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distributed systems (e.g., blockchains), new security chal-
lenges have prompted an increased focus on research related
to leader election. Traditional leader election methods (e.g.,
round-robin [1]–[5]) guarantee leader uniqueness and public
verification but suffer from pre-exposure of leaders, enabling
the Byzantine adversary to execute preemptive corruptions and
gain an additional attack advantage. Furthermore, subsequent
efforts seek to realize unpredictability through randomized
approaches (e.g., verifiable random functions (VRFs) [6]), and
these approaches facilitate a private and non-interactive leader
election, thereby mitigating risks such as denial-of-service
(DoS) attacks and enhancing protocol security [7]–[10].

However, existing unpredictable or secret leader election
schemes [7]–[11] may select an indeterminate number of po-
tential leaders in each instance, providing only a probabilistic
expectation regarding the total number of leaders over an
extended period. The simultaneous election of multiple leaders
can lead to significant resource wastage (e.g., computational
power in Proof-of-Work systems). More critically, this is-
sue considerably diminishes overall efficiency and degrades
fault tolerance of distributed systems [12], [13]. For instance,
blockchain systems that utilize probabilistic multi-leader elec-
tion mechanisms not only experience higher confirmation
latency (e.g., approximately one hour in Bitcoin [14]) but
also exhibit weakened resilience against attacks (e.g., grind-
ing attacks in Proof-of-Stake blockchains [11]), dramatically
compromising system practicality.

This state of affairs has spurred research into the security
property of uniqueness (or singleness) in the secret leader
election process. Specifically, uniqueness requires that at any
given instance, exactly one node is elected while preserving
its secrecy and public verifiability. In pursuit of this design
goal, Boneh et al. [15] formalize the concept of Single Secret
Leader Election (SSLE), which enables a group of registered
nodes to engage in continuous elections and deterministically
yields a single secretly elected node per election.

Fortunately, contemporary distributed systems, such as
Ethereum, are increasingly recognizing the importance of
leader uniqueness in addition to the established properties of
unpredictability and fairness during leader election. In fact,

Abstract—Single Secret Leader Election (SSLE) protocol facil-
itates the election of a single leader per round among a group 
of registered nodes while ensuring unpredictability. Ethereum 
has identified SSLE as an essential component in its develop-
ment roadmap and has adopted it as a potential solution to 
counteract potential attacks. However, we identify a new form 
of attack termed the state uniqueness attack that is caused by 
malicious leaders proposing multiple publicly verifiable states. 
This attack undermines the property of uniqueness in subsequent 
leader elections and, with high probability, leads to violations of 
fundamental security properties of the over-layer protocol such 
as liveness. The vulnerability stems inherently from the designs 
reducing the uniqueness guarantee to a unique state per election, 
and can be generalized to the existing SSLE constructions. We 
further quantify the severity of this attack based on theoretical 
analysis and real-world executions on Ethereum, highlighting the 
critical challenges in designing provably secure SSLE protocols. 

To address the state uniqueness attack while ensuring both 
security and practical performance, we present a universal 
SSLE protocol called Mobius that does not rely on extra 
trust assumptions. Specifically, Mobius prevents the generation 
of multiple verifiable states for each election and achieves a 
unique state across consecutive executions through an innovative 
approximately-unique randomization mechanism. In addition to 
providing a comprehensive security analysis in the Universal 
Composability framework, we develop a proof-of-concept im-
plementation of Mobius, and conduct extensive experiments to 
evaluate the security and overhead. The experimental results 
show that Mobius exhibits enhanced security while significantly 
reducing communication complexity throughout the protocol 
execution, achieving over 80% reduction in the registration phase.

I. INTRODUCTION
Leader election serves as a fundamental component of

distribute  systems, designed to select one or more nodes
to perform tasks such as distributing proposals or aggregat-
ing cryptographic certificates, thereby ensuring both system
security and efficiency. With the rapid rise of decentralized
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Fig. 1: The framework of shuffle-based SSLE, where h denotes
a node list consisting of commitments.

Ethereum leverages leader uniqueness to implement an effi-
cient optimization (i.e., proposer boosting [16]), which aims to
mitigate attacks exemplified by the balance attack [17]. How-
ever, Ethereum simply deploys a leader election mechanism
that depends on a chain-embedded random value to achieve the
favorable uniqueness property with a weak unpredictability.
This approach enables the adversary to undermine uniqueness
via strategically inducing network partitions, particularly with-
holding or selectively broadcasting messages. Even worse, the
collapse of uniqueness can revive the attacks that compromise
liveness by preventing finalization (cf. Section III).

Beyond that, numerous efforts have been dedicated to the
implementation of SSLE [15], [18]–[21], and the shuffle-based
approach [15], [18], [21] stands out for its computational ef-
ficiency and dynamic adaptability. Informally, this framework
organizes the participating nodes (indexed as i ∈ [1, n]) into a
commitment list, where each entry uniquely corresponds to a
node (cf. Fig. 1). During the election process, the nodes query
a decentralized random beacon to obtain a publicly verifiable
random index γ ∈ [1, n]. Subsequently, the node owning the
γ-th position in the list is elected as leader, which can assert its
leadership by generating a zero-knowledge proof demonstrat-
ing its ownership of the corresponding commitment. Delving
into the essence of the shuffle-based approach, the committed
node list preserves node identity secrecy, while the random
beacon ensures both the singleness and unpredictability of
the elected leader from this list, thereby facilitating the secret
single leader election. However, since each node’s identity is
deterministically mapped to its commitment (i.e., a specific
position in the list), the self-revelation of the current leader
compromises secrecy in subsequent elections. To maintain
secrecy across continuous elections, it becomes necessary to
periodically randomize the node list¹ after each election.

Nevertheless, existing approaches [15], [21] remain concep-
tual and fail to efficiently address the randomization of state
(i.e., the node list) while maintaining leader singleness. Even
though nodes broadcast the randomized state and post it on
the blockchain, the current shuffle-based solutions neglect the
consensus process as well as the inherent confirmation latency
of it. As a result, the nodes may continue to participate in the
election process using a randomized yet unstable state derived
from the previous election. Additionally, a malicious leader

¹The process of randomizing the node list consists of two phases: (1)
updating the commitment values to obtain refreshed commitments (commonly
called re-randomization), and (2) shuffling the list to disrupt the original order.

can generate multiple randomized states and strategically send
them to honest nodes, thereby fundamentally undermining the
property of uniqueness and subsequently facilitating further
attacks on the over-layer protocol (e.g., the balance attack).

By leveraging the aforementioned observations, to ensure
the secure and consecutive execution of SSLE protocol within
distributed systems, two critical technical challenges must be
addressed: the consecutive randomness generation and the state
uniqueness enforcement. In slightly more detail, the consecu-
tive generation of randomness after each election effectively
randomizes the state that serves as the foundation for ensuring
both leader secrecy and unpredictability. Additionally, main-
taining state uniqueness during each randomization is vital for
guaranteeing leader uniqueness among honest nodes.

Therefore, the issue of state uniqueness stemming from ad-
versarial message propagation can extend to other frameworks
of SSLE constructions, revealing the fundamental weaknesses
inherent in current SSLE designs. This presents a foundational
challenge in the design of SSLE: each leader election must
simultaneously generate a state that is randomized, publicly
verifiable, and globally unique. Hence, this tripartite require-
ment, i.e., secrecy, verifiability, and uniqueness, naturally
raises our core research question:

Can we develop a state uniqueness scheme that enables a
provably secure SSLE protocol while simultaneously

achieving high performance?

A. Our Contribution
In this paper, we contribute to the rigorous understanding

of SSLE and affirmatively answer the aforementioned question
by introducing a novel shuffle-based SSLE protocol named
Mobius. The specific contributions are outlined as follows:
• A systematic analysis of state uniqueness. We investigate

the security of existing SSLE constructions [15], [18], [21],
identifying a new form of attack termed the state unique-
ness attack. This attack specifically targets the essential
assurance for achieving the uniqueness property, leading
honest nodes to recognize different elected leaders, even
when supported by a globally unique random beacon. To
quantify the effectiveness of state uniqueness attack, we use
Ethereum [22] as a case study of leader-based consensus
protocols to evaluate the implications. Specifically, we sim-
ulate each election process using multiple publicly verifiable
node lists, and the results demonstrate that such violations
can further exacerbate balance attacks even when employing
the boosting mechanism, thereby undermining fundamental
security properties of the over-layer protocol (e.g., liveness).
More critically, the state uniqueness attack is generalizable,
as it stems from an inherent weakness in existing SSLE
architectural paradigms [15], [18]–[21].

• Approximately-Unique Randomization: a comprehensive
solution to state uniqueness. We introduce a novel paradigm
to realize the publicly verifiable randomization with the
final guarantee of global uniqueness. Within the random-
ization process, each leader not only performs the current
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TABLE I: Comparisons with other protocols.

Methodology Construction Assumption Communication
Cost (off-chain)

On-chain Cost Round
Byzantine
Adversary

Reconfiguration
-freeElection Registration

iO-based BEH+20 [15] iO O (1) O (1) O(1) 1 □ 7

TFHE-based BEH+20 [15] - O (t) O (t) O (N ) 1 □ 7

PEKS-based* CFG23+ [19] random beacon O (N2 ) O (1) O (log2 N ) 3 7 7

MPC-based BPL23 [20] ROM O (n2 ) O (1) O (1) O (logn) 3** 7

Shuffle-based
BEH+20 [15] random beacon O (n2 ) O (n) O (n2 ) 1 □ 3

CFG22 [21] random beacon O (n2 ) O (n) O (n2 ) 1 □ 3

BBH+22 [18] random oracle O (n2 ) O (n) O (n2 ) 1 □ 3

Shuffle-based Ours random beacon O (n2 ) O (n) O (n) 1 3 3

ᵃ In this table, the notation n denotes the number of registered nodes that participate in the election process, while N denotes the number of all
nodes in the system. The notation t denotes the threshold of the threshold fully homomorphic encryption (TFHE) scheme.

