Pallas and Aegis: Rollback Resilience in
TEE-Aided Blockchain Consensus

Jérémie Decouchant
Delft University of Technology
j-decouchant@tudelft.nl

David Kozhaya
ABB Corporate Research
david.kozhaya@ch.abb.com

Abstract—Several Byzantine Fault-Tolerant (BFT) consensus
algorithms leverage trusted components to boost resilience
and reduce communication overhead. However, recent findings
expose a critical vulnerability to rollback attacks when trusted
components crash, lose state, or be cloned. Existing defenses either
treat crashed replicas as Byzantine, increasing replica count, or
duplicate trusted state across components, incurring substantial
performance costs and offering limited crash tolerance.

We propose a robust alternative: a secure state-preservation
mechanismfor trusted components that eliminates costly duplica-
tion of trusted states across replicas. At its core is Aegis, the first
efficient view synchronizer specifically designed for BFT protocols
that utilize trusted components. Aegis enforces that only one
trusted component instance per replica may vote in any view, even
when trusted components restart following a crash or are cloned
by an adversary. On top of Aegis, we introduce Pallas, the
first BFT consensus protocol that preserves safety against a strong
adversary that controls a fixed set of Byzantine replicas and can
cause a potentially unbounded and varying number of trusted
components to crash. We determine the adversarial conditions
under which Pallas ensure liveness under partial synchrony.

Extensive geo-distributed evaluations on Amazon AWS show
that Pallas delivers high performance with negligible overhead
in stable conditions, outperforming existing protocols by up to 41%
in throughput and 29% in latency. More importantly, it sustains
liveness and graceful degradation under adversarial conditions
where other protocols fail.

1. INTRODUCTION

Trusted Execution Environments (TEEs) [1-3] are increas-
ingly being incorporated into Byzantine Fault-Tolerant (BFT)
consensus protocols to enhance resilience without increasing
system size, or to achieve comparable fault tolerance with
fewer replicas, thereby improving performance. By leveraging
TEEs, recent protocols can operate with as few as 2f+1
replicas [4-7] to tolerate f Byzantine replicas, a significant
improvement over the traditional 3 f+1 requirement [8-10]. In
addition, TEE-based consensus algorithms [5, 6] benefit from
a reduced number of communication phases, which reduces
latency. However, TEEs introduce new security vulnerabilities,
most notably rollback attacks [11], where a TEE is reset to a
previously recorded state or is duplicated. These attacks allow

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.242443
www.ndss-symposium.org

Vincent Rahli
University of Birmingham
v.rahli@bham.ac.uk

Jiangshan Yu
University of Sydney
jiangshan.yu@sydney.edu.au

a single replica to emit conflicting votes, a problem known as
equivocation, which leads to consensus safety violations.

While rollback attacks have long been recognized as a secu-
rity concern in both TEE and cloud computing literature [11],
their implications in the context of BFT consensus protocols
remain inadequately addressed [12]. Current solutions often
fall short mainly due to impractical countermeasures that dilute
or negate the very performance gains TEEs are designed to
provide. One commonly proposed mitigation strategy involves
replicating the internal state of TEEs across multiple replicas
or trusted parties [13—16]. However, this approach introduces
considerable computational and communication overhead. The
burden of synchronizing sensitive TEE state across replicas
weakens their performance efficiency, negating in some aspects
the reasons for their deployment in the first place. Another
commonly suggested approach is to treat TEE failures, in-
cluding crashes and restarts, as manifestations of Byzantine
behavior [12]. The downside of such an approach is that it
inflates the minimum system size required to tolerate a given
number of faults. As a result, protocols would often need
significantly more replicas, thereby offsetting the scalability
and low-latency advantages TEEs otherwise promise [17].

More critically, the literature on rollback-resistant consensus
algorithms tends to only model weak adversarial capabilities.
For instance, much of the prior work assumes a Byzantine
attacker that can revert a TEE to a previously valid but stale
state [18]. This overlooks far more sophisticated attack vectors,
such as the creation of cloned TEEs (a.k.a. forking [11, 19])
with divergent states [13], or remote denial-of-service (DoS)
attacks that cause host-level crashes or reboots. Since most
TEEs do not persist enclave state across restarts, such events
result in the loss of volatile state. Under a mobile adversary with
such capabilities [20], all previous consensus algorithms would
eventually lose liveness because they do not allow crashed
replicas to safely rejoin the protocol. Supporting dynamic
membership is essential but challenging, as improper handling
risks violating safety.

This paper addresses these challenges by introducing a
rollback-resilient consensus framework that maintains both
safety and liveness under a significantly powerful adversarial
model, one that encompasses static Byzantine faults with a
wide TEE attack vector as well as mobile TEE crashes [20].
We identify that maintaining liveness under rollback-prone
conditions requires a carefully coordinated interaction between

the consensus algorithm and its view synchronizer. Specifically,
the consensus must support safe rejoining of new TEE
instances, while the view synchronizer must maintain accurate
membership knowledge.

To this end, we first introduce Aegisl, a robust view
synchronizer designed to guide correct replicas in reaching
agreement on the current view number. It tightly regulates
TEE voting privileges during view changes, allowing only one
active TEE instance per replica in any session. Traditional
view synchronizers lack provisions for securely reinserting
or replacing a replica’s TEE following its crash. In contrast,
Aegis is the first synchronizer that is purpose-built to
efficiently support trusted hardware, resolving TEEs joining
the system via a session-oriented approach that decouples join
approval from activation. This design enables robust recovery
from TEE failures without jeopardizing the complexity of the
system or the number of replicas.

We integrate Aegis within a high-performance BFT con-
sensus protocol equipped with rollback-aware safeguards and
TEE membership restoration capabilities, forming a cohesive
system that tolerates a broad range of adversarial conditions.
Our protocol, which we call Pallas”, ensures progress
under partial synchrony [21] and adversarial conditions, while
retaining a minimal configuration of N = 2F + 1 replicas,
where F denotes the total number of faulty replicas, accounting
for both Byzantine failures and crash-induced TEE faults (see
Section II-B). Through rigorous experimentation on real-world
infrastructure, we demonstrate that Pallas delivers high
performance with negligible overhead in stable conditions,
outperforming state-of-the-art BFT consensus systems by up
to 41% in throughput and 29% in latency. Importantly, it
sustains liveness and low latency despite frequent TEE crashes,
degrading gracefully and recovering robustly in adversarial
conditions where competing protocols cease to be live.

In summary, we provide the first practical BFT consensus
protocol that is both efficient and provably resilient to rollback
attacks, enabling the safe use of TEEs in critical distributed
systems. Overall, we make the following contributions:

o We present a powerful adversarial model in the partially
synchronous setting that captures both static Byzantine
faults and mobile TEE crashes, expanding prior threat
assumptions to more realistically reflect attack surfaces
encountered in practical deployments.

e We introduce Aegis, a view synchronizer that enforces
the participation of at most one active TEE instance per
replica in each view. While Aegis shares high-level
structural elements with Cogsworth [22], specifically its
phased dissemination of votes, it departs from conventional
exponential-backoff approaches and, to the best of our
knowledge, is the first synchronizer to support TEEs that

IThe Aegis is the single most powerful and characteristic piece of armor or
equipment associated with Pallas Athena.

>The Greek goddess Athena, who is a symbol of wisdom and strategic
warfare, is frequently referred to in classical texts as Pallas Athena or simply
Pallas.

provide rollback resistance, clone protection, and increased
Byzantine robustness.

e We present Pallas, the first BFT consensus protocol
to guarantee safety and liveness under rollback attacks
without replicating TEE state or increasing the replica
count beyond N = 2F 4+ 1. By combining secure TEE-
join handling, rollback recovery, and view synchronization
into a single efficient protocol, Pallas maintains robust
operation even under repeated TEE crashes. A provably
safe recovery mechanism enables eventual recovery from
an unbounded number of crashes, setting Pallas apart
from prior protocols that lose liveness or require manual
intervention under repeated or mobile faults.

e We implemented Pallas and Aegis on top of Damy-
sus [6], a cutting-edge streamlined TEE-based BFT proto-
col using Intel SGX [23] and evaluated it through AWS
EC2 geo-distributed deployments. Our results demonstrate
that Pallas outperforms existing solutions under normal
and frequent crash-recovery conditions.

II. MODELS AND OBJECTIVES
A. System Model

We consider a system of IV replicas that are each equipped
with a trusted component that executes code securely within
an isolated memory region and supports remote attestation. A
trusted component can save its state encrypted on disk, and
upon crashing, use it to recover its state. Replicas implement
a Byzantine fault tolerant (BFT) state-machine replication
protocol.

We adopt the standard communication model that has been
assumed by most BFT protocols [6, 14, 24]. Replicas exchange
messages over a partially synchronous and fully connected
network that might duplicate, delay or drop messages. The
network being partially synchronous [21] means that there may
be unstable periods of time where messages exchanged between
correct processes are arbitrarily delayed. However, there is a
known bound A and an unknown Global Stabilization Time
(GST), such that after GST, all messages are guaranteed to be
delivered within A time, which enables liveness. In this model,
consensus safety has to be ensured at all times, while liveness
has to be guaranteed after GST. Trusted components do not
have direct access to the network, and rely on their hosts to
transmit and receive messages. We also assume the existence of
a Public Key Infrastructure used by participants to distribute the
keys required for authentication and message signing. Replicas
have access to classical cryptographic primitives, including
secure hash functions and digital signature schemes.

B. Threat Model

We consider a hybrid fault model consisting of a static
Byzantine adversary, which causes Byzantine faults, and a
mobile crash adversary, which causes crash faults of TEEs.
Out of the N replicas in the system, we tolerate F = f+u
faulty replicas, where f denotes the maximum number of
Byzantine replicas and u denotes the maximum number of

crashed TEEs. We assume that the two adversaries can collude
and coordinate perfectly.

The Byzantine adversary is capable of compromising up to
f replicas over the system’s lifetime. Once compromised, a
replica may behave arbitrarily and its internal components can
be tampered with, except the TEE components. However, the
adversary retains the ability to fork the TEE, i.e., instantiate
multiple clones of a TEE at any previously observed state,
thereby undermining assumptions about the uniqueness or
freshness of TEE state. Additionally, the adversary can also
mount a rollback attack by supplying a restarting TEE with
stale encrypted state retrieved from disk [11, 19].

The mobile crash adversary can crash the TEE of replicas
at any given time by resetting their trusted components, e.g.,
by crashing the replica through DoS attacks, thereby erasing
the internal state of its TEE component. However, in practice,
while the TEE may lose its state and become non-functional,
the replica may still resume operations that do not require TEE
access. In such cases, the replica continues to function, albeit
without its TEE, until the TEE is eventually restored. The term
“mobile” reflects the adversary’s ability to shift control from one
replica to another over time. This movement is constrained by a
security parameter A, which bounds the minimum time between
successive compromises. We assume that after GST, the mobile
adversary’s speed, which is dependent on A\, may allow it to
crash up to u replicas simultaneously. This, for example, can
be guaranteed by regulating the speed at which those crashed
replicas can recover compared to the adversary’s speed for
crashing new ones. Although initially the adversary can only
control at most u replicas simultaneously, it is possible that it
may crash additional replicas if some previously compromised
replicas are taking “too long” to recover. As a result, the
total number of replicas in a crashed state may temporarily
exceed u. This can happen, for instance, during an extended
period of asynchrony before GST, where typical membership
and recovery protocols lose liveness, giving the adversary
enough time to move to new targets before earlier victims
have recovered. In the worst case, an attacker can crash the
TEE of all correct replicas, forcing them to restart their TEEs,
affecting liveness. A detailed analysis of the parameter A for
our protocol is provided in Appendix B.

