VeriLoRA: Fine-Tuning Large Language Models
with Verifiable Security via Zero-Knowledge Proofs

Guofu Liao
Shenzhen University
liaoguofu2022 @email.szu.edu.cn

Taotao Wang’

Long Shi
Nanjing University of Science and Technology
slong1007 @ gmail.com

Abstract—Fine-tuning large language models (LLMs) is crucial
for adapting them to specific tasks, yet it remains compu-
tationally demanding and raises concerns about correctness
and privacy, particularly in untrusted environments. Although
parameter-efficient methods like Low-Rank Adaptation (LoRA)
significantly reduce resource requirements, ensuring the security
and verifiability of fine-tuning under zero-knowledge constraints
remains an unresolved challenge. To address this, we introduce
VeriLoRA, the first framework to integrate LoRA fine-tuning
with zero-knowledge proofs (ZKPs), achieving provable security
and correctness. VeriLoRA employs advanced cryptographic
techniques—such as lookup arguments, sumcheck protocols,
and polynomial commitments—to verify both arithmetic and
non-arithmetic operations in Transformer-based architectures.
The framework provides end-to-end verifiability for forward
propagation, backward propagation, and parameter updates
during LoRA fine-tuning, while safeguarding the privacy of
model parameters and training data. Leveraging GPU-based
implementations, VeriLoRA demonstrates practicality and effi-
ciency through experimental validation on open-source LLMs
like LLaMA, scaling up to 13 billion parameters. By combining
parameter-efficient fine-tuning with ZKPs, VeriLoRA bridges
a critical gap, enabling secure and trustworthy deployment of
LLMs in sensitive or untrusted environments.

I. INTRODUCTION

The rapid advancement of large language models (LLMs)
has transformed natural language processing (NLP), enabling
breakthroughs in tasks such as text generation, summarization,
and machine translation [1]-[5]. However, fine-tuning these
massive models for specific tasks remains a significant chal-
lenge due to their enormous parameter sizes and associated
computational costs [3]], [6]. To address this, techniques like
Low-Rank Adaptation (LoRA) [7] have emerged, offering
a parameter-efficient way to fine-tune LLMs by introducing
trainable low-rank matrices that adapt pretrained weights

¥ Corresponding author.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.242361
www.ndss-symposium.org

Shenzhen University
ttwang @szu.edu.cn

Shengli Zhang'
Shenzhen University
zsl@szu.edu.cn

Jiqun Zhang
Shenzhen University
2453043004 @mails.szu.edu.cn

Dacheng Tao
Nanyang Technological University
dacheng.tao@gmail.com

without modifying the base model. LoRA achieves high per-
formance with significantly reduced resource requirements,
making it a practical solution for many applications.

Despite these advancements, the security and correctness of
fine-tuning processes remain an open problem, especially in
scenarios involving sensitive data or untrusted environments
[8, [9]. For example, when fine-tuning is conducted on
proprietary models or outsourced to third-party platforms,
there is a critical need to ensure that the computations are
performed correctly without exposing the model parameters
or training data [[10]. Existing research has explored zero-
knowledge proofs (ZKPs) to verify computations in cryp-
tographic and machine learning contexts, such as inference
or simple training tasks. Frameworks like zkML [11] and
zkLLM [12]] have demonstrated the feasibility of applying
ZKPs to machine learning, but these works primarily focus
on inference or small-scale models. The problem of achieving
zero-knowledge verifiability for fine-tuning large-scale LLMs,
particularly under parameter-efficient methods like LoRA,
remains unexplored and presents significant technical chal-
lenges.

The task of achieving zero-knowledge verifiability for fine-
tuning LLMs is non-trivial due to several reasons:

o Computational Complexity: Fine-tuning involves for-
ward and backward propagation through Transformer-
based LLM architectures, which include both arith-
metic operations (e.g., matrix multiplications) and
non-arithmetic operations (e.g., Softmax normalization,
SwiGLU activations). Verifying these computations under
zero-knowledge constraints requires novel techniques to
handle both types of operations efficiently.

o Scalability: Modern LLMs, such as LLaMA-2, can have
billions of parameters. Ensuring verifiability without in-
curring prohibitive computational overhead is a signif-
icant challenge, particularly when handling large-scale
models and datasets.

e Non-Arithmetic Operations: The computations over
many critical components of Transformer architectures
(such as Softmax and SwiGLU) and the gradient com-
putations over these components involve non-linear and

non-arithmetic operations. It is difficult to encode these
operations into traditional ZKPs’ constrain systems for
proving.

e Privacy and Trust: While ensuring computational in-
tegrity, it is equally important to preserve the privacy of
sensitive information, such as the model parameters and
training data, which are often proprietary or confidential.

To the best of our knowledge, there is no existing work
that provides zero-knowledge verifiability for the fine-tuning
of large-scale LLMs using LoRA or similar parameter-efficient
methods. Addressing this gap is both technically challenging
and crucial for enabling secure and trustworthy deployment of
LLMs in sensitive or trustless environments. To tackle these
challenges, we propose VeriLoRA, a novel framework that
integrates LoRA fine-tuning with zero-knowledge proofs to
achieve verifiable security and correctness during the fine-
tuning of LLMs. The key contributions and novelties of this
work are summarized as follows:

1) First Zero-Knowledge Verifiable Fine-Tuning Frame-
work: VeriLoRA is the first framework to provide end-
to-end zero-knowledge verifiability for the fine-tuning
of large-scale LLMs. It ensures that all computational
steps in LoRA fine-tuning, including forward propaga-
tion, backward propagation, and parameter updates, are
provably correct without revealing sensitive information
such as model parameters or training data.

2) Innovative Handling of Non-Arithmetic Operations:
VeriLoRA addresses the challenge of verifying non-
arithmetic operations occurring in the forward and back-
ward computation process through Transformer layers
of LLMs. By leveraging lookup-based arguments, Ver-
iLoRA encodes these operations into zero-knowledge
proof systems, making them verifiable under stringent
privacy constraints.

3) Experimental Validation on Large-Scale Models: We
demonstrate the practicality of VeriLoRA by applying it
to fine-tune open-source LLMs, such as LLaMA-2, us-
ing real-world datasets. The experimental results show-
case the framework’s ability to achieve verifiable fine-
tuning with resaonable computational overhead, paving
the way for more secure and trustworthy applications of
LLMs.

The structure of the remainder of this paper is as follows.
Section [[I| provides preliminary knowledge of zero knowledge.
Section [IT] outlines the typical structure of LLMs. Section
details the design of VeriLoRA protocol. Section |V| analyzes
the security of VeriLoRA protocol. Section|VI|presents our ex-
perimental setup and results. Section [VII|reviews related work.
Section concludes this work and discusses directions for
future research.

II. PRELIMINARY

This section introduces the foundational background theo-
ries and techniques employed by VeriLoRA.

A. Proofs, Arguments and Polynomial Commitments

1) Proofs and Arguments: In cryptography, proofs and
arguments are protocols allowing a prover to convince a
verifier of a statement’s validity. Proofs provide information-
theoretic soundness, secure even against unbounded provers,
whereas arguments offer computational soundness, secure
against probabilistic polynomial-time (PPT) adversaries based
on cryptographic assumptions. A proof or argument system
has three essential properties:

o Completeness: Honest provers can convince verifiers of
true statements with high probability 1 — negl()\).

o Soundness: Malicious provers cannot convince verifiers
of false statements except with negligible probability
negl(\).

o Zero-Knowledge: Verifiers learn no additional informa-
tion beyond the truth of the statement (for a formal
definition, see Definition [[1.2)).

where A denotes the security parameter, and negl(\) denotes
a negligible function, rapidly approaching zero as A grows.

Interactive proof systems enable a prover to persuade a
verifier V of the truth of a statement x € L, where L is an NP
language, via a series of message exchanges. The definition
of interactive proof systems is presented as follows:

Definition II.1 (Interactive Proof System). For an NP lan-
guage L C {0,1}* with an associated relation R =
{(z,w)}, an interactive proof system is a pair of prob-
abilistic polynomial-time (PPT) algorithms (P,V), which
are termed the prover and verifier, respectively. The pro-
tocol of (P,V) must satisfy the following two require-
ments. Completeness: If the statement x is true (mean-
ing a valid witness w exists and is known to an honest
prover), we have Pr[(P(z,w),V(z)) =1 > 1 — negl())
for every honest prover P that follows the protocol properly.
Soundness: If the statement x is false (z ¢ L), we have
Pr [(P*(z,w),V(x)) = 1] < negl(A\) for any PPT prover P*,
even one that deviates maliciously from the protocol.

We say that an interactive proof is public coin if the
verifier’s challenge in each round is independent of prover’s
messages in previous rounds. Originally introduced by [13]],
these systems allow resource-constrained verifiers to effi-
ciently validate claims, such as NP-hard computations, while
maintaining privacy through mechanisms like zero-knowledge
proofs.

Succinct Non-Interactive Arguments of Knowledge
(SNARK(Ss) are widely utilized in argument systems [|13[|—[/18].
They facilitate efficient verification of complex computations,
such as those involving large circuits or datasets, by providing
sublinear proof sizes and constant-time verification.

Definition I1.2 (Zero-Knowledge Proof). An interactive proof
system is zero-knowledge if there exists a PPT simulator
S such that for all (z,w) € R, and for any polynomial
time distinguishers D (i.e., a polynomial time algorithm that

attempts to distinguish between the real view of the verifier
and the output of the simulator), we have:

Pr[D (Vi Plx,w),V =1
D NViews (PG,). V@) = 1]

—Pr[D(S(z)) = 1]
where Viewy denotes the verifier’s view of the protocol
execution.

2) Polynomial Commitments: A polynomial commitment
scheme enables a prover to commit to a polynomial f of
degree at most d over a finite field F, such that the prover
can later open the evaluation y = f(x) at any point € F
with a succinct proof. Representative realizations include the
Hyrax commitment [[19] and its multi-opening extensions [20].
A commitment scheme must satisfy two essential security
properties:

o Binding: No PPT adversary can produce a commitment
¢ and later open it to two distinct values y # y’ for the
same point x.

o Hiding: The commitment c reveals no information about
the polynomial f, beyond opened evaluations.