ᵇ For the analysis of Byzantine adversary model, □ denotes the work does not consider the adversarial behaviors (e.g., selective message propagation)
across the constructions, 7 denotes that the work considers the Byzantine behaviors but fails to deal with it, and 3 denotes that the work considers
the conditions of the existence of Byzantine adversary and is Byzantine-resilient.

ᶜ The metric of on-chain cost quantifies the on-chain storage requirements when deploying the above SSLE protocols in a blockchain environment.
Since this critical performance indicator primarily comprises two parts, i.e., the declaration of election outcome and generation of state transitions
for subsequent elections, the metric can also be extended to other applications of SSLE protocols to measure the cost of the leadership declaration.

* Here, PEKS is abbreviation of Public Key Encryption with Keyword Search.
** This work considers the complex model but ignores the issue of state uniqueness by operating under the assumption of a globally unique public

state.

randomization but also determines and commits to the
randomness used in its subsequent election (i.e., for state
randomization). This mechanism ensures that, after each
leader election, exactly one publicly verifiable state and
approximately unique randomness are accepted by honest
nodes, thereby enforcing uniqueness in leader succession.
As a byproduct, the proposed randomization framework can
be extended to other privacy-preserving applications.

• Mobius: an efficient Byzantine-resilient SSLE protocol.
Building upon the Approximately-Unique Randomization,
we present Mobius, a SSLE protocol that continuously out-
puts the desired leaders with a latency of 2Δ. Crucially, any
attempt to deviate from this protocol would inherently reveal
the malicious leader’s identity, as its committed identity in
the latest state is already publicly exposed. Moreover, we
formally prove that Mobius is UC-secure without relying on
extra trust assumptions. A comparison with prior approaches
is presented in Table I.

• Implementation. We develop a proof-of-concept implemen-
tation of Mobius to evaluate its security and performance
overhead. The results demonstrate that our design achieves
both enhanced security and improved efficiency. In par-
ticular, compared to state-of-the-art shuffle-based schemes,
Mobius reduces both the on-chain and off-chain message
complexity from O(n2) to O(n) during the registration
phase. Experimentally, for a system initialized with 10
nodes, the on-chain communication cost is reduced by 81%.
These efficiency gains scale favorably with system size due
to Mobius’s linear complexity advantage. Moreover, we also
conduct an analysis between the shuffle-based scheme and
the MPC-based framework, revealing that our shuffle-based
scheme yields better performance under the same condition.

B. Technical Overview

Recall that in general shuffle-based SSLE protocols [15],
[21], the uniqueness property of SSLE fundamentally depends
on a unique state of the currently participating nodes. There-
fore, our key idea to resist state uniqueness attack is to enforce
that each leader can only generate one publicly verifiable state
for use in the next election consecutively. Any deviation from
this rule will risk compromising the leader’s own security,
as the next election will be conduced based on the state that
has revealed its committed identity. We elaborate on technical
contributions as detailed below.

• A committed randomness better prepared for the uniqueness
property. To ensure the latest state can be randomized
into a unique and publicly verifiable state, a critical step
is to ensure both randomness and pre-determination (or
immutability) of the value used in each randomization
operation. For this purpose, the leader is required to not
only generate a randomized state but also prepare a random
value for its subsequent election, which will be consistently
accepted or rejected by the honest nodes through a graded
delivery protocol. Specifically, the commitment refresh
mechanism mandates that each leader generates binding and
hiding commitments for two random values (for node list
re-randomization and permutation, respectively), while the
graded delivery protocol ensures approximate consistency
that contributes to the eventual uniqueness of randomization
operations. The resulting architecture exhibits a tightly cou-
pled design, wherein public verification of leader’s current
randomization is intrinsically linked to the uniqueness of
its next randomization, providing both immediate security
guarantees and forward-looking validation preparation.
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• A publicly verifiable state ensuring uniqueness for each
election. The newly introduced randomization architecture
inspires us to integrate the prepared randomness into con-
secutive randomization operations, thereby establishing the
uniqueness property of each election. Leveraging the hiding
committed random values, the leader can utilize its two
pre-determined random values to randomize its committed
identity into the node list, ensuring the unpredictability of
the next election. In addition, the binding committed random
values impose a strict limitation that exactly one updated
state can be generated and publicly verified. Importantly,
malicious leaders attempting to propose multiple states or
launch denial-of-service attacks will not compromise secu-
rity. In such cases, the previously used state will be reused,
thus only undermining the adversary’s unpredictability (i.e.,
leaking its identity in an outdated node list).

• A pipelined paradigm guaranteeing high performance and
compatibility. Building upon the strong guarantee of unique-
ness property, the honest nodes can determine a single leader
by relying on the same state along with the same position in-
dex. Our further efforts focus on performance optimization,
particularly addressing the performance degradation caused
by the delivery process. We develop a pipelined paradigm
featuring two fundamental architectural advances: a decou-
pling mechanism for graded delivery that separates the
state randomization from the dissemination of corresponding
committed random values, and a transient lock mechanism
for refreshing committed random values. This design enables
the leader to concurrently complete the state randomization
and temporarily lock the newly generated random values,
which will remain locked until the leader’s subsequent
election. This pipelined design ensures our protocol delivers
outputs within 2Δ, thereby achieving compatibility with
nearly all real-world systems (e.g., Ethereum).

II. PRELIMINARY
Notations. We denote by λ the security parameter. We write
x←$ X to denote uniformly sampling a value x from a set X
and {xs}s

′
s=0 to denote a set of elements that {x0, · · · , xs′ }.

For an integer n, we use [n] to denote a set of natural
numbers smaller than n, i.e., {0, 1, · · · , n − 1}, and Sn to
denote the random permutation family, i.e., the set of all
bijections η : [n] → [n]. Assuming that G is a multiplicative
group of prime order q with generator g, we denote by h a
set of group elements {gx1 , · · · , gxn }, hr represents the set
{gx1r, · · · , gxnr}, and hs denotes the s-th element in the set
h. Additionally, the single lowercase letters g, h represent the
elements of the group.

A. Cryptographic Building Blocks
We briefly introduce the building blocks used in our proto-

col, while deferring the formal definitions to Appendix B.
Commitment scheme. A commitment scheme consists of two
phases (Commit,Open). In the commit phase, a message m is
committed as comm ← Commit(m, r), that involves a secret
value r←$ {0, 1}λ. In the open phase, the commitment comm

is opened by Open(comm, r) and its correctness is verified
by Ver(comm,m). In this paper, we adopt the Pedersen
commitment scheme [23], which is proven to be perfectly
hiding and computationally binding [24].
Non-Interactive Zero-knowledge Proof (NIZK). An NIZK
proof for an NP relation R is a tuple of PPT al-
gorithms (NIZK.Setup,NIZK.Prove,NIZK.Verify) such that:
NIZK.Setup initializes the common reference string crs;
for any (x, ω) ∈ R, the prover produces a proof π ←
NIZK.Prove(crs, x, ω); and for any statement x and proof π,
the verifier outputs 1 via NIZK.Verify(crs, x, π), meaning that
the proof π is accepted, otherwise outputs 0.

While requiring the NIZK to satisfy the properties of
soundness and zero-knowledge [25], we consider the following
relations in this work: RDH refers to that a given tuple of
group elements (g, h) is a Diffe-Hellman tuple, i.e. that there
exists an x such that h = gx, and Rsh associates two vectors
in Gn such that the second one (e.g., h̃) is obtained by re-
randomizing and shuffling the first one (e.g., h).
RDH = {

(
g, h), x

)
: g, h ∈ G, gx = h}

Rsh = {
(
(g, h, g̃, h̃, (r, rs, η)

)
: r, rs ∈ Fq , η ∈ Sn [rs], g̃ = gr, h̃i = hr

η (i) }

Random beacon. Analogous to the existing shuffle-based
constructions [15], [21], we deploy the random beacon that
produces publicly verifiable and unbiased random values as a
building block. The recent advancements in threshold cryp-
tography [26], [27] and verifiable delay functions [28], [29]
have provided practical implementations [30], [31]. Rather
than specifying a particular scheme, we abstract it as a black-
box service, decoupling security analysis from our protocol.
Graded broadcast. A graded broadcast protocol [32] (a.k.a
gradecast) enables a sender P to broadcast a message m
among n recipients with a graded consistency guarantee. In
this protocol, each recipient outputs a pair of (m, c), where c
quantifies the local confidence grade regarding agreement on
message m (cf. Section V-A for a specific construction).
Definition II.1. A gradecast protocol with a designated sender
P is secure if the following properties hold:
• Validity: If the sender P is honest, every honest node Pi

will output (m, c), where c = 2.
• Graded Consistency: If an honest node Pi outputs (mi, ci),

then every honest node Pj outputs (mj , cj) such that mi =
mj and |ci − cj | ≤ 1.

• Termination: Every honest node will terminate.

B. The Single Secret Leader Election
The SSLE protocol enables n registered nodes P := (P1,
· · · ,Pn) to collaboratively conduct a single leader election,
while guaranteeing secrecy of the elected leader Pi from all
other nodes until it actively reveals itself. We now informally
review the syntax of SSLE as defined in [15].
Definition II.2 (Single Secret Leader Election (SSLE)). An
SSLE scheme is defined as a tuple of PPT algorithms SSLE =
(Setup,Register,RegisterVerify,Elect,Verify):
• Setup(1λ, N ) → (pp, {(sk1, pk1), · · · , (skN , pkN )}). The

setup algorithm outputs public parameters pp, and the key
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pair for each node in P. It is a one-time setup process before
initiating a series of elections.

• Register(pp, pki,L′) → L. The registration algorithm en-
ables node Pi ∈ P with identity pki to be added into
registered node list L, where L = L′ ∪ Pi.

