SACK: Systematic Generation of Function [

Artifact
Evaluated

ANDss

Available

Reproduced

Substitution Attacks against Control-flow Integrity

Zhechang Zhang*, Hengkai Ye*, Song Liu'* and Hong Hu*
*The Pennsylvania State University, TUniversity of Delaware
{zhechang, hengkai, honghu} @psu.edu, songliu@udel.edu

Abstract—Control-flow integrity (CFI) is a widely adopted
defense against control-flow hijacking attacks, designed to restrict
indirect control transfers to a set of legitimate targets. However,
even under a precise static CFI policy, attackers can still hijack
control flow through function substitution attacks (SUB attacks),
by replacing one valid target with another that remains within the
allowed set. While prior work has demonstrated the feasibility of
such attacks through manual construction, no approach constructs
them systematically, scalably, and in an end-to-end manner.

In this work, we present SACK, the first systematic framework
for automatically constructing SUB attacks at scale. SACK collects
triggered indirect call targets from benign executions and synthe-
sizes security oracles with the assistance of a large language model.
It then automatically performs target substitutions and leverages
security oracles to detect security violations, while ensuring that
execution strictly adheres to precise CFI policies. We apply SACK
to seven widely used applications and successfully construct
419 SuB attacks that compromise critical security features. We
further develop five end-to-end exploits based on historical bugs
in SQLite3, V8 and Nginx, enabling arbitrary command execution
or authentication bypass. Our results demonstrate that SACK
provides a scalable and automated pipeline capable of uncovering
large numbers of end-to-end attacks across diverse applications.

I. INTRODUCTION

Control-flow integrity (CFI) is a principled defense mech-
anism against control-flow hijacking attacks [1l], [9]. These
attacks exploit memory-safety issues, such as buffer overflow
and use-after-free, to corrupt function pointers or return ad-
dresses, and divert the control flow to attacker-crafted logic [73]],
(70, [750, [12], [64]. To prevent malicious indirect control-flow
transfers (ICTs), CFI techniques first identify a set of valid
targets for each ICT instruction (e.g., indirect call and indirect
jump), and then enforce at runtime that all ICT transfers remain
within this set [91]], [80], [67]. A wide body of research has
focused on refining these valid targets to improve both security
and compatibility, like type analysis [80], [66], [83]], [57], [60],
[84], [10] and data-flow analysis [S0], [26], [47], [51]. Recent
advancements integrate hybrid analysis [S8], leverage runtime
context [81], [67], [39] and incorporate machine learning and
large language models [92], [18]] to further enhance precision.

iSong was affiliated with Penn State at the time of this work.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.242317
www.ndss-symposium.org

Despite these advancements, researchers have identified a
fundamental limitation: even a perfectly precise CFI policy
cannot block all control-flow hijacking attacks. A seminal work
by Carlini et al., known as control-flow bending (CFB) [11]],
exposes this weakness. CFB shows that attackers can bypass
CFI by substituting one valid target for another, both permitted
under a fully precise static policy where each target is reachable
by some benign input. Using this strategy, CFB achieves
severe consequences, including arbitrary code execution and
file modification, illustrating worst-case scenarios even under
strong CFI defenses. Since CFB combines function pointer
substitution with other exploitation techniques, like data-only
attacks [16], [40], [44], we use the term function substitution
attacks, or SUB attacks, to specifically describe attacks that
modify function pointers between CFI-allowed targets.

However, while CFB demonstrates the feasibility of SUB
attacks, it relies on manual construction and presents only two
concrete examples. As a result, it remains unclear whether
such attacks are practically achievable at scale or applicable
to a broader range of real-world programs. In other words,
we lack a systematic method for generating them and a clear
understanding of their prevalence in modern software. The
central focus of this work is to address this fundamental gap.

A straightforward approach to generating SUB attacks is
to substitute the target of each ICT instruction with every
CFlI-allowed alternative and evaluate the resulting security
consequences. However, this method faces two fundamental
challenges. First, in the absence of a perfectly precise static
analysis [26], it is difficult to determine the exact set of valid
targets. Existing CFI solutions intentionally over-approximate
these sets to preserve program functionality, which introduces
many false targets [60], [S1]], [52]]. SUB attacks, however, must
avoid such spurious targets as any redirection to an invalid
target would be blocked by an idealized CFI policy. Second, no
standard mechanism can assess the security impact of function
substitutions. Traditional control-flow attacks typically aim
for arbitrary code execution [4]], [[75], [74], but SUB attacks
are constrained to legitimate CFI-compliant targets. Their
impacts depend on the high-level semantics of both the original
and substituted functions. Focusing solely on code execution
may miss subtle but critical consequences, such as bypassing
authentication, that reflect the real-world danger of SUB attacks.

To address these challenges, we introduce SACK, the first
system that systematically and at scale automates the con-
struction of function substitution (SUB) attacks against precise

control-flow integrity (CFI) in general-purpose applications.
First, to overcome the lack of a complete set of allowed
targets, SACK dynamically monitors program executions using
available benign inputs to collect a ground-truth subset of valid
targets. Any sound and precise CFI policy must allow these
observed targets to preserve normal program behavior [11]].
Second, to evaluate the security consequences of substitutions,
SACK introduces security oracles, each consisting of concrete
program inputs and expected security behaviors. Any deviation
from this behavior after a substitution indicates a potential
semantic violation, including subtle forms of security bypass.
This approach enables SACK to capture a broader range of
real-world impacts beyond traditional code execution. To scale
oracle construction and reduce manual effort, SACK focuses on
commonly implemented security features, such as authentica-
tion, rate limiting and audit logging, and utilizes large language
models (LLMs) to automatically extract and synthesize behavior
specifications from program documentation. This LLM-assisted
design enables SACK to generalize across diverse applications,
even in the absence of formal specifications.

It is important to note that the goal of this work is to
demonstrate the practicality of constructing SUB attacks, rather
than to exhaustively explore all security features and inputs.
Therefore, we target representative security mechanisms and
use curated inputs that exercise these features. This design
allows us to highlight the feasibility and impact of SUB attacks
under realistic conditions. We leave the broader exploration of
security feature sets and input diversity to future work.

We implement the framework to systematically construct
SUB attacks using 1,418 lines of C/C++ code and 300 lines
of Python. First, SACK leverages program documentation and
a large language model to generate a set of security oracles,
which define expected security behaviors under specific inputs.
Second, it executes the program using a set of test cases to
collect dynamically observed indirect call targets. Finally, SACK
re-executes the program with each input, and during each re-
execution, it substitutes the target of one indirect call with a
distinct alternative from the collected target set. It applies the
corresponding oracle to assess whether the substitution causes
the program to violate the intended security behavior. If so,
SACK reports the case as a potential SUB attack. To improve
the performance, SACK incorporates optimization techniques
from the fuzzing community [89]], [30], [59], [36], such as
fork-server execution [88]], to increase execution throughput
and maximize the chances of constructing SUB attacks.

We apply SACK to seven real-world programs commonly
targeted by control-flow hijacking attacks, like web servers,
file servers, a database management system, and a JavaScript
engine. SACK successfully constructs 419 SUB attacks that
break 18 critical security features. These attacks bypass
authentication, enable arbitrary code execution, disable security
logging, violate resource limits, or break sandbox mechanisms.
We also construct five end-to-end exploits using historical
vulnerabilities. To our knowledge, this is the first work to

demonstrate large-scale, automated construction of SUB attacks.

Notably, SACK does not require deep manual understanding

int sqlite3AuthCheck(Parse *pParse, ...)
sqlite3 *db = pParse->db;
if (db->xAuth == 0) return SQLITE_OK;
return db->xAuth(db->pAuthArg, ...); // indirect function call

int shellAuth(void *pClientData, ...)
if (p->bSafeMode) safeModeAuth(pClientData,
return SQLITE_OK;

S valid target 1
A

® N o U R W —

9

10 int safeModeAuth(void *pClientData, ...) //-----—- valid target 2
11 if (... /* command is not allowed */)
12 exit(1);

13 return SQLITE_OK;

14

15 int idxAuthCallback(void *pClientData,
16 idxMalloc(&rc, sizeof(IdxWrite));

17 return rc;

...) //--- valid target 3

Fig. 1: Motivating example from SQLite3. Line 4 is the indirect
function call, which has three valid targets: shellAuth, safeModeAuth
and idxAuthCallback. We simplify the code for the sake of readability.

of the program source code and avoids heavyweight program
analysis for identifying ICT targets. These results demonstrate
that SACK provides a scalable and automated pipeline for
constructing large numbers of CFI-bypassing SUB attacks
across diverse, security-critical, real-world applications.

In summary, our work makes the following contributions.
o We propose a systematic approach that combines dynamic

indirect-call target collection with LLM-assisted oracle gen-

eration to automate end-to-end function substitution attacks.

o We develop SACK, the first scalable framework that automati-
cally modifies control-flow data to generate SUB attacks while
remaining compliant with perfectly precise CFI policies.

o We apply SACK on 22 security features across seven widely
used applications. It successfully constructs 419 SUB attacks,
revealing the strong practicality of automating these attacks
at scale bypassing precise CFI protections.

Open source. The source code of SACK and necessary
instructions for reproducing the results are available at
https://github.com/psu-security-universe/sack!

II. BACKGROUND

A. The Motivating Example

presents the motivating example we extract from
SQLite3, a widely used database management system. SQLite3

supports running SQL statements in a safe mode, which
restricts database operations to a limited set of trusted SQL
functions and extensions, preventing execution of potentially
dangerous or untrusted code [[79]]. Function sqlite3AuthCheck
conducts an authorization check to determine whether an
action embedded in the pParse is allowed. If so, it returns
SQLITE_OK so that the action will be executed; otherwise, it
returns SQLITE_DENY, which rejects the action. Line 3 checks
whether the authentication handler is NULL. If no, it will invoke
the handler indirectly via the function pointer xAuth to make
a decision (line 4). The indirect function call has three valid
targets. shellAuth does not check anything in the normal mode,
and invokes safeModeAuth in the safe mode; it is a dummy
implementation and always returns SQLITE_OK. safeModeAuth
compares the action with a predefined list of prohibited
functions (line 11, details skipped), such as load_extension

https://github.com/psu-security-universe/sack
https://github.com/psu-security-universe/sack

and writefile, and exits the process if the action is prohibited
(line 12). idxAuthCallback merely checks whether the process
has enough memory to create an index (line 16); it is mainly
used when SQLite3 creates or uses index-based expressions.

When we run SQLite3 in safe mode, the indirect call at line
4 will invoke safeModeAuth to conduct necessary checks.

B. Control-flow Hijacking and Control-flow Integrity

Suppose attackers identify a memory-safety vulnerability
in SQLite3 that enables arbitrary memory writes. They can
overwrite the function pointer db->xAuth with the address
of any executable code. This includes security-critical func-
tions such as system for ret2libc attacks [64], or carefully
crafted instruction sequences for return-oriented programming
(ROP) [751, [70, 173]). When the indirect cal is executed, the
control flow is hijacked, allowing attackers to execute arbitrary
code. These are known as control-flow hijacking attacks.

To prevent such attacks, researchers develop control-flow
integrity (CFI) [1]] to protect indirect control-flow transfers
(ICTs). The core idea is to infer a set of allowed targets for
each ICT instruction, and perform runtime checks to ensure that
all transfers remain within this set. Any deviation is treated
as an attack and will terminate the execution. In [Figure I}
a CFI technique may infer that the allowed targets for line
4 are shellAuth, safeModeAuth, and idxAuthCallback. If an
attacker corrupts db->xAuth to a disallowed function, CFI will
detect the mismatch and stop the execution to prevent damages.

The strength of a CFI mechanism depends on the precision
of its target inference algorithm, where more precise analysis
yields fewer allowed targets and stronger protection. To this end,
prior work has developed various algorithms to refine target
sets, including type analysis [80], [66l, [83], [37], [57], multi-
layer type analysis [60], [84], [10] and data-flow analysis [50],
[26], [47], [S1]. Recent work integrates multi-dimensional
analysis [S8]], utilizes runtime information [81l], [67], [39]], and
adopts machine learning [92]] and large language models [18]
to further improve precision. With these efforts, CFI has been
deployed in real-world critical systems [34], [62]], [35], [70].

C. Attacks against Perfectly Precise Static CFI

Despite recent improvements, researchers have uncovered
generic strategies to bypass CFI [12], [21], [33], [26], [11].
Among these efforts, Carlini et al. propose control-flow bending
(CFB) [[L1]], a technique that bypasses even a perfectly precise
static CFI policy. A CFI policy is considered perfectly precise
if every allowed target for each ICT instruction can be triggered
by some benign input. The resulting control-flow graph (CFG)
is minimal since removing any edge would break legitimate
functionality. Since practical CFI policies must preserve correct
behaviors, they cannot restrict targets beyond this point. CFB
demonstrates that even under this strong assumption, attackers
can substitute function pointers from one valid target to another
within the allowed set. In their study, Carlini ef al. manually
construct two such attacks: one achieving arbitrary code
execution in Apache, and another enabling file manipulation in
Wireshark. Since their work encompasses both control-flow and

data-only attacks, we refer to the variant involving function-
pointer corruption as function substitution (SUB) attacks.
Building on this concept, we construct a SUB attack on
SQLite3 using the related code in [Figure 1] When SQLite3 runs
in safe mode, the indirect call at line 4 invokes safeModeAuth
to block dangerous functions. However, by exploiting a
vulnerability like CVE-2017-6983, an attacker can overwrite
the function pointer db->xAuth with another allowed target,
idxAuthCallback. idxAuthCallback merely checks memory
availability for index creation and likely returns SQLITE_OK even
for dangerous operations. As a result, the attacker bypasses
safe mode, and invokes a prohibited function, like using
load_extension to load and execute malicious shared libraries.

