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Abstract—LTE networks employ Globally Unique Temporary
Identifiers (GUTIs) to shield subscribers from permanent Inter-
national Mobile Subscriber Identity (IMSI) exposure, yet we show
that these identifiers can be resolved and linked to specific devices
through passive observation without prior knowledge of targets.
We correlate time-stamped visual observations of device use with
over-the-air control-plane messages captured using commodity
Software-Defined Radios (SDRs). A Finite-State-Machine (FSM)
algorithm processes the synchronized streams to resolve each de-
vice’s GUTI within the camera’s Field of View (FoV), requiring as
few as three observed user interactions when the corresponding
control-plane messages are captured.

Field experiments across multiple commercial Long-Term
Evolution (LTE) networks validate multi-target resolution: In
some deployments, we observed GUTIs persisting for up to 33
days, with reassignment behaviors that were often linkable. Once
linked, these long-lived identifiers enable hierarchical location
tracking—from cell to paging-area scale—by passively monitor-
ing paging and Radio Resource Control (RRC) messages. Unlike
active IMSI catchers or prior GUTI attacks that require pre-
existing identifiers (e.g., phone numbers) and active probing, our
approach is listen-only and scales to multiple devices within view.

I. INTRODUCTION

Cellular networks are core infrastructure for modern so-
ciety, relied upon daily by billions of people. As of late
2023, approximately 5.6 billion individuals subscribe to mo-
bile services [1]. To mitigate exposure of the permanent
International Mobile Subscriber Identity (IMSI), Long-Term
Evolution (LTE) introduces the Globally Unique Temporary
Identifier (GUTI) to provide identifier privacy by design. This
paper demonstrates that, in commercial networks, identifier-
privacy protections can be weakened by a non-transmitting
adversary who correlates visual observations of device use
with the timing of control-plane messages.

IMSI-exposure threats (e.g., IMSI-catchers [2]) have long
been reported, including suspected malicious use at courts,
airports, and public demonstrations, and they typically affect
non-designated populations. By contrast, most GUTI-focused
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attacks to date are targeted and active: they assume prior
contact information such as a victim’s phone number or
messaging account and induce paging via calls, SMS, or app
notifications [3], [4], [5]. These approaches can be effective
for a single designated target but face limitations in scaling to
multiple targets in parallel and in avoiding detection.

We propose a passive, non-transmitting method to identify
the GUTIs of multiple devices in parallel. A camera records
timestamps of user interactions, while a Software-Defined Ra-
dio (SDR) passively collects co-temporal control-plane events.
Our Finite-State-Machine (FSM)-based time-correlation algo-
rithm aligns the two streams and, after observing at least three
interactions per device, resolves and verifies the device-GUTI
mapping within the camera’s Field of View (FoV). The method
does not replace active targeted techniques; it operates under
different assumptions (no prior contact information, passive
collection, multi-target scope).

Across multiple commercial LTE networks in two countries,
none of the operators we measured regularly updated GUTISs;
in some cases, GUTIs persisted for up to 33 days, and reallo-
cations followed regular operational patterns. Once a person—
GUTT association is established, disambiguating paging and
Radio Resource Control (RRC) messages suffices to enable
hierarchical location inference from the cell level to paging-
area scale. Compared with IMSI-catchers and active GUTI
attacks, our approach is fully passive, reduces the detection
surface, and can simultaneously cover all users within the
camera’s FoV.

Our contributions are as follows:

o Passive Multi-Target Threat Model. We formalize a new
threat model that identifies GUTIs for multiple devices via
camera—Radio Frequency (RF) time correlation within the
FoV.

« FSM-Based Identification Algorithm. We present an al-
gorithm that establishes and verifies device—-GUTI mappings
using as few as three observed user interactions and is robust
to missing control-plane messages.

« Persistence and Reallocation Measurements. We empir-
ically measure GUTI lifetimes and reallocation patterns
in commercial networks, quantifying differences between
standard recommendations and operational practice.

« Real-World Validation. We demonstrate simultaneous
multi-target identification in live LTE environments and an-
alyze operational characteristics of a fully passive approach.



Implications and Disclosure. These findings indicate that, in
environments already covered by surveillance cameras (e.g.,
public or site security Closed-Circuit Television (CCTV)), an
adversary equipped with off-the-shelf SDR receivers can turn
short visual observations into longer-term RF-only tracking
of specific devices. Multi-week GUTI persistence reduces the
observation needed for long-term tracking, creating concrete
privacy risks for ordinary users. We followed responsible
disclosure with GSMA! Security team, who acknowledged the
issue and agreed to disseminate it to member organizations.

The remainder of this paper is organized as follows. Sec-
tion II provides background and related work. Section III
describes our measurement environments, data-collection
methodology, and experimental setup. Section IV analyzes
GUTT allocation, persistence, and reallocation patterns in com-
mercial LTE networks. Sections V and VI present our GUTI
identification framework and FSM-based identification algo-
rithm. Section VII reports real-world multi-target experiments,
and Section VIII evaluates robustness, parameter sensitivity,
and scalability. Section IX discusses limitations, mitigations,
and 5G feasibility; Section X concludes, and Section XI details
ethical considerations.

II. BACKGROUND AND RELATED WORK

This section provides background and related work on GUTI
identification and contextualizes our methodology.

A. Background

Cellular networks utilize a specific architecture and protocol
stack to support user mobility and data services [6]. Cellular
networks deploy a range of broadcast channels, and many
control-plane and system messages on these channels are
transmitted unencrypted.

1) Identifiers in Cellular Networks: Permanent identifiers
broadcast over channels pose privacy risks. Therefore, mobile
devices in cellular networks use temporary identifiers for
communication. In LTE, subscribers are identified at the Non-
Access Stratum (NAS) layer by the GUTI, and its shortened
form, the SAE-Temporary Mobile Subscriber Identity (S-
TMSI), is used in RRC procedures and paging. A GUTI
encodes the operator and Mobility Management Entity (MME)
context together with the MME Temporary Mobile Subscriber
Identity (M-TMSI). The S-TMSI includes the MME Code
and the lower 32 bits (M-TMSI), which distinguish individual
users within an MME. Because the remaining GUTI fields are
effectively fixed for a given operator and region, learning the
S-TMSI is tantamount to learning a linkable GUTI for that
subscriber. Accordingly, throughout this paper we use “GUTI
identification” to refer to the acquisition of the S-TMSI.

In the Medium Access Control (MAC) [7] layer, devices
receive a unique Cell-Radio Network Temporary Identifier
(C-RNTI, hereafter RNTI) on a per-cell basis. This identifier

'GSMA (GSM Association) is a global association representing mobile
network operators and related industries. GSMA members include mobile
operators, device manufacturers, software companies, equipment providers,
and internet companies from across the globe.
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Fig. 1: Protocol path of LTE identifiers

remains valid only while the device is connected to the base
station. On the device’s subsequent connection, a new RNTI
is allocated.

As shown in Figure 1, the Physical Downlink Control Chan-
nel (PDCCH) carries Downlink Control Information (DCI) [8],
[9] with the RNTI, which encodes only downlink/uplink
scheduling information; it does not carry any GUTIs. The
subscriber’s temporary identity appears at the NAS layer as
the GUTI, whose shortened form S-TMSI is included in the
uplink RRCConnectionRequest. When contention reso-
lution uses an identity-based procedure, the eNodeB echoes
this S-TMSI as the UE Contention Resolution Identity in a
MAC control element in downlink Msg4, which is typically
multiplexed with the RRCConnectionSetup in the same
MAC Protocol Data Unit (PDU). Our GUTI identification
procedure first correlates RNTIs observed in DCI with the
MAC-layer Contention Resolution Identity (CRI) to recover
the S-TMSI, and then uses this to obtain the corresponding
GUTI, yielding the RNTI<»S-TMSI/GUTI mapping.

2) Broadcast Messages in Cellular Networks: In broadcast
channels, the Paging Control Channel (PCCH) is used for
paging, prompting devices in the RRC IDLE state to re-
establish an RRC connection when downlink activity is pend-
ing. The RRC Paging message carried on PCCH includes
User Equipment (UE) identities such as the S-TMSI to specify
which devices should respond.

The PDCCH schedules data for mobile devices by carrying
DCI, which contains the RNTI along with resource alloca-
tion, Modulation and Coding Scheme (MCS), and Physical
Resource Block (PRB) information.

RRC [10], [11] is a protocol layer to manage radio resources
in cellular networks. To conserve battery, most mobile devices
remain in a state where the RRC connection is released,
known as RRC IDLE. When a UE in this state is paged
for downlink data, it performs a random access and RRC
connection establishment procedure, transitioning to the RRC
CONNECTED state. The base station completes the connection
setup by sending an RRCConnectionSetup message.

B. Related Work

Several studies have obtained identifiers or personal infor-
mation by analyzing broadcast messages in cellular networks.
IMSI Exposure and Catcher Detection. Early defenses
against IMSI catchers focused on UE-side tools such as
SnoopSnitch and AIMSICD, which inspect baseband logs



for suspicious cipher-suite changes or identity requests [12],
[13]. However, they only observe a single handset and are
prone to false positives whenever operators legitimately re-
configure broadcast parameters. To widen the observation
coverage, systems like SeaGlass and Crocodile Hunter deploy
geo-distributed radio sensors and flag rogue cells based on
anomalies in network topology or signal power [14], [15].
Legacy IMSI-catcher threats in LTE networks are well docu-
mented [2], [16], and Tucker et al. still report such activity in
LTE control-plane messages in the wild [17]. However, both
IMSI catchers and their detectors rely on active transmissions
or observable RF changes, whereas our multi-target GUTI
identification operates in a fully passive, listen-only mode with
no RF footprint.

