluation with Multiple Benign Models. To obtain a more
reliable estimate of watermark similarity, we extend the p-
value-based evaluation by using multiple benign models rather
than a single one. We train five benign models with diverse
architectures (ResNet-50, VGG16, AlexNet, ViT, and Swin)
under the same training protocol, and compute WSR for each
model independently. The reported score is the mean and
standard deviation across these five benign models. This multi-
reference evaluation reduces variance introduced by model-
specific behaviors and provides a more robust measure of the
surrogate model’s watermark alignment with benign models.

B. Results on Watermark Removal

Table I demonstrates that our method achieves the best
watermark removal performance compared to other baseline
removal attacks on CIFAR-10. A similar trend is observed on
ImageNet, as shown in Table IX in Appendix A. Specifically,
our approach attains the lowest WSR. It also achieves the
highest p-valuew, suggesting that the surrogate model is sta-
tistically independent of the watermarked model in hypothesis
testing and exhibits the greatest absolute distance from it.

We note that surrogate models rarely exceed the accuracy of
the watermarked models. Within this limit, accuracy primarily
relies on including more representative samples. This can be
a challenge in watermark removal, as normal samples can be
excluded while avoiding trigger samples, which in turn sacri-
fice accuracy. Our method mitigates this issue by strategically
making the trigger samples as outliers in SSL feature space
and highly separable from normal samples. Thus, the surrogate

model simultaneously attains high accuracy and low WSR as
shown in Table I. Specifically, our method leads to accuracy
of 68-71% (ImageNet) and 84-89% (CIFAR-10), which are
much reasonably close to watermarked model accuracy 70.06-
74.25% (ImageNet) in Table IX (in Appendix A) and 86.08-
87.81% (CIFAR10) in Table I respectively. Moreover, our
method is particularly effective at achieving high accuracy
with fewer queries (reflected in Fig. 4), and beyond 5K-
10K queries, the gain becomes marginal since the surrogate
approaches the watermarked model’s accuracy limit.

For ImageNet extraction task, as shown in Table IX in
Appendix A, although the encoder is pretrained on CIFAR-
10, it still learns generic low-level and mid-level features
that transfer across datasets. And the encoder only needs
to produce a feature space in which samples with different
characteristics can be meaningfully separated; it does not need
to encode the full ImageNet distribution at this stage. After
sample selection, we append a two-layer MLP to the encoder,
and the victim-provided labels are then used to train the entire
surrogate model. Through this supervised training process,
both the encoder and the MLP progressively adapt and acquire
the richer ImageNet-level representations. Consequently, a
CIFAR-10-pretrained encoder is sufficient to bootstrap the
sampling process while still enabling high accuracy.

Benefiting from learning the inherent features of inputs, our
method effectively removes various types of watermarks,
including backdoor-based watermarks (EWE [21]), randomly
assigned input-output pairs (Margin-based [25]), and determin-
istically selected input-output pairs (MAT [27]). Our approach
also achieves strong removal performance against the state-of-

8



(a) (b)

Fig. 4: Accuracy curves of surrogate models on CIFAR-10 and ImageNet under various model extraction methods.

(a) Margin-based Watermarking (b) MAT (c) MEA-Defender

Fig. 5: Accuracy and WSR of surrogate models on CIFAR-10 under various extraction attacks and watermarking schemes.

the-art method MEA-Defender [71] and successfully captures
the intrinsic features, making the surrogate model more aligned
with the benign model.

While our method does not always reduce the WSR to abso-
lute zero, we note that perfectly distinctive watermarks have
not been demonstrated by any prior watermarking scheme.
Consistent with prior work [71], benign models naturally
exhibit non-zero WSR due to accidental trigger activations.
Following standard practice in the watermarking literature,
which considers WSR ≤ 30% as successful unwatermark-
ing [71], our method achieves a substantially lower WSR
(Table I), outperforming all existing baselines. Although a
small fraction of triggers may still activate, the reduction
is sufficient to invalidate practical ownership claims under
existing verification protocols.

Table I also demonstrates that our proposed metric r
provides a more precise evaluation of the watermarking task
and better mitigates false ownership claims compared to p-
value. Notably, MAT exhibits the highest post-extraction WSR
(44.49%) and the lowest p-valuew among all watermarking
methods. This correlation arises because both p-valuew and
WSR measure the similarity between the surrogate and wa-
termarked models. Despite MAT yielding the highest WSR
among all attacks, the surrogate model aligns more closely

with the benign model (WSR = 45.40%), revealing an incon-
sistency. This motivates the introduction of a more reliable
metric r for distinction. The surrogate model under MAT
yields r = 1098, indicating that it is relatively closer to
the benign model. This further confirms that our method
effectively removes the watermark despite the high WSR.

We further test prior extraction methods that were originally
designed for unwatermarked models in the watermark removal
setting. The results indicate that when queries are issued
over the entire training set, AugSteal [36] fails to suppress
the watermark. This limitation arises because the method is
tailored to learn the victim’s decision boundaries, which over-
lap with regions containing watermark information, thereby
yielding a high WSR. In contrast, our framework leverages the
intrinsic feature distribution of the inputs, naturally avoiding
watermark-specific patterns. We also examine how different
query budgets affect watermark retention, as illustrated in
Figure 5, with further analysis in Section IV-C.

C. Results on Data Reduction
Fig. 4 presents the results of our method compared to

other approaches for data reduction on the CIFAR-10 and
ImageNet datasets. We obtain hard-label outputs by querying a
watermarked model [25] and use these outputs to train both our
linear classifier and other baseline models. The test accuracy
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Fig. 6: Ablation study. Impact of key components on surrogate
model’s accuracy in our model extraction attack.

is recorded as the evaluation metric. We set the number of
iterations T in Algorithm 1 to 100, which requires only a few
minutes to produce an approximate solution to Problem (2).