A polynomial commitment scheme usually consists of four
algorithms: KeyGen, Commit, Open, Verify, which are defined
as follows:

o pp + KeyGen(1*,d): Generates public parameters pp
for polynomials of degree at most d, given a security
parameter .

e ¢ < Commit(pp, f;7): Outputs a commitment ¢ to a
polynomial f € F<4[X]| with randomness .

e (y,m) < Open(pp, f,x): Computes y =
generates a proof 7.

e 1/0 « Verify(pp,c,x,y,m): Checks if y is consistent
with the commitment ¢ at point x, returning 1 if valid.

f(z) and

B. Sumcheck, and MLE

1) Sumcheck Protocol: The sumcheck protocol [21] is a
fundamental component of modern interactive proof systems,
facilitating verifiable computation of multivariate polynomial
summations with sublinear complexity. Formally, given a
polynomial f: F' — F of degree d in each variable, the
protocol enables a verifier to confirm the correctness of a
prover’s claimed sum: S =2, <oy f(b1,..., b)) with
communication and verification costs scaling logarithmically
with size of 2.

The sumcheck protocol proceeds through [iterative rounds:
in each round, the prover sends a univariate polynomial
gi(x;), purportedly representing the partial sum of f over
all remaining variables, while the verifier checks consistency
by sampling a random challenge r; € F. After [rounds, the
sumcheck protocol reduces the verification task to evaluating
f at a single random point. The Schwartz-Zippel lemma [22],
[23] underpins this probabilistic check, confining the sound-
ness error to Wd‘, where d is the degree of the polynomial and
|F| is the cardinality of the finite field.

However, the original sumcheck protocol is not zero-
knowledge because the prover reveals evaluations of f. Refer-
ences [24]-[26] introduced zero-knowledge polynomial com-
mitments to conceal f in the interactive proof procedure of
sumcheck, enabling zero-knowledge variants. Additionally, the
Fiat-Shamir transform can convert the protocol into a non-
interactive zero-knowledge proof under the random oracle
model.

2) Multilinear Extensions: Multilinear extensions (MLEs)
are widely used in protocols like the sumcheck protocol,
as they enable summations and evaluations to be extended
to a larger domain. Specifically, given a Boolean function
f:{0,1}" — F, its multilinear extension f:F" — T is
defined as:

f(x) = Z f(b) - H (biz; + (1= b))(1 —) (2)

be{0,1}n i=1

where x = (21,...,2,) € F", b = (b1,...,b,) € {0,1}" are
vectors over the finite filed and the binary filed, respectively.
Note that each term [[;, (b;x; + (1 —b;)(1 — 2;)) in (2) is
a multilinear Lagrange basis polynomial that evaluates to 1 at
x = b and 0 elsewhere for any x € {0, 1}". This property
makes f easy to evaluate and manipulate over the entire
field FF, thereby bridging discrete computations with algebraic
methods.

In practice, MLEs are indispensable for modern crypto-
graphic protocols. For instance, in the sumcheck protocol,
MLEs transform discrete summations over {0,1}" into poly-
nomial evaluations over F”, enabling the verifier to efficiently
validate complex claims via interactive proofs. Similarly, zk-
SNARK frameworks such as Spartan [27] leverage MLEs to
compress circuit constraints into multilinear forms, signifi-
cantly reducing both proof size and verification overhead.

C. Verifiable Tensor Operation

Tensor operations (i.e., the computations using matrices)
serve as foundational components of LLMs [3], [6], [28],
[29]. When implemented in zero-knowledge proof systems,
tensor operations fundamentally rely on the sumcheck protocol
[21]] and MLEs [30]]. Consider dimensional-two tensors (i.e.,
matrices) A € FPoxD1 B ¢ FP1xD2 gpnd C € FPox D2 that
are defined over a finite field IF, where C' = A - B represents
the standard matrix product:

Dy
Cli,jl =Y Ali,k]- Blk,jl, ¥i<Do, j<Ds (3
k=1

To standardize dimensionality, all tensor dimensions are
padded to the nearest powers of two using zeros, i.e., Do =
2%, Dy = 2%, Dy = 2%, for some integers dy, d1, do. Let A,
B, and C' denote the MLEs of A, B, and C, respectively, allow
the matrix multiplication property to be expressed succinctly.
Specifically, the relationship is reformulated as a summation
over binary index representations:

Z (Dl—l . 5(u,v) — g(u,w) ~§(w,v)) —0 @)

we{0,1}1 D1

where u € {0,1}!°8Po) € {0,1}°8 D1 and v € {0, 1}l°8 D2
represent the binary encodings of the matrix indices.

To verify this relationship expressed by (@), the sum-
check protocol operates interactively over a total of d =
dy + di + do rounds. At the start, the prover claims that
the following relation holds: ..o qya f(i) = 0, where
f(@) = D7*C(u,v) — A(u,w)B(w,v), and i = (u,w,v)
concatenates the binary vectors u,w,v. In each round, the
prover sends a univariate polynomial obtained by restricting
one variable at a time, based on the verifier’s randomly chosen
challenge. This process iteratively decomposes the summation
into univariate polynomial claims, progressively reducing the
problem’s dimensionality. After d round, the verifier checks
consistency by evaluating A, B, and C' at a random point
(Tu,Tw,Ts) € F9, ensuring the correctness of the original
tensor operation with soundness error O (d/ |F|).

D. Lookup Arguments for Non-arithmetic Operations

In our work, we extend the lookup arguments [12f, as
commonly employed to achieve non-arithmetic operations
within the domain of zero-knowledge proofs [31]], specially in-
corporate it into zero-knowledge verifiable deep learning infer-
ence [32] and LLM inference [12], to the domain of gradient
computation in LLMs. Lookup arguments are cryptographic
primitives designed to efficiently prove set-membership con-
ditions, enabling the prover to demonstrate to a verifier the
correctness of non-arithmetic operation in LLMs. Formally,
the prover holds a secret table S = {sy,s2,...,sp} C FP,
where ' denotes a finite field. The lookup arguments enable
a prover to prove to a verifier that each element s; in S is
contained within a publicly known, predefined lookup table
T = {t1,t2,...,ty} CFVN.

Specifically, the set-membership condition S C T is satis-
fied if and only if there exists an auxiliary multiplicity tensor
m = {my,ma,...,my} C FV, such that the following
rational-function identity holds:

d o d il
% log (H(X + Sl)> ¥ie log H(X +t;)™] (5)

i=1 j=1

where each m; indicates the multiplicity of the corresponding
public table element ¢; within the secret table S: m; = |{i :
s; = t;}| for i € {1,2,---,N}. According to zkLLM [12],
the membership condition S C T can be equivalently repre-
sented in inner product form:

JE[N]

where A; = ﬁ represents the evaluation of an element
s; from the secret tensor S at a randomly chosen challenge
X ¢ B ~F, and Bj = 533 represents the corresponding
evaluation for an element t; from the lookup table T'. Here,
for any integer n, we denote [n] ={1,2,...,n}.

The right side of the equation,) JEIN] m;B;, encodes a
weighted version of the lookup table. To further improve

Protocol 1 LOOKUP ARGUMENT
Require: The prover P knows S € FP, and the prover P and
the verifier V both know 7' € FY, where the integers N, D
are both powers of 2 such that N divides D.

1: procedure Setup(T € FV)

2 return [T] < Commit(T’)

3: end procedure
4: procedure P.Prep(S € FP. T € FN)
5: Compute m based on S and T'
6
7
8
9

P =V :[S] + Commit(S)
P =V : [m] < Commit(m)
: end procedure
: procedure (P, V).Prove([S], [m], [T])
10: V—->P:8~F
11: P computes A, B
12: P — V: [A] «+ Commit(A), [B] < Commit(B)
13: P and V run sumcheck on (7), followed by the proofs
of evaluation on [A], [B], [S], [m], [T
14: end procedure

efficiency and facilitate parallel computation, additional ran-
domness elements o € F and a binary vector u € F'°82 D are
introduced in the equation. These elements enable the structur-
ing of the verification process within a polynomial sumcheck
framework, ensuring both succinctness and verifiability. The
refined membership condition is then expressed as:

a+ a? —aZA @ j)e(u,i®j)(S(E®j)+P)

+ Z ZAZEB]

i€[D/N]jEIN
+ND 'a? Z B(j) &(uog,n/3)15)T () + B)
JE[N]
—ND7! Z B(j)m(j) %)
JE[N]

A complete description of the procedure to prove S C T
is found in Protocol In particular, in Line 1, Setup(T)
generates a short witness [7] to a prescribed table 7' known
to both of the prover and the verifier; in Line 4, the prover
constructs m based on S and T and commits to .S and m using
Prep(S,T); finally, in Line 9, (P, V).Prove([S], [m], [T]) is
the interactive process between the prover and the verifier,
proving that a secret tensor S is element-wisely in 7, which
has been committed as [77].

III. GRADIENT COMPUTATIONS FOR LORA IN LLMsS

This section begins by outlining the typical structure of a
large language model (LLM), followed by an introduction to
the concept and overall process of LoRA fine-tuning. Finally,
it delves into the detailed gradient derivations involved in the
LoRA fine-tuning process, which are crucial for determining
how to apply ZKP to validate LoRA.

A. Structure of LLM

A LLM, such as LLaMA [3]], is a specialized deep neural
network architecture designed to map input token sequences to

Transformer

TEXTTEXT. .o

TEXT

vee—ll

WION JoAeT

Layer Norm

Forward Pass

Backward Pass

Fig. 1.

contextualized representations through a stack of Transformer
layers. Fig. [I] illustrates a typical LLM architecture, which
consists of L cascaded Transformer layers followed by a final
linear projection layer. In this subsection, we will introduce
the specific structures and computations involved in the Trans-
former layers and the final output layer separately.

