EXIA: Trusted Transitions for Enclaves via
External-Input Attestation

Zhen Huang*, Yidi Kao®, Sanchuan Chen?, Guoxing Chen™, Yan Meng*, Haojin Zhu*
*Shanghai Jiao Tong University, {xmhuangzhen, guoxingchen, yan_meng, zhu-hj}@sjtu.edu.cn
TAuburn University, {yzk0078, schen}@auburn.edu

Abstract—Trusted Execution Environment (TEE) has been
adopted to secure computation outsourced to untrusted clouds,
and the associated remote attestation mechanism enables the
user to verify the integrity of the outsourced computation at
launch time. However, memory corruption attacks break TEE’s
security guarantees without being detected after launch-time
attestation. While control-flow attestation (CFA) schemes aim
to detect runtime compromises, most existing CFA schemes
lack concrete verification methods and can be bypassed by
data-only attacks. In this paper, we propose the concept of
External-Input Attestation to attest all writes to TEE-protected
applications, based on the observation that memory corruption
attacks typically start with unintended writes. This approach
ensures a trusted enclave state by verifying all writes match
expectations, transforming security issues, such as control-flow
hijacking, into reliability issues, such as a software crash due to
unexpected input. For efficient reference measurement derivation
and verification, the current version of External-Input Attestation
is limited to enclaved applications whose inputs are known to the
verifier. This design is validated by implementing and evaluating
prototypes on AMD SEV-SNP and Penglai, where security and
performance evaluations show a minimal performance overhead
in case studies, including secure model training, model inference,
database workloads, and key management.

I. INTRODUCTION

Outsourcing computation to the cloud is becoming increas-
ingly prevalent as the need for more intense computation,
such as artificial intelligence (AI) model inference, grows
rapidly [91], [75]. Meanwhile, to alleviate concerns about
the confidentiality and integrity of outsourced computation
to honest-but-curious or even potentially malicious clouds, a
viable solution is to adopt the Trusted Execution Environ-
ment (TEE), which protects sensitive code and data within
a shielded environment, usually called an enclave, against
untrusted privileged software such as the operating system
(OS), hypervisor, or even rogue administrator.

To prove that the outsourced computation is indeed pro-
tected by an enclave running on a cloud server, a mechanism

Guoxing Chen is the corresponding author

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.242421
www.ndss-symposium.org

called remote attestation is usually introduced along with TEE.
Particularly, remote attestation uses a cryptographically signed
measurement (i.e., the cryptographic hash) of the initial code
and data loaded into an enclave as evidence of the integrity of
the outsourced computation at launch time.

However, such launch-time attestation alone is inadequate
to ensure the security of the whole process of the outsourced
computation, as demonstrated by various memory corruption
attacks, e.g., control-flow hijacking attacks [77], [23] and data-
only attacks [30], [50], that break the integrity and confi-
dentiality guarantees. To mitigate memory corruption attacks
during runtime, various control-flow attestation (CFA) [10],
[39] and data-flow attestation (DFA) [37], [94], [74] schemes
have been proposed to collect information about control flows
and data flows during runtime and assume a remote verifier
could analyze the collected information to detect attacks.
These two approaches have some limitations. Specifically,
CFA frameworks require multiple program execution traces
to learn the correct control-flow patterns, and the granularity
of this data collection presents a trade-off between verification
accuracy and storage overhead. Meanwhile, DFA frameworks
typically need specialized program analysis tools or modifica-
tions to the program itself, and their results are often difficult
to verify independently.

As pointed out by Ammar et al. [19], all control-flow
hijacking and data-only attacks start with an unintended write,
i.e., the unexpected (to the user) content provided by the host
to enter the enclave. While existing CFA/DFA schemes focus
on whether the control/data flow transits to unexpected states,
little attention has been paid to detecting potential attacks
by checking at an earlier stage whether the external content
accessed by the enclave has been manipulated.

In this paper, we propose the concept of External-Input
Attestation to attest all writes to the enclaved application
from its external world for attack detection. Particularly, a
measurement dubbed External-Input Measurement (EIM) is
maintained: each time the host passes an input to the enclaved
application, its content will be updated to the EIM. The order
of the inputs will also be reflected by the EIM to detect
memory corruption attacks due to the manipulated order of
inputs [89].

To illustrate the security guarantees ensured by External-
Input Attestation, we draw an analogy to launch-time at-



testation in the trusted boot. In the trusted boot, launch-
time attestation ensures that the enclave begins in a known,
expected state by verifying a measurement of its initial code
and data. Similarly, External-Input Attestation aims to ensure
that all state transitions triggered by external inputs follow
an expected path. By validating the EIM against a reference,
we could assert that the enclave’s execution remains within its
intended behavior. While this does not preclude bugs triggered
by legitimate inputs, such issues are treated as reliability
concerns, rather than security violations. In this paper, we
focus on enabling such trusted state transitions throughout
execution, with the following goal:

With External-Input Attestation, security issues (e.g.,
adversarial control-flow hijacking) are reduced to reli-
ability issues (e.g., software crashes due to unexpected
user inputs).

The challenges in realizing the security guarantees of
External-Input Attestation are two-fold. The first is how to
measure all writes to the enclaved application from its external
world, including inputs via the shared buffer, interrupts, and
exceptions, to capture potential attacks such as Time-Of-
Check-To-Time-Of-Use (TOCTOU) and replay, and secure
the evidence (i.e., measurements reflecting unexpected writes)
even after the enclaved application is compromised.

The second challenge lies in how to verify whether a
received EIM is as expected efficiently. Unlike launch-time at-
testation, which involves determining a reference measurement
in advance to verify the initial state of the enclaved application,
EIM relies on all writes in execution time and may vary across
individual executions.

To address the above challenges, we propose EXIA, a frame-
work to realize External-Input Attestation. In particular, (1)
EXIA introduces a privileged attesting environment to ensure
all writes to the enclaved application are properly measured
and secure the integrity of the EIM even when the enclaved
application is compromised due to memory corruption attacks.
(2) For efficient reference EIM derivation, the current version
of EXIA focuses on enclaved applications whose inputs are
known to the verifier, including applications using publicly
known data (e.g., publicly released machine learning training
datasets), and single-user applications where the input is
private to individual users (and multi-user applications where
all inputs within the same applications are shared among
participating users) who are also the verifier (Sec. IV).

To demonstrate the generality of EXIA, two prototype im-
plementations based on AMD SEV and Penglai, respectively,
are provided. Our analysis and experimental validation confirm
that EXTA could defend against attacks (via 2 PoC attacks)
originating from unintended writes caused by a compromised
operating system, CPU, or host program. Furthermore, real-
world case studies demonstrate minimal performance impact,
including secure ML training and inference, database work-
loads, and key management. For CNN models, the overhead

of EXIA is 0.80—5.89% (LeNet-5) and 0.44—4.72% (AlexNet)
for training, and 1.15 — 18.30% (LeNet-5) and 0.53 — 2.58%
(AlexNet) for inference, depending on input batch sizes.
For transformer models, EXIA introduces 0.47% overhead
to the training of a 124M-parameter GPT-2 model. Beyond
machine learning, EXIA imposes a 0.29 — 1.38% overhead
on database workloads using common SQL commands with
SQLite3 library. In key management, EXIA with MBedTLS
library introduces a 0.06 — 1.94% overhead for key operations
and 2.13 — 2.14% overhead for message signing and signature
verification tasks.

In sum, the contributions of this paper are as follows.
e It proposes a novel concept of External-Input Attestation

and a security property of trusted transitions for detecting

memory corruption attacks.

e [t introduces EXIA, a framework that can be adapted to
various TEE existing implementations to enable External-
Input Attestation.

e It implements and evaluates two prototypes' of EXIA based
on AMD SEV and Penglai to demonstrate the generality,
effectiveness, and performance.

II. BACKGROUND
A. Trusted Execution Environment

Trusted Execution Environment (TEE) constitutes a secure
enclave within a CPU that is designed to safeguard the
confidentiality and integrity of data and code at the hard-
ware level, thereby providing a defense against a malicious
operating system. The TEE protects code and data by remote
attestation, supported by a hardware-based Root of Trust
(RoT) embedded directly within the chip. Various implemen-
tations of TEEs have emerged over the years, including Intel
Software Guard Extensions (SGX) [53] and Trust Domain
Extensions (TDX) [55], AMD Secure Encrypted Virtualization
(SEV) [58], ARM TrustZone [13] and Confidential Com-
pute Architecture (CCA) [68], as well as Keystone [65] and
Penglai [42].

1) Remote Attestation: Remote attestation is a process that
confirms the integrity and authenticity of a TEE platform’s
hardware, associated driver, firmware, and microcode. Before
moving forward, users are provided with a signed report from
the vendor that certifies the TEE’s validity, authenticity, and
proper configuration.

2) Measurements: The measurement of the enclave, typ-
ically represented by the cryptographic hash value of its
contents, serves as a method for identifying the enclave.
Successful verification of enclaves generally indicates that the
measurements of the enclave are as expected.

B. AMD SEV-SNP

AMD SEV-SNP (Secure Encrypted Virtualization - Secure
Nested Paging), the third generation of SEV, enhances its
predecessors (SEV and SEV-ES) by adding integrity protection
to the existing memory and register encryption that safeguards

IPrototype Implementations: https:/github.com/xmhuangzhen/Exia



data confidentiality against hypervisor vulnerabilities. SEV-
SNP counters page mapping manipulation attacks through
a Reverse Map Table (RMP), which tracks and validates
mappings between system physical addresses and guest phys-
ical addresses, enforcing strict access checks for read/write
operations on private memory to block unauthorized access
and ensure memory integrity.

1) Virtual Machine Privilege Level (VMPL): AMD SEV-
SNP introduces the VMPL feature to enable at a higher
privilege level than the guest OS, isolating critical code
modules. VMPL has four hierarchical privilege levels (VMPLO
to VMPL3, with VMPLO as the highest). Memory permissions
(read/write/execute) in VMPLs are managed hierarchically via
the RMP table, where higher VMPLs control lower ones. The
Secure VM Service Module (SVSM) [15] at VMPLO uses
the RMPADJUST command to adjust memory permissions,
enforcing strict access policies.

2) CVM-Hypervisor Communication: Communication be-
tween a CVM and the hypervisor is handled by the Guest-
Hypervisor Communication Buffer (GHCB) [17]. For the
CVM with the VMPL feature, each privilege level can commu-
nicate directly with the hypervisor using the GHCB protocol.
For example, to switch VMPLs, the code in the current VMPL
sends a specific request via the GHCB, which then directs the
hypervisor to transition the CVM to the new VMPL.

3) Attestation Process: A SEV-SNP VM starts with an
unencrypted initial image (e.g., boot code without secrets).
During the launch, the hypervisor directs AMD-SP to install
guest pages, which measure both content and metadata into
a cryptographic launch digest, ensuring memory layout and
content integrity. After the launch, the guest owner can provide
a signed identity block containing VM identification and the
expected digest, which AMD-SP verifies against the VM’s
actual digest and includes in attestation reports to validate the
trusted configuration [59].

C. Penglai

Penglai is a TEE based on the RISC-V Instruction Set
Architecture. Leveraging the RISC-V Trap Virtual Memory
(TVM) capability, Penglai-TVM deploys the guard page table
mechanism, facilitating page-level isolation. This isolation
is critical to maintaining a secure separation between the
untrusted host environment and the trusted enclave.