GUTI Identification. Prior work has shown that temporary
identifiers in 2G and LTE often persist for long periods or
follow predictable reassignment patterns [3], [4], [S]. These
paging-based methods analyze the paging channel but require
prior knowledge of the victim (e.g., phone number or messen-
ger ID) to trigger paging via calls or messages. In contrast,
our identification algorithm uses only visual observation of
device usage and passively captured RF bursts, eliminating
the need for phone numbers, active engagement, or protocol
manipulation.

Attacks using GUTI. Many studies build on tools that decode
broadcast information in cellular networks [18], [19], [20],
[21], [22], [23], [24], [25], [26]. Among these, several studies
propose attacks that leverage GUTI. Some cause signaling
overshadowing and injection based on a GUTI [27], [28];
others aim to track locations more precisely than the cell
level [29], [30]; and some can launch DoS attacks on targeted
users [31], [32]. Other studies map GUTIs to RNTIs to acquire
DCI and fingerprint websites [33], [34] or videos [35], [36],
[37]. If obtaining GUTTs is difficult in practice, these attacks
become significantly harder to carry out.

While these studies demonstrate various GUTI-based at-
tacks, they assume GUTI acquisition as given. Our work ad-
dresses this fundamental gap by providing a practical, passive
method to identify GUTIs without requiring phone numbers,
active transmission, or protocol manipulation.

III. MEASUREMENT AND DATA-COLLECTION
METHODOLOGY

We first describe the measurement environments, equip-
ment, and datasets used throughout this paper. Unless oth-
erwise noted, all experiments were conducted on commercial
LTE networks using receive-only (passive) observation; we did
not transmit any RF signals nor interact with the operators’
infrastructure. All experimental participants were members of
the research team, and no third-party or non-consenting users
were included as observation targets.

a) Network environments: Measurements were collected
from four commercial LTE Mobile Network Operators
(MNOs) in two countries (Country A and Country B), denoted
MNO-I-MNO-III for Country A and MNO-IV for Country B.
For the identifier distribution study (Section IV), we selected

indoor locations and urban-area cafes as environments where
mobile data traffic is naturally generated. All experiments were
performed by passively receiving RF signals or by observing
only our own devices.

b) Equipment and logging pipeline: The data-collection
pipeline consists of three components: (i) an SDR-based
downlink sniffer, (ii) device-side diagnostic logging, and (iii)
timestamped visual recording.

SDR Capture. We connect a Universal Software Radio Pe-
ripheral (USRP) B210 to a laptop and run the open-source SRS
AirScope tool to capture LTE downlink control and broadcast
channels. SRS AirScope decodes PDCCH messages (DCI) and
RRC signaling, producing time-stamped records of RNTIs,
scheduling decisions, and control-plane events. Over the entire
measurement campaign, the PDCCH processing rate ranged
from 73 % to 100 %, and our evaluation explicitly accounts
for this range.

Device-level Ground Truth. To obtain ground-truth mappings
between UEs, RNTIs, and GUTIs, we use the commercial
diagnostic tool XCAL [38] on selected test devices. XCAL
receives control-plane data directly from the mobile device’s
diagnostic port and logs RNTIs, GUTIs, and various radio
parameters. In addition, when possible, we read debugging
screens provided by Samsung Galaxy devices to verify GUTI
allocation patterns (e.g., when GUTIs are re-assigned or
reused). These logs are used only for offline validation and
are assumed to be inaccessible to the attacker model.

Visual activity monitoring. User interactions with the test
devices are recorded using a Galaxy S25 Ultra smartphone
running a timestamp camera application. This application
overlays millisecond-precision wall-clock timestamps on each
frame. In the 3-UE and 10-UE experiments, the camera is
positioned so that multiple devices on a table are visible at
once, capturing coarse gestures such as screen taps, swipes,
and device pickups. The attacker does not require access
to detailed screen content; the core attack relies on timing
of visual “in-use” events, with optional filters using coarse
service cues only when available.

c) Time synchronization: During experiments, the laptop
connected to the SDR is synchronized with a Network Time
Protocol (NTP) server, while the timestamp camera and the
observed devices obtain their time from the cellular network.
The offset between the NTP server time and the cellular
network time remained within 1 s, and the time thresholds used
in our observation framework easily cover this bound.

d) Datasets: Using the above setup, we collected three
types of datasets that are used throughout the paper.

(i) D1: network-level control-plane traces are SDR captures
from MNO-I and MNO-II in Country A. For Section IV, we
use multi-cell D1 traces containing DCI and RRC messages to
characterize anonymized active RNTIs and GUTIs in opera-
tional networks. A long-term subset of D1, logged over 11 days
(3 h 31 min of active monitoring) and comprising 4,096 unique
GUTISs, is used in Section VIII to evaluate GUTI similarity and
to estimate the probability that two different devices exhibit
colliding data-service times.



(1) D2: GUTI allocation-pattern traces consist of periodic
screenshots of Samsung Galaxy debug screens, which expose
the current physical cell, RF parameters, and the GUTI as-
signed to the device. We capture these screens intermittently
and analyze them to study how GUTIs are re-assigned or
recycled in practice.

(iii)) D3: visual-RF correlation experiments consist of 12
controlled experiments (E1-E12) in which 3 or 10 test de-
vices are placed within the camera’s FoV while the SDR
captures downlink signals from the serving cell. These traces
combine timestamped visual triggers, RF bursts, and device-
level ground truth derived from XCAL, and are used both
to illustrate service-specific DCI patterns and to evaluate our
GUTI identification framework (Section VII).

IV. MEASUREMENT OF IDENTIFIER CHARACTERISTICS

LTE networks assign multiple identifiers to each subscriber
in order to deliver data services. Our work investigates the
risks that arise from the mapping between those identifiers and
higher-layer information. In this section we analyze the real-
world distribution of identifiers and their associated metadata,
showing that even short-lived identifiers can ultimately pose
long-term privacy risks. While our empirical analysis focuses
on LTE, prior measurement studies of 5G temporary identifiers
in other regions have reported similarly long-lived behavior,
suggesting that operator practices can yield persistent “tem-
porary” identifiers across both LTE and 5G deployments [39],
[40].

A. Identifier Distribution

Using a USRP B210 [41] SDR and the SRS AirScope
software [24], we captured RRCConnectionSetup mes-
sages and downlink DCIs at two geographically separated
sites and for two different operators (MNO-I and MNO-
Il) in Country A. From each RRCConnectionSetup we
counted the number of unique GUTIs to approximate the
population of attached devices, whereas the per-minute count
of active RNTIs in the live DCI stream served as a proxy for
concurrent data users. Figure 2 plots the time-of-day results:
depending on location and operator, the median number of
active RNTIs ranged from roughly 126 to 267 per minute,
while the number of visible GUTIs varied between 206 and
536. These figures provide a first-order estimate of both the
total device population registered to a single cell and the subset
that is actively sending or receiving payload data at any given
moment.

B. Service-Specific Traffic Patterns

Real-time DCI messages reveal, on a sub-frame basis, the
exact amount of uplink (UL) and downlink (DL) resources
scheduled for each UE. Figure 3 visualizes these allocations
as a heat-map of UL+DL byte counts, grouped by service
type and device; darker tiles indicate larger bursts. Due to
measurement limitations, some allocations may be missed
(e.g., one Galaxy S24 voice call), yet several stable patterns
stand out:
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Fig. 2: Statistics of GUTI and RNTI. The tilde (~) indicates
approximate measurement times within a 1-hour window

o Voice Calls. Calls maintain consistently low data rates
(UL+DL < 5kB/s), appearing as sustained low-intensity
allocations that reflect the codec’s constant bit rate.

o Video Streaming. Bursts occur intermittently with varying
intensity based on buffering strategies and content bitrate.
In some sessions the base station releases the RRC context
and assigns a fresh RNTI mid-stream (iPhone 7: 0x725f —
0xcf48 — 0xed56); in others, fewer RNTI changes occur
(Galaxy S22 Ultra: 0x0044).

« Web Browsing. Burst patterns show high variability: brief,
intense spikes (up to 100+kB/s) corresponding to page
loads, followed by idle periods. Data volume varies dra-
matically based on content type.

These service-specific signatures remain visible in the control
plane and can be correlated with GUTI/RNTI transitions,
underscoring the viability of our identification and profiling
capabilities.

C. GUTI Persistence and Predictability

GUTIs in LTE networks should ideally be updated fre-
quently to ensure user anonymity. However, our measurements
indicate that these identifiers can remain unchanged for long
periods or follow predictable patterns when reallocated. We
also observed that a non-negligible portion of their bit space
remains fixed, allowing attackers to infer the next identifier
after reallocation.

1) Unchanging GUTI: An attack remains valid as long
as the GUTI mapped to a particular subscriber remains un-
changed. In our experiments on two mobile operators in Coun-
try A, GUTIs persisted for up to 33 days without reallocation
under normal network conditions (i.e., without powering off
or using airplane mode). In Country B (MNO-1V), we also
observed that Service Request procedures did not trigger
GUTT updates, although our limited measurement window did
not allow us to quantify long-term GUTI lifetimes in that
network.
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Fig. 3: DCI-derived traffic patterns for different mobile services

2) Predictable Reassignments: Our measurements confirm
that some operators do not fully randomize GUTI updates.
For example, we have observed scenarios where the first 12
or 16 bits remained identical, or bits 9-25 (17 bits) remained
static upon each reallocation, effectively creating a predictable
“prefix.” A prior global-scale measurement study spanning
11 countries [5] showed that if an attacker can infer the
sequence in which a network reassigns GUTIs, they can
reliably map each reallocation to the same subscriber and thus
keep identifying the victim’s new GUTI. Our results show that
certain MNOs in Country A continue to exhibit this behavior,
indicating that GUTI updates are either infrequent or follow
patterns that are linkable in practice.