• RegisterVerify(pp, pki,L) → 0/1. The verification algo-
rithm is conducted by the registered nodes to verify that
node Pi has been registered correctly.

• Elect(pp, eid, ski,L) → (0,⊥)/(1, πi). The election algo-
rithm enables each registered node Pi with secret ski to
locally determine whether it is elected, and outputs 1 along
with a proof πi for being elected and (0,⊥) otherwise.

• Verify(pp,L, pki, πi) → 0/1. The verification algorithm en-
ables a public verification of claimed leader Pi’s correctness.
Correspondingly, SSLE satisfies the following security prop-

erties of uniqueness, unpredictability, and fairness:
• Uniqueness: One single leader per election is elected.
• Unpredictability: No participant should be able to guess

the next leader better than at random.
• Fairness: For the n registered nodes, each of them is elected

with the probability of 1/n.

III. THE STATE UNIQUENESS ATTACK – FROM UNIQUENESS
VIOLATION TO PRACTICAL ATTACK

In this section, we present a comprehensive analysis of the
state uniqueness attack, which can be leveraged to undermine
the uniqueness guarantees of SSLE.

A. Attack Description
Given the prolonged execution of the distribution system

(e.g., Ethereum), the continuous leader generation is impera-
tive. In essence, within existing SSLE constructions [15], [18]–
[21], [33], the unpredictability and uniqueness for each elec-
tion rely entirely on a publicly verified randomized state (e.g.,
a randomized node list), however, the uniqueness of the state
cannot be guaranteed. This naturally compels honest nodes
to depend on distinct yet respectively verified states when
electing the next leader. Based on the two most representative
methodologies to guarantee unpredictability and uniqueness,
we systematically analyze the attack methods as follows.
• Public List With Encrypted Randomness (PL-ER) [15],

[19], [20], [33]. The PL-ER paradigm utilizes a transparent
state comprising both a public node list and a set of partial
ciphertexts. These ciphertexts are specifically designed to
construct an aggregated encrypted random identity index,
which can only be decrypted by the corresponding node. In
this framework, an adversarial node eligible to participate
in the generation of randomized ciphertexts can launch a
state uniqueness attack by selectively transmitting its partial
ciphertext to specific honest nodes. Consider three nodes
P1, P2, and P3, all responsible for generating random
ciphertexts while awaiting an election, where P3 is the
adversarial node. During this process, P3 can strategically
transmit its partial ciphertext only to P1 while deliberately
excluding P2. This selective transmission leads P1 and P2

to aggregate distinct random indices, causing divergence in
leader identity determination.

• Blinded List with Public Randomness (BL-PR) [15], [18],
[21]. In contrast to PL-ER, BL-PR utilizes a cryptograph-
ically blinded node list as the state, typically represented
as commitments. The leader is elected based on publicly
verified randomness that maps to a specific position in the
node list. To ensure secure and continuous leader elections,
the newly elected leader is required to randomize the node
list using its own chosen random values. This randomization
obscures the leader’s own position (i.e., ensuring unpre-
dictability for its future election) before distributing the
state for subsequent elections. In the aforementioned three-
party system, the elected adversary P3 can launch the state
uniqueness attack as follows: P3 sends list L1 to P1 and a
distinct randomized list L2 to P2, where both the lists L1
and L2 are derived from L via different random values. As a
result, both lists are publicly verifiable and separately guide
honest nodes P1 and P2 to determine the next leader.

B. State Uniqueness Attack in Real-World Ethereum System
The Ethereum consensus protocol [22], named Gasper, is

a committee-based Proof-of-Stake protocol that adopts a slot-
epoch execution paradigm. Within this framework, an epoch
is divided into C slots, and all n nodes (a.k.a. validators) are
partitioned into C corresponding committees. For each epoch,
Gasper allocates the committees to slots by subdividing a node
list, and selects a single leader via sampling from a publicly
known node distribution using a random value². Subsequently,
the protocol is executed through the collaborative efforts of
the leader and committee validators, who respectively perform
proposal and voting operations.

To enhance security and mitigate balance attacks [17],
Ethereum combines single leader election [34] with a proposer
boosting mechanism [16]. However, no effective method is
provided to ensure a consistent node distribution across honest
nodes, leaving the protocol vulnerable to state uniqueness
attacks and thereby undermining the goal of selecting a single
leader per slot. Even worse, this attack becomes particularly
severe as the resulted leader conflicts among honest nodes can
be exploited by the adversary to neutralize the proposer boost-
ing mechanism, ultimately exacerbating the balance attacks.

We now demonstrate the effectiveness of the state unique-
ness attack against the Ethereum consensus protocol. Prior
to delving into the detailed execution of our attack strategy,
we first establish the necessary knowledge of the general
balance attacks paradigm [17] and the proposer boosting
mechanism [16] within the Ethereum consensus protocol.
Balance attack. As depicted in Fig. 2(a), the balance at-
tack targets the Ethereum consensus layer to prevent block
finalization, ultimately compromising the protocol’s liveness.
Specifically, the Byzantine adversary Aθ of slot θ can control
up to f validators, where W = 3f + 1 and W = n/C. At slot
0, when the adversary A0 is elected as block proposer (i.e.,

²cf. Appendix C-A for more details.
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(a) Balance attack.

(b) Proposer boosting mechanism.

Fig. 2: Balance attack and proposer boosting mechanism.

leader), it first partitions the honest validators into two disjoint
subsets P0 ( |P0 | = f ) and P0′ (|P0′ | = f+1), and prepares two
conflicting blocks B0 and B0′ to launch the attack as follows:
• Slot 0: A0 transmits block B0 to P0 and block B0′ to P0′ ,

respectively. Upon receiving these blocks, validators in P0
vote for B0, while those in P0′ vote for B0′ .

• Slot 1: If B0′ is extended by B1′ in slot 1, then A0 discloses
two previously withheld votes for B0 to P1 (|P1 | = f ) before
the voting phase. This disclosure ensures that P1 continue to
support B0, while P1′ (|P1′ | = f+1) endorse B1′ . As a result,
at the end of slot 1, the two competing chains maintain an
approximately equal number of votes (i.e. 33.3%W ).

• Slot 2 and beyond: Following slot 1, the adversary can per-
sist in its vote-withholding behavior across subsequent slots,
resulting in a sustained state of equilibrium between the two
competing chains, where each chain collects approximately
33.3% of total validator votes (n) at the end of each epoch.
Consequently, neither chain can accumulate the required

66.7% total validator votes (n) to achieve block finaliza-
tion, undermining the fundamental liveness property of the
Ethereum consensus protocol.
Proposer boosting. To mitigate the balance attack, the pro-
poser boosting mechanism is specifically designed to diminish
the impact of adversarial votes on the chain-selection decisions
rendered by honest validators. Specifically, this mechanism in-
centives the timely broadcast blocks by conferring a temporary
40% voting power advantage³, thereby effectively countering
adversarial withholding strategies. As depicted in Fig. 2(b), we
consider a slot configuration with a total of W = 3f +1) votes.
If block B1′ is timely broadcast, it will receive an additional
40%W votes. In this case, at slot 1, the honest nodes P1 cannot
be induced to maintain their support for block B0, as A0 only
controls 33%W votes in slot 0. Consequently, this mechanism
robustly precludes the adversary from fragmenting the voting

³40% is the boosting factor specified in Ethereum [35], which takes effect
only in the current slot θ.

power of honest validators across competing chains, thereby
achieving effective resistance against balance attacks.
Reactivation of balance attack. Nevertheless, when the pre-
requisite of having a single leader elected per slot cannot be
guaranteed (i.e., in cases where a malicious leader initiates the
state uniqueness attack), the protective effectiveness of the pro-
poser boosting mechanism will be compromised, consequently
reviving balance attacks. Building on this observation, the core
attack strategy is outlined as follows (cf. Fig. 3).

Without loss of generality, we assume the first epoch
and slot following the network reaching Global Stabilization
Time⁴ are epoch 0 and slot 0, respectively. The malicious
leader initiates the attack by exploiting network propagation
delays prior to epoch 0 to establish two competing chains in
exact weight equilibrium by slot 0 (i.e., in Fig. 3). Since
different honest nodes support divergent chains embedded
with distinct random values, the adversary can execute the
selective message propagation, i.e., strategically withholding
votes while selectively revealing them to the targeted honest
nodes. This manipulation further misleads the honest leaders
(i.e., L0 and L0′ in step ¬, derived from the distinct random
values r−2 and r′−2) into adopting different canonical chains
and extend them respectively (i.e., B0 and B0′ ). Consequently,
the boosting weights of these conflicting blocks offset each
other (i.e., w(B0) = w(B0′ ) = 40%W ), thereby empower-
ing the adversary to reinitiate balance attacks and establish
ideal conditions for state uniqueness attack to result in the
sustainable coexistence of multiple leaders (step ® in Fig. 3).
More critically, the chain split can be maintained indefinitely,
ultimately undermining the system’s liveness guarantees (cf.
Appendix C-B for a detailed description).

C. Quantitative Analysis of State Uniqueness Attack

To formally illustrate the effectiveness of the state unique-
ness attack, we first simulate the attack to verify our theoretical
analysis. Then, we implement it respectively in a vote-based
consensus protocol and a heaviest-chain protocol to show its
impact on the over-layer protocol, and perform an augmented
evaluation of the attack on the real-world Ethereum system.

We conduct a simulation of the state uniqueness attack based
on the state-of-the-art shuffle-based SSLE frameworks [15],
[21]. Specifically, we perform this simulation under the fol-
lowing configurations: two fault tolerance thresholds (f < n/2
and f < n/3) that encompass mainstream scenarios, two
prevalent message handling paradigms: the time-sensitive mes-
sage handling mechanism⁵ and lexicographical-order message
handling mechanism⁶, and two network configurations with
n = 5 (with f = 2, satisfying f < n/2) and n = 7 (with

⁴Global Stabilization Time (GST) represents a critical time boundary in
Ethereum’s network model, demarcating a phase transition: the network is
in a delay-unbounded and asynchronous regime before GST, while exhibiting
synchronous properties thereafter.