1) Transformer Layers: Each Transformer layer consists of
two main components: a multi-head attention (MHA) sub-
layer [33]] and a feed-forward multilayer perceptron (MLP)
sub-layer. Let x € R™ denote the input token sequence to
the LLM, and X, € R"*¢, ¢ = 1,--- | L, denote the output
of the ¢ Transformer layer, where n represents the sequence
length and d represents the hidden dimension. Since the L
Transformer layers are sequentially cascaded, Xy_; serves as
the input to the /M Transformer layer for £ = 2,---, L. The
input token sequence x is the input to the first Transformer
layer. Below, we describe the structure and computations of the
/™ Transformer layer, which takes X,_; as input and computes
X, as output.

In LLaMA, each Transformer layer adopts a pre-
normalization structure, where the input to each sub-layer is
first normalized using LayerNorm before being processed by
the sub-layer (i.e., the MHA or MLP sub-layer). Specifically,
LayerNorm is applied row-wise to a matrix M € R™*¢
transforming it into a normalized matrix M’ € R™*? as
follows:

M’ = LayerNorm(M) (8)
such that:
Moi Ty g, ©)
Voi+e
where M; j (M ;) represents the (z §)" entry of M (M'), and

i—dzg 1MJ and o2 dZJ 1(M; j — p1;)?* denote the
mean and variance of the ™ row of M, Wthh corresponds to
the representation of the i entry of the input token sequence

/o
M; ;=

ssoT Adonyug-sso1)

WLION JoAeT
XBJNYOS

uoneradQ Iedury

|

The typical structure of an LLM with Transformer layers, and the entire computation procedure of LoRA fine-tuning applied to an LLM.

x. Here, ; and f3; are learnable scaling and bias parameters
for the i row of M, respectively. All ~; values are collectively
represented as a vector v € R%, and all f3; values are repre-
sented as a vector 3 € RY. These vectors are distinguished
based on the location of the LayerNorm operation, as follows:
YNormM HA,¢: LayerNorm scaling vector before the MHA sub-
layer of the " Transformer layer; Ynormarrp,e: LayerNorm
scaling vector before the MLP sub-layer of the /" Transformer
layer; Ynormowt: LayerNorm scaling vector before the final
output layer.

Before the MHA sub-layer, LayerNorm is applied to nor-
malize the input of this Transformer layer X,_i: X; | =
LayerNorm(X,_1). The output from LayerNorm, X;_, is then
passed through the MHA sub-layer that computes its attention
outputs as:

QeK,/
MHA(X; ;) =0 (A7 (10)
()4 1) \/g 4
where o(-) is the softmax function; Q, = X;_Wq, is
the query matrix, K, = X, Wk, is the key matrix,

and V;, = Xé_IWV’g € R4¥d jg the value matrix, which
are computed by using the query-projection, key-projection,
and value-projection matrices Wq o, Wi o, Wye € RI*4
respectively. Here, the softmax function, o(-), is applied in
a row-wise manner to the input matrix QK l;r , ensuring that
each row is normalized into a valid probability distribution.
The attention outputs from MHA are then concatenated and
linearly transformed using a projection matrix Wp :
O¢ = MHA(X;_1)Wp,. (11)

Before the MLP sub-layer, LayerNorm is applied to nor-
malize the residual-enhanced representation Ry = X, 1 + Oy:
R, = LayerNorm(R;). The output from LayerNorm R| is

then passed through the feed-forward MLP with SwiGLU
activation [3]]:

FFN(RZ) = (¢(R/ Wgate €)® RZW;E),Z> WdTownj (12)
where ¢(-) denotes the SwiGLU activation function,
Waup.es Woatee € R and Wypyn e € R*M, are the up-
projection, gate-projection, and down-projection matrices, and
® denotes element-wise product. The final output of this
Transform layer is obtained by applying the residual-enhanced
representation to the output of MLP:

Xy = Re + FFN(Ry). (13)

2) Final Output Layer: After the last Transformer layer,
a final output layer is applied to map the output of the last
Transformer layer to an estimate of the one-hot encoded label
matrix corresponding to the input token sequence.

Before the final output layer, the output of the last Trans-
former layer, X, is laso processed by LayerNorm to get
X} = LayerNorm(Xp). Then, the normalized one is projected
to logits via a linear operation: O = X} Wgeqq, Where
O; € R™ " represents the logits, and Wyeqq € RIXV
denotes the linear projection matrix that maps the final hidden
representations from the Transformer layers to the vocabulary
space for token classification or generation. After that, the
estimate of the one-hot encoded matrix Y € R"*" is obtained
via applying the Softmax function on the logits, which can
be expressed as ¥ = 0(Or), where Y is the estimate of the
one-hot encoded label matrix Y € R™*?. Each row of Y
corresponds to the one-hot encoding of the ground-truth token
at the respective positions in the input sequence x, where v
denotes the vocabulary size of the training dataset.

B. LoRA Fine Tuning

The fine-tuning of the LLM aims to optimize the pa-
rameters of the LLM, i.e., the projection matrices of
MHA in all Transformer layers, the weight matrices of
MLP in all Transformer layers and the final output lay-
ers, and the scaling and bias vectors in all LayerNorm
operations of all layers. In the following, we focus on
the projection and weight matrices of the ¢ Transformer
layer: {WQ%, WKyg, vag, Wup’g, Wdown,la Wgate,2}~ In stan-
dard fine-tuning, the parameter matrices are directly updated
during training, and fine-tuning LLMs is computationally
expensive due to the large number of parameters (i.e., the high
dimensions of these parameter matrices).

Instead of directly updating the parameter matrices as in
standard fine-tuning, LoRA [7] offers a parameter-efficient
alternative by freezing the original parameter matrices and
introducing trainable low-rank matrices into the architecture.
These low-rank matrices are added to the original parameter
matrices during both the forward and backward propagation
phases of LLM fine-tuning. Mathematically, for a target matrix
WE S {WQ,Za WK,E, WV,E; Wup,fa Wdown,@y Wgate,l}’ LoRA
modifies it in each iteration as: W, = W+ AW, with AW, =
ByAy. Here, AW, represents the fine-tuning update, which is

decomposed into two small low-rank matrices B, € R*"
and A, € R™*¥, with rank r satisfying 7 < min (d, k). Since
LoRA fine-tuning only the low-rank matrices By and A,, while
keeping the original parameter matrices W, frozen, the number
of trainable parameters is significantly reduced compared
to standard fine-tuning. This makes LoRA an efficient and
scalable method for adapting large language models.

To further simplify the fine-tuning procedure, LoRA is
typically applied to update one or some target parameter
matrices rather than all the parameter matrices for each
Transformer layer. Here, we describe the fine-tuning procedure
of LoRA when it is specifically configured to update the
value-projection matrices of the Transformer layers, Wy, for
¢ € [L]. For notational simplicity, we describe the fine-tuning
procedure at the level of a single mini-batch for training epoch
t € [T]. Specifically, we denote the mini-batch in epoch ¢ as
Bt. Each data sample in B! is represented by a tuple (x,Y),
where € R"™ is an input token sequence of length n, and
Y € R™*" is a one-hot encoded label matrix. Each row of
Y corresponds to the one-hot encoding of the ground-truth
token at the respective positions in the input sequence z, where
v denotes the vocabulary size of the training dataset. Fig. [I]
illustrates the entire computation procedure of LoRA fine-
tuning that consists of the following three phases per training
epoch:

1) Forward Propagation: The token sequence x are taken as
the input to the first Transformer layer and propagated
through each of all the Transformer layers sequentially
to compute their outputs denoted by X, € R"*? for ¢ =
1,---, L. The final output layer computes the estimate
on the one-hot encoded label matrix Y for z. Finally,
the cross-entropy loss for epoch ¢ is computed as:

Z Z Z Yi,j 1og (i)

(z,Y)EBt i=1 j=1

(14)

where y; ; and §; ; are the (i, 7)™ entry of the one-hot
encoded label matrix Y and its estimate Y, respectively.

2) Backward Propagation: During backward propagation,
the gradients of the parameters are computed recursively
in reverse order, from the final layer to the first layer,
based on the loss £! using the chain rule. In LoRA fine-
tuning, only the value-projection matrix Wy, is updated,
and it is replaced by

Wy o = Wy, + BeAy (15)

where the original projection matrices Wy, remain
frozen for each ¢. The backward propagation in LoRA
first computes the gradient of the modified value-

t
projection matrix a%f,t , and subsequently computes

the gradients of the low rank matrices A, and By
for each Transformer layer ¢ using the chain rule:
oLt _ _art Wy, oLt _ oLt OWy,

oBf — OW[, 0B} and 547 = G —ar - We will
present the detalled derlvatlon of these gradlents in the
subsequent section.

3) Parameter Update: With the computed gradients, the
parameters targeted for updating at each Transformer
layer, specifically the low-rank matrices A, and By, are
updated using a learning rate n as follows:

oLt

AEH = AZ - 77@
" (16)

Bt+1 B 8£t

¢~ 9BL

which completes the parameter updating of Transformer
layer / in the training epoch ¢ of the LoRA fine-tuning.

C. Gradient Computations

In this subsection, we will provide a detailed derivation
of the gradient computation process during backward prop-
agation, as both the computation process and the resulting
gradients are the objects to be proven in our zero-knowledge
proof algorithm.

Without loss of generality, we focus on the gradient deriva-
tion for Transformer layer ¢ in training eppch ¢. Now, assume
that the gradient of the loss function with respect to (wrt) the
output of Transformer layer ¢, denoted as 3 Xf, has already
been computed in Transformer layer ¢ + 1 and propagated
backward to Transformer layer /. Within Transformer layer
¢, gradients propagate sequentially through MLP, LayerNorm,
MHA, LayerNorm. The gradient wrt the output of MHA is
computed as:

act oLt ax}
90! ~ ax! 90}
(17)
where
oXt
805 - Wdown,é O] [VVup ¢ © ¢ (O[gate, E)Wgate,f (18)

+o(OLW,

is computed using the relationships in (L1)-(13). Here, ¢/(-)
represents the derivative of the activation function in the MLP
gating path.