3) Implications: Consequently, once a GUTI is revealed,
an adversary can keep tracking the user even if the operator
performs a nominal reallocation, since the attacker can infer
the next GUTI from the partial prefix carried over. Prior work
further shows that exposed GUTIs can be used to recover
the victim’s IMSI [28], [42], amplifying the impact of long-
lived and linkable temporary identifiers. This finding aligns
with the broader observation that GUTI reallocation does
not necessarily improve privacy if operators reuse bits in a
predictable manner.

V. GUTI IDENTIFICATION FRAMEWORK

The fact that any visually observable user can be exposed to
long-term privacy leakage without prior knowledge represents
a serious threat. This section delineates how such exposure
becomes feasible by detailing our method for extracting the
victims’ GUTISs.

A. Overview

We introduce a framework that extracts a device’s GUTI
without prior knowledge of the target using only line-of-sight
observations of its mobile activity. Figure 4 gives a high-
level overview. A timestamp-synchronized camera records
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Fig. 4: Overview of GUTI identification framework

coarse mobile-usage events (e.g., when the user appears to
use data, place a voice call, or browse the web) without
requiring access to screen content or exact service labels, and
a laptop sniffer simultaneously captures over-the-air control-
plane traffic. By aligning video frames with sniffer logs, we
fuse each visible action with the corresponding data-burst
pattern and identifier metadata. The resulting traces are fed
into an FSM algorithm that outputs the GUTI for every device
in view. Once a GUTI is bound to a specific user, the identifier
is no longer anonymous and can be exploited by the privacy
attacks surveyed in Section II-B.

B. Requirements

To passively extract a victim’s GUTI, the attacker needs two
capabilities:

R1. Timestamped Observation of Mobile Activity. The
attacker must know when the target triggers a packet-data
event (e.g., making a VOLTE call, tapping a web link, or
starting a YouTube video). A simple CCTV, smartphone
camera, or external Universal Serial Bus (USB) webcam
that embeds millisecond-resolution timestamps suffices.
No knowledge of the exact application is required—only
a binary indication of “phone in use.” When the service



type exhibits distinct patterns—such as continuous flows
for voice calls, periodic bursts for video streaming, or
sporadic traffic for web browsing—our algorithm lever-
ages these characteristics to accelerate GUTI extraction
and improve filtering accuracy.

R2. LTE Radio-Interface  Sniffing. The attacker
needs an SDR setup capable of (i) decoding
RRCConnectionSetup messages and (i)

demodulating downlink DCIs on the PDCCH. This
is readily achievable with open-source stacks such
as srsRAN [19] or OpenAirlnterface [20], or with
commercial tools like SRS AirScope [24].

Clock alignment. The camera host and the radio sniffer
need only a loose synchronization: an offset within £0.5s
is adequate for the 4s matching window used in our
experiment (Section VII). In our experiments, the laptop
clock was synchronized via NTP, whereas the smartphone
camera relied on the phone’s network-provided time,
resulting in a residual skew below 200 ms.

Minimal Observation Time. At least two
RRCConnectionSetup messages from the same device
must be captured. The first setup yields a set of candidate
GUTIs, while the second allows us to resolve the GUTI
uniquely (Section VI). In our FSM, a third observation is
typically used as a verification step before accepting the
mapping. Hence the total observation time depends on the
user’s inter-activity interval.

C. Visual-RF Correlation Principle

Our GUTI extraction framework leverages a fundamen-
tal observation: user-initiated mobile activities generate pre-
dictable RF burst patterns. When a user interacts with their
device (e.g., clicking a link, starting a video, sending a mes-
sage), the application triggers network traffic that manifests
as data bursts in the cellular interface. By correlating visual
observations of these interactions with RF measurements, we
can isolate the target device’s traffic among multiple active
UE:s in the cell.

This visual-RF correlation is essential because:

o Timing Precision: User actions provide precise times-
tamps for expected data bursts (on the order of
100-500 ms).

o Ground Truth: Visual confirmation ensures that we track
the correct device throughout the experiment.

o Service Differentiation (optional): Different activities
produce distinct traffic patterns—sporadic bursts (web
browsing), regular chunks (video streaming), or continu-
ous streams (voice calls). In our framework, such patterns
are used only as an optional accelerator; the FSM core
requires only binary activity (in use vs. idle).

D. Threat Model

We consider an adversary with the following capabilities:

1) Visual observation of device-usage events for users within
the field of view of one or more cameras

2) Passive cellular signal capture using commodity SDR
equipment located in the same cell sector
3) Correlation of observed activities with RF transmissions

This threat model encompasses realistic attack scenarios:

« Public Surveillance: Observing device usage patterns in
cafes, airports, or public transportation

« Behavioral Monitoring: Detecting when users actively
interact with their devices (typing, tapping, holding to
ear)

« Proximity Attacks: Identifying data service activation
without screen visibility

This threat model primarily captures adversaries that already
operate or can covertly access fixed cameras in public or semi-
public spaces (e.g., building CCTV operators, site security,
or state-level actors with access to video infrastructure). We
do not claim that opportunistic attackers can deploy this
attack everywhere; instead, our focus is on camera-monitored
environments where visual observation is already taking place.

While an attacker could also deliberately bring their own
camera and SDR to specific locations and opportunistically
select targets (e.g., at a protest or event), such attacks still
require setting up and maintaining line-of-sight visual moni-
toring and are therefore more constrained than purely RF-only
schemes such as IMSI catchers.

The visual requirement is key: the attacker must maintain
line-of-sight to the devices long enough to observe a small
number of coarse usage events (screen taps, device pickups,
holding the phone to the ear). Importantly, our attack does not
rely on screen contents or fine-grained biometrics—binary “in-
use vs. idle” information is sufficient—but the attack remains
limited to users who fall within the cameras’ field of view and
the coverage of the sniffer’s serving cell.

VI. GUTI IDENTIFICATION ALGORITHM

We propose an FSM-based GUTT identification algorithm
that systematically identifies and extracts GUTI values by
correlating physical-layer observations with application-layer
activities. The algorithm employs a state-based approach to
ensure robust tracking while preventing infinite loops and
handling edge cases in real-world cellular environments.

Our FSM consumes two asynchronous streams: times-
tamped device-usage events from the camera and RF bursts
captured by the SDR that carry both scheduling information
(DCI with RNTIs) and the MAC CRI. Each new pair of camera
events and RF bursts constrains which GUTIs could have
generated the observed activity, progressively shrinking the
candidate set. Once a single GUTI remains consistent with all
past observations, the FSM regards this GUTI as the current
best candidate and enters a final verification phase that checks
whether subsequent bursts continue to match this hypothesis
over time.

At a high level, the FSM operates in four stages (Algo-
rithm 1). (i) INIT performs basic setup, preparing the camera
and RF input streams and initializing the candidate set. (ii)
SCAN monitors the RF trace and, for each observed camera



event, searches within a configurable temporal window for
DClI-derived burst traffic and associated RNTIs; this window
is chosen large enough to cover the clock offset between the
camera (cellular time) and the SDR host (NTP time). (iii)
COLLECT and FILTER then extract GUTIs from the iden-
tified bursts and prune inconsistent candidates using camera-
derived usage events, iterating until the candidate set becomes
empty or only a single GUTI remains. (iv) VERIFY finally
checks whether this remaining candidate consistently explains
future bursts within the verification timeout window Tyer.
Appendix A provides the formal state-space definition and
extended transition details.

Formal Data Burst Definition. We use a binary predicate
Burst(RNTI, T') to indicate whether an RNTI exhibits signif-
icant DL/UL activity around time 7. We define a data burst
for an RNTI at time 7" as follows:

Definition 1 (Data Burst). A data burst occurs at time T for an
RNTI when the cumulative data within a time window exceeds

a threshold:

1, if Y (DL +ULy) > du,
tE[T—ten, T+ten] (D
0, otherwise.

Burst(RNTI, T) =

Here, t;, denotes the time threshold window, dyj, represents the
data threshold in bytes, and DLy, U L; correspond to downlink
and uplink data at time t, respectively.

VII. REAL-WORLD EXPERIMENTS

Having presented our GUTI identification framework, we
demonstrate its real-world feasibility and privacy implications
through field experiments. Despite GUTI’s design goal of
preventing user tracking, we show that our framework success-
fully extracts these temporary identifiers and enables long-term
user tracking in commercial networks.

A. Experimental Setup

Our experimental setup consists of four main components:
target devices, RF capture equipment, visual activity monitor-
ing, and time synchronization.