⁵It operates under a “first-valid-message” acceptance rule, whereby parties
accept the first valid message they receive.

⁶It deterministically sequences messages based on their hash values and
selects either the maximum or minimum among them.

6



Fig. 3: The brief attack workflow caused by multiple leaders, wherein ch and ch′ represent two competing chains that both
are prevented from finalization. Additionally, the blocks in ch and ch′ are proposed by leader Lθ and Lθ′ and supported by
two equal-sized node groups Pθ and Pθ′ , where θ represents the corresponding slot number.
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Fig. 4: The number of slots under varying conditions.

f = 2, satisfying f < n/3). For each configuration, We re-
spectively run 1000 consecutive elections under the Byzantine
adversary, where the adversary can arbitrarily deviate from
the protocol specification, including propagating conflicting
randomization messages and selectively withholding messages
from subsets of honest nodes. Notably, our simulated results
can be generalized to larger-scale systems, provided that the
network conditions remain synchronous and there is adequate
message processing capacity, as increase in committee size
would only exacerbate the attack severity.

We present the results in Fig. 4 to clearly demonstrate that
existing SSLE constructions exhibit significant vulnerabilities
to state uniqueness attacks across all evaluated configurations.
Specifically, with f < n/3, the probability of violating
the uniqueness property reaches 13.3%-19.3% (i.e., 133-193
multi-leader slots, cf. Fig. 4(a)), which escalates to 25.5%-
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(a) BFT-like protocol.
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Fig. 5: Evaluation of the over-layer protocol with n = 7, f = 2.

26.3% (i.e., 255-263 slots) when the condition is relaxed to
f < n/2 (cf. Fig. 4(b)). Moreover, 12%-19% of slots exhibit
divergent leader recognition, where only subsets of nodes
acknowledge the elected leader, while 6%-13% of slots are
identified as leaderless slots. Additionally, the time-sensitive
message processing paradigm significantly exacerbates attack
vulnerability, exhibiting success rates approximately 1.4 times
higher than those observed with lexicographical ordering
across both fault tolerance thresholds. This can be attributed
to its inherent susceptibility to network latency manipulation
and its adherence to the first-valid-message acceptance rule.

We further evaluate the attack’s impact on the over-layer
protocol by implementing it in a blockchain scenario. Specif-

7



Fig. 6: Attack on the Ethereum consensus protocol.

ically, we respectively integrate this attack with a vote-based
consensus protocol (e.g., BFT-like protocol PBFT [2]) and
a heaviest-chain protocol (e.g., Ethereum Gasper [22]) under
f < n/3 (cf. Fig. 5). For BFT-like protocols, we track quorum
certificate (QC) formation as a key metric, which serves as
an essential data structure in these protocols. The results (cf.
Fig. 5(a)) show that in approximately 26%-30.3% of 1000
slots, the adversary is elected as the single leader, enabling it
to manipulate QC formation and consequently compromise the
over-layer protocol. Meanwhile, 35.7%-42.7% of slots under
honest control successfully construct QCs. For the remaining
slots, the adversary can exploit leadership divergence to stall
protocol progress. Specifically, by partitioning honest parties
into two subsets: P1 (|P1 | = f + 1) and P1′ (|P1′ | = f ), the
adversary can split honest votes between conflicting proposals,
thereby preventing QC formation. In contrast, heaviest-chain
protocols strictly enforce lexicographical ordering in their
construction and recover to a secure state when an honest node
becomes the sole leader. For this scenario, we examine the
first 100 slots with n = 7. The results (cf. Fig. 5(b)) show that
during the initial 100-slot period, chain equilibrium persists
for 68 slots when the adversary employs a vote-withholding
strategy. More critically, even without adversarial interference,
these protocols can enter weight equilibrium states lasting for
14 slots in the worst case (i.e., slots 44 to 58 in Fig. 5(b)),
which both lowers the attack barrier and introduces additional
potential attack surfaces in protocol design.

We further proceed to evaluate the state uniqueness attack
in a real-world Ethereum system (cf. Fig. 6). Specifically,
we establish a local testnet based on Prysm [36] with the
committee size of n = 39 to 183. The experimental results
show that this attack remains sustainable for over 180 slots,
even at an experimental scale of fewer than 200 nodes. Further-
more, as the number of nodes increased, the duration of the
attack continued to grow. This indicates that, for the Ethereum
mainnet where n ≈ 106, the attack enables a prolonged chain
divergence, significantly impairing the system’s liveness and
ultimately resulting in a denial-of-service (DoS) condition.

IV. SYSTEM MODEL AND FORMAL SECURITY DEFINITION

A. Modeling the System and Threats
We now discuss the security model of the generalized

SSLE protocol, which exactly follows the previous works in
this field [19], [21]. In order to formally model the security
of SSLE, we adopt the Universal Composability (UC) [37]

framework to define an SSLE model that involves N nodes
P := {P1, · · · ,PN }. The UC model specifies two worlds,
a protocol Π is executed in the real world by the nodes
that interacts with an adversary A and an environment Z ,
while a functionality F is executed in the ideal world and
interacts with a simulator S and an environment Z . We
denote the ensemble corresponding to real world execution
as EXEC(λ)Π,Z,A, while that for ideal world execution is
represented as EXEC(λ)F,Z,S .
UC security. The protocol Π UC-realizes an ideal function-
ality F if for any PPT adversary A there exists a simulator S
such that EXEC(λ)Π,Z,A ≈ EXEC(λ)F,Z,S , where ≈ denotes
the computational indistinguishability.
The known parties and trusted setup. There are N designed
nodes (i.e., P := {P1, · · · ,PN }), each of which has a unique
public-private key pair (ski, pki) and a unique identity denoted
by the public key pki known by everyone else. In addition,
during protocol execution, there are n registered nodes Pn,
i.e., {Pi1 , · · · ,Pin } ⊆ {P1, · · · ,PN } that take part in the
election procedure, and the other nodes can dynamically
register through a registration mechanism.
The adversary. The Byzantine adversary A, which can fully
control f < n/2 registered nodes, is able to arbitrarily deviate
from the protocol specification, including sending conflicting
messages and launching the denial-of-service attack.
The communication network. We consider the synchronous
communication among the participating nodes, implying that
we assume a global clock functionality Fclock [38]. The SSLE
protocol executes in rounds (and slots), ensuring that each node
is aware of the current round (and slot) and can expect that
the message m sent by an honest node will be received by
all the honest nodes within time Δ. There is also a secure
authenticated message transmission channel between the nodes
modeled by the ideal functionality Fsmt [37], [38].

B. Ideal Functionality of SSLE

We formalize the security of SSLE as an ideal functionality
FSSLE (cf. Fig. 7), which interacts with the nodes in set P,
environment Z , ideal adversary S . Specifically, it consists
of the following three procedures, each triggered by request
messages with a session identifier eid from node Pi ∈ P:
• Register: The unregistered node Pi requests to participate

in the election and is added to the registered node set L.
• Elect: At each new election eid, one registered node in L

is randomly selected to serve as the leader, and the election
result is secretly sent to the designated node.

• Verify: When the elected node chooses to disclose its
identity, the correctness of the claim can be verified publicly.

Security analysis. The ideal functionality satisfies that, for
each election, there is exactly one node uniformly sampled
from the set of registered nodes L (uniqueness and fairness).
Each node is only allowed to access its own election result,
unless others actively disclose their identities themselves (un-
predictability), which can be publicly verified by others.
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Initialize E,L← ∅, n← 0.
Register: Upon receiving (register , pki) ←↩ Pi:
• If (pki, ·) ∉ L, update L := L ∪ (pki, n), broadcast
(registered, pki) and set n := n + 1.

• Otherwise, abort.
Elect: Upon receiving (elect, eid) from all honest nodes, if
L ≠ ∅ and eid was not requested before, do the following:
• Sample (pki, δ) ←$ L, where δ ∈ [n].
• Send (outcome, eid, 1) ↪→ Pi and (outcome, eid, 0) ↪→
Pj≠i ∈ L, update E := E ∪ {eid, pki, ·}.

• Upon receiving (proof, eid, pki, πi,eid) ←↩ Pi, if
(eid, pki, ·) ∈ E, update (eid, pki, ·) := (eid, pki, πi,eid).
Otherwise, abort.

Verify: Upon receiving (reveal, eid, pki, πi,eid) ←↩ Pi, and
(verify, eid, pki, πi,eid) ←↩ Pj≠i ∈ L
• If (eid, pki, πi,eid) ∈ E, (verified, eid, pki, 1) ↪→ Pj .
• Otherwise, (verified, eid, pki, 0) ↪→ Pj .

Fig. 7: Ideal functionality that models SSLE.

V. MOBIUS: A BYZANTINE-RESILIENT SSLE PROTOCOL WITH
ENHANCED UNIQUENESS

Solution intuition. As previously elaborated, the core chal-
lenge posed by the state uniqueness attack stems from the
fact that a malicious node is able to generate distinct publicly
verifiable states (e.g., the node lists in shuffled-based schemes)
and strategically disseminate divergent versions to honest
nodes, thereby compromising the uniqueness of SSLE.

Accordingly, our solution to this vulnerability centers on
preventing the adversaries from accessing multiple valid ran-
dom values per randomization operation. Specifically, only
one valid state and random value can be utilized for each
randomization operation (i.e., the re-randomization and shuf-
fle), without leaking any information of the corresponding
random factors. To achieve this, we introduce a method
of “Approximately-Unique Randomization”, compelling par-
ticipating nodes to continuously pre-determine random val-
ues with approximate uniqueness, and integrate it into the
“Elect→Randomize” workflow to provide perfect uniqueness
guarantees. Consequently, each new state can be uniquely
derived from the previous state using these unique and secret
random values while enabling public verification of it.