We proceed with back-propagating the computed gradient
and applying the chain rule. The gradient wrt the value matrix
V} is computed as

-
gate, K)Wup,d O] ’YNormJV[LP,l

oLt oLt oo}

av; ~ 90l avt (19)
where
00! tRtTN |
vy =Wpro < e\fde) (20)

is computed from the relationship between the output of MAH
and its value matrix: Oy = o (Q@KZ—/\/E) ViWpe.
In LoRA, Vp, can be expressed as Vj =

LayerNorm(X,_1)Wy,, = X Wy, ,. Therefore, the gradient

wrt the modified value-projection matrix WY, , is computed
as

oLt oLt 3Vf oLt .
t T Ayt T At 2h
OWE, Vi oWy, o,

Using the relationship in (I3)), the gradients wrt the trainable
low-rank matrices B, and A, are finally computed as:

oct oLt oWy, oLt 4

0B ~ OW{, 0Bj ~ 0w}, -
act oLt 9wy, art BT

0AL oW, 0AT oW, Tt

In the following sections, we will demonstrate how our pro-
posed VeriLoRA achieves verifiable computations throughout
the entire LoRA procedure using zero-knowledge proofs.

IV. DESIGN OF VERILORA

The goal of VeriLoRA is to introduce zero-knowledge
verifiability into LoRA fine-tuning for LLMs. In VeriLoRA, a
prover is responsible for performing the computation required
for LoRA fine-tuning on the LLM and generating crypto-
graphic proofs that ensure all computational steps strictly
adhere to the predefined procedures without deviation. Mean-
while, a verifier can efficiently validate these proofs without
accessing any privacy-sensitive information, such as model
parameters or training data. Owing to the zero-knowledge
nature of the proofs, the verifier can confirm whether the LoRA
fine-tuning process was executed correctly, without extracting
any additional sensitive details.

The computations involved in LoRA fine-tuning can be
broadly categorized into two types: arithmetic operations
and non-arithmetic operations. Arithmetic operations, such as
matrix additions and multiplications are inherently compat-
ible with most mainstream ZKP systems. In contrast, non-
arithmetic operations cannot be directly processed by the
mainstream ZKP systems. As a result, specialized ZKP-
compatible constraint systems are necessary to encode the
computational logic of these non-arithmetic operations, par-
ticularly during the backward propagation phase of LoRA
fine-tuning, which involves gradient computations. Therefore,
in the following discussions, we will primarily focus on the
proving protocols for these non-arithmetic operations.

As discussed in Section the entire computation
procedure of LoRA can be divided into three sequential
phases, and VeriLoRA follows the same structure. In Section
we detail the key technical aspects of the backward
propagation phase in VeriLoRA as a representative example
to illustrate how non-arithmetic operations are proven. The
proving scheme for non-arithmetic operations in the forward
propagation and parameter update phases follows the same
approach. In Section we will put everything together to
present the complete VeriLoRA framework.

A. VeriLoRA for Backward Propagation Phase

During the backward propagation phase, the gradients of the
cross-entropy loss L£! wrt the parameters are computed and
recursively propagated backward through each Transformer
layer ¢, starting from the final output layer. For the backward
propagation phase at each Transformer layer, we essentially
aim to prove the gradient computation process expressed by
(I7)-(22). The arithmetic operations in the backward propa-
gation phase such as matrix additions and multiplications, are
the same as the forward propagation phase, and we can encode
the relevant matrices as MLEs and then prove the computation
correctness using the sumcheck protocol, as proposed in
[12], [34]. In contrast to the forward propagation phase, we
face increased complexity in the backward propagation phase
due to the gradient computations, which involve more non-
arithmetic functions.

Specifically, the computations of the gradients in (17)-
encompass the following non-arithmetic operation: the
SwiGLU activation ¢(-) and its derivative ¢'(-), the Softmax
operation o(+), the matrix transposition (-) ", and the element-
wise product between two matrices ®. To prove these non-
arithmetic operations using ZKP, we design a dedicated proof
protocol for each operation, primarily leveraging lookup-based
arguments in conjunction with the sumcheck protocol. In the
following, we present the details of the protocols for proving
each of these non-arithmetic operations.

1) zkElementProd: Using Protocol we develop the
zkElementProd protocol to prove the correctness of the com-
putation of an element-wise product between two matrices:
C = A® B, where A, B,C € FP. The prover constructs the
compressed secret set S = {C; + a - (4; ® B;)}2,, where
a € F is a random verifier challenge. The verifier constructs
a public lookup table T := {c+a-a-b|a,b €F, c=a-b},
where a,b € F range over all possible input values for the
matrices A and B, respectively, and ¢ defines the correspond-
ing output. The prover then proves the multiset inclusion
S C T using Protocol [I] thereby ensuring that the element-
wise product relation holds over the entire matrix.

2) zkTranspose: We then develop the zkTranspose proto-
col to prove that a matrix A’ € F?X" is indeed the transpose
of a matrix A € F"*? je, A’ = AT. We denote the (4, ;)"
element of A by a; ;, and the (i,;)™ element of A’ by a; ;-
Given a random scalar « € F chosen by the verifier, the prover
constructs a compressed secret set S as: S = {a;j +a-aj,},
where ¢ € [d], j € [n], and assigns the publicly known set
as: T = {z + « - x}, where € Fy. Here, in T, each x
represents a possible value of the elements in the matrix A
input to the transpose operation. To prove the correctness of
the transpose operation, we apply Protocol [I] to demonstrate
that the set-membership condition S C T is satisfied.

3) zkSwiGLU: We first establish the zkSwiGLU protocol,
which achieves a zero-knowledge proof for the computations
of the SwiGLU activation ¢(-) and its derivative ¢'(-). Note
that both the SwiGLU activation ¢(-) and its derivative ¢/'(-)
apply a non-linear mapping to their input matrices in an
element-wise manner. Since the proof protocols for ¢(-) and

¢'(+) are identical in VeriLoRA, we present the details of the
proof protocol for ¢(-) as a representative.

We introduce the following notations for the presentation
of the zkSwiGLU protocol. Let B € N be a positive integer,
and let Fp := {x € F: —£ <2 < £ — 1} denote a bounded
domain. Let Z be the matrix input to the activation function
@(), and G = ¢(Z) be the corresponding matrix output from
¢(+). Let D denote the number of elements in the matrix Z
(or GG). Each element of Z (or G3) is represented as z; (or g;),
where g; = ¢(z;), and ¢ € [D]. Finally, let { € N denote
a scaling factor for the input matrix Z, chosen such that all
scaled elements fall within the range of Fp.

In zkSwiGLU, we decompose each of the elements in input
matrix Z as z; = (z, + r;, where z; := |z;/¢| € Fp is
the quantized element lying in the bounded domain, and r; €
[—C/2,({/2) is the residue after quantization. Here, |-| denotes
the floor operator. To prove the computation correctness of
the SwiGLU activation G = ¢(Z), the prover of zkSwiGLU
applies Protocol [I] separately to prove each of the following
lookup arguments such that each element of a secret set .S
belongs to a predefined set T without explicitly revealing the
elements of S:

1) Activation Correctness: The secret set S is designated
as S = {2/ + ag;}2 |, where the random linear combi-
nation coefficient o € I is chosen by the verifier [ﬂ The
predefined set T is assigned as T' = {z + a¢(z) | = €
Fp}. Here, in T, each x represents a possible value of
the quantized activation input 2], and ¢(x) denotes the
corresponding activation output. The satisfaction of this
lookup argument ensures the correctness of the computa-
tion relationship between the activation function’s input
and output, rather than any other arbitrary computations.

2) Quantization Correctness: The secret set S is desig-
nated as S = {¢z/ +r;}2,, while the predefined set T
is assigned as T' = {{x+r | x € Fp,r € [-(/2,(/2)}.
Here, in T', x € Fp corresponds to a possible value of
the quantized input element to the activation function
(i.e., the possible value of z}), and r € [—(/2,(/2)
corresponds to a possible value of the quantization
residue 7;. The satisfaction of this lookup argument
ensures the correctness of the quantization process from
the original value z; to its quantized value z., for i € [D].

3) Residue Correctness: The secret set S is designated
as S = {r;}2,. The predefined set T is assigned as

T = {—%, .. ,% — 1}. The satisfaction of this lookup

argument ensures that each quantization residue from

the quantization process lies within the validate range.

The three lookup arguments described above achieve the
zero-knowledge proof for the computations of the SwiGLU
activation function S = ¢(G). Similarly, the zero-knowledge

ITo ensure the protocol is non-interactive, modern cryptographic protocols
of this type typically leverage the Fiat-Shamir heuristic, which eliminates
the need for direct interaction between the prover and verifier. Specifically,
each verifier challenge is computed by hashing all previously generated
commitments and public messages in the protocol, making the protocol non-
interactive.

proof for the computations of the derivatives of the SwiGLU
activation follows the same procedure, with the only difference
being the replacement of the relationship between the input
and output matrices to S = ¢'(G).

4) zkSoftmax: We proceed to establish the zkSoftmax
protocol, which offers a zero-knowledge proof for the compu-
tations involved in the Softmax operation o(-). The Softmax
operation is applied row-wise to the input matrix, transforming
each row of the input matrix into a corresponding row in
the output matrix. Therefore, we construct the proof for each
row of the Softmax input and output: p = o(z), where
z = [z1,22, + ,2n] € F" and p = [p1,p2,--- ,pn] € [0,1]"
represent the input and output vectors of length n. Here,
z; and p; denote the i elements of z and p, respectively.
The Softmax operation is mathematically expressed as: p; =
% for ¢ € [n], where £ € N is a fixed scaling factor
chosen to control the dynamic range of exponent inputs.