Target Devices. For single- and three-UE experiments (E1-
E6), we used four smartphones from different manufactur-
ers and models: iPhone 7 (A10 Fusion), Galaxy S20 5G
(Snapdragon 865), Galaxy S22 Ultra (Snapdragon 8 Gen 1),
and Galaxy S24 (Exynos 2400). For the 10-UE experiments
(E7-E8), we used ten commercial smartphones (one i0OS and
nine Samsung Galaxy models; a full list is given in Section
VII-B3). For cross-country experiments in Country B (E9—
E12), we targeted Galaxy S23 Ultra and Galaxy S24. To
validate RNTI allocation and GUTI assignment at the device
level, we employed XCAL [38], a commercial diagnostic
tool that extracts control-plane messages from the baseband
processor. While alternative tools exist (e.g., QXDM [43],
QCSuper [44], Network Signal Guru [45], Mobilelnsight [46],
and SCAT [47]), we used XCAL in our experiments due to its
stable support for both iPhone and Samsung Galaxy devices in

Algorithm 1 FSM-based GUTI Identification

Require: Timestamped camera events C, RF signal trace R, maximum
iterations Nje,, verification timeout Tyer

Ensure: Target GUTI g* or FAILURE

1: state <— INIT

2: G+ 0

3: iter < 0

4: g% +— L > current best hypothesis (if any)
5: while state ¢ {DONE, FAIL_SAFE} do
6
7
8
9

> set of candidate GUTIs

if state = INIT then
ALIGNTIMELINES(C, R)
state < SCAN

else if state = SCAN then

> Phase 0: timeline alignment

> Phase 1: wait for bursts

10: B < DETECTBURSTS(R)

11: if |[B| > 0 then

12: state <— COLLECT

13: end if

14: else if state = COLLECT then > Phase 2: extract raw GUTIs
15: for all b € B do

16: g < EXTRACTGUTI(b)

17: if g # L then

18: G+ GU{g}

19: end if

20: end for

21: state <— FILTER

22: else if state = FILTER then > Phase 3: prune via camera events
23: G < APPLYFILTERS (G, C)

24: iter < iter 4+ 1

25: if iter > Nje, then > prevent non-terminating loops
26: state < FAIL_SAFE

27: else if |G| = 1 then > single consistent candidate found
28: g* < the unique element of G

29: state <— VERIFY

30: else if |G| = O then > no candidate survived filtering
31 G0, B0

32: state <— SCAN

33: else > multiple candidates remain; wait for more events
34: state <— SCAN

35: end if

36: else if state = VERIFY then > Phase 4: verify final hypothesis
37: tstart <— currentTime

38: repeat

39: burstOK < VERIFIED(g*)

40: until burstOK V currentTime — tsgart > Tver

41: if burstOK then

42: state <— DONE

43: else

44: state <— SCAN

45: G+ 0, B+0, gt« L

46: end if

47: end if

48: end while

49: if state = DONE then
50: return g*

51: else

52: LOGERROR(G, iter)
53: return FAILURE
54: end if

> state must be FAIL_SAFE here

our setup. For the iPhone, we specifically chose the iPhone 7 as
newer models restrict baseband diagnostics; this model allows
diagnostic profile installation [48], enabling RNTI and GUTI
monitoring through XCAL. For Samsung Galaxy devices, we
additionally leveraged the vendor-provided engineering/debug
screen, which exposes serving-cell and NAS identifiers, to
directly confirm the GUTI values shown to the user.

RF Signal Capture. We deploy one SDR sniffer per
monitored downlink E-UTRA Absolute Radio Frequency
Channel Number (EARFCN). In E1-E6 and E9-E12, a single
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Fig. 5: Experimental setup for GUTI identification

USRP B210 [41] paired with SRS AirScope [24] sufficed
because UEs camped on one EARFCN. In E7-E8, we moni-
tored two downlink EARFCNSs, so we used two USRP B210
instances running SRS AirScope, each tuned to one EARFCN.
Across our experiments, per-sniffer processing rates ranged
from 73 % to 100 %, depending on RF conditions and host
load. For the primary sniffer, we attached the SDR to a laptop
with an Intel 17-8650U CPU; when deploying an additional
sniffer in E7-E8, we used a mobile workstation with an Intel
Xeon E-2176M CPU.
Visual Activity Monitoring. We recorded device interactions
in all experiments using a Galaxy S25 Ultra smartphone
running a timestamp camera application [49] that overlays
millisecond-precision timestamps on the video feed. By plac-
ing the target UEs in a single field of view, we could
simultaneously monitor up to ten UEs (E7-E8). This visual
capture serves two purposes: (1) providing trigger points for
expected data bursts when users interact with their devices,
and (2) establishing ground truth for validating extracted
GUTIs against actual device usage. While our experimental
setup captures detailed service information for comprehensive
evaluation, we emphasize that the framework requires only bi-
nary knowledge of data activity (active/inactive) for successful
GUTI extraction. The detailed service classification enhances
performance but is not a prerequisite.
Time Synchronization. The SDR laptop was synchronized
to an NTP server, while the recording smartphone relied on
cellular network time, ensuring a consistent time reference
across our experimental setup. While minor logging delays
may occur due to processing latency, these fall within our
time-window parameter (t.;) and do not affect the algorithm’s
performance.

Figure 5 depicts our complete experimental environment
incorporating all components described above.
FSM Parameterization. Unless stated otherwise, all exper-
iments execute the FSM with the parameter set in Table I.
The data-burst threshold is fixed to d;;, = 10kB and the

TABLE I: FSM runtime parameters used in all experiments

Symbol  Value Unit Role

din 10 kB data-burst threshold

tin 2 S time-window half-width

Tgap 300 ms maximum inter-burst gap (continuous)
Tver 300 S VERIFY -state timeout

Niter 10 iteration ~ FILTER-state loop bound

time window to t;;, = 2's, meaning that a burst is recognized
once the aggregate DL+UL volume for an RNTI exceeds
10kB within any 4-second sliding window. Other parameters
follow the design choices in Section VI and Appendix A:
the continuous-traffic gap 74, = 300 ms, verification timeout
Tver = 300, and the iteration cap Ny, = 10 to prevent infinite
loops.

B. GUTI Identification Results

We conducted twelve experimental sessions (E1-E12)
across four MNOs in two countries, totaling 37 per-UE GUTI-
identification attempts. We achieved 36/37 (97 %) successful
extractions and 35/37 (94 %) full verifications overall. The
only extraction failure occurred on Galaxy S23 Ultra in E11,
and the other verification failure occurred on Galaxy S24 in
ES5 (see Table II).

1) Single-Device Experiments (EI-E4): Four isolated tests
were performed with individual devices, each executing mixed
services (voice calls, YouTube, web browsing) sequentially.
All experiments achieved successful GUTI extraction and
verification despite control-plane packet losses, with only 1-2
missed service instances per session.

Representative case E1 demonstrates the algorithm’s robust-
ness: the FSM successfully identified a single GUTI immedi-
ately after the first call service ended, with verification com-
pleted during the subsequent YouTube session. When shifting
the observation starting point to the second service (YouTube),
the GUTI was uniquely identified during the web browsing
phase, with verification completed at the next web navigation.
Notably, even when the sniffer missed the initial call service,
the FSM’s FILTER state produced an empty candidate set,
triggering automatic recovery. The algorithm then resumed
tracking from the fifth service (YouTube), successfully ex-
tracting the GUTI during the second YouTube session and
completing verification during the final web service.

In E4, despite missing the third (YouTube) and fourth (web)
services, the algorithm extracted and verified the GUTI from
the first web service alone. When shifting the observation point
to the call service, the GUTI was still uniquely identified after
call termination, with verification completed during the next
call despite intermediate missed services.

2) Multi-Device Experiments (E5—E6): To demonstrate uni-
versality beyond specific manufacturers or chipsets and val-
idate multi-target tracking capabilities, we conducted multi-
device experiments using diverse hardware: an iPhone with
Apple silicon, and Samsung devices with both Qualcomm and
Exynos chipsets.



TABLE II: Experimental results of GUTI identification

Exp Sniffer(s)* Device(s) Chipset Network Services' # Missed Extraction  Verification
El 1 (99 %) Galaxy S20 Snapdragon 865 MNO-II C-Y-W-C-Y-W 1(4) v v
E2 1 (93 %) Galaxy S20 Snapdragon 865 MNO-II W=Y-W-Y-W-Y-C 1(2) v v
E3 1 (90 %) Galaxy S20 Snapdragon 865 MNO-I Y-W-C-Y-W-C 1(5) v v
E4 1 (90 %) Galaxy S22 Snapdragon 8 Genl MNO-I W-C-Y-W-C 2(3,4) v v
ES 1 (84 %) iPhone 7 A10 Fusion Y-W-A-Y-W-A 1(6) v v
Galaxy S22 Snapdragon 8 Genl MNO-II Y-W-C-Y-W-C 3(1,2,5) v v
Galaxy S24 Exynos 2400 W-C-Y-Y-W-C 4(1,2,5,6) v X*
E6 1 (90 %) iPhone 7 A10 Fusion C-W-Y-W-C-W-Y 0 v v
Galaxy S22 Snapdragon 8 Genl MNO-I W-Y-C-W-Y-C 0 v v
Galaxy S24 Exynos 2400 Y-C-W-Y-C-W 3(3,5,6) v v
E7 2 (100 %, 100 %) 10 UEs Various MNO-II W (intermittent)$ 0 v v
E8 2(100 %, 89 %) 10 UEs Various MNO-III W (intermittent)$ 61 v v
E9 1 (78 %) Galaxy $23 Ultra  Snapdragon 8 Gen2 ~ MNO-IV/ Y-G-W-G-W-Y 0 v v
EI0 1 (73 %) Galaxy S23 Ultra  Snapdragon 8 Gen2 ~ MNO-IV/I Y-G-W-G-W 2(2,3) v v
Galaxy S24 Exynos 2400 G-W-Y-W-Y 1(4) v v
Ell 1 (81 %) Galaxy S23 Ultra  Snapdragon 8 Gen2 ~ MNO-IV/ W-G-G-Y-G-W 5(2-6) X X
Galaxy S24 Exynos 2400 Y-W-Y-W-Y 2(2,4) v v
El12 1 (74 %) Galaxy S23 Ultra  Snapdragon 8 Gen2 ~ MNO-IV/l Y-W-G-W-G-Y 0 v v
Galaxy S24 Exynos 2400 W-G-Y-G-G-Y 0 v v

>
+
b4
§

GUTI extracted but verification incomplete due to high packet loss and limited observation window.
Service legend: C=Call, Y=YouTube, W=Web, A=Apple TV, G=Google Meet (audio/video).
Sniffer(s): “n (p)” or “n (p1, p2)” denotes n SDR sniffers with per-sniffer processing rate(s) in percent.