To ensure a fair comparison with existing methods, we adopt
the same experimental setup by training the self-supervised
encoder on an out-of-distribution (OOD) dataset. Specifically,
for attacks targeting CIFAR-10 classification models, we use
an encoder trained on ImageNet, while for attacks against
ImageNet models, we employ an encoder trained on CIFAR-
10. After obtaining predictions from the watermarked victim
model, we fine-tune the entire model while simultaneously
training a linear classifier. In addition, Table VI shows that
using in-distribution data for self-supervised training yields
higher accuracy due to better alignment with the target task.

Experimental results show that our method requires signif-
icantly fewer queries than baselines. Specifically, our method
achieves 70% accuracy with only 500 queries, whereas other
methods require over 10K queries to reach this performance.
This indicates that our algorithm produces a rather sharp esti-
mate. It benefits from the random walk strategy on the lattice,
which enables rapid convergence to a locally optimal solution.
Our approach selects sufficiently diverse samples, allowing for
near-complete coverage of the feature space. In contrast, other
methods precisely mimic decision boundaries [36] or search
within the pixel space [34], which leads to redundant queries.

Furthermore, our method not only achieves high query
efficiency but also removes watermark information simulta-
neously, as shown in Fig. 5. The results show that the base-
line method AugSteal [36] inadvertently captures and retains
watermark information. In contrast, our method learns the
inherent features, effectively identifying watermarked samples
as outliers and mitigating their influence on surrogate model.

D. Ablation Study

We perform the ablation study by querying a watermarked
model trained using the margin-based method [25] on CIFAR-
10, which achieves 87.81% accuracy and a watermark success
rate of 100.00%. The encoder is trained on an OOD dataset
(ImageNet), and all queries are also sampled from the same

OOD source. Our method comprises three key components: (1)
self-supervised learning for feature extraction, (2) initializa-
tion, and (3) random walk strategy for iterative optimization.
Experimental results, shown in Fig. 6, indicate that WSR
remains consistently low (around 8%) in all configurations ex-
cept when removing SSL. Therefore, we report the WSR only
for that particular case and focus the figure on highlighting
the impact of each component on data reduction.
Impacts of Removing SSL. When self-supervised learning is
removed, the surrogate model is trained entirely from random
initialization without any pretrained or frozen encoder, and Al-
gorithm 1 can only select dissimilar inputs in the pixel space.
The surrogate model achieves low accuracy and relatively high
WSR for all query budgets, as the sampled points remain
dispersed in the pixel space and tend to learn watermark-
related features rather than capturing intrinsic representations.
Impacts of Initialization (Algorithm 2). When the greedy-
based initialization is removed, we adopt a random initial-
ization strategy. As shown in Fig. 6, the performance under
random initialization is only slightly inferior to that of greedy
initialization. This is because our method incorporates an
iterative random walk process following initialization, which
allows the solution to approximate a locally optimal solution
to Problem (2). We further analyze the effect of the number
of iterations in the next section, with results presented in
Table III. The results indicate that greedy initialization enables
faster convergence, reaching stability within a small number of
iterations, whereas the random initialization strategy requires
over 100 iterations to achieve a comparable performance.
Thus, greedy initialization improves computational efficiency
and reduces resource consumption.
Impacts of Random Walk (Algorithm 3). When the random
walk algorithm is removed, we directly query the victim
model using the initialization results. As shown in Fig. 6,
the accuracy drops significantly when the query budget is
below 1K. This occurs because, even with greedy initialization,
the first randomly selected sample can influence the subse-
quent queries, limiting the initialization to fully exploring and
covering the entire feature space. However, when the query
budget exceeds 5K, the accuracy degradation becomes less
severe. This is because a larger query budget increases the
likelihood of sampling from previously uncovered regions of
the feature space, thereby expanding coverage and reducing
the dependence on the random walk algorithm.

E. Other Impacts

Impacts of Different SSL Frameworks. We evaluate our
method using three self-supervised learning frameworks: Sim-
CLR [43], MoCo v2 [44], and BYOL [45], with results pre-
sented in Table II. The differences among them are minimal,
mainly in slight variations in downstream task accuracy. This
is expected, as they are representative contrastive learning al-
gorithms capable of extracting intrinsic feature representations.
Impacts of Random Walk Iterations. In our main experi-
ments, the number of iterations T in Algorithm 3 is set to 100.
Here, we evaluate the impact of T on performance. As shown
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TABLE II: Impacts of different SSL frameworks on CIFAR-10 dataset.

Victim Models Surrogate Models

Acc. (%) WSR (%) SSL frameworks 500 Query 1K Query 2K Query 3K Query 5K Query
Acc. (%) WSR (%) Acc. (%) WSR (%) Acc. (%) WSR (%) Acc. (%) WSR (%) Acc. (%) WSR (%)

83.57 100.00
SimCLR [43] 65.36 6.45 67.24 8.61 70.97 12.56 72.65 9.15 73.98 7.01
MoCo v2 [44] 58.12 8.11 61.55 9.65 67.59 13.91 69.74 8.61 69.55 10.41

BYOL [45] 72.15 2.12 75.82 3.29 77.67 2.79 81.41 5.62 83.87 3.36

TABLE III: Impacts of random walk iterations.