C. Security goal

Our goal is to allow the system to guarantee consensus safety
at any time and consensus liveness after GST, while tolerating
F faults with N > 2F+1 replicas.

III. SOLUTION OVERVIEW AND KEY IDEAS

Rollbacks in Trusted Execution Environments (TEEs) in-
troduce a serious threat to safety in TEE-based consensus
protocols. If a TEE reverts to a prior state while retaining
voting privileges, effectively functioning as a duplicate of its
former self, it may violate consensus safety by equivocating,
potentially enabling a single replica to vote more than once. To
mitigate this risk, we implement a design that enforces strict
voting eligibility: each replica is restricted to a single active

TEE instance per view. This instance is uniquely identified and
authorized to cast votes. Any additional TEE instances, such
as outdated clones from earlier replica states, are explicitly
prohibited from participating in the voting process.

We achieve this by organizing protocol execution into
sessions, each comprising multiple consensus views, and use a
periodic view synchronizer to apply membership changes for
enforcing TEE membership consistency, while maintaining a
system size of N > 2/ +1. In this design, the synchronizer acts
as a reliable broadcast channel to announce and activate new
TEE instances, each tagged with a unique, freshly generated?,
and agreed-upon nonce. Agreement on these identifiers is
established through consensus executions carried out between
two consecutive synchronizer invocations. In this way, a
synchronizer execution relies on the membership that has been
decided by the consensus instances completed since the last
successful synchronizer execution. This process guarantees that
all correct replicas recognize exactly one valid TEE instance
per replica per view, thereby preventing multiple clones from
participating concurrently.

Interestingly, deciding which replicas to include in a view
without getting the normal consensus execution involved, i.e.,
by relying solely on the view leader in the view synchronizer,
is not possible. Modern synchronizer designs use multiple
leaders to trigger a view change (for liveness). Consequently, if
distinct leaders were to initiate the same view while selecting
different memberships, correct replicas may have inconsistent
perspectives on the participating nodes, violating agreement.
This could happen, for example, if different leaders were to
accept different TEE instances of the same replica in concurrent
executions of the synchronizer.

Alternative mechanisms that attempt to enforce a single valid
TEE instance per replica and per view, such as relying on local
decisions or deferring membership agreement to in-progress
consensus executions, are also ineffective. Local uncoordinated
decisions cannot guarantee that all correct replicas agree on
view membership (including the leader and voting set) prior
to view initiation, a critical safety requirement. Meanwhile,
determining membership on the fly solely via consensus
executions (by reading the latest agreed upon membership
changes) is possible, but requires increasing the replica count
to ensure a quorum always remains available despite Byzantine
faults and crashes.

With N = 2f+42u+1 , our solution ensures that, after GST,
at least f+1+4u replicas remain continuously online, each with
a unique non-forked TEE instance. This design guarantees that
the majority of active replicas in any given view have distinct
TEE identities, a property that is fundamental to ensuring both
safety and liveness.

A. Replica Restarts
Whenever a replica initiates a new TEE instance, such as

following a restart, it must issue a join request encoded as a

3We force TEEs to generate a new nonce when restarting, preventing the
existence of two identical TEE instances (see Fig. 3).

clients
)

transactions)

\ N

N \ N

N
! -

[/
W
v

join requests
& transactions
are agreed upon

join requests
& transactions
are agreed upon

join requests
become effective

2(f+u)+1 nodes

join requests
& transactions
are agreed upon

join requests
& transactions
are agreed upon

/

a
y
N\,

join requests
become effective

join request

join request

;}CO”SE”SUS viewF
(session 0)

synchronization:
session 0to 1

consensus view F+1 consensus view 2F+1
(session 1)

synchronization:
session 1 to 2

Fig. 1: High-level view of the protocol

special transaction to be processed through standard consensus.
To ensure that no replica has multiple active TEE instances
within a single view, if multiple join requests from the same
replica are generated for the same view, only the first request is
accepted. Subsequent requests for the same view and from the
same replica are discarded. The consensus leader of the view
governs the filtering and ordering of these join requests, while
other replicas have to vote on them, enforcing the uniqueness
of a TEE instance per replica per view. Once the join request
is accepted by consensus, the new TEE instance can start
being involved only after the next synchronizer execution.
As previously discussed, while immediate integration without
synchronizer execution might be technically feasible, it would
demand additional adaptations of the consensus protocol. Our
approach favors generality and wider applicability.

B. Solution Components and Their Interaction

Our rollback-prevention mechanism combines a consensus
algorithm (built on top of Damysus [6]) and a view syn-
chronizer (inspired by Cogsworth [22]). When replicas restart
with new TEE instances, they broadcast TEE join requests,
which are validated by consensus (like standard transactions).
The synchronizer periodically activates committed TEE join
requests letting approved replicas rejoin and become active
voting participants. Immediate rejoining, i.e., in the next view
as opposed to periodic activation, is unsafe without safeguards
to prevent equivocation - only one TEE per replica is allowed
per view. We argue that enforcing these safeguards becomes
particularly challenging when view v cannot be completed,
due to factors such as network delays or a faulty leader, and
replicas must leap ahead to view v+1 from an earlier point to
preserve system liveness. Hence, our approach decouples join
request approval from execution for modularity and safety.

Our approach makes the system progress in successive
sessions, each potentially encompassing several consensus
views. At the end of a session, the synchronizer activates
approved join requests, allowing replicas to rejoin. Deferring
membership changes to session boundaries guarantees that
no two clones of a replica operate within the same session.
Even if a view within a session fails, the synchronizer ensures
transition to the next session without violating this rule.

As illustrated in Fig. 1, for parameters 7 = 2and f =u =1,
permitting one Byzantine fault and one recoverable crash. Each
session spans F 4 1 views. During these views, replicas agree
on client transactions as well as on join requests. For example,
replica 74 restarts in session 0, and its join request is passed
to consensus and is approved during that session. It reenters
the system only at view F-+1, marking the start of session 1.
Likewise, 73 restarts in session 1 and resumes participation
at view 2(F+1). With v = 1, our system maintains safety
and liveness after GST with at most one crash at any time.
However, our mobile crash model permits distinct replicas to
crash and recover over the course of time: safety is always
maintained and liveness is ensured after GST if the recovery
rate outpaces the failure rate.

View Synchronizer-Consensus Interactions: The pseudo code
in Fig. 2 outlines how replicas manage join requests and view
changes by interacting with both the view synchronizer (Fig. 3)
and the consensus protocol (Fig. 4).

Each replica maintains a local session number session and
view number view, outside the TEE, to record the latest session
and view it has reached. Correct replicas and those under
rollback attacks, store their own session and view correctly,
whereas Byzantine replicas can modify them arbitrarily. The
role of the synchronizer is to periodically synchronize all
correct and recovering replicas to a common session and view.

Every sync_period views, replicas initiate view syn-
chronization by calling wish_to_advance(). When a
restarted replica spins up a new TEE instance, it triggers
wish_to_join() (l. 12, Fig. 2a) to generate a join request.
A correct replica does so immediately upon reboot, while
there is no guarantee when a Byzantine replica might call this
function. When wish_to_join() is called, the replica’s TEE
creates a join request for the next session number. Specifically,
since each replica stores the last session it participated in on
permanent storage outside the TEE (1. 50, Fig. 3a), calling
the TEE function TEErequestjoin to generate a join
request produces a request for session+1, where session is the
replica’s last session before it crashed. TEErequest join is
defined at 1. 13 of Fig. 3b and invoked at 1. 14 of Fig. 2a.

When a replica attempts to rejoin the system, it may not
know which replica is acting as leader and hence it broadcasts

(a) Non-trusted code at replica ¢

. Common variables:

e view :=0 // current view

® session := 0 // current session number

Gstore // last store certificate

received_joins := () // set of received join requests
sesstons // array of last joined sessions per replica
sync_period // synchronization period
last_sync // number of views since last synchronization
blocks // maps views to blocks

CH VTN E PO ORI N R W

27: // for replicas to start a new view or synchronize
28: function start_new_view()
29: if last_sync > sync_period then

30: wish_to_advance()

31: last_sync := 0

32: else

33: send ¢, 1= TEEnewview(siore) to view’s leader
34: last_sync++

35: end if

36:

(b) TEE code

. // for replicas to (re)join the system 1: Common variables:
: function wish_to_join() 2: @ id // fixed, hardware based
if a join certificate for session sesston+1 has not been generated then 3: e syncing := false // consensus/sync state, volatile
®join := TEErequest join(session+1) 4: e view :=0 // current view, volatile
record on disk that a ¢jon certificate was generated 5: e session := 0 // current session, volatile
send join(¢join) to all 6: @ prepv := 0 // view of latest prepared block, volatile
else 7:
: send the join certificate for session session—+1 to all 8: // generic accumulator: R
: end if 9: function TEEaccum(¢, ¢) where ¢ is (TAG, p), and ¢ has size F
20: 10: if all certificates are from different replicas A Vo' € ¢.¢" < ¢ then
21: // to handle join requests 11: return acc := (ACC|TAG, p) -
22: all replicas 12: end if
23: wait for a join request @join 13:
24: joins := join requests in blocks from beginning of session up to ¢siore’s view
25: update received_joins with ¢ if its session exceed those in joins, the one

in received_joins and the one in sessions

Fig. 2: High-Level pseudo-code of the glue code between the synchronizer and Damysus

its join request to all other replicas. Notably, the replica does
not need precise knowledge of the current session number. For
example, replica j may attempt to join sesston+1 even if the
system has already progressed to session+2. Such a request
remains valid and will be considered by the consensus protocol.
To guard against replay of stale join requests, which could
be exploited to eject a previously rejoined TEE, each replica
maintains a record of the last session joined by every other
replica in an array sessions (l. 6, Fig. 2a and maintained in
Fig. 3a).

Upon receiving a join request from replica j, the system
performs two checks: (1) it checks that the request’s session
number is strictly greater than sessions[j]; and (2) it verifies
that no pending or prepared join from j in the current session
has a higher or equal session number. A join request that passes
those two checks is accepted and added to received_joins. Oth-
erwise, the request is discarded as stale or duplicate, ensuring
that outdated messages cannot be replayed to trigger unintended
re-join. During regular consensus executions, pending join
requests are treated as special transactions. These requests
reside in the received_joins set until they are incorporated
into a prepared block, at which point they transition into the
standard block ledger.