Each UE performed intermittent web browsing; we use data-service presence, not the specific service type.

‘ MNO-I/II/II are operators in Country A, while MNO-IV is an operator in Country B.

T “# Missed” = 6: one each on iPhone 7, Galaxy S10 5G, S20 5G, Z FoldS5, and two on S23 Ultra.

E5 (MNO-II) operated under challenging conditions with
approximately 16 % control packet loss (84 % processing
rate), resulting in multiple missed services. Nevertheless, the
algorithm successfully extracted and verified GUTIs for most
observation cases. The worst-case scenario (Galaxy S24 in
ES) illustrates a practical limitation: while GUTI extraction
succeeded, verification could not be completed due to missing
4 out of 6 services. Despite this, the algorithm correctly nar-
rowed to a single GUTI during consecutive YouTube services
separated by a brief idle period. Subsequent services were all
missed, preventing target verification. All other devices in the
multi-device experiments achieved both successful extraction
and verification.

3) Large-Scale and Cross-Country Experiments (E7-E12):
To further validate our framework with a larger device set
and in additional countries, we conducted 10-UE experiments
on Country A’s MNO-II (E7) and MNO-III (E8). We used
ten commercial smartphones: one iOS device (iPhone 7,
A10 Fusion) and nine Samsung Galaxy devices—S10 5G
(Exynos 9820), Notel0+ 5G (Exynos 9825), S20 5G (Snap-
dragon 865), S21 5G (Exynos 2100), S22 Ultra (Snap-
dragon 8 Gen 1), S23 (Snapdragon 8 Gen 2), S23 Ultra
(Snapdragon 8 Gen 2), S24 (Exynos 2400), and Z Fold5
(Snapdragon 8 Gen 2). At each measurement location, UEs
typically camped on a primary downlink EARFCN, but in
practice EARFCN reselection can occur. To avoid missing
control-plane messages during such changes, we deployed
sniffers not only on the primary EARFCN but also on the

additional EARFCN observed in that area. In E7-ES8, all UEs
intermittently browsed the web for experimental convenience.
Across all experiments, we annotate service types to charac-
terize usage patterns, but our GUTI extraction logic primarily
relies on the presence and timing of data-triggered control-
plane activity, so using web traffic here does not materially
limit generality.

In E7, both sniffers achieved a processing rate of 100 %,
unlike in other experiments, and thus captured all control-
plane messages for every target without loss. Consequently,
we were able to extract and verify the GUTI of every device
using only three observed data-service events per device. In
ES8, the two sniffers processed at 100 % and 89 %, respectively.
As summarized in Table II, this resulted in one missed message
each for the iPhone 7, Galaxy S10 5G, S20 5G, and Z Fold5,
and two missed messages for the S23 Ultra, while all other
devices experienced no message loss. Despite these losses,
our framework still successfully extracted and verified the
GUTI for all devices, including those with missed messages,
by leveraging additional observations.

Experiments E9—E12 were conducted on operator MNO-
IV in Country B, which is distinct from Country A’s MNO-
I/II/TIL, and targeted Galaxy S23 Ultra and Galaxy S24 devices.
These measurements were performed in a specific localized
area where the sniffer processing rates were relatively low
(73-81 %). Nevertheless, except for a single failure case on
the Galaxy S23 Ultra in E11, we were able to identify the
GUTI in all runs. In the E11 failure case, the sniffer missed all



subsequent control-plane messages after the first data-service
event, ultimately preventing GUTTI identification.

4) Analysis of Missed Service Cases: While our experi-
ments demonstrated successful GUTI extraction, sniffer per-
formance remains critical as capturing target devices’ RRC
and DCI messages is fundamental to the attack. In El,
despite 99 % processing rate, the sniffer missed the target’s
RRCConnectionSetup while successfully capturing all
DCI messages. Among single-device experiments, only E4
experienced both DCI and RRC losses for the target, while
others only missed RRC messages. Multi-device experiments
presented debugging challenges due to limited multi-device
debugger connectivity, making it difficult to determine whether
missed cases were due to DCI, RRC, or other issues. While
higher processing rates generally improve robustness, our
results show that average rate alone is not predictive. In Coun-
try B, we successfully extracted GUTIs at processing rates
as low as 73-81% (E10/E12) when losses were dispersed,
but also observed a failure at 81 % (El1) due to a long
blackout immediately after the first data-service event. This
indicates that sustained observation can sometimes compensate
for moderate loss, yet cannot fully recover from bursty gaps
around key trigger events. In summary, lower processing rates
can still lead to successful GUTI identification given sufficient
observation time, but fast and reliable extraction in practice
requires maintaining a high processing rate around trigger
bursts.

Overall, our experiments indicate that while distinctive
services such as voice calls or web browsing can speed up
convergence by producing clearer burst patterns, the core FSM
logic primarily relies on the timing of data-triggered control-
plane activity rather than precise service labels.

C. Attack Scenarios: Location Tracking

Using an identified GUTI, a passive adversary can perform
hierarchical location tracking at three granularities: (i) cell-
level presence via RRCConnectionSetup, (ii) paging-area-
level presence via PCCH paging messages, and (iii) absence
from the paging area when the GUTI disappears from both
channels. This attack requires only passive monitoring and
remains fully exploitable in current LTE deployments.

The feasibility of hierarchical tracking stems from the dif-
ferent scopes of paging and RRC signaling. When a device in
RRC IDLE receives downlink traffic, the network broadcasts
paging messages for the device’s GUTI over a paging area that
may span multiple cells, whereas RRCConnectionSetup
occurs only in a single physical cell. By monitoring both
PCCH and RRC signaling with a single sniffer, an adversary
can therefore infer whether a target is located inside a specific
cell, somewhere within the paging area, or outside paging
coverage altogether.

Across two operators (MNO-I and MNO-II), we measured
the ratio of unique GUTIs observed on PCCH versus RRC
to range from 10 to 38, indicating that paging areas are
approximately 10-38 times larger than individual cells. In our
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Fig. 6: Experimental results of hierarchical location tracking
with a single passive sniffer

measurement locations, the physical cell area was approxi-
mately 50,000-90,000 m?, corresponding to paging areas of
roughly 0.5-3.6 km?. These values are consistent with prior
studies showing that paging areas can span tens of square
kilometers depending on operator policies and service types.

In a representative case study, we tracked a device as
it moved between a serving cell, the surrounding paging
area, and outside paging coverage using only passive obser-
vation (Figure 6). Even when the device was not actively
using data services, periodic paging messages enabled coarse-
grained localization. In our measurements, paging messages
were transmitted on the order of a few times per hour for
idle devices, while RRCConnectionSetup events allowed
rapid confirmation of cell-level presence when data activity
occurred.

VIII. EVALUATION

This section evaluates our GUTI identification framework
using real-world traces and operational measurements. We first
estimate how many visually observed device-usage events are
needed to uniquely resolve a GUTI, and then empirically mea-
sure false-positive and false-negative rates of our burst detector
under realistic capture loss. We further study the sensitivity
of the FSM thresholds g, and 7, and finally compare our
attack with existing identifier-extraction techniques.

A. Required Number of Observations

The method of extraction fundamentally requires the ob-
servation of the target’s mobile activity. We analyzed the
required number of observations to extract GUTI based on
actual PDCCH data. Our validation data from two MNOs in
Country A were logged over 11 days, totaling 3 hours, 31
minutes, and 8 seconds. We identified a total of 4,096 unique
GUTIs in the dataset. We then analyzed similarities between
GUTIs based on the start times of data services throughout
this period. For experimental evaluation, we measured the
similarity of data start times among random users, not the
target.

Definition 2 (GUTI Similarity). Let two GUTI timelines be

gi = {(R]VTIZ1 5 til), ey (RNTL’n,tin)},
9; = {(RNTI;,,t;,),...,(RNTI;, t;,)},



where each pair (RNTI,,t,) denotes the RNTI that “ini-
tiated a data-burst” at time ty, i.e., BursttRNTI,,t,) =1 as
defined in Definition 1. We say that g; and g; are “similar”

iff

n=%k and |ti€—tj£|<t/h er{l,...,n}.
In words, the two GUTIs expose the same sequence length
of burst-triggering RNTIs and their corresponding burst-start

times match within a tolerance of t,, seconds.