Queries Initialization Strategy Iteration
10 20 30 50 100

500 Greedy (Algorithm 2) 64.26 65.43 65.49 65.12 65.36
Random 61.91 63.44 64.15 64.44 65.17

1K Greedy (Algorithm 2) 66.85 66.92 67.40 67.30 67.24
Random 64.91 65.30 65.84 66.46 67.05

2K Greedy (Algorithm 2) 69.43 69.79 70.50 70.12 70.97
Random 67.82 68.90 70.08 70.42 70.61

3K Greedy (Algorithm 2) 71.70 72.54 72.08 72.63 72.65
Random 70.48 71.57 72.45 72.04 72.68

5K Greedy (Algorithm 2) 73.01 73.73 73.88 74.06 73.98
Random 72.46 73.58 73.74 73.38 73.33

in Table III, when the query budget is small, approximately
100 iterations are required for convergence. However, with
a larger query budget, convergence is achieved with fewer
iterations since the initial query set already provides sufficient
coverage of the feature space and only minor refinements are
needed to reach a local optimum. Although random initializa-
tion requires more iterations to reach convergence, increasing
the query budget mitigates this to some extent. Compared
to random initialization, Algorithm 3 consistently converges
faster across all query budgets, demonstrating its efficiency.
Impacts of Victim-Surrogate Cross-Architecture Settings.
In our threat model, the architecture of the victim model
is kept confidential for intellectual property protection. To
assess whether our method depends on architectural similarity
between victim and surrogate models, we conduct a cross-
architecture study using five distinct architectures, including
three CNN-based models (VGG16 [42], AlexNet [75], and
ResNet-50 [1]) and two transformer-based models (ViT [2]
and Swin [76]). As shown in Table V and Table IV, our
method achieves comparable extraction performance across all
architecture pairs. Because the victim models in our threat
model return only hard labels rather than soft predictions,
the queries produce consistent supervision signals regardless
of the victim’s architecture. Consequently, surrogate models
trained on these responses achieve nearly identical accuracy,
demonstrating that our approach is robust to mismatched
architectures and does not rely on shared inductive biases
or feature geometry between victim and surrogate models,
enabling the attacker to choose surrogate architectures freely.
Impacts of Different Training Datasets for SSL. We evaluate
the influence by training the encoder using both in-distribution
and OOD datasets. As shown in Table VI, when in-distribution
data is available to adversary, the accuracy of the extracted
model reaches 83.15% accuracy with only 500 queries, along-

side a reduced WSR. This highlights the significant role of
distribution alignment in improving the effectiveness of model
extraction and further reducing WSR, underscoring the critical
need for data privacy preservation in real-world deployments.

V. DISCUSSION

Black-box DNN Watermarks and Backdoors. Black-box
watermarks are sometimes referred to as backdoor-based in
prior work [78]. However, they differ significantly from stan-
dard DNN backdoors in terms of data patterns and target label
settings, especially in non-fixed-class scenarios. As a result,
removal techniques adapted from backdoor defenses, are often
ineffective against black-box watermarks [68].
Applications for p-Dispersion-Sum Problem. The maximum
dispersion problem has a wide range of practical applications,
such as optimizing facility location [79] to prevent facility
destruction in military defense and reduce competition in
business planning. Beyond physical distance, it also extends to
genetics, promoting genetic diversity [80], and social diversity
in workplace environments [81]. Additionally, it has been ap-
plied to optimize seating for COVID-19 social distancing [82].

In this work, we extend the concept of dispersion to feature
space to guide feature selection in our extraction attack. By
ensuring broad coverage of the feature space, our approach
minimizes redundancy and reduces the query budget.
Algorithm for p-Dispersion-Sum Problem. In Section III-C,
we propose a biased random walk algorithm to solve the
p-dispersion-sum problem. Although a variety of exact and
reformulation-based techniques have been studied (including
relaxations, semidefinite or integer linear reformulations, and
concave optimization) these approaches share the limitation
of rapidly escalating computational cost. Numerical results
indicate that these methods can efficiently handle instances
with n = 80 in 60 seconds but struggle for n = 100. Given
these limitations, we design a biased random walk algorithm
on a lattice, providing an efficient and practical solution.
Results on White-Box Watermarks. Beyond black-box set-
tings, our method also proves effective against white-box
watermarks. In evaluations on three representative white-box
schemes [9], [83], [10], it reduces watermark accuracy to
around 10%, indicating successful removal (Table VII).
Results on Defense Mechanisms. For methods that perturb
confidence scores [85], [86], [70], [87], they preserve hard-
label outputs to maintain utility and any effective modification
of the logits would typically cause surrogate models to suffer
noticeable accuracy degradation. However, since our threat
model assumes access to hard labels only, our method is not
affected by these defenses and maintains high accuracy as
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TABLE IV: Impacts of different victim architectures on CIFAR-10 MEA-Defender watermarked models.

Victim Models Surrogate Models

Architectures Acc. (%) WSR (%) 500 Query 1K Query 2K Query 3K Query 5K Query
Acc. (%) WSR (%) Acc. (%) WSR (%) Acc. (%) WSR (%) Acc. (%) WSR (%) Acc. (%) WSR (%)

VGG-like 81.07 100.00 63.28 9.68 68.57 6.23 72.14 7.29 72.83 8.48 74.09 8.74
AlexNet 80.87 100.00 63.45 5.56 67.36 12.79 71.41 10.43 72.40 7.56 73.33 5.13

ResNet-50 86.08 100.00 67.36 2.62 68.24 3.66 71.97 2.09 73.98 3.10 74.98 5.24

TABLE V: Results for cross-architecture model extraction on
CIFAR-10 Margin-based watermarked models.

Victim Models Surrogate Models
Architectures Acc. (%) WSR (%) Architectures Acc. (%) WSR (%)