1) Host-Enclave Communication: The Relay Page is a
communication mechanism between an enclave and a host in
Penglai, where a secure monitor guarantees that a memory
page can be mapped exclusively to one owner at a time. This
approach mitigates security vulnerabilities, such as TOCTOU
attacks in host-to-enclave interactions, while enabling zero-
copy communication.

2) Measurements: Penglai utilizes the ShangMi 3
(SM3) [1] cryptographic hash function for calculating enclave
measurements. SM3 is comparable to SHA-256 in structure
and security [111]. The enclave measurement is produced by
a secure monitor that scans the enclave memory from the
lowest to the highest address.

3) Attestation Process: The host initiates the attestation
request, which is then sent to the operating system and
subsequently to the secure monitor to perform the attestation
service. The attestation service accesses the secure memory
manager, which employs the guarded page table to traverse the
memory space and obtain a measurement of the entire memory
content. After calculating the measurement, the attestation ser-
vice generates an unforgeable signature of the measurement,
creates a report, and then sends the report back to the enclave
or host.

III. OVERVIEW
A. Problem Formalization

In this paper, we aim to address the problem of attesting the
integrity of execution traces of sensitive data processing pro-
tected by TEE, beyond the attestation of only the initial state.
Though VM-based TEEs enable running legacy applications
without modifications, including a sophisticated guest OS in
the Trusted Computing Base (TCB) poses significant security
concerns [12], [102].

Hence, in this paper, we focus on process-based TEEs
and VM-based TEEs with compartmentalization solutions to
exclude the guest OS from the TCB [12], [102]. The com-
partmentalization secures the enclaved application even when
the guest OS running inside the CVM is compromised. The
justification includes that commodity kernels make the TCB
particularly large [12] and that a sophisticated OS raises the
possibility of dynamically creating and executing arbitrary
code [102].

Since the untrusted privileged software cannot directly write
data to the enclave memory nor modify the enclave code due
to the integrity protection of TEE, an enclaved application can
be modeled as a state machine, and all “writes” to it from its
external world can be modeled as inputs to the state machine,
as follows.

Definition 1. An enclaved application is defined as a state
machine Encl = (%, S, so, F, ®, A, €) where
e X: Input alphabet (a finite non-empty set of symbols);
e S: Set of enclave states;

e sg € S: Initial enclave state;

o ' C S: Set of final enclave states;

o ® € F': Abnormally terminated enclave state;

o A: State-transition function A : S x (XU {e}) — S;

e c: A symbol indicating spontaneous transitions that occur
without any inputs.

Note that the input alphabet > models all potential inputs
to the enclave by the untrusted privileged software, including
both (1) user inputs presented to the enclave by the untrusted
privileged software on behalf of the remote user, and (2)
interrupt events generated by the privileged software and
underlying hardware that could potentially occur when the
enclaved application is in any state.

Next, we define execution traces of the above state machine.



Definition 2. An execution trace Tr of a state machine Encl

is a sequence Tr = (so,€1,81,€2,82,-..,€n, Syp) wWhere

e sg. Initial enclave state;

e ¢; € (X U{e}): An event (either an input o € ¥ or €) that
causes the i-th transition.

e s;: State after the i-th transition;

e s, € F: A final enclave state.

The i-th transition can be represented as a triple (s;_1, €;, 8;).

The subtrace T'r—. of non-e transitions within trace T'r is
defined as

Troe ={(sj-1,¢j,85) lej # €, (sj-1,¢e5,5;) € Tr}

Since spontaneous transitions occur without inputs, we now
focus on modeling the integrity of the non-e subtrace:

Definition 3. Given a non-¢ subtrace Tr_. =
{(Sj—l7 €5, Sj) |€j 7é €, (Sj_l, €j, Sj) S T’f’}, its EIM is deﬁned
as the output of a measuring (hashing) function Mgy
taking the sequence of inputs {e;| (sj—1,€j,5;) € Tr-c}.

While the introduction of EIM has the potential for verifying
whether all inputs received by the enclaved application are
as expected (i.e., not manipulated by the untrusted privileged
software), directly asking the enclaved application to measure
all inputs is not enough to guarantee the integrity of the
execution traces.

Firstly, the design should ensure the integrity of EIM
whenever the enclave is compromised during runtime. Since
this paper considers an enclaved application that could poten-
tially be compromised by manipulated inputs, an adversary
controlling such an application might try to directly modify
the value of EIM or prepare benign inputs to be updated to
EIM.

Secondly, the design should enable the user (with knowl-
edge of inputs sent to the enclaved application) to reason
about the integrity of the execution traces from a received EIM
without knowledge of potential interrupt events that occurred
during runtime.

These challenges have motivated our research:

Can we design a framework for attesting the integrity
of execution traces with only user-side knowledge?

B. Threat Model

In this paper, we aim to attest the execution traces of en-
claved applications that are potentially vulnerable to memory
corruption attacks that break software integrity. As shown
in Fig. 1, existing memory corruption attacks against TEE
can be divided into three categories: (1) code-injection [104],
[69], (2) control-flow hijacking [7], [20], [66], [107], [6],
[22], [85], [52], [99], [95], [9], [8], [80], [109], [108], and
(3) data-only attacks [107], [6], [2], [56], [22], [52], [99],
[95], [9], [80], [108]. Note that these attacks all start from
unintended writes, which are different from what the user
expects. Information leaks caused by unintended reads are
considered orthogonal [19].

Memory Out-of-bounds Pointer Dangling Pointer

Safety | Unintended Modification (Integrity) |
T
¥
| Inject Malicious Code ” Inject Malicious Controlled Address ” Inject Malicious Data |
i 2 v
Control | Indirect Jump/Call ” Return Instruction | | Use Corrupted Data | Data
Flow Flow

Code-injection
Attacks
[69,104]

Control-flow Hijacking Attacks
[6.7,8,9,20,22,52,66,80,85,95,99,
107,108,109]

Data-only Attacks
[2,6,9,22,52,56,80,95,99,
107,108]

Fig. 1: Memory corruption-based attacks considered in this
paper. Adapted from Ammar et al. [19].

Following the standard TEE threat model, we consider
an adversary who has complete control over the hypervisor,
operating system, and all system software outside the en-
clave, allowing them to deploy and execute any malicious
applications on the host platform. The goal of the adversary
is to launch memory corruption-based attacks on enclaved
applications without being detected by EXIA.

On the other side, we assume that the CPU processor is
correctly implemented, particularly in preventing unauthorized
access to the enclave from external sources such as other
enclaves or the operating system, enforcing protection mech-
anisms, and executing all required steps for the launch-time
remote attestation protocol. Transient-execution attacks (such
as Meltdown [70] and Spectre [61]) that leverage hardware
vulnerabilities are out of scope. Interrupt events caused by the
CPU are authentic and unforgeable, i.e., the kernel code filters
fake interrupts [82], [83]. We also assume the components of
EXIA are trusted (i.e., within the TCB).

Further, micro-architectural side-channel attacks [101], [86],
[24], [48], [45], [67], [97], [105], [88], [96], [28], [98], [84],
[26], denial-of-service attacks [44], and physical attacks [64],
[72], [43] are also considered orthogonal and can be addressed
separately by existing solutions [81], [11], [35], [38], [31].

IV. DESIGN

EXIA operates on the query-response paradigm. The user
communicates queries and responses with the platform (in-
cluding the privileged software and the host program) using
a traditional secure channel such as TLS/SSL. Queries are
forwarded to the enclaved application for processing, and
responses along with EIM are returned to the user afterwards.

To ensure that EIM could capture the integrity of the
execution traces, EXIA incorporates three components: (1)
Privileged Attesting Environment for protecting EIM from
potentially compromised enclaved application (Sec. IV-A); (2)
Trusted Input Gateway for capturing all writes to the enclaved
application (Sec. IV-B); (3) Trusted Interrupt Handling for
preventing privileged attacks via manipulating interrupts.

The workflow of EXIA is illustrated in Fig. 2. Firstly, the
attesting environment at the privileged level initializes itself
and the EIM (Step @®). During query processing, the attesting
environment receives the input, digests a measurement of it,



) Init

3a
| Verification Tool Co(mp)ute EIM Reference Value |

@ Input

(2a) Measure
User

@) Input

/ (3b) Compare

N Arch Protected © Keystone
EIM Recorder

Attesting Environment (1b) Init
(Higher Privilege in Privileged Software)

l (2b) Send TEE Protected

(1a) Setupﬁ Communication Channel E

Enclaved Applications
(Lower Privilege in TEE)

\Z [g] % @2 S\U/D g | (2¢) Check & Receive :l Enclave Execution Code|

Fig. 2: Design overview.

and appends that measurement to the EIM (Step @). The
verification workflow requires the user to then locally derive a
reference EIM from the query they originally sent and compare
it with the EIM received in the system’s response (Step ®).
If the two values do not match, it indicates that the privileged
software received some unintended queries to the enclaved
application, rendering the response untrustworthy.

Application Scope. EXIA is used to verify whether all external
inputs are as expected and applies to two primary scenarios.
(1) For applications where the input is known offline, such
as publicly known training datasets, any user with a specific
ML training task could use EXIA to verify that the consumed
training datasets are as expected, i.e., she can confirm that
the correct and unaltered dataset is being used for their tasks.
(2) For single-user applications where the input is private
to individual users (and multi-user applications where users
within the same applications are willing to share input data),
it is the user’s own interest to verify whether the enclave
processes the data without being affected by malicious input
manipulated by the host. In these cases, the user can derive
a reference EIM online from the private data she sends to
the enclave for each run of the enclaved application, without
needing to restrict the range of data content and size in
advance.

A. Privileged Attesting Environment

An attesting environment needs to maintain and secure the
EIM throughout the execution of the enclaved application.
Particularly, the attesting environment needs to satisfy the
following invariants:

e Inv. 1-1: The attesting environment needs to be isolated
and protected from the enclaved application to avoid being
polluted by a compromised enclaved application.

e Inv. 1-2: The attesting environment needs to measure user
inputs first before passing them to the enclaved application
for processing to avoid handoff attacks.

One straightforward way to meet both of the above in-
variants is to utilize an existing (or introduce a new) more

privileged level for the attesting environment than that of the
enclaved application. Potential options are as follows.

Off-the-shelf Privilege Leveling. For commercialized TEE
implementations with intra-enclave privilege separation, such
as AMD SEV (with SVSM [15]) and Intel TDX (with L1
VMM [55]), the attesting environment can be realized directly
at a higher privileged level than that of the enclaved appli-
cation. The integrity of such a hardware-software co-design
attesting environment can be verified through existing remote
attestation mechanisms. Taking AMD SEV as an example,
the SVSM is designed to be loaded and measured during
the initialization of the guest image. This ensures that the
attesting environment is incorporated into the measurement
of the SVSM binary, enabling the verification of the attesting
environment’s integrity during the launch-time attestation.

Software-based Isolation. For commercialized TEE imple-
mentations without intra-enclave privilege separation, such
as Intel SGX, utilizing software-based isolation techniques,
such as Software Fault Isolation (SFI), could create a more
privileged compartment for the attesting environment within
the same enclave as the enclaved application. SFI is usually
implemented via LLVM instrumentation. The instrumented
enclave results in a new launch-time measurement that can be
used to authenticate the integrity of the attesting environment
during the launch-time attestation.