III. PROBLEM & CHALLENGES

Problem statement. Despite the feasibility demonstrated by
Carlini et al., function substitution (SUB) attacks have only been
explored through isolated, manually constructed cases. No prior
work provides a systematic or automated method for generating
such attacks, leaving open questions about their practicality
and impact. This paper addresses this gap by introducing the
first automated framework for generating and evaluating SUB
attacks across real-world general-purpose applications.

Given the nature of SUB attacks, a straightforward strategy
for constructing them is to systematically substitute the target
of each indirect control-transfer (ICT) instruction with another
allowed target, and evaluate the resulting security impact. By
exhaustively testing these substitutions and monitoring for
deviations in expected behavior, we can assess the feasibility
and prevalence of SUB attacks. In the case of where
SQLite3 runs in safe mode, we can execute the program three
times, each time forcing the indirect call to invoke a different
legitimate target. When safeModeAuth is substituted with
idxAuthCallback, a prohibited action unexpectedly succeeds,
indicating a successful bypass of the safe mode.

A. Challenges

However, the straightforward method faces two key chal-
lenges. (C1) Constructing SUB attacks requires precise knowl-
edge of all valid targets for each ICT instruction under precise
CFI policies. However, no existing static analysis can provide
such precision [26]. Most CFI implementations intentionally
over-approximate target sets to preserve program functional-
ity [51]], [60]], which introduces false targets unsuitable for SUB
attacks. Instead, SUB attacks must remain valid under future
precise CFI enforcement, so under-approximation is preferred.
For instance, in identifying only safeModeAuth and
idxAuthCallback (and omitting shellAuth) suffices to build
the attack, while including disallowed targets like system
would result in an attack that a precise CFI policy will
reject. (C2) Assessing the security impact of a substitution is
non-trivial. Unlike classic control-flow hijacking attacks that
aim for arbitrary code execution [4]], [74]], SUB attacks may
yield subtler consequences, such as bypassing authentication
or disabling input sanitization. These impacts, while less

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6983

extreme, can still enable severe exploits, as shown in data-
only attacks [16], [40], [44]. However, detecting such effects
requires program-specific, security feature-oriented oracles
capable of identifying when critical protections are violated.
Constructing these oracles is challenging, and typically requires
substantial manual analysis to understand the program’s high-
level semantics, configuration, and expected behavior. For
example, the SUB attack in requires understanding
that SQLite3’s safe mode is enabled via the -safe flag, that
it prohibits certain actions like load_extension, and what
behavior indicates that the restriction was bypassed. This level
of insight is essential but difficult to obtain automatically.

B. Threat Model

We adopt a widely accepted threat model, consistent with
prior work on control-flow attack and defense [11], [26], [82],
[75], [52], [9]. The target is a benign application that contains
memory-safety vulnerabilities but no malicious logic. The
attacker can exploit these vulnerabilities to achieve arbitrary
memory reads and writes. The application is protected by
standard defenses, including WX [61] and shadow stacks [S5],
[43], [20]. Given well-known limitations [6], the attacker can
bypass ASLR [71] using common techniques [41]], [27], [45l,
[68]], [63]. The assumption of arbitrary memory access is a
commonly adopted abstraction to isolate the effects of memory
manipulation from the specific techniques to obtain it. This
allows us to focus on the construction of SUB attacks once
such access is available. In practice, SUB attacks may succeed
with more constrained attacker capabilities [56], [95], [90].

We further assume the presence of a fully precise static CFI
mechanism. Although such precision is unattainable in practice,
it models the strongest protection that static CFI could possibly
provide. To simplify the design and implementation of our
work, we assume the availability of the program’s source code.
However, this is not a fundamental limitation, and our work
can be extended to support building attacks in COTS binaries.

IV. METHOD OVERVIEW

To address the aforementioned challenges, we propose three
core techniques for systematically constructing SUB attacks in
general-purpose applications. [Figure 2| presents an overview of
our approach. First, we define the notion of sub-ground truth,
the set of ICT targets dynamically observed during benign
executions, to ensure that each substitution remains valid under
any precise CFI policy. Second, we introduce the concept
of security-oriented oracles to evaluate the impact of each
substitution. These lightweight oracles are derived from high-
level security features specified in program documentation.
Third, we develop an automated technique that substitutes ICT
targets with entries from the sub-ground truth and verifies the
resulting behavior using the constructed oracles.

A. Sub-ground Truth of ICT Targets

We address challenge C1 by collecting the targets of indirect
calls observed during dynamic executions with benign test
cases. We refer to this conservative approximation as the

P| inst: (*fptr)(args);

for f € T [inst]:
P'= P{ftpr > f}
if O,(in) ¢ P’'(in):
sub attack!

(a) ICT targets

(b) oracles (c) auto-attack

Fig. 2: Method overview. Given a program P, we collect triggered
targets 7'~ at runtime, and construct security-oriented oracles Os.
Then, we substitute each target and identify SUB attacks via oracles.

sub-ground truth. [Figure 2a) demonstrates the relationship
among three relevant target sets. Let 7" denote the theoretical

ground truth, i.e., the set of valid targets allowed by a fully
precise static CFI policy. Although recent techniques have made
progress toward approximating 7' [S1]], [S8], [84]], [47], no
practical method can infer it with full precision. Current static
analysis techniques instead produce a superset 7 [18]], [58]],
[51]], which must include all targets in 7" to preserve program
correctness. However, T often contains false positives, i.e.,
targets not actually allowed under a precise CFI policy, making
them unsuitable for constructing SUB attacks. In contrast, we
define T~ as the set of ICT targets observed during dynamic
execution with benign inputs (i.e., executions that do not trigger
memory errors). As previously established [[1L1]], all elements in
T~ are valid targets under 7', ensuring that any substitutions
confined to T'~ respect even the strictest static CFI policy.

To maximize SUB attack success, we utilize available test
cases to trigger as many ICT instructions as possible. Many
programs ship with built-in test suites for functional validation
and bug detection [77], [65]], [2l], offering a practical foundation
for dynamic target collection. While full coverage remains
challenging, this limitation is acceptable for us since our goal
is to demonstrate the practicality rather than completeness. A
substantial number of successful SUB attacks across programs
is sufficient to validate feasibility. Moreover, recent advances in
program-testing techniques, such as fuzzing [89], [8], [93]] and
symbolic execution [[13]], [14], [72]], have significantly improved
code coverage and can be incorporated into future extensions
of our framework to further enhance target discovery.

In our motivating example (Figure 1)), SQLite3 devel-
opers provide an extensive test suite [77] in the source
repository and official release. Simply running the built-in
command make test triggers two out of three legitimate targets
for the indirect call at line 4, in particular, safeModeAuth
and idxAuthCallback. By substituting safeModeAuth with
idxAuthCallback, attackers can bypass safe mode restrictions.

B. Behavioral Oracles of Security Features

To address challenge C2, we propose constructing behavioral
oracles for program security features. These oracles capture
the expected behaviors of components designed to protect a
program and its resources from unauthorized access, misuse,
or attack. Common security features include access control,
input validation, encryption, sandboxing, logging, and rate
limiting. For instance, Nginx requires users to provide valid

credentials (e.g., username and password) before accessing
restricted web pages. These features are particularly attractive
targets for SUB attacks as compromising them often results in
immediate, high-impact violations directly aligned with attacker
objectives. In contrast, exploiting low-level primitives may
produce large volumes of reports that are difficult to associate
with meaningful, high-level security breaches. [Figure 2|b)
demonstrates the relationship among various attack goals.
Prior control-flow attacks mainly pursue code execution (CE)
or information leakage (IL), whereas our work focuses on
constructing and leveraging security-oriented oracles (O;) to
evaluate semantic consequences of function substitutions.

We define a behavioral oracle as a pair (in, out), where in
represents one or more test cases that trigger a specific security
feature, and out denotes the observable program behavior
reflecting the successful enforcement of that feature. Formally,
out := Os(in), where O; is the oracle function for security
feature s. The ¢n component also include necessary config-
urations to activate the security feature, such as compilation
flags, runtime settings, command-line options, or environment-
specific setup steps, like creating user credentials. For example,
to test SQLite3 safe mode, we must launch the process with
-safe and provide an input with a prohibited operation like
load_extension. The output will contain an error like “cannot
use the load_extension() function in safe mode”.

To scale this process and minimize manual effort, we
leverage large language models (LLMs) to assist in construct-
ing behavioral oracles. As security has become a growing
concern for users [32]], developers frequently highlight newly
implemented protections in publicly accessible materials, such
as official websites [78]], [42], [3]], release notes, and source
repositories. These materials provide valuable context that
LLMs can use to synthesize expected behaviors and assist
in oracle generation. We detail our LLM-assisted oracle

construction in and evaluate its effectiveness in

C. Automatic Substitution and Measurement

We design an automated algorithm to systematically con-
struct SUB attacks. This process relies on three key components:
a target set from which substitution candidates are selected,
a security oracle that verifies whether the security feature is
properly enforced, and a substitution engine that systematically
replaces allowed targets and checks for behavior deviations
using the oracle. We obtain substitution candidates from the sub-
ground truth set 7'~ described in and construct security-
oriented oracles as discussed in [Figure 2]c) provides
an overview of the algorithm. For each indirect call inst in
a given application P, our framework substitutes the original
runtime target with a candidate from 7'~. The application
is then executed with the test input ¢n and the oracle O
for security feature s. If the observed output deviates from
the expected output defined by the oracle, we classify the
substitution as a successful SUB attack. While our focus is on
indirect function calls, the approach can be easily extended to
other ICT instructions, including indirect jumps and returns.

In addition to validating the high-level security impact, we
also consider the possibility that a substitution may corrupt the
program’s execution state, causing subsequent ICT instructions
to target invalid functions, i.e., functions outside of the valid
target set 7'. Since such targets would violate precise CFI
policies, the corresponding substitutions are not considered
successful SUB attacks. To detect these cases, we monitor each
ICT instruction during execution and verify whether its target
remains within 7'~. If any subsequent ICT targets fall outside
of this set, we conservatively mark the substitution as a failure.
This design avoids reporting attacks that would be blocked
by precise CFI enforcement. While this conservative approach
may discard feasible attacks due to incomplete coverage in
T—, it is acceptable to use as long as we can still construct a
large number of SUB attacks across real-world programs.

V. SACK DESIGN & IMPLEMENTATION

We design and implement SACK, the first framework for
systematically constructing SUB attacks at scale.
shows the overall workflow. Given a target application, SACK
first builds security-oriented oracles with the assistance of a
large language model (§V-A). Each oracle defines the necessary
configuration to enable a security feature, the input needed
to trigger it, and the expected security behavior. SACK then
executes the application with sample inputs to dynamically
collect ICT targets triggered during benign execution (S V-B).
These targets form the basis for candidate substitutions. The
attack engine proceeds by selecting one oracle input and
repeatedly executing the application (§V-C). In each run, it
substitutes the target of a single indirect call with an alternative
from the collected target set. After each substitution, SACK
monitors the application’s behavior and compares it against the
expected output defined by the oracle. A deviation indicates
that the substitution has compromised the security feature.

A. LLM-assisted Oracle Constructor

Creating a security-oriented oracle involves identifying
relevant security features, synthesizing inputs (¢n) that enable
and trigger those features, and defining monitors to capture the
expected behaviors (out) that confirm correct enforcement. To
automate this process, we employ a structured methodology
that combines authoritative documentation sources with the
reasoning capabilities of large language models (LLMs).
Inspired by workflows from prior studies [29], [69], [53], [87],
[94], [17], SACK constructs oracles via three steps: feature
identification, document preparation, and oracle generation.

1) Feature Identification: In the first step, we identify
security features supported by the target program using LLM
assistance. To enhance the effectiveness of the model, we adopt
a role-playing prompt engineering technique [48]], instructing
the LLM to act as a domain expert familiar with the program’s
design. The task is defined as listing all available security
features. We employ a few-shot prompting strategy by providing
example keywords such as “access control”, “input validation”,
and “logging”, to guide the model’s response. Upon receiving
the prompt, the LLM generates a list of security features based

Oracle constructor

{ Featureidentification —» Sec Oracle

* : feature generation

i Document preparation i| initial oracle
Application)mssp i + — i

g reprocess refine & fix

info prep i— :

i |collect filtering monitor gen

Attack engine

{ Subinstrument Security
L S— ‘ ViOlatiOn CheCk
Oracles monitor || targets
(in, out) Sub bin ;| monitor|| targets |
i verify verify |}
N L S ekt ;-
Func substitution T T
T, for f € T [inst]: Sec + ICT

targets P'= P{ftpr - f} behavior targets

Fig. 3: SACK framework. Given a program, it first builds security-oriented oracles with LLM assistance and collects runtime-triggered
targets of ICT instructions; then, SACK uses oracles and ICT targets to automatically construct SUB attacks.

on its embedded knowledge and, if available, online sources.
For example, when querying about SQLite3, the LLM identifies
security features such as database encryption, SQL-injection
protection and read-only database support. One particularly
relevant result is “safe mode (.safe command)”, described as
“safe mode restricts the CLI from running potentially dangerous
commands and loading extensions”, which corresponds to the
feature highlighted in our motivating example (Figure I). We
collect all returned features for use in the subsequent steps.

2) Document Preparation: In parallel with feature identifica-
tion, we collect detailed documentation from the application’s
official website to support concrete oracle construction. Relying
solely on LLLM-generated responses is often insufficient, as
oracles usually require specific inputs and configuration settings
to reliably trigger the targeted security feature. Although
LLMs are trained on extensive data, they may lack detailed,
implementation-specific knowledge such as compilation flags,
runtime configurations, or command-line arguments. In such
cases, official documentation provides authoritative, context-
specific information to fill these gaps. Since our oracles aim
to capture high-level security behaviors, we focus on manual-
style documents that guide users on configuring and invoking
security features. These materials typically contain concrete
commands, configuration options, and usage examples. For
example, the SQLite3 command-line shell documentation at
https://sqlite.org/cli.html explains that the -safe flag enables
safe mode and lists prohibited actions, like load_extension
and readfile. This information helps LLM understand both
how to enable the feature and how to verify its enforcement.