ResNet-50 87.81 100.00

ResNet-50 88.02 5.39
AlexNet 84.27 6.12

VGG 85.91 5.84
ViT 86.34 5.51

Swin 86.72 5.63

AlexNet 88.57 100.00

ResNet-50 86.91 5.47
AlexNet 88.17 6.02

VGG 85.45 5.78
ViT 86.12 5.66

Swin 87.47 5.71

VGG 85.03 100.00

ResNet-50 87.42 5.41
AlexNet 83.95 6.05

VGG 85.27 5.62
ViT 85.76 5.53

Swin 86.01 5.59

ViT 72.65 100.00

ResNet-50 85.38 5.44
AlexNet 80.71 6.17

VGG 83.62 5.89
ViT 82.41 5.98

Swin 84.75 5.66

Swin 88.11 100.00

ResNet-50 86.12 5.52
AlexNet 88.03 6.21

VGG 88.91 5.88
ViT 84.23 5.74

Swin 86.57 6.03

shown in Table XI in Appendix A. Then, for defenses that
relabel predictions [84], our method operates in the intrinsic
feature space, making label manipulation ineffective. As for
query-filtering defenses targeting statistical anomalies [33],
our queries are non-adversarial and distributionally indistin-
guishable from natural samples.
Results on non-vision modalities. To verify the generalization
of our approach beyond computer vision, we extended the
experiments to text [71], audio [71], and SSL-encoder [88],
[71], [89] watermarking scenarios. Since most existing water-
marking methods rely on outlier-based trigger designs, our
SSL-based approach can effectively identify and filter out
such outliers in the representation space, enabling consistent
watermark removal across different modalities. Table VIII
reports our cross-modal experimental results, where the MAD
(Median Absolute Deviation) [89] quantifies the outlierness in
the output-entropy distribution [89], and the WR [88] denotes
the fraction of queries whose outputs match the watermark
trigger pattern [88]. Our method consistently achieves the high
task accuracy and low watermark verification metrics across
different modalities (text, audio and encoder), indicating that
the surrogate models exhibit watermark behaviors close to
those of the benign models.

Results on Victim-Class Absence. To examine how missing
victim classes affect SSL training, we construct training sets
by removing all CIFAR-10 samples from 1, 2, and 5 randomly
selected classes, and then extract the watermarked CIFAR-10
victim model [25]. We report the average performance over 10
independent trials. As shown in Table XII in Appendix A, our
extraction attack remains effective and consistently removes
watermarks across all settings. We further evaluate class-
specific absence by removing all dog images from CIFAR-
10 to extract the watermarked CIFAR-10 victim model [25].
The overall surrogate accuracy drops only moderately, and
the accuracy on the dog class remains high (82%), despite
the complete absence of dog samples during SSL pretraining.
A similar trend is observed when removing all dog-related
classes from ImageNet for training set to extract the water-
marked ImageNet victim model [25]. These results indicate
that our method does not require OOD coverage of all victim
classes; instead, it remains robust by leveraging sufficiently
dispersed queries to learn transferable image representations.
We additionally explored whether generative AI can compen-
sate for missing classes. By removing five CIFAR-10 classes
and generating 1,000 synthetic images per removed class with
Stable Diffusion, the resulting 84.51% accuracy and 6.52%
WSR remain close to the 5-Class Missing setting in Table XII
in Appendix A, showing only marginal improvement. A more
comprehensive investigation into using generative AI to create
training samples can be explored as future work.
Adversary Capabilities. In this work, we impose no con-
straints on the adversary’s capabilities, assuming unlimited
computational resources and access to unlabeled inputs. Under
this idealized setting, our study demonstrates that with the SSL
framework, an adversary can obtain a near-perfect encoder
and adapt to downstream tasks with minimal queries. This
highlights that model extraction attacks should not be analyzed
under the assumption of unlimited computational power, not
even at an exponential scale. If such computational resources
were available, the adversary could effortlessly train a high-
performing SSL encoder and efficiently solve Optimization
Problem (2), minimizing query budget.

Rather than assuming constraints on the adversary’s capa-
bilities, protecting the privacy of proprietary data is a more
critical concern for defenders. As shown in Table VI, when
the adversary acquires in-distribution knowledge, they can
achieve a near-converged accuracy of 83.15% with only 100
queries, while also significantly reducing the WSR. These
results underscore the importance of safeguarding training
data, as access to such information can significantly amplify
the effectiveness of model extraction and watermark removal.
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TABLE VI: Impacts of different training datasets for SSL in extracting watermarked model for CIFAR-10 classification.

SSL
Training Datasets

Surrogate Models
500 Query 1K Query 2K Query 3K Query 5K Query

Acc. (%) WSR (%) Acc. (%) WSR (%) Acc. (%) WSR (%) Acc. (%) WSR (%) Acc. (%) WSR (%)

STL10 [77] 65.36 8.18 67.24 8.27 70.97 12.15 72.65 9.06 73.98 10.50
ImageNet [73] 67.15 6.45 69.61 6.61 73.74 10.56 74.86 9.15 77.98 7.01
CIFAR-10 [72] 83.15 2.85 83.82 3.04 84.65 2.63 84.41 5.24 84.87 3.51

TABLE VII: Results of our method against non-black-box watermarking schemes on the CIFAR-10 dataset.

Victim Models Surrogate Models

Defense Methods Acc. (%) WSR (%) 500 Query 1K Query 2K Query 3K Query 5K Query
Acc. (%) WSR (%) Acc. (%) WSR (%) Acc. (%) WSR (%) Acc. (%) WSR (%) Acc. (%) WSR (%)

Uchida [9] 90.19 100.00 70.68 10.21 71.93 12.24 76.35 11.98 77.29 12.91 81.53 11.74
DeepMarks [83] 91.13 100.00 71.18 7.71 72.39 5.74 76.88 6.53 77.82 7.43 82.03 6.28
DeepSigns [10] 91.22 100.00 71.13 11.65 72.47 6.78 76.80 8.44 77.75 7.48 82.01 8.23

DAWN [84] 92.09 99.46 71.59 12.03 72.82 14.12 77.41 12.85 78.37 13.74 82.51 14.63

TABLE VIII: Results for watermark removal across non-vision modalities including text, audio, and SSL-encoder tasks.