A. Approximately Unique Randomization
We formally define approximate uniqueness as the prop-

erties of gradecast (cf. Definition II.1): the honestly pre-
determined random values can be accepted by all the honest
nodes with full confidence (i.e., c = 2), whereas the con-
fidences of maliciously pre-determined random values held
by honest nodes Pi and Pj satisfy that |ci − cj | ≤ 1. We
now walk through how to realize the “Approximately Unique
Randomization” (abbr. AU-Randomization).
Consecutively-verifiable randomization path. To enable the
consecutive randomization operations, we first develop a

commitment-based mechanism that generates and refreshes the
random parameters (cf. Algorithm 1). With a node P as the
shuffler to randomize the state, the key points are as follows:
• The shuffler P is required to commit two random values
r, rs ←$ Fq in advance, which is denoted as comr and
comrs, along with an NIZK proof πcom for their correctness.

• P then re-randomizes the state tuple (g, h) as (gr, hr),
followed by performing a shuffle on hr defined by h̃τ :=
h′
η (τ ) , thereby yielding the updated state (g̃, h̃), where

η ← Sn [rs].
• Finally, P computes an NIZK proof πsh to demonstrate that

the resulting state (g̃, h̃) has been correctly re-randomized
and shuffled from the original state (g, h), using the commit-
ted random values r and rs. Additionally, P is also required
to reconfigure the random values that are utilized for its
subsequent randomization operation.

Algorithm 1 Consecutive Randomness Generation (of P)
1: function RandGen(Com1, g, h)
2: Parse Com1 =: {comr, comrs}
3: g̃ ← gr , h′ ← hr
4: η ← Sn [rs], h̃← {h̃τ := h′

η (τ ) |τ ∈ [n]}
5: πsh ← NIZK.Prove(Com1, g, g̃, h, h̃; (r, rs, η))
6: r′, rs′ ←$ Fq
7: comr′ ← Commit(r′), comrs′ ← Commit(rs′)
8: Com← (comr′ , comrs′ )
9: πcom ← NIZK.Prove(Com; (r′, rs′))

10: return msh := (shuffle, g̃, h̃, πsh, Com, πcom)

Approximately-unique randomization path. Following the
consecutive reconfiguration of randomness, we develop a
gradecast protocol, namely GradeDelivery, as a building block
to deliver the generated randomness. By this protocol, the
node can output a message m with an agreement confidence
c, which serves as links across the complete consecutive
randomization process. Informally, the protocol consists of
four steps described as follows (cf. Algorithm 2):
• Message approval (line 2-9). The function initializes a timer
t = 0 when called, and then increments t monotonically
during the execution. The sender Pi, hereafter a shuffler,
firstly broadcasts the shuffle message mi to the nodes in
Pn. At t = Δ, if Pj receives the shuffle message mi, it
invokes ValidShuffle(mi, Comi,1), where Comi,1 represents
the latest commitment tuple generated by Pi and recorded
in Pj’s local storage. Upon receiving TRUE and confirming
that no conflicting shuffle message m′i has been received, it
signs mi and sends the signature σj back to Pi (line 9).

• Certificate aggregation (line 10-15). At t = 2Δ, if the shuffler
Pi has received more than n/2 + 1 valid signatures, it
aggregates these signatures into a certificate denoted as Ωi

and subsequently broadcasts Ωi to the nodes in Pn.
• Revocation (line 16-19). At t = 3Δ, if Pj , who has

previously signed mi (φj,i = 1), does not receive Ωi from
Pi, it then broadcasts a revoke message to invalidate σj .

• Update(line 21-28). At t = 4Δ, if Pj , who has previously
signed mi, receives a certificate Ωi with ≥ n/2+1 valid sig-
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natures (line 24), and does not receive any conflicting shuffle
messages, Pj then sets ci ← 2. What’s more, if it receives
less than n/2 + 1 valid signatures but |Ωi | ≥ n/2 + 1 (line
26), then it sets ci ← 1. In this case, Pj outputs (mi, ci).
Otherwise, if Pj receives no certificate or two conflicting
messages, it outputs (mi, 0) or (⊥, 0) respectively.

Algorithm 2 Graded Broadcast (of Pi ∈ Pn)
1: function GRADEDDELIVERY(mi)
2: Set timer t← 0, ci ← 0
3: if Pi is the sender: Broadcast mi

▷ Message Approval
4: For each Pj ∈ Pn, at t ∈ (0,Δ]
5: Upon receiving a shuffle message mi from Pi
6: if VALIDSHUFFLE(mi, Comi,1) = True then
7: Compute σj ← Sign(skj ,mi) and set ϕj,i = 1
8: if no m′i has been received at t = Δ then
9: send σj to Pi

▷ Certificate Aggregation
10: For shuffler Pi, at t ∈ [Δ, 2Δ]
11: Upon receiving σj from Pj
12: if Verify(pkj , σj ,mi) = 1 then
13: Update Ωi := Ωi ∪ σj
14: At t = 2Δ, if |Ωi | ≥ n/2 + 1 then
15: Broadcast Ωi

▷ Revocation
16: For each Pj ∈ Pn, at t = 3Δ
17: if (ϕj,i = 1)∧ (no Ωi has been received ∨ |Ωi | < n/2 + 1)
18: Broadcast (revoke, σj )
19: else: Forward Ωi

20: For each Pj ∈ Pn, at t ∈ [3Δ, 4Δ]
21: Upon receiving (revoke, σk) from Pk ∈ Pn
22: Update Ωi := Ωi ∪ σk

▷ Update
23: At t = 4Δ and no conflicting m′i received
24: if ( |Ωi/Ωi | ≥ n/2 + 1):
25: ci ← 2
26: else if ( |Ωi/Ωi | < n/2 + 1) ∧ (|Ωi | ≥ n/2 + 1):
27: ci ← 1
28: return (mi, ci)

function VALIDSHUFFLE(mi, Comi,1)
Parse mi =: (shuffle, g̃, h̃, πi,sh, Comi, πcom)
▷ (g, h) represents the latest state stored by Pj

bi,1 ← NIZK.VERIFY(Comi,1, g, g̃, h, h̃, πi,sh)
bi,2 ← NIZK.VERIFY(Comi, πcom)
if (bi,1 = 1) ∧ (bi,2 = 1) then:

return True
else: return False

With the rigorous construction, the protocol satisfies the
properties defined in Definition II.1. We defer the detailed
proof to Appendix E in the full version [39] and provide the
security intuition below.
Security intuition. The execution can naturally ensure the
validity and termination properties of the protocol, thereby
providing security against the denial-of-service attack. Re-
garding graded consistency, the grade c = 2 for message m is
achieved upon collecting n/2 signatures, guaranteeing that all
honest nodes will output c ≥ 1 for m. During this process, if
a malicious sender disseminates two conflicting messages to

different honest nodes to obtain c = 2, all the honest nodes
will detect the conflicts and refuse to approve the conflicting
messages, resulting in no message being able to achieve c = 2.
Approximately-Unique Randomization. Building on the ran-
domness refreshing and the gradecast, the nodes in Pn can
achieve an approximate uniqueness by Algorithm 3 as follows.
• Randomness Generation: The designated shuffler Pi exe-

cutes the randomness generation procedure (Algorithm 1)
to output shuffle message mi.

• Randomness Gradecast: The shuffler Pi gradecasts the mes-
sage mi while the nodes in Pn acknowledge the message
mi (Algorithm 2) and deliver it with a confidence tag.

Algorithm 3 AU-Randomization (of Pi)
1: function AU-RANDOMIZE(Comi,1, g, h)
2: mi ← RANDGEN(Comi,1, g, h)
3: GRADEDDELIVERY(mi)

So far, an approximately unique and publicly verifiable
randomization (i.e., (g̃, h̃) and Com) can be realized among
the participating nodes in Pn,
Security intuition. With a pre-committed randomness com-
mitment Comi,1, the state can only be appropriately random-
ized through a designated yet secret way, while the refreshed
commitments that are transmitted by the graded delivery
naturally satisfy the property of graded consistency defined
in Definition II.1. We defer the detailed proof to Appendix E
in our online full version [39].

B. Mobius: Protocol Description
We can now securely realize the SSLE via simply executing

the AU-Randomization. Informally, by integrating the graded
output into the query-driven workflow, the honest nodes can
dynamically refresh their confidence parameters and determine
whether to update the randomization message, including the
randomized state and refreshed commitment, to their local
storage. Subsequently, through applying the newly tossed coin
γ on the local newest node list h, the honest nodes can
determine a single leader while ensuring unpredictability.
However, the inherent latency of 4Δ associated with AU-
Randomization still renders the trivial construction impractical
for deployment (cf. Appendix D for details). Therefore, our
further efforts concentrate on decoupling the update of the
randomization message mi into the node list h and committed
random values. This approach ensures that the newly updated
h can be utilized for subsequent election, while the committed
randomnesses can be employed in Pi’s next operation.
Protocol details. For ease of understanding, we depict Mobius
in Fig. 8 and provide a detailed description in Algorithm 4,
summarizing the key points of each phase as follows:
(A1) Registration Phase: Setup. In this phase, the initial n
nodes in set PN jointly generate an initial registered nodes
set, denoted as Pn which includes their respective public keys
pk and the committed random values utilized in subsequent
randomization operations. With the established nodes set Pn,
these n nodes deterministically serialize Pn in accordance
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Fig. 8: Overview of the Mobius protocol, which consists
of the registration and election phase. For conciseness, we
abbreviate the state tuple (gθ, hθ) as hθ for θ ∈ N+ to
represent the randomization states, while (ĝ, ĥ) and (g, h)
denote the randomization states that are input or output by
a randomization process in registration phase.

with a strict lexicographic ordering and elect the first
⌊
n
2
⌋
+ 1

nodes to sequentially complete their respective randomization
operation At the end, they generate the initial state (g, h),
which is randomized and becomes the basis of the election.
(A2) Registration Phase: Joining Request. This phase facili-
tates the secure integration of the unregistered node, denoted
as Pℓ, into the protocol execution. Specifically, the new node
Pℓ first executes step (A1)-01 to join the node set Pn main-
tained by all registered nodes. Subsequently, Pℓ incorporates
itself into the most recent joining state (ĝ, ĥ) and completes
its randomization operation, specifically re-randomizing and
shuffling, to randomize (ĝ, ĥ). Once this updated joining state
(ĝ, ĥ) is accepted by a leader, that leader will confirm the
randomization operation that generates the joining state and
update the state to become the latest state (g, h). Notably,
several unregistered nodes can collaboratively generate the
updated joining state and successfully participate in protocol
execution once the state is adopted by a leader.
(B) Election Phase. This phase starts when n ≥ 3. At each
slot θ ≥ 1, based on the response γθ from Fn

ct, the node
owning the γθ-th position of the latest node list h is designated
as the leader for slot θ. To enhance the protocol efficiency,
Mobius introduces a transient lock mechanism (cf. Fig. 8)
that strategically decouples the k-th randomization message
mj,k of leader Pj into the state (g, h) and the commitment
Comj of the refreshed random values. Therefore, the valid
updated state (g, h) can be used for the leader election of
slot θ + 1 as soon as possible, while ensuring the refreshed
random values to be updated in the (k + 1)-th election of Pj .
Moreover, to mitigate potential malicious behaviors by leaders,
Mobius further combines the updates of state (g, h) ∈ mj,k

and commitment Comj ∈ mj,k−1. The state will only be
updated according to Pj if both the state (g, h) ∈ mj,k is valid
and the grade output by GRADEDELIVERY(mj,k−1) is c = 2.
Otherwise, the current valid state will be maintained.
Security intuitions. Mobius efficiently and securely realizes
the functionality defined in Fig. 7. We now provide the brief
security intuitions and defer the detailed proofs to Appendix
F in the full version [39].
Honest leader Pj . The honest nodes will successfully update
local state according to the randomization message mj,k

proposed by leader Pj . Therefore, all the honest nodes will
determine the next leader as the owner of the γ-th position
within the same state h, thereby ensuring uniqueness and
fairness. Given that leader Pj has re-randomized itself in state
h, this guarantees unpredictability of its (k + 1)-th election.
Malicious leader Pj . If leader Pj initiates the state uniqueness
attack, Mobuis will protect the honest nodes by allowing
them to maintain their current local state (g, h) rather than
adopting the state generated by Pj . As a result, the security
properties of uniqueness and fairness are guaranteed, while the
unpredictability can only be partially guaranteed, given that its
position in state h has been revealed.

Overall, in each leader election, if at least one honest node
adopts the state updated by leader Pj , all honest nodes will up-
date their local states consistently. In situations where any hon-
est node detects dishonesty from leader Pj , all honest nodes
will abort their updates related to Pj , thereby compromising
the security of Pj in its subsequent election. Consequently,
Mobius enhances security against state uniqueness attack.
A concrete instance of decoupling and lock. Here, we
present a concrete example to elaborate on the aforementioned
update-decoupling and transient lock of node Pi, whose
instances are represented as and in Fig. 8.

At slot θ′, we assume this is the k-th election of node Pi.
Initially, the nodes execute the first two steps of GradeDelivery
to confirm the update of state h1 ∈ mi,k, unlock Comi ∈
mi,k−1, and generate the lock for Comi ∈ mi,k. At slot θ, node
Pi commences its (k + 1)-th election. Specifically, the nodes
perform GradeDelivery to generate the lock for Comi ∈ mi,k+1
while simultaneously confirming both the validation of state
h4 ∈ mi,k+1 (i.e., Condition 1) and unlocking Comi ∈ mi,k

(i.e., Condition 2). Only when both conditions are confirmed
by the honest nodes (i.e., c = 2), will state h4 be utilized in the
next election, and the stored committed random values Comi

of node Pi will be updated to Comi ∈ mi,k.
Therefore, the proposed update-decoupling and transient

lock mechanisms facilitate an efficient pipelined execution
while ensuring both security and compatibility with existing
protocols, where 1 slot =2Δ.

VI. EVALUATION
In this section, we implement Mobius and compare it against

the state-of-the-art shuffle-based SSLE schemes [15], [21] and
the MPC-based scheme [20] across two key dimensions, i.e.,
Byzantine-resilience and communication cost. All tests are
conducted on a Ubuntu 22.04 system in a Thinkpad X1 Carbon
laptop, and the details of the evaluations are as follows.
Attack simulation. We conduct a simulation of various
Byzantine attack strategies to evaluate the security of Mobius,
with particular emphasis on uniqueness. In the simulation,
we set n = 5 and f = 2, executing the election process
for 1000 slots. As illustrated in Table II, Mobius exhibits
an enhanced guarantee of uniqueness compared to the related
works [15], [21], respectively under both the time-sensitive and
lexicographical-order message handling mechanisms. Specif-
ically, under the same system scale and Byzantine fault
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Suppose each participating node Pi maintains a table Ti := {Pn, (g, h)}, which records the set Pn of registered nodes’
identities (i.e., the public keys) and the corresponding commitments, and the latest state (g, h). Global parameters are
(G, q, g), Pn ← ∅, g ← g, h← ∅, N, n← 0 , and confidence grade c← 0.

(A1) Registration Phase: Setup
01 Node Pi ∈ PN completes the Setup:

1) Sample xi, {ri,s, rsi,s}2s=0 ←$ Fq , computes pki := gxi , {Comi,s := (comrs := gri,s , comrss := grsi,s )}2
s=0.

2) Set Pn := Pn ∪ {(pki, Comi)}, where Comi := {Comi,1, Comi,2}.
3) Send

(
prove, g, pki, {Comi,s}2s=0; (xi, {ri,s, rsi,s}2s=0)

)
↪→ FDH

NIZK .
Upon receiving

(
proof, g, pkj , {Comj,s}2s=0;πj

)
←↩ FDH

NIZK , update Pn := Pn ∪ (pkj , Comj), n← |Pn |.
02 Node Pi ∈ Pn completes the Randomization:

1) Serialize the registered node list Pn deterministically as Pn := {(pkiκ , Comiκ )}niκ=1
, where i1 < i2 < · · · < in.

2) Set g ← g, h← {pkiκ }nκ=1.
3) The first

⌊
n
2
⌋
+ 1 nodes Pi ∈ {Pi1 , . . . ,Pi⌊ n2 ⌋+1

} sequentially do the following:

• Compute g̃ := gri,0 , h̃ := hri,0 , η ← Sn [rsi,0], and h̃ := {h̃τ := h̃η (τ ) |τ ∈ [n]}
• Send

(
prove, g, h, g̃, h̃, Comi,0; (ri,0, rsi,0, η)

)
↪→ Fsh

NIZK .
Upon receiving

(
proof, g, h, g̃, h̃, Comi,0;πi

)
←↩ Fsh

NIZK , update g ← g̃ and h← h̃.

(A2) Registration Phase: Joining Request
01 Upon receiving a state (g, h) from the latest leader and joining request (ĝ, ĥ), the joining node Pℓ ∈ PN ∧ Pi ∉ Pn
does the following:

1) Executes step (A1)-01 to complete the Setup.
2) If |ĥ| ≤ |h|, then set (ĝ, ĥ) := (g, h); otherwise, set (ĝ, ĥ) := (ĝ, ĥ).
3) Compute ḡ = ĝrℓ,0 , h̄ := ĥrℓ,0 ∪ ḡxℓ , η ← Sn [rsℓ,0], h̄ := {h̄τ := h̄η (τ ) |τ ∈ [n]}.
4) Send

(
prove, g, pkℓ, {Comℓ,s}2s=0; (xℓ, {rℓ,s, rsℓ,s}2s=0)

)
↪→ FDH

NIZK , and
(
prove, ĝ, ĥ, ḡ, h̄, Comℓ,0; (rℓ,0, rsℓ,0, η)

)
↪→

Fsh
NIZK .

02 Upon receiving
(
proof, g, pkℓ, {Comℓ,s}2s=0;πℓ

)
←↩ FDH

NIZK , and
(
proof, ĝ, ĥ, ḡ, h̄, Comℓ,0;πℓ)

)
←↩ Fsh

NIZK , node Pi ∈
Pn updates Pn := Pn ∪ {(pkℓ, Comℓ)}, and ĝ := ḡ, ĥ := h̄.

(B) Election Phase
01 At shot θ ≥ 1, node Pi ∈ Pn does the following:

1) Invoke (toss, θ) ↪→ Fn
ct if θ = 1 or confidence grade ci = 2.

2) Upon receiving (tossed, θ, γ) ←↩ Fn
ct, if γ = ⊥, then set γθ := γθ−1 + 1 mod n; otherwise, update γθ := γ, ci ← 2.

3) Upon the latest state (g, h) and joining request (ĝ, ĥ), if Pj is owner of the γθ-th position in h:
• Broadcast its k-th leadership claim (claim, j, θ, k, g, h, πj), where π ← NIZK.Prove(g, g, pkj , hγθ

;xj).
• If ∃|ĥ| > |h|, then set (g, h) := (ĝ, ĥ); otherwise, skip this step.
• Run AU-RANDOMIZE(Comj,1, g, h) (cf. Algorithm V-A).

4) Upon receiving the shuffle message mj,k, node Pi ∈ Pn executes GradeDelivery process (Algorithm 2) to respectively
respond to leader Pj’s k-th shuffle message mj,k and the last two steps of (k − 1)-th shuffle message mj,k−1:
• If VALIDSHUFFLE(mj,k, Comj,1) = True, then set confidence grade ci = 2 and forward mj,k; otherwise, set

confidence grade ci = 1 and skip to step (B)-02.
• Update the confidence grade ci as the output of GradeDelivery if k > 1.