To automate document collection, we develop a crawler to
recursively download all reachable pages from a user-provided
entry point, treating each page as a standalone document. Since
crawled pages may contain irrelevant content, we apply a
two-step preprocessing and filtering process to extract useful
information. First, we remove non-content elements such
as navigation bars, layout structures, and scripts. Then, we
perform keyword-based filtering to retain only security-related
documents. We search for terms such as ‘“authentication”,
“protection”, “security”, “logging”, “password”, and their
synonyms. Documents matching any of these terms are retained
for subsequent oracle construction, while others are discarded.

3) Oracle Generation: We use an LLM to parse security-
related documents and generate behavioral oracles for identified
security features. This process contains three steps: initial oracle

generation, refinement and correction, and monitor definition.

Initial oracle generation. We prompt an LLM to generate
initial security oracles by providing a structured query that
contains a system prompt, a user prompt, a target security
feature, and all collected documentation. The system prompt
adopts a role-playing strategy, instructing the LLM to act as
an experienced software developer. The task is to generate a
security oracle containing six components, when applicable.

« Compilation flags required during compilation to enable
the security feature. For example, enabling SSL/TLS in
Nginx requires the --with-http_ssl_module flag.

« Configuration directives like runtime settings or initializa-
tion parameters to activate the feature. For instance, basic
authentication in Nginx requires setting the auth_basic and
auth_basic_user_file directives in the configuration file.

« Additional commands for enabling the feature. For example,
basic authentication in Nginx requires a credential file,
which can be generated using a tool such as htpasswd.

o Legal input and expected outcome under the feature. For
example, SQLite3 in safe mode should execute valid SQL
queries without prohibited actions successfully.

o Illegal input and expected outcome under the feature. For
instance, SQLite3 in safe mode should reject invalid SQL
queries with prohibited actions and print an error message.

« Final judgment for verifying the feature enforcement. For
SQLite3, we will scan the program output for errors to
determine whether the safe mode is properly enforced.

Each LLM query pairs one identified security feature with
all relevant documents to enable contextual reasoning.

Refinement and correction. After obtaining initial oracles, we
test them by executing the outlined steps. If any discrepancies
or errors occur, we collect the observed behaviors and submit
them along with the original oracle to the LLM for refinement.
This iterative process is repeated up to three times. If errors
persist, we manually intervene to correct the oracle. We evaluate
the effectiveness of this process and report the result in

Monitor development. Once validated, we develop monitors
using Python to automatically detect whether the oracle’s
expected behavior (out) occurs. We categorize monitoring
techniques into two types based on where to find the observable
behavior. The log-based approach captures behaviors recorded
in the program’s internal logs. For example, in Nginx and
Apache, HTTP status codes (e.g., 200 for success) are saved

https://sqlite.org/cli.html
https://sqlite.org/cli.html

1 ; instrument indirect call for collecting targets

2 E call @do_record(%63, 142) ; 142 is the icall ID
3 %72 = call %63(%65, %70)
4
5

; substitute one function pointer (sub attack)
6 %59 = getelementptr %58, 0, 0O
7 [f call @do_sub(%59, 142)
8 %63 = load %59
9 %72 = call %63(%65, %70)

Fig. 4: Instrumentation to LLVM IR for recording and substitution

; 142 is the icall ID

void do_record(long addr, long icall_id) {
FILE * fd = fopen("...", "w");
long pair[2] = {icall_id, addr};
fwrite(pair, sizeof(pair), 1, fd);
fclose(fd);

}

void do_sub(long * mem_addr, long icall_id) {
if (icall_id == atol(getenv("ID_TO_SUB")))

“mem_addr = atol(getenv("ADDRESS_TO_SUB"));

S o ® o wm AW —

}
Fig. 5: Extra runtime code added for recording and substitution

in access logs, reflecting the enforcement of features such as
authentication. To monitor such information, we analyze the
corresponding log files. The output-based approach captures
behaviors printed directly to standard output stdout or standard
error stderr. In this case, we redirect the program’s output to
a dedicated file for examination. We choose the monitoring
method based on the form and location of the observable output.
For example, attempting to use load_extension in SQLite3
safe mode produces an error message, which we detect by
redirecting output to a file and analyzing its contents.

B. ICT Targets Collector

To collect allowed ICT targets triggered during benign
executions, SACK uses the LLVM compiler clang to instrument
the program and produces a binary for target recording.
Specifically, SACK assigns each indirect call instruction (icall)
a unique identifier, referred to as the icall ID. Before each
icall, SACK inserts new LLVM intermediate representation (IR)
instructions to invoke a custom recording function, which takes
two arguments: the function pointer (i.e., the current target) and
the corresponding icall ID. During execution, this recording
function logs each observed (icall ID, target) pair to a trace
file. After execution completes, SACK merges all trace files
into a global map, where each icall ID is associated with the
set of target functions it invokes during benign runs.

[Figure 4| and [Figure 5| illustrate the IR-level instrumentation
and the supporting helper functions added to the program. For
readability, we omit verbose type information in the LLVM IR.
In line 3 shows the LLVM IR corresponding to the
indirect call at line 4 in where %63 holds the function
pointer do->xAuth. Line 2 demonstrates the instrumentation
inserted before the call, i.e., a call to do_record with %63 and a
constant icall ID 142 as arguments. [Figure 5| (lines 1-6) presents
a simplified version of the do_record implementation, which
logs the icall ID and target address to a trace file. We will
compile this function into the final program binary to support
target recording. The entire instrumentation process is fully
automated and does not require manual intervention.

Recording all icalls and their targets during execution can
generate large trace files and introduce significant disk I/O over-

head. We observe, however, that many icalls repeatedly invoke
the same target along the execution. To reduce redundancy and
improve performance, we cache the most recently recorded
target for each icall in an in-memory array. For each icall,
a new log entry is written only when the target differs from
the last recorded one. This optimization significantly reduces
unnecessary logging and improves runtime efficiency.

C. Automatic Attack Engine

With synthesized security oracles and recorded ICT targets,
SACK constructs and evaluates SUB attacks by modifying
function pointers before indirect calls. It enumerates valid
substitutions and assesses whether any weakens or disables a
security feature. For each attack, SACK also verifies that all
subsequent indirect calls conform to a precise static CFI policy.

1) Function Substitution: For each security oracle, SACK
executes the program multiple times with the same input in,
once for each recorded alternative target of every indirect
call (icall). In each execution, SACK selects a single icall and
replaces its original target with a different one observed during
benign runs. We observe that modifying multiple function
pointers within the same execution often leads to instability,
like crashes or hangs. To ensure reliable testing, the current
design limits each execution to a single substitution.

To simulate SUB attacks, SACK uses an additional LLVM
pass during compilation to enable runtime modification of
function pointers. This pass performs two tasks. First, it
identifies each icall instruction and conducts backward data-
flow analysis to find the memory address of the function
pointer being invoked. Second, it instruments the code just
before the pointer is loaded by inserting a call to a helper
function do_sub, passing the pointer’s memory address and
the icall ID as arguments. Lines 6-9 in show an
example of this instrumentation for the indirect call at line
4 in Line 6 computes the address of db->xAuth
and stores it in %59; line 8 loads the pointer into %63; and
line 9 performs the indirect call. The call to do_sub, inserted
before line 8, allows runtime substitution of the function pointer
using environment variables. Lines 7-10 in present a
simplified implementation of do_sub, which checks the icall ID
and modifies the memory accordingly. Before each execution,
SACK updates environment variables to specify the target
substitution. By iterating over all combinations of icall IDs
and valid targets, SACK systematically enumerates all possible
substitutions across all security oracles.

Limiting Repetitive Substitutions. While our brute-force sub-
stitution strategy is conceptually simple and domain-agnostic,
repeated substitutions at highly frequent indirect-call sites may
lead to excessive program re-executions. For an icall with
M wvalid targets that is dynamically invoked NN times, the
original strategy performs M x N substitutions, which can be
prohibitively large when N is high. To mitigate this cost, we
introduce a lightweight heuristic that bounds the number of
dynamic invocations considered for substitution at each call site.
Instead of substituting across all N invocations, we examine
only the first min(N, 7) invocations, where 7 is a configurable

threshold. This design focuses explorations on early executions,
which often reflect the most representative execution contexts
while avoiding redundant work caused by hot call sites inside
loops or event-driven paths. With the threshold, the total
substitution per icall become M x min{N, 7}, significantly
reducing the exploration cost. This optimization improves
efficiency at the potential expense of pruning some feasible
SUB attacks. We quantify both the efficiency gains and the

corresponding impact on attack coverage in (§VI-C2).

Support for C++ virtual calls. SACK operates at the LLVM
IR level, making it applicable to both C and C++ programs.
However, C++ virtual calls require special handling due to
the use of virtual function tables (vtables). In C, each indirect
call usually uses a standalone function pointer, so modifying it
only affects one target. In contrast, C++ vtables group function
addresses into read-only memory regions, and the program
accesses virtual methods via a vtable pointer and an index.
This setup makes runtime modification challenging: individual
function addresses in the vtable are read-only, and changing
the vtable pointer affects all methods in the class. In real-world
C++ exploits, attackers often craft a fake vtable and overwrite
the vtable pointer. To simplify our framework, SACK modifies
the program binary to make all loadable segments writable
using the LIEF library [54]. This allows SACK to simulate
realistic attacks by directly modifying vtable entries as needed,
using the same substitution technique shown in

2) Security Violation Check: SACK performs two levels of
checks to determine whether a SUB attack has successfully
compromised a security feature. First, SACK invokes the
corresponding oracle monitor to assess whether the feature
remains correctly enforced. It analyzes program’s logs or
standard output/error to compare observed behavior with the
oracle’s expected outcome. Any deviation from the expected
output indicates a violation, suggesting that the substitution
has disrupted or disabled the security feature. Second, SACK
ensures that all subsequent icalls comply with a precise CFI
policy. While the initial substitution is chosen from the valid
target set to avoid CFI violations, it may place the program
into an inconsistent or unintended state. This state may cause
subsequent icalls to target functions not allowed under precise
CFI, thereby violating CFI guarantees. To detect this, SACK
monitors all downstream ICT instructions and checks whether
their targets fall within the previously collected valid set. If
no, the execution is flagged as a failure, and the corresponding
substitution is not counted as a successful attack.

VI. EVALUATION

We evaluate the SACK framework on real-world applications
to assess the prevalence of SUB attacks, and to measure the
effectiveness of our systematic construction approach. Our
evaluation aims to answer the following research questions.
e Can SACK effectively construct SUB attacks? (§VI-A)

e Can the oracle generator produce accurate oracles? (§VI-B)
e Can the attack engine reliably substitute targets? (§VI-C)
Can SACK support statically inferred CFI targets?

Programs for evaluation. Since no standard benchmark exists
for evaluating CFI attacks, we follow the methodology of prior
work [[L1]], [26]], [82] to select a representative set of seven
widely used C/C++ applications spanning diverse domains.
Their source-code sizes range from 132K to 4.7M lines of code
(LoC). Specifically, Nginx and Apache are widely deployed web
servers for handling HTTP requests; SQLite3 is a lightweight
and extensively used database engine; ProFTPD is a secure FTP
server; Sudo is a critical security utility for privilege escalation
management in Unix-like systems; Wireshark is a popular
network protocol analyzer for traffic capture and inspection;
and V8 is a high-performance JavaScript (JS) engine, used
in browsers and server-side environments. All applications
incorporate various security features to ensure safe and robust
execution. summarizes their key characteristics.

Experiment environment. We conduct all experiments within
Docker containers running 64-bit Ubuntu 20.04. Each container
uses default settings and has full access to the host machine’s
CPU and memory resources. The host machine runs 64-bit
Ubuntu 22.04 with a 56-core Intel(R) Xeon(R) Gold CPU,
500 GB RAM, and 1 TB SSD. For LLM-assisted oracle
construction, we utilize GPT-4.1 released on 2025-04-14.
Unless otherwise noted, we set the substitution threshold 7 to
1,000 to balance efficiency with comprehensive attack coverage.

Inputs for ICT target collection. To collect indirect call
targets, we adopt a lightweight strategy to identify test cases.
When official test suites are available, we utilize them directly.
Otherwise, we prompt the LLM to synthesize one or two
minimal test cases that exercise basic program functionality.
In addition, oracle inputs from are reused to ensure
coverage of security-relevant code paths. We deliberately adopt
this minimal-effort approach to reflect a realistic attacker
setting, where the goal is to assess whether SUB attacks can be
constructed using publicly available or easily generated inputs,
without requiring exhaustive testing infrastructure.

A. Constructed SUB Attacks

SACK successfully constructs SUB attacks across all seven
evaluated programs, using a total of 22 synthesized security
oracles. To quantify these attacks, we adopt three counting
strategies: (i) counting each unique indirect call (icall) as a
distinct attack, regardless of the original or substituted targets;
(io) counting each unique pair of (icall, original target), ignoring
the substituted target; (ion) treating each unique tuple (icall,
original target, new target) as a distinct attack. Using these
respective methods, SACK constructs 52, 75, and 419 attacks.
In the remainder of the evaluation, we report attack counts
using the most precise method (ion), as it best reflects the
diversity of successful substitutions. Compared to the two SUB
attacks in the CFB work [[L1], our results reveal the prevalence
of SUB attacks in real-world applications and the feasibility of
constructing them using a systematic and automated approach.

summarizes the target programs, versions, code sizes,
supported security features, synthesized oracles, and number
of successful attacks. A dash (-) indicates that SACK did not
generate any successful attack for the corresponding oracle.

TABLE I: Tested programs, security oracles and constructed SUB attacks. We adopt three counting strategies: (i) counts unique indirect
calls; (io) counts unique pairs of indirect call and original target; (ion) counts unique triplets of indirect call, original target and substituted
target. - means no attacks are constructed. * indicates we construct real-world attacks with concrete historical vulnerabilities. For kLoC, we
use the cloc tool on the source code prior to compilation, summing the lines of C, C++ and C/C++ headers, where applicable.