Tasks Watermarking Methods Datasets Victim Models Benign Models Surrogate Models
Acc. (%) Verification Metric Verification Metric Acc. (%) Verification Metric

Text MEA-Defender [71] AG News 88.15 WSR = 100.00% WSR = 1.19% 90.75 WSR = 2.54%

Audio MEA-Defender [71] Speech Commands 82.17 WSR = 100.00% WSR = 0.92% 80.50 WSR = 3.86%

Encoder
SSLGuard [88]

CIFAR-10
76.50 WR = 100.00% WR = 0.04% 81.78 WR = 0.81%

MEA-Defender [71] 75.14 WSR = 100.00% WSR = 0.38% 82.90 WSR = 1.26%
SSL-WM [89] 84.33 MAD = 99.45 MAD = −0.92 87.15 MAD = −0.30

Limitation. Our metric r requires access to benign models in
order to quantify the statistical deviation between benign and
surrogate behaviors. For watermarking schemes that embed
triggers via a fine-tuning stage (such as EWE [21] and
MAT [27]), the benign model naturally exists as the checkpoint
prior to watermark insertion, and thus no additional training
cost is incurred. However, for watermarking methods that train
the watermarked model from scratch without a benign check-
point (such as Margin-based [25] and MEA-Defender [71]), an
additional benign model must be trained to compute r. While
this extra cost is unavoidable for such schemes, we emphasize
that it is incurred only once by the model owner.

VI. RELATED WORK

Most of the watermark removal works focus on white-
box settings. Pruning-based attacks [90], [9] remove a large
number of weights or neurons. Finetuning-based attacks [91],
[92], [93], [47], [94] involve further training the target model
with a smaller learning rate and dataset. Unlearning-based
attacks [78], [95] identify watermark patterns and remove them
using unlearning techniques.

In this paper, we consider a more realistic black-box set-
ting where the model architecture and parameters are kept
confidential, and only limited API access is available. Re-
training [29] is oftentimes considered the first model ex-
traction. Sampling-based approaches, such as Knockoff Nets’
random/adaptive selection [30] and reservoir sampling [96],
as well as SwiftThief’s rare-class-prioritized sampling [97], all
aim to identify more informative public data to improve extrac-
tion efficiency. More recent approaches include detection-and-

recovery attacks [69], [98], training-optimization-based meth-
ods like MEBooster [70]. However, existing methods require
a large number of queries to obtain functionally equivalent
surrogate models, yet often retain the watermark patterns.

Model extraction attacks typically require many queries, so
data reduction seeks to lower query costs while preserving ac-
curacy. Early works like Jacobian-based augmentation [33] and
DRMI [34] select informative samples but rely on data similar
to the target model, limiting practicality. Copycat CNN [99]
and Knockoff Nets [30] instead leverage public datasets and
adaptive sampling to avoid dependence on proprietary data.
AugSteal [36] further enhances query efficiency through public
data filtering, adaptive querying, and augmentation. Data-free
model extraction methods synthesize queries using generative
models [100], [101], [102] to steal the victim model without
relying on any real data. However, these methods often miss
task-intrinsic features, leading to redundant queries and unin-
tended learning of watermark patterns.

VII. CONCLUSION

In this paper, we present SSLExtraction, a black-box model
extraction framework that leverages SSL for data reduction and
watermark removal. We first extract intrinsic and watermark-
independent representations. Then, we formalize the query
sample selection process as a p-dispersion-sum optimization
problem. After analyzing the computational complexity of
this problem, we propose a high-dimensional random walk-
based approximation algorithm, which significantly reduces
the query budget while maintaining high model extraction
accuracy and effective watermark removal. Furthermore, we
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emphasize that the goal of watermark task is to determine
whether a suspicious model is a benign model or a stolen
one. To this end, we introduce a new evaluation metric that
leverages hypothesis testing to quantify the relative distance
from a suspicious model to both a watermarked model and a
benign model, determining which it more closely resembles.
Extensive experiments across various watermarking defenses
and extraction attacks demonstrate that SSLExtraction not only
achieves strong extraction performance but also effectively
removes watermarks, outperforming existing baselines.
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J.-M. Alija-Pérez, and R. Álvarez, “Optimal chair location through
a maximum diversity problem genetic algorithm optimization,” in
International Work-Conference on Bioinformatics and Biomedical En-
gineering. Springer, 2022, pp. 417–428.

[83] H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar, “Deep-
marks: A secure fingerprinting framework for digital rights manage-
ment of deep learning models,” in ICMR, 2019, pp. 105–113.

[84] S. Szyller, B. G. Atli, S. Marchal, and N. Asokan, “Dawn: Dynamic
adversarial watermarking of neural networks,” in Proceedings of the
29th ACM international conference on multimedia, 2021.

[85] M. Tang, A. Dai, L. DiValentin, A. Ding, A. Hass, N. Z. Gong, Y. Chen
et al., “{ModelGuard}:{Information-Theoretic} defense against model
extraction attacks,” in 33rd USENIX security, 2024, pp. 5305–5322.

[86] H. Chen, T. Zhu, L. Zhang, B. Liu, D. Wang, W. Zhou, and M. Xue,
“Queen: Query unlearning against model extraction,” IEEE TIFS, 2025.

[87] X. Gong, R. Wei, Z. Wang, Y. Sun, J. Peng, Y. Chen, and Q. Wang,
“Beowulf: Mitigating model extraction attacks via reshaping decision
regions,” in Proceedings of the 2024 on ACM CCS, 2024.

[88] T. Cong, X. He, and Y. Zhang, “Sslguard: A watermarking scheme for
self-supervised learning pre-trained encoders,” in 2022 ACM CCS.

[89] P. Lv, P. Li, S. Zhu, S. Zhang, K. Chen, R. Liang, C. Yue, F. Xiang,
Y. Cai, H. Ma et al., “Ssl-wm: A black-box watermarking approach
for encoders pre-trained by self-supervised learning,” arXiv preprint
arXiv:2209.03563, 2022.

[90] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” in International
symposium on research in attacks, intrusions, and defenses. Springer,
2018, pp. 273–294.

[91] X. Chen, W. Wang, C. Bender, Y. Ding, R. Jia, B. Li, and D. Song,
“Refit: a unified watermark removal framework for deep learning
systems with limited data,” in ACM Asia CCS, 2021.

[92] X. Chen, W. Wang, Y. Ding, C. Bender, R. Jia, B. Li, and D. Song,
“Leveraging unlabeled data for watermark removal of deep neural
networks,” in ICML workshop on Security and Privacy of Machine
Learning, 2019, pp. 1–6.