We analyzed all the verification data we recorded and
extracted every RNTI mapped to each GUTI, logging the
activation time and the amount of data for each RNTI. This
allowed us to construct a data-usage timeline for each GUTL
When the time threshold ¢, is set to 2 seconds, 197 pairs of
similar GUTIs were found among 4,096 unique IDs. Notably,
all these similar GUTIs had only one RNTI. Not a single
pair of GUTIs that mapped to two or more RNTIs exhibited
similarity. By increasing the time threshold to 5 seconds, the
count of similar GUTIs increased to 485 pairs. Among these,
one pair had 2 RNTIs, and another had 3 RNTIs; all remaining
483 pairs consisted of GUTIs mapped to a single RNTIL. With a
2-second time threshold, observing two mobile-activity events
is typically sufficient to identify a user with high probability
in our dataset. With a 5-second threshold, the identification
success rate increases to 99.902 % (4,092/4,096).2

When a user in RRC IDLE mode uses data services, a
new RNTI is assigned. This analysis shows that the extraction
method can identify a single GUTI when it is possible to
identify a user’s RNTI twice, that is, when two observations
can be made.

B. Error-Rate Analysis (10kB / 2's detector)

Theoretical bounds on the performance of any identifier-
extraction scheme are elusive because mobile traffic is highly
non-stationary: burst inter-arrival times and sizes depend on
location, access technology, time of day, and user behavior.
Instead of attempting full analytical coverage, we estimate
false-positive (FP) and false-negative (FN) rates empirically,
using the real-world trace set described in Section VIII-A. All
results assume the production detector parameters d;, = 10kB
and t;;, = 2s (cf. Section VI).

a) False positives: An FP occurs when the FSM selects
and verifies a non-target GUTI g, although the true target
is g;. For this to happen (i) g, must survive FILTER as a
unique candidate and (ii) pass VERIFY, which requires at least
Nmin = 3 aligned data bursts. In the 211-minute trace in our
experiment, the probability that two unrelated RNTIs produce
three bursts within ¢;;, = 2 s is 0. Even with an exaggerated 5 s
window the joint probability remains below 0.1 %. Therefore,
even in a worst-case setting—looser t;;, = 5s and the sniffer
simultaneously missing all bursts of g;—the overall FP risk
stays < 0.1 %.

20ut of the total 4,096 GUTIs, the number of GUTIs, excluding the pair
mapped to 2 and 3 RNTIs, is 4,092.
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TABLE III: FN rate versus burst opportunities (p = 0.8096)

3 4 5 6 7 8
Pr[En] 0531 0.834 0930 0971 0986 0.994
FN rate (%) 469 16.6 7.0 2.9 1.4 0.6

b) False negatives: An FN is registered when the algo-
rithm fails to verify the actual target. The dominant factor is
control-plane loss at the sniffer; environmental conditions (no
user traffic, RF shadowing) simply postpone extraction rather
than degrading accuracy.

Burst-Capture Model. With the USRP pipeline sustaining
> 90% throughput, the trace shows a per-burst capture
probability p = 0.8096 (i.e., 19.04 % of bursts missed). Let
each burst opportunity be an independent Bernoulli trial with
success probability p = 0.8096 (¢ = 1 — p = 0.1904). For a
sequence of n opportunities, define

E, = (isz > 3) A (3j (s5 = sj+1 = 1))7

i.e., at least three captured bursts in total and at least one
occurrence of two successive captures. The success probability

is then
n41
n\ ok n—k_LiJ n—k+1) p g
k pgq 2 k pq .

succ. <2 succ. >3 & no “117

With five opportunities the FN rate already drops to 7 %,
and for n > 6 it falls below 3 %, demonstrating that three
captured bursts provide a practical balance between accuracy
and latency.

Table III shows that once the sniffer observes five or more
burst opportunities from the handset, the FN rate drops below
7 %; at eight bursts it is already under 1 %. That rate could be
reduced further if the sniffer’s processing rate increases.

Pr(E,)=1-)

2
k=0

C. Parameter Sensitivity of FSM Thresholds (Teqp and T.y)

We evaluate the sensitivity of the FSM to its parameters
Teap and Tye, by varying them around their default values
(Table I) using real-world traces. Unless otherwise noted, all
experiments use the default parameter set.

1) Sensitivity of Ty, : The continuous-service filter is not
a core requirement of our FSM-based GUTI identification
algorithm; the framework can identify a target GUTI even
without classifying traffic as continuous or non-continuous.
However, when a clearly continuous service is observed within
a short interval (e.g., a VOLTE call), this filter provides a useful
accelerator by pruning candidates that exhibit long silent gaps.

We analyze this behavior using the notion of no-burst
intervals. The formal definition of a no-burst interval is given
in Appendix B. Intuitively, a data burst for an RNTI occurs at
time 7 if the cumulative DL/UL data within [T —t;p,, T +t:,]
exceeds dy,, and a no-burst interval corresponds to a time span
of length at least 2¢;, in which no such detection window
contains a burst. The continuous-service filter classifies a flow



TABLE IV: No-burst intervals for YouTube traffic

Operator  10th perc.  Median ~ 90th perc.
MNO-I 4.64 s 9.22s 9.98 s
MNO-II 543 s 9.47 s 11.46 s
MNO-1V 4.46 s 7.46 s 10.57 s

TABLE V: Verification success rate as a function of the
verification timeout 7y, (replayed traces)

Tver (S)  Success rate (%)
50 0.0
100 70.2
200 89.1
300 94.5

as continuous only if its longest inter-burst gap Ly, satisfies
Lax < 2t + Tgap-

With 24, = 25 and 7g,p = 300ms, this threshold becomes
2tin + Tgap = 4.3s. Using DCl-derived traffic traces, we
observe that YouTube-like non-continuous flows consistently
exhibit at least one no-burst interval longer than 4.3 s, whereas
continuous services (VOLTE, Google Meet) do not. Figure 7
illustrates this separation, and Table IV summarizes the distri-
bution of no-burst interval lengths for YouTube traffic across
three operators. Even the 10th percentile of YouTube no-
burst intervals exceeds the threshold in all cases, confirming
that 74, = 300ms robustly separates continuous and non-
continuous traffic in our measurements. Decreasing 7g,, toward
zero does not change classification outcomes, while substan-
tially increasing it risks misclassifying non-continuous flows
as continuous.

2) Sensitivity of T,., - The parameter 7., bounds the dura-
tion of the VERIF'Y state after a candidate GUTI-UE mapping
has been established. This timeout limits buffer growth and
ensures that incorrect mappings are eventually discarded if no
confirming activity is observed.

Table V reports the verification success rate obtained by
replaying our experimental traces with different timeout val-
ues. Very short timeouts are ineffective: at 7y, = 508, no
mapping is verified because inter-activity intervals in our traces
exceed the timeout. As 7, increases, the success rate improves
monotonically and reaches 94.5 % at 7,; = 300s, matching
the outcome of our original experiments without enforced
timeouts. This indicates that once 7, is sufficiently large, fur-
ther increases primarily affect buffer occupancy rather than the
correctness of identification. In practice, moderately generous
verification timeouts (on the order of several minutes) provide
a good balance between robustness and resource usage.

D. Comparison with Existing Attacks

Table VI compares our FSM-based GUTI identification
framework with existing identifier-extraction techniques. Our
approach combines passive operation with cell-level coverage,
offering stealth advantages while avoiding user-side disruption.

The primary limitation—requiring line-of-sight for camera
correlation—is a trade-off for avoiding over-the-air transmis-
sion, which reduces the RF footprint compared to active
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Fig. 7: DCI-derived traffic patterns for YouTube, VOLTE, and
Google Meet services; the y-axis shows scheduled DL+UL
data per 1 ms slot (kB)

approaches. Unlike IMSI catchers that must transmit rogue
signals, our passive approach relies solely on listen-only
RF reception and external visual cues, without transmitting
or modifying any cellular traffic, making it technically less
conspicuous than active attacks.

IX. DISCUSSION

This section discusses the practical requirements for mount-
ing our attack, key factors that constrain its deployment,



TABLE VI: Identifier-extraction attacks
Attack Pass. Prior? LoS? Scale Detect.  Impact
IMSI (BTS) [2] X X X Cell! High Service drop
IMSI (Shadow) [27], [28] X X X Cell Med. None
Phone-GUTI [3], [4], [S] X v X Single Low Phone rings
Ours v X v Cell> V. low None

! Uplink-based; limited by SDR transmit power (typically tens of meters).

2 Limited by camera line-of-sight; covers only visible UEs in the cell area.
Pass. = Passive?, Prior? = Requires prior identifier?, LoS? = Requires
line of sight?, Detect. = Detection likelihood.

discrepancies between security standards and real-world im-
plementations, the feasibility of extending our approach to
5G, and potential mitigation strategies. Taken together, these
points clarify where our GUTI identification framework is
most applicable in practice and how operators can reduce the
associated privacy risks.

A. Practical Attack Requirements

While our experiments employed detailed activity moni-

toring for thorough evaluation, practical attacks require sig-
nificantly less—an adversary need only detect when targets
actively use their devices. For example, an adversary could
simply observe when a user looks at their phone or holds it
to their ear.
Multi-EARFCN Deployments. In our experiments, UEs typi-
cally camped on a single primary downlink EARFCN, so one
sniffer per monitored EARFCN was sufficient. However, in
real deployments neighboring cells or overlapping coverage
can expose multiple candidate EARFCNSs, and inter-frequency
handovers may move a device between them near cell borders.
In E7-E8 we therefore monitored two downlink EARFCNs
using two B210-SRS AirScope instances, each tuned to one
carrier, and merged their logs offline before running the FSM.
An adversary with access to multiple SDRs or a wideband
receiver could apply the same strategy to avoid losing control-
plane messages during inter-frequency mobility while still
operating passively.