Program Version KkLoC Lang. Security feature Oracle #SUB: (i) (io) (ion)
Nginx 1.27.1 165 C Authentication (N1) Accessing a restricted webpage is rejected * 6 10 41
Rate limiting (N2) Send two continuous requests; only one is accepted * 9 11 82
Web app firewall (N3) Sending an SQL-injection request is rejected 6 6 25
Restrict methods (N4) Accessing a webpage w/ a blocked method is rejected * 6 15 50
Logging (N5) Accessing a webpage is recorded 8 8 52
SSL/TLS (N6) HTTPS packets are encrypted - - -
SQLite3 3.47.2 200 C Unsafe commands (Q1) Executing an unsafe SQL command is blocked * 03 3 33
Read-only mode (Q2) Modifying a read-only schema is rejected - - -
ProFTPD v1.3.8c 242 C Authentication (P1) Login w/o password is rejected 1 2 20
Login attempt limit (P2) Exceeding the password attempt limit is banned 2 4 47
User permission control (P3) Executing forbidden commands is denied 1 1 7
Auth-required actions (P4) Executing sensitive actions w/o login is denied - - -
Sudo 1.9.16 132 C Logging (U1) Using sudo is recorded 1 1 2
Extra approval (U2) Using sudo w/o satisfying extra approval is rejected 1 1 1
Authentication (U3) Using sudo w/o password is rejected - - -
Apache 2.4.63 213 C Authentication (A1) Accessing a restricted webpage is rejected 2 2 22
Web app firewall (A2) Sending a SQL-injection request is rejected 1 1 3
Restrict methods (A3) Accessing a webpage w/ a blocked method is rejected 1 1 4
Logging (A4) Accessing a webpage is recorded 1 1 6
Block malicious URL (AS5) Sending a request w/ malicious URL is blocked 1 2 11
Wireshark 4.4.5 4,713 C/C++ Malform detection (W1) Malformed packets are highlighted in expert information 1 5 12
V8 10.7.190 1,697 C++ Block unsafe method (V1) Executing Shell::System is rejected N | 1 1
Total 7,450 22 52 75 419

We also construct five end-to-end SUB attacks using historical
bugs in SQLite3 against oracle Q1 (based on CVE-2017-6983),
V8 against oracle V1 (based on CVE-2021-30632), and Nginx
against oracle N1/N2/N4 (based on CVE-2013-2028) marked
with an asterisk (*), with details of three provided in the
following case studies. As these vulnerabilities have been
patched for years, our demonstrations pose no immediate threat.

Across the 22 oracles, SACK successfully constructs SUB
attacks that bypass 18, demonstrating a broad range of
security consequences. Authentication-related oracles (Nginx-
N1, ProFTPD-P1/P3/P4, Sudo-U3, Apache-Al) restrict access
to privileged resources or operations. SACK constructs attacks
compromising four of these six features. Connection-limiting or-
acles (Nginx-N2, ProFTPD-P2) enforce rate limits on requests
or logins. SACK builds attacks that bypass both protections,
enabling unrestricted brute-force attempts. Logging-related
oracles (Nginx-N5, Sudo-U1l, Apache-A4) record security-
relevant events. SACK builds SUB attacks against all three,
allowing adversaries to erase traces of malicious activity.
Dangerous operation oracles (Nginx-N3/N4, SQLite-Q1/Q2,
Sudo-U2, Apache-A2/A3/AS, V8-V1) aim to block high-risk
operations by default. SACK constructs attacks that bypass
eight of the nine protections in this category. Program-specific
oracles include Nginx-N6, which enforces SSL/TLS encryption,
and Wireshark-W1, which highlights malformed packets. SACK
constructs a successful SUB attack against Wireshark-W1.

While SACK constructs 19.0 attacks per oracle on average,
Table I| reveals significant variation across oracles. In extreme
cases, such as Nginx-N2, SACK identifies 82 distinct substitu-
tions to bypass the rate-limiting feature, while for Nginx-N6,
SQLite-Q2, ProFTPD-P3, and Sudo-U3, no attacks are found.
We attribute this variation to several factors, like application

size, feature complexity, and programming style (e.g., the extent
to which function pointers are used). Interestingly, attack counts
are more consistent across oracles within the same program,
suggesting that program-level characteristics have a stronger
influence on attack feasibility than individual feature properties.

Next, we present three case studies that demonstrate the
severity and prevalence of SUB attacks, and the effectiveness
of our SACK platform. For each of these cases, we construct
working SUB exploits with concrete real-world vulnerabilities.

Case study 1: disarming SQLite3 safe mode. As discussed
in[§TI-A] SQLite3 provides a safe mode to restrict the execution
of untrusted actions, such as loading external extensions.
Using SACK, we automatically construct 33 SUB attacks
that effectively disable safe mode and re-enable previously
prohibited actions. These attacks involve three distinct icall
instructions. One such attack corresponds to the example attack
presented in where the function pointer do->xAuth
at line 4 of is substituted from safeModeAuth to
a valid alternative, idxAuthCallback. The remaining two
icalls appear earlier along the call path to sqlite3AuthCheck,
which indirectly invokes safeModeAuth. By substituting these
functions with alternative valid targets, attackers bypass the
execution of sqlite3AuthCheck entirely and disable safe mode.

We develop a full exploit based on [CVE-2017-6983, a
historical type-confusion vulnerability in SQLite3 that enables
arbitrary memory writes [28]. Since the vulnerability was
patched in 2017, we manually revert the fix to reintroduce
the bug. The exploit proceeds in three steps. First, it leverages
the type confusion to craft an arbitrary-write primitive. Sec-
ond, it uses this primitive to overwrite do->xAuth, replacing
safeModeAuth with idxAuthCallback and thereby disabling
safe mode. Finally, it invokes load_extension via a SELECT

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6983

clause, causing SQLite3 to load a malicious shared library.
This library contains a payload in its ELF constructor, which
automatically executes upon loading. With this attack, we
achieve arbitrary code execution in SQLite3 safe mode.

Case study 2: escaping V8 sandboxing. The V8 JavaScript
shell, d8, enforces a sandboxing mechanism that disables
access to the operation os.system which allows the execution
of arbitrary system commands. To invoke os.system, users
must explicitly launch d8 with the --enable-os-system flag.
However, certain operations, like os.rmdir which deletes
directories, remain accessible without this flag. SACK con-
structs a SUB attack that exploits this gap by substituting
the function pointer for os.rmdir originally pointing to
v8::Shell: :RemoveDirectory, with v8::Shell::System, the
handler for os.system. As a result, even when d8 is launched
without the special flag, invoking os.rmdir silently executes
arbitrary commands via os.system, bypassing the restriction.
Importantly, this attack does not violate even a perfectly precise
CFI policy as both functions are valid targets of the indirect
function call responsible for dispatching os.* operations.

We construct an end-to-end exploit using CVE-2021-30632,
a logic bug in V8’s just-in-time (JIT) compiler that leads
to type confusion and arbitrary memory modification. This
vulnerability was patched in 2021, and we revert V8 to
version 9.3.345.16 (released 2021-09-01) to reintroduce the
flaw. We build upon a publicly available proof-of-concept
to reproduce the arbitrary write primitive. To integrate the
SUB attack, we target the os.rmdir object, which is im-
plemented as a JSFunction in the V8 source. We traverse
its internal structure chain: JSFunction->SharedFunctionInfo-
>FunctionTemplateInfo->CallHandlerInfo->Foreign to lo-
cate the underlying function pointer. Notably, the offset
between RemoveDirectory and System is fixed, even with
ASLR enabled. This allows us to redirect the pointer by
simply adding a known constant offset to the existing address,
without requiring knowledge of the actual address of System.
Once the pointer is overwritten, the exploit simply invokes
os.rmdir(“bash”, []), which results in a shell being spawned.

Case study 3: bypassing Nginx authentication. SACK
identifies 41 distinct substitutions that bypass Nginx HTTP
basic authentication. In particular, Nginx-N1 requires a valid
username and password to protect sensitive web pages, while
our SUB attacks enable unauthorized access without knowledge
of valid credentials. We analyze and categorize these attacks
into three groups based on attack internals. First, five attacks
cause Nginx to skip the authentication phase entirely, allowing
unrestricted access. We construct a full exploit using|(CVE-2013+
2028|, by substituting ngx_http_core_find_config_phase with
ngx_http_core_post_rewrite_phase. Second, one attack re-
places the password-based auth function with a weaker IP-
based alternative, thereby reducing the security quality. Third,
the remaining 35 attacks target functions responsible for
parsing Nginx configuration files. By replacing the parser with
unrelated functions, these attacks prevent the correct loading
of authentication settings, effectively disabling access control.

10

B. Performance of Oracle Generation

We evaluate the performance of our LLM-assisted oracle
generator discussed in [§V-A] and present results in

Using few-shot prompting, our feature-identification step
yields 10 to 20 security features for each program. Due to
resource constraints, we select a representative subset of these
features for evaluation, focusing on commonly used protections,
like authentication, authorization, logging, and sandboxing.

We report three metrics during document preparation: the
crawler entry point (entry), the number of pages collected
(#crawl), and the number retained after preprocessing (#filter).
From the entry point, the crawler collects eight to 142 pages,
depending on two factors. First, the choice of entry point
significantly affects the collected pages. Instead of choosing
the root directory on the official website, we prioritize manual-
like documentation that describes how users can configure and
invoke security features. For example, the Wireshark user guide
links to 196 pages, most of which pertain to the GUI version.
By instead using the manual page of Tshark, the terminal-
based version, we get only eight relevant documents. Second,
document structure and application design also influence
the collected page. For example, Apache offers 126 module
descriptions, each presented as a separate page. Users can
customize the entry point to include more or fewer documents,
depending on how extensively they wish to construct SUB
attacks. The filtering process eliminates 19.2% to 63.0% of
collected documents. For SQLite3, up to 63.0% of pages
are excluded due to missing security keywords. These pages
typically cover general functionality or serve as introductory
content. In contrast, only 19.2% of ProFPTD’s pages are filtered
out, because terms like “logging” and related keywords appear
frequently. This filtering ensures our tool focuses on security-
relevant content and reduces noise in subsequent LLM queries.

Among 22 features, SACK successfully generates 20 oracles
without requiring extra documents. Only two features, Nginx-
N3 and Apache-A2, initially fail due to missing information
about the third-party web application firewall (WAF) module.
Providing these documents yields successful oracle generation.

We assess the quality of initial oracles across six compo-
nents: compilation flags (compile), configuration directives
(config), additional commands (cmd), legal and illegal input
and outcomes, and final judgment (final). Each component is
evaluated using a three-level scale: v* if we can apply it as-is;
“auto-fix” if it contains errors but can be resolved by three
LLM re-queries; “manual” if it cannot be resolved within three
LLM re-queries and requires human investigation.

Out of 22 oracles, 18 have all components marked as v/,
indicating the initial oracles successfully guide the setup and
verification of the security features. Three oracles, Apache-
A1/A2/AS, contain components marked as “auto-fix”. We
identify that the primary causes for these issues are idealized
assumptions and omissions of critical steps. Although the LLM
is instructed to provide step-by-step commands, it occasionally
assumes that certain requirements are already satisfied, which
may not hold in practice. For Apache-A2, enabling its WAF

https://github.blog/security/vulnerability-research/chrome-in-the-wild-bug-analysis-cve-2021-30632/
https://github.com/github/securitylab/blob/main/SecurityExploits/Chrome/v8/CVE-2021-30632/poc.js
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028/

TABLE II: Statistics of LLM-assisted oracle generation. We report the crawler entry, number of collected pages (#crawl), retained after
filtering (#filter), and extra entries. We measure oracle quality across compilation flags, configuration directives, extra commands, legal/illegal
input/output, and final judgment. We rate them as: usable as-is (v'), auto-fixable, or manually fixable. We record the time cost for document
prep, feature identification, oracle generation (init), auto-fix, and manual correction. We report the token length and the average oracle cost.

Program Documentation Oracle Initial Oracle Quality Prep LLM Time Man LLM Query
entry #crawl #filter extra compile config cmd legal illegal ~ final Time feat init fix Time #token price
Nginx & 67 29 36”7 16" 138,973 0.278
N1 - Vv v v v v v 34" - -
N2 -V v v v manual v’ 19” -
N3 c| v v v v v v 41" - -
N4 -V v v v v v 12" - -
N5 - Vv v v v v v 20" - -
N6 - Vv v v v v v 15" - -
SQLite3 g 46 17 127 17”7 129,303 0.259
Ql - Vv v v v v v 10” - -
Q2 -V v v v v v 9” - -
ProFTPD @ 99 80 39" 117 243,125 0.486
P1 -V v v v v v 38" - -
P2 - Vv v v v v v 19” - -
P3 -V v v v v v 22" - -
P4 - Vv v v v v v 22" - -
Sudo o 49 36 25" 23" 193,509 0.387
Ul - Vv v v v v v 13" - -
U2 - Vv v v v v v 15" - -
U3 - Vv v v v v v 15" - -
Apache & 142 86 43" 13" 289,812 0.580
Al - Vv v v auto-fix v’ v 31”7 5" -
A2 | auto-fix v auto-fix v’ v v 217 26" -
A3 - Vv v v v v v 16" - -
A4 -V v v v v v 297 - -
A5 -V manual Vv’ auto-fix auto-fix v’ 97 6 7
Wireshark @ 8 6 Wi - Vv v v v v v 3”7 10" 15" - - 31,280 0.063
V8] 61 27 V1 - Vv v v v v v s o1 - - 48,726 0.097

feature requires two third-party modules, libmodsecurity and
Modsecurity-apache Connector. However, the LLM assumes
their availability and omits necessary compilation flags to
enable them. Another issue in Apache-A2 is that the initial
cmd component fails to include the critical step of setting
SecRuleEngine On, which results in alerts being logged but
packets not blocked. Apache-A5 blocks malicious packets based
on packet content, but the legal and illegal components initially
provide only binary packet representations, without explaining
how to send them to Apache. These incorrect assumptions and
omissions are recoverable by at most three LLM re-queries.