Architectural Extension. Besides the above two options, for
open-sourced and customizable TEE implementations such
as RISC-V based Penglai, it is also feasible to extend the
trusted hardware/firmware to realize the privileged attesting
environment, which will be included in the TCB of the
underlying platform. Taking the RISC-V architecture as an
example, the TCB is captured by the Security Version Number
(SVN) included in the attestation evidence generated by the
Root-of-Trust for Reporting (RTR) [78]. This SVN serves as
metadata representing the security posture of the TCB and
is designed as a monotonically increasing number that is
incremented whenever relevant security updates or changes
are made to the TCB components.



Depending on the concrete hashing algorithm used for EIM,
the initial hash state is hardcoded in the attesting environment,
designated as the initial value of EIM, i.e., EIMy. Upon launch,
the enclaved application enters an initial state sq.

B. Trusted Input Gateway

Upon the successful launch of the enclaved application,
the EIM is initialized within the attesting environment. This
ensures its integrity remains preserved, even in the event of
an enclaved application compromise. Throughout the enclaved
application lifecycle, the EIM is dynamically updated when-
ever user input is provided, capturing the content of such
interactions.

To ensure that all writes to the enclaved application can be
captured, the following invariants need to be achieved.

e Inv. 2-1: The enclaved application does not access ad-
dresses directly shared with the host program to mitigate

TOCTOU attacks.

e Inv. 2-2: The freshness of measured inputs must be verified
to mitigate replay attacks.

To satisfy Inv. 2-1, the attesting environment could adopt
either dual-page transfer or shared-page permission flipping.
These mechanisms aim to secure the communication between
the host program and the enclaved application, ensuring the
integrity of input data by preventing the host program from
modifying inputs after they have been measured.

Dual-Page Transfer. TEEs, such as AMD SEV VMPL, ensure
that higher privilege levels can access lower privilege level
memory, but not vice versa. To counter TOCTOU attacks, a
dual-page transfer mechanism can be employed for secure host
program to enclaved application communication: the attesting
environment shares pages with the host program to receive
the input data written by the latter, while simultaneously
sharing separate pages (inaccessible and immutable by the
host program) with the enclave to transmit and measure the
host program input securely. To prevent TOCTOU attacks,
the attesting environment sets a freshness flag only after it
has completed measuring the inputs. This ensures that if an
interrupt from the OS or CPU occurs during the measurement
phase, the process will be incomplete and the flag will not be
set. So the absence of the freshness flag indicates that the input
measurement is not finished or recorded, thereby mitigating
the attack.

Shared-Page Permission Flipping. TEEs, such as Penglai,
employ a shared page permission flipping mechanism (called
relay page in Penglai) to communicate user inputs between
the host program and the enclaved application securely. The
process operates as follows: (1) The host program prepares
the user input in a dedicated buffer page, referred to as the
relay page; (2) Upon switching to enclave mode, the platform
creates a page table entry that maps virtual addresses within
the enclave to the relay page, and simultaneously revokes the
page table entry mapping virtual addresses in the host program
to the same page. This ensures that the host program can no
longer modify the content of the relay page. By leveraging

the relay page mechanism, EIM can be efficiently updated
whenever a relay page is added to the enclave. This approach
provides a secure and streamlined method for transferring
inputs between the TEE and the host program. To avoid
TOCTOU attacks, the attesting environment must ensure that
the input data measurement is performed after the permission
switch for the shared page has been correctly executed and
before the enclaved application starts to process it, so that the
measurement reflects the corresponding input.

To satisfy Inv. 2-2, a freshness flag can be introduced to
indicate the recency of inputs and detect potential replays.

Freshness Verification. To counteract host program replay
attacks where the inputs are reused to bypass the attesting
environment’s measurement (for scenarios when the host pro-
gram could invoke the enclaved application directly without
notifying the attesting environment), a freshness flag within
the communication buffer can be introduced to signify input
recency. Specifically, upon receiving an input, the attesting
environment measures it and then sets this freshness flag in the
buffer destined for the enclaved application. Before utilizing
any input, the enclaved application needs first to verify that
the freshness flag is set. After receiving the inputs, the flag is
cleared. When the enclaved application receives user input e;,
it transitions from its current state s; to the next state s; 1 only
if the input passes a freshness flag verification. Otherwise, if
the verification fails, the application will enter an abnormal
state &.

C. Trusted Interrupt Handling

The execution of outsourced computations may be inter-
rupted by various events from time to time. These interrupts
can be categorized as external interrupts, software interrupts,
and exceptions. Detailed categorization is in Appendix A.

Event Transparency. To analyze how different interrupt
events affect the execution of outsourced computations within
an enclaved application, we categorize these events based
on whether their handlers are transparent to the enclaved
application or not:

e Transparent Exit Events (TEx): These are interrupt events
that the OS can fully manage without modifying the
execution context of the enclaved application, including
(1) External interrupts; (2) Software interrupts that do not
modify the control flow and data flow of the enclaved
application; (3) Faults without a customized handler within
the enclaved application, such as page faults that the
corresponding OS can resolve entirely; (4) Faults that the
OS/CPU cannot inject; (5) Traps.

e Non-Transparent Exit Events (NTEx): These are interrupt
events that require customized handling within the enclaved
application that can be affected by the host program,
including (1) Software interrupts that require host program
inputs, i.e., system calls; (2) Faults that have customized
handlers within the enclaved application and require host
program inputs.



Since aborts typically lead to process termination and can
cause denial-of-service attacks, which are considered orthog-
onal to the scope of this paper, we exclude them from the
following discussion. The detailed architecture-defined inter-
rupts are discussed in Appendix B.

In contrast, NTEx such as syscall is handled through a
controlled process: the enclaved application sets the required
syscall number and transfers control to the guest OS. After
processing the request, the guest OS first provides the syscall
details to the attesting environment for security measurement
and then signals the enclaved application to resume its program
execution. To securely handle NTEx, EXIA needs to satisfy the
following invariants:

e Inv. 3-1: For NTEx without host program inputs, the
authenticity of the inputs needs to be checked within the
customized handler.

e Inv. 3-2: For NTEx with host program inputs, the host
program inputs need to be synchronized with the user and
integrated into the request-response protocols.

To handle an NTEx, an enclaved application can utilize a
custom handler if the underlying architecture, such as Intel
SGX/TDX AEX feature [54], provides support for it. Upon
encountering an NTEx interrupt, this handler empowers the
enclaved application to decide its course of action. The cus-
tomized handler can either choose to terminate its execution or
signal to the host program that it should continue, potentially
after receiving further input, thus maintaining control over how
it responds to such events.

Unexpected Abnormal

System Behaviors .
State s, % State”s, " Expected System Calls
P State s;,

Fig. 3: Enclaved application state transition via trusted inter-
rupt handling.

As shown in Fig. 3, an enclaved application in state s;
responds to an interrupt with one of four potential state
changes. If the interrupt is a TEx, representing the transition
(si,€,5;), the application returns to its original state. For a
customized interrupt or an expected system call, the enclaved
application state advances to s;y;. However, an unexpected
interrupt forces the enclaved application into an abnormal
terminal state ®. The detailed system calls are discussed in
Appendix C.

D. EIM Verification

After properly selecting the input transfer methods and
checking the communication buffer, the EIM calculation and
verification processes are as follows.

EIM Calculation Process. The calculation of the EIM needs
to be performed within the attesting environment. This process
begins with an initial value EIM,. Upon receiving the i-th
input from the user, the attesting environment computes a

measurement of that input by hashing it. Then, it calculates
the current EIM state as

EIMz = H(EIMifl, {62| (Si,h €, Si) S TT_\E, })

The EIM effectively chains each new input measurement to the
previous EIM state through iterative hashing. This mechanism
records the EIM in the form of a cryptographic hash chain.
When the execution phase concludes after processing a total
of n external inputs, the resulting final EIM value is EIM,,.

EIM Verification Process. The verification process for EIM
operates as follows: when a user sends input to the enclave,
the verification SDK automatically records this input and
calculates an EIM value using the same process as the attesting
environment. Upon completion of execution, the SDK gener-
ates an EIM reference value designed to compare it against
the value produced by the attesting environment. Significantly,
this verification SDK is not restricted to placement solely at
the user’s sending point; it can be deployed at any location
capable of recording or receiving the relevant input. Regardless
of where the reference value is generated, the user can compare
it against the value provided by the attesting environment.

E. Security Analysis

To analyze the security of EXIA, one lemma followed by a
theorem is proved as follows. Note that the analysis excludes
reliability issues (which are not the focus of this paper) and
focuses on security issues. That is, we assume that the benign
external inputs to the enclaved application will not violate
EXIA’s design invariants while the adversary intentionally
tries to violate them to launch memory-corruption attacks, by
providing malicious inputs.

Lemma 1. The first malicious input causing violations of
EXIA’s design invariants will be captured by EIM.

Proof. Since the design of EIM in EXIA follows a measure-
before-process pattern, the first malicious input will be updated
into EIM before it takes effect to violate the design invariants
and compromise the enclaved application. Particularly, directly
compromising Inv. 1-1 or Inv. 1-2 is considered out of scope,
since the attesting environment is within the TCB. To violate
Inv. 2-1, the adversary needs to have (1) a shared memory
with the enclaved application and (2) trigger the latter to
read from it to bypass EIM. Since the enclaved application is
developed using EXIA provided APIs for receiving inputs from
the designated buffer that is not accessible to the adversary-
controlled software stack, triggering the enclaved application
to read from other addresses requires providing malicious
addresses to the enclaved application in advance, which will
be updated to the EIM. Inv. 2-2 and Inv. 3-1 will not be
violated since the host program cannot provide any input to
the enclaved application, while Inv. 3-2 resembles the case
of Inv. 2-1. Hence, at least the first malicious input will be
updated to EIM. O

Theorem 1. If the received initial state so and EIM match the
reference values the user derives locally from its benign inputs,



the user can ensure that the resulting state of the enclaved
application is trusted.

Proof. Using existing launch-time attestation, the user could
authenticate the initial state sg. By verifying that the EIM
matches the reference value derived from benign inputs, the
user could ensure that no malicious inputs have been con-
sumed by the enclaved application (Lemma 1). Note that the
execution trace of the enclaved application starts from s,
which will be verified first. Each transition from a state s;_;
to the next state s; is prompted by an event e;, which is
either an external input or a spontaneous transition. TExS
could occur when the enclaved application is at any state
but will not transit the enclaved application to a different
state since the handling of TEx results in a self transition
(s, €, s). The handling of a NTEx without host program inputs
results in a sequence of spontaneous transitions, each of which
transit the enclaved application from a trusted state s;,_1 to a
trusted state s;. Meanwhile, all benign inputs will also trigger
trusted transitions. Therefore, by construction, as long as the
received initial state sy and EIM match the reference values,
the enclaved application continues to transition to a trusted
state. O

V. EXIA IMPLEMENTATION FOR AMD SEV-SNP

In this section, we describe a prototype implementation
of EXIA based on AMD SEV-SNP, dubbed ExX1A-SEV. This
implementation comprises approximately 2000 LoC in the
TCB.

This prototype is based on VEIL [12]?, a framework that
shields sensitive programs from a potentially buggy guest OS.
Particularly, the enclave operates in user mode at VMPL2,
while the guest OS and host program run at VMPL3 and thus
cannot access the enclave’s memory.

The attesting environment is implemented within SVSM at
VMPLO. The attesting environment adopts dual-page transfer
for trusted input gateway such that inputs are routed from
the host program to the attesting environment, measured, and
then transferred to the enclave through an Enclave-SVSM
buffer. System calls designated as NTEx listed in Table V are
supported similarly via dual-page transfer.