B. Limitations

While our FSM-based GUTI identification approach demon-
strates high success rates, several limitations constrain its
applicability and generalizability.

Line-of-Sight Requirement. Our method fundamentally re-
quires visual observation of target devices to correlate RF
signals with user activities. This constraint limits deployment
to scenarios where the adversary can position a camera with
clear visibility of targets, excluding environments such as
obscured locations, or scenarios where targets are not directly
observable.

Single-Cell Coverage. Unlike active IMSI catchers that can
actively pull devices into their coverage, our passive approach
is limited to the coverage area of a single cell sector where
the sniffer is deployed. Targets moving between cells require
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repositioning of equipment or multiple synchronized collection
points.

SDR Performance Constraints. We rely on commercial
SDR equipment (USRP B210) that may miss control-plane
messages under heavy traffic conditions. Our experiments
showed processing rates of 73—100 %, with lower rates often
correlating with increased false negatives.

Deployment Variability. Our experiments focused on three
MNOs in Country A and one MNO in Country B, all in urban
environments. Other regions may use different configurations
and traffic loads (e.g., peak vs. off-peak hours), which can
affect identification success rates and generalizability.
Network-Specific Implementations. Despite 3GPP standard-
ization, operators implement different GUTI management
strategies. Some may use shorter rotation intervals, random-
ized allocation, or trigger reassignment on specific events,
potentially limiting our method’s effectiveness.

Multi-Target Tracking. In our experiments, we successfully
tracked up to 10 devices simultaneously within a single camera
view (E7-E8), and our FSM operates on all visible RNTIs
in a receive-all, filter-targets fashion. Scaling beyond tens
of devices, however, would require more sophisticated and
fully automated video analysis to detect and separate device-
usage events for many users in parallel. In particular, reliably
tracking hundreds of targets in dense crowds appears limited
by the visual factors (per-device event detection, occlusion
handling, and identity maintenance) rather than by RF pro-
cessing complexity, and we leave such large-crowd, fully
automated visual tracking as future work.

Experimental Validation Scope. All experiments used re-
searchers’ own devices, preventing validation against diverse
real-world user behaviors and device types. Moreover, our test
networks did not employ strong GUTI-randomization defenses
during the measurement period, so we could not validate our
framework under operators that aggressively rotate identifiers.
Comparison with Active Attacks. Unlike active IMSI catch-
ers that guarantee target connection, our passive approach
cannot force GUTI exposure—targets must naturally generate
traffic. Silent or idle devices remain undetectable, and users
can evade tracking by disabling data services or entering
airplane mode.

These limitations collectively suggest that while GUTI
identification remains a practical privacy threat, practical
deployment faces significant operational hurdles that may
limit its attractiveness compared to active attacks in certain
scenarios. Future work should address these constraints while
maintaining the passive nature that provides our method’s
primary advantage.

C. Discrepancy between Standards and Implementation

Cellular networks, often described as walled gardens [50],
frequently display a gap between established standards and
their actual implementation. This gap arises from several fac-
tors: the complexity of network architecture, the difficulty for
users and MNOs to recognize security issues, and a tendency
to prioritize performance over security. The implementation



of cellular networks varies by region and carrier, making it
challenging to maintain consistent security measures. More-
over, passive attacks, such as location tracking, often go
unnoticed, further complicating the enforcement of security.
As networks evolve and grow more complex, there is an
increasing focus on operational performance at the expense
of security enhancements. While safe standards are critical,
ensuring strict compliance with these standards is equally
essential to protect user privacy.

D. 5G Feasibility

Our work focuses on LTE, which remains the predominant
deployment globally, but the same class of risk may also arise
in 5G. Recent 5G security updates [51] strengthen protection
of permanent identifiers and make classical IMSI-catcher style
attacks harder, but they do not directly eliminate exposure of
temporary identifiers. In 5G, data scheduling over PDCCH still
relies on RNTI-based addressing, and commercial and research
analyzers already demonstrate the ability to recover 5G down-
link DCIs. For example, tools such as WaveJudge [25] and
5GSniffer [52] can decode DL-DCIs, and more recent tools
like NR-Scope [53] reportedly add RRC message decoding,
potentially exposing contention-resolution identities and 5G-
GUTT assignments. At the same time, NR introduces important
differences: only part of the 5G S-TMSI is used in contention
resolution, and the mapping between temporary identifiers and
control-plane messages differs from LTE.

We do not claim an end-to-end 5G attack pipeline, nor did
we validate our framework on 5G standalone deployments.
Instead, we treat 5G applicability as a feasibility question
pending further verification: existing tools suggest that recov-
ering 5G control information is becoming practical in some
environments, but empirical evaluation of 5G-GUTTI extraction
and tracking is left as future work.

E. Countermeasures and Quantitative Evaluation

Hong et al. [5] proposed a cryptographically secure pseu-
dorandom number generator-based GUTI reassignment mech-
anism for LTE [54], [55], [56], which led the 3rd Generation
Partnership Project (3GPP) to update the standard [57] in
2022 (version 17.0.0) so that an unpredictable identifier is as-
signed on every Service Request [58], [59]. When a UE
uses non-voice services, frequent RRC reconnections gener-
ate regular Service Requests, limiting GUTI persistence
and hindering extraction. However, an attacker can suppress
Service Requests—for example, using the scheduling
attack of Oh et al. [30] to keep the RRC connection active—
and still obtain the RNTI and recover the GUTI via reverse
identity mapping, enabling long-term tracking until the UE
powers off.

Beyond theoretical solutions such as PDCCH encryption,
which require protocol-level changes and long deployment
cycles, we consider two practical near-term mitigations. The
first, aperiodic GUTI renewal, can be realized via core-network
policy updates. The second, lightweight deception using decoy
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identifiers, would require more invasive changes to scheduling
and identifier management and is therefore more speculative.

a) Aperiodic GUTI renewal: Beyond periodic GUTI
rotation tied to mobility or service requests, we consider a
network-initiated renewal policy that enforces a maximum life-
time for each GUTI. Unlike periodic or event-driven schemes,
renewal is triggered solely by the expiration of this lifetime
and is not synchronized with UE behavior or other network
events. Once a time threshold 7" has elapsed since the last
assignment, the core triggers a GUTI Reallocation Command,
independent of the UE’s RRC state (idle or connected). This
requires only a policy change in the core network rather than
a protocol modification.

To cover a range of plausible operator choices, we consider
three example thresholds, ' € {300,600, 1800}s (5, 10,
and 30 minutes), ranging from relatively aggressive to more
conservative renewal intervals. In our trace-driven what-if
analysis, these values shorten GUTT lifetimes from the multi-
day to multi-week range observed in our measurements to
minute-scale durations. In particular, 7' = 300s reflects a
conservative threshold for substantially reducing the effective-
ness of our attack: Section VII shows that our framework can
identify a device’s GUTI whenever it is observed for roughly
five minutes without a long service gap, so enforcing renewal
on this timescale either prevents successful identification or,
when renewal occurs shortly after identification, renders the
identified GUTI too short-lived to be useful for tracking. A
GUTI reallocation procedure every five minutes incurs only
modest NAS signaling overhead in our setting, but operators
can adjust 7' to match their own policies and overhead bud-
gets—for example, varying the renewal interval by time of day
or adopting longer thresholds. Even thresholds of 30 minutes
or more still substantially strengthen privacy compared to the
current practice of multi-day persistence.

b) Lightweight deception: Another complementary di-
rection is to inject fake control-plane activity to confuse
the attacker. Our FSM-based attack gradually narrows the
candidate set of GUTIs by intersecting the sets observed at
multiple visual triggers; thus, the attack fails if at least two
plausible GUTIs remain consistent across all observed triggers.
A simple way to increase this ambiguity is to maintain a pool
of decoy RNTI-GUTI pairs and, for a fraction X % of real
GUTIs that initiate RRC connections, create corresponding
decoy twins whose DCI scheduling patterns mimic those
of the real targets. When X 100 %, our identification
procedure can no longer compress the candidate set to a single
GUTI by design. In our trace-driven replay, we instantiate
X € {70,50,30} and observe that the GUTI identification
success rate reported in Section VII (94.5 %) drops to 28.3 %,
47.2%, and 66.1 %, respectively. If the sniffer occasionally
fails to decode the target’s DCI while still decoding the decoy’s
DCI, the effective success rate drops even further. That said,
such lightweight deception requires careful design of decoy
identifier selection and tracking policies, and its protection
may be weaker in practice than the aperiodic GUTI renewal
mechanism discussed above.



X. CONCLUDING REMARKS

This work demonstrates that LTE’s GUTI-based privacy
protection remains vulnerable to passive adversaries. By cor-
relating timestamped visual cues with broadcast control-plane
traffic, an attacker can extract and track users’ temporary
identifiers without prior knowledge or active interaction. In
our field experiments, the FSM-based identification algorithm
achieved high success rates, and we observed that, in some
networks, GUTIs can persist for weeks and exhibit reassign-
ment patterns that are linkable in practice. Although 3GPP
specifications require that GUTIs be reassigned unpredictably,
our measurements indicate that operators do not always apply
these mechanisms strictly in practice, often favoring opera-
tional efficiency. This underscores the need for stricter GUTI
policies and for protocol designs that anticipate multi-channel
correlation attacks.