Two oracles, Nginx-N2 and Apache-AS5, require manual
intervention to produce functional results. In both cases, the
LLM fails to identify the root causes and resolve them
within three re-queries. Nginx-N2 enforces rate limiting, which
restricts how frequently a client can send requests within a
defined time window. The oracle’s illegal component sends
five requests in a loop, expecting the first two to be accepted
and the remaining three to be blocked. This aligns with the
config component, which sets a limit of one request per second
with a burst of two. However, due to network latency and
timing variability, this actual behavior is inconsistent, which
occasionally accepts three requests instead of two. To address
this issue, we manually reduce the request count to two, and
update the configuration to allow only one request per minute
with no burst. This produces a stable outcome where the first
request is accepted and the second is consistently rejected. For
Apache-AS, the feature relies on a regular expression in the
configuration file to block malicious requests. However, the

11

initial config component includes a flawed regular expression
that matches all inputs, causing the system to block all requests.
We manually correct the issue to produce a functional oracle.

We record the document preparation time (Prep Time), as
well as the time spent on LLM API queries during feature
identification (feat), initial oracle generation (init), and auto-
fix attempts (fix). For oracles that cannot be automatically
fixed, we also report the manual correction time (Man Time).
Document preparation, which includes crawling, preprocessing,
and filtering, completes within 45 seconds (") for all programs.
The preparation time mainly depends on the number and
length of the collected pages. Feature identification completes
within 25" for all cases. Initial oracle generation typically takes
less than 30" per oracle, with a few cases requiring between
30” and 40”. Auto-fix attempts are similarly efficient, taking
under 30" per oracle. When manual intervention is necessary,
the correction time remains modest: fixing Nginx-N2 takes
approximately 4 minutes (') and Apache-A5 requires around 7’.
These results demonstrate the overall efficiency and practicality
of our LLM-assisted oracle generation process.

Since document length dominates the total query size, we
compute the token length of the filtered documentation (#token)
and use it to estimate the generation cost for each oracle (price).
In our evaluation, the cost of generating each oracle remains
below $0.60. This cost can be further reduced by trimming the
input documents or using a lower-cost LLM.

https://nginx.org/en/docs/
https://github.com/owasp-modsecurity/ModSecurity-nginx/blob/master/README.md
https://www.sqlite.org/cli.html
http://www.proftpd.org/docs/
https://www.sudo.ws/docs/man/
https://httpd.apache.org/docs/2.4/mod/
https://github.com/owasp-modsecurity/ModSecurity-apache/blob/master/README.md
https://www.wireshark.org/docs/man-pages/tshark.html
https://v8.dev/docs

TABLE III: Statistics of attack generation. We count all/triggered/substituted icalls, collected targets, SUB attempts, attacks breaking
oracles (Ap), without CFI violations (A;), merging invocations (A2) and manually confirmed (A3). We also record the times used for all SUB
attempts (T), each attempt (T/s), and one successful attack (T/As). Tifps and Ty, denote statically inferred targets from TFA and MLTA.

o iCalls & Targets SUB Attacks Time Cost T;'F A T+

s all triggered substituted target attempt Ag A} Ay Az T T/s T/A3 Aj time Aj time
N1 339 57 28 263 6,208 41 41 41 41 476" 0.077" 11.6"” 61 796" 67 829"
N2 339 69 30 270 10,194 145 111 90 82 1450”7 0.142” 17.7" 180 2550" 189 2803"
N3 351 65 33 291 10473 62 25 25 25 740" 0.071" 29.6" 82 1183" 90 1232
N4 339 60 29 287 7294 55 55 50 50 555" 0.076" 1.1 62 934" 66 938"
N5 351 67 35 296 10,728 74 69 69 52 824”7 0.077” 15.8" 150 1156” 169 1223"
Q1 456 21 5 53 193 34 34 33 33 1" 0.005"” 0.03" 33 5" 33 8/
P1 573 36 11 132 10,834 20 20 20 20 3837”7 0.354" 191.9” 86 8991”7 109 10568"
P2 573 37 11 137 12,445 59 47 47 47 17012” 1367”7 362.0” 205 30528” 243 36686"
P3 573 50 12 136 16,971 7 7 7 1 6815”7 0.402" 973.6" 20 8476" 23 12250
Ul 368 67 8 25 146 4 2 2 2 6" 0.041” 3.0” 31 48" 31 69"
U2 380 58 7 23 124 1 1 1 1 6 0.048” 6.0” 4 28" 8 68"
Al 1,124 186 49 414 27359 86 43 22 22 6006” 0.220" 273.0” 146 8033" 215 11024”
A2 1,124 189 51 343 15,478 8 3 3 3 11543 0.746" 3847.7" 37 139147 164 21619”
A3 1,124 179 46 409 27,316 10 4 4 4 6434”7 0.236" 1608.5" 94 7256" 185 10235”
A4 1,124 186 49 415 27435 38 11 11 6 6501”7 0.237"" 1083.5"” 10 6791" 118 10091”
A5 1,124 176 44 393 27,265 26 11 11 11 5858”7 0.215" 532.5" 15 8495" 77 10975
W1 868 74 36 197 50,562 42 12 12 12 30239” 0.598” 2519.9” 165 122162 176 231877
V1 5998 285 92 540 6,116 1 1 1 1 839" 0.137” 839.0” 1 12148" 1 16696"

C. Performance of Attack Engine

To evaluate the performance of the attack engine, we collect
various statistics during ICT target collection and automatic
substitution, as summarized in Each row corresponds
to one oracle for which SACK successfully constructs SUB
attacks. For each oracle, we count the total number of statically
available icalls, dynamically triggered icalls, and those with
multiple targets observed at runtime (thus used in substitution
attempts). The number of available icalls can vary across oracles
due to differences in compilation flags, which may enable or
disable certain features. Similarly, input diversity may exercise
different modules, resulting in varying numbers of triggered
icalls. We perform substitution only on icalls with two or more
observed targets. We also record the number of target functions
across all substituted icalls, as well as the number of substitution
attempts. Finally, we track the number of attacks at four levels:
violating the oracle-define behavior (Ag), conforming to precise
CFI (A)), unique icalls (A;), and confirmed manually (Aj3).

On average, the oracle inputs achieve 13.7% coverage of all
icalls. For icalls with multiple targets, the coverage drops to
4.6%. The low coverage suggests that our evaluation may miss
additional attacks, and thus underestimate the full prevalence of
SuB attacks. Nevertheless, our primary goal is not exhaustive
enumeration, but rather to demonstrate the feasibility and
widespread applicability of SUB attacks. Despite the limited
coverage, SACK successfully constructs 419 attacks, providing
compelling evidence of both feasibility and prevalence. We
further analyze the underestimation issue in

During each execution, a single icall may be invoked multiple
times. SACK performs all valid substitutions per invocation,
resulting in 267,141 pointer corruptions and program re-
executions. Among them, 713 substitutions cause deviations
from the oracle-defined behavior, like bypassing authentication.
In 216 cases, the modified execution triggers previously unseen
ICT targets; to ensure compatibility with a precise CFI policy,
SACK conservatively treats these as attack failures. After

merging repeated invocations of the same icall, we obtain 449
unique attacks, of which 419 are manually verified as genuine.
The remaining 30 are identified as false positives primarily due
to inaccuracies in our implementation of behavior monitors.
We further analyze these monitor issues in

1) Time Cost of Attack Engine: [lable 1lI| summarizes the
time cost of automatic substitutions, including total time,
average time per substitution (T/s), and per confirmed attack
(T/A3). The per-attack cost T/As varies across programs and
oracles. For SQLite3 and Sudo, all confirmed attacks are
constructed in under 5" on average. Nginx requires slightly
more time, averaging 18.7”. The time increases to 8.4’ for
ProFTPD. V8, Apache, and Wireshark require more time, i.e.,
14/, 19, and 46’, respectively, due to increased complexity and
substitution volume. Prior work like control-flow bending [11]
and newton [82]], does not report their time costs. Control
Jujutsu [26] reports construction times of 1”7, 10”, 14" and 15’
for vsftpd, HTTPD, Nginx, and BIND, respectively. Therefore,
SACK achieves comparable efficiency, demonstrating that its
automated approach performs competitively with prior efforts.

We identify three key factors that influence the time cost of
the attack engine: the nature of the security feature, program
complexity, and the number of substitution attempts. First,
some security features require extended execution to verify. For
example, ProFTPD-P2 enforces login rate limiting by banning
users after several failed attempts. Verifying this behavior
requires multiple login failures, resulting in the highest per-
attempt time (T/s) of 1.367” among all evaluated cases. Second,
program complexity impacts execution time. For instance,
Wireshark takes approximately 0.6” to parse a PCAP file
containing just ten packets, significantly increasing the cost
of each substitution attempt. Third, the number of attempts
scales with the number of triggered icalls and available targets.
Although Wireshark triggers a typical number of unique icalls,
one specific icall with 80 targets is invoked 6,480 times, leading
to a potential 518,400 re-executions. Even with the substitution

12

1.04
wn
S 0.8
©
=
5 061
°
o}
N 0.44
g
S 0.21 —8— Nginx —— ProFTPD
=z Apache —4— V8
0.0 L —A— Wireshark =#= average

02 0.4 06 08
Normalized Time (7 = 1000 baseline)
Fig. 6: Impact of substitution threshold. We set the threshold to
1,000, 100, 10, and 1, and measure the attack counts and runtimes.

00 1.0

threshold set to 1,000, SACK still performs 50,562 attempts,
the highest among all evaluated programs.

2) Threshold T of Substitutions: To quantify the efficiency
gains and potential coverage loss introduced by limiting
repetitive substitutions (§V-CI), we evaluate four thresholds,
i.e., 1,000, 100, 10, and 1, across all program oracles except
SQLite3 and Sudo, whose executions complete within a few
seconds. For each threshold, we measure the percentage of
successfully constructed attacks and the end-to-end runtime,
using 7 = 1,000 as the baseline. The results are illustrated in
With 7 = 100, SACK reproduces all attacks in Nginx,
ProFTPD, Wireshark and V8, and 58.7% attacks in Apache.
Runtime decreases by 5.1%, 41.1%, 12.4%, 67.2% and 31.3%

for Nginx, ProFTPD, Apache, Wireshark and VS8, respectively.

With 7 = 10, SACK still generates 66.0% Nginx attacks, 43.2%
in ProFTPD, 58.7% in Apache, and all attacks in Wireshark
and V8, while runtime drops by 70.2%, 80.3%, 91.4%, 91.1%
and 42.4%. At the most aggressive setting (7 = 1), SACK
constructs only 17 attacks in Nginx and 1 in V8, with no
attacks produced for other programs. Overall, the results show

a clear trade-off between exploration cost and attack coverage.

On average, using a threshold of 7 = 100 retains 91.7% of all
attacks while requiring only 68.6% of the original execution
time. In contrast, 7 = 10 further reduces the runtime to 24.4%
of the baseline but preserves 73.6% of attacks. These results
indicate that 7 = 100 is preferable when maximizing coverage
is the priority, whereas 7 = 10 provides a more cost-efficient
configuration when execution cost is the primary concern.

D. Incorporating Statically Inferred Targets

By default, SACK relies on dynamically collected targets to
construct SUB attacks. However, the generic design of SACK
can be easily extended to construct attacks using statically
inferred, over-approximated target sets. As discussed in
these over-approximated targets do not guarantee successful
exploits under a precise CFI policy, but they provide a useful
upper bound on the potential attack space. To explore this
broader space, we incorporate two over-approximated target
sets derived from MLTA [60] and TFA [58]]. MLTA employs
multi-layer type analysis to infer permissible targets, while TFA

augments MLTA with data-flow analysis to improve precision.

We use the inferred target sets both as substitution candidates
and for subsequent CFI validation. Because MLTA and TFA

13

are known to introduce false negatives [51], some dynamically
observed targets may be missing from their results. To ensure
completeness in our evaluation, we supplement each inferred
set with any missed dynamic targets and run SACK on all
evaluated programs using the existing oracles.

[Table TII) reports the number of successful attacks constructed
using over-approximated target sets. Incorporating TFA targets
increases the number of attacks by 285 in Nginx, 237 in
SQLite3, 32 in Sudo, 256 in Apache, and 153 in Wireshark.
Using MLTA expands these counts to 331, 301, 36, 713, and
164, respectively. The growth can be substantial: for example,
under Apache-A3, SACK discovers 22.5x more attacks using
TFA and 45.3 x more using MLTA. For some oracles, however,
over-approximated targets do not lead to additional attacks.
SQLite-Q1 shows no increase because its dynamic targets
collected using the official test suite already achieve high
coverage. V8-V1 also yields no additional attacks, as the exploit
depends on a single specific substitution. For oracles that
produce no exploits under dynamically collected targets, over-
approximated target sets likewise do not uncover new attacks.

The increase in attack count comes with significant compu-
tational overhead. As shown in [Table IIIl using TFA targets
increases substitution time by 1.2x-14.5x across programs,
while MLTA increases it by 1.7x-19.9x. The most extreme
case arises in Wireshark-W1, where both analyses report
over 40,000 potential targets for a single indirect call. To
keep the experiments tractable, we reduce the substitution
threshold to 10. Even so, evaluating Wireshark-W1 requires
approximately 1.4 days with TFA targets and 2.7 days with
MLTA targets. Moreover, TFA’s static analysis phase alone
takes 9.2 hours on Wireshark, whereas MLTA and TFA both
complete within minutes for the remaining programs. These
results demonstrate that over-approximated target sets can
induce substantial overhead, and that threshold-based heuristics
are essential for maintaining practical performance.