02 Node Pi ∈ Pn returns to step (B)-01 to complete the first two steps:
1) If k = 1 ∧ ci = 2, then update Comj := (Comj,1 := Comj,2,⊥).
2) If k > 1 ∧ ci = 2, then update (g, h) := (mj,k.g,mj,k.h) and Comj := (Comj,1 := mj,k−1.Comj ,⊥)
3) Return to the third step of (B)-01.

Algorithm 4: The Mobius protocol.
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Fig. 8: The overview of the update-decouple with a transient
lock, which enables a pipelined execution by decoupling the
state delivery (e.g., (g1, h1)) from the commitment delivery
(e.g., the kth commitment Comi included in mi,k). The boxes

and represent the state update and commitment delivery
respectively. The arrow notation represents the relationship
between data, where indicates the data are included in the
same message, and highlights that the delivery of the data
will influence (or be influenced by) the confidence parameter.

TABLE II: The number of slots under different conditions.

Constructions Multiple
leaders

0 leader
1 leader with

leadership
divergence

1 leader
without

divergence+

time
-sensitive*

263 129 118 490

lexicographical
-order*

255 114 0 631

Mobius 0 0 0 1000
* The “time-sensitive” and “lexicographical-order” respectively represent

the messages mechanisms deployed in prior constructions [15], [21].
⁺ The results include that the adversary is elected as the unique leader.

tolerance threshold, the works [15], [21] suffer from the
leader identity divergence in 25.5%-38.2% of 1000 execu-
tions.In stark contrast, when subjected to uniqueness attack
strategies in Section III-C, Mobius benefits from its AU-
Randomization and the integration with the inherent workflow,
effectively mitigating such divergence attack, achieving perfect
uniqueness (i.e., 0% divergence rate). This empirical validation
underscores Mobius’ potential as a significant enhancement for
distributed systems that expect leader uniqueness.
Communication cost. For the equitable comparison, we apply
Mobius in blockchains and evaluate both off-chain and on-
chain costs across the protocols (cf. Table I and Fig. 9).

In terms of off-chain communication cost, each node in the
evaluated protocols, including Mobius and prior construction,
sustains an inherent O(n2) communication overhead, necessi-
tated by the broadcast of n-element nodes list. For n = 210,
this translates to 126MB of off-chain data transmission.

As for on-chain cost, our analysis focuses on two phases,
i.e., the election phase and registration phase. During the
election phase, our protocol inherently ensures an O(n) on-
chain communication complexity by posting a node list as
a leadership proof, which is in line with prior shuffle-based
schemes [15], [21]. In the registration phase, assuming nr

registrations occur between two elections, we measure the
communication overheads that is induced by the continuous
registrations across different system scales. Introducing a
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Fig. 9: On-chain communication cost in the registration phase.

Fig. 10: Comparison with MPC-based schemes.

novel shuffle mechanism, Mobius reduces the communication
complexity from O(n2) to O(n) by eliminating historical
data storage requirements. Furthermore, when comparing with
prior shuffle-based schemes, the systematic evaluations across
varying registration request scales (nr) and system sizes (n)
further demonstrate Mobius’ superior efficiency (cf. Fig. 9).
Specifically, for an initial system (n = 0), the communication
costs of Mobius decrease by 81.4%, 90.4%, 96% and 98%
when nr = 10, 20, 50, and 100 respectively. With nr = 10
and varying n (n = 0, 20, 50, 100), the on-chain costs are
reduced by 81.4%, 88.1%, 89.1% and 89.6% respectively.
These results further indicate that our protocol is more efficient
and lightweight than prior protocols, making it better suited
for deployment as a functional module in a real-world system.

We also compare the communication cost of the shuffle-
based scheme with the MPC-based scheme [20] (cf. Fig. 10).
In the MPC approach, the node designated as leader must com-
plete O(n) MPC operations, whereas Mobius only requires it
to send at most O(n2) messages. To support external public
verifiability, the MPC scheme needs to store intermediate
states generated during the protocol on-chain, while Mobius
only needs to maintain a single list. Our measurements further
show that the shuffle-based scheme reduces on-chain overhead
by approximately 10% compared to the MPC-based scheme.
Additionally, Table I presents a comparative summary of the
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advantages of Mobius relative to the MPC-based scheme.

VII. DISCUSSION AND FUTURE WORK
We identify a new form of attack on SSLE that allows a

malicious leader to propose multiple publicly verifiable states,
thereby violating fundamental security properties including
safety and liveness. To mitigate this threat, we introduce an
approximately unique randomization mechanism and present
Mobius, a universal SSLE protocol that maintains security
without imposing additional trust assumptions.

An interesting direction for future work is to explore the
potential risks inherent in the leader election process and
their impact on the underlying protocols. We also believe that
designing a leader election protocol with enhanced security
and resilience against more complex adversarial models is
another worthwhile direction. Additionally, the proposed ran-
domization technique can be applied to improve other privacy-
preserving protocols.
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APPENDIX A
RELATED WORK

SSLE. Single Secret Leader Election (SSLE) is originated
from Protocol Labs’ foundational research [40], which prelim-

inarily outlined a function encryption-based construction [41],
[42] to remedy the deficiencies inherent in existing secret
leader election schemes. Building upon this prior work, Boneh
et al. [15] further formalize the notion of SSLE.

Current SSLE constructions can be classified into four
main approaches: indistinguishability obfuscation (iO) based
schemes [43], [44], threshold mechanisms [45], shuffling tech-
niques [46], and secure multi-party computation (MPC) [20].
Among these constructions, iO-based construction [15]
demonstrates superior theoretical efficiency, achieving optimal
performance in latency, communication cost, and on-chain
overhead. However, practical limitations of iO have restricted
the widespread adoption of these schemes. For achieving
optimal on-chain efficiency, Backes et al. [20] propose an
MPC-based framework. This construction employs a binary-
search-like method, which randomly eliminates half of the
parties in each iteration and eventually gets exactly one leader.
Unfortunately, this approach results in a latency of O(logn),
thereby undermining its practical applicability. For threshold-
based construction, Boneh et al. [15] propose a scheme
utilizing threshold fully homomorphic encryption (TFHE).
While more practical than the constructions of iO and MPC,
their scheme still introduces complexity due to homomorphic
operations and requires a setup phase to redistribute keys
after each election. To improve efficiency, Catalano et al. [19]
propose a novel SSLE scheme based on a specialized function
encryption scheme, Public Key Encryption with Keyword
Search (PEKS) [47]. This approach achieves TFHE-like func-
tionality without complex circuit operations. Moreover, by
moving threshold decryption to off-chain processes, the work
significantly reduces on-chain overhead, making the threshold-
based SSLE protocol more efficient.

The shuffle-based approach is deemed the most practical
among these constructions. In [15], parties are recorded in a
list of commitments, which are re-randomized in each round,
and a random beacon selects the leader. Unlike other con-
structions, shuffle-based SSLE protocols rely only on a series
of fundamental primitives, including shuffle, commitment and
random beacon, which makes them simpler to implement.
Moreover, this method requires no reconfiguration when the
unregistered node requests to participate in the election, fur-
ther improving efficiency and practicality. Building on [15],
Catalano et al. [21] propose an enhanced shuffle-based method
that reuses the same group element during registration, reduc-
ing communication costs by half. They further introduce an
optimized scheme where the list is divided into two parts: one
shuffled and the other only re-randomized (without shuffling).
This design preserves forward security even against adaptive
adversaries.
Other Secret Leader Election. Prior to the introduction of the
SSLE protocol, random functions were commonly employed
in distributed protocols to ensure fairness and unpredictability
in the leader election process. Some studies employ pseudo-
random random functions (PRFs) [11] or hash functions [9],
[48] for leader election. Specifically, all parties compute the
function using a shared seed, which ensures fairness and
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unpredictability. Since the seed is public, participants can
independently verify the result and determine the identity and
number of elected leaders. However, this public verifiability
inherently implies that the unpredictability is weaker than what
is provided by verifiable random functions (VRFs).

Another prevalent approach involves the use of VRFs [10],
[49], [50]. In this scenario, each node computes a random
value and a corresponding proof using its private key. Leaders
are selected based on whether their VRF output is the smallest
or falls within a predefined threshold. Crucially, the leader’s
identity remains unknown until they disclose their proof.
While VRFs provide strong fairness and unpredictability, their
probabilistic nature means they are unable to ensure a fixed,
predetermined number of leaders.
Attacks of Multiple Leaders. Most leader-based distributed
protocols rely on the fundamental assumption that each round
has a unique honest leader to maintain security. Violations of
this assumption (i.e., the emergence of multiple leaders in a
single round) can compromise critical protocol properties such
as liveness.

Recent research on secret leader election mechanisms
highlights this vulnerability. Azouvi et al. [51] demonstrate
how multiple leaders in longest-chain Proof-of-Stake (PoS)
protocols facilitate consensus attacks. Their analysis reveals
that, compared to SSLE, these approaches reduce the cost
of private attacks [52]—the most severe threat to longest-
chain protocols—by 25% for equivalent security parameters
(e.g., confirmation latency). This security degradation forces
nodes to increase settlement times, directly impairing pro-
tocol efficiency. The multi-leader scenario also exacerbates
grinding attack vulnerabilities [11], a persistent challenge in
PoS systems. Azouvi’s findings indicate a 10% reduction in
fault tolerance thresholds under these conditions, introducing
a fairness challenge to the system.

APPENDIX B
FORMAL DEFINITIONS OF BUILDING BLOCKS

In this section, we present the formal definitions of the
fundamental building blocks analogous to those in [21], specif-
ically the functionalities of non-interactive zero-knowledge
proof and random beacon.
Non-Interactive Zero-knowledge Proof. We consider an ideal
UC-NIZK for a single prover and a single proof, and provide
a functionality FR

NIZK in Fig. 11.
Random Beacon. We also demonstrate the functionality of
random beacon, which is first introduced in [53] and denoted
as Fn

ct in Fig. 12.