[93] X. Liu, F. Li, B. Wen, and Q. Li, “Removing backdoor-based water-
marks in neural networks with limited data,” in 2020 ICPR.

[94] Q. Zhong, L. Y. Zhang, S. Hu, L. Gao, J. Zhang, and Y. Xiang,
“Attention distraction: Watermark removal through continual learning
with selective forgetting,” in 2022 IEEE ICME. IEEE, 2022, pp. 1–6.

[95] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE SP. IEEE, 2019, pp. 707–723.

[96] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” arXiv preprint arXiv:1605.07277, 2016.

15



[97] J. Lee, S. Han, and S. Lee, “Swiftthief: enhancing query efficiency of
model stealing by contrastive learning,” in Proc. 33rd Int. Joint Conf.
Artif. Intell. Aug, 2024, pp. 422–430.

[98] X. Gong, S. Li, Y. Chen, M. Li, R. Wei, Q. Wang, and K.-Y.
Lam, “Augmenting model extraction attacks against disruption-based
defenses,” IEEE TIFS, 2024.

[99] J. R. Correia-Silva, R. F. Berriel, C. Badue, A. F. De Souza, and
T. Oliveira-Santos, “Copycat cnn: Stealing knowledge by persuading
confession with random non-labeled data,” in IJCNN. IEEE, 2018.

[100] J.-B. Truong, P. Maini, R. J. Walls, and N. Papernot, “Data-free model
extraction,” in IEEE/CVF CVPR, 2021, pp. 4771–4780.

[101] S. Kariyappa, A. Prakash, and M. K. Qureshi, “Maze: Data-free model
stealing attack using zeroth-order gradient estimation,” in Proceedings
of the IEEE/CVF CVPR, 2021, pp. 13 814–13 823.

[102] S. Sanyal, S. Addepalli, and R. V. Babu, “Towards data-free model
stealing in a hard label setting,” in IEEE/CVF CVPR, 2022.

[103] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning representa-
tions by maximizing mutual information across views,” Advances in
neural information processing systems, vol. 32, 2019.

[104] A. Kolesnikov, X. Zhai, and L. Beyer, “Revisiting self-supervised visual
representation learning,” in IEEE/CVF CVPR, 2019.

[105] R. M. Karp, “Reducibility among combinatorial problems,” in 50 Years
of Integer Programming 1958-2008: from the Early Years to the State-
of-the-Art. Springer, 2009, pp. 219–241.

Algorithm 1: Data Reduction
Input : Feature vectors {hi}ni=1, number of queries p,

number of iterations T ;
Output: Binary decision vector {bi}ni=1 where∑n

i=1 bi = p;
1 {bi}ni=1 = greedy initialization(hi);
2 for all j = 1, · · · , T do
3 {bi}ni=1 = random walk ({bi}ni=1, p, hi);

4 return {bi}ni=1;

Algorithm 2: Greedy Initialization
Input : Feature vectors {hi}ni=1, number of queries p;
Output: Binary decision vector {bi}ni=1 where∑n

i=1 bi = p;
1 {bi}ni=1 = 0;
2 j = RandomSelect(1, n);
3 bj = 1;
4 for all j = 2, · · · , p do
5 for all k = 1, · · · , n do
6 if bk = 0 then
7 dk =

∑n
i=1 bi · ∥hi − hk∥;

8 else
9 dk = 0;

10 ℓ = argmaxk dk;
11 bℓ = 1;

12 return {bi}ni=1;

APPENDIX A
ADDITIONAL EXPERIMENTAL DETAILS

A. Experimental Setup
Watermarking Methods. We evaluate all extraction meth-
ods against a diverse set of representative watermarking

Algorithm 3: Random Walk Iteration
Input : Feature vectors {hi}ni=1, number of queries p,

binary decision vector {bi}ni=1;
Output: Binary decision vector {bi}ni=1 where∑n

i=1 bi = p;
1 j = RandomSelect(1, n);
2 while bj = 1 do
3 j = RandomSelect(1, n);

4 bj = 1;
5 for all k = 1, · · · , n do
6 if bk = 1 then
7 dk = 1

2

∑
i̸=k

∑
j ̸=k bibj · ∥hi − hj∥;

8 else
9 dk = 0;

10 ℓ = argmaxk dk;
11 bℓ = 0;
12 return {bi}ni=1;

Algorithm 4: Ownership Verification

Input : Watermarked model M̃ , suspicious model M̂ ,
benign model Mb, trigger samples {xi}mi=1;

Output: Ratio r;
1 ywi = M̃(xi);
2 ysi = M̂(xi);
3 ybi = Mb(xi);
4 p-valuew = χ2 − Text ({ysi }mi=1, {ywi }mi=1);
5 p-valueb = χ2 − Text

(
{ysi }mi=1, {ybi }mi=1

)
;

6 r =
p-valuew
p-valueb

;
7 return r;

schemes encompassing OOD triggers, in-distribution sam-
pling, boundary-based selection, backdoor techniques, and
composite-pattern watermarking. Specifically, we use four rep-
resentative watermarking methods: Margin-based Watermark-
ing [25], Multi-View Data (MAT) [27], Entangled Watermark
Embedding (EWE) [21] and MEA-Defender [71]. All base-
lines are evaluated using their official public implementations.
Baseline Attacks. We compare our method with Retrain-
ing [29], Knockoff Nets [30] and AugSteal [36] for water-
mark removal. And we compare our method with the Ac-
tiveThief [35] and Black-box Dissector [41] for data reduction.
Implementation Details. In most experiments, we adopt
SimCLR [43] as the self-supervised learning algorithm. Sim-
CLR [43] define the loss function for a positive pair of
examples (i, j) as

LSimCLR(i, j) = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸= i] exp(sim(zi, zj)/τ)
(3)

where 1[k ̸= i] is an indicator function evaluating to 1
iff k ̸= i, τ is a temperature parameter, z represents the
projection of an input after being processed by the encoder
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TABLE IX: Results for model extraction attacks against watermarking schemes on ImageNet dataset, where the scores for the
best performance are bolded.