Taken together, these observations suggest a practical work-
flow for exploring SUB attacks. Under a precise static CFI
policy, dynamically collected targets offer an efficient lower-
bound estimate of the attack surface, while over-approximated
targets serve as an upper-bound estimate when broader ex-
ploration is desired. For concrete CFI deployments, SACK
can directly incorporate the policy’s own allowed-target sets,
enabling systematic and policy-compliant construction of SUB
attacks across a wide range of applications.

VII. DISCUSSION
A. Oracle Reliability and Fallback Mechanisms

SACK’s oracle constructor relies on LLMs and program
official documentation. In practice, this approach is effective
because many common targets of security research, CVE
reports, and bug-bounty investigations are mature, widely
deployed systems with extensive publicly available documen-
tation. Examples include operating systems such as Linux
man-pages and Windows |APIL; major browsers such as Google
Chrome docs, Mozilla Firefox docs, and WebKit |docs; and
widely used document-processing software such as Adobe

https://man7.org/linux/man-pages/
https://learn.microsoft.com/en-us/windows/win32/apiindex/windows-api-list
https://chromium.googlesource.com/chromium/src/+/main/docs/
https://firefox-source-docs.mozilla.org/
https://docs.webkit.org/

Acrobat SDK docs. These documents provide detailed setup,
configuration, and API manuals to support large developer and
user communities, enabling LLMs to synthesize correct and
complete oracles. When manual adjustments are needed, they
tend to be small, localized refinements, resolving ambiguity
rather than correcting fundamental logic, and do not affect the
overall scalability of the approach, as shown in
While many security-sensitive programs provide rich doc-
umentation, certain targets may expose only limited usage
information, like smaller utilities or specialized components. In
such cases, SACK can fall back on documentation-independent
correctness signals. First, SACK may treat arbitrary code
execution as the success condition [11], [26], marking an attack
successful once unintended execution is observed. Second,
SACK can monitor the invocation of critical system calls [86],
[82], [12], [46l], such as execve (arbitrary binary execution) or
seteuid (privilege escalation), which are widely recognized
as strong indicators of exploitation. Third, fallback oracles
may track access to privileged resources [[11], [5], including
unauthorized file reads or unexpected exposure of sensitive
memory. These mechanisms provide correctness signals inde-
pendent of program documentation, making SACK effective
when LLM-generated oracles cannot be fully constructed.

B. Support COTS Binaries

Although the current SACK implementation requires program
source code for LLVM-based instrumentation, this is not a
fundamental limitation. We can extend SACK to support COTS
binaries through two strategies. First, we can instrument the
program binary directly using binary-rewriting frameworks [23]],
[25], [15]. For example, RetroWrite [23|] disassembles a binary,
inserts instrumentation at the assembly level, and reassembles a
new executable; E9Patch [25] injects instrumentation logic via
trampoline redirection without altering the original control flow.
SACK can adopt these techniques to perform target collection
and substitution directly at the binary level. The second
approach is to lift binaries into an intermediate representation
suitable for analysis and instrumentation [76], [85], [22].
For example, McSema [22] and llvm-mctoll [85] translate
binaries to LLVM IR, allowing SACK to reuse its LLVM-based
instrumentation pipeline for COTS binaries. These techniques
enable SACK to operate naturally on closed-source programs
without requiring fundamental changes to its design.

C. SUB Attacks under Dynamic CFI

Dynamic CFI mechanisms incorporate runtime information
to further constrain the valid target sets for ICT instruc-
tions [67], [81], [19], [24], [31], 38, [39]. They enforce more
strict policies than static CFI techniques. Our work focuses
on constructing SUB attacks under static CFI, where evading
dynamic CFI is outside the scope of this study. Nevertheless, to
contextualize the capability of SUB attacks, we briefly examine
how such attacks interact with dynamic CFI mechanisms.

Depending on its enforcement strength, dynamic CFI can
block a portion or all of the SUB attacks constructed under
static CFI. For example, wCFI [67]] admits an edge only after

14

the corresponding function address has been taken during the
current execution; it allows substitutions only to dynamically
activated targets and rejects substitutions to any target not
observed yet in the same run. Trace-based CFI schemes leverage
hardware mechanisms such as Intel PT or LBR to record
recent execution context (e.g., call stack or short execution
path) [24], [31], [38], [81], and validate each ICT against the
corresponding context. Under such policies, a substitution is
accepted only if it preserves the expected dynamic context. At
the strongest end of the spectrum, pCFI [39] performs online
points-to analysis and reduces every ICT to exactly one valid
target. With this unique-target guarantee, SUB attacks are not
infeasible anymore because no permissible substitutions exist.
While fully precise dynamic CFI mechanisms such as pCFI
prevent all SUB attacks, approximate or incomplete schemes
remain susceptible and we can adapt SACK to construct
compatible evasions. For wCFI, instead of aggregating targets
across multiple runs, SACK can restrict substitution candidates
to the set of addresses observed as taken in the current execution.
This ensures that all constructed substitutions remain consistent
with mCFI’s dynamic address-taken rule and therefore bypass
its enforcement if a viable substitution exists. For trace-
based CFI, SACK’s target-collection phase can be extended
to record contextual information such as call stacks, Intel PT
traces, or LBR windows associated with each dynamic ICT.
During exploit construction, SACK can synthesize both the
substituted target and the requisite contextual pattern, enabling
the generation of history-conforming or trace-conforming
executions. In this way, SACK provides a principled foundation
for evaluating and crafting evasions against dynamic CFI
mechanisms whose enforcement is not fully precise.

D. Attack Coverage

Current conservative design choices of SACK likely under-
estimate the practical prevalence of SUB attacks. We identify
several key factors contributing to this underestimation to
motivate future research toward broader attack coverage.

We summarize four design choices in SACK that may lead
to missed attacks: incomplete feature coverage, limited input
diversity, omission of argument manipulation, and conservative
verification. First, SACK focuses on explicit security features
with clear observable consequences. However, this potentially
overlooks implicit security features that attackers could still
exploit or chain with other exploit primitives. Second, we
use only a small set of inputs for each oracle, merely to test
basic functionalities when official test cases are unavailable.
Consequently, the attack engine exercises only a limited
portion of the program, potentially missing indirect calls and
code paths necessary for more complex attacks. Third, SACK
performs function substitution without modifying function
arguments. However, substituted functions may interpret the
original arguments differently, leading to crashes or hangs. For
example, 18.11% of substitution attempts in Nginx fail due
to such mismatches. Incorporating argument adaptation could
significantly expand the attack space. At last, SACK relies solely
on dynamically collected targets to detect CFI violations. This

https://opensource.adobe.com/dc-acrobat-sdk-docs/index.html

may lead to false negatives, where viable attacks are discarded

simply due to targets outside incomplete target collection.
Nevertheless, 419 attacks sufficiently demonstrate the wide

applicability and systematic constructibility of SUB attacks.

E. Challenges of Accurate Behavior Monitoring

The implementation of behavior monitors may affect attack
detection accuracy and efficiency. The reason is that security
violations often manifest in subtle, context-dependent ways,
influenced by side effects, environmental conditions, and
timing behaviors. Even when the LLM correctly identifies the
appropriate metrics for assessing feature enforcement, capturing
all violations from a single perspective remains challenging. In
our experiments, we identify 30 false positives, all attributable
to implementation inaccuracies of behavior monitors.

For example, for Nginx-N2 that tests the rate-limiting feature,
we expect Nginx to accept the first request and reject the second.
The LLM accurately suggests inspecting HTTP status codes
to verify the enforcement. Our initial monitor follows a client-
side, output-based approach, which analyzes the responses of
curl requests and expects a 200 OK followed by a 503 Service
Unavailable. However, several substitutions cause Nginx to
crash or hang, necessitating a timeout mechanism on the client
side to infer server behavior. However, this mechanism slows
down our testing process. To improve efficiency, we develop
a server-side, log-based monitor that inspects Nginx log files
for HTTP status codes. This provides a faster and more direct
way to determine whether requests were accepted or rejected.
Despite this improvement, certain cases remain ambiguous. For
instance, the server may log two accepted requests, suggesting
a potential bypass, but then abruptly terminate the connection
without sending content to the client. Since the client does not
receive the response, we count such attacks as false positives.

Fully resolving this issue would require a comprehensive
understanding of the HTTP processing logic and the develop-
ment of combined client-side and server-side monitors, which
requires non-trivial efforts. In our evaluation, we adopt the
server-side log-based monitor as all false positives stem from
similar problems and represent a relatively low rate (6.7%).

VIII. CONCLUSION

In this paper, we present SACK, a systematic framework for
constructing function substitution (SUB) attacks. By combining
runtime-collected indirect call targets with LLM-synthesized
security oracles, SACK enables scalable and automated gen-
eration of realistic, context-aware attacks. Our evaluation on
seven widely used applications produces 419 successful SUB
attacks. This result demonstrates that SUB attacks are practical,
widespread and can be systematically constructed at scale.

ACKNOWLEDGMENT

We thank all anonymous reviewers for their insightful
comments and valuable feedback. This research was supported
by National Science Foundation (NSF) under grants CNS-
2247652 and CNS-2339848. Any opinions, findings, and
conclusions or recommendations expressed in this material

15

are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

ETHICS CONSIDERATIONS

This study presents no ethical risks. First, our work does not
involve the discovery of new vulnerabilities or the request for
new CVEs. CVEs are designated for newly identified vulnera-
bilities, whereas our work focuses on exploit construction rather
than vulnerability discovery. Our objective is to demonstrate
that SUB attacks are practical, widespread, and systematically
constructible; thus, identifying new vulnerabilities falls outside
the scope of this research. Second, while we construct five
real-world SUB attacks, all based on historical vulnerabilities
(CVE-2017-6983, CVE-2021-30632 and CVE-2013-2028) that
have been patched for several years. We reintroduce these bugs
in isolated, controlled environments solely for demonstration
purposes, ensuring no risk to real-world systems. Third, we did
not report our findings to the developers of the evaluated
applications. While developers can patch individual bugs
(which have been patched in our case), preventing systematic
exploitation requires strengthening general-purpose defenses
such as control-flow integrity (CFI) [1] and code-pointer
integrity (CPI) [49]. Fourth, our methodology follows standard
practice established in prior work [L1]], [26], [4], [40], [44], [16],
[33], (211, [12], [[73], [[75], which similarly evaluate exploit
techniques using previously patched vulnerabilities or public
proof-of-concept exploits.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow
Integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security (CCS), Alexandria, VA, Nov. 2005, pp.
340-353.

Apache Software Foundation, “Apache HTTP Server Test Framework,”

https://httpd.apache.org/test/, last accessed: 2025-07-21.

——, “Security Tips,” | https://httpd.apache.org/docs/2.4/misc/security_ti
ps.html, last accessed: 2025-07-05.

T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley, “Automatic Exploit Generation,” in Proceedings of the 18th
Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, Feb. 2011, pp. 74-84.

E. Avllazagaj, Y. Kwon, and T. Dumitras, “SCAVY: Automated Discovery
of Memory Corruption Targets in Linux Kernel for Privilege Escalation,”
in Proceedings of the 33rd USENIX Security Symposium (USENIX
Security), Philadelphia, PA, USA, Aug. 2024, pp. 7141-7158.

L. Binosi, G. Barzasi, M. Carminati, S. Zanero, and M. Polino, “The
Illusion of Randomness: An Empirical Analysis of Address Space
Layout Randomization Implementations,” in Proceedings of the 31st
ACM Conference on Computer and Communications Security (CCS),
Salt Lake City, UT, USA, Nov. 2024, pp. 1360-1374.

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-Oriented
Programming: A New Class of Code-reuse Attack,” in Proceedings
of the 6th ACM ASIA Conference on Computer and Communications
Security (AsiaCCS), Hong Kong, China, Mar. 2011, pp. 30-40.

M. Bohme, V.-T. Pham, and A. Roychoudhury, “Coverage-based Greybox
Fuzzing as Markov Chain,” in Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS), Vienna, Austria, Oct.
2016, pp. 1032-1043.

N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-Flow Integrity: Precision, Security, and Performance,”
ACM Computing Surveys (CSUR), vol. 50, no. 1, p. 16, 2017.

Y. Cai, Y. Jin, and C. Zhang, “Unleashing the Power of Type-Based
Call Graph Construction by Using Regional Pointer Information,” in
Proceedings of the 33rd USENIX Security Symposium (USENIX Security),
Philadelphia, PA, USA, Aug. 2024, pp. 1383-1400.

[2

—

[3]
[4]

[5

[6

=

[7

—

[8]

[9

—

(10]

https://httpd.apache.org/test/
https://httpd.apache.org/test/
https://httpd.apache.org/docs/2.4/misc/security_tips.html
https://httpd.apache.org/docs/2.4/misc/security_tips.html

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity,” in
Proceedings of the 24th USENIX Security Symposium (USENIX Security),
Washington, DC, Aug. 2015, pp. 952-963.

N. Carlini and D. Wagner, “ROP is Still Dangerous: Breaking Modern
Defenses,” in Proceedings of the 23rd USENIX Security Symposium
(USENIX Security), San Diego, CA, Aug. 2014, pp. 385-399.

J. Chen, W. Han, M. Yin, H. Zeng, C. Song, B. Lee, H. Yin, and
I. Shin, “SYMSAN: Time and Space Efficient Concolic Execution via
Dynamic Data-Flow Analysis,” in Proceedings of the 31st USENIX
Security Symposium (USENIX Security), Boston, MA, USA, Aug. 2022,
pp. 2531-2548.

J. Chen, J. Wang, C. Song, and H. Yin, “Jigsaw: Efficient and Scalable
Path Constraints Fuzzing,” in Proceedings of the 43rd IEEE Symposium
on Security and Privacy (IEEE S&P), San Francisco, CA, May 2022,
pp. 18-35.

P. Chen, Y. Xie, Y. Lyu, Y. Wang, and H. Chen, “Hopper: Interpretative
fuzzing for libraries,” in Proceedings of the 30th ACM Conference on
Computer and Communications Security (CCS), Copenhagen, Denmark,
Nov. 2023, pp. 1600-1614.

S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-
Data Attacks are Realistic Threats,” in Proceedings of the 14th USENIX
Security Symposium (USENIX Security), Baltimore, MD, Aug. 2005, pp.
177-191.

Y. Chen, L. Xing, Y. Qin, X. Liao, X. Wang, K. Chen, and W. Zou,
“Devils in the Guidance: Predicting Logic vulnerabilities in Payment
Syndication Services through Automated Documentation Analysis,” in
Proceedings of the 28th USENIX Security Symposium (USENIX Security),
Santa Clara, CA, USA, Aug. 2019, pp. 747-764.

B. Cheng, C. Zhang, K. Wang, L. Shi, Y. Liu, H. Wang, Y. Guo, D. Li,
and X. Chen, “Semantic-enhanced Indirect Call Analysis with Large
Language Models,” in Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Sacramento, CA,
USA, Oct.—Nov. 2024, pp. 430-442.

Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. H. Deng, “ROPecker: A
Generic and Practical Approach for Defending against ROP Attack,” in
Proceedings of the 21st Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2014.

T. H. Dang, P. Maniatis, and D. Wagner, “The Performance Cost of
Shadow stacks and Stack Canaries,” in Proceedings of the 10th ACM
ASIA Conference on Computer and Communications Security (AsiaCCS),
Singapore, Singapore, Apr. 2015, pp. 555-566.

L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow Integrity
Protection,” in Proceedings of the 23rd USENIX Security Symposium
(USENIX Security), San Diego, CA, Aug. 2014, pp. 401-416.

A. Dinaburg and A. Ruef, “McSema: Static Translation of x86 Instructions
to LLVM,” in ReCon 2014 Conference, Montreal, Canada, 2014.

S. Dinesh, N. Burow, D. Xu, and M. Payer, “RetroWrite: Statically
Instrumenting COTS Binaries for Fuzzing and Sanitization,” in Proceed-
ings of the 41st IEEE Symposium on Security and Privacy (IEEE S&P),
Virtually, May 2020, pp. 1497-1511.

R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
Protection of Path-Sensitive Control Security,” in Proceedings of the
26th USENIX Security Symposium (USENIX Security), Vancouver, BC,
Canada, Aug. 2017, pp. 131-148.

G. J. Duck, X. Gao, and A. Roychoudhury, “Binary Rewriting without
Control Flow Recovery,” in Proceedings of the 2020 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Virtual, Jun. 2020, pp. 151-163.

I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control Jujutsu: On the Weaknesses of
Fine-grained Control Flow Integrity,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS), Denver,
Colorado, Oct. 2015, pp. 901-913.

D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over ASLR:
Attacking Branch Predictors to Bypass ASLR,” in Proceedings of the
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Oct. 2016, pp. 1-13.

S. Feng, Z. Zhou, and K. Yang, “Many Birds, One Stone: Exploiting
a Single SQLite Vulnerability Across Multiple Software,”
https://www.blackhat.com/docs/us-17/wednesday/us-17-Feng-Man
y-Birds-One- Stone- Exploiting- A- Single-SQLite- Vulnerability- Acros
s-Multiple- Software.pdf, Las Vegas, NY, Jul. 2017, Black Hat USA.

16

[29]

(30]

[31]

[32]

(33]

[34]

(35]

[36]
(371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

X. Feng, X. Liao, X. Wang, H. Wang, Q. Li, K. Yang, H. Zhu, and
L. Sun, “Understanding and Securing Device Vulnerabilities through
Automated Bug Report Analysis,” in Proceedings of the 28th USENIX
Security Symposium (USENIX Security), Santa Clara, CA, USA, Aug.
2019, pp. 887-903.

A. Fioraldi, D. Maier, H. Eifeldt, and M. Heuse, “AFL++: Combining
Incremental Steps of Fuzzing Research,” in Proceedings of the 14th
USENIX Workshop on Offensive Technologies (WOOT), Virtual, Aug.
2020, pp. 10-10.

X. Ge, W. Cui, and T. Jaeger, “GRIFFIN: Guarding Control Flows Using
Intel Processor Trace,” in Proceedings of the 22nd ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Xi’an, China, Apr. 2017.

M. Goddard, “The EU General Data Protection Regulation (GDPR):
European Regulation That Has A Global Impact,” International Journal
of Market Research, vol. 59, no. 6, pp. 703-705, 2017.

E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
Control: Overcoming Control-Flow Integrity,” in Proceedings of the 35th
IEEE Symposium on Security and Privacy (IEEE S&P), San Jose, CA,
May 2014, pp. 575-589.

Google, “Android Control Flow Integrity,”
evices/tech/debug/cti, 2018.

——, “Chromium Control Flow Integrity,” | https://www.chromium.org/d
evelopers/testing/control-tflow-integrity, 2022.

——, “Honggfuzz,” | https://google.github.io/honggtuzz/, 2023.

J. Grossklags, C. Eckert, and Z. Lin, “7CFI: Type-assisted Control Flow
Integrity for x86-64 Binaries,” in Proceedings of the 21st International
Symposium of Research in Attacks, Intrusions, and Defenses (RAID), vol.
11050, Sep. 2018, p. 423.

Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “PT-CFI: Transparent Backward-
Edge Control Flow Violation Detection using Intel Processor Trace,” in
Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy, 2017, pp. 173-184.

H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing Unique Code Target Property for Control-Flow
Integrity,” in Proceedings of the 25th ACM Conference on Computer
and Communications Security (CCS), Toronto, Canada, Oct. 2018, pp.
1470-1486.

H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-Oriented Programming: On the Expressiveness of Non-Control
Data Attacks,” in Proceedings of the 37th IEEE Symposium on Security
and Privacy (IEEE S&P), San Jose, CA, May 2016, pp. 969-986.

R. Hund, C. Willems, and T. Holz, “Practical Timing Side Channel
Attacks against Kernel Space ASLR,” in Proceedings of the 34th IEEE
Symposium on Security and Privacy (IEEE S&P), San Francisco, CA,
May 2013, pp. 191-205.

N. Inc., “Nginx Security Controls,” | https://docs.nginx.com/nginx/admin
-guide/security-controls/, 2025.

Intel Corporation, “Complex Shadow-Stack Updates (Intel®
Control-Flow Enforcement Technology),” | https://www.intel.com/
content/www/us/en/content-details/785687/complex-shadow-stack-upd
ates-intel-control-tflow-enforcement-technology.html, 2023, accessed:
2025-07-05.

K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block Oriented
Programming: Automating Data-Only Attacks,” in Proceedings of the
25th ACM Conference on Computer and Communications Security (CCS),
Toronto, Canada, Oct. 2018, pp. 1868-1882.

Y. Jang, S. Lee, and T. Kim, “Breaking Kernel Address Space Layout
Randomization with Intel TSX.,” in Proceedings of the 23rd ACM
Conference on Computer and Communications Security (CCS), Vienna,
Austria, Oct. 2016, pp. 380-392.

B. Johannesmeyer, A. Slowinska, H. Bos, and C. Giuffrida, “Practical
Data-Only Attack Generation,” in Proceedings of the 33rd USENIX
Security Symposium (USENIX Security), Philadelphia, PA, USA, Aug.
2024, pp. 1401-1418.

S. H. Kim, C. Sun, D. Zeng, and G. Tan, “Refining Indirect Call Targets
at the Binary Level,” in Proceedings of the 28th Annual Network and
Distributed System Security Symposium (NDSS), Virtually, Feb. 2021.
A. Kong, S. Zhao, H. Chen, Q. Li, Y. Qin, R. Sun, X. Zhou, E. Wang,
and X. Dong, “Better Zero-Shot Reasoning with Role-Play Prompting,”
in Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HIT) (Volume 1: Long Papers), 2024, pp. 4099—
4113.

https://source.android.com/d

https://www.blackhat.com/docs/us-17/wednesday/us-17-Feng-Many-Birds-One-Stone-Exploiting-A-Single-SQLite-Vulnerability-Across-Multiple-Software.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Feng-Many-Birds-One-Stone-Exploiting-A-Single-SQLite-Vulnerability-Across-Multiple-Software.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Feng-Many-Birds-One-Stone-Exploiting-A-Single-SQLite-Vulnerability-Across-Multiple-Software.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Feng-Many-Birds-One-Stone-Exploiting-A-Single-SQLite-Vulnerability-Across-Multiple-Software.pdf
https://source.android.com/devices/tech/debug/cfi
https://source.android.com/devices/tech/debug/cfi
https://www.chromium.org/developers/testing/control-flow-integrity
https://www.chromium.org/developers/testing/control-flow-integrity
https://google.github.io/honggfuzz/
https://docs.nginx.com/nginx/admin-guide/security-controls/
https://docs.nginx.com/nginx/admin-guide/security-controls/
https://www.intel.com/content/www/us/en/content-details/785687/complex-shadow-stack-updates-intel-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/content-details/785687/complex-shadow-stack-updates-intel-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/content-details/785687/complex-shadow-stack-updates-intel-control-flow-enforcement-technology.html

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66

[67]

[68

[69]

[70]

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-Pointer Integrity,” in Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Broomfield,
Colorado, Oct. 2014, pp. 147-163.

C. Lattner, A. Lenharth, and V. Adve, “Making Context-sensitive Points-
to Analysis with Heap Cloning Practical for the Real World,” ACM
SIGPLAN Notices, vol. 42, no. 6, pp. 278-289, 2007.

G. Li, M. Sridharan, and Z. Qian, “Redefining Indirect Call Analysis with
KallGraph,” in Proceedings of the 46th IEEE Symposium on Security and
Privacy (IEEE S&P), San Francisco, CA, May 2025, pp. 2957-2975.
Y. Li, M. Wang, C. Zhang, X. Chen, S. Yang, and Y. Liu, “Finding
Cracks in Shields: On the Security of Control Flow Integrity Mech-
anisms,” in Proceedings of the 27th ACM Conference on Computer
and Communications Security (CCS), Orlando, USA, Nov. 2020, pp.
1821-1835.

X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah, “Acing the
I0C Game: Toward Automatic Discovery and Analysis of Open-Source
Cyber Threat Intelligence,” in Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS), Vienna, Austria, Oct.
2016, pp. 755-766.

LIEF Developers, “LIEF Documentation,” | https://lief.re/doc/latest/index
.html, 2025, accessed: 2025-07-26.

H. Liljestrand, T. Nyman, L. J. Gunn, J.-E. Ekberg, and N. Asokan,
“PACStack: an Authenticated Call Stack,” in Proceedings of the 30th
USENIX Security Symposium (USENIX Security), Virtually, Aug. 2021,
pp. 357-374.

Z. Lin, Y. Chen, Y. Wu, D. Mu, C. Yu, X. Xing, and K. Li, “GREBE:
Unveiling Exploitation Potential for Linux Kernel Bugs,” in Proceedings
of the 43rd IEEE Symposium on Security and Privacy (IEEE S&P), San
Francisco, CA, May 2022, pp. 2078-2095.

Z. Lin, J. Li, B. Li, H. Ma, D. Gao, and J. Ma, “Typesqueezer: When
Static Recovery of Function Signatures for Binary Executables Meets
Dynamic Analysis,” in Proceedings of the 30th ACM Conference on
Computer and Communications Security (CCS), Copenhagen, Denmark,
Nov. 2023, pp. 2725-2739.

D. Liu, S. Ji, K. Lu, and Q. He, “Improving Indirect-Call Analysis in
LLVM with Type and Data-Flow Co-Analysis,” in Proceedings of the
33rd USENIX Security Symposium (USENIX Security), Philadelphia, PA,
USA, Aug. 2024, pp. 5895-5912.

LLVM, “LibFuzzer - A Library for Coverage-guided Fuzz Testing,”
http://llvm.org/docs/LibFuzzer.html, 2023.

K. Lu and H. Hu, “Where Does It Go? Refining Indirect-Call Targets with
Multi-Layer Type Analysis,” in Proceedings of the 26th ACM Conference
on Computer and Communications Security (CCS), London, UK, Nov.
2019, pp. 1867-1881.

Microsoft, “Data Execution Prevention (DEP),” May 2023,
https://learn.microsoft.com/en-us/windows/win32/memory/data-e
xecution-prevention.

Microsoft Corporation, “Control Flow Guard,” | https://msdn.microsoft.c
om/en-us/library/windows/desktop/mt637065(v=vs.85).aspx, 2016.
W.-L. Mow, S.-K. Huang, and H.-C. Hsiao, “LAEG: Leak-Based AEG
Using Dynamic Binary Analysis to Defeat ASLR,” in Proceedings of the
2022 IEEE Conference on Dependable and Secure Computing (DSC).
IEEE, 2022, pp. 1-8.

Nergal, “The Advanced Return-into-lib(c) Exploits (PaX Case Study),”
http://phrack.org/issues/58/4.html, Dec. 2001, Phrack.

Nginx Inc., “Test Suite for Nginx,” | https://github.com/nginx/nginx-tests,
accessed: 2025-07-21.

B. Niu and G. Tan, “Modular Control-Flow Integrity,” in Proceedings of
the 2014 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Edinburgh, UK, Jun. 2014, pp. 577-587.

, “Per-Input Control-Flow Integrity,” in Proceedings of the 22nd
ACM Conference on Computer and Communications Security (CCS),
Denver, Colorado, Oct. 2015, pp. 914-926.

A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida, “Pok-
ing Holes in Information Hiding,” in 25th USENIX Security Symposium
(USENIX Security), 2016, pp. 121-138.

R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER: Towards
Automating Risk Assessment of Mobile Applications,” in Proceedings of
the 22nd USENIX Security Symposium (USENIX Security), Washington,
DC, Aug. 2013, pp. 527-542.