The Softmax operation includes exponentiation and nor-
malization, which are non-arithmetic and incompatible with
arithmetic circuits. To address the multivariate and highly non-
arithmetic nature of the Softmax operation, we utilize the
shift-invariance property of Softmax, which states that adding
a constant offset to all entries of the input vector does not
change the output distribution. We further exploits Protocol
to support proving the correctness of the computation of
Softmax. Specifically, let the normalization shift be defined as:
¢ =¢h &;’_1 e/t
the ™ output element can then be equivalently expressed in
a shift-invariant form: p; = e(zi_gl)/g, which follows from
Sl ~¢)/€ = 1. Next, the shifted input to the expo-

nentiation function, Zigf , is quantized to: z; := i%—‘ €

). The Softmax output for computing

(=B,0] C F, where B is a positive integer controlling the
quantization granularity, and [-] is the ceiling operator. Then,
using K predetermined radices, {b(k)}k —o » each quantized
input z; is decomposed into a product of K positive integers,
as follows:

K (k-1
k=0 \ j=0
where each digit ¥ € {0,...,b®) — 1} is bounded by its

respective radix b(®). For example, a set of predetermined
radices could be K = 2, @ = 28 and »(1) = 220
Consequently, the Softmax operation that computes the i
output p;, can be decomposed into as the product of K
exponentiations:

((’C)
—(171*)
pi=e = [[e M=t

k=1

.. (k
| b(]))mg)

H (k)

where y() = o~ (IT- is defined as the k" exponen-
tiation. In the following, we will construct K public tables
such that each table defines the input-output relationship of
the k™ exponentiation in (24)), and exploit lookup arguments
on these tables to prove the correctness of ([24). Compared

(24)

to using a single table to define the input-output relationship

of p; = €%, this decomposition of p; = e”* and the use of

K tables for the lookup argument can significantly reduce the

proving complexity, especially when the range of x; is large.
Specifically, to prove the correctness of the computation in

(24) for all z € [n] (i.e., to prove the Softmax computation

p; = W) the prover needs to demonstrate that the

fol]owmg three conditions are satisfied:

o Decomposition Correctness: The prover demonstrates
that each z; is correctly decomposed to the digits on
the K radices, satisfying the condition specified in (23).
This is achieved through the sumcheck protocol, where
x; and {.rgk)}kK:() are designated as private inputs, while
{b®)}E=1 and the commitments of z; and {z{*)}/ are
designated as public inputs.

« Exponentiation Correctness: We apply Protocol [I] to
prove the exponentiation on each radix level, yfk
e~ (= bm)wgk), is correct. For each radix level k € [K],

we define a public lookup table T*) = {(z,y) : z,y =

{e*(ni‘czl b(]))wJ | z € {0,...,b() —1}}, which enumer-

ates all valid input output pairs to the k™ exponentiation
in 24). Here, in T®), z € {0,...,b%* —1}} corresponds

to a possible value of the decomposed digit m(k) and y

represents its corresponding exponentiation y 7) . The se-
cret table, S*), just contains a single pair of (x; (), yfk))

The satisfaction of the lookup argument, S(k) c 7,

ensures the correctness of the exponentiation process at

each digit level from z(®) to 3, for k € [K].

o Product Correctness: Finally, the prover demonstrates
that the full exponentiation value p; is correctly recon-
structed as the product of K exponentiations: p; =
H el yZ by using the zkElementProd protocol.

The combination of the above sumcheck, lookup argument,
and zkElementProd protocols collectively achieves a zero-
knowledge proof for the Softmax operation.

B. putting everything together

We formally present the complete VeriLoRA protocol, a
zero-knowledge proof framework designed specifically to en-
able verifiable LoRA fine-tuning on Transformer based LLMs.
VeriLoRA rigorously proves correctness at each computational
step of LoRA fine-tuning, encompassing the forward and
backward propagations through the Transformer layers, as well
as the parameter update.

To achieve this, we employ sumcheck based protocol to
prove all the matrix additions and multiplications operations
that appear during the forward propagation, backward propa-
gation, and parameter update phases. We call this protocol for
proving linear matrix operations as zkMat. The zkMat proto-
col leverages the sumcheck-based veriable matrix operations
described in Section [[I] to prove all matrix multiplications and
additions in LoRA. Given input matrices and their claimed
output results, zkMat converts them to MLEs and applies
the sumcheck protocol to verify the summations over MLEs.

Protocol 2 VeriLoRA: Zero-Knowledge Proof Framework for
Verifiable LoRA Fine-tuning on LLMs
1: Input: The transformer model with pre-trained parameters
that remain frozen during the fine-tuning; the randomly
initialized low-rank decomposition matrices A} and B}
for the value projection weights Wy, of all Transformer
layers, £ = [L], the learning rate 7, and the training data
set.
2: fort =1to T do

o Sample the mini-batch B¢ for training iteration ¢ from
the training dataset;
o Take data (x,Y) from B! and input token sequence
x to the LLM;
Phase 1: Forward Propagation
for /=1to L do
« Compute the output of each Transformer layer /,
as (T0)-(13), and prove the related computations
using zkMat, zkTranspose, zkElementProd, zk-
Softmax and zkSwiGLU, respectively.

end for

e Compute the final output of the LLM, Y, and the
corresponding cross-entropy loss £! using the one-
hot encoded label matrix Y;

a

Phase 2: Backward Propagation
for {=Lto1do
« Computes the gradients through each Transformer
layer ¢, as (I7)-(22), and prove the related com-
putations using zkMat, zkTranspose, zkElement-
Prod, zkSoftmax and zkSwiGLU, respectively.

~

end for
Phase 3: Parameter Update

®

o Computes the parameter updates as in for
all ¢ € [L], and prove these computations using
zkMat.

end for

Output: The updated low-rank matrices A7 and B} for
all Transformer layers, ¢ € [L]. A set of proofs attesting
to the correctness of all computations across Phases 1-3
for T iterations.

11:

The zero-knowledge property is achieved through polynomial
commitments to the MLEs, ensuring that the actual matrix
data remains hidden while enabling verification.

In contrast, all non-arithmetic operations that cannot be
directly convert to arithmetic circuits are verified using our
specially designed protocols described above, which are built
upon lookup arguments, specifically: zkSwiGLU for prov-
ing the correctness of SwiGLU activation and its gradient
computation in the MLP block; zkSoftmax for proving the
correctness of Softmax function in self-attention mechanism;
zkElementProd for proving the correctness of element-wise
products and zkTranspose for proving the correctness of
transposition operations during the forward and backward
propagation of the self-attention mechanism.

10

To integrate these protocols for proving different operations
of the VeriLoRA fine tuning on LLM, we follow the same
sequential-composition strategy as zkLLM [12]: i) Fixing
random point-value claims through sumcheck/lookup, thereby
binding the prover to specific evaluation points and claimed
values; ii) Requiring each subsequent proving step to justify
exactly the same points via further randomized reductions
(e.g., random aggregation), conditioned on success in prior
protocols; iii) Finalizing by opening evaluations against the
same committed parameters, leveraging the binding property
of the commitment scheme. These steps prevent the prover
from reordering the proving steps or retroactively altering
intermediate values, as both challenges and commitments are
binding and fresh across proving steps.

Protocol |2 presents VeriLoRA as a pseudo code, integrating
the above protocols into a complete proving procedure for
LoRA fine turning; subproofs are assembled in the arithmetic
circuit’s reverse logical order.

V. SECURITY ANALYSIS

In this section, we present a formal security analysis of the
VeriLoRA protocol, focusing on its completeness, soundness,
and zero-knowledge properties under standard cryptographic
assumptions.

The VeriLoRA protocol is designed and implemented using
the Hyrax polynomial commitment scheme, whose security
guarantees are thoroughly discussed in [35]]. To achieve non-
interactive proof functionality, the protocol leverages the
Fiat-Shamir heuristic, which operates under the standard
model of a random oracle. This approach aligns with the
formal frameworks commonly adopted in non-interactive proof
systems [36]. Additionally, we assume the use of a sufficiently
large finite field F, typically with |F| ~ 2254, such as that
derived from the BLS12-381 elliptic curve.

A. Soundness

Statement: VeriLoRA ensures soundness, meaning that a
verifier will accept proofs for incorrectly computed opera-
tions from a malicious PPT prover who deviates from the
computations specified in Protocol 2] only with negligible
probability. This probability is bounded (using a union bound
with conditional probabilities) by: esouna < D €ds where ¢;
represents the soundness error of each proving step, condi-
tioned on the correctness of all prior steps. Each ¢; is defined
by the following values: % (for arithmetic operations), %
(for non-arithmetic operations), and €pinding (for polynomial
commitments). Here, m denotes the number of iteration rounds
in the sumcheck protocol, dpyax is the largest degree with
respect to any single variable among all polynomials involved
in the sumcheck protocol, C' represents the number of elements
verified by a lookup argument in a non-arithmetic operation
(e.g., element-wise products, SwWiGLU activations and their
gradient computations, Softmax operations, and matrix trans-
positions), and €pinding refers to the binding error probability
of Hyrax-style polynomial commitments.

Analysis: The soundness property of VeriLoRA is upheld
by the protocol’s sequential composition strategy that prevents
the prover from reordering proving steps or retroactively
modifying intermediate values, as both challenges and com-
mitments are binding and freshly generated at each proving
step. Consequently, the overall soundness error of VeriLoRA is
bounded by the union bound with conditional probabilities (as
given above in the statement), which represents the standard
upper bound for sequential composition without assuming
independence between proving steps. We analyze each ¢,
which represents the soundness error of VeriLoRA at each
proving step, for arithmetic computations, non-arithmetic com-
putations, and polynomial commitments, respectively.

o Arithmetic Operations: VeriLoRA proves the arithmetic
operations in LoRA (specifically, the matrix multiplica-
tions and additions) by representing them as MLEs and
leveraging the sumcheck protocol for proof generation.
According to the Schwartz-Zippel lemma and the analysis
result in [31]], a false summation result over the polyno-
mial is accepted with probability at most mdmax/|F|.
Non-arithmetic Operations: VeriLoRA proves non-
arithmetic computations in LoRA (e.g., element-wise
products, SwiGLU activations, Softmax operations, and
matrix transposes) using lookup-based arguments and
sumcheck protocols. The prover employs the sumcheck
protocol to verify rational-function identities, ensuring
set-membership conditions (S C T') are satisfied. Specif-
ically, the sum >°2 — L equals 3 i1 %, where s;

i=1
are elements of the sé(cJ;eS:t tensor S, t; are elements of
the lookup table 7', m; is the multiplicity of ¢; in S,
and X is a random challenge from F. Any mismatch
is detected with probability at most C/|F|, ensuring
negligible success for malicious provers.