Watermarking Methods Victim Models Benign Models Surrogate Models
Acc. (%) WSR (%) WSR (%) Attack methods Acc. (%) WSR (%) p-valuew p-valueb r

Margin-based [25] 70.06 100.00 4.62 ± 3.05

Retraining [29] 55.68 31.12 10−3 10−53 1049

Knockoff Nets [30] 63.24 47.35 10−14 10−9 10−6

AugSteal [36] 55.65 37.15 10−11 10−18 107

D-DAE [69] 67.92 34.51 10−10 10−19 109

MEBooster [70] 69.10 42.50 10−20 10−19 10−1

SSLExtraction (Ours) 68.37 5.37 10−3 10−73 1070

MAT [27] 74.25 100.00 35.29 ± 3.35

Retraining [29] 65.36 40.56 10−8 10−83 1074

Knockoff Nets [30] 72.51 56.17 10−26 10−56 1029

AugSteal [36] 70.10 59.51 10−31 10−42 1010

D-DAE [69] 71.98 66.87 10−35 10−41 106

MEBooster [70] 70.25 67.24 10−35 10−43 107

SSLExtraction (Ours) 70.97 34.08 10−5 10−118 10113

EWE [21] 73.91 96.50 2.87 ± 1.33

Retraining [29] 72.77 38.14 10−17 10−15 10−2

Knockoff Nets [30] 71.82 43.69 10−20 10−11 10−9

AugSteal [36] 70.52 38.90 10−17 10−13 10−4

D-DAE [69] 70.63 41.72 10−35 10−13 10−23

MEBooster [70] 70.82 45.30 10−35 10−35 10−35

SSLExtraction (Ours) 70.61 3.96 10−1 10−72 1070

MEA-Defender [71] 70.29 97.99 3.86 ± 2.58

Retraining [29] 64.26 35.97 10−9 10−43 1033

Knockoff Nets [30] 64.98 27.19 10−7 10−37 1030

AugSteal [36] 63.74 16.60 10−4 10−50 1046

D-DAE [69] 69.02 39.84 10−28 10−20 10−8

MEBooster [70] 69.13 42.30 10−34 10−15 10−19

SSLExtraction (Ours) 69.79 5.84 10−1 10−93 10−91

TABLE X: Results for our method against watermarking schemes on MNIST dataset.

Watermarking Methods Victim Models Benign Models Surrogate Models
Acc. (%) WSR (%) WSR (%) Attack methods Acc. (%) WSR (%) p-valuew p-valueb r

Margin-based [25] 98.42 100.00 0.38 ± 0.71 SSLExtraction (Ours) 98.35 4.12 10−1 10−92 1091

MAT [27] 98.31 100.00 32.74 ± 1.89 SSLExtraction (Ours) 98.22 30.18 10−18 10−102 1096

EWE [21] 97.84 28.11 0.41 ± 1.02 SSLExtraction (Ours) 98.44 4.93 10−1 10−93 1091

MEA-Defender [71] 97.92 100.00 0.85 ± 0.97 SSLExtraction (Ours) 98.06 2.95 10−1 10−98 1097

and the projection head and sim(u, v) = u⊤v
∥u∥∥v∥ is the cosine

similarity. By sampling a large batch of inputs, the contrastive
loss is applied to pairs of inputs within the batch. SimCLR [43]
treats the other N −1 inputs in the batch as negative samples,
allowing the model to learn by maximizing the similarity of
positive pairs and minimizing the similarity of negative pairs.

To adapt ResNet-50 for our method, we make some mod-
ifications to enhance the model’s ability to learn intrinsic
feature representations without labeled data. Specifically, we
remove the final fully connected classification layer and use
a projection head, a two-layer MLP that maps the extracted
features to a lower-dimensional space suitable for contrastive
learning. Additionally, we apply extensive data augmentation
techniques and optimize the model using the contrastive loss
defined in Equation (3). To reduce training time, we train the
model for 100 epochs and set the batch size to 256 in our
experiments, which is significantly smaller than the recom-
mended 4096 [43]. In our main experiments, we primarily
adopt the SimCLR [43] framework. Additionally, we conduct
experiments with MoCo v2 [44] and BYOL [45], along with
an analysis of the impact of different training epochs and batch

TABLE XI: Results of our model extraction attack against
different defensive methods on CIFAR-10.

Defense Methods Victim Acc. (%) Surrogate Acc. (%)
MODELGUARD [85] 93.70 92.41

QUEEN [86] 90.01 88.54
SNE [70] 88.23 90.57

sizes, which are presented in Section IV-E.
To evaluate the effectiveness of watermark removal and data

reduction, we follow the widely used linear evaluation proto-
col [43], [103], [104], where a linear classifier is trained on top
of the frozen network obtained through contrastive learning.
This linear layer is optimized using queries to the victim
model and the corresponding hard-label outputs, enabling the
surrogate model to extract knowledge from the victim model
while maintaining the learned feature representations.

APPENDIX B
PROOF OF NP-COMPLETENESS FOR PROBLEM (2)

(Theorem III.1). Optimization Problem (2) is NP-complete.
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TABLE XII: Results for extracting the margin-based water-
marked model under different victim-class absence scenarios.

Scenario Victim Models Surrogate Models
Acc. (%) WSR (%) Acc. (%) WSR (%)

CIFAR-10: 1-Class Missing 87.81 100.00 87.16 3.94
CIFAR-10: 2-Class Missing 87.81 100.00 86.42 5.89
CIFAR-10: 5-Class Missing 87.81 100.00 83.15 7.03

CIFAR-10: Dog-Class Missing 87.81 100.00 87.19 4.16
ImageNet: Dog-Family Missing 70.06 100.00 66.91 6.41

Proof. First, we need to prove that the Problem (2) belongs to
NP. Given a candidate solution bi, we can verify its feasibility
in polynomial time. We compute

∑n
i=1 bi and check whether it

equals p, which takes O(n) time. Then, the objective function
in Problem (2) requires O(n2) time to compute. This shows
that the problem belongs to NP.