[_EIM Calculator | [ EIM Recorder | [ Input Filler
VMPLO SVSM -
| E-S Buffer Creator | | E-S Buffer Mapping Checker |
Enclaved N Input Receiver & Application
VMPL2 Application | E-S Buffer Checker | | Code
VMPL3 [ Guest OS | EXIA Driver |] [ | Input Sender | Host Program ]

Fig. 4: EXIA-SEV design.

The workflow of this prototype is shown in Fig. 4: (1) the
Enclave-SVSM buffer is initialized by the E-S buffer creator,

2The open-sourced implementation of VEIL (commit 45a9615) is based on
Ubuntu 22.04. We made necessary modifications to the KVM, guest OS, and
driver components to adapt it to support Ubuntu 24.04.

and the EIM recorder is initialized by the hash algorithm
(Sec. V-A); (2) host program transfers inputs to the attesting
environment via Input sender, and the attesting environment
measures input via the EIM calculator and the EIM recorder,
and fills the Enclave-SVSM buffer. The enclave is then invoked
to validate and process the input (Sec. V-B), and (3) the re-
sponse along with EIM is forwarded to the user for verification
(Sec. V-D).

A. Initialization of E-S Buffer and EIM Recorder

To establish a secure communication channel between the
SVSM and an enclave to transfer input, an Enclave-SVSM
buffer is initialized to ensure trusted data exchange by isolating
operations from lower privilege levels.

Potential attacks from the untrusted guest OS (VMPL3),
host program (VMPL3), or hypervisor include accessing or
modifying the buffer’s corresponding page directly, or mali-
ciously remapping the buffer’s user virtual address to another
physical address, causing unintended access or modification
of malicious memory locations.

Therefore, the buffer should prohibit all access permissions
for VMPL3 while also validating the mapping between the
virtual addresses of the E-S buffer and the corresponding phys-
ical addresses to ensure secure memory access and prevent
unauthorized manipulation.

VMPL3 VMPL2 VMPLO
(SVSM)
(1) Init|the Enclaved Application
) E-S Buffer
(2 Allocate & Allocator
E-S Permission
Buffer Restriction
EXIA (3)|Ask the Page Table Handler to Map

Page
Table

Driver R E
(4) Verify the Mapping

Handler

E-S Buffer
Mapping Checker

(5) Initialize

EIM Recorder

Fig. 5: Initialization of E-S Buffer and EIM recorder process.

(®) Initialization Complete

As shown in Fig. 5, the initialization of the buffer is
triggered by the host program to SVSM through a request
(Step @). Upon receiving the request, the SVSM allocates the
specified buffer size as the Enclave-SVSM buffer, and then
configures the access permissions for these pages, granting
full read, write, and execute privileges to VMPL 0, VMPL
1, and VMPL 2 (Step @). Conversely, VMPL3, where the
guest OS and host program operate, is explicitly restricted
from accessing the pages, with no read, write, or execute
permissions permitted. This modification of access permis-
sions for these pages can be done using RMPADJUST as
mentioned in Sec. II-B1. After the SVSM allocates the buffer
pages, it sends the physical address of the buffer pages to
the enclave’s page table handler. The handler then maps the
enclave buffer’s user virtual address to this physical address
(Step ®). This enables the enclave to access the buffer via the



user virtual address. Regardless of where the enclave’s page
table handler resides, whether in VMPLO (SVSM) or VMPL3
(guest OS, where VEIL is implemented), the SVSM can access
the enclave’s page table because it retains knowledge of the
enclave’s CR3 register. The CR3 register is a processor register
in x86 architectures that stores the base physical address of the
page table for the current execution context, enabling virtual-
to-physical address translation. By leveraging the enclave’s
CR3 value, the SVSM can verify that the enclave’s user virtual
address for Enclave-SVSM buffer is correctly mapped to the
SVSM-allocated physical address of the buffer (Step @). After
the optional mapping verification, the SVSM will initialize
the measurement recorder (Step ®), as the measurements
are recorded in the form of a hash chain. The initialization
concludes afterwards (Step ®).

B. Secure Input Transmission and EIM Update

After initialization, the outsourced computation begins by
transmitting external inputs to the enclave via the attesting
environment and then invoking the enclave to process them.

Potential attacks from the untrusted guest OS involve (1)
input manipulation, i.e., sending more, fewer, or modified
input than what the user originally submitted to the platform,
resulting in the enclave receiving incorrect, excessive, or
insufficient input; and (2) input replay, i.e., resuming enclave
execution without involving the attesting environment to prop-
erly measure the input and fill it to the Enclave-SVSM buffer,
bypassing SVSM input control.

To address input manipulation attacks, EXIA measures the
input upon each transmission and allows the user to verify after
each transmission by EIM. If the measurement is unexpected,
the user will find the input manipulation attack and stop
transferring the data.

To detect input replay attacks, the enclaved application
checks a freshness flag before each execution to determine
whether to proceed. If this flag is not set, the enclaved
application identifies the execution as a potential replay attack.
It immediately halts its execution to prevent the system from
further attack.

(3 Record -
VMPLO ‘ SVSM | EIM Caleulator |~ £ o%"+| EIM Recorder || Input Filler |

(2) Send Inputs & (4) Set Freshness Flag & Fill Inputs

Check & >
Calculate EIM | Enclave-svsMBuffer [

(1) Send
VMPL3 [Guest oS ] ]lnpj:ls [ Input Sender Host Program]

Fig. 6: Input transfer workflow of EXIA-SEV.

~Enclaved
Application

VMPL2

As shown in Fig. 6, the workflow of the input transfer is
initiated by the host program, and forwarded through the guest
OS to the attesting environment. Then the attesting environ-
ment zeros out the buffer, copies the input size and input
data into the buffer, and performs a SHA-512 measurement
on the buffer contents. After the measurement calculation,
the attesting environment updates the measurement hash chain

with the resulting digest. Finally, the attesting environment sets
the buffer’s freshness flag to true, marking the data as valid
and measured while preventing unauthorized reuse.

The enclaved application is then invoked to process the
inputs. To prevent potential attacks, such as a replay attack,
the enclaved application first verifies a freshness flag. If the
freshness flag is set, the enclaved application reads the sub-
sequent input size and data, clears the buffer, and then clears
the flag to prevent the data from being used again. However,
if the flag is not set, the enclaved application treats this as a
replay attack and the enclaved application immediately stops
execution.

C. SDK Extensions and Developer APIs

We have integrated this feature into the VEIL SDK level,
eliminating the need for developers to implement it separately,
as the functionality is now natively available within the devel-
opment toolkit. Existing enclaved applications that could run
on vanilla VEIL can run on EXIA-SEV after recompilation,
without any source code modification. The substitution of
input functions is handled at the SDK level during compilation,
making the process seamless and transparent to developers.

The original VEIL framework requires developers
to manually partition their applications into a host
program, responsible for system calls and initialization,

and an enclave component, which contains the core
trusted logic. To adopt EXIA-SEV, the modifications
to the host program include calling the initialization

function init_EXIA () and the input transfer function
transfer_input_EXIA (input_addr, input_size).
Meanwhile, the modification to the enclaved application is
reading the input from the specific Enclave-SVSM buffer
get_input_EXIA(), rather than directly from the
host-provided buffer as is done in the original VEIL
implementation.

D. Verification of EIM Recorder Report

After the execution of the enclave program, the EIM
recorder generates a report containing hash values of the
measurement chain formed by all input measurements. We
provide a verification code, so the verifier can compute a
reference value by providing all enclave inputs and then
compare the code-generated reference value with the hash
value in the report to validate the execution.

Input Measurement 1
| sHAs12

Input Measurement 2
|sHAs12

Input Measurement n
| sHAs12

— EIM,

EIM, EIM,

Fig. 7: EIM hash chain.

EIM,—/> -

The process of measurement verification involves validating
the hash value generated by SVSM’s hash chain, which
encompasses all input measurements. As illustrated in Fig. 7,
this hash chain operates by having the SVSM compute a
measurement for each received input. This measurement then



becomes a component of the hash chain, which is iteratively
processed using SHA-512 to produce the final hash value.

To verify this value, the verifier must possess full knowledge
of all enclave inputs. This enables the recreation of each input
measurement, subsequent recalculation of the hash chain, and
comparison of the resulting hash value to validate authenticity.
We support user applications in retaining a local backup before
submitting inputs to verify the EIM, while also enabling third-
party validation of the EIM when all input data is accessible.
This ensures that the application and external parties can inde-
pendently confirm the EIM, provided they have the complete
input information required for verification.

VI. EXIA FOR PENGLAI

In this section, we describe another prototype implemen-
tation based on Penglai, dubbed EXIA-Penglai, to demon-
strate the generality of EXIA. EXIA-Penglai comprises ap-
proximately 200 lines of code in TCB. The implementation
in Penglai is also transparent to application developers, so
existing enclaved applications running on vanilla Penglai could
run on EX1A-enhanced Penglai after recompilation.

The attesting environment is implemented within the secure
monitor, which operates within the highest-privilege mode,
specifically machine mode in the RISC-V architecture. Since
Penglai adopts relay pages for the communication method
between the host program and the enclaved application, as
introduced in Sec. II-C1, the attesting environment measures
relay pages upon each write to the enclaved application.

Potential attacks from the untrusted OS on the input flow
include the following:

e Manipulated input. The operating system may modify the
inputs provided to the enclave.

e Falsified input. The operating system may add or reduce
the inputs to the enclave.

e TOCTOU attack on the input. The operating system mod-
ifies the content of the relay page after the secure monitor
processes the input.

To address these threats, an EIM recorder is integrated into
the attesting environment to capture parameters and transmit
data upon entering an enclave. Within the EIM recorder, the
content of the relay page (i.e., the input data) is measured to
record the transfer process execution. This approach enables
precise tracking and verification of critical information as
it transitions into the enclave. The TOCTOU vulnerability
associated with the relay page is mitigated through a relay
page design that restricts ownership to a single user at any
given time, as outlined in Sec. II-C1.

The workflow of the input transfer is illustrated in Fig. 8.
The host program sends input to the OS, which places it into
a relay page. The secure monitor then transfers access rights
to the relay page to the enclave, measures the relay page’s
contents, and records the EIM. Following this, the enclave
can read the measured input from the relay page, ensuring
integrity and confidentiality throughout the process.

The verification process of EIM in Penglai aligns with that
of SEV-SNP. The host program, the user, or other data owners

10

User (U-mode) | Enclave Application | | Host Program |
................................ *......-.--...........--.*.........--.-‘
Supervisor (S-mode) | Runtime Enclave Driver | | Operating System |
.................................. '!' ‘g g g g g g g

. S
Machine (M-mode) N?ngtcor | EIM Recorder |‘_| Relay Page Manager | |

RISC-V Cores Guarded Page Table |

Hardware |

Fig. 8: Workflow of EXIA-Penglai.

0.1521 —e— Time Cost

—
S
e

—e— All Time Cost
Hash Calculation Time Cost

o

0.150

0.148

Time Cost (ms)
IS

Time Cost (ms)

0.146

o

[

1% 3% 5% 10x 20x

Buffer Size (4 KB Pages)

30x 2% 3x 4%

Input Size (4 KB Pages)

5
Fig. O: Initialization time cost. Fig. 10: Transmission time
cost.

can generate a reference value for the execution trace using
their data, which is then compared against the corresponding
value produced by the secure monitor to ensure the integrity
of the enclave’s execution trace.