XI. ETHICAL CONSIDERATIONS

We carefully considered the ethical implications of our
GUTI identification algorithm. All experiments were con-
ducted exclusively on our own test devices, with researchers
serving as the only subjects. No third-party or non-consenting
users were monitored, and no GUTIs were extracted from
individuals outside the research team. The validation dataset in
Section VIII used only anonymized aggregate statistics from
passive reception, with no individual identification attempts.
Geographic information has been anonymized (Country A,
Country B) to prevent operator identification.

We acknowledge that the techniques described in this paper
could potentially be misused for unauthorized surveillance
purposes. To address this concern, we reported our findings
to the GSMA, and the GSMA shared them with its members
so they could design and deploy mitigations before this paper’s
publication.

To prevent unauthorized surveillance applications, we pro-
vided specific countermeasures that network operators can
implement, including enhanced GUTI rotation schemes and
stronger NAS-level protection for subscriber identifiers. We
strongly condemn any attempt to use these techniques for
unauthorized surveillance or privacy violations, and under-
standing these vulnerabilities is essential for developing more
robust privacy protections in cellular networks.

Our research adheres to the Menlo Report [60] principles for
ethical ICT research: Respect for Persons through exclusive
use of consenting researchers as subjects; Beneficence by
ensuring the security benefits outweigh potential risks; Justice
by not targeting any specific population; and Respect for
Law and Public Interest through responsible disclosure and

providing defensive countermeasures.
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APPENDIX A
DETAILED FSM ALGORITHM

A. State Space Definition

Definition 3 (FSM State Space). The FSM consists of seven
distinct states:

52{50551752753754755756} (2)

where:
e So (INIT): System initialization
S1 (SCAN): Cell scanning and RNTI monitoring
So (COLLECT): Initial GUTI candidate collection
S3 (FILTER): Candidate reduction
Sy (VERIFY): Final verification
S5 (FAIL_SAFE): Exception handling
S¢ (DONE): Successful completion

B. FSM State Specifications

1) State Sy (INIT): The initialization state performs system
setup with the following operations:

o Calibrate the time offset between camera and sniffer, and

set the temporal matching tolerance

« Initialize data structures: G + (), iter + 0

« Calibrate RF frontend
Exit transition: Sy Init_done, S

2) State S, (SCAN): The scanning state monitors cellular
activities:

o Monitor RRCConnectionSetup messages

e Track DCI allocations on PDCCH

o Build RNTI <+ GUTI mapping cache

Exit transition: S burst_detected So

3) State Sy (COLLECT): For each RNTI with detected
burst, extract corresponding GUTI from RRC Setup mes-
sages and update candidate set: G < G U {extracted GUTIs}.

. .- candidates_created
Exit transition: S —— §
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TABLE VII: FSM state transition specifications

TABLE VIII: Filtering parameters and default values

Current Event Condition Next

INIT init_done sync_success SCAN
SCAN burst_detected burst_count > 0 COLLECT
COLLECT candidates_created |G| > 0 FILTER
FILTER empty or multiple |G| # 1 SCAN
FILTER single Gl=1 VERIFY
FILTER exceeded iter > Niger FAIL_SAFE
VERIFY success BurstMatch DONE
VERIFY timeout t > Tver SCAN

4) State Ss (FILTER): Apply burst pattern and service-
specific filters to reduce candidate set.
Exit transitions:

Ss lel#, S1  (empty set or multiple candidates) (3)
83 197% 5, (single candidate) @
Sy Ler=Nier, o (limit exceeded) )

5) State Sy (VERIFY): By the end of FILTER, the can-
didate set has been reduced to a single GUTI, denoted g¢*.
VERIFY therefore (i) continuously tracks the RNTI mapped
to g* and (ii) upon the target’s next observed service-usage
event, examines whether that RNTI results in a Data Burst.
Verification predicate.

1, if BurstMatch(g*)

0, otherwise.

Verified(g*) = {

* BurstMatch(g*) — at least one data burst associated with the
RNTI that g* maps to is detected while the target device is
visibly using a service (camera trigger window).

If the predicate is satisfied within a verification timeout 7,
(default 300 s), the FSM marks the GUTI as verified; otherwise
the algorithm returns to SCAN and the candidate set is reset.

C. State Transition Table

The complete state transition logic of the FSM is summa-
rized in Table VII. Each transition is triggered by a specific
event and guarded by a condition that must be satisfied.
The FSM ensures deterministic behavior by defining mutu-
ally exclusive conditions for all transitions from each state.
Notably, the FILTER state has three possible transitions based
on the cardinality of the candidate set G, while terminal states
(DONE and FAIL_SAFE) have no outgoing transitions.

The transition from FILTER to SCAN when |G| = 0 im-
plements automatic recovery, allowing the algorithm to restart
data collection without full reinitialization. This design choice
significantly improves resilience against temporary signal loss
or false positive bursts.

D. Continuous Service Filtering

For services requiring persistent connections (e.g., Voice
over IP (VoIP)), a candidate is kept if its maximum inter-burst
gap max;(At;) is below the threshold
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Symbol Default Unit Meaning / Tuning basis

Tgap 300 ms  maximum value of inter-burst gap
At; — ms gap between burst ¢ and i+1

Tver 300 S verification timeout (VERIFY state)

a) ApplyFilters(G,C): For every candidate GUTI g€ G,
(1) map g to its current RNTI, (ii) measure max; At;, and (iii)
prune g if the gap exceeds Tgp. The pruned set is returned to
the FSM. If the current activity is not classified as continuous
(e.g., web browsing), ApplyFilters bypasses the At check
and returns the original set G’ unchanged.

E. Main Algorithm

Algorithm 1 presents the complete FSM-based GUTI iden-
tification procedure. The algorithm takes synchronized camera
feed and RF signal as inputs, maintaining a candidate set G
that is progressively refined through state transitions. The core
loop continues until reaching either the DONE state with a
successfully identified GUTI or the FAIL_SAFE state after
exceeding the iteration limit.

The algorithm initializes with an empty candidate set and
zero iteration counter. Each state executes specific operations:
burst detection in SCAN, GUTI extraction in COLLECT, and
candidate filtering in FILTER, verification in VERIFY. The
iteration counter ensures termination, preventing infinite loops
that could occur from persistent noise or interference. The
corresponding filtering parameters and their default values,
including 7g,p, At;, and Ty, are summarized in Table VIII.

a) Helper Functions.: AlignTimelines prepares the
sniffer and camera timelines for later matching by mapping
both to a common wall-clock time domain rather than en-
forcing strict NTP-level synchronization. DetectBursts
returns the set of RNTIs whose DL+UL volume within
[T — ten, T + t1p] exceeds dip. ExtractGUTI parses the
RRCConnectionSetup message that allocates an RNTI to
obtain the corresponding GUTI. Verified implements the
predicate in (Appendix A-B5). LogError stores the current
candidate set and iteration count for offline debugging.

The key functions called within the algorithm serve spe-
cific purposes: DetectBursts identifies RNTIs whose data
activity exceeds the threshold; ExtractGUTI maps those
RNTIs to their corresponding GUTI values through RRC
messages; ApplyFilters eliminates candidates based on
burst patterns and service characteristics; and BurstMatch
determines whether the candidate GUTI is indeed the target
by correlating additional data bursts with the established
GUTI-RNTI mapping.

Complexity. Per iteration we scan at most n RNTIs and filter
m candidates, yielding O(n+m) work. With the iteration cap
k = 10, the worst-case cost is O(k(n + m)).

Termination. The FSM monotonically advances the loop
counter and aborts at £k = 10; every state has a unique exit
condition, hence the procedure always finishes in finite time.



FE. FSM Complexity Analysis

Theorem 1 (Time Complexity). The FSM-based GUTI identi-
fication algorithm has worst-case time complexity of O(k(n+
m)), where k denotes the maximum iterations, n represents the
number of RNTIs, and m is the size of the GUTI candidate
set.

Proof. In each iteration, the algorithm processes at most n
RNTIs in the SCAN state and filters at most m candidates
in the FILTER state. Both operations are linear in the re-
spective set sizes, yielding O(n + m) work per iteration.
With the iteration bound k, the total worst-case complexity
is O(k(n +m)). O

G. FSM Robustness Guarantees

The FSM design provides the following robustness proper-
ties:

Lemma 1 (Termination). The algorithm terminates within
finite time with either a valid GUTI or explicit failure.

Proof. The iteration counter monotonically increases and is
bounded by Nj.,. Each state has defined exit conditions,
preventing infinite loops. O

Key robustness features:

1) Loop Prevention: Bounded iterations

2) Auto-Recovery: S3 — S7 on empty set
3) Graceful Degradation: FAIL._SAFE state
4) Validation: Verification

APPENDIX B
FORMAL DEFINITION OF NO-BURST INTERVALS
Definition 4 (No-burst interval). Fix an RNTI and the burst
detector Burst(RNTI,T). A closed interval [a,b] is called a
no-burst interval for this RNTI if

b—a > 2ty, and DBurst(RNTI,T) =0
forall T € [a+t, b—ty).
In other words, for every time T whose detection window [T —

tin, T + tip] lies fully inside [a,b], the accumulated DL/UL
data remains below dy, and no data burst is detected.

Intuitively, a no-burst interval represents a time span in
which no sliding detection window of width 2¢;;, contains suf-
ficient DL/UL traffic to be classified as a burst. This definition
excludes short quiet periods that cannot accommodate a full
detection window.

LIST OF ABBREVIATIONS

2G 2nd Generation

3GPP 3rd Generation Partnership Project
5G 5th Generation

BTS Base Transceiver Station

CCTV Closed-Circuit Television

CRI Contention Resolution Identity
DCI Downlink Control Information

DL Downlink

EARFCