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Abstract—The Domain Name System (DNS) is a core com-
ponent of the Internet. Clients query DNS servers to translate
domain names to IP addresses. Local DNS caches alleviate the
time it takes to query a DNS server, thereby reducing delays to
connection attempts. Prior work showed that DNS caches can be
exploited via timing attacks to test whether a user has visited a
specific website recently but lacked eviction capabilities, i.e., could
not monitor when precisely a user accessed a website, others
focused on DNS caches in routers. All prior attacks required some
form of code execution (e.g., native code, Java, or JavaScript) on
the victim’s system, which is also not always possible.

We introduce DMT, a novel Evict+Reload attack to contin-
uously monitor a victim’s Internet accesses through the local,
system-wide DNS cache. The foundation of DMT is reliable DNS
cache eviction: We present 4 DNS cache eviction techniques to
evict the local DNS cache in unprivileged and sandboxed native
attacks, virtualized cross-VM attacks, as well as browser-based
attacks, i.e., a website with JavaScript and a scriptless attack
exploiting the serial loading of fonts integrated in websites. Our
attack works both in default settings and when using DNS-over-
TLS, DNSSEC, or non-default DNS forwarders for security.
We observe eviction times of 77.267 ms on average across all
contexts, using our fastest eviction primitive and reload and
measurement times of 685.86 ms on average in the best case
(cross-VM attack) for 100 domains and 14.710s on average in
the worst case (JavaScript-based attack). Hence, the blind spot
of our attack for a granularity of five minutes is smaller than
0.26 % in the best case, and 4.92 % in the worst case, resulting
in a reliable attack. In an end-to-end cross-VM attack, we can
detect website visits from a list of 103 websites (in an open-world
scenario) reliably with an F; score of 92.48 % within less than
one second. In our JavaScript-based attack, we achieve F; scores
of 82.86 % and 78.89 % for detecting accesses to 10 websites,
with and without DNSSEC, respectively. We argue that DMT
leaks information valuable for extortion and scam campaigns, or
to serve exploits tailored to the victim’s EDR solution.

I. INTRODUCTION

The Domain Name System (DNS) is responsible for trans-
lating human-readable Internet domain names into numerical
IP addresses before connection establishment [68], [69]. DNS
resolution involves a slow multi-hop process of querying a
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recursive DNS server, which may contact multiple authorita-
tive servers in a hierarchical manner, starting from DNS root
servers, then top-level domain (TLD) servers, and finally the
authoritative server for the specific domain [68]. DNS caches
alleviate the latency problem and reduce traffic by storing
recently resolved domain names, associated IP addresses, and
their corresponding time-to-live (TTL). Later requests for the
same domain are answered immediately from the cache.

Caches introduce side channels [78], allowing an adversary
to probe whether specific data has been previously accessed.
Since DNS caches may be shared on a local machine, in a
router, or any part of the DNS resolution chain, an attacker can
exploit the cache [26] to spy on users’ (potentially sensitive)
web activity. DNS cache timing attacks [26], [32], [67] exploit
timing differences between hits and misses to infer visited
domains. Grangeia [32] summarized three methods to measure
the state of a network DNS cache: (1) preventing recursive
resolution, (2) setting of a low TTL, and (3) measuring the
domain resolution latency. Reading from the cache is a de-
structive operation, i.e., the cache state is modified by reading
and has to be reset before it can be exploited again. Felten and
Schneider [26] were the first to discuss information leakage
from timings of the local DNS cache. Their work, more than
2 decades old, only performs a limited experiment with a
single, destructive measurement as evidence for the leakage.
In contrast, we present a full Evict+Reload-style attack on the
local DNS cache and evaluate success rates and reliability in a
continuous monitoring scenario. Concurrently with our work,
Moav et al. [67] proposed a similar DNS cache timing attack,
targeting the router’s DNS cache instead of the local system-
wide DNS cache, allowing them to monitor IoT device behav-
ior as well. In contrast, we focus on systemd-resolved,
a local caching DNS resolver used in popular Linux distribu-
tions [16]. While flushing the DNS cache in resolved is
an unprivileged operation, the corresponding resolvectl
interface is not available in VMs, application sandboxes, and
web browsers. We demonstrate reliable eviction from these
restricted environments, which is a prerequisite for an Evict+
Reload-style attack [35] on the local DNS cache.

In this paper, we introduce DNS Monitoring via Timing
(DMT), a novel Evict+Reload attack on the victim’s local
DNS cache from unprivileged, sandboxed contexts. DMT
continuously monitors a victim’s activity by combining known



timing primitives to probe the DNS cache with novel reliable
DNS cache eviction techniques: We present 4 techniques to
evict the local DNS cache from 3 restricted environments,
including VMs, and websites with and without JavaScript.
We also introduce 3 measurement primitives, enabling us to
measure DNS resolution timing from native code, JavaScript,
and scriptless HTML, respectively. Combining these tech-
niques allows us to probe and evict the DNS cache 3 times
per minute, allowing us to track user behavior with a high
temporal granularity. Our eviction techniques achieve a similar
reliability as resolvectl flush-caches, which is not
available in restricted environments. One of our eviction
primitives exploits specific behavior of resolved, whereas
the other 3 are applicable to other resolvers as well.

DMT can be mounted remotely by an off-path attacker,
via JavaScript code or even plain HTML. We perform only
a single timing measurement to determine whether a distinct
domain was accessed. Since we do not rely on transmitted
content, data, or any other website characteristics, DMT does
not qualify as a fingerprinting attack. Changes to the target
website’s content do not affect the attack’s reliability. In fact,
when mounted from a browser, DMT benefits from strict Cross
Origin Resource Sharing (CORS) policies, as they prevent the
browser from loading the target site’s contents, reducing noise
in our measurements. When operating from native code, no
connection is established to the target server at all. Altogether,
this makes DMT less susceptible to misclassification compared
to classic website fingerprinting attacks [38].

We evaluate our attacks with default settings, DNS-over-
TLS, and DNSSEC, in unprivileged and sandboxed native
attacks, virtualized cross-VM attacks, as well as browser-based
attacks. The latter encompasses a website with JavaScript, and
also a scriptless attack exploiting the serial loading of fonts
integrated in websites. We show that the timing differences
between cached and uncached domain names are significant,
and are reliably detected in nearly all cases when perform-
ing the attack from native code using system-provided DNS
APIs. In the absence of direct access to system-wide APIs,
DMT leverages other, widely available APIs (e.g., JavaScript
fetch), triggering implicit domain resolutions. In these ex-
periments, we achieved a worst-case false-negative rate of
24.2 % per measurement. Execution times vary depending on
the scenario: In the best case, the cross-VM attack, our attack
takes, on average, 763.122ms to monitor 100 domains, and
each additional domain takes another 2.931 ms. In the worst
case, the JavaScript-based attack, it takes 14.787s for 100
domains, and an increase of 147.110 ms per additional domain.

Our unprivileged native code end-to-end experiment within
a VM detects accessed domains by the host from a list of 103
websites (open world). We achieved an F} score of 92.48 % in
685.855ms (n = 3000, oz = 14.893 ms). If the DNS server
returns errors, subsequent eviction takes either 77.267 ms (n =
2562, oz = 0.287ms) (in case the DNS server reports errors),
and 5 s if it times out. DMT works even without JavaScript by
using CSS to trigger sequential network requests, achieving
a reliability of up to 87.5%. Beyond that, we observe that

DNS-over-TLS has no effect and DNSSEC even improves the
reliability of our attack, practically halving the false-negative
rate in most experiments, and achieving a worst-case false-
negative rate of 13.6 %. Finally, we discuss that DMT works
within a VPN setting.

In summary, we make the following contributions:

¢ We introduce DMT, a novel Evict+Reload attack on the
victim’s local DNS cache, based on reliable DNS cache
eviction: We present 4 DNS cache eviction techniques to
evict the local DNS cache from 3 restricted environments,
including unprivileged native code (even in VMs), and
websites with and without JavaScript.

e Our attack works with default settings, DNS-over-TLS,
and DNSSEC, in unprivileged and sandboxed native at-
tacks, virtualized cross-VM attacks, as well as browser-
based attacks, i.e., a website with JavaScript as well as a
scriptless attack exploiting the serial loading of fonts.

o In the best case, the cross-VM attack, monitoring 100
domains takes 763.122 ms with an increase by 2.931 ms for
any additional domain. In the worst case, the JavaScript-
based attack, it takes 14.787 s and each additional domain
adds another 147.110 ms.

e Our end-to-end attack from inside a VM reliably detects
host website visits from a list of 103 websites (open-world)
with an F; score of 92.48 % in less than one second.

Outline. We discuss concurrent work on DNS cache timing
attacks in Section II, and background in Section III. Section IV
provides an overview of our attack. We present techniques
to read and evict the DNS cache in Sections V and VI
Section VII evaluates our cross-VM attack and Section VIII
our website access tracking from JavaScript in the browser.
We discuss and conclude our work in Sections IX and X.

II. CONCURRENT WORK

Recent work by Moav et al. [67] was not available at the
time of this paper’s original submission, but is public as of
August 2025. They describe a similar DNS cache timing attack
to track user- and IoT device activity. In contrast to our paper,
which focuses on the local OS DNS cache, they focus on the
DNS forwarder in the router as the attack target. While they
also evaluate systems with systemd-resolved, their work
considers evicting the local OS cache to force DNS requests
to propagate to the router’s DNS resolver. Summarizing, while
the attacks are similar in nature, they target different caches in
the DNS resolution chain. This is also highlighted by the fact
that they can attack IoT devices, which is not possible with
our attack. However, our experiments show a more reliable
side-channel measurement due to significantly lower latencies
for cache hits. Furthermore, DMT can be mounted even if the
system is configured to use a common public DNS server
or a VPN, since the local DNS cache leaks information
irrespective of the used upstream DNS server and network
path. Thus, the two attacks are orthogonal but complementary.
For transparency, Table VI in the Appendix lists experiments
performed after DNS FLaRE was published.



III. BACKGROUND

In this section, we provide background on the role of
DNS on the Internet, DNS caching, timing side channels, and
existing network and DNS side channels.

A. The Role of DNS on the Internet

The Domain Name System (DNS) translates human-
readable domain names into IP addresses [68], [69], and is
a distributed infrastructure: The root name servers resolve the
top-level domains (TLDs), such as . com and . net. Next, the
TLDs have ad-hoc name servers for the resolution of second-
level domains (SLDs). These then point to the authoritative
servers that know the records for specific domains and are
usually managed by domain registrars.

Practically, a client sends a DNS query to its configured
recursive DNS server. If unaware of the appropriate IP address,
the recursive server resolves the domain name by querying the
root name server, the one responsible for the top-level domain,
and eventually the authoritative server. Thereby, individual
steps may be omitted if the response is already known. The
recursive resolver is typically operated locally (e.g., by the
ISP), but there is a recent trend towards public resolvers [24].

Over time, more information has been incorporated into
DNS, e.g., SPF [48], DKIM [19] or DMARC [51]. DNS
also plays a role in malware protection [85], parental control
systems [57], censorship [39], and DDoS protection [46]. Due
to its importance, DDoS attacks against the DNS have serious
consequences for the Internet as a whole [94].

Traditional DNS is neither encrypted nor integrity-protected,
facilitating cache poising [62], interception [83], or user fin-
gerprinting [6], which has led to numerous improvements in
domain resolution. Domain Name System Security Extensions
(DNSSEC) [40] provides cryptographic authentication of DNS
resource records, but does not encrypt the queries and replies.
This changed with DNS over HTTPS (DoH) [41] and DNS
over TLS (DoT) [42] tunneling DNS requests over HTTPS
and TLS, respectively, to provide confidentiality.

B. DNS Caching

In the worst case, a DNS query is forwarded from the
client to the recursive server, which in turn iteratively queries
the root server, the TLD’s server, as well as the authoritative
servers. DNS queries travel back and forth over the network,
in most cases the Internet, causing a non-negligible delay of
up to hundreds of milliseconds [45]. Repeated resolutions of
the same domain name are common, e.g., when revisiting a
website, motivating caching to gain performance benefits.

By the definition of a time-to-live (TTL), caching has been
an integral part of DNS right from its beginning [68], [69].
The TTL defines a resource record’s lifetime in seconds and
therefore limits the time that a response is cached. At a
later point in time, negative caching has been introduced by
DNS [4], [99], i.e., negative results are also stored in the cache.
Recommendations for the TTL vary between five minutes and
24 hours, depending on the distinct scenario, introducing a
tradeoff between performance and flexibility [70].

In practice, a multi-level caching architecture for DNS
emerged, frequently reducing DNS requests to a round-trip
time of a few milliseconds [15]. Recursive servers cache
answers from the root name servers, the TLD’s server, and
authoritative servers by default to avoid further queries. These
servers typically serve multiple clients, i.e., a client might
even benefit from another client that tried to reach the domain
before. This applies even more strongly to public resolvers,
serving a larger customer base. Operating systems provide
DNS caches that are shared by all their applications. When
a resource is cached, no communication over the network is
necessary for DNS resolution. Even browsers operate their
own caches, limiting coordination with the operating system.
Modern Chromium- and Firefox-based browsers also imple-
ment DNS-over-HTTPS (DoH) resolvers, bypassing the OS-
provided DNS cache entirely in some configurations [17], [71].

Caches have also introduced challenges for both function-
ality and security. First, (legitimate) resource record modifi-
cations by the authoritative servers take longer to propagate
to the clients. Second, cache poising attacks [62], [63], [56]
lead to the storage of illegitimately modified resources. Upon
request, these poisoned records are forwarded to the clients,
tricking them into a connection with a potentially malicious
destination. Third, the differences in timing between cached
and uncached records form a timing side channel [26].

C. Timing Side Channels

Side channels are a powerful means to extract information
without exploiting any bugs. One of the earliest and most com-
monly used is the timing side channel [50]. Timing can orig-
inate in software [50] or hardware, e.g., due to caching [77],
[100]. For cache-timing side channels, there are generic tech-
niques like Flush+Reload [100], Evict+Reload [35], Prime+
Probe [77], [59], [64], and Flush+Flush [34]. These techniques
follow a pattern of resetting the state of the cache and
measuring the state of the cache, typically in a destructive
way that necessitates resetting the state again.

Some side channels can be mounted in scenarios with a
remote attacker. For instance, JavaScript-based attacks are
often considered remote [26], [76], [33], [97]. Special APIs can
be attacked remotely [10], [13], [18], [87], [20]. Some remote
attacks even only send packages to a victim and observe timing
differences through this [53], [29].

D. Network and DNS Side Channels

Network side channels are inherent to the operation of net-
working components, exploiting normal, standards-compliant
behavior of the network stack. A well-established attack vector
is traffic analysis, usually performed by a passive attacker able
to intercept network traffic [5], [73], [93], [88]. Traffic analysis
extracts privacy-sensitive information from traffic character-
istics like packet sizes, directions, and timings. Among the
most widely explored are fingerprinting attacks, targeting
applications [95], [90], videos [25], [89], and websites [84],
[11]. Early work by Hintz [38] showed that the size patterns of
individual asset downloads from the (now obsolete) SafeWeb



proxy already reveal the visited website. Subsequent work
expanded this to analyzing individual packet sizes [12], packet
direction ratios, and total packet counts [80], [79]. Klein and
Pinkas [49] track users by giving them a unique combina-
tion of DNS records, which are stored in the DNS cache,
identifying them across browsers. Bushart and Rossow [14]
demonstrated a passive fingerprinting attack relying only on
encrypted DNS traffic via DoT and DoH. Many works have
improved feature extraction and classification over time [37],
[98], [36], [84], [11], [91], [92], [88], [9], [22], [44]. Addition-
ally, network side channels have been demonstrated remotely,
both over the Tor network [74], [65] and on standard network
infrastructure [47], [30], [3], [29], with more active techniques
requiring interaction between the victim and a remote server.

Most closely related to our work are DNS cache timing
attacks [26], [32], [81], [67] and DNS cache flushing attacks
[1]. DNS cache timing attacks infer a resource’s presence in a
cache. Felten and Schneider [26] were the first to demonstrate
that DNS cache timings can be used as a side channel to
infer whether a domain name is cached by the DNS resolver.
Grangeia [32] extended their work with three methods (1)
preventing recursive resolution, (2) setting of a low TTL, and
(3) measuring the time it takes to resolve a domain name, like
Felten and Schneider [26]. Klein and Pinkas [49] exploited
DNS cache timing differences to track users and pointed
out that reading from the cache is a destructive operation,
i.e., the cache state is modified by reading from it and has
to be reset before it can be exploited again. Afek et al.
[1] demonstrated that DNS caches can be flushed remotely
by sending specific DNS queries to resolvers, allowing an
attacker to perform a denial-of-service on a public shared
DNS resolver. Moav et al. [67] demonstrate a flush-reload
attack against DNS forwarders in routers to track users and
IoT devices. Shared and public DNS resolvers can be targeted
with these methods to investigate domain access distribution
for user access statistics [81], [43], [55], [75], [54], [82],
user tracking [58], and malicious domain detection [61], [27],
[28], [60]. Beyond that, public resolver caches were exploited
for covert communication channels [86]. In practice, however,
success depends on the resolver’s specific cache structure [66].
A single shared cache for all clients has the highest hit
rates, whereas isolation incurs high overheads. Some recursive
resolvers do not cache at all, potentially for security reasons.

IV. HIGH-LEVEL OVERVIEW AND THREAT MODEL

In this section, we provide a threat model and high-level
overview for the DMT attack. We then describe the three
scenarios in which DMT can be mounted: a) local attacks,
unprivileged, sandboxed, and cross-VM, b) remote attacks
with JavaScript and c¢) scriptless remote attacks without
JavaScript.

A. Threat Model and Attack Scenarios

The attacker wants to spy on a victim by monitoring the
contents of the local, system-wide DNS cache. In our model,
the attacker is unprivileged, yet able to run either native code
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Fig. 1. General overview of the working principle of DMT. Applications (e.g.,
browsers) interact with the DNS resolver. Resolved domain names are added
to the shared system-wide DNS cache. The unprivileged attacker monitors
the state of the DNS cache, which leaks information about user behavior and
running applications on the entire system.

(possibly in a VM or sandbox), JavaScript in the browser, or a
scriptless HTML page rendered by the browser. By monitoring
the DNS cache state, the attacker obtains a list of recently
accessed domain names, along with an approximate time of
access. This information is a breach of privacy already, and can
be used in various ways, including targeted advertisements,
deanonymization of a user, and targeted scam campaigns
like phishing or extortion. For instance, in sextortion scams,
an attacker claims to have compromising material of the
victim, e.g., by claiming to have hacked the victim’s webcam.
The attacker can significantly increase the scam’s perceived
credibility by listing timestamps where the victim accessed
potentially embarrassing or controversial websites. Similarly,
online shops could use browsing information to adjust prices
of products based on recent browsing activity, e.g., by in-
creasing the price of a product that the victim has recently
browsed. Finally, DNS cache information can also leak which
Endpoint Detection and Response (EDR) solution is installed
on a victim’s system (before the HTML page has even finished
loading), and thus serve as a building block in a tailored exploit
chain to bypass the specific EDR solution.

We assume privacy-concerned victims may use a VPN or
non-default DNS server settings to avoid, e.g., surveillance
systems depending on country and region. Still, DMT works
in such scenarios, as the DNS cache is still a shared resource
on the victim’s system, i.e., it can leak information about the
victim’s web activity despite the entire traffic, including the
DNS requests, being protected by a VPN.

B. Working Principle

Figure 1 shows an overview of our attack. To obtain fine-
grained access data, the attacker continuously monitors the
local DNS cache by measuring the resolution latency of target
domain names. If the domain name is not cached, the system-
wide DNS resolver needs to perform a network round-trip to
an external DNS server. This round-trip introduces significant
delay to the resolution process. The measurement is destruc-
tive, as the target domain is added to the cache. Thus, the
attacker needs to evict the DNS cache after each measurement
to improve the temporal resolution of the attack. Therefore,
we introduce multiple DNS cache eviction primitives and
compare them to the cache-flushing commands available only
in native, non-sandboxed code. These primitives allow an



attacker to evict the DNS cache from application sandboxes,
VMs, JavaScript, and even scriptless.

C. Attack Scenarios

An attacker can monitor the DNS cache state in multiple
scenarios, where the attacker in each scenario has primitives
to measure the cache state (as we discuss in Section V) and
to evict the DNS cache (as we discuss in Section VI). We
start from higher privileged scenarios, such as native code
execution, and then move to lower privileged scenarios, such
as JavaScript in the browser and scriptless HTML.

Local Native, Sandboxed, and VM-based Attacks. In a
local native scenario, the attacker can run unprivileged code
on the same machine as the victim, albeit under a different user
account. Thus, the attacker cannot access, e.g., the target user’s
browser history files directly, and instead uses the DNS cache
as a side channel for the victim’s web activity. This scenario
is realistic in a multi-user environment, such as a shared
machine or a thin-client architecture, in which a malicious
unprivileged employee could spy on the browsing activities of
their coworkers. Lightweight application sandboxes, such as
Firejail and Docker, as well as VMs in a NAT networking
setup, can rely on the system-wide DNS resolver, leaving
our attacks unaffected. We even find this to be the default
on a Debian 12 installation in a libvirt VM, resulting in the
same capabilities as a regular non-privileged user on the host,
i.e., the local DNS cache of the system is used. However,
sandboxed and virtualized attackers by default cannot access
DNS management interfaces, such as resolvectl. Hence,
they cannot flush the DNS cache directly but have to resort to
eviction primitives based on DNS resolution (cf. Section VI).
Remote JavaScript. Since our measurement and eviction
primitives only require DNS resolution (cf. Section VI), we
can also mount DMT from websites. In this scenario, the
victim only needs to open the attacker-controlled website.
This can be achieved by sending a link to the victim, or
by embedding the attacker’s website on a third-party web-
site, e.g., via ad networks or vulnerabilities on the website,
such as persistent Cross-Site Scripting (XSS) exploits. In this
scenario, the attacker can use JavaScript, which is executed
on the local machine within the browser’s sandbox, and e.g.,
using fetch, can trigger DNS resolutions. The Cross-Origin
Resource Sharing (CORS) mechanism, which is designed to
prevent XSS attacks, ensures that the fetch request fails
without transmitting any content from the requested domain
but the DNS resolution is still performed, ironically resulting
in a higher reliability of our attack than without CORS.

Remote Scriptless. Even though JavaScript is an important
part of modern websites, some security-conscious users may
disable JavaScript in their browsers. This thwarts JavaScript-
based attacks, as the attacker cannot use JavaScript to trigger
DNS resolutions. However, DMT can also be mounted from
a plain HTML page, without any JavaScript. By including
resources from other domains, the browser will automatically
perform a DNS lookup to download the resource. Since,
without the ability to directly execute code, the attacker cannot

use any timing APIs, such as performance.now (), to
measure the request latency, we develop a fully scriptless at-
tack that relies on the browser’s serial loading of resources. We
surround the target request with two additional requests to
an attacker-controlled server. We can then measure the timing
difference between these two requests on the attacker server
to infer the latency of the target request. When measuring
more than one domain, only one extra request is needed per
additional domain. We demonstrate that even in this very
restricted threat model, resolution-based eviction primitives are
still practical. This scenario shows that mitigating DMT is
difficult, as it only relies on the minimal features required to
access domains rather than JavaScript or native code execution.

V. MEASURING THE LOCAL DNS CACHE STATE

In this section, we analyze timing differences between
cached and uncached domain names in different scenarios,
including JavaScript code and plain HTML in the browser,
as well as native code. We focus on systemd-resolved,
the default resolver in e.g., Fedora and Ubuntu [16], and
recommended caching DNS resolver on Arch Linux [7].
Distributions not using systemd-resolved typically do
not ship with a system-wide DNS cache by default. Even
though our evaluation focuses on systemd-resolved, the
general principles of our attack apply to any system-wide
DNS cache (e.g., Windows or macOS), as caching inherently
introduces timing differences.

Measurement Setup. All measurements are performed on
a cloud VPS using Google DNS (IP 8.8.8.8, 8.8.4.4) as the
configured DNS server. The ping latency to the DNS server is
approximately 5ms on average, which is significantly lower
than on typical consumer Internet connections and thus con-
stitutes a worst-case scenario for our measurements. The VPS
runs a minimal Linux installation with systemd-resolved
as the DNS resolver. For browser-based measurements, we use
Chromium 136.0.7103.25 in headless mode, instrumented by
Playwright 1.52.0 using Python. We experimentally confirmed
that we can achieve similar results using Firefox 144.0.2 (cf.
Figure 12). For measurements that require an external attacker
server, we use another VPS, also running a minimal Linux
installation. Each measurement runs over the span of multiple
days, with long (5 s or more) pauses between requests to avoid
flooding any of the servers with requests.

Measurement Strategies. Measuring the domain resolution
latency requires different strategies depending on the execution
context. If the attacker can execute resolvectl query,
they can see whether the resource was cached directly, elim-
inating the need for timing measurements. In native code
contexts without access to resolvectl, the attacker can use
native library functions to resolve a domain name and measure
the latency of the function call. However, JavaScript does
not expose dedicated DNS resolution functions. Instead, the
attacker can use the fetch API to trigger a DNS resolution.
However, as fetch performs an HTTP request, its latency
is influenced by the web server’s response time. In a script-
less environment, the attacker relies on requests to attacker-
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Fig. 2. Histogram of domain resolution latencies for cached and uncached
domain names, with and without DNSSEC enabled, recorded in native code.
There is a clear separation between cached and uncached domain names. With
DNSSEC enabled, the latency difference is even larger.

controlled servers before and after target requests to measure
their runtime, adding even more noise due to the two additional
network requests. In the following, we describe and evalu-
ate measurement strategies for native code, JavaScript and
scriptless HTML. Additionally, we also evaluate the JavaScript
experiments on two different consumer Internet connections,
demonstrating the impact of Internet speeds on our attack.

A. Native Code

On Linux, the attacker cannot directly view the DNS
cache, as resolvectl show-cache is a privileged op-
eration (in contrast, the equivalent PowerShell command on
Windows is unprivileged, allowing for cross-user leakage).
Yet, attackers with shell access can use the unprivileged
resolvectl query for resolution, which directly reports
whether the response was cached. If resolvectl is not
available (e.g., in a jailed environment or a VM), the attacker
can instead measure the resolution latency to distinguish
cached from uncached domain names, using programs like
dig or functions like 1ibc’s getaddrinfo or Python’s
socket .gethostbyname to resolve domain names.
Evaluation. We measure the execution time of Python’s
socket .gethostbyname. Figure 2 shows the latency dis-
tributions for cached and uncached domain names, both with
and without DNSSEC, and reveals clear differences between
cached and uncached domains. While cached domain names
take on average 1.6 ms to resolve, uncached take 8 ms. With
DNSSEC, the latencies become even larger, taking around
20 ms, due to signature validation for each response.

B. JavaScript

In the browser, there is no direct access to the DNS resolver.
Instead, JavaScript’s fetch API implicitly triggers DNS
resolution. Measuring the request latency, an uncached domain
causes a longer runtime. However, as fetch performs a full
HTTP request, the web server latency adds measurement noise.
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Fig. 3. Latency histogram for DNS resolutions using fetch on JavaScript.
Compared to Figure 2, the measurements are significantly noisier, but still
allow us to distinguish between cached and uncached domain names. The
latency differences between websites are caused by their server response times.
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Fig. 4. Trace of fetch latencies for cached and uncached accesses of
snee. la over approximately 60 h. Bright lines show one raw sample every
500 seconds, while dark lines show the average of 50 samples during the same
timeframe. The offset between cached and uncached latencies stays relatively
constant over time, while the absolute latencies vary, adding noise to long-
term measurements, while not affecting actual cache state measurements.

Cross-Origin Resource Sharing (CORS) requires the
browser to send a preflight OPTIONS request in advance of
the actual request, to check CORS HTTP headers without
loading any content. As most websites forbid cross-origin
requests, the fet ch request will fail directly after the preflight
response. While the OPTIONS request still adds noise to the
measurement (compared to only resolving the domain), the
website’s content does not have an impact as it is not loaded.
Evaluation. In Figure 3, we show histograms of domain
resolution latencies for the same domains as in the native
code evaluation. The latency difference between cached and
uncached DNS resolutions is, despite JavaScript’s limitations,
in the range of 5ms to 30ms. Consequently, the temporal
resolution of JavaScript’s performance.now () timestamp
is sufficient for our measurements. The noise is caused by
network jitter, see Figure 4, for the latency of cached and
uncached accesses over a timeframe of about 60h. With a
few exceptions, the latency difference between cached and
uncached accesses remains relatively stable over time. Both
Figure 3 and Figure 5 show a peculiar histogram shape for
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Fig. 5. Histogram of the latency differences between an uncached and the
following cached domain lookup, when using fetch in JavaScript. This
representation reduces the noise caused by slow changes in the server response
time, as seen in Figure 4. This visualization better highlights the measurable
latency difference between cached and uncached accesses.

| body {
2 font-family: "DMTFont";

30}

4

5 @Qfont-face {

6 font-family: "DMTFont";

7 src: url("https://attacker.com/measurement-start"),
8 url ("https://target-domain.com/random-value"),
9 url ("https://attacker.com/measurement-end") ;

10 }

Listing 1. DMT using sequential loading of fallback fonts with CSS. To
measure the latency of multiple domains, we only require one additional
measurement request per domain.

our measurements on facebook. Because this shape does not
appear in Figure 2, we assume that we measure the latency of
different servers, which we are routed to by a load balancer.

C. Scriptless

When JavaScript is unavailable (e.g., for security reasons),
DMT can be mounted from a plain HTML page. In our
scriptless attack, the attacker exploits CSS features [96], in
particular the font fallback system. Fallback fonts are loaded
sequentially; we exploit them to infer the latency of requests.

As shown in Listing 1, we define a custom font, DMTFont,
including three URLs to measure the target domain’s DNS
latency. The first URL points to an attacker-controlled server
and triggers the start of the measurement. Since the server does
not return a valid font, the browser proceeds with the second
URL, pointing to the target domain. This URL includes a
random path to ensure that no previous CORS result is cached,
and no data is returned. Yet, it triggers DNS resolution before
failing. The third URL points again to the attacker-controlled
server, signaling the end of the measurement. Finally, we
compute the DNS latency as the time between the first and
third request. To measure more domains in a row, we insert
one request to the attacker-controlled server after each domain.
Similarly, the font fallback system can also be used to evict
the browser’s DNS cache, as described in Section VI-E.

Scriptless Relative Latency

google.com facebook.com
S b, Y
—50 0 50 100 —50 0 50 100
snee.la hannesweissteiner.com
o —— .
= & A ‘
—50 0 50 100 —50 0 50 100

Latency Difference [ms]

] Cached B8 Plain DNS ## DNS with DNSSEC \

Latency Difference [ms]

Fig. 6. Latency difference histogram with a scriptless measurement. The
latency differences are similar to the JavaScript measurements in Figure 5,
indicating that our method of using alternative fonts to serialize website
requests does not introduce significant noise.

Javascript Latency on Private Internet Connection
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Fig. 7. Latency histogram on a 50 Mbit/s private Internet connection. In
contrast to Figure 3, the distributions are significantly more separated. This
demonstrates that our other measurements, recorded on a datacenter-grade
connection, show the worst-case scenario for our attack.

Evaluation. For a realistic measurement, we measure laten-
cies across the Internet to an external server. In Figure 6, we
show the latency distributions for the same domains as before.
Again, we achieve results allowing a clear differentiation
between cached and uncached domain names. As before, the
fluctuations in absolute latencies might be caused by jitter or
other network-related effects.

D. Consumer Internet Connection

All previous experiments were performed on a VPS in a
commercial data center with a fast Internet connection (down-
load: 1960 Mbit/s, upload: 1518 Mbit/s, latency to Google
DNS: 5ms). Additionally, we performed the worst-performing
experiment, the JavaScript-based attack, on a low-end pri-
vate Internet connection (ADSL, download: 48 Mbit/s, upload:
8.4 Mbit/s, latency: 13.5ms), as well as a mid-tier cable con-
nection (download: 299.9 Mbit/s, upload: 52.2 Mbit/s, latency:



JavaScript Relative Latency on 50 Mbit/s

google.com facebook.com

g E I I E I I
=AY W " A,

=50 0 50 100 150 =50 0 50 100 150

snee.la hannesweissteiner.com

g i T T E I I
E Jl,n (VY i i l. JL%; 4 |

—=50 0 50 100 150 —-50 0 50 100 150

Latency Difference [ms]

--- Cached B Plain DNS ## DNS with DNSSEC

Latency Difference [ms]

Fig. 8. Latency difference histogram of JavaScript on the 50 Mbit/s con-
nection. Compared to Figure 5, which was measured on a cloud VPS, we
experience larger latency differences, resulting more reliable measurements.

10.7ms). Figure 8 shows the latency difference histogram
for JavaScript on the low-end connection. Due to the higher
latencies to the DNS server, the timing difference in latencies
for cached and uncached domains is more nuanced than
before, see in Figure 3. Relative histograms for the 300 Mbit/s
connection can be found in Appendix C, along with a mea-
surement on Firefox (Figure 12). The results highlight that
a low-latency, high-bandwidth connection is the worst-case
scenario from an attacker’s perspective. Table I summarizes
the average latency differences, standard deviations, and false
negative rates for all our experiments on facebook.com, for
the VPS as well as both private Internet connections.

E. Limitations

All of our measurements relied on public DNS resolvers,
but many networks, such as corporate networks, rely on self-
operated caching DNS resolvers. These resolvers can provide
sub-millisecond latencies for cached domains, compared to the
5 ms latencies to Google’s DNS server. With shorter latencies,
the separation between cached and uncached domains becomes
more difficult. Yet, there is a trend towards public resolvers,
which often have features like DNS-over-TLS, increased pri-
vacy, or reduced filtering.

Application-internal DNS Resolvers. Because our attack
relies on measuring the contents of the system-wide DNS
cache, it is ineffective if applications bypass the system-
wide DNS resolver entirely. For instance, Chromium-based
browsers implement their own DNS resolver with an integrated
cache [17]. Firefox offers an option to resolve domain names
via DNS-over-HTTPS (DoH) [71], also bypassing the OS
resolver. Without access to the system-wide cache, DMT
cannot monitor its contents. However, both browsers still
access the system-wide DNS cache in common configurations.
On Linux systems, systemd-resolved acts as a locally-
running DNS server, causing Chromium-based browsers to
connect to it by default, even when DoH is enabled, reenabling
the attack. However, when using the Default Protection mode,

TABLE I
SUMMARY OF THE LATENCY DIFFERENCES AND ACCURACY OF OUR
MEASUREMENT PRIMITIVES FOR EACH CONTEXT, FOR FACEBOOK.COM.

DNSSEC Average Standard False

Offset! Deviation!  Negatives
Native v 20.663 ms 1.677ms  0.000%
X 6.701 ms 1.517ms  0.006%
JavaSerin v 20.356ms  16.871ms  13.641%
p X 8.942ms  17.487ms  24.192%
. v 82.363ms  18.041ms  1.110%

2
IS 50 Mbit/s X 22.902ms  31.044ms  13.209%
o v 35.998ms  35.368ms  9.839%

3
IS 300 Mbit/s X 16.567ms  34.029ms  19.630 %
Scrintless v 20.744 ms 17.102ms 12.494 %
p X 9.395ms  18.039ms  23.463 %

1 To account for a small number of large outliers in measurements (likely
due to connectivity issues), we eliminated the top and bottom 0.1 % of our
measurements for our average and standard deviation calculations. They are
still included in the computations of the false negatives. We still keep over
20 thousand measurements for each scenario on commercial servers.

2 Private 50 Mbit/s connection, approximately 2 500 samples.

3 Private 300 Mbit/s connection, approximately 5000 samples.

DoH is turned off in all except 4 countries worldwide [71],
leaving Firefox users in most countries vulnerable to DMT
by default, on all operating systems. Even when configured
to use DoH, browsers still fall back to the system-wide DNS
resolver if a domain cannot be resolved via DoH [17], [71].
This fallback mechanism is necessary to resolve network-local
domain names, e.g., in corporate networks.

Network State Partitioning. Both Chromium and Fire-
fox implement network partitioning, which separates various
caches, including the DNS cache, based on the origin of the
loaded website [31], mitigating cache-based information leak-
age across different websites. However, DMT can still monitor
the system-wide DNS cache by evicting the attacker website’s
browser DNS cache, which forces the browser to access the
system-wide DNS cache. Still, network state partitioning leads
to fewer DNS requests from other tabs hitting the system-wide
DNS cache, reducing the attack’s accuracy.

HTTPS DNS Records. HTTPS DNS records are used to
advertise a domain’s HTTPS configuration, improving security
and connection speed. Before making an HTTP request, the
browser first resolves the domain’s HTTPS DNS record,
adding additional latency to the DNS resolution. Moav et al.
[67] avoid this extra latency by prefetching the HTTPS DNS
records of target domains. This is required for their attack,
as they measure the DNS latency by accessing port 0, which
uses a different set of HTTPS records than a regular website
access. However, our browser-based measurements use regular
HTTPS DNS records, which can be cached. Thus, the extra
latency of resolving HTTPS DNS records during a cache miss
increases the latency difference between cached and uncached
domains, even improving our attack’s accuracy.



FE Summary

Table I summarizes the results of our measurement primi-
tives. Using system APIs, we achieve the most precise mea-
surements in native code. With a single measurement, cache
hits and misses are differentiated with almost no false positives
and false negatives. From the browser, we can only resolve
domain names using a full web request, adding noise to our
measurements. For most websites, CORS preflight requests
minimize this noise by terminating the request before any
data is downloaded. Still, we measure a false-negative rate
of 24.192% in JavaScript, and 23.929 % in plain HTML,
allowing us to distinguish cached and uncached resolutions
with a high level of confidence in few measurements. DNSSEC
increases the DNS resolution latency and therefore reduces
the false-negative rate to 13.641 % and 12.494 %, respec-
tively. The scriptless attack performs slightly better than the
JavaScript measurement, indicating that fetch introduces
more noise than a plain HTTP request generated by the
browser. We assume that the browser is optimized to load
HTTP resources, such as fonts, as fast as possible, while
fetch is aimed towards greater flexibility and usability.

VI. EVICTING THE LOoCAL DNS CACHE STATE

DNS cache eviction allows us to increase the temporal

resolution of our attack beyond the TTL of the targeted DNS
entries. In this section, we present four eviction strategies for
the system-wide DNS cache, available from different execution
contexts and in different system configurations. Most browsers
implement an additional DNS cache, which, in principle, is
also vulnerable to timing attacks. However, as this cache
is not shared with the rest of the system and implements
features like network state partitioning [31], it is not possible
to monitor other applications or websites using the browser
DNS cache. Thus, we also demonstrate how we bypass this
cache in Chromium and Firefox.
Setup. For some of our eviction strategies, we require fine-
grained control over DNS responses. Thus, we implemented a
custom DNS server that can return arbitrary DNS responses.
To force the victim to access our DNS server, we set up
NS records for a domain we control, pointing to our server’s
IP address. This delegates the responsibility of resolving the
subdomains to our malicious DNS server. We use random
subdomain prefixes to bypass server- and client-side DNS
caches for requests to our DNS server. The DNS server
selected by the victim client (e.g., Google DNS or ISP-default)
recursively resolves the subdomain and forwards the result to
the victim, giving us control over DNS responses.

A. Direct Cache Flushing

The first primitive is a direct cache flush. On many
common caching DNS resolvers, such as Windows, or
systemd-resolved on Linux, clearing the DNS cache is
not a privileged operation. On systemd-resolved,
the DNS cache can be flushed by executing the
resolvectl flush-caches command. On Windows,
the Clear-DnsServerCache PowerShell command can

be used to flush the DNS cache. This primitive is the fastest
(10.987ms on average) and most reliable way to flush the
DNS cache. However, these commands are only available
when the attacker has shell access on the system. Thus, from
a sandboxed environment, such as FireJail or a VM, this
primitive is not available.

B. Individual DNS Requests

The second primitive evicts the cache by filling it with ran-
dom individual entries. Even though RFC 1536 recommends
that DNS cache sizes should be unbounded [21], common real-
world DNS caches (e.g., systemd-resolved, Android’s
resolv) have a fixed maximum cache size, restricting mem-
ory usage. Additionally, many DNS caches evict the entries
with the shortest remaining TTL first. Thus, the attacker can
fill the cache with random eviction entries with long TTLs,
which will evict all other entries. This primitive relies on
intended behavior of the DNS resolver, and thus is avail-
able from all execution contexts. With a resolution time of
approximately 30 ms per domain and sequential resolutions,
the eviction takes over 2 min for systemd-resolved, with
a cache size of 4096 entries. Subsequent evictions are faster,
as they only need to remove entries that have been evicted
by legitimate DNS requests. The attacker can significantly
reduce eviction time by parallelizing DNS requests. In our
experiments, parallel resolution evicted the entire cache in
5.109s using 100 threads. As this primitive fills the cache
with long-TTL entries, subsequent legitimate DNS requests
evict each other. Thus, this primitive can only be used to track
DNS resolution of a single target domain.

Cache Hole-Punching. The attacker can eliminate the single-
domain limitation by "punching a hole" in the DNS cache
for legitimate entries, after filling it with eviction entries. For
this, the attacker queries a domain with large DNS responses,
containing multiple entries with short TTLs, which can be
evicted by legitimate queries. On systemd-resolved, all
entries in a DNS response are guaranteed to be cached, even if
the cache is full of entries that have a longer TTL. The resolver
will evict old entries to make space for the new entries,
before adding them to the cache. This creates space for new,
legitimate entries, so multiple domains can be resolved without
evicting each other, eliminating the single-domain limitation
of the previous primitive.

Other operating systems. We also tested this eviction
primitive on macOS Sonoma (14.7.4), as well as Windows
11. Both operating systems are closed-source, and we did not
find any documentation on their DNS cache eviction strategies.
On macOS, we found that we could evict legitimate entries
by filling the cache with random requests. This allows a
similar evict-and-reload attack on macOS. However, eviction
is less reliable than on systemd-resolved. Appendix B
describes the experiment in more detail. On Windows 11, we
were not able to find a working eviction strategy without shell
access. The Get-DnsServerCache command reported up
to 160000 entries in the cache during our tests, indicating
that Windows does not have a fixed-size cache. While the



cache occasionally evicts old entries, we did not find a way to
trigger this cleanup process reliably However, we observed a
clear timing difference between cached and uncached domains.
Concluding, while there is no known eviction strategy yet,
Windows 11 is still vulnerable to the timing attack.

C. Large DNS Responses

The third eviction strategy forces the DNS resolver to drop
multiple legitimate entries at once by resolving a domain
that returns a large number of entries, again with a small
TTL. In contrast to cache-hole-punching, this strategy uses
large responses to evict legitimate entries from the cache,
instead of eviction entries. This avoids filling the entire cache
with individual DNS requests. However, even with DNS-over-
TCP [23], the maximum size of a DNS response is limited
to 65535 B due to the 16-bit length header field. Even with a
very short domain name and compression enabled, we did not
succeed in fitting 4096 entries in a single response. Instead,
our maximum number of entries per response was 4 091 for
domains with up to 16 characters. Thus, it is not possible to
evict the entire cache in a single request using this primitive.
Eviction Priming. To work around the limited number
of entries in a DNS response, the attacker can combine
individual requests and a large response to evict the entire
cache. The attacker first primes the cache by resolving a small
number (< 10) of long-TTL entries. Afterward, the attacker
requests a DNS response containing a large number of entries
with a short TTL. Because the cache is primed with long
TTLs, systemd-resolved will evict all other entries first.
Afterward, the TTL of the large response expires, leaving
only a small number of primed entries in the cache. This
primitive also works from all execution contexts and requires
few individual DNS requests. However, some firewalls and
DNS servers do not allow for such large DNS responses. For
example, on the CloudFlare public DNS server, we were only
able to send up to 87entries in a single response. However,
we found that the default-configured DNS server for our
cloud servers allows for responses of arbitrary sizes, enabling
this primitive. To speed up the eviction process, we send
the 10 priming requests in parallel and the large response
request sequentially. In total, this eviction primitive takes
approximately 1.387 s on average. An evaluation of a selection
of public DNS servers, their limits, and their behavior when
responses are too large, can be found in Table II.

D. Error-based Eviction

Our fourth primitive exploits the error-handling behavior
of systemd-resolved. When the DNS response contains
an error, e.g., by trying to return more entries than allowed
by the intermediate DNS server, resolved will retry re-
solving the domain name. After three retries, resolved
will switch to the configured fallback DNS server, causing
systemd-resolved to flush the entire cache. The time
required between initiating the request and the switch to the
fallback DNS server depends on the behavior of the upstream
DNS server. Some DNS servers, like Google DNS, will return
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TABLE II
MAXIMUM NUMBER OF DNS RESOURCE RECORDS RETURNED BY PUBLIC
DNS SERVERS.

DNS Server Max Answer Records  Error on Exceeding Limit
Google 248 Delegation Failure
Cloudflare 87 Delegation Failure
OpenDNS 83 Delegation Failure
Quad9 72 Delegation Failure
Yandex 40891 Timeout
Verisign 250 Truncated/EOF

1 Because the domain used to measure the limits contains more than 16
characters, we cannot reach 4 091 records in a single query response.

SERVFAIL. For these servers, the DNS cache is evicted after
approximately 79.8 ms. Other servers do not respond to the
query, causing resolved to wait for a timeout of 5s before
switching to the backup DNS server, which delays the eviction.
After switching to the backup DNS server, resolved will
try to resolve the domain again. In our experiments, if the
responses remain invalid, resolved will repeat this retry-
and-switch process for multiple minutes, clearing the DNS
cache each time. For DNS servers supporting extended DNS
errors [52], systemd-resolved version 256 or later de-
tects the error code and does not switch to the fallback DNS
server. However, many systems, such as Ubuntu 24.04 LTS,
still ship with systemd version 255 or lower, making them
vulnerable to this primitive with any DNS server.

Eviction Loop Recovery. To avoid the constant eviction
caused by the retry-loop, the attacker can reply with a valid
DNS response after the DNS cache has been flushed. This
allows systemd-resolved to correctly resolve the domain
after switching to the fallback DNS server, stopping the evic-
tion loop. While this primitive relies on very specific behavior
of systemd-resolved, it is available in all execution
contexts. Additionally, it evicts the entire DNS cache in under
one second, using only a single DNS request instead of
multiple coordinated requests. This primitive is dependent on
the system configuration, as it requires a fallback DNS server
to be configured. However, most public DNS providers, such
as Cloudflare, Google, and Quad9, provide a fallback DNS
server, making this a likely configuration.

E. Browser DNS Cache Bypass

Modern browsers implement their own application-private
DNS cache to speed up DNS resolution. However, this cache
is not shared across processes, preventing cross-application
leakage. This is similar to CPU cache attacks, where the cache
levels closer to the CPU core are often private to a single core,
making them a less powerful attack target.

Therefore, we bypass the browser’s DNS cache to ensure
that the victim’s DNS requests are forwarded to the system-
wide DNS resolver. We achieve this by filling the cache with
attacker-controlled entries. Since the default browser DNS
cache size is 1000 entries for Chromium and 800 entries for
Firefox [8], [72], we insert 1000 attacker-controlled domains
to occupy it fully with long-TTL entries, ensuring the browser



TABLE III
AVAILABLE EVICTION STRATEGIES FOR SYSTEMD—-RESOLVED.

Primitive Availability Eviiction Config-
RCE JS HTML Time Dependent
Direct Flushing 4 X X 10.987 ms no
Many Requests 4 v 4 5.109s no
Large Response v v 4 1.387s yes!
Error-Based v v v 79.1ms to 552 yes?

1 DNS Server allowing arbitrary response size.
'2 Eviction time depends on upstream DNS behavior.
3 Fallback DNS server configured, systemd-resolved version <256.

evicts target domains before attacker-controlled ones. As a
result, subsequent genuine DNS requests propagate to the
system-wide DNS resolver. Because the browser caches these
target domains again after resolution, we repeat the eviction
step before each measurement. Using the technique from
Section V-C, the attacker can use CSS to fill the browser cache
before performing the measurements, enabling cache eviction
in a scriptless scenario. During a measurement with multi-
ple target domains, the long TTLs of the attacker-controlled
entries ensure that genuine entries evict each other, causing
accesses to the system-wide DNS cache each time.

Concurrent Work. Moav et al. [67] exploit the network state
partitioning feature in modern browsers to bypass the browser
DNS cache. By measuring from different origins, they can
force browser cache misses without having to evict the browser
cache. This technique is effective and faster than our eviction
primitive, but requires the attacker to control multiple domains
and the ability to change origins during the attack. However, if
those capabilities are available, this technique would increase
the performance of our end-to-end attack as well.

F. Summary

In Table III, we summarize the available eviction strategies
for systemd-resolved. The first primitive, direct flushing,
is only available in native code when the attacker is able
to send signals or execute the resolvectl command. The
second primitive relies on individual DNS requests combined
with Hole-Punching, which is available in all contexts and
independent of system configuration. However, this is the
slowest of the available strategies. The third primitive em-
ploys large DNS responses containing many entries, combined
with a small number of priming requests. This primitive is
the fastest, but requires a DNS server that allows for large
responses, which is not the case for all public DNS servers.
The last primitive triggers a DNS cache flush by exploiting a
fallback mechanism in systemd-resolved. This primitive
is available in all contexts, but requires a fallback DNS server
to be configured. It only requires a single DNS request, and
evicts the entire cache in a single step. However, this strategy is
mitigated on newer versions of systemd-resolved when
the upstream DNS server supports EDE [52].
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VII. CROSS-VM END-TO-END ATTACK

In this section, we evaluate the end-to-end cross-VM attack,
tracking the host’s DNS cache from an unprivileged attacker
in a VM, combining the native code execution measurement
from Section V with error-based eviction from Section VI.

A. Setup

The host system, representing the victim, runs
Ubuntu 24.04 LTS, with systemd-resolved version
225.4-1ubuntu8.8 and has DNSSEC turned off. On this
system, we set up a 1ibvirt VM using virt-manager,
representing the attacker, with a default configuration, running
Debian 12. In the VM, we execute unprivileged native code
to monitor the DNS cache of the host system.

The host uses a consumer-grade Internet connection (down-

load: 299.9 Mbit/s, upload: 52.2Mbit/s, latency: 10.7 ms),
and the home router advertises itself as the DNS server
with two IPv6 fallbacks, which is the default configuration
provided by the ISP. By default, 1ibvirt uses dnsmasqg
for internal DNS resolution. Queries that cannot be fulfilled
by the dnsmasqg cache are forwarded to the host’s DNS
server. Despite this additional layer of caching, we found
minimal interferences with our measurements, as most entries
are evicted anyway between the measurements. Additionally,
dnsmasqg cache hits are significantly faster than hits in
the host’s DNS cache, allowing us to distinguish the two
caches. For the end-to-end attack, we execute unprivileged
native code in the attacker’s VM, and due to our resolver’s
configuration, use error-based eviction to evict the system’s
cache. To synchronize the ground truth with the attacker’s
measurements, we use time-slicing based on the system clock.
Victim. The victim has a list of 103 domains, including the
top 100 websites from the Alexa Top 1M list [2], snee. la,
hannesweissteiner.com, and asdf.com. At the be-
ginning of the victim’s timeslice, the victim randomly chooses
8 domains, resolves them in a random order, and saves the
results to a file with a timestamp. The victim then waits for
the next timeslice for the next iteration.
Attacker. Inside the VM, the attacker executes an un-
privileged Python script. At the beginning of the at-
tacker’s timeslice, it measures the execution time of
socket .gethostbyname () for all 103 domains. We use
10 parallel threads to reduce the measurement’s runtime. The
attacker uses a threshold of 2ms to distinguish dnsmasqg
hits from host DNS cache hits, and a threshold of 15ms to
distinguish host DNS cache hits from misses. These thresholds
are empirically determined, and likely differ from host to host
depending on system configuration and performance. Finally,
the attacker evicts the host’s DNS cache using error-based
eviction to prepare for the next iteration.

B. Results

We measured 3313 timeslices, each lasting 20s. In each
timeslice, the victim resolved 8 domains, resulting in 26 464
total resolved domains. The attacker measures all 103 domains
in each timeslice, resulting in 341239 total measurements.



TABLE IV
CROSS-VM END-TO-END ATTACK RESULTS

True Positives
22999

False Negatives
3502

False Positives ~ True Negatives
240 314498
(F1 Score 92.48%)

Measurement Reliability. Table IV summarizes the results
of our end-to-end attack. The Fj score of 92.48 % emphasizes
that our attack reliably detects domains in the victim’s DNS
cache. Minimizing false positives, we classified hits in the
dnsmasq cache as misses. The remaining 240 false positives
might thus be misclassified dnsmasq hits. Our measurement
did not consider latency fluctuations (cf. Figure 4), but more
frequent calibration by the attacker might improve the side
channel’s reliability. Beyond that, the attacker might combine
multiple measurements due to the short measurement interval.
Measurement Speed. To keep our blind spot (the time
between the start of a measurement and eviction when website
accesses can be missed) small, we aim to measure all target do-
mains as fast as possible. In our experiment, the attacker mea-
sured all 103 domains on average in 539.78 ms using 10 par-
allel threads. Upon receipt of large responses, the DNS server
as configured by our connection’s ISP does not respond. After
calling socket.gethostbyname (), error-based eviction
consequently takes 5s to evict the DNS cache. Our ISP
provides two fallback DNS servers. As gethostbyname
is blocking, the call takes a total of 15s to return in our
test setup and takes the major part of the attacker’s timeslice.
This would be different with DNS servers responding with an
error (e.g., Google DNS, CloudFlare, Quad9). Then, eviction
would only take 79.8 ms. Summarizing, the time required
for an iteration, consisting of measurement and eviction, is
5.5s for our specific case, and 0.58s in a generic case. To
optimize, the attacker could evict the cache asynchronously to
increase the granularity of the measurements, as the remaining
10s of the function call are only waited for the resolver to
fail. Consequently, the attacker could send the eviction query
already before starting the measurement, timing it such that the
eviction query times out after the measurement is complete.
Measurement Interval. The configured DNS server caused
slow timeouts in gethostbyname. Consequently, we set
the timeslices in our experiment to 20s with a blind spot of
5s. Thus, we measure the victim’s online activity three times
per minute, sufficient for most website monitoring attacks.
Beyond that, attackers can vary the timeslice, either to increase
temporal granularity or decrease the blind spot’s relative size.
Our experiment shows that, even in a non-ideal default
setup, DMT reliably monitors web activity of the host from
a VM. The same attack can also be performed between two
VMs, jointly using the host DNS cache. DMT leaks sensitive
information about the victim’s web activity, even when the
victim is taking measures to protect their privacy, such as only
allowing third-party code in unprivileged mode in a VM.
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VIII. JAVASCRIPT ACCESS DETECTION

In this section, we evaluate the end-to-end attack perfor-
mance using JavaScript, combining the fetch JavaScript
measurement presented in Section V with the error-based
primitive and the browser DNS cache bypass from Section VI.
Setup. The setup consists of a host system representing
the victim, which is connected via Ethernet cable to the
same consumer-grade internet connection as described in
Section VII. During the experiment, the network is not iso-
lated, which means that other devices in the network can
access the Internet normally, and induce noise on the network
latency. The victim’s device runs Ubuntu 24.04.2 LTS, with
systemd-resolved version 255.4-1ubuntu8.10, and
Chromium version 139.0.7258.5 instrumented with Play-
wright. The attacker deploys the custom DNS server presented
in Section VI and a web server that hosts a malicious website.
The JavaScript code of the malicious website periodically
measures the loading delay of monitored websites to detect
whether the victim has accessed them. At the start of a mea-
surement cycle, we perform an HTTP HEAD request for each
target website using JavaScript’s fetch API and measure its
duration. We append a random string at the end of each URL to
bypass any browser caching. Furthermore, we set the cache
option of fetch to no-store to prevent the browser from
using cached HTTP resources. For every website, we store a
list of the 10 most recent cache-hit measurements, replacing
the oldest one after each cycle. This approach enables us to
detect website accesses despite potential network fluctuations
over long measurement periods. To detect a cache hit, we add a
website-specific offset to the median of the 10 measurements,
and use the resulting value as a threshold. The adversary
derives the thresholds from the hit-miss histograms of each
website in an offline phase preceding the attack.

After the measurement phase, the attacker evicts the browser
cache by loading 4000 domains—resolved by the attacker’s
DNS server. Then, they clear the systemd-resolved
cache using the error-based primitive presented in Section VI.
After 5s, the measurement cycle is repeated, enabling the
attacker to monitor the victim’s activity continuously. The total
duration of one cycle is approximately 25s.

Evaluation. We evaluate the attack in two scenarios: with
and without DNSSEC, testing the access-detection rates for
ten common domains. We run a script on the victim’s device
that loads the attacker’s website inside Chromium. For each
measurement cycle, the script selects a random subset of the
domains and loads them inside a new browser tab, simulating
user accesses. Then, the attacker starts the measurement cycle.
We perform a total of 50 measurement cycles for each scenario
and finally compute the F} scores for each website.

Results. We summarize our results in Table V. While
DNSSEC is supposed to increase the security of traditional
DNS, our findings indicate that its presence drastically accen-
tuates the effect of DMT, potentially posing a threat to user
privacy. For our 10 tested domains, we achieved an average F}
score of 82.86 % with DNSSEC enabled, compared to 78.89 %



TABLE V
JAVASCRIPT END-TO-END ATTACK RESULTS

Domain DNSSEC

X v
amazon.com 81.63% 91.67%
pornhub.com 85.71%  80.77 %
reddit.com 86.49%  97.78 %
wikipedia.com 95.24% 91.67%
Macro-average 78.89%  82.86 %

We show a selection of individual domains, as well as the macro-average
over all 10 domains. While DNSSEC generally increases the attack’s
accuracy, some domains show a decrease in performance, likely due to
network noise in our non-isolated setup and measurement inaccuracies.

without it. For some domains, such as pornhub.com, the
performance of DMT decreases slightly when DNSSEC is
enabled. We attribute this to other network traffic in our non-
isolated setup, which can affect network latency [29]. Tradi-
tional DNS requests are, on average, faster than requests with
DNSSEC, and hence, lower the gap between cache hits and
misses, causing more frequent misclassifications. In particular,
the accuracy for detecting accesses to amazon . com drops to
81.63 %, when DNSSEC is turned off. Because we cannot
resolve a domain name directly and instead have to time the
fetch request, the accuracy of the end-to-end attack also
depends on the performance of the servers where the domains
are hosted. This effect is most evident for reddit.com,
which showed the fastest average access times among the
tested domains, loading in under 20 ms on average when the
DNS resolution was cached. At the same time, reddit .com
showed a large increase in accuracy when DNSSEC was
enabled, reaching an F) score of 97.78 % (i.e., one single
misclassification), compared to 86.49 % without it. This is
expected, as with fast server response times, the increase
due to DNSSEC has a larger relative impact on the total
request time. In contrast, wikipedia.com has significantly
slower server response times, averaging approximately 120 ms
for cached requests. However, the response times are very
consistent, leading to high accuracies both with and without
DNSSEC. The slight drop in F} score when DNSSEC is
enabled can again be attributed to measurement inaccuracies
due to network noise in our non-isolated setup.

Our findings show that DMT works in an end-to-end setting
without native code execution and represents a significant
threat to user privacy, especially when DNSSEC is active.

IX. DISCUSSION

DMT’s measurement primitives can be used to continuously
monitor a victim’s Internet activity with a high level of
accuracy. In particular, our scriptless remote attack without
JavaScript, demonstrates that DMT is a practical threat even
for security-conscious users. DMT exploits intended behavior:
The DNS cache is designed to speed up DNS resolution,
and thus intentionally introduces timing differences. Thus,
mitigating DMT is always a tradeoff between performance
and privacy, where any miss for privacy reasons will introduce
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an additional latency for the user that is currently avoided.
Given the numerous works on the security of caches in
other contexts, future work may also investigate which cache
security mechanisms also apply to the DNS cache.

Practical Implications. DMT can be used to monitor user
behavior from sandboxes, VMs, and the browser. An important
aspect of DMT is that it exploits a local cache to infer
information about Internet usage. Network contention, such
as large downloads, increases the timing differences between
cached and uncached DNS resolutions, making the attack more
reliable from a native code context. In the browser, we need
to perform a network request to trigger a DNS resolution,
which adds the noise caused by the network contention to
the measurement. Still, we show in Section V-D that DMT
works slightly better on slower network connections, as the
timing differences between cached and uncached resolutions
are larger. Features like DNSSEC, DNS-over-TLS, or even
VPNs, do not mitigate DMT, as they are designed to protect
the data in transit, not the local cache. Instead, the increased
latencies caused by such features also improve the reliability of
DMT. Especially for VPNs, which often have features to avoid
leaking DNS activity (to local networks), it is not obvious that
they still leak information via the local DNS cache. Currently,
to defend against DMT, users can only disable the DNS cache
entirely, which comes at a significant performance penalty for
each request and more significant privacy concerns as well:
Every DNS resolution will go to a remote system (e.g., router,
ISP), placing even more trust in the operators of these systems.
Furthermore, DNS caches on these remote systems are more
likely shared across multiple users, or even public, and thus
can be used for different attacks.

X. CONCLUSION

In this paper, we presented DMT, an Evict+Reload-style
attack that infers user behavior by monitoring the local DNS
cache state using timing side channels. We demonstrated that
the timing differences between cached and uncached DNS
resolutions can be measured from native code, JavaScript, and
even scriptless HTML. We also presented four primitives that
enable attackers to evict the system DNS cache from different
execution contexts, and found primitives to evict the browser
DNS cache as well. We demonstrated that DMT can be used
in an end-to-end attack to continuously monitor user behavior,
even across applications and certain VM configurations, with
a relatively small blind spot of 0.26 % in the best case, and
4.92 % in the worst case, when measuring with a granularity
of five minutes. Website access monitoring attacks using DMT
are highly reliable, with an F} score of 92.48 % in a native
cross-VM setup, and F; scores of 95.94% and 84.93 % in
an end-to-end JavaScript scenario with and without DNSSEC,
respectively. We discussed currently possible mitigations and
their tradeoffs. Finally, we discussed the implications of DMT,
from scams to extortion campaigns or serving exploits tailored
to a victim environment, e.g., their EDR solution or installed
applications, before the web page has finished loading.



ETHICS CONSIDERATIONS

Except for the experiments on private Internet connections
in Section V-D and Appendix C, all of our long-running
experiments were performed on virtual private servers in a data
center, to not impact any end users. Custom DNS servers were
shut down after the experiments, and only respond to requests
containing special input options, to avoid being used for DN'S
reflection attacks. Experiments that do not require network
timing (e.g., eviction tests) were performed on a private
network, with a locally-running DNS server. All measurements
with requests to third-party servers were performed with long
delays between iterations to avoid overloading the servers.
While the measurement websites were hosted on public IP
addresses, they did not collect any user data. Thus, even if a
user accessed our measurement website unintentionally, their
DNS measurements cannot be linked to their identity.
Responsible Disclosure. We disclosed our findings to the
systemd team on 2025-10-11, the Chromium team and Mozilla
on 2025-10-15, and Apple on 2025-11-18.

The systemd team stated that systemd-resolved is a local-
only service, and does not consider the security boundary
between users on the same system as part of the threat model.
Thus, they do not consider DMT a security issue. We followed
up, stating that our browser-based attacks allow any website to
query the local DNS cache, but received no further response.

The Chromium team acknowledged our timing attack, but
stated that there is no practical mitigation that does not
introduce drawbacks that are worse than the issue itself.
Disabling the DNS cache entirely would introduce significant
performance penalties, while forcing Chromium to use only
the internal resolver by default would break setups that require
the system resolver, such as enterprise environments using
custom DNS configurations.

The Mozilla team also acknowledged our attack, agreeing
that activity tracking using cache side channels is bad. They
also stated that they do not see a way for Firefox to prevent the
underlying issue without introducing significant performance
penalties. However, they are thinking about implementing
throttling mechanisms once the browser DNS cache is full,
to make browser cache-eviction attacks harder. They see the
responsibility with the system DNS resolver (i.e., systemd) to
mitigate eviction techniques to alleviate the issue.

Apple also acknowledged the issue.

In conclusion, all four of our contacted vendors acknowl-
edged our findings, but no mitigations have been implemented.
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APPENDIX

A. Experiment Timing

Most of our experiments were performed before the publi-
cation of concurrent work [67]. However, performed additional
experiments during the revision process, when the results of
the concurrent paper were already public. The following table
lists the experiments that were performed after the publication
of [67]. Experiments not listed in the table were performed
before the publication of [67].

TABLE VI
EXPERIMENTS PERFORMED AFTER THE PUBLICATION OF CONCURRENT
WORK [67].

Section

Section VI-E, Figure 12
Section VIII
Section V-D, Table 1

Experiment

Firefox Verification
300 Mbit/s JavaScript End-to-End Attack
300 Mbit/s JavaScript Latency Measurement

MacOS DNS Cache Timing Appendix B
300 Mbit/s latency histograms Appendix C
VSCode activity & Copilot detection Appendix D
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MacOS DNS Cache Timing
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Fig. 9. Histogram of domain resolution latencies for cached and uncached
domain names on macOS, using individual DNS requests to evict the DNS
cache. The misses that still fall into the cached region are caused by
unreliable eviction of the DNS cache. Still, there is a clear separation between
hits and misses for all tested domains. Because we only evict using our
eviction primitives, the histogram also proves the effectiveness of our eviction
primitives on macOS. Interestingly, we did not measure any failed evictions
for facebook.com, likely due to its lower TTL of 1min compared to
google.com’s 5min, causing it to get evicted more reliably.

B. MacOS DNS Cache Timing

We performed an experiment, evaluating the feasibility of
DMT on macOS. We measured the DNS cache timing on an
Intel MacBook running macOS Sonoma (14.7.4), in a native
code setting using Python. We empirically determined that the
DNS cache size is approximately 2 000 entries. We found that
we could evict legitimate entries by filling the cache with 2 000
or more random requests. This allows us to perform a similar
evict-and-reload attack on macOS. Figure 9 shows the results
of our experiment. We see a clear separation between hits
and misses, indicating that DMT is also feasible on macOS.
However, due to the closed-source nature of macOS, we did
not achieve fully reliable eviction, causing some cache hits
even though we evicted the cache before the measurement.

C. Latency Evaluation with 300 Mbit/s Connection

We performed additional latency measurements with a
300 Mbit/s cable Internet connection, to evaluate the impact of
a typical higher-end home connection on our measurements.
Since the measurements were performed on a shared cable
connection, we experienced high latency variations throughout
the day for browser-based measurements (cf. Figure 4). Thus,
we do not show absolute latencies for browser-based mea-
surements, since the attacker can account for these variations,
but they look misleading in a histogram. Native measurements
are less affected by these variations, as they do not require an
HTTP request to trigger a DNS resolution.



Native Code Latency 300 Mbit/s
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Fig. 10. Histogram of domain resolution latencies for cached and uncached
domain names on a 300 Mbit/s Internet connection. As expected, we have a
similar shape, but slightly larger separation compared to Figure 2.

JavaScript Relative Latency with 300 Mbit/s
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Fig. 11. Latency difference histogram for JavaScript measurements on a
300 Mbit/s connection. The increased network speed results in a clearer sepa-
ration between cached and uncached DNS resolutions compared to Figure 8,
indicating that the JavaScript primitive experiences less noise when using
higher network speeds, and higher separation with higher latency connections.
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Firefox JavaScript Relative Latency with 300 Mbit/s
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Fig. 12. Latency difference histogram for JavaScript measurements on a
300 Mbit/s connection, using Firefox. We experience significantly higher
differences between cached and uncached websites compared to Chrome
(Figure 11). We achieve a false negative rate of 5.89 % for facebook.com
with DNSSEC enabled, and 7.75 % without DNSSEC.

Scriptless Relative Latency with 300 Mbit/s
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Fig. 13. Latency difference histogram for Scriptless measurements on a
300 Mbit/s connection. Similar to the JavaScript measurements in Figure 11,
we observe a clearer separation between cached and uncached DNS resolu-
tions compared to Figure 6, indicating the scriptless attack is more reliable in
realistic home network conditions, compared to datacenter-grade connections.



VSCode Usage Detection
With Copilot
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Fig. 14. DNS Cache hit trace of a user typing in Visual Studio Code with
Github Copilot enabled and disabled, while measuring the DNS cache every
10s. A dot indicates that a domain was cached within the last 10 s before the
measurement. In both traces, the user takes a break from typing approximately
35 seconds after the start of the trace. In the trace without Copilot, the user
stops typing after approximately 110 seconds. We observe that VSCode sends
telemetry data approximately 10 seconds after users stop typing to D2 (visible
at second 50). When Copilot is enabled, autocomplete requests trigger frequent
requests to D1, allowing for reliable detection of Copilot usage while the user

is typing.

D. Activity Detection in VSCode

As an additional case study, we demonstrate how
DMT can be used to detect user activity in Visual

Studio Code. We identify two domains

that

are

accessed while a wuser is interacting with VSCode.

mobile.events.data.microsoft.com

is

used

by

VSCode to send telemetry data about user activity. We
observe that VSCode sends telemetry data when the
user stops typing for a few seconds. The second domain,
copilot-telemetry-service.githubusercontent.com,
is accessed frequently when GitHub Copilot is enabled, as
Copilot continuously provides autocomplete suggestions
while the user is typing. We perform two measurements
where a user types in VSCode for approximately two
minutes, once with Copilot enabled and once with
Copilot disabled. The user takes a short typing break at
approximately 35 seconds into the measurement in both
cases, stopping shortly before the end of the measurement.
During both measurements, we probe the DNS cache
every 10s to check whether the two domains are cached,
evicting it afterward. The results are shown in Figure 14.
When Copilot is enabled, we see frequent accesses to
copilot-telemetry-service.githubusercontent.com
while the user is typing, allowing an attacker to reliably
detect Copilot usage. When Copilot is disabled, we can
still detect whenever the user stops typing due to VSCode’s
telemetry requests. Thus, DMT can be used to infer detailed

user activity beyond website visits.
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