Then we prove that the Problem (2) is NP-hard, we will re-
duce the Maximum Independent Set problem, which is known
to be NP-hard [105], to our problem in polynomial time. The
Maximum Independent Set Problem is a classical problem in
graph theory. Given an undirected graph G = (V,E) and
p < |V |, the goal is to find a subset of vertices S ⊂ V such
that no two vertices in S are adjacent, and |S| ≥ p.

We reduce the Maximum Independent Set problem to our
problem by mapping the graph G = (V,E) to a set of high-
dimensional features. For each vertex vi ∈ V , we define
a corresponding feature hi in high-dimensional space. The
distance qij between any two features hi and hj is defined
based on the adjacency in the graph:

qij = 1 [(vi, vj) /∈ E] .

The goal of the Maximum Independent Set problem is to
select a set of vertices where no two vertices are adjacent.
In Problem (2), we are selecting a subset of features such
that the sum of the distances between the selected features
is maximized. When a graph G contains an independent set
of size at least p, there exists a solution to Problem (2) that
selects a subset H with pairwise distances equal to 1, where
|H| ≥ p. Since hi and vi have a one-to-one correspondence,
the resulting set H of selected features in Problem (2) thus
directly corresponds to the desired independent set in G.

Since the Maximum Independent Set problem is NP-hard,
and we reduce it to our problem in polynomial time, this
implies that our problem is NP-hard as well. Therefore, we
have proven that Problem (2) is NP-complete.

APPENDIX C
APPROXIMATION RATIO FOR ALGORITHM 1

To evaluate the theoretical performance of Algorithm 1 for
solving the p-dispersion-sum problem defined in Equation (2),
we analyze its approximation ratio, which quantifies how
close the objective value obtained by the algorithm is to
the optimal solution. Since the problem is NP-hard due to
Theorem III.1, obtaining an exact solution in polynomial time
is intractable. Therefore, approximation analysis provides a
meaningful performance guarantee. In this section, we derive

a lower bound on the ratio between the value returned by
Algorithm 1 and the optimal objective value.

Theorem C.1. Let I be an instance of the optimization
problem given in Equation (2). Let OPT(I) and ALG(I)
denote the objective values of the optimal solution and the
solution returned by Algorithm 1 on instance I , respectively.
Then the following approximation guarantee holds:

OPT(I)

ALG(I)
≤ 2. (4)

Proof. For disjoint non-empty sets A,B, define d(A,B) =∑
x∈A,y∈B d(x, y) and d(A) = d(A,A). We use two basic ob-

servations: (i) there exists x ∈ A with d(x,B) ≥ d(A,B)/|A|
(averaging); (ii) if |B| ≥ 2, then d(A,B) ≥ |A| d(B)/(|B|−1)
(triangle-inequality based).

Let ℓ∗ = OPT(I)/
(
k
2

)
. We prove by induction that

d(Pp) ≥
p(p− 1)

2
· ℓ

∗

2
.

For p = 2, the algorithm selects the maximum-distance pair,
which has distance at least ℓ∗.

Assume |Pk+1| = k + 1 satisfies the bound. We show that
some x /∈ Pk+1 satisfies

d(x, Pk+1) ≥
k + 1

2
ℓ∗.

Let P ∗ be an optimal set, X = P ∗\Pk+1 and Y = P ∗∩Pk+1.
Case 1: X = P ∗. By (ii), d(Pk+1, P

∗) ≥ (k + 1)p ℓ∗/2.
Applying (i) to A = P ∗ yields d(x, Pk+1) ≥ k+1

2 ℓ∗.
Case 2: |X| ≤ 1. Then Pk+1 contains all or all-but-one

optimal elements; the next selected element contributes at least
(k + 1)ℓ∗/2.

Case 3: |X| ≥ 2. Since d(P ∗) = d(X) + d(Y ) + d(X,Y ),
either d(X) ≥ 1

2d(P
∗) or d(Y ) + d(X,Y ) ≥ 1

2d(P
∗).

If d(X) ≥ 1
2d(P

∗), then (ii) on (Pk+1, X) gives

d(Pk+1, X) ≥ (k + 1)d(P ∗)/(2(|X| − 1)).

Using (i) on A = X yields d(x, Pk+1) ≥ k+1
2 ℓ∗.

If d(Y ) + d(X,Y ) ≥ 1
2d(P

∗) and |Y | = 1, then
d(X,Pk+1) ≥ d(X,Y ) ≥ 1

2d(P
∗), and (i) gives d(x, Pk+1) ≥

k+1
2 ℓ∗. If |Y | ≥ 2, applying (ii) to (Y, Pk+1\Y ) gives a lower

bound on d(Pk+1), and applying (ii) again to (X,Pk+1) yields

d(X,Pk+1) ≥ |X|p ℓ∗/2,

from which (i) implies d(x, Pk+1) ≥ k+1
2 ℓ∗.

Since the algorithm picks the maximizer of d(x, Pk+1),

d(x, Pk+1) ≥
k + 1

2
ℓ∗

gives

d(Pk+2) ≥ d(Pk+1) + (k + 1)
ℓ∗

2
=

(k + 1)(k + 2)

2
· ℓ

∗

2
,

completing the proof.

18


	Introduction
	Background and Preliminaries
	Deep Neural Networks
	Model Extraction Attacks
	Watermarking

	Our Method
	Threat Model
	Self-supervised Model Extraction
	Algorithm for Data Reduction
	Complexity Analysis
	Algorithm

	Ownership Verification

	Evaluation
	Experimental Setup
	Results on Watermark Removal
	Results on Data Reduction
	Ablation Study
	Other Impacts

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Additional Experimental Details
	Experimental Setup

	Appendix B: Proof of NP-Completeness for Problem (2)
	Appendix C: Approximation Ratio for Algorithm 1