VII. EVALUATION

This section presents evaluation results of our implementa-
tions through multiple microbenchmarks and case studies.

AMD SEV-SNP Setup. All AMD SEV-SNP experiments were
conducted on a server equipped with an AMD EPYC 9474F
48-Core CPU and 2.2 TB of DDRS5 memory. Within this
environment, we configured an SEV-SNP virtual machine with
SVSM support, allocating 4 vCPUs, 4 GB of memory, and 100
GB of storage, enabling VirtIO. The host OS ran Ubuntu 24.04
with a kernel version 6.7.0-snp-host (using AMD’s svsm-
preview-hv-v4 branch [16]), while the guest OS ran Ubuntu
24.04 with a kernel based on version 6.8.0-snp-guest (using
AMD’s svsm-preview-guest-v4 branch). Both the guest and
host OSs used GCC version 13.3.0.

Penglai Setup. The Penglai experiments were conducted using
Docker version 28.0.1 and a gemu-system-riscv64 (version
4.1.1) instance configured with 4 GB of memory. This setup
was based on the Penglai-Enclave-TVM [40] and ran on an
Ubuntu 16.04 system with GCC version 5.4.

A. Performance Overhead

The performance overhead mainly consists of two parts:
one-time initialization (for EXIA-SEV only, since EXIA-
Penglai does not need an initialization process) and per-query
input transfer (for both EXIA-SEV and EXIA-Penglai). Results
are averaged over 1000 repetitions to ensure reliability.

EXIA-SEV Initialization. According to Sec. V-A and Fig. 5,
the initialization process involves two main stages: creating
a buffer and verifying its mapping. Fig. 11 details the time



cost of these operations, where each application-driver context
switch takes 0.004 ms, an SVSM call or return costs 0.015 ms,
and setting up the creation and permissions for a single 4 KB
buffer page requires 0.055 ms. Therefore, the total time cost
is (0.004 msx4) + (0.015 msx4) + (0.055 msx N), where N
is the number of 4 KB buffer pages. Notably, this overhead
is a one-time cost incurred only during the initial setup phase
and does not recur in subsequent operations.

VMPL3 VMPL3 VMPL2 VMPLO
(User Space) (Kernel Space) (SVSM)
7 N 0
Switch SVSM Call 0.015 ms E-S Buffer
0.004 ms Allocator
Allgcate & Restrict
E-S Buffer Permission
Creator Driver E-S 0.055 ms / 4 KB Page
Enclaved Buffer
Application . E-S Buffer
Switch M
anager
0004ms | SVSM Return 0.015 ms
Switch
0.004 ms E-S Buffer SVSM Call 0.015 ms E-S Buffer
Switch Verification Mapping
5,004 s Driver SVSM Return 0.015 ms Checker

Fig. 11: Initialization main time cost in SEV.

EXIA-SEV External Input Transmission. As described in
Sec. V-B, the external input transmission process consists of
two stages: transmitting input to the SVSM and performing a
measurement calculation. The performance evaluation of this
process (illustrated in Fig. 10) reveals that the highest cost
is the measurement calculation, which utilizes the SHA-512
hash function and requires 1.51 ms for each 4 KB input page.
Meanwhile, as previously mentioned, the overhead for each
SVSM call or return is 0.015 ms, and the application-driver
context switch is 0.004 ms. Therefore, the total time cost is
roughly determined by the formula: (0.004 msx2) + (0.015
msx2) + (1.5Imsx # 4 KB input pages).

EX1A-Penglai External Input Transmission. As detailed
in Fig. 8 and Sec. VI, the external input transmission process
in Penglai focuses on measuring the input by applying the
SM3 hash algorithm. This is the same hash function used for
Penglai’s attestation, and the time cost for this operation is
0.17 ms per 4 KB page of external input.

B. Security Evaluation

Our system could detect malicious inputs that attempt to ex-
ploit vulnerabilities in enclaves to launch attacks. Such attacks
include overflow (e.g., buffer overflow, heap overflow, stack
overflow, and integer overflow), dangling pointer misuse (e.g.,
use-after-free and invalid memory references), and format
string vulnerabilities (exploiting improperly sanitized format
specifiers®) [19]. By examining the vulnerable code patterns
that can be leveraged to launch existing memory corruption
attacks against the TEE listed in Fig. 1, we devised two Proof-
of-Concept (PoC) programs to evaluate EXIA’s effectiveness
against overflow and dangling pointer misuse.

3Format string vulnerabilities are usually due to improper use of
printf (), which is unlikely needed in outsourced computation and thus
excluded in the evaluation.

11

Listing 1: Vulnerable overflow PoC.
| int *ptr; char buffer[10];
2buffer=get_input ();//cause buffer overflow attack
3 xptr xxx; // arbitrary write
4 *ptr(); // arbitrary execute

Listing 1 shows a PoC program executed in the enclaved
application that contains a use-after-free vulnerability. In de-
tail, the program allows the host program or guest OS, acting
as the attacker, to modify (Line 3) any information or execute
(Line 4) unintended behavior without affecting the output.

Listing 2: Vulnerable use-after-free PoC.

| //host program and enclaved application shared pointer
2 int xshared_ptr=malloc (shared_size);

3 free (shared_ptr); //host program free the pointer

4 //enclaved application visits the shared ptr

5 *shared_ptr=xxx; //cause Use-After-Free

Listing 2 presents a vulnerable Use-After-Free PoC pro-
gram that allows an attacker to free the shared pointer before
the enclaved application visits the shared pointer (Line 5). The
enclave code then directly reads this dangling pointer, which
can cause unpredictable behavior.

EXIA mitigates the above attacks by processing all input
through a specific API, rather than relying on standard C
functions that could insecurely interpret data provided by the
host program. This approach avoids the direct use of the
inputs from the host program (Listing 1) and the shared pointer
(Listing 2).

As mentioned in Table V, our system’s security design
accommodates file system, I/O, and networking system calls,
while recommending that memory management calls be han-
dled via our input transfer design. We support open (),
openat (), close(), read(), write(), lseek(),
stat (), unlink (), and socket () system calls. Any
attacker utilizing these supported system calls to transfer
malicious inputs will be captured and recorded in EIM. For
example, if an attacker attempts to transfer a harmful file
or send incorrect socket information, this action will be
recorded. To prevent unauthorized system call attacks (e.g.,
using malicious file content), the enclaved application will
immediately halt execution if it receives any unexpected or
unsupported system calls.

TABLE I: Comparison with existing work.

. Unintended  Attacks on

Attestation Target Write Interrupts
Control Flow [10], [39], [106], [94], [36], [51], [18] ()] O
Data Flow [37], [94], [74], [103], [110] © O
External Input (this work) [ ) [ ]

As indicated in Table I, while CFA/DFA frameworks could
detect unintended writes that alter the program’s control/data
flow, they could not detect unintended writes that leave the
control and data flow unmodified, denoted as ©. Meanwhile,
they can not identify attacks targeting system interrupts, such
as interrupt manipulation, denoted as O.



VIII. CASE STUDIES

In this section, we demonstrate EXIA’s applicability through
case studies in the two application scenarios outlined in
Sec. IV: training of CNN and transformer models using pub-
licly known datasets (Sec. VIII-A), ML inference with pri-
vate inference queries (Sec. VIII-B), database workloads with
private user commands (Sec. VIII-C), and key management
services that handle private queries and data (Sec. VIII-D).

A. Model Training with Publicly Known Datasets

CNN Model Training. For CNN model training, we imple-
mented LeNet-5 [63] (812 LoC) and AlexNet [62] (965 LoC)
CNN models for handwritten digit classification on the MNIST
dataset [63], running them within AMD SEV-SNP using the
VEIL framework [12]. Because MNIST is a publicly known
dataset, the reference EIM can be derived by any verifier for
attestation.

We evaluated the performance of implemented CNN models
against baselines without the external-input attestation design
and further isolated the specific overhead caused by the EIM
calculation process. As shown in Fig. 12, the performance
overhead for both LeNet-5 and AlexNet decreases as the input
batch size increases. With a batch size of 128, the overhead
is reduced to 0.80% for LeNet-5 and 0.44% for AlexNet.

Lenet-5 Alexnet

—— Overall Overhead (%)
—— Hash Calculation Overhead (%)

—— Overall Overhead (%)
—— Hash Calculation Overhead (%)

Overhead (%)
wow & o

S ———

128 1 4 16 32 64 128
Input Batch Size

=3

1 4 16 32

Input Batch Size

64

Fig. 12: CNN models training overhead.

Transformer Model Training. For transformer model train-
ing, we implemented the 124M-parameter version of GPT-
2 [76] training on the public tiny_shakespeare dataset [60]
in Penglai with 1891 LoC. Our implementation is based on
the 1lm.c project [4], and confines the entire training process
in an enclaved application, leaving the host program to only
transfer parameters and input data. Similarly, the dataset is
publicly available for reference EIM derivation. With a batch
size of 1, EXIA already achieves a low overhead of only 0.47%
(averaged across 40 epochs).

B. Private Model Inference

The private inference process of LeNet-5 (791 LoC) and
AlexNet (944 LoC) is evaluated using the same comparison
framework as the CNN model training phase. The user, who
is also the verifier, maintains a reference EIM for verification
after sending each private inference query, and verifies the
received EIM associated with the response before deciding
whether to issue the next query.

12

Lenet-5 Alexnet

—— Overall Overhead (%)
—e— Hash Calculation Overhead (%)

—— Opverall Overhead (%)
—e— Hash Calculation Overhead (%)

Overhead (%)

4 16 32

Input Batch Size

64 128 1 4 16 32

Input Batch Size

64 128

Fig. 13: CNN models inference overhead.

SQL Commands  Overhead(%) Key Management

) Overhead(%)

CREATE 1.38 Operations

INSERT 0.57 Generate Key 0.06

SELECT 0.29 Find Key 1.89

UPDATE 0.53 Delete Key 1.95

DELETE 0.39 Sign Data 2.14

COMMIT 0.45 Verify Signature 2.13
TABLE 1II: Database TABLE III: Key man-

workload overhead. agement overhead.

The performance overhead for both models is shown in
Fig. 13. The overhead also diminishes as the input batch size
grows. With an input batch size of 128, the inference overhead
drops to 1.16% for LeNet-5 and 0.53% for AlexNet.

C. Database Workloads

For database workload scenarios, we presented an enclaved
application (459 LoC) within Penglai that utilizes the SQLite3
library to execute SQL operations in an in-memory database.
This allows a user to directly call the SQLite3 library within
the enclaved application to perform SQL commands, includ-
ing CREATE, INSERT, SELECT, UPDATE, DELETE, and
COMMIT. The reference EIM for attestation can be derived
by the user (the verifier) upon sending each SQL command.

As illustrated in Table II, when evaluated using the Chinook
dataset [3], EXIA incurs a minimal performance overhead for
measuring the SQL command inputs, ranging from 0.29% to
1.38%.

D. Key Management

To handle key management, we implemented an enclaved
application (605 LoC) within Penglai utilizing the MbedTLS
library [5]. This library provides essential functionalities for
key management, including key pair initialization, key pair
generation (RSA, ECC, OPAQUE, etc), and key pair freeing.
The library also provides secure message operations, such as
calculating hashes, signing data, and verifying signatures. The
reference EIM is derived by the user (the verifier), similarly
to verifying the integrity of the past key operations.

As demonstrated in Table III, performance overhead eval-
uvated with 1000 different RSA 2048-bit keys reveals that
EXIA introduces minimal overhead. The overhead for key
management operations ranges from 0.06% to 1.94%, while
the overhead for message signing and verification is also low,
at 2.13% and 2.14% respectively.



I1X. DISCUSSION

Acceleration of Hash Function Calculation. According
to the evaluation in Sec. VII, the hash function execution is
the primary performance bottleneck, making its acceleration
the critical priority for improving the design. This can be
achieved through several methods, such as parallelizing the
calculation with multiple threads [46], [49] or employing
hardware acceleration with specialized CPU instruction sets
or FPGAs [41], [90]. An alternative strategy offers a trade-
off: randomly sampling inputs for the hash function reduces
computation time but also increases the risk of failing to detect
manipulated inputs [87], [100].

Concurrent Hashing to Improve Performance. To further
enhance performance, the hash function can be calculated
concurrently with the main program’s execution. This ap-
proach allows the hash computation to run in parallel with
the enclaved application execution, rather than waiting for the
hash computation to finish. By overlapping these two tasks,
the total execution time will be effectively reduced, resulting
in a significant performance boost.

Extensions to Other TEEs. Adapting EXIA for other TEEs
requires different approaches tailored to their architectural
designs. For instance, extending support to Intel SGX [53]
or other process-based TEEs would necessitate using SFI to
create an attesting environment that controls input to the en-
claved application. In contrast, supporting RISC-V TEEs, such
as Keystone [65] and Sanctum [34], involves modifying the
architecture-level design to serve as the attesting environment.
For other VM-based TEEs, such as Intel TDX [55], the L1
Virtual Machine Monitor (L1 VMM) [55] can be leveraged to
separate the enclaved application from the attesting environ-
ment by placing them at different privilege levels.

TLS or Signed Files Approaches. Simpler security protocols,
such as TLS and signed files, are insufficient for providing
complete protection, as they remain vulnerable to memory
corruption attacks. It has been demonstrated that TLS [32],
[33], [29] (TaLoS, Rust SGX SDK’s tlsclient, and WolfSSL)
might contain memory vulnerabilities that a malicious host can
exploit to compromise the TLS connection and leak future user
inputs undetected. To address this, EXIA captures malicious
inputs that cause the compromise and informs the user of
potential TLS issues.

X. RELATED WORK

Control-Flow Attestation. CFA aims to ensure device se-
curity during runtime, while previous methods cannot detect
runtime attacks after initial checks. BLAST [106] uses SFI
to store path measurements constructed by a context-free
grammar-based representation to verify the whole-program
control-flow path. OAT [94] instruments after each conditional
branch to collect the trace, and then runs symbolic execution
to verify the trace. C-FLAT [10] instruments at the end of the
basic block to calculate the hash of the block, and then com-
pares the accumulated hash with an existing known database.

13

ZEKRA [36] proposes a cryptographic approach for CFA that
enables outsourcing execution path verification to an untrusted
worker via an arithmetic circuit, allowing verifiers to check
program integrity in zero-knowledge without compromising
privacy or scalability. MGC-FA [51] is a probabilistic model-
based approach that identifies vulnerable sections within a
program’s control flow and utilizes execution-profiling control
flow graphs for remote attestation. CFA+ [18] is a hardware-
assisted mechanism that ensures runtime integrity by leverag-
ing ARMvS8.5-A’s BTIL. CFA mainly relies on trained models
of execution paths or critical variables, and attacks within valid
flows can bypass it. EXIA performs verification with the EIM
without needing to know the inputs in advance or keeping a
copy of them.

Data Flow Attestation. DFA is designed to verify the integrity
and security of data as it is transmitted and processed within
systems. This method focuses on the path of data movement,
how data is handled along this path, and any changes in its
state, ensuring data protection. Raft [103] presents a hardware-
assisted Dynamic Information Flow Tracking framework for
RISC-V embedded systems to provide runtime protection with
a hybrid byte and variable granularity storage mechanism.
PrivacyScope [110] is a static code analyzer designed to detect
private data leaks in TEE applications, effectively identifying
both explicit and implicit information leaks through non-
reversibility. DFA needs precise static analysis and either
modifications to or instrumentation of the program. In contrast,
EXIA is transparent to the developers and does not need
previous analysis of the source code.

Proof of Execution. Proof of Execution is a cryptographic
protocol that verifies a specific computation or task has been
accurately completed without revealing the underlying data or
details of the process. Backes et al. [21] verifiably delegate
computations on expanding outsourced data by introducing
the first practical protocol that ensures security and input-
independent efficiency, unlimited storage, and independence
from the function computed. ALIBI [27] introduces a trusted,
minimal reference monitor beneath the service provider’s plat-
form to track and report resource allocation to customer virtual
machines, enabling verifiable reconciliation. APEX [73] is
a formally verified security service for low-end embedded
devices that enables remote, untrusted provers to generate
tamper-proof proofs of software execution. Parma [57] is an
architecture that enables secure, lift-and-shift deployment of
unmodified containers by using VM-based TEEs and execution
policies that ensure integrity and confidentiality, even when
hosted on untrusted servers. Previous work primarily focused
on streamlined instruction sets and low-end devices, whereas
our approach concentrates more on integrity protection within
the TEE. Additionally, some studies have introduced relatively
high-overhead cryptographic technologies.

Integrity Measurement Architecture. The Linux Integrity
Measurement Architecture (IMA) [79] hooks into the kernel to
check files against TPM-protected measurements before they
are accessed. TZ-IMA [92] introduces a framework that uti-



lizes the secure world of TrustZone to verify an application’s
integrity before execution. Container-IMA utilizes Platform
Configuration Registers to establish a hardware-based root of
trust for the measurement partition of each container. XFil-
ter [71] provides IMA with a fine-grained policy mechanism
that supports extended attributes to reflect file configurations.
Dimac [93] utilizes cross-world memory mapping in ARM
TrustZone to perform integrity measurements on code pages
executing within containers. In contrast to these works, which
utilize IMA to track application files before and after execu-
tion, EXIA enables us to measure data in use directly rather
than relying on file-based measurements via IMA.

Discovery of Memory Corruption Vulnerabilities. Dis-
covering memory corruption vulnerabilities in TEEs mainly
focuses on examining the host-enclave boundary. Van Bulck
et al. [25] use manual analysis of the TEE runtimes, revealing
that the entry points into the attack surface are more extensive
than argument pointers. Automated tools are also an approach
to the discovery. EnclaveFuzz [29] utilizes fuzzing to analyze
source code by generating complex, valid inputs that pass
sanity checks. TeeRex [33] analyzes enclave binary code with
symbolic execution to discover vulnerabilities introduced at
the host-to-enclave interface. While these papers primarily
analyze the source code to detect whether it contains memory
corruption attacks, EXIA focuses on detecting memory cor-
ruption attacks caused by malicious inputs during runtime.

XI. CONCLUSION

In this paper, we introduce External-Input Attestation to
mitigate memory corruption attacks on enclaved applications
by measuring all external writes to the enclaved application.
This approach provides proof of trusted state transitions,
effectively converting security threats into more manageable
reliability issues, such as an application crash. Our prototype
implementations on AMD SEV-SNP and Penglai are evaluated
to validate the design, demonstrating robust security and
practical performance.

ETHICAL CONSIDERATION

We acknowledge that our work involves the demonstration
of proof-of-concept (PoC) attacks, which warrants careful
ethical consideration. The purpose of these demonstrations is
to highlight the practical severity of the threats and to provide
a baseline for evaluating our proposed solution. It is crucial
to state that all attacks presented are based on well-known
attacks, and this paper does not disclose any new zero-day
vulnerabilities. Since this research did not involve any human
participants, it was exempt from further review by the Human
Research Ethics Committee at the authors’ institutions.

ACKNOWLEDGEMENT

We thank our anonymous reviewers for their insightful
comments, which have significantly improved the paper. The
work was partially supported by the National Natural Sci-
ence Foundation of China under Grant No. 62472281, No.
62325207, and U24A20241. Yidi Kao and Sanchuan Chen
were partially supported by Lambda, Inc.

14

(1]
[2]
(3]
(4]
[3]
(6]

(71
(8]

[91

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

SM3 cryptographic hash algorithm. http://www.gmbz.org.cn/upload/
2018-07-24/1532401392982079739.pdf, 2018.
KubeTEE trusted function framework.
SOFAEnclave/trusted-function-framework, 2021.
Chinook database. https://github.com/lerocha/chinook-database, 2025.
LLM.c project. https://github.com/karpathy/llm.c, 2025.

Mbed TLS library. https:/github.com/Mbed-TLS/mbedtls, 2025.
Mbedtls-SGX: a TLS stack in SGX. https:/github.com/bl4ckSun/
mbedtls-SGX, 2025.

SGX_SQLite. https://github.com/yerzhan7/SGX_SQLite, 2025.
SGXwallet: SKALE SGX-based hardware crypto wallet. https://github.
com/skalenetwork/sgxwallet, 2025.
Wolfssl embedded SSL/TLS library.
wolfssl, 2025.

Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Ny-
man, Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. C-
FLAT: control-flow attestation for embedded systems software. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages
743-754. ACM, 2016.

Adil Ahmad, Kyungtae Kim, Muhammad Thsanulhaq Sarfaraz, and
Byoungyoung Lee. OBLIVIATE: A data oblivious filesystem for
Intel SGX. In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21,
2018. The Internet Society, 2018.

Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro
Fonseca. Veil: A protected services framework for confidential virtual
machines. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 4, pages 378-393, 2023.

Tiago Alves. Trustzone: Integrated hardware and software security.
Information Quarterly, 3:18-24, 2004.

AMD. AMD64 architecture programmer’s manual: Volumes 1-5. 2020.
AMD. Secure VM Service Module (SVSM) for SEV-SNP Guests.
https://github.com/AMDESE/linux-svsm, 2022.

AMD. Linux kernel source code of SVSM host. https://github.com/
AMDESE/linux/tree/svsm-preview-hv-v4, 2024.

AMD.  Guest Hypervisor Communication Block (GHCB) stan-
dardization. https://www.amd.com/content/dam/amd/en/documents/
epyc-technical-docs/specifications/56421.pdf, 2025.

Mahmoud Ammar, Ahmed Abdelraoof, and Silviu Vlasceanu. On
bridging the gap between control flow integrity and attestation
schemes. In 33rd USENIX Security Symposium, USENIX Security 2024,
Philadelphia, PA, USA, August 14-16, 2024. USENIX Association,
2024.

Mahmoud Ammar, Adam Caulfield, and Ivan De Oliveira Nunes. SoK:
Integrity, attestation, and auditing of program execution. In 2025
IEEE Symposium on Security and Privacy (SP), pages 77-77. IEEE
Computer Society, 2024.

Pierre-Louis Aublin, Florian Kelbert, Dan O’keeffe, Divya Muthuku-
maran, Christian Priebe, Joshua Lind, Robert Krahn, Christof Fetzer,
David Eyers, and Peter Pietzuch. TaLoS: Secure and transparent TLS
termination inside SGX enclaves. Imperial College London, Tech. Rep,
5(2017):01, 2017.

Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable
delegation of computation on outsourced data. In Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2013, Berlin, Germany, November 4-8, 2013, pages 863—
874. ACM, 2013.

Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and
Ahmad-Reza Sadeghi. The guard’s dilemma: Efficient code-reuse
attacks against Intel SGX. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018,
pages 1213-1227. USENIX Association, 2018.

Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai Liang.
Jump-oriented programming: a new class of code-reuse attack. In
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, ASIACCS 2011, Hong Kong, China, March
22-24, 2011, pages 30-40. ACM, 2011.

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:

https://github.com/

https://github.com/wolfSSL/



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

SGX cache attacks are practical. In 7//th USENIX workshop on
offensive technologies (WOOT 17), 2017.

Jo Van Bulck, David F. Oswald, Eduard Marin, Abdulla Aldoseri,
Flavio D. Garcia, and Frank Piessens. A tale of two worlds: Assessing
the vulnerability of enclave shielding runtimes. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, pages 1741—
1758. ACM, 2019.

Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
data on meltdown-resistant CPUs. page 769-784, New York, NY, USA,
2019. Association for Computing Machinery.

Chen Chen, Petros Maniatis, Adrian Perrig, Amit Vasudevan, and
Vyas Sekar. Towards verifiable resource accounting for outsourced
computation. In ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE ’13, Houston, TX, USA, March
16-17, 2013, pages 167-178. ACM, 2013.

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yingian Zhang, Zhigiang
Lin, and Ten H Lai. SGXpectre: Stealing Intel secrets from SGX
enclaves via speculative execution. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 142—157. IEEE, 2019.
Liheng Chen, Zheming Li, Zheyu Ma, Yuan Li, Baojian Chen, and
Chao Zhang. Enclavefuzz: Finding vulnerabilities in SGX applications.
In 31st Annual Network and Distributed System Security Symposium,
NDSS 2024, San Diego, California, USA, February 26 - March 1, 2024.
The Internet Society, 2024.

Shuo Chen, Jun Xu, and Emre Can Sezer. Non-control-data attacks
are realistic threats. In /4th USENIX Security Symposium, USENIX
Security 2005, Baltimore, MD, USA, July 31 - August 5, 2005. USENIX
Association, 2005.

Weijie Chen, Yu Zhao, Yinqian Zhang, Weizhong Qiang, Deqing Zou,
and Hai Jin. Reminiscence: Trusted monitoring against privileged
preemption side-channel attacks. In European Symposium on Research
in Computer Security, pages 24—44. Springer, 2024.

Tobias Cloosters, Oussama Draissi, Johannes Willbold, Thorsten Holz,
and Lucas Davi. Memory corruption at the border of trusted execution.
IEEE Secur. Priv., 22(4):87-96, 2024.

Tobias Cloosters, Michael Rodler, and Lucas Davi. Teerex: Discovery
and exploitation of memory corruption vulnerabilities in SGX enclaves.
In 29th USENIX Security Symposium, USENIX Security 2020, August
12-14, 2020, pages 841-858. USENIX Association, 2020.

Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum:
Minimal hardware extensions for strong software isolation. In 25th
USENIX Security Symposium, USENIX Security 2016, Austin, TX, USA,
August 10-12, 2016, pages 857-874. USENIX Association, 2016.
Shujie Cui, Haohua Li, Yuanhong Li, Zhi Zhang, Lluis Vilanova, and
Peter Pietzuch. Quanshield: Protecting against side-channels attacks
using self-destructing enclaves. arXiv preprint arXiv:2312.11796,
2023.

Heini Bergsson Debes, Edlira Dushku, Thanassis Giannetsos, and
Ali Marandi. ZEKRA: zero-knowledge control-flow attestation. In
Proceedings of the 2023 ACM Asia Conference on Computer and
Communications Security, ASIACCS 2023, Melbourne, VIC, Australia,
July 10-14, 2023, pages 357-371. ACM, 2023.

Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza
Sadeghi. Litehax: lightweight hardware-assisted attestation of pro-
gram execution. In Proceedings of the International Conference on
Computer-Aided Design, ICCAD 2018, San Diego, CA, USA, November
05-08, 2018, page 106. ACM, 2018.

Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. Hy-
bCache: Hybrid side-channel-resilient caches for trusted execution
environments. In 29th USENIX Security Symposium, USENIX Security
2020, pages 451-468, 2020.

Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lu-
cas Davi, Patrick Koeberl, N. Asokan, and Ahmad-Reza Sadeghi. LO-
FAT: low-overhead control flow attestation in hardware. In Proceedings
of the 54th Annual Design Automation Conference, DAC 2017, Austin,
TX, USA, June 18-22, 2017, pages 24:1-24:6. ACM, 2017.

Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin
Xia, Binyu Zang, and Haibo Chen. Penglai Enclave TVM. https:
//github.com/Penglai-Enclave/Penglai-Enclave-TVM, 2021.

Abbas A. Fairouz, Monther Abusultan, Viacheslav V. Fedorov, and

15

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Sunil P. Khatri. Hardware acceleration of hash operations in modern
microprocessors. IEEE Trans. Computers, 70(9):1412-1426, 2021.
Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin
Xia, Binyu Zang, and Haibo Chen. Scalable memory protection in the
PENGLALI enclave. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21), pages 275-294. USENIX
Association, July 2021.

Xinyang Ge, Hsuan-Chi Kuo, and Weidong Cui. Hecate: Lifting and
shifting on-premises workloads to an untrusted cloud. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022,
pages 1231-1242. ACM, 2022.

Virgil D. Gligor. A note on the denial-of-service problem. In /IEEE
Symposium on Security and Privacy, SP 1983, Oakland, California,
USA, April 25-27, 1983, pages 139-149. IEEE Computer Society, 1983.
Johannes Gotzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Miiller.
Cache attacks on Intel SGX. In Proceedings of the 10th European
Workshop on Systems Security, pages 1-6, 2017.

Shay Gueron and Vlad Krasnov. Parallelizing message schedules to ac-
celerate the computations of hash functions. Journal of Cryptographic
Engineering, 2(4):241-253, 2012.

Part Guide. Intel® 64 and ia-32 architectures software developer’s
manual. Volume 3B: system programming guide, Part, 2(11):0-40,
2011.

Marcus Hihnel, Weidong Cui, and Marcus Peinado. High-resolution
side channels for untrusted operating systems. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 299-312, 2017.
Stefan Hermann. Accelerating minimal perfect hash function construc-
tion using GPU parallelization. PhD thesis, Karlsruher Institut fiir
Technologie (KIT), 2023.

Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua,
Prateek Saxena, and Zhenkai Liang. Data-oriented programming: On
the expressiveness of non-control data attacks. In IEEE Symposium on
Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,
pages 969-986. IEEE Computer Society, 2016.

Jianxing Hu, Dongdong Huo, Meilin Wang, Yazhe Wang, Yan Zhang,
and Yu Li. A probability prediction based mutable control-flow
attestation scheme on embedded platforms. In /8th IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing And
Communications / 13th IEEE International Conference On Big Data
Science And Engineering, TrustCom/BigDataSE 2019, Rotorua, New
Zealand, August 5-8, 2019, pages 530-537. IEEE, 2019.

Intel. Building the GNU multiple precision arithmetic library for Intel
software guard extensions. https://github.com/intel/sgx-gmp-demo.
Intel. Intel Software Guard Extensions (Intel SGX) Services. https:
//api.portal.trustedservices.intel.com/, 2018.

Intel. Asynchronous enclave exit notify and the EDECC-
SSA user leaf function. https://cdrdv2-public.intel.com/736463/
aex-notify-white-paper-public.pdf, 2022.

Intel. Performance considerations of hardware-isolated partitioned
VMs with Intel Trust Domain Extensions (Intel TDX).
https://www.intel.cn/content/www/cn/zh/developer/articles/technical/
tdx-performance-isolated-partitioned-vms.html, 2023.

Intel. Intel software guard extensions SSL (SGX SSL). https://github.
com/intel/intel-sgx-ssl, 2025.

Matthew A Johnson, Stavros Volos, Ken Gordon, Sean T Allen,
Christoph M Wintersteiger, Sylvan Clebsch, John Starks, and Manuel
Costa. Parma: Confidential containers via attested execution policies.
arXiv preprint arXiv:2302.03976, 2023.

David Kaplan, Jeremy Powell, and Tom Woller. AMD memory encryp-
tion. White paper, 2016. https://developer.amd.com/wordpress/media/
2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf.

David Kaplan, Jeremy Powell, and Tom Woller. AMD SEV-SNP:
Strengthening VM isolation with integrity protection and more. White
paper, Advanced Micro Devices Inc, 2020.

Andrej Karpathy. Char-rnn project.  https://github.com/karpathy/
char-rnn, 2015.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Ex-
ploiting speculative execution. In 2019 IEEE Symposium on Security
and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019,
pages 1-19. IEEE, 2019.



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012. Proceedings of a meeting
held December 3-6, 2012, Lake Tahoe, Nevada, United States, pages
11061114, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proc. IEEE,
86(11):2278-2324, 1998.

Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai, and Raluca Ada
Popa. An off-chip attack on hardware enclaves via the memory bus.
In 29th USENIX Security Symposium, USENIX Security 2020, 2020.
Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovié, and
Dawn Song. Keystone: An open framework for architecting trusted
execution environments. In Proceedings of the Fifteenth European
Conference on Computer Systems, EuroSys *20, New York, NY, USA,
2020. Association for Computing Machinery.

Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi,
Changho Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon
Kang. Hacking in darkness: Return-oriented programming against
secure enclaves. In 26th USENIX Security Symposium, USENIX
Security 2017, pages 523-539, Vancouver, BC, August 2017. USENIX
Association.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring fine-grained control flow inside SGX
enclaves with branch shadowing. In 26th USENIX Security Symposium,
USENIX Security 2017, pages 557-574, 2017.

Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh,
Yousuf Sait, and Gareth Stockwell. Design and verification of the
arm confidential compute architecture. In /6th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2022, Carlsbad,
CA, USA, July 11-13, 2022, pages 465-484. USENIX Association,
2022.

LimeChain. Wasm_injector: a rust-based command line utility to ma-
nipulate webassembly (wasm) modules. https://github.com/LimeChain/
wasm-injector.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In William Enck and Adrienne Porter Felt,
editors, 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018, pages 973-990. USENIX
Association, 2018.

Alan Litchfield and Weihua Du. Xfilter: An extension of the integrity
measurement architecture based on fine-grained policies. Applied
Sciences, 13(10):6046, 2023.

Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel
Gruss, and Frank Piessens. Plundervolt: Software-based fault injection
attacks against Intel SGX. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020, pages
1466-1482. IEEE, 2020.

Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon,
and Gene Tsudik. APEX: A verified architecture for proofs of execution
on remote devices under full software compromise. In 29th USENIX
Security Symposium, USENIX Security 2020, August 12-14, 2020,
pages 771-788. USENIX Association, 2020.

Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik.
DIALED: data integrity attestation for low-end embedded devices.
In 58th ACM/IEEE Design Automation Conference, DAC 2021, San
Francisco, CA, USA, December 5-9, 2021, pages 313-318. IEEE, 2021.
NVIDIA. Cloud computing solutions accelerated computing
in the cloud. https://www.nvidia.com/en-us/data-center/
gpu-cloud-computing/, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAl blog, 1(8):9, 2019.

Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
Return-oriented programming: Systems, languages, and applications.
ACM Trans. Inf. Syst. Secur., 15(1):2:1-2:34, 2012.

Ravi Sahita, Vedvyas Shanbhogue, Andrew Bresticker, Atul Khare,
Atish Patra, Samuel Ortiz, Dylan Reid, and Rajnesh Kanwal. CoVE:
Towards confidential computing on RISC-V platforms. In Proceedings
of the 20th ACM International Conference on Computing Frontiers,
pages 315-321, 2023.

16

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn.
Design and implementation of a TCG-based integrity measurement
architecture. In /3th USENIX Security Symposium, USENIX Security
2004, August 9-13, 2004, San Diego, CA, USA, pages 223-238.
USENIX, 2004.

Vasily A. Sartakov, Nico Weichbrodt, Sebastian Krieter, Thomas Leich,
and Riidiger Kapitza. Stanlite - A database engine for secure data
processing at rack-scale level. In 2018 IEEE International Conference
on Cloud Engineering, IC2E 2018, Orlando, FL, USA, April 17-20,
2018, pages 23-33. IEEE Computer Society, 2018.

Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. Zerotrace :
Oblivious memory primitives from Intel SGX. In 25th Annual Network
and Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018. The Internet Society, 2018.
Benedict Schliiter, Supraja Sridhara, Andrin Bertschi, and Shweta
Shinde. Wesee: Using malicious #VC interrupts to break AMD SEV-
SNP. In IEEE Symposium on Security and Privacy, SP 2024, San
Francisco, CA, USA, May 19-23, 2024, pages 4220-4238. IEEE, 2024.
Benedict Schliiter, Supraja Sridhara, Mark Kuhne, Andrin Bertschi,
and Shweta Shinde. HECKLER: breaking confidential VMs with
malicious interrupts. In 33rd USENIX Security Symposium, USENIX
Security 2024, Philadelphia, PA, USA, August 14-16, 2024. USENIX
Association, 2024.

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages
753-768, 2019.

Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical enclave
malware with Intel SGX. In Detection of Intrusions and Malware,
and Vulnerability Assessment - 16th International Conference, DIMVA
2019, Gothenburg, Sweden, June 19-20, 2019, Proceedings, volume
11543 of Lecture Notes in Computer Science, pages 177-196. Springer,
2019.

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware guard extension: Using SGX to conceal
cache attacks. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2017.
Shiuan-Tzuo Shen, Hsiao-Ying Lin, and Wen-Guey Tzeng. An effective
integrity check scheme for secure erasure code-based storage systems.
IEEE Transactions on reliability, 64(3):840-851, 2015.

Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Pra-
teek Saxena. Preventing page faults from telling your secrets. In
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, pages 317-328, 2016.

Tlia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao,
Nicolas Papernot, Murat A. Erdogdu, and Ross J. Anderson. Ma-
nipulating SGD with data ordering attacks. In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pages 18021-18032, 2021.

Argirios Sideris, Theodora Sanida, and Minas Dasygenis. Hardware
acceleration of SHA-256 algorithm using NIOS-II processor. In 8th
International Conference on Modern Circuits and Systems Technolo-
gies, MOCAST 2019, Thessaloniki, Greece, May 13-15, 2019, pages
1-4. IEEE, 2019.

Jason (Jay) Smith. Unlock
service  with cloud run and vertex AL
//cloud.google.com/blog/products/ai-machine-learning/
improve-your-gen-ai-app- velocity-with-inference-as-a-service, 2025.
Liantao Song, Yan Ding, Pan Dong, Yong Guo, and Chuang Wang.
TZ-IMA: supporting integrity measurement for applications with ARM
trustzone. In Information and Communications Security - 24th Interna-
tional Conference, ICICS 2022, Canterbury, UK, September 5-8, 2022,
Proceedings, volume 13407 of Lecture Notes in Computer Science,
pages 342-358. Springer, 2022.

Liantao Song, Yan Ding, Yong Guo, Bao Li, and Bin Zhou. Dimac:
Dynamic integrity measurement architecture for containers with ARM
trustzone. In IEEE International Conference on Web Services, ICWS
2024, Shenzhen, China, July 7-13, 2024, pages 844-852. IEEE, 2024.
Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. OAT: attesting
operation integrity of embedded devices. In 2020 IEEE Symposium on
Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21,
2020, pages 1433-1449. IEEE, 2020.

inference-as-a-
https:



[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Apache Teaclave. Teaclave SGX SDK. https://github.com/apache/
teaclave-sgx-sdk/tree/master/samplecode/tls/tlsclient.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the Intel
SGX kingdom with transient out-of-order execution. In 27th USENIX
Security Symposium, USENIX Security 2018, 2018.

Jo Van Bulck, Nico Weichbrodt, Riidiger Kapitza, Frank Piessens, and
Raoul Strackx. Telling your secrets without page faults: Stealthy page
table-based attacks on enclaved execution. In 26th USENIX Security
Symposium, USENIX Security 2017, pages 1041-1056, 2017.

Stephan Van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue in-flight data load. In IEEE Symposium on
Security and Privacy, SP 2019, pages 88-105. IEEE, 2019.

Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran
Duan, Long Li, Yulong Zhang, Tao Wei, and Zhigiang Lin. Towards
memory safe enclave programming with rust-SGX. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, pages 2333—
2350. ACM, 2019.

Jiang Wang, Kun Sun, and Angelos Stavrou. A dependability analysis
of hardware-assisted polling integrity checking systems. In /IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012), pages 1-12. IEEE, 2012.

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqgian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky
cauldron on the dark land: Understanding memory side-channel hazards
in SGX. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2421-2434, 2017.
Wenhao Wang, Linke Song, Benshan Mei, Shuang Liu, Shijun Zhao,
Shoumeng Yan, XiaoFeng Wang, Dan Meng, and Rui Hou. The road
to trust: Building enclaves within confidential VMs. In 32nd Annual
Network and Distributed System Security Symposium, NDSS 2025, San
Diego, California, USA, February 24-28, 2025. The Internet Society,
2025.

Yu Wang, Jinting Wu, Haodong Zheng, Zhenyu Ning, Boyuan He, and
Fengwei Zhang. Raft: Hardware-assisted dynamic information flow
tracking for runtime protection on RISC-V. In Proceedings of the
26th International Symposium on Research in Attacks, Intrusions and
Defenses, RAID 2023, Hong Kong, China, October 16-18, 2023, pages
595-608. ACM, 2023.

Haoxuan Xu, Jia Xiang, Zhen Huang, Guoxing Chen, Yan Meng,
and Haojin Zhu. Latte: Layered attestation for portable enclaved
applications. In /0th IEEE European Symposium on Security and
Privacy, EuroS&P 2025, Venice, Italy, June 30 - July 4, 2025, pages
339-354. IEEE, 2025.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In
IEEE Symposium on Security and Privacy, SP 2015, pages 640-656.
1EEE, 2015.

Nikita Yadav and Vinod Ganapathy. Whole-program control-flow path
attestation. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2023, Copenhagen,
Denmark, November 26-30, 2023, pages 2680-2694. ACM, 2023.
HanJae Yoon and ManHee Lee. SGXDump: a repeatable code-
reuse attack for extracting SGX enclave memory. Applied Sciences,
12(15):7655, 2022.

Peterson Yuhala, Pascal Felber, Valerio Schiavoni, and Alain Tchana.
Plinius: Secure and persistent machine learning model training. In 57st
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2021, Taipei, Taiwan, June 21-24, 2021, pages
52-62. IEEE, 2021.

Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine
Shi. Town crier: An authenticated data feed for smart contracts. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages
270-282. ACM, 2016.

Ruide Zhang, Ning Zhang, Assad Moini, Wenjing Lou, and Y. Thomas
Hou. Privacyscope: Automatic analysis of private data leakage in
tee-protected applications. In 40th IEEE International Conference on
Distributed Computing Systems, ICDCS 2020, Singapore, November
29 - December 1, 2020, pages 34—44. IEEE, 2020.

17

[111] Xin Zheng, Xianghong Hu, Jinglong Zhang, Jian Yang, Shuting Cai,
and Xiaoming Xiong. An efficient and low-power design of the SM3
hash algorithm for IoT. Electronics, 8(9):1033, 2019.

APPENDIX
A. Interrupt Category

These interruptions can be broadly categorized as fol-
lows:
o External Interrupts: These are generated in response to
external events outside the processor. Typically, they are
managed transparently by the corresponding OS/CPU with-
out requiring explicit intervention.
Software Interrupts: These are intentionally triggered by
software to handle synchronous events, such as system calls
or task switching.
o Exceptions: These arise due to errors during software
execution and can be further subdivided into:

1. Faults: Occur when an error condition is detected about
the current instruction, often allowing for recovery and
continuation of execution.

. Traps: Deliberate events initiated by the processor, often
used for debugging or system monitoring.

3. Aborts: Severe errors that typically result in the termi-
nation of the process or even a complete shutdown of
the processor.

B. Architecture Defined Interrupts

Table IV lists a detailed taxonomy of architecture-defined
interrupts, based on the AMD [14] and Intel [47] manuals.
Each interrupt is labeled as TEx, NTEx, or — (indicating
that the enclaved application will abort). TEx does not affect
the enclaved application’s integrity since the handling of TEx
(such as page swapping or handling page faults) does not
cause the enclaved application to transit to another state. For
hardware exceptions with vectors 0-8 (such as #DE and #DB),
this halt signals a critical failure, likely stemming from invalid
inputs or program bugs. A hang also occurs for exceptions in
vectors 9-31, as these events are not anticipated during secure
enclaved application execution. Hence, the handling of TEx
can be modeled as a self transition (self-loop) (s, ¢, s).

C. Detailed Taxonomy of System Call

The system calls we support, listed in Table V, fall into
three main categories: file system and I/O, memory manage-
ment, and networking. We handle these calls as two distinct
event types. Those designated as NTEx are treated as a user
input in system call format. Conversely, system calls marked
with / are not restricted from direct use, as these operations
can expose user memory directly to the enclaved application
without measurement or protection, creating vulnerabilities to
security threats such as TOCTOU attacks. To enhance security
for these system calls, the host program can implement a
more strict, though less efficient, procedure. This involves first
transferring the external inputs in system call format into the
attesting environment to be measured, and then instructing the



TABLE IV: A detailed taxonomy of architecture defined
interrupts.

Trans- Vec-  Mne-

Category parency tor  monic Description
External 2 NMI Non-Maskable Interrupt
Interrupts User Defined Interrupts
Software TEx Task Switching
Interrupts NTEx System Calls
0 #DE Divide Error
1 4DB Instruction Fetch Breakpoint,
General Detect Condition
Range Exceed Caused
3 #BR by BOUND Inst
Exceptions 6 #UD Invalid Opcode
(Faults) -
- 10 #TS Invalid TSS
12 #55 Stack-segment Fault
13 #GP General Protection
16 #MF x87 FPU Floating-point Error
17 #AC Alignment Check
19 #XM SIMD Floating-point Exception
7 #NM Device not Available
TEx
14 #PF Page Fault
Data Read or Write Breakpoint,
1 #DB I/0 Read or Write Breakpoint,
Exceptions Single-step, Task-switch
(Traps) TEx
3 #BP Breakpoint
4 #OF Overflow Caused by INTO Inst
8 #DF Double Fault
Exceptions ) 9 - Coprocessor Segment Overrun
(Abort) 18 #MC Machine Check
11 #NP Segment not Present

TABLE V: A detailed taxonomy of Linux system calls.

Category pgil;sc;, System Calls Examples

open (), openat(), close(),

File System NTEx read(), write(), lseek(),

and /O stat (), unlink ()

Memory / brk (), mmap(),
Management munmap (), mprotect ()
Networking NTEx socket ()

enclaved application to use that input rather than direct input
usage.

18