B. V. Patel, “A Technical Look at Intel’s Control-flow Enforcement Tech-
nology,” | https://www.intel.com/content/www/us/en/developer/articles/tec
hnical/technical-look-control-flow-enforcement-technology.html, 2020.

17

[71]

[72]

(73]

[74]

[75]

[76]

(771
(78]
[79]

[80]

(81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]
[89]

[90]

PaX Team, “PaX Address Space Layout Randomization (ASLR),”
http://pax.grsecurity.net/docs/aslr.txt, 2003.

Z. Qi, J. Hu, Z. Xiao, and H. Yin, “SymFit: Making the Common (Con-
crete) Case Fast for Binary-Code Concolic Execution,” in Proceedings of
the 33rd USENIX Security Symposium (USENIX Security), Philadelphia,
PA, USA, Aug. 2024, pp. 415-432.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. Sadeghi, and
T. Holz, “Counterfeit Object-Oriented Programming: On the Difficulty
of Preventing Code Reuse Attacks in C++ Applications,” in Proceedings
of the 36th IEEE Symposium on Security and Privacy (IEEE S&P), San
Jose, CA, May 2015, pp. 745-762.

E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit Hardening
Made Easy,” in Proceedings of the 20th USENIX Security Symposium
(USENIX Security), San Francisco, CA, Aug. 2011.

H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-
libc without Function Calls (on the x86),” in Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS),
Alexandria, VA, Oct.—Nov. 2007, pp. 552-561.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok: (State of) the
Art of War: Offensive Techniques in Binary Analysis,” in Proceedings
of the 37th IEEE Symposium on Security and Privacy (IEEE S&P), San
Jose, CA, May 2016.

SQLite, “How SQLite Is Tested,” | https://www.sqlite.org/testing.html,
May 2022.

——, “Defense against The Dark Arts,” | https://www.sqlite.org/security
html, 2025.

——, “The —safe Command-line Option,” | https://sqlite.org/cli.html#th
e_safe_command_line_option, 2025 (last visited).

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-Edge Control-Flow Integrity
in GCC & LLVM,” in Proceedings of the 23rd USENIX Security
Symposium (USENIX Security), San Diego, CA, Aug. 2014, pp. 941-955.
V. van der Veen, D. Andriesse, E. Goktas, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical Context-Sensitive
CFL” in Proceedings of the 22nd ACM Conference on Computer and
Communications Security (CCS), Denver, Colorado, Oct. 2015, pp. 927-
940.

V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos,
and C. Giuffrdia, “The dynamics of innocent flesh on the bone: Code
reuse ten years later,” in Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX, Oct.—Nov.
2017, p. 1675-1689.

V. van der Veen, E. Goktas, M. Contag, A. Pawlowski, X. Chen, S. Rawat,
H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A Tough Call:
Mitigating Advanced Code-Reuse Attacks at the Binary Level,” in
Proceedings of the 37th IEEE Symposium on Security and Privacy
(IEEE S&P), San Jose, CA, May 2016, pp. 934-953.

T. Xia, H. Hu, and D. Wu, “DEEPTYPE: Refining Indirect Call Targets
with Strong Multi-layer Type Analysis,” in Proceedings of the 33rd
USENIX Security Symposium (USENIX Security), Philadelphia, PA, USA,
Aug. 2024, pp. 5877-5894.

S. B. Yadavalli and A. Smith, “Raising binaries to llvm ir with mctoll (wip
paper),” in Proceedings of the 20th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES), 2019, pp. 213-218.

H. Ye, S. Liu, Z. Zhang, and H. Hu, “VIPER: Spotting Syscall-Guard
Variables for Data-Only Attacks,” in Proceedings of the 32nd USENIX
Security Symposium (USENIX Security), Anaheim, CA, USA, Aug. 2023,
pp. 1397-1414.

W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang,
“Semfuzz: Semantics-based Automatic generation of Proof-of-Concept
Exploits,” in Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), Dallas, TX, Oct.—Nov. 2017, pp.
2139-2154.

M. Zalewski, “New in AFL: Persistent Mode,” | https://Icamtuf.blogspot
.com/2015/06/new-in-afl- persistent-mode.html.

, “American Fuzzy Lop (2.52b),” | http://Icamtuf.coredump.cx/atl,
Nov. 2017.

H. Zhang, J. Liu, J. Lu, S. Chen, T. Han, B. Zhang, and X. Gong,
“Reviving Discarded Vulnerabilities: Exploiting Previously Unexploitable
Linux Kernel Bugs Through Control Metadata Fields,” in Proceedings of
the 32nd ACM Conference on Computer and Communications Security
(CCS), Taipei, Taiwan, Oct. 2024.

https://lief.re/doc/latest/index.html
https://lief.re/doc/latest/index.html
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
http://phrack.org/issues/58/4.html
http://phrack.org/issues/58/4.html
https://github.com/nginx/nginx-tests
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://www.sqlite.org/testing.html
https://www.sqlite.org/security.html
https://www.sqlite.org/security.html
https://sqlite.org/cli.html#the_safe_command_line_option
https://sqlite.org/cli.html#the_safe_command_line_option
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
http://lcamtuf.coredump.cx/afl

[91]

[92]

(93]

M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries,” in
Proceedings of the 24th USENIX Security Symposium (USENIX Security),
Washington, DC, Aug. 2015, pp. 337-352.

W. Zhu, Z. Feng, Z. Zhang, J. Chen, Z. Ou, M. Yang, and C. Zhang,
“Callee: Recovering Call Graphs for Binaries with Transfer and Con-
trastive Learning,” in Proceedings of the 44th IEEE Symposium on
Security and Privacy (IEEE S&P), San Francisco, CA, May 2023, pp.
2357-2374.

X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, “Fuzzing: A Survey for
Roadmap,” ACM Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1-36,

18

[94]

[95]

2022.

Z. Zhu and T. Dumitrag, “FeatureSmith: Automatically Engineering
Features for Malware Detection by Mining the Security Literature,” in
Proceedings of the 23rd ACM Conference on Computer and Communi-
cations Security (CCS), Vienna, Austria, Oct. 2016, pp. 767-778.

X. Zou, G. Li, W. Chen, H. Zhang, and Z. Qian, “SyzScope: Revealing
High-Risk Security Impacts of Fuzzer-Exposed Bugs in Linux Kernel,” in
Proceedings of the 31st USENIX Security Symposium (USENIX Security),
Boston, MA, USA, Aug. 2022, pp. 3201-3217.

APPENDIX A
ARTIFACT APPENDIX

This Artifact Appendix summarizes the artifact components
and the steps required to reproduce our key results.
A. Description & Requirements

This artifact includes materials to reproduce the results

presented in [§VI-A] [§VI-B] and [§VI-C| of the paper.

1) How to access: The artifact is publicly
available at this link and citable via the DOI
https://doi.org/10.5281/zenodo.17782315. The repository

contains components of the SACK framework along with
detailed instructions. It also contains the original experimental
data used in our evaluation. Additionally, the online repository
and Zenodo provide four pre-built Docker images, each
containing the necessary pre-built target programs.

2) Hardware dependencies: Reproducing all experiments
requires at least 60 GB of free disk space for Docker images;
evaluating only a subset requires proportionally less.

3) Software dependencies: The artifact requires Docker to
load and run the Docker images. An active internet connection
is needed to download third-party packages and perform LLM
queries. Oracle generation is based on GPT-4.1; therefore,
reproducing this process requires a valid API key.

Our experiments were conducted on a 64-bit Ubuntu 22.04
host system using Docker 28.5.2 (build ecc6942). Comparable
environments and versions should work as well.

4) Benchmarks: None.

B. Artifact Installation & Configuration

1) Select Docker Image(s): Choose one or more Docker
images depending on the oracles you intend to evaluate. (See
README . md for details.)

2) Prepare a Docker Image: (e.g., sack_main)

apt-get install

skopeo copy \
oci-archive:sack_main_latest.oci.tar \
docker-archive:sack_main_latest.docker. tar

docker load -i sack_main_latest.docker.tar

Example output:

Loaded image ID: sha256:<IMAGE_ID>

docker tag sha256:<IMAGE_ID> sack_main:latest

-y skopeo

3) Start the Container: Start the container with the required
permissions:

docker run --cap-add=SYS_PTRACE \
--name ae-sack-main \
--security-opt seccomp=unconfined \
-it sack_main:latest \
tail -f /dev/null

docker exec -it ae-sack-main /bin/bash

4) Run the Experiments: Follow the instructions in the
corresponding component directory to run the experiments.

19

C. Experiment Workflow

We provide a set of scripts and detailed guidelines to demon-
strate the functionality of our prototype and the reproducibility
of its results. The evaluation consists of three core components:
the oracle constructor, the target collector, and the attack engine.
The oracle constructor demonstrates our pipeline’s ability to
query LLMs and generate security oracles. The target collector
illustrates the method used to identify and collect sub-ground
truth indirect call targets for substitution. The attack engine
integrates the outputs from both the oracle constructor and the
target collector to automatically discover SUB attacks.

For each target oracle, the corresponding scripts can be used
to evaluate any or all of the three components. The results
can be compared against the values reported in the paper
(e.g., the number of successful attacks) or against the original
experimental data provided in the artifact package (e.g., the
actual generated attacks). More comprehensive instructions,
along with working examples, are available in the repository’s
README file and in the documentation provided for each
individual component.

D. Major Claims

Across all experiments, the exact numbers may vary slightly
from those reported in the paper, but the overall conclusions
are expected to remain consistent.

¢ (C1) Oracle constructor: The oracle constructor is capable
of producing security oracles for the target programs used
in our evaluation. This is demonstrated in Experiment E1,
with the generated oracles selected and listed in
(C2) Target collector: The target collector dynamically
collects indirect call targets during benign executions,
serving as sub-ground truth for function substitution
attacks. This is demonstrated in Experiment E2, following
the same procedure described in and
(C3) Attack engine: The attack engine can automati-
cally construct end-to-end SUB attacks. This capability
is demonstrated in Experiment E3, with attack counts
comparable to those reported in [Table 1] and [Table 111l
Additionally, the repository includes the original generated
oracles, collected sub-ground truth targets, and the discovered
concrete attacks as a reference for the above experiments.

E. Evaluation

In this section, we outline the steps required to run the
experiments and reproduce the results presented in the paper.
Please refer to the main README file in the repository, as
well as the README files within each component directory,
for detailed instructions.

Our evaluation is organized on a per-program basis. We
recommend selecting a subset of target programs for testing.
The estimated execution times listed below indicate the time
required to evaluate the selected Nginx oracle. The listed paths
indicate their locations within the Docker image or relative
paths in the online repository.

https://github.com/psu-security-universe/sack

1) Experiment (EI): [Oracle constructor] [5 human-
minutes + 8 compute-minutes]: Refer to the README in
/ae-sack/oracle-generation/. This experiment evaluates
the oracle generation capability. The code queries the LLM
for security features, crawls and preprocesses documentation,
applies two filters, and then performs a second query to generate
security oracles.

[Preparation] Navigate to /ae-sack/oracle-generat
ion/oracle_generation_nginx.

[Execution] Follow the instructions provided in the
README file within the folder.

[Results]

The generated oracles are located in ./oracle_generat
ion_with_provided_feature/ and can be compared with
the reference oracles in ./metadata/. The results should be
similar. The evaluation features listed in the README should
also be present in the generated oracles.

2) Experiment (E2): [Target collector] [5 human-
minutes + 1 compute-minutes]: Refer to the README in
/ae-sack/target-collector/. This experiment evaluates
the collection of sub-ground truth indirect call targets.

[Preparation] Use image sack_main
to create a container and navigate to
/target/nginx/nginx-basic-auth/bin/sbin/.

[Execution] Follow the instructions in
/ae-sack/target-collector/README.md for collecting

+

20

the n1_auth sub-ground truth.

[Results] Refer to the Verification Method section in
README .md. The collected indirect call targets can be inspected
and compared, and can further be used to reproduce the attacks
demonstrated in Experiment E3.

3) Experiment (E3): [Attack engine] [2 human-minutes

10 compute-minutes]: Refer to the README in

/ae-sack/scripts/. This experiment evaluates the attack
generation of SACK.

[Preparation] Use image sack_main
to create a container and navigate to
/target/nginx/nginx-basic-auth/bin/sbin/.

[Execution]

1) Run the attack engine by following the instructions in
/ae-sack/scripts/nginx/nl_auth/run.readme.

2) After the substitution process completes, execute the
analysis script /ae-sack/scripts/nginx/nl_auth/a
nalyze.sh to collect the results.

[Results]

Refer to the Result Verification section of the
README in /ae-sack/scripts/. The discovered attacks
are located in report_satisfied.txt within the latest
result.*/ directory. They are also printed to stdout. You
can verify that the A1 and A2 counts match those in
Additionally, you may compare the concrete attacks with the
original reference data in /ae-sack/attack_metadata/.

	Introduction
	Background
	The Motivating Example
	Control-flow Hijacking and Control-flow Integrity
	Attacks against Perfectly Precise Static CFI

	Problem & Challenges
	Challenges
	Threat Model

	Method Overview
	Sub-ground Truth of ICT Targets
	Behavioral Oracles of Security Features
	Automatic Substitution and Measurement

	Sack Design & Implementation
	LLM-assisted Oracle Constructor
	Feature Identification
	Document Preparation
	Oracle Generation

	ICT Targets Collector
	Automatic Attack Engine
	Function Substitution
	Security Violation Check

	Evaluation
	Constructed Sub Attacks
	Performance of Oracle Generation
	Performance of Attack Engine
	Time Cost of Attack Engine
	Threshold of Substitutions

	Incorporating Statically Inferred Targets

	Discussion
	Oracle Reliability and Fallback Mechanisms
	Support COTS Binaries
	Sub Attacks under Dynamic CFI
	Attack Coverage
	Challenges of Accurate Behavior Monitoring

	Conclusion
	References
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Select Docker Image(s)
	Prepare a Docker Image
	Start the Container
	Run the Experiments

	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)