Polynomial Commitments: The Hyrax-style polynomial
commitments utilized in VeriLoRA are computationally
binding, ensuring that once a polynomial is committed,
the prover cannot open it to a different value except
with negligible probability epinding. A violation of the
binding property would constitute a breach of the discrete
logarithm assumption in the random oracle model [[19],
which is considered infeasible in practice.

In summary, VeriLoRA ensures that the soundness error
for any invalid computation is bounded by the sum of the
these error components described above. As a result, the
overall soundness error remains negligible, guaranteeing that
a malicious prover has an exceptionally low probability of
persuading the verifier to accept an incorrect computation.

B. Completeness

Statement: VeriLoRA ensures completeness, meaning that a
verifier will always accept proofs generated by an honest PPT
prover who accurately performs all computations as specified
in the VeriLoRA protocol described in Protocol

Analysis: We analyze the completeness of VeriLoRA in
its arithmetic computations and non-arithmetic computations,
respectively.

11

o Arithmetic Operations: VeriLoRA proves the arithmetic
computations in LoRA using the sumcheck protocol,
which is known to have perfect completeness. This im-
plies that when the prover is honest and performs all
computations correctly, the verifier will accept the proof
with probability exactly one.

Non-arithmetic Operations: VeriLoRA proves the non-
arithmetic computations in LoRA by employing lookup-
based arguments. Completeness may fail if the random
challenge from the verifier (e.g., 3) coincides with a pole
of the rational function used in the identity check of
lookup-based arguments [12]]. However, the probability
of such an event is bounded by %, which is negligible
for a sufficiently large field size.

In summary, VeriLoRA ensures that the completeness error
is negligible, guaranteeing that an honest prover who performs
all computations correctly will have an overwhelming proba-
bility of convincing the verifier to accept the proof.

C. Zero Knowledge

Statement: VeriLoRA ensures zero knowledge, meaning
that the verifier learns nothing beyond the validity of the state-
ment being proven. Formally, there exists a polynomial-time
simulator S capable of generating transcripts indistinguishable
from real interactions, even without access to the prover’s se-
cret witness. The zero-knowledge error is negligible, bounded
by negl(\) under standard cryptographic assumptions.

Analysis: The zero-knowledge property of VeriLoRA is
achieved by incorporating the Hyrax-style polynomial commit-
ments [36] into the sumcheck protocol [12], which provides
computational hiding under the discrete logarithm assumption
in the random oracle model. Specifically, VeriLoRA ensures
that the verifier learns nothing beyond the validity of the
computation while keeping private: 1) the pre-trained model
parameters, 2) the low-rank matrices and their updates, 3) the
internal computation values in SwiGLU, Softmax, transpose,
and element-wise operations during the forward and backward
propagations, 4) the training data in the mini-batch.

To rigorously establish the zero-knowledge property of
VeriLoRA, we define two executions from the perspective of
any PPT adversary A: a real execution with an honest prover
and an ideal execution with a simulator. The security objective
is to guarantee that the adversary cannot distinguish these two
executions.

Formally, VeriLoRA is zero-knowledge if there
exists a polynomial-time simulator S such that, for all
PPT adversaries A and for all witness w (containing

pre-trained parameters, LoRA matrices, intermediate
computation values, and training data), the following
distributions are computationally indistinguishable:

[Pr [A(Real(w, pp)) = 1] — Pr [A(Ideal(S,pp)) = 1] <
negl(A), where Real(w, pp) and Ideal(S, pp) denote the real
and ideal executions, respectively, and pp denotes public
parameters. The definitions of Real and Ideal are given
below.

Real Execution Real(w, pp):

1) com < VeriLoRA-Commit(w; pp), where w includes the
base model’s initial weights and the initial low-rank matrices
used by LoRA.

2) 7w + VeriLoRA-Prove(com;pp), using the zkMat, zkEle-
mentProd, zkTranspose, zkSwiGLU, and zkSoftmax protocols.

3) return com,w

Ideal Execution Ideal(S, pp):

1) com + S1(1*;pp), where the simulator generates a commit-
ment without access to the witness w.

2) 7 < Sa2(com;pp), with oracle access to the correctness of the
LoRA fine-tuning procedure.

3) return com,

In summary, VeriLoRA ensures that the zero-knowledge
error is negligible, guaranteeing that the verifier learns nothing
beyond the validity of the statement, while preserving the
privacy of the prover’s secret witness.

VI. EXPERIMENTAL EVALUATIONS

To validate the practical feasibility and performance of
VeriLoRA, we conducted comprehensive experiments on real-
world large language models and datasets. This section out-
lines the experimental setup, implementation details, and eval-
uation results.

A. Implementation Details

The implementation of VeriLoRA adopts a hybrid archi-
tecture where CUDA components handle core cryptographic
operations and zero-knowledge proof generation, while Python
scripts provide high-level orchestration and model-specific
interfaces. The CUDA modules implement elliptic curve
arithmetic and pairing operations on the BLS12-381 curve
[37], cryptographic commitments for model parameters, and
GPU-accelerated zero-knowledge protocols for LoRA Fine-
tuning on LLMs. The Python layer manages model download-
ing, file I/O utilities, and LLaMA-specific processing work-
flows. We evaluated VeriLoRA for LoRA fine-tuning across
six Transformer-based LLMs of varying scales, including
LLaMA-3.2 [3] with 3B and 11B parameters, LLaMA-2 [3]]
with 7B and 13B parameters, and OPT [2] with 6.7B and
13B parameters, covering models up to 13 billion param-
eters. We trained the LLMs with the public C4 dataset of
English-language text [36]. Our code is publicly available at
https://github.com/liaoguofu/VeriLoRA.

B. Experimental Setup

The experiments were conducted on a high-performance
computing node with the following configuration: Memory:
503.35 GB of RAM; CPU: 192 cores of AMD EPYC 9654
processor (3.7 GHz with 384 MB cache L3); GPU: NVIDIA
A100 GPU with 80 GB of memory.

C. Rescaling Mechanism for Non-Arithmetic Operations

To manage range constraints and preserve numerical pre-
cision, we adopted a rescaling mechanism for non-arithmetic
operation inputs, such as SwiGLU activations and the softmax
function. When an input value cannot be directly represented
within the range of a single fixed-size lookup table, it is

12

rescaled or decomposed into multiple segments. Each segment
requires a separate lookup argument.

o Lookup Table Size: Each table is configured with a size
of 216, balancing resolution with memory constraints and
avoiding excessive table sizes.

Softmax Scaling: For the softmax function within the
self-attention mechanism of each Transformer layer, input
logits are scaled by a fixed factor &, resulting in a total
scaling factor of approximately 204,

Segment Decomposition: Each scaled input is decom-
posed into K = 5 digit segments, with each segment
verified by a separate lookup table of size 216,

D. Evaluation Results

1) Proving Time: We evaluated the prover runtime of
VeriLoRA across the six Transformer based LLMs. All mea-
surements correspond to the the training process of a mini-
batch consists of a single data sample. For each model, we
measured the prover runtime of three distinct computational
phases of LoRA: forward propagation, backward propagation,
and parameter updates. As shown in Fig. 2] the total proving
time ranges from 121.93 seconds (LLaMA-3.2-3B) to 249.38
seconds (OPT-13B), reflecting the increasing computational
overhead as model size scales. In addition, we measure a
LoRA fine-tuning mini-batch (without any ZKPs) executes
in 0.47 seconds (LLaMA-3.2-1B), 0.89 seconds (LLaMA-3.2-
3B), 1.12 seconds (LLaMA-2-7B), and 1.25 seconds (LLaMA-
3.1-8B); relative to these no-zk baselines, our VeriLoRA
are approximately three orders of magnitude slower. This
order-of-magnitude gap reflects the inherent overhead of zero-
knowledge proving in practice. For completeness, we also
benchmarked a public zkML inference prover: the distilled
GPT-2 inference proof generation takes 7,370.6 seconds [11]].
Comparing zkML’s inference proof with our inference prover
shows a consistent trend—both are orders of magnitude slower
than no-ZK execution—while exact ratios vary with model
size and prover stack.

2) Verification Time: We measured verification time for the
six tested LLMs and present the results in Table |l Across
all tested LLMs, verification remains highly efficient. As
shown in Tablel] the end-to-end verification time ranges from
1.87 seconds (LLaMA-3.2-3B) to 3.73 seconds (OPT-13B),
consistently staying below 4 seconds even for models with
over 13 billion parameters. These results demonstrate that the
verification workload in VeriLoRA is much more efficient than
the proof generation and represents only a minor fraction of
the total computational cost.

3) Polynomial Commitment Cost: We measured the time
costs and sizes of the Hyrax polynomial commitments used
in VeriLoRA. From the results provided in Table [, the
generation of the commitments introduces a substantial time
cost, particularly for large-scale models. The commitment
generation time ranges from 156 seconds for LLaMA-3.2-3B
to 554 seconds for OPT-13B. This step involves producing
polynomial commitments for the different weights of model
and dominates the wall-clock latency in our evaluation. The

https://github.com/liaoguofu/VeriLoRA

(@) (b)

1407 1401
120t 120+
100t 1 100t __
% 80f] % 80f
(0]] ()
E E T
F 60t F 60t
a0t 40t
20t 20t
0_€ ®,) 12 (A2 432 12 ° .19,) ©
'5 X\ X?’ A P12, 12 &X 2 A\
'b . 23 37« a2 3%
a\w \l\&pfb NP \NA aw;'; 20

(c) (d)

02r 2501
200} —
015} — | =
. 150} s
@ @
2 o1 2 |
a " 100}
0.05}
50}
O_geaeee 0-€66‘666
'L?’ a 1’1 3’3,";'5 ’5 6l 1'7— ,Lx’b,({é
&w w%’ﬁ S a\w?’ aw& SAEOP

Fig. 2. The proving time of VeriLoRA for different models (in seconds): (a) the forward propagation phase; (b) the backward propagation phase; (c) the

parameter update phase, (d) the total.

TABLE I
VERIFICATION TIME, POLYNOMIAL COMMITMENT COST AND GPU
MEMORY USAGE FOR DIFFERENT MODELS

Model Veltiﬁcation Commitment Cqmmitment Total Memory
Time (s) Time (s) Size (MB) Usage (GB)
LLaMA-3.2 3B 1.87 156 135.59 2573
LLaMA-3.2 11B 2.99 299 228.31 3920
LLaMA-2 7B 223 232 182.84 2933
LLaMA-2 13B 3.49 304 224.56 3902
OPT 6.7B 1.95 285 165.48 3135
OPT 13B 3.73 554 232.67 3912

commitment sizes follow a similar trend, increasing from
135.59 MB to 232.67 MB, consistent with the growth in matrix
and lookup table dimensionality.

4) GPU Memory Usage: The total memory usage reported
in Table [I| represents the cumulative GPU memory allocated
across all Transformer layers during the forward propagation,
backward propagation, and parameter update phases while
executing VeriLoRA. These memory usages range from ap-
proximately 2573 GB for LLaMA-3.2-3B to 3920 GB for
LLaMA-2-11B. The computations for the forward propaga-
tion, backward propagation, and parameter update phases
within the sub-layers of the Transformer layers are executed
sequentially on the GPU. Consequently, the actual peak mem-
ory observed during VeriLoRA execution remains below 80
GB. This allows VeriLoRA to be efficiently processed on a
single NVIDIA A100 GPU with 80 GB of device memory,
ensuring practicality even for the largest model scale evaluated.

VII. RELATED WORK

Verifiable machine learning is generally categorized into
three domains: verifiable inference, which focuses on proving
the correctness of forward propagation under zero-knowledge
constraints; verifiable training, which ensures the integrity of

13

gradient computations and parameter updates; and verifiable
testing, which validates global performance metrics (e.g.,
accuracy or fairness) without revealing the underlying model
or data. For a comprehensive survey of recent advancements
in these areas, we refer the reader to . In this section,
we review related works across these three categories to
contextualize our contribution, which specifically targets the
domain of verifiable training for LLMs.

A. Verifiable Inference

Early works like SafetyNets used interactive proofs to
verify DNN predictions without privacy protection. Subse-
quent zero-knowledge approaches like vVCNN introduced
efficient convolution encodings for zk-SNARKSs.

For Transformers, ZKML provided the first end-to-
end zero-knowledge proof for GPT-2 inference using Halo2
lookup arguments, though with substantial proving overhead.
zkLLM introduced GPU acceleration, reducing latency
and scaling to 13B parameters. In addition, zkGPT [40]
achieved sub-25 second proofs for GPT-2 (117M) through
constraint fusion and circuit optimization, outperforming prior
work by 185-279x.

More recently, research has extended to the verifiable in-
ference of parameter-efficient adapters, focusing on proving
the correct usage of private LoRA weights during the for-
ward pass. Specifically, ZKLoRA addresses distributed
or outsourced inference contexts by introducing a multi-party
framework utilizing recursive zero-knowledge arguments (i.e.,
folding schemes) to verify that private LoRA weights are
correctly applied during the forward propagation of LLMs.
Similarly, ZK-EdgeLoRA targets edge-cloud collabora-
tive scenarios by employing a VOLE-based commit-and-prove
protocol, which uses random linear combinations to efficiently
validate matrix multiplications.

Collectively, these efforts demonstrate that ZKPs can au-
thenticate machine learning inference steps—the model owner
(prover) can convince a client (verifier) that a given prediction
was computed correctly by a neural network, without revealing
inputs or weights. However, all of the above works target the
inference procedure of fixed, pre-trained models. In contrast,
our work focuses on proving the training (fine-tuning) process
itself, which involves a series of parameter updates rather than
a single forward-pass computation.

B. Verifiable Training

Verifying training is more demanding than inference due
to gradient computation. Early approaches side-stepped this
complexity by verifying only snapshots. VeriML [9] asks the
service provider to commit to intermediate states and later sup-
ply ZK proofs for randomly sampled iterations, covering linear
and shallow-net models but not deep networks. Distributed
settings such as Drynx [43]] and zkMLaaS [44] combine MPC
and interactive proofs to check aggregated updates, again
limited to low-complexity learners.

To support full deep neural network (DNN) training, Sun
and Zhang introduced zkDL [34], which developed a custom
zkReLU protocol to prove forward and backward propagation
through ReLU activations. zkDL flattens the training process
into a parallel circuit architecture (FAC4DNN), enabling the
generation of a single-epoch proof for CNNs with tens of
millions of parameters in under a minute.

Building on the zkPoT framework, Abbaszadeh [45] further
optimized per-step GKR-based sumchecks and recursively
aggregated the results across gradient steps, yielding concise
proofs across multiple training iterations for moderate-sized
models.

Beyond arithmetic correctness, Shamsabadi et al. [46] intro-
duced Confidential-PROFITT, which provides zero-knowledge
proofs of fair training for decision trees. Their protocol
certifies that the trained model satisfies demographic parity
constraints, without revealing model parameters or sensitive
attributes, and completes in minutes.

Despite these advances, no prior work supports verifiable
fine-tuning of large-scale Transformer models. In particular,
LoRA [7]], a widely adopted technique that adapts only low-
rank matrices while freezing the base model, has not been
addressed in prior ZKP systems. Our work is the first to con-
struct a zero-knowledge proof system for LoRA fine-tuning,
verifying that parameter updates are computed correctly on the
specified training data while preserving confidentiality.

C. Verifiable Testing

Verifiable testing seeks to certify global properties—such
as accuracy or fairness—of a trained model on an evaluation
set, while hiding the model and inputs. The first dedicated
ZKP for this task is zkDT [47]], which proves both per-sample
inference and dataset-wide accuracy for decision-tree models
by embedding all test paths in a single Aurora proof; a 23-
level tree evaluated on 5000 CIFAR samples yields a 250s
proof of only 287 KB. Campanelli et al. extend this line with

14

cq+/zkcq+ matrix-lookup arguments [48]], letting the prover
commit to the entire decision tree as a matrix and isolate
only the rows reached by all test inputs. Their zero-knowledge
matrix lookup reduces prover time to be independent of the
tree size, substantially cutting the overhead of zkDT.

For convolutional networks, pvCNN [49] combines homo-
morphic encryption, Quadratic-Matrix-Program (QMP) cir-
cuits, and proof aggregation to batch-verify accuracy across
many testers; its QMP encoding yields a 13.9x speed-up
over traditional QAP-based zk-SNARKSs for high-dimensional
convolutions. ZEN [50] introduces a compiler that quantizes
floating-point CNNs into RICS with sign-bit grouping and
SIM(D) stranded encoding, reducing constraints by up to 22x
with no accuracy loss. zkCNN [51] further optimises two-
dimensional convolution and FFT inside Grothl6, achieving
end-to-end proofs for VGG-16 in 88 s with 341 KB proofs
and 59 ms verification.

Collectively, these systems demonstrate that ZKPs can
certify model-wide statistics or properties without exposing
model weights or evaluation data. However, they all presume
access to a fixed, pre-trained model and do not address the
fundamental challenge of verifying how the model was trained
or fine-tuned. This limitation is critical in scenarios where the
training process itself must be auditable and trustworthy. Our
work addresses this gap by providing the first zero-knowledge
proof system for LoRA fine-tuning of large Transformers,
ensuring that the adaptation process is verifiably correct while
maintaining privacy.

VIII. CONCLUSION

This work introduces VeriLoRA, the first framework to
achieve zero-knowledge verifiability for the fine-tuning of
large language models using parameter-efficient methods like
LoRA. VeriLoRA provides end-to-end proofs of correctness
for the entire fine-tuning process, including forward and
backward propagation as well as parameter updates, without
disclosing model parameters or training data. By developing
new techniques for handling non-arithmetic operations in
Transformer architectures and optimizing the proof system
for scalability, VeriLoRA enables secure, privacy-preserving
model adaptation on billion-parameter models. Experimental
results on open-source LLMs demonstrate the practicality and
efficiency of the approach, paving the way for trustworthy
deployment of fine-tuned LLMs in sensitive or untrusted
settings.

Looking ahead, one promising direction is the develop-
ment of lighter-weight proof systems that further reduce the
hardware requirements and prover time. We hope VeriLoRA
serves as a foundation for future research at the intersection of
cryptography and large-scale machine learning, fostering trust-
worthy deployment of LLMs in security-critical and privacy-
sensitive environments.

ACKNOWLEDGEMENT

This work was supported in part by the National Nat-
ural Science Foundation of China (NSFC) under Grant

62471316, in part by the Shenzhen Key Research Project
under Grant JCYJ20220818100810023, and in part by the
Program of Science and Technology Cooperation of Nanjing
with International/Hong Kong, Macao and Taiwan under Grant
202401019, and in part by the Shenzhen Science and Tech-
nology Program under Grant JCYJ20220531101015033.

REFERENCES

[1]1 P. P. Ray, “ChatGPT: A comprehensive review on background, applica-
tions, key challenges, bias, ethics, limitations and future scope,” Internet
of Things and Cyber-Physical Systems, vol. 3, pp. 121-154, 2023.

[2] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen,
C. Dewan, M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott,
S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang, and
L. Zettlemoyer, “OPT: Open pre-trained transformer language models,”
2022. [Online]. Available: https://arxiv.org/abs/2205.01068

[3] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “LLaMA: Open and efficient
foundation language models,” 2023. [Online]. Available: https:
/larxiv.org/abs/2302.13971

[4] R.-C. Tu, X.-L. Mao, J.-Y. Liu, Z.-A. Ma, T. Lan, and H. Huang,
“Prospective layout-guided multi-modal online hashing,” IEEE Trans-
actions on Image Processing, vol. 34, pp. 5935-5947, 2025.

[5] R.-C. Tu, Y. Ji, J. Jiang, W. Kong, C. Cai, W. Zhao, H. Wang, Y. Yang,
and W. Liu, “Global and local semantic completion learning for vision-
language pre-training,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 47, no. 12, pp. 11 065-11079, 2025.

[6] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “PaLM: Scal-
ing language modeling with pathways,” Journal of Machine Learning
Research, vol. 24, no. 240, pp. 1-113, 2023.

[71 E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
W. Chen et al., “LoRA: Low-rank adaptation of large language models,”
ICLR, vol. 1, no. 2, p. 3, 2022.

[8] Z. Ghodsi, T. Gu, and S. Garg, “SafetyNets: Verifiable execution of deep
neural networks on an untrusted cloud,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

[9]1 L. Zhao, Q. Wang, C. Wang, Q. Li, C. Shen, and B. Feng, “VeriML:
Enabling integrity assurances and fair payments for machine learning
as a service,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 10, pp. 2524-2540, 2021.

[10] B. Cao, S. Xiao, L. Shi, T. Wang, J. Chen, J. Wang, X. Ling, H. Xu,
S. Zhang, and E. Liu, “Web 3.0: A survey on the architectures, enabling
technologies, applications, and challenges,” IEEE Communications Sur-
veys & Tutorials, pp. 1-1, 2025.

[11] B.-J. Chen, S. Waiwitlikhit, I. Stoica, and D. Kang, “ZKML: An optimiz-
ing system for ML inference in zero-knowledge proofs,” in Proceedings
of the Nineteenth European Conference on Computer Systems, 2024, pp.
560-574.

[12] H. Sun, J. Li, and H. Zhang, “zkLLM: zero knowledge proofs for
large language models,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, 2024, pp.
4405-4419.

[13] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof-systems,” in Providing sound foundations for cryp-
tography: On the work of shafi goldwasser and silvio micali, 2019, pp.
203-225.

[14] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of
knowledge,” Cryptology ePrint Archive, Paper 2019/953, 2019.
[Online]. Available: https://eprint.iacr.org/2019/953

[15] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward,
“Marlin: preprocessing zkSNARKSs with universal and updatable SRS,”
in Advances in Cryptology—-EUROCRYPT 2020: 39th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10—14, 2020, Proceedings, Part I 39.
Springer, 2020, pp. 738-768.

[16] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span pro-
grams and succinct NIZKs without PCPs,” in Advances in Cryptology—
EUROCRYPT 2013: 32nd Annual International Conference on the

15

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings 32. Springer, 2013, pp. 626-645.

B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” Communications of the ACM, vol. 59,
no. 2, pp. 103-112, 2016.

E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct Non-
Interactive zero knowledge for a von neumann architecture,” in 23rd
USENIX Security Symposium (USENIX Security 14), 2014, pp. 781—
796.

R. S. Wahby, 1. Tzialla, A. Shelat, J. Thaler, and M. Walfish, “Doubly-
efficient zkSNARKSs without trusted setup,” in 2018 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2018, pp. 926-943.

D. Boneh, J. Drake, B. Fisch, and A. Gabizon, “Efficient polynomial
commitment schemes for multiple points and polynomials,” Cryptology
ePrint Archive, Paper 2020/081, 2020. [Online]. Available: https:
/leprint.iacr.org/2020/081

G. Cormode, M. Mitzenmacher, and J. Thaler, “Practical verified com-
putation with streaming interactive proofs,” in Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, 2012, pp. 90—
112.

J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-
mial identities,” Journal of the ACM (JACM), vol. 27, no. 4, pp. 701-717,
1980.

R. Zippel, “Probabilistic algorithms for sparse polynomials,” in Interna-
tional symposium on symbolic and algebraic manipulation. Springer,
1979, pp. 216-226.

T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song, “Libra:
Succinct zero-knowledge proofs with optimal prover computation,” in
Advances in Cryptology—CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part I1I 39. Springer, 2019, pp. 733-764.

T. Xie, Y. Zhang, and D. Song, “Orion: Zero knowledge proof with linear
prover time,” in Annual International Cryptology Conference. Springer,
2022, pp. 299-328.

A. Chiesa, M. A. Forbes, and N. Spooner, “A zero knowledge
sumcheck and its applications,” 2017. [Online]. Available: https:
/larxiv.org/abs/1704.02086

S. Setty, “Spartan: Efficient and general-purpose zkSNARKSs with-
out trusted setup,” in Annual International Cryptology Conference.
Springer, 2020, pp. 704-737.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, 1. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAl blog,
vol. 1, no. 8, p. 9, 2019.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L.
Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat
et al., “Gpt-4 technical report,” 2024. [Online]. Available: https:
/larxiv.org/abs/2303.08774

C. Lund, L. Fortnow, H. Karloff, and N. Nisan, “Algebraic methods for
interactive proof systems,” Journal of the ACM (JACM), vol. 39, no. 4,
pp. 859-868, 1992.

J. Thaler et al., “Proofs, arguments, and zero-knowledge,” Foundations
and Trends® in Privacy and Security, vol. 4, no. 2-4, pp. 117-660,
2022.

D. Kang, T. Hashimoto, I. Stoica, and Y. Sun, “Scaling up trustless
DNN inference with zero-knowledge proofs,” 2022. [Online]. Available:
https://arxiv.org/abs/2210.08674

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

H. Sun, T. Bai, J. Li, and H. Zhang, “zkDL: Efficient zero-knowledge
proofs of deep learning training,” IEEE Transactions on Information
Forensics and Security, vol. 20, pp. 914-927, 2025.

T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Annual international cryptology conference.
Springer, 1991, pp. 129-140.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” Journal of machine learning
research, vol. 21, no. 140, pp. 1-67, 2020.

D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” in Advances in Cryptology — ASIACRYPT 2001. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 514-532.

https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2020/081
https://arxiv.org/abs/1704.02086
https://arxiv.org/abs/1704.02086
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2210.08674

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Z. Peng, T. Wang, C. Zhao, G. Liao, Z. Lin, Y. Liu, B. Cao, L. Shi,
Q. Yang, and S. Zhang, “A survey of zero-knowledge proof based
verifiable machine learning,” arXiv preprint arXiv:2502.18535, 2025.
S. Lee, H. Ko, J. Kim, and H. Oh, “vcnn: Verifiable convolutional neural
network based on zk-snarks,” IEEE Transactions on Dependable and
Secure Computing, vol. 21, no. 4, pp. 4254-4270, 2024.

W. Qu, Y. Sun, X. Liu, T. Lu, Y. Guo, K. Chen, and J. Zhang, “zkGPT:
An efficient non-interactive zero-knowledge proof framework for LLM
inference,” in 34st USENIX Security Symposium (USENIX Security 25),
2025.

B. Roy, P. Potash, and M. Villagra, “ZKLoRA: Efficient zero-
knowledge proofs for LoRA verification,” 2025. [Online]. Available:
https://arxiv.org/abs/2501.13965

S. Li, T. Wang, M. Hao, and Z. Ling, “ZK-EdgeLoRA: Zero-knowledge
proofs for LLM plugins in edge computing,” in 2025 IEEE/CIC Interna-
tional Conference on Communications in China (ICCC). IEEE, 2025,
pp. 1-6.

D. Froelicher, J. R. Troncoso-Pastoriza, J. S. Sousa, and J.-P. Hubaux,
“Drynx: Decentralized, secure, verifiable system for statistical queries
and machine learning on distributed datasets,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3035-3050, 2020.

C. Huang, J. Wang, H. Chen, S. Si, Z. Huang, and J. Xiao, “zkMLaaS:
a verifiable scheme for machine learning as a service,” in GLOBECOM
2022-2022 IEEE Global Communications Conference. 1EEE, 2022, pp.
5475-5480.

K. Abbaszadeh, C. Pappas, J. Katz, and D. Papadopoulos, “Zero-
knowledge proofs of training for deep neural networks,” in Proceedings
of the 2024 on ACM SIGSAC Conference on Computer and Communi-
cations Security, 2024, pp. 4316—4330.

A. S. Shamsabadi, S. C. Wyllie, N. Franzese, N. Dullerud, S. Gambs,
N. Papernot, X. Wang, and A. Weller, “Confidential-PROFITT: Con-
fidential proof of fair training of trees,” in The Eleventh International
Conference on Learning Representations, 2022.

J. Zhang, Z. Fang, Y. Zhang, and D. Song, “Zero knowledge proofs
for decision tree predictions and accuracy,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
2020, pp. 2039-2053.

M. Campanelli, A. Faonio, D. Fiore, T. Li, and H. Lipmaa, “Lookup Ar-
guments: Improvements, extensions and applications to zero-knowledge
decision trees,” in IJACR International Conference on Public-Key Cryp-
tography. Springer, 2024, pp. 337-369.

J. Weng, J. Weng, G. Tang, A. Yang, M. Li, and J.-N. Liu, “pvCNN:
Privacy-preserving and verifiable convolutional neural network testing,”
IEEE Transactions on Information Forensics and Security, vol. 18, pp.
2218-2233, 2023.

B. Feng, L. Qin, Z. Zhang, Y. Ding, and S. Chu, “ZEN: An optimizing
compiler for verifiable, zero-knowledge neural network inferences,”
Cryptology ePrint Archive, Paper 2021/087, 2021. [Online]. Available:
https://eprint.iacr.org/2021/087

T. Liu, X. Xie, and Y. Zhang, “zkCNN: Zero knowledge proofs for con-
volutional neural network predictions and accuracy,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 2968-2985.

16

https://arxiv.org/abs/2501.13965
https://eprint.iacr.org/2021/087

	Introduction
	Preliminary
	Proofs, Arguments and Polynomial Commitments
	Proofs and Arguments
	Polynomial Commitments

	Sumcheck, and MLE
	Sumcheck Protocol
	Multilinear Extensions

	Verifiable Tensor Operation
	Lookup Arguments for Non-arithmetic Operations

	Gradient Computations for LoRA in LLMs
	Structure of LLM
	Transformer Layers
	Final Output Layer

	LoRA Fine Tuning
	Gradient Computations

	Design of VeriLoRA
	VeriLoRA for Backward Propagation Phase
	zkElementProd
	zkTranspose
	zkSwiGLU
	zkSoftmax

	putting everything together

	Security Analysis
	Soundness
	Completeness
	Zero Knowledge

	Experimental Evaluations
	Implementation Details
	Experimental Setup
	Rescaling Mechanism for Non-Arithmetic Operations
	Evaluation Results
	Proving Time
	Verification Time
	Polynomial Commitment Cost
	GPU Memory Usage

	Related Work
	Verifiable Inference
	Verifiable Training
	Verifiable Testing

	Conclusion
	References