APPENDIX C
CONTINUOUS ATTACK STRATEGY UNDER MULTI-LEADER

PROTOCOL
This section delineates the process of leader election within

Ethereum’s Gasper [22] consensus protocol and demonstrates
how adversarial exploitation of multi-leader scenarios makes
the optimization mechanism inefficient and subverts the secu-
rity properties of it.

Setup.
• Sample a common reference string from distribution
D, crs←$ D.

• Upon receiving (setup,P), output (setup, crs) ↪→ P .
Prove. Upon receiving (prove, sid, x, ω) ←↩ P for the
first time:
• If (x,w) ∈ R, sample proof π, store
(prove, sid, x, ω, π), and broadcast (proof, sid, x, π).

• Otherwise, abort.
Verify. Upon receiving (verify, sid, x, π) ←↩ V:
• If (sid, x, ω, π) has been stored, then return
(verified, sid, x, π).

• Otherwise, abort.

Fig. 11: Ideal functionality FR
NIZK that models NIZK.

Upon receiving (toss, sid) from n − f nodes, sample
x ←$ [n] and broadcast (tossed, sid, x); otherwise,
return (tossed, sid,⊥).

Fig. 12: Ideal functionality Fn
ct that models random beacon.

A. Leader Election in Gasper
The Ethereum consensus layer adopts a shuffle-based frame-

work to elect a single leader (a.k.a., proposer) across execu-
tions. Specifically, building upon the framework, the protocol
executes the coin-tossing and shuffle operations around a
series of random factors. Informally, the detailed process is
as follows.
Randomness generation. Within the Ethereum consensus pro-
tocol, the random value that is utilized to elect the leaders is
generated through an epoch-based aggregation. Specifically, in
each slot, a publicly verifiable random beacon, called RANDAO,
is produced. Then, the proposer for that slot signs this value
and includes it in the proposal as part of the block (i.e.,
randao_reveal). When an epoch ends, all randao_reveal
values from the canonical chain blocks are aggregated via XOR
operations to derive the final epoch random factor.
Integration between randomness and shuffle. Furthermore, the
Ethereum consensus protocol employs the above epoch-based
random factors to construct a leader election mechanism by
shuffling and coin-tossing. Upon getting the random value at
the end of epoch e, the obtained randomness serves as the
entropy source for the committee and leader (a.k.a., proposer)
distribution in epoch e + 2.

Specifically, we take the epoch e as an example to illustrate
the election process (cf. Fig. 13). When transitioning into
epoch e, the parties will shuffle the participant list by the
random value re−2 generated at the end of epoch e − 2. After
obtaining the refreshed list, the parties can deterministically
select proposers by tossing a coin with re−2 and a certain
slot index θ (in epoch e) as inputs at the start of epoch e.
Consequently, the output of the process identifies a designated
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leader that is responsible for the block proposal in slot θ.

… …

epoch 𝑒epoch 𝑒 − 1epoch 𝑒 − 2

randao_reveal! randao_reveal"⨂ ⨂…

𝑟!"# 𝑟!"$

Coin tossing

slot 𝜃
𝐿

propose

Fig. 13: An example of the election process in Ethereum.

B. Detailed Attack Strategy
Following the attack strategy presented in Section III, we

further apply the cross-epoch withholding strategy [17] to the
aforementioned strategy and propagate the chain split into sub-
sequent epochs, thereby compromising the liveness property of
the protocol. Similarly, we assume that n validators divided
into committees across C slots per epoch, where W := n/C
validators are eligible to vote in a slot with 2f + 1 being
honest and f controlled by the adversary among them. For
clarity, we suppose there are two competing chains as depicted
in Fig. 2(a), which are denoted as ch and ch′. Informally,
in this attack scenario, the adversary in slot θ executes two
complementary adversarial strategies by selective message
withholding to manipulate honest parties’ consensus decisions:
intra-epoch deception that manipulates honest parties in the
subsequent slot θ + 1, and cross-epoch disruption that disturbs
the honest parties in slot s + C (where each epoch consists
of C slots). Assuming the first epoch and slot following the
network reaching GST are respectively epoch 0 and slot 0, the
attack can proceed as follows (cf. Fig. 14 and 15):
• Attack Preparation. Before epoch 0, the adversary prepares

to initiate the state uniqueness attack aimed at undermining
the boosting mechanism. Specifically, the adversary lever-
ages the network propagation delays to maintain a weight
equilibrium between ch and ch′, which leads to that left
chain ch with a random value r−2 accumulates a vote weight
of w(ch) = f whereas the right chain ch′ disseminates a
distinct random value r−2′ with a weight of w(ch′) = f + 1.
In this scenario, honest nodes that are misguided to support
different chains will adopt distinct random values for leader
selection. For instance, honest nodes P supporting ch hold a
random value r−2 on ch, while honest nodes P′ maintaining
ch′ retain a distinct random value r−2′ on ch′.

• Attack Activation (Epoch 0). Suppose that two leaders Lθ

and Lθ′ at slot θ are both valid but determined by different
random values. In this case, the adversary A0 can activate
the state uniqueness attack and Aθ can further recover the
balance attack as follows:
- Slot 0: Before the proposing process, A−1 sends 2 votes

for ch to L0, while withholding them from L0′ . As a
result, L0 and L0′ will respectively extend ch and ch′ with
blocks B0 and B0′ , resulting in the condition of w(ch) =
w(ch′) + 1, where w(ch) = f + 2 + 40%W and w(ch′) =
f + 1 + 40%W . Before the voting process, A−1 releases

2 votes of ch′ to P0′ , where |P0′ | = f . Then, during the
voting process, P0 (|P0 | = f +1) will vote for B0, whereas
P0′ will vote for B0′ , as they recognize ch and ch′ as their
respective main chain. At the end of slot 0, it follows that
w(ch) = w(ch′) = 2f + 3.

- Slot 1: Before the proposing process, the adversary A0
sends 1 vote for B0 to L1 and 1 vote for B0′ to L1′ , which
induces L1 to extend ch with B1, while simultaneously
prompting L1′ to extend ch′ with B0′ . Furthermore, both
chains satisfy that w(ch) = w(ch′) = 2f+4+40%W . Prior
to the voting process, A0 releases 1 vote for B0 to P1, and
1 vote for B0′ to P1′ , where |P1 | = f and |P1′ | = f + 1,
to have honest nodes cast their votes for distinct choices.
At the end of slot 1, it holds that w(ch′) = w(ch) + 1,
thereby precisely satisfying the initial condition set forth
in slot 0.

- Slot θ (2 < θ < C): Repeating the executions of slot 0 and
slot 1 in sequence, it always holds that w(ch) = w(ch′)
or w(ch) +1 = w(ch′) at the end of each slot, with nearly
33.3%W for each chain.

• Semi-Steady State (Epoch 1). During epoch 1, the adver-
sary A in epoch 0 releases more withheld votes, which is
from epoch 0 and the adversary-controlled parties has not
released these vote in epoch 0, to pursue two objectives:
(1) first, the strategy keeps splitting the honest parties into
two groups, one of which sees ch as leading and voting
for it, and all the adversary needs to do is release withheld
votes so as to reaffirm the honest parties in their illusion that
whatever chain they previously voted on in epoch 0 happens
to be still leading; (2) secondly, the enforces the leaders that
are respectively elected by r−1 and r−1′ sees ch and ch′ as
leading and extending it respectively. As a result, at the end
of epoch 1, there are still two chains with about 33.3%n
votes and thus neither get finalized.

• Steady State (Epoch e > 1). During epoch e, the attack
reaches a steady state, where the adversary is required to
repeat its actions in each epoch. At this time, the adversary
selectively releases withheld votes from epoch e − 1 to
achieve the same objectives in epoch 1. At the end of epoch
e, there are still two chains with about 33.3%n, which
continues indefinitely. Thus, neither chain can reach the
finalization condition, leading to a breakdown of the liveness
property.

The above process can continue indefinitely, leading to neither
of the completing chains reaching the finalization condition.
As a result, no blocks can be finalized and the liveness property
of the protocol is broken down.

APPENDIX D
CHALLENGES OF EFFICIENCY OPTIMIZATION

While prior works [1], [54] have demonstrated protocol
acceleration through mature parallelization techniques via
stacking different instances, addressing the inherent four-round
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Fig. 14: The attack workflow caused by multiple leaders, wherein ch and ch′ represent two competing chains that both are
prevented from finalization. Additionally, the blocks in ch and ch′ are proposed by leader Lθ and Lθ′ and supported by two
equal-sized node groups Pθ and Pθ′ , where θ represents the corresponding slot number.

Fig. 15: The overview of the cross-epoch attack with multiple
leaders.

latency in our context presents particular technical hurdles.
These obstacles emerge primarily because⁷:
- Sequential-state dependencies. The “Elect-Randomize” de-

sign pattern of the protocol imposes a fundamental constraint
that requires strictly sequential randomization of state, par-
ticularly for the node list h. The constraint emerges from
security considerations: the adversary could exploit reused
states by rejecting randomization attempts, and electing by
a reused state can potentially leak the privacy about honest
nodes. Thus, the current parallelization technique by stacking
instance is not suitable for our protocol.

⁷We also provide a detailed explanation of the challenges in the full
version [39].

- Non-composable confidence parameter. Furthermore, the
updates of states and commitments also cannot be simply
combined together to achieve paralleled. This constraint
stems from that, the interleaved protocol flow leads to that
message delivery processes from different nodes all rely on
the confidence parameter. Consequently, an adversary can
prevent state update from honest nodes through its own
faulty behavior, irreversibly compromising the privacy of
the honest.

Therefore, these interdependent constraints demand a novel
construction that carefully handles parallel execution opportu-
nities with strict security requirements.
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