At the end of each consensus instance (or view), replicas
must determine whether to remain in the current session
or initiate synchronization for a new session. This decision
hinges on the system’s synchronization schedule. Specifically,
if the view number satisfies view mod sync_period = 0,
it indicates the session has reached its end. In such cases,
the replica triggers wish_to_advance() to activate the
synchronizer (1. 7, Fig. 3). If the session is not due for
synchronization, the replica proceeds to the next view within
the same session. It does so by sending a new-view message

to the designated leader of that view (l. 33, Fig. 2a).

IV. VIEW-SYNCHRONIZATION, TEE MEMBERSHIP UPDATE
AND RECOVERY

This section outlines the mechanism by which replicas,
whose TEEs may have restarted, can safely rejoin the system.

Traditional synchronizer designs, which coordinate view
transitions among replicas, are not suited for TEE-assisted
protocols and lack provisions for handling rejoining replicas in
a secure and consistent manner. In our approach, replicas that
restart, whether due to benign failures or adversarial resets,
submit a special join request to re-enter the system. These
requests are treated as transactions and subject to consensus
voting. At regular intervals, Aegis, our modified synchronizer
(Sec. IV-A) is invoked to incorporate replicas whose join
requests have been approved, thereby updating the system
membership in a secure and coordinated fashion.

A. Aegis: View Synchronizer and Rollback-Prevention

Fig. 3 presents our synchronizer, which prevents rollback
attacks by using random nonces to uniquely identify TEE
instances. When a replica’s TEE restarts and issues a join
request via TEErequestjoin (I. 13, Fig. 3b), it includes
a freshly generated nonce and the target session. This nonce
uniquely identifies the TEE instance and is embedded in the
join request, which is then voted on by the consensus protocol.

To prevent concurrent participation by multiple TEE in-
stances from the same replica, the synchronizer enforces a
strict rule: within each synchronization interval, only one
nonce per replica per session may be accepted. Upon restart,
a replica generates a single nonce during its initialization (via
TEErejoin). If multiple join requests with differing nonces
are submitted for the same session, only one is accepted and

(a) Non-trusted code at replica ¢

Common variables from Fig.

Pstore
sessions

blocks

o view :=0
e session : =0

. Additional variables:

. e attemptedTC :=0

. e attemptedQC :=0

I ® acCeync(s) // latest request to synchronize

// for replicas to synchronize
: function wish_to_advance()

Psync(s) = TEEsync(®store)

send ¢gync(s) to leader(s)

: as a leader(r)
receive F+1 ¢gyne(s) or 1 accoync(s), such that s < r < s4+F,

for the first time (different accgsync(s) from different leaders are allowed)
if received F+1 synchronization requests then

D AE PO D0R IR W~

Psync(s) *= Wwish certificate with highest view

i)’bym(s) := F other wish certificates .
17: acCsyne(8) = TEEaccum(@gync(s)s Psync(s))
18: end if
19: send accsync(s) to all
20:
21: all replicas
22: receive a valid accgype(s) from leader(r) such that s < r < s+F
23: acceync(s) is of the form (ACC|SYNC, s, v, h)o .
24: send accsync(s) to {leader(s),..., leader(s+F)}
25: joins := join requests in blocks from beginning of the session up to v
26: J:=1[] // pairs of ids/nonces
27: for each (s', nonce),, € joins do J[k] := nonce
28: Guote(s) = TEEvotejoin(accsync(s), J)
29: send ¢yope(s) to leader(r)
30:
31: all replicas
32: when timeout after 2A from sending a Gync(s)
33: and not receiving accgyne(s)
34: and attemptedTC < view+F+1
35: send @gyne(s) to leader(attemptedTC)
36: attemptedTC++
37:
38: as a leader(r)
39: receive F+1 dyope(s) such that s < r < s+F,
40: with the same first four fields s, v, h, J,
41: and has not sent a ¢ cere(s)
42: & := the collection of F+1 signatures
43: ¢ce7't(s) := (VOTE, s, v, h, J) 5
44 send ¢ eepe(s) to all
45:
46: all replicas
47: receive a valid ¢ e (s) from leader(r) for s <7 < s+F
48: Geert(s) is of the form (VOTE, s, v, h, J) 741
49: attemptedTC := s; attemptedQC := s; session := s; view := v
50: store session on disk
51: update sessioms so that the replicas in J are mapped to s
52: ¢store := TEErejoin(deeri(s))
53: start_new_view()
54:

60: all replicas
61: when timeout after 2A from sending a ¢ yote(s)

and not receiving @ e (s)

and attemptedQC < view+F+1
// votes are sent when receiving a TC 11. 22-29
send ¢yote(s) and accsync(s) to leader(attemptedQC)
attemptedQC++

(b) TEE code

Common variables from Fig.

view := 0
session =0
prepv := 0

id
e syncing := false

1: Additional variables:

2: e nonce := L // nonce used to join a view, volatile
3: e initialized := false // set to true once initialized
4:

5: // Freshness generation mechanism

6: function TEEsync(@siore) Where @siore is (PCOM, s, v, h) /s

7: if initialized A nonce # L A s = session A v = prepv then
8: syncing := true

9: return Gy (session+1) ‘= (SYNC, session+1, prepv, h) o,
10 end if

11:

12: // s is a session number provided by the 0S:

13: function TEErequestjoin(s)
14: if nonce = L then

15: nonce := generate new nonce
16: return ¢;o;, := (JOIN, s, nonce)o
17: end if
18:
19: function TEEvotejoin(accsync(s),J)
. where accgync(s) is (ACC|SYNC, s,v,h)dj
20: // only allow voting on “future” views:

21: if s = session+1 A syncing then

2 FOUN G yptcd (session) = (VOTE, 5,0, h, J)or
23: end if
24:

25: // View progressing mechanism
26: function TEEre join(geeri(s)) Where ¢eere(sy is (VOTE, s, v, h, J) 2711

27: c1 := (id, nonce) € J A's > session
28: co = (session+1 =3s)ANid & J

29: if ¢ V co then // ¢y for “safety” and ¢y for “liveness”
30: session 1= s

31: view 1= v

32: prepv = v

33: syncing := false

34: initialized := true

35: return ¢gore := (PCOM, s, v, h, H|)o
36: end if

37:

Accumulator from Fig.

function TEEaccum(¢, ¢) where ¢ is (TAG, p), and & has size F
if all certificates are from different replicas A V¢’ € ¢.¢" < ¢ then

return acc := (ACC|TAG, p),/
end if

Fig. 3: Aegis: TEE-aided view synchronizer and rollback prevention

the others are rejected. This prevents multiple TEE clones from
joining consensus simultaneously.

Replicas periodically call wish_to_advance() to initiate
synchronization. This triggers a call to the TEE function
TEEsync (1. 6, Fig. 3b), with the replica passing in the last
store certificate it produced during consensus. A store certificate
guarantees that a block proposed by a leader in a given session
and view has been verified and accepted (i.e., committed but
not necessarily yet decided).

TEEsync only generates a certificate if the TEE was

initialized with a current nonce (indicating that the TEE
is active and not restarting), and if its session and view
numbers match the ones in the store certificate (ensuring
consistency between the replica’s TEE state and the provided
store certificate, i.e., this store certificate was the last one
generated by the TEE). If all conditions hold, the TEE sets
an internal flag syncing to true (indicating that this replica is
now committing to synchronizing), and outputs a certificate
Gsync(s) to synchronize and transition from session s to
session s+1. Setting the syncing flag to true forces the replica

to stop participating in the normal consensus protocol while
synchronization is in progress, preventing it from accidentally
preparing new blocks in the old session during the transition.
The replica sends this certificate to the leader of session s. If
no reply from the leader is received after some time, the replica
re-sends the synchronization request to the next leader (l. 35,
Fig. 3a), and repeats this for 41 views to ensure liveness.
A reply from the leader is a accgync(s), also called a TC for
“Time Certificate” in Cogsworth.

Once a leader collects a quorum of F+1 synchronization
requests (1. 12, Fig. 3a), it creates a TC of the form acceync($)
out of those requests by calling the accumulator (1. 17, Fig. 3a),
and broadcasts this TC to all replicas. If a TC was already
received, the leader simply relays it.

The syncing flag serves a critical role in maintaining
protocol safety. Without this safeguard, replicas might initiate
synchronization for a triple (s, v, h), h being the latest block
prepared at view v, while concurrently participating in consen-
sus during session s. If a consensus decision advances to an
extended block b’ in view v+1 within the same session, Byzan-
tine participants can issue synchronization messages for both
(s,v,h) and (s,v+1,H(b")), undermining the accumulator’s
ability to ensure the uniqueness of the leader’s TC.

In session s, leaders (whose IDs belong in [s,s+F])
may concurrently generate TCs to ensure liveness, possibly
from different synchronization requests. These requests target
session s+1 but may differ due to delays or malicious faults. To
resolve discrepancies, the stateless accumulator (1. 9, Fig. 2b)
selects the request with the highest view, producing a TC
acCsync(s) that preserves committed blocks.

Safety is preserved even with concurrent synchronization
runs. The request selected by the accumulator defines mem-
bership uniquely through its view, guiding join computations
and avoiding conflicting views. The highest view encoded
in the TC specifies the join requests used to compute the
new replica membership (1. 25, Fig. 3a). This uniqueness is
essential to avoid diverging memberships across replicas and is
reinforced by consensus-based voting on join requests. While
the TC governs membership changes, session block content
determines the operational semantics. Thus, replicas defer
processing synchronization requests and TCs until they verify
the presence of all preceding blocks in the ledger, fetching any
missing ones if necessary (Il. 3 and 14, Fig. 4a).

Upon receiving a TC (1. 22, Fig. 3a), a replica first
disseminates it to all leaders of the corresponding session (1. 24,
Fig. 3a) to prevent losing liveness due to faulty participants.
Each replica subsequently computes the set joins of join
requests prepared in the session, based on the TC’s view
number (1. 25, Fig. 3a). From joins, an array J of replica
IDs and nonces is extracted and passed, together with the TC,
to TEEvotejoin (l. 28, Fig. 3a).

The function TEEvotejoin verifies that the session num-
ber in a certificate matches the expected next session (1. 21,
Fig. 3b). If valid, it issues a vote certificate (1. 22, Fig. 3b)
comprising the session number, view number, hash of the last
prepared block h, and a list J of joining replica IDs and nonces.

These certificates (1) authorize approved replicas to safely join,
and (2) contain enough context, i.e., view v and hash value h,
to derive a new store certificate (1. 35, Fig. 3b) from the original
one that triggered synchronization (. 6, Fig. 3b).

Leaders gather votes from TEEvotejoin (I. 39, Fig. 3a).
Once F+1 consistent votes are collected, they form a quorum
certificate (QC) (VOTE, s, v, h, J)s and broadcast it (. 44,
Fig. 3a). This QC guarantees at least one correct replica
processed the synchronization logic and created a valid J.

Upon receiving a QC (1. 47), each node updates its TEE state
(session and view number) by calling TEErejoin (l. 26). A
replica joins the session if either: (a) it is a joining replica,
i.e., its ID and nonce are in J, and s is larger than its local
session (condition ¢y, 1. 27, Fig. 3b); or (b) it is a continuing
replica, i.e., its session is s—1 and it is not in J (condition c,,
1. 28, Fig. 3b).

When joining upon such a QC, both view and prepv are set
to (s,v), and syncing is set to false to indicate completion.
A new store certificate (PCOM, s+1,v,h), (l. 35, Fig. 3b) is
produced, enabling view transitions in the next session.

Replicas adopt the QC view both inside and outside the TEE.
Since QC views may be lower than local views but still greater
than or equal to the last prepared view, replicas may “rollback”
to v, e.g., after timeouts where only some replicas incremented
to v+1. This rollback is safe due to the incremented session
and synchronized ledger state.

B. TEE Membership Recovery

In extreme failure scenarios, progress in the main consensus
protocol may stall if too many TEEs from the last agreed
membership simultaneously crash. Specifically, if u+1 or more
TEEs fail simultaneously, f Byzantine nodes can prevent the
formation of a quorum of f+u+1 TEEs by remaining silent.
Therefore, to prevent loss of liveness, we design a recovery
protocol that does not depend on any TEE-based operations.

Recovering from this liveness failure poses two critical non-
trivial challenges. First, the system must establish agreement
on a new valid membership configuration that enables quorum
formation for safe decision-making. Second, this reconfigu-
ration must be derived from a minimal subset of surviving
nodes that retain the most recent, coherent system state. This
state must be reliably propagated and adopted by the new
membership to preserve consensus continuity and prevent forks
or inconsistencies in future decisions.

To recover from such a loss of liveness, which can occur
before or after GST, each replica monitors for prolonged
consensus inactivity, using a timeout of F+1 unsuccessful
views. When detecting a timeout, a replica broadcasts a
trigger for TEE membership election and halts participation in
consensus. Once f+1 such votes are received, a correct replica
joins the recovery process, votes to initiate it, and exits the main
consensus loop. After GST, this liveness-loss condition only
happens if consensus progress remains blocked, but eventually
all correct replicas will converge on this election process.

The TEE membership election process must fulfill two goals:
(i) establish a unique new TEE membership; and (ii) ensure

this membership extends the latest prepared block, avoiding
conflicts with committed history.

To prevent replay of old blocks after recovery that might
lead to conflicts, session numbers are embedded in recovery
messages. Nodes wait for f4+u+1 messages with a fresh
membership ID (a nonce) before transitioning. These nodes
do not vote on blocks and thus form a safe quorum to initiate
recovery.

Once in recovery mode, each replica reliably broadcasts its
view number, TEE nonce, and latest known prepared block.
Replicas retain the freshest such message from each peer.
To determine the latest prepared block, each replica collects
2f+u+1 signed responses. While Damysus requires f+u-+1
for quorum, intersection with Byzantine replicas may lead to
stale QCs. Messages contain signed QCs, including a reference
to previous memberships ensuring consistency. A necessary
condition for obtaining the freshest QC is 2f+u+1 < N—f.
This leads to f < u, a bound required for safe recovery.

To ensure that only one TEE membership is elected, a
quorum size of Q,, = [f]+u+1 replicas must agree. This
guarantees intersection between any two quorums in at least
f+1 replicas, sufficient to break ties and avoid conflicts.

This bound is derived as follows:

o For any two sets of size @, to intersect in at least f+1
replicas:
2Qm - (f+1) 2 N

« Since the system size satisfies N > 2f+2u+1:
2Qmm—(f+1) > 2f+2u+1

o Rearranging yields:

2

This quorum ensures that any pair of election quorums
overlap, preserving agreement and preventing divergence in
membership selection.

Upon initiation of membership recovery, replicas:

2Qm 2 3f+2ut2 = Qpm 2> F)f-‘ +u+1

e Switch to TEE-only voting: they continue running the
partially synchronous consensus but now exclusively vote
on TEE membership proposals.

¢ Require a valid proposal: a correct leader constructs a
proposal with (i) the latest prepared block (carrying a QC
with 2 f4u-+1 signatures), and (ii) a proposed nonce per
QC replica.

Nodes only vote if the proposed nonce matches their intended
TEE state. Once a TEE membership is committed, a node agrees
to resume voting on blockchain blocks and on membership
joins messages.

The rest of the recovery procedure is outlined as follows.

1) Replica Broadcasts. Each replica uses a reliable broad-

cast to transmit to all others the following information:
o Its current TEE nonce

o The latest view and session numbers where it saw a
committed block

« A monotonically increasing counter indicating the
current membership recomputation round

2) Consensus on Nonces. Upon receiving N—f nonce
messages (suggesting at least f+1 correct sources), each
replica joins up to /N binary consensus instances:

« For each replica, agree on its nonce or decide L
o Nonces not delivered are treated with L (absence or
invalidity)

3) Finalizing Membership.

o All nodes reach agreement on which nonces to
include

o If too few (less than a quorum) valid (non-_L) nonces
are chosen, membership must be recomputed

4) Synchronizing Pacemakers. Replicas that are part of
the newly agreed membership adopt the smallest view
number strictly greater than the highest one delivered
via broadcast.

V. Parras: A ROLLBACK-RESILIENT BFT CONSENSUS
A. Protocol Description

Fig. 4 presents Pallas, which implements rollback-
prevention safeguards on top of the Damysus [6] consensus
protocol. In the original Damysus protocol, replicas vote on a
tuple (v, h), representing the view number and block hash.
Our modified version extends this to a triple (s,v,h) by
incorporating the session number s, which helps distinguish
progress across sessions and prevent replays.

Blocks contain client transactions and any pending join
requests, the latter treated as special transactions from replicas.
By embedding join requests directly into proposed blocks (I. 8,
Fig. 4a), we eliminate the need for a separate membership
voting round. Thus, the protocol avoids maintaining or voting
on a distinct “join request list”, any relevant membership
changes are already captured within the block itself.

a) Prepare phase: New-view messages from backups
to the leader now include a session number (1. 3, Fig. 4a)
alongside the current view, last prepared view, and the hash of
the last prepared block. Upon receiving a quorum of new-view
messages, the leader invokes the TEE accumulator TEEaccum
over these messages to generate a new-view certificate acc,
(1. 7, Fig. 4a), attesting to the latest view. It then proposes a
new block extending the certified block hash and includes any
unprepared join requests as special transactions (l. 8, Fig. 4a).
The new block’s hash is passed to TEEprepare for signing
by the leader’s TEE, generating a session- and view-unique vote
(1. 10). To ensure at most one proposal per view, TEEprepare
checks that prepared = false, sets it to true, and allows
reset only via TEEnewview upon view increment.

Backups validate the leader’s proposal, which includes the
proposed block b, prepare certificate ¢y, and accumulator
certificate accy,,. They verify that any join request .J in b carries
a session number higher than prior joins from the same node
(1. 19, Fig. 4a), that b extends the block hashed in accy,,, and
that its hash matches the one in ¢,.,. Only if all conditions
hold will backups invoke TEEprepare to vote for b.

40

(a) Non-trusted code at replica ¢

Common variables from Fig.

: all replicas

wait for ¢giore := (PCOM, session, view, h)z from leader

execute b corresponding to h & reply to clients

for each node with a join request in b remove its entry in received_joins if the
session number in the request in b is greater than or equal to the one in received_joins

// starting new view

view++

start_new_view()

. // new-view after a timeout
. all replicas

if timeout

view++

start_new_view()

(b) TEE code

view := 0
sesston := 0
prepv := 0

id

.
e syncing := false :

Common variables, plus:
e prepared := false
function TEEnewview(¢sore) Where ¢giore is (PCOM, s, v, h) ./
if s = session A v = prepv then
view++
prepared := false
return ¢,, := (NV, session, view, v, h)s
end if

: function TEEprepare(h)
if —prepared then

prepared := true

return ¢,.., := (PREP, session, view, h) ./
end if

: function TEEstore((Zm&p) where q;prep is (PREP, 5,v, h) 741
if s = session A v = view A —syncing then

prepv = v

return ¢gore := (PCOM, session, view, h) s
end if

function TEEaccum(¢, ¢) where ¢ is (TAG, p), and qzhas size F
if all certificates are from different replicas A V¢’ € ¢.¢" < ¢ then

return acc := (ACC|TAG, p),/
end if

view := 0 received_joins := () 44:
session := 0 sessions 45:
Pstore blocks 46:
47:
1: // prepare phase 48
2: as a leader 49
3: wait for F+1 new-view certificates of the form 50:
(NV, session, view,v’, h’), such that all ¥ < h’ have been received // 51
+ fetch missing blocks // v',h’,o can vary 52:
4: ¢y 1= certificate in the new view certificates with highest v’ 53:
5: @ny is of the form (NV, session, view,v’, h') ’
6: qgm, := F other certificates _
7: accpny 1= TEEaccum(@ny, Pno)
8: b := createLeaf(h’, client transactions & received_joins)
9: blocks[view] := b
10: ¢Gprep := TEEprepare(H(b))
11: send (b, @prep, accpy) to all backups
12:
13: as a backup 1:
14: wait for (b, prep, aCCry) from the leader such that all ¥’ =< b have 2:
been received // fetch missing blocks 3:
15: accpy is (ACC|NV, session, view,v’, h') 4:
16: Gprep is (PREP, sesston, view, h) ./ 5:
17: @join := the join requests in b // possibly empty 6:
18: joins := join requests in_blocks from beginning of session up to v’ 7:
19: check that the sessions in ¢;oin are strictly higher than the ones in joins 8:
and in sessions 9:
20: ifb > k' AH(b) = h then 10:
21 blocks[view] := b 11
22 send ¢, := TEEprepare(h) to leader 12:
23: endif 13:
24 14:
25: // pre-commit phase 15:
26: as a leader 16:
27: wait for F+1 prepare certificates of the form 17
(PREP, session, view, h,v") s // os differ 18:
28: send ¢prep := (PREP, session, view, h,v') 5 to all 19
29: 20
30: all replicas 21
31: wait for (PREP, session, view, h,v’)z from the leader 22
32: @store := TEEstore((PREP, session, view, h,v’)z)
33: send Pstore to leader
34:
35: // decide phase
36: as a leader
37: wait for F+1 store certificates of the form (PCOM, session, view, h)
// os differ
38: send @sore := (PCOM, session, view, h)z to all
39:

Fig. 4: Pallas: BFT consensus where replicas handle and verify the validity of TEE join requests, built on top of Damysus [6]

b) Pre-commit phase: The rest of the pipeline proceeds
as in Damysus, with a small adjustment for rollback prevention.
Once a proposed block b accumulates a quorum of votes, the
leader disseminates a prepare certificate, prompting backups
to emit pre-commit votes, ultimately leading to a commit.

The pre-commit step in Fig. 4 deviates slightly from standard
Damysus. Specifically, TEEstore (I. 17, Fig. 4b) executes
only when syncing is false.

Upon block commitment, each replica updates its local list of
pending join requests (1. 43, Fig. 4a). Once a node’s join request
is accepted, earlier requests from that node are considered
obsolete and discarded. However, any newer join request with
a higher session number remains active for future processing,
ensuring the protocol preserves the latest join.

B. Proof Intuition

Our system inherits foundational safety and liveness proper-
ties from two well-established components that it builds upon:
the Damysus consensus protocol and the Cogsworth pacemaker.
These components have been proven to be safe and live under
partial synchrony and bounded Byzantine faults. We build on
their guarantees while introducing new mechanisms to handle
rollback-prone environments and dynamic replica recovery.

a) Intuition behind safety: Safety in our system is
preserved through three key mechanisms:

o Consensus-based Membership Installation. Any change
in replica membership, such as a TEE rejoining after a
crash, is only accepted if agreed upon through consensus.
This ensures that no conflicting or stale replica state can
influence the protocol.

o Single-Voter Enforcement per Replica. Our view syn-
chronizer, Aegis, guarantees that at most one trusted
component per replica can vote in a given view. This
prevents equivocation, even in the presence of rollback
attacks or cloned TEEs

Damysus Safety Guarantees. Since our protocol builds
directly on Damysus, it inherits its Byzantine fault
tolerance and quorum-based safety properties, ensuring
that conflicting decisions cannot be made.

Together, these mechanisms prevent rollback-induced safety
violations and ensure that all decisions are made by a consistent
and authenticated set of replicas.

b) Intuition behind liveness: Liveness in our system is
ensured through a combination of the following:

e Aegis Progress Guarantees. Because it builds on
Cogsworth [22], Aegis guarantees timely view changes
under partial synchrony, even when leaders are faulty. We
adapt Cogsworth’s claims 1 and 2 [22] to our Aegis
design showing that all honest nodes eventually enter the
same view within bounded time (see Appendix A for
detailed proofs).

Damysus Consensus Progress. Once in a common view,
Damysus ensures that honest replicas can reach agreement,
provided a correct leader is eventually selected.
Recovery Protocol for Crashed TEEs. We introduce a
secure rejoin mechanism that allows crashed replicas to
safely catch up and re-enter the system without violating
safety. This dynamic recovery ensures that liveness is not
lost even under excessive TEE crashes, i.e., when more
than F TEEs simultaneously crash.

By tightly coordinating the consensus layer, view synchronizer,
and recovery logic, we ensure that honest replicas make
progress even under frequent crashes and adversarial conditions.

VI. PERFORMANCE EVALUATION
A. Implementation

Pallas and Aegis are implemented in C+. Pallas
is built on top of Damysus [6], whose code is publicly
available*, while we implemented Aegis from scratch based
on the Cogsworth [22] paper. Like Damysus we use Intel
SGX [23] TEEs to run trusted services. While SGX has
known security vulnerabilities [25], our implementation focuses
on evaluating the performance of Pallas with and without
rollback attacks. Moreover, our trusted services are generic
enough to be potentially implemented in other trusted execution
environments, such as AMD SEV [2] or ARM TrustZone [26],
if needed. Replicas use ECDSA signatures with prime256v1
elliptic curves (available in OpenSSL [27]), and are connected
using Salticidae [28].

B. Baselines

We evaluate the performance of Pallas and compare it
with the following state-of-the-art protocols:

“https://github.com/vrahli/damysus

10

e Basic-Damysus+ROTE: A version of Damysus [6] with
2(f+u) + 1 nodes that uses ROTE [13] to replicate the state
of trusted components, in particular every time TEE counters
are incremented.

e Flexi-Basic-Damysus: A version of Flexi-BFT [12] with
3f+1 nodes that execute Damysus as its consensus protocol
and Cogsworth [22] as its synchronizer.

e Basic-Damysus: A version of Damysus with 2(f+u) + 1
nodes and that uses Cogsworth [22] as its synchronizer.

e Achilles: A version of Achilles [18] with 2f 4+ 1 nodes
that execute a variant of Damysus as its consensus protocol and
a classical exponential backoff mechanism as its synchronizer.

C. Settings

We deploy Pallas and our baselines on AWS EC2
machines with one t2.micro instance per node. Blocks contain
400 transactions, and use payloads of 0B and 256B. In
addition to the payload, a transaction contains 2 x 4B for
metadata (a client id, and a transaction id), as well as the hash
value of the previous block of size 32 B, thereby adding 40 B
to each transaction in addition to its payload. For example,
the experiments with payloads of 0B involve blocks of size
400 x 40 B=15.6 KB. Payloads of 0B are used to evaluate only
the protocols’ overhead, while payloads of 256 B have been
selected to observe the impact of increasing block size. This
choice reflects the typical block size observed in blockchain
systems such as Ethereum [29]. With 256 B payloads, blocks
are then of size 400 x (256 +40) B=115.6 KB, which as shown
below leads to a significant latency increase. We measure
throughput and latency in various scenarios, and report the
average of 100 repetitions. In our regional experiments, nodes
are equally distributed over 4 AWS regions: Ireland, London,
Paris, Frankfurt; while in our worldwide experiments, nodes are
equally distributed over 8 AWS regions: North Virginia, Ohio,
North California, Oregon, Ireland, London, Paris, Frankfurt.

D. Comparison Between the Protocols

a) Evaluation in failure-free runs: We first quantify
Pallas’s overhead by evaluating all baselines in stable
settings, i.e., without TEE crashes or rollback attacks.” Since we
do not evaluate TEE crashes here, we set ©w = 0. The baselines
then have different system sizes: Flexi-Basic-Damysus requires
3f+1 nodes, while Basic-Damysus+ROTE, Basic-Damysus,
and Pallas require 2f+1 nodes. We plot the throughput (in
Kops/s) and the latency (in ms) of each protocol in function of f
with 0 B-payloads (Fig. 5 and Fig. 7) and with 256 B-payloads
(Fig. 6 and Fig. 8). As expected, the throughput of all protocols
decreases when the system size increases, while their latency
slightly increases. The performance of Pallas and Basis-
Damysus are the best, and are very similar to each other, which
demonstrates Pallas’s negligible overhead in stable regimes.
Furthermore, Pallas outperforms Flexi-Basic-Damysus and
Basic-Damysus+ROTE in all scenarios. According to Fig. 5
(EU experiment with 0B payloads) Flexi-Basic-Damysus’s

SWe omit Achilles in these experiments as Achilles is merely Damysus in
stable settings.

https://github.com/vrahli/damysus

—*— Flexi-Basic-Damysus
~® Basic-Damysus+ROTE
—m— Basic-Damysus

- Pallas

—+ Flexi-Basic-Damysus
~#- Basic-Damysus+ROTE
—=— Basic-Damysus

.- -e- Pallas

throughput (Kops/s)
& 0w oo N ® ©

throughput (Kops/s)
=
)

—+ Flexi-Basic-Damysus
-® Basic-Damysus+ROTE
—m— Basic-Damysus

- Pallas

—*— Flexi-Basic-Damysus
-#- Basic-Damysus+ROTE
—=— Basic-Damysus

-@- Pallas

N
o

=
o

throughput (Kops/s)

latency (ms)
IS
&
/
1
i
i
i
i
i
i
i
i
1
*
latency (ms)
®
3

60

. . * 700
B * i ——— -

300 | S — o 600+
g2s0q | E 5004
> — z
£ 200 4 e 400
& &

-

@

=)
w
=3
S

.

o

=3
N
o
S

12 5 10 20
fault threshold (f)

fault threshold (f)

N Fig. 6: Throughput and latency
Fig. 5: Throughput and latency ¢,y protocols under stable

of all protocols under stable set- ;.. gs with 256 B-payloads
tings with 0 B-payloads (EU). (EU).

throughput is 33% lower than Pallas’s, while its latency is
25% higher, and Basic-Damysus+ROTE is the slowest protocol,
with a 41% lower throughput than Pallas’s, while its latency
is 29% higher. According to Fig. 6 (EU experiment with 256 B
payloads) Flexi-Basic-Damysus’s throughput is 45% lower
than Pallas’s, while its latency is 31% higher, and Basic-
Damysus+ROTE is the slowest protocol, with a 24% lower
throughput than Pallas’s, while its latency is 18% higher.
Furthermore, as we can see in the worldwide experiments,
the added network latency exacerbates the difference between
the protocols. According to Fig. 7 (worldwide experiment
with 0B payloads) Flexi-Basic-Damysus’s throughput is 50%
lower than Pallas’s, while its latency is 32% higher, and
Basic-Damysus+ROTE is the slowest protocol, with a 52%
lower throughput than Pallas’s, while its latency is 34%
higher. According to Fig. 8 (worldwide experiment with 256 B
payloads) Flexi-Basic-Damysus’s throughput is 63% lower
than Pallas’s, while its latency is 36% higher, and Basic-
Damysus+ROTE is the slowest protocol, with a 29% lower
throughput than Pallas’s, while its latency is 22% higher.
b) Evaluation under rollback attacks/mobile crashes:

The three protocols Flexi-Basic-Damysus, Basic-Damysus,
and Basic-Damysus+ROTE cannot tolerate mobile crashes,
compromising liveness under our strong attacker model. Flexi-
Basic-Damysus and Basic-Damysus+ROTE prevent rollback
attacks but loses liveness under mobile crashes, while Basic-
Damysus does not prevent rollback attacks at all. Therefore,
we compare against Basic-Damysus+ROTE as well as Achilles,
which adds rollback prevention to Damysus and enables nodes
to recover and rejoin after crashes. We exclude Flexi-Basic-
Damysus and Basic-Damysus because neither supports recovery
after crashes.

To quantify the impact of rollback attacks and crashes/restarts
on Pallas, Basic-Damysus+ROTE, and Achilles, we assess
performance degradation as crashed TEEs rejoin the system.
We exclude mobile crashes since only Pallas retains liveness

12 5 10 20 12 5 10 20
fault threshold (f) fault threshold (f)

Fig. 8: Throughput and latency
of all protocols under stable
settings with 256 B-payloads
(worldwide).

Fig. 7: Throughput and latency
of all protocols under stable set-
tings with 0 B-payloads (World-
wide).

in heavy mobile crashes. Fig. 9 illustrates scalability as the
number of rejoining nodes increases within a system of size
2F+1=2(f+u)+1 =17, where f =0 and u = 3.

In this setup, the synchronizer is executed every F+1 views,
i.e., every 4 views, and replicas that have crashed and recovered
rejoin at the beginning of each session (i.e., immediately
following a synchronizer run). We evaluate the performance of
Pallas, Basic-Damysus+ROTE, and Achilles under varying
degrees of recovery pressure by measuring throughput and
latency as the number of restarting nodes per session ranges
from O to 3.

Fig. 9 shows that Pallas’s performance decreases gradually
as more nodes are rejoining. Nonetheless, the degradation
remains modest: throughput declines by up to 13% (from
13.6 Kops/s down to 11.78 Kops/s) and latency increases by
no more than 17% (from 29 ms up to 34 ms). These results
demonstrate that Pallas maintains robust performance and
operational stability even under frequent TEE restarts, vali-
dating its resilience against rollback-induced rejoin overhead.
In contrast, Basic-Damysus+ROTE and Achilles exhibit an
exponential decay both in throughput an latency. This is
attributed to timeouts resulting from leader crashes in those
algorithms, which is circumvented in Pallas’s design.

As illustrated in Fig. 10, a larger system (2F+1 =
2(f+u)+1 = 41 replicas with f = 0 and v = 20) results
in more pronounced performance degradation under rejoin
stress. As the number of rejoining replicas increases from 0
to 20, throughput declines by up to 69% (from 68 Kops/s
to 21 Kops/s), while latency surges by as much as 200%
(from 633 ms to 1.9s). Despite this significant degradation,
Pallas continues to outperform existing protocols, which
would eventually lose liveness under increasing restarts. These
results demonstrate Pallas’s ability to preserve progress and
guarantee termination in rollback-heavy scenarios.

11

1254 T - Pallas

1.25 - Basic-Damysus+ROTE
- \ Achilles

1.00

Yy

10.0
...

™
n

@ Basic-Damysus+ROTE -@-- Pallas

o Achilles

0.75

bl
o

0.50

throughput (Kops/s)
throughput (Kops/s)

N
o

025 e,

o
)

0.00

—+ Flexi-Basic-Damysus
-#- Basic-Damysus+ROTE
—m— Basic-Damysus

-@- Pallas

Ll

n

]
)
NN
o N

—# Flexi-Basic-Damysus
| --#- Basic-Damysus+ROTE .
—m— Basic-Damysus T

18] -®- palas

n
o

g
o

ghput (Kops/s]
i
i
H

throughput (Kops/s)
&
w»
.
u
-
IS
\
\
\

IS
o
»
\
\
i
i
i

\
\
\
t
i
i
i
i
i
. ®
thr
=
N
.

2500 12000

2000 10000

1500 1

o ®
S o
S o
S o

=
o
=3
S

latency (ms)
o
latency (ms)

4000 A

v
o
5}

2000

e .
o8- A R

pes .
0 1 2 3 12 5 10 20
#rejoiners #rejoiners

o

Fig. 10: Throughput and la-

of Pallas with joining nodes, tency of Pallas with joining
0MB payloads, f = 0 and u = nodes, 0MB payloads, f =0
3. and u = 20.

Fig. 9: Throughput and latency

E. Evaluation Under Message Losses

Fig. 11 and Fig. 12 compare the protocols with 0B and
256 B payloads, respectively, in the EU regions and with a
heavy message loss of 5% [30]. As the figures show, Pallas
and Basic-Damysus have similar performance, superior to
that of Flexi-Basic-Damysus and Basic-Damysus+ROTE with
increasing system size. While this difference between the
protocols follows a trend similar to that of Fig. 5 and Fig. 6,
it is however not as pronounced as in those figures because of
the re-transmission of lost messages.

VII. RELATED WORK
A. Rollback Attacks and Defenses

TEE rollback attacks lead an enclave to adopt a previous
state or launch several instances of the same enclave [11]. To
ensure the freshness of a TEE state, some works relied on
non-volatile memory associated to a TEE [31-33]. In these
approaches, the rate at which a TEE can save its state is limited
by wear of the non-volatile memory, or there is a dependency
on specialized hardware or an uninterruptible power supply [34].
Another approach consists in storing freshness information in
a separate trusted server, or in a set of servers that can only be
partially corrupted by an adversary. ROTE [13] replicates the
state of a modified enclave among other enclaves, and allows
a restarting enclave to detect a rollback attack and recover its
state. ENGRAFT [14] and TEEMS [34] run a crash-tolerant
consensus algorithm inside TEEs and design mechanisms to
tolerate rollback attacks. NARRATOR [15] aims to allow state
continuity protection for cloud TEEs by leveraging an external
blockchain. In particular, NARRATOR addresses a vulnerability
of ROTE during its initialization time by using a blockchain.
Nimble [16] provides a TEE-based service for cloud users,
applications run inside TEEs and Nimble enforces that the
system prevents rollback attacks. It uses an external consensus
protocol to update the state of the TEEs. CloneBuster [19]
allows an enclave to detect whether a cloned enclave is running

1101

latency (ms)
latency (ms)

1 2 5 10 1 2 5 10
fault threshold (f) fault threshold (f)

Fig. 11: Throughput and la-
tency of all protocols with 0 B-
payloads and 5% message loss
(EU).

Fig. 12: Throughput and la-
tency of all protocols with
256 B-payloads and 5% mes-
sage loss (EU).

on the same machine. Rollbaccine [35] detects that a rollback
happened by maintaining replicated versions of a host’s disk
and, upon detecting a rollback attack, reverts an application to a
state it could have reverted to in the absence of rollback attacks.
Rollbaccine does not tolerate Byzantine faults. We present
the first defense against rollback attacks for BFT consensus
algorithms that avoids replicating a TEE state.

B. Hybrid BFT protocols

Hybrid Byzantine Fault Tolerant (BFT) protocols may
integrate trusted components for several purposes, including
reconfiguration [36-38], proactive recovery [39], fault tolerance
or performance. Several techniques have been proposed in
the literature to leverage trusted hardware, such as trusted
logs [40-42], attested append-only memory (A2M) [43], and
several trusted incrementers (TrInc) [44]. MinBFT [5] uses
a single trusted monotonic counter to reduce the number
of communication phases in PBFT with improved resilience.
CheapBFT [4] and ReBFT [45] further optimized performance
by enabling the system to operate optimistically with only f+1
active replicas, keeping the remaining f replicas passive during
normal-case execution. Hybster [46] extended this line of work
by enabling parallel instance execution using TrIncX, a variant
of the trusted monotonic counter. Similarly, FastBFT [47]
adopted an optimistic approach with f+1 active nodes and
incorporated a TEE-based secret sharing mechanism to reduce
message complexity. More recently, TBFT [48] moves away
from PBFT’s all-to-all O(N?) communication to a leader-
centric O (V) design similar to HotStuff. It uses trusted counters
and secure message sharing to build quorum certificates from
just f+1 replicas. Damysus [6] defines two trusted components,
the Checker and the Accumulator, to improve the resilience
and the latency of HotStuff [9]. FlexiTrust [12] uses 3f+1
replicas to support parallel voting on several blocks. Zhao
et al. [50] propose a TEE-based leaderless protocol. None
of these protocols tolerate rollback attacks. Achilles [18]

12

TABLE I: Comparison with related TEE-aided BFT systems

Protocol Rollback-Resilient | Clone-Resilient | Mobile Crash adversary Min. # Nodes Synchronizer
TEE-aided BFT [5, 6, 49, 50] X X X 2f+1 Exp. backoff
TEE-aided BFT + ROTE [13] 4 4 X 2f4+2u+1 Exp. backoff
Flexi-BFT [12] X X X 3f+1 Exp. backoff
Achilles [18] v X X 2f+1 Exp. backoff
Pallas - Byz. only (u=0) v v X 2f+1 Aegis
Pallas - Byz.+static crash v v X 2f4+2u+1 Aegis
Pallas - Byz.+mobile crash 4 4 v 2f+2u+l w.u> f Aegis

and Engraft [14] explore how to tolerate a weaker form of
rollback attacks, i.e., replaying a previously recorded state
to the TEE, thus violating freshness, without considering
TEE forking, where a Byzantine replica creates multiple TEE
clones Appendix C presents a detailed comparison between
our solution and both protocols. In addition, all these protocols
would lose liveness under the mobile crash adversary.

Table I compares Pallas against prior work. For clarity, we
distinguish between rollback via state replay (i.e., rolled-back
TEEs) and TEE forking (i.e., cloned TEEs). Pallas is the
only protocol that comprehensively addresses the rollback threat
landscape, covering both attack vectors under our advanced
threat model. Moreover, Aegis is the only synchronizer that
remains correct with just 2f+1 replicas.

C. View Synchronization

A view synchronizer is a crucial component of partially
synchronous consensus protocols [21] that ensures that all
correct nodes stay in a view long enough to reach agreement
when the leader is honest. Theoretical bounds dictate that any
deterministic Byzantine consensus algorithm requires O(n?)
messages [51], and that they have a O(n) latency lower
bound [52]. PBFT [8]’s synchronizer uses an exponential
back-off mechanism for liveness and incurs O(n?) expected
message complexity, O(0) O(1) expected latency and
unbounded worst-case latency. Naor et al. [22] described
a minimal straw-man synchronizer with no messaging and
unbounded latency. FastSync [53] relies on Bracha’s reliable
broadcast and has similar performance. HotStuff [9] assumes
a synchronizer (called pacemaker) that uses exponentially
increasing timeouts, though its design was left unspecified
in the original publication and later elaborated upon in the
LibraBFT white paper [54]. After GST, all correct replicas
converge to a given view within a bounded delay 4, incurring
O(n?) message complexity. In the worst case, however, the
complexity may escalate to O(f-n?) = O(n?). Cogsworth [22]
achieves linear message complexity with constant expected
latency. In failure-free cases, the protocol maintains O(n)
message complexity and O(1) latency. Under a coordinated
attack by f Byzantine leaders, complexity degrades to O(n?)
with O(n) latency. Other view synchronizers, like Lewis-Pye’s
synchronizer [55], approach the theoretical message complexity
lower bound by grouping views into epochs of f+1 consecutive
views. FASTSYNC [53] is a view-synchronizer that does not
rely on digital signatures and instead relies on Bracha’s reliable
broadcast [56]. RareSync [57] meets the theoretical worst-case

13

message bound of ©(n?) and synchronizes within O(f) after
GST. Fever [58] balances optimistic latency with worst-case
complexity of O(fn+n). Lumiere [59] adapts to faults, with
message complexity proportional to the actual fault count f’.
Our view synchronizer, Aegis, is built on top of Cogsworth
and is, to the best of our knowledge, the first to operate with
TEEs. We also highlight the need for a tight interplay between
the synchronizer and consensus protocols to efficiently tolerate
rollback attacks.

D. Mobile Adversary

Schmiedel et al. [20] propose a mobile crash Byzantine
adversary model, where crashed nodes can recover without
losing their states or messages. Crashed nodes may be temporar-
ily unresponsive but are otherwise correct. We also consider
a mobile rollback adversary, along with a static Byzantine
adversary, however, the TEE of the crashed replicas may lose
their state and cannot recover without a recovery mechanism.
The classic static threshold model that “tolerates f Byzantine
nodes”, who can be Byzantine or victim of a rollback attack,
does not properly represent a mobile attacker’s capacity. Under
this model, it it is not necessary to introduce additional defense
mechanisms against rollback attacks, as the remaining f+1
correct nodes always guarantee safety and liveness. However,
under mobile rollback attacks crashed machines must be
allowed to rejoin the system. Our mobile adversary can rollback
the TEE of a selected node, and later move to a different
node to launch the same attack. However, if we allow the
attacker to move faster than the required time a node needs to
recover, then the attacker can stall the liveness of the system by
corrupting more nodes than what the system can tolerate. To
model this behavior, we consider a A\-mobile adversary, where
A is a security parameter representing the pace of the attacker
to move its rollback attack from one node to the other. For
example, A can be represented by a specific duration such as an
upper bound of communication delay A. Hence, the resiliency
provided by a BFT protocol against a A-mobile adversary is
inversely proportional to the value of A: the smaller the value
of A the higher the resiliency achieved. See Appendix B for
our analysis of .

VIII. CONCLUSION

This paper presents a novel approach to addressing rollback
vulnerabilities in TEE-aided BFT consensus protocols. By
tightly coupling a consensus algorithm with a purpose-built
synchronizer, we ensure that each replica maintains at most

one active TEE instance per view. Our protocol supports
safe recovery from TEE crashes without requiring expensive
state replication or increasing the number of replicas beyond
2f+42u+1, thereby preserving efficiency. Through careful
session management and the integration of join requests into
consensus, our design enforces safety by preventing equivoca-
tion and ensures liveness under mobile rollback and Byzantine
adversaries. Extensive evaluations demonstrate that our protocol
performs competitively with, and often outperforms, existing
solutions, even as the number of restarting TEEs increases.

ACKNOWLEDGMENT

This work was partially supported by the Engineering and
Physical Sciences Research Council (EPSRC) grant number
EP/W034514/1, and by the Australian Research Council (ARC)
under projects DE210100019. We gratefully acknowledge Nils
van den Honert, whose MSc thesis [60] at TU Delft was a
preliminary exploration of rollback attacks on Damysus.

REFERENCES

V. Costan and S. Devadas. “Intel SGX explained”. In: Cryptol-
ogy ePrint Archive (2016).

A. Sev-Snp. “Strengthening VM isolation with integrity pro-
tection and more”. In: White Paper, January 53.2020 (2020),
pp. 1450-1465.

I. TDX. Intel CPU Architectural Extensions Specification.
https://cdrdv2.intel.com/v1/dl/getContent/733582. 2021.

R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mo-
hammadi, W. Schroder-Preikschat, and K. Stengel. “CheapBFT:
resource-efficient byzantine fault tolerance”. In: EuroSys. 2012.
G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and
P. Verissimo. “Efficient Byzantine Fault-Tolerance”. In: IEEE
TC 62.1 (2013), pp. 16-30.

J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu. “DAMYSUS:
streamlined BFT consensus leveraging trusted components”.
In: EuroSys. 2022.

L. Zhao, H. Schmiedel, Q. Wang, and J. Yu. “Janus: Enhancing
Asynchronous Common Subset with Trusted Hardware”. In:
Annual Computer Security Applications Conference, IEEE
ACSAC. 2024, pp. 488-504.

M. Castro and B. Liskov. “Practical byzantine fault tolerance
and proactive recovery”. In: ACM TC. 20.4 (2002), pp. 398—461.
M. Yin, D. Malkhi, M. K. Reiter, G. Golan Gueta, and
I. Abraham. “HotStuff: BFT Consensus with Linearity and
Responsiveness”. In: PODC (2019).

D. Malkhi and K. Nayak. “Hotstuff-2: Optimal two-phase
responsive bft”. In: Cryptology ePrint Archive (2023).

M. Brandenburger, C. Cachin, M. Lorenz, and R. Kapitza.
“Rollback and Forking Detection for Trusted Execution Envi-
ronments Using Lightweight Collective Memory”. In: DSN.
2017.

S. Gupta, S. Rahnama, S. Pandey, N. Crooks, and M. Sadoghi.
“Dissecting BFT Consensus: In Trusted Components we Trust!”
In: EuroSys. 2023.

S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A.
Gervais, A. Juels, and S. Capkun. “ROTE: rollback protection
for trusted execution”. In: USENIX Security. 2017.

W. Wang, S. Deng, J. Niu, M. K. Reiter, and Y. Zhang.
“ENGRAFT: Enclave-guarded Raft on Byzantine Faulty Nodes”.
In: CCS. 2022.

J. Niu, W. Peng, X. Zhang, and Y. Zhang. “NARRATOR:
Secure and Practical State Continuity for Trusted Execution in
the Cloud”. In: CCS. 2022.

(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(13]

[14]

[15]

14

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

[27]
(28]
[29]
(30]

(31]

(32]
(33]

(34]

(35]

(36]

(37]

(38]
(39]
[40]

[41]

S. Angel, A. Basu, W. Cui, T. Jaeger, S. Lau, S. T. V. Setty, and
S. Singanamalla. “Nimble: Rollback Protection for Confidential
Cloud Services”. In: OSDI. 2023.

A. Bessani, M. Correia, T. Distler, R. Kapitza, P. E. Verissimo,
and J. Yu. “Vivisecting the Dissection: On the Role of
Trusted Components in BFT Protocols”. In: arXiv preprint
arXiv:2312.05714 (2023).

J. Niu, X. Wen, G. Wu, S. Liu, J. Yu, and Y. Zhang. “Achilles:
Efficient TEE-Assisted BFT Consensus via Rollback Resilient
Recovery”. In: EuroSys. 2025.

S. Briongos, G. Karame, C. Soriente, and A. Wilde. “No
Forking Way: Detecting Cloning Attacks on Intel SGX Appli-
cations”. In: ACSAC. 2023.

H. Schmiedel, R. Han, Q. Tang, R. Steinfeld, and J. Yu.
“Modeling Mobile Crash in Byzantine Consensus”. In: CSF.
2024.

C. Dwork, N. A. Lynch, and L. J. Stockmeyer. “Consensus in
the presence of partial synchrony”. In: J. ACM 35.2 (1988),
pp. 288-323.

O. Naor, M. Baudet, D. Malkhi, and A. Spiegelman.
“Cogsworth: Byzantine View Synchronization”. In: Cryptoeco-
nomic Systems 1.2 (2021).

SGX. URL: https://software.intel.com/en-us/sgx.

J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu. “OneShot:
View-Adapting Streamlined BFT Protocols with Trusted
Execution Environments”. In: IEEE International Parallel
and Distributed Processing Symposium, IPDPS. 1EEE, 2024,
pp. 1022-1033.

K. Murdock, D. F. Oswald, F. D. Garcia, J. V. Bulck, D. Gruss,
and F. Piessens. “Plundervolt: Software-based Fault Injection
Attacks against Intel SGX”. In: SP. 2020.

S. Pinto and N. Santos. “Demystifying Arm TrustZone: A
Comprehensive Survey”. In: ACM CSUR 51.6 (2019), 130:1-
130:36.

OpenSSL. URL: https://www.openssl.org/.

Salticidae. URL: https://github.com/Determinant/salticidae.
Etherscan. URL: https://etherscan.io/chart/blocksize.

S. Chowdhury and K. Fatema. “Analysing TCP performance
when link experiencing packet loss”. In: 2014.

B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.
McCune. “Memoir: Practical state continuity for protected
modules”. In: S&P. 2011.

R. Strackx, B. Jacobs, and F. Piessens. “ICE: A passive, high-
speed, state-continuity scheme”. In: ACSAC. 2014.

R. Strackx and F. Piessens. “Ariadne: A minimal approach to
state continuity”. In: USENIX Security. 2016.

B. Dinis, P. Druschel, R. Rodrigues, and 1. Superior Técnico.
“RR: A Fault Model for Efficient TEE Replication”. In: NDSS.
2023.

D. Chu, A. Balasubramanian, D. Bao, N. Crooks, H. Howard,
L. E. Katahanas, and S. Ponnapalli. “Rollbaccine: Herd
Immunity against Storage Rollback Attacks in TEEs [Technical
Report]”. In: arXiv preprint arXiv:2505.04014 (2025).

R. Rodrigues, B. Liskov, K. Chen, M. Liskov, and D. A. Schultz.
“Automatic Reconfiguration for Large-Scale Reliable Storage
Systems”. In: IEEE TDSC 9.2 (2012), pp. 145-158.

D. S. Silva, R. Graczyk, J. Decouchant, M. Volp, and P. Esteves-
Verissimo. “Threat Adaptive Byzantine Fault Tolerant State-
Machine Replication”. In: SRDS. 2021.

P. Kuznetsov and A. Tonkikh. “Asynchronous reconfiguration
with byzantine failures”. In: DISC (2022).

M. Castro. “Practical Byzantine Fault Tolerance”. Ph.D. MIT,
Jan. 2001.

A. Haeberlen, P. Kouznetsov, and P. Druschel. “PeerReview:
Practical accountability for distributed systems”. In: 2007.

S. B. Mokhtar, J. Decouchant, and V. Quéma. “Acting: Accurate
freerider tracking in gossip”. In: SRDS. 2014.

https://software.intel.com/en-us/sgx
https://www.openssl.org/
https://github.com/Determinant/salticidae
https://etherscan.io/chart/blocksize

[42] A. Diarra, S. B. Mokhtar, P.-L. Aublin, and V. Quéma.
“Fullreview: Practical accountability in presence of selfish
nodes”. In: SRDS. 2014.

B. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. “Attested
append-only memory: making adversaries stick to their word”.
In: SOSP. 2007.

D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. “TrInc:
Small Trusted Hardware for Large Distributed Systems”. In:
NSDI. 2009.

T. Distler, C. Cachin, and R. Kapitza. “Resource-Efficient
Byzantine Fault Tolerance”. In: IEEE TC 65.9 (2016), pp. 2807—
2819.

J. Behl, T. Distler, and R. Kapitza. “Hybrids on Steroids: SGX-
Based High Performance BFT”. In: EuroSys. 2017.

J. Liu, W. Li, G. O. Karame, and N. Asokan. “Scalable
Byzantine Consensus via Hardware-Assisted Secret Sharing”.
In: IEEE TC 68.1 (2019), pp. 139-151.

J. Zhang, J. Gao, K. Wang, Z. Wu, Y. Lan, Z. Guan, and
Z. Chen. “TBFT: Understandable and Efficient Byzantine Fault
Tolerance using Trusted Execution Environment”. In: arXiv
preprint arXiv:2102.01970 (2021).

S. Xie, D. Kang, H. Lyu, J. Niu, and M. Sadoghi. “Fides:
Scalable Censorship-Resistant DAG Consensus via Trusted
Components”. In: arXiv preprint arXiv:2501.01062 (2025).
L. Zhao, J. Decouchant, J. K. Liu, Q. Lu, and J. Yu. “Trusted
hardware-assisted leaderless byzantine fault tolerance consen-
sus”. In: IEEE TDSC 21.6 (2024), pp. 5086-5097.

D. Dolev and R. Reischuk. “Bounds on information exchange
for Byzantine agreement”. In: J. ACM 32.1 (1985), pp. 191-
204.

D. Dolev and H. R. Strong. “Authenticated algorithms for
Byzantine agreement”. In: SIAM Journal on Computing 12.4
(1983), pp. 656-666.

M. Bravo, G. Chockler, and A. Gotsman. “Making byzan-
tine consensus live”. In: Distributed Computing 35.6 (2022),
pp. 503-532.

M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot,
Z. Li, D. Malkhi, O. Naor, D. Perelman, and A. Sonnino. State
machine replication in the libra blockchain. Tech. rep.

A. Lewis-Pye. “Quadratic worst-case message complexity for
state machine replication in the partial synchrony model”. In:
arXiv preprint arXiv:2201.01107 (2022).

G. Bracha. “Asynchronous Byzantine agreement protocols”.
In: Information and Computation 75.2 (1987), pp. 130-143.
P. Civit, M. A. Dzulfikar, S. Gilbert, V. Gramoli, R. Guerraoui, J.
Komatovic, and M. Vidigueira. “Byzantine consensus is © (nz):
the Dolev-Reischuk bound is tight even in partial synchrony!”
In: Distributed Computing 37.2 (2024), pp. 89-119.

A. Lewis-Pye and I. Abraham. “Fever: Optimal responsive
view synchronisation”. In: OPODIS. 2023.

A. Lewis-Pye, D. Malkhi, O. Naor, and K. Nayak. “Lumiere:
Making Optimal BFT for Partial Synchrony Practical”. In:
PODC. 2024.

N. van den Honert. “Rollback protection in Damysus”. Master’s
thesis. Delft University of Technology, 2024.

W. Wang, S. Deng, J. Niu, M. K. Reiter, Y. Zhang, and Y. Org.
“Engraft: Enclave-guarded Raft on Byzantine Faulty Nodes”.
In: CSS (2022).

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

(60]

[61]

APPENDIX
A. Aegis: Proof of Correctness

We adapt key liveness claims from Cogsworth [22] to our
protocol’s synchronizer design, ensuring timely view transitions
under partial synchrony. The first lemma (Lemma 1) shows
that if an honest node enters session s at time ¢ and the

leader of session s is honest, then all honest nodes enter
session s by t+4A. The second lemma (Lemma 2) generalizes
this guarantee: even if the leader is faulty, all honest nodes
enter session s by t+2A(f+2), assuming honest nodes relay
synchronization messages to multiple leaders. This modification
ensures full liveness despite adversarial behavior, improving
upon Cogsworth’s requirement of f+1 honest voters.

Lemma 1. After GST, if an honest node enters session s at
time t, and leader(s) is honest then all honest nodes enter
session s by t + 4A.

Proof. Since an honest node enter session s at time ¢, there is an
honest node 4 that first entered session s at time ¢’ < t. Node ¢
entered session s because it received a @ . (s) certificate from
leader(r) such that s < r < s+F (1. 47, Fig. 3a).

If r = s then since leader(s) is assumed to be honest,
and has sent this certificate to 7, it must have sent it to all
nodes (I. 44, Fig. 3a). Therefore, all honest nodes receive this
certificate and enter session s by t+A.

If r > s then leader(r) must have received F+1 ¢yore(s)
messages (1. 39, Fig. 3a). One of those messages was sent by a
honest node, say j, which much have received a corresponding
acceyne(s) (I. 22, Fig. 3a) from leader(r’) for s < v’ <
s+F. Because j is honest, it must also have sent this acc sy (s)
to leader(s) (l. 24, Fig. 3a). Because leader(s) is honest,
it forwards it by ¢t + A to all other nodes, which send their
Guote(s) to Leader(s) (I. 29, Fig. 3a) by ¢ + 2A. By ¢t + 3A
the leader receives F+1 votes from the honest nodes and sends
Geert(s) to all nodes (1. 44, Fig. 3a). Finally, by ¢ + 4A all
honest nodes receive this certificate (1. 47, Fig. 3a) and enter
session s, which concludes the proof.

The following lemma is Claim 2 from [22] adapted to our
setting. One key difference is that Claim 2 states that f+1
honest nodes (F+1 correct nodes in our setting) enter view s
(session s in our setting), which is not possible to achieve
without altering the synchronizer (I. 24, Fig. 3a). With this
modification, we obtain that all honest nodes, i.e., at least F+1,
enter session s.

Lemma 2. After GST, when an honest node enters session s
at time t, all honest nodes enter session s by t +2A(f + 2).

Proof. Because an honest node enters session s at time ¢,
there is an honest node 7 that first enters session s at time
t’ <t. Node 7 entered session s because it received a Deert(s)
certificate from leader(r) such that s < r < s+F (1. 47,
Fig. 3a).

If leader(r) is correct, then we can conclude since
leader(r) has sent this certificate to all nodes (1. 44, Fig. 3a),
and all correct nodes have received it (1. 47, Fig. 3a) and entered
session s by t + A.

If leader(r) is faulty, it might have sent the certificate to
some nodes only, potentially to 7 only. However, leader(r)
must have received F+1 ¢,o.0(5) messages (. 39, Fig. 3a).
One of those messages was sent by a honest node, say j, which
much have received a corresponding accsync(s) (1. 22, Fig. 3a)
from leader(r’) for s <1’ < s+.F.

Let us pause here and consider what happens in Cogsworth.
While Cogsworth requires a set H of f+1 honest nodes to
have sent votes, we cannot do this here because leaders receive
at most f+1 messages, from at least 1 correct node, and
possibly f Byzantine nodes (given v = 0). In Cogsworth, if
one of the nodes in H does not receive a QC (a message of the
form ¢ ey (s) in our setting) for f+1 rounds of the synchronizer
(which might be the case for example if 1eader(r) sends the
QC to ¢ only, followed by a similar behaviour from subsequent
leaders), it must have sent by then a TC (a message of the
form accsync(s) in our setting) to a correct leader, which leads
the process to completion, i.e., to entering view v (session s
in our setting). Otherwise, all f+1 nodes have received a QC
and have changed view.

Going back to our variant, since H can only be of size 1, we
require honest nodes to not only relay accsy,.(s) (1. 24, Fig. 3a)
to leader(s), but to {leader(s),...,leader(s+F)}.
Therefore, one of these leaders must be correct, and we can
conclude as in the proof of Lem. 2.

B. Analysis of the \ Parameter

To prove consensus liveness, we have assumed that the
mobile crash adversary can crash up to v TEEs within any time
interval of duration A after GST. Parameter \ therefore bounds
the adversary’s movement speed between successive crashes.
To guarantee that no more than u replicas are simultaneously
crashed after GST, it is required that A\ > Tg, where Tx is
the maximum TEE recovery time, measured as the maximum
time a crashed TEE that instantly recovers would require to
commit a rejoin request and rejoin the system.

In the following, we compute the minimal tolerated A value.
For simplicity, this analysis counts only network communica-
tion steps and assumes no extra local processing delays, as
typically we expect the local computation to be negligible
compared to network latency across the globe.

We use the following notations:

o A is the upper bound on message transmission delays
after GST.
tommit 1 the time required to commit one block in the
consensus pipeline (prepare — pre-commit — decide).
sync 18 the time required by the synchronizer (Aegis)
to activate new joins once invoked.

Best Case Join Operation. In the best case, the leader is
correct and the join request arrives exactly at the beginning of
an execution of Pallas, just before an execution of Aegis,
its view-synchronizer.

1) Join message broadcast: 1 step (A).

2) Commit join in block: 5 message steps (Ttommit = DA)
in Pallas’s three-phase consensus pipeline (Fig. 4),
including communications to exchange the leader’s
proposal, backups’ prepare votes, the leader’s prepare
c_fzrtiﬁcate, replicas’ store certificates, and the leader’s
¢st0re~

Synchronizer run: 4 message steps (Tyn. = 4A) in
Aegis (Fig. 3) to actualize the membership with the

3)

16

accepted join requests. This includes communications
to exchange messages including replicas’ ¢y (s), the
leader’s accgync(s), replicas’ votes, and the leader’s
¢cert(s)-

Thus:

TIb%eSt =A + Tcommit + TsynC = 10A (1)

and:

best
min

Ain = 10A.

()]

Worst Case Join Operation. If the join is committed just
after a session starts, it will be activated at the next session
boundary. With sessions happening every F'+1 views, the
maximum wait is F' additional views. Let T\, be the post-
GST time to finish one view (one block decision), we have

TR ~ Teommit + F + Tview + Tiyne- S
Since Teommit ~ Tview in steady state and Ty, is small:
TR & (F+1) - Toiew, “)
yielding:
NS (F A4 1) - Thiew- ©)

Measured Values from Our Evaluation. Our geo-
distributed AWS experiments report latency per decision, i.e.,
end-to-end time to commit a block. We use these measured la-
tencies as Tyiew & Teommit» With Tiyne negligible in comparison.

With our small system (N = 7, f = 0,u = 3), we measured:
Tiiew =~ 29—34 ms (baseline to rejoin-heavy).

0.12—0.14 s.

~
~

~
~

)\best

worst
min Ami

min

29—34 ms,

With a larger system (N = 41, f = 0, u = 20), we measured:
Tyiew ~ 0.633—1.9 s (baseline to rejoin-heavy).

~
~

~
~

)\best

worst
min A

0.63—1.9s, Anin 13—40 s.

TABLE II: Minimum \ values from theoretical and measured
analysis.

System size F Tyiew Abest Aworst
N=T7 3 29-34 ms 29-34 ms 0.12-0.14 s
N =41 20 0.633-19s 0.63-19 s 1340 s

In summary, for normal case, A values are on the order of a
single block commit latency, whereas for worst-case, \ grows
linearly with F'41 (session length in views).

C. Comparison with Achilles and Engraft

We provide a detailed qualitative comparison between this
work (Pallas and Aegis), Achilles and Engraft in Table III.

TABLE III: Detailed comparison of Pallas + Aegis with Achilles and Engraft.

Pallas + Aegis (this work)

Achilles [18]

Engraft [61]

Number of N =2(f+u)+1 N=2f+1. N=2f+1.

Replicas

Threat Up to f Byzantine nodes. Up to f Byzantine nodes. Up to f Byzantine nodes.
Model

o TEEs of Byzantine hosts may
be rolled-back (stale state) or
cloned

o all TEEs of non-Byzantine
nodes may crash and restart
(mobile crash adversary)

Up to u crashed/restarting nodes.

o TEEs of Byzantine hosts may
be rolled-back but not cloned

o TEEs of non-Byzantine nodes
cannot crash and restart

o TEEs of Byzantine hosts may
be rolled-back but not cloned

o TEEs of non-Byzantine nodes
cannot crash and restart

Safety condi-
tions

< f Byzantine nodes

< f Byzantine nodes

< f Byzantine nodes

Liveness con-
ditions

< f+u simultaneously faulty nodes
for long enough, which is ensured
against a mobile crash adversary
when A\ > Tg (cf. Appx. B) after
GST (partial synchrony),

< f simultaneously faulty nodes
after GST (partial synchrony)

< f simultaneously faulty nodes
after GST (partial synchrony)

Synchronizer
Design

Aegis: TEE-aware view synchro-
nizer with linear expected message
complexity and expected constant
time complexity.

Exponential backoff synchronizer
with unbounded message and time
complexity.

No synchronizer, uses Raft’s built-
in leader election and timeout
mechanism and Tiks, a key-value
distributed storage mechanism, to
maintain a correct state.

TEE
Membership
Changes

Aegis synchronizer restricts each
replica to one active TEE per view.
TEE joins are approved via consen-
sus (Pallas). Dedicated recovery
procedures that involves the hosts
reconstructs a valid TEE member-
ship if there are too many crashed
TEEs.

Rollback-resilient recovery via quo-
rum of f + 1 helper replicas. As-
sumes a single valid TEE per node
without explicit enforcement (no
TEE cloning).

Rollback-resilient recovery via quo-
rum of f + 1 helper replicas. As-
sumes a single valid TEE per node
without explicit enforcement (no
TEE cloning).

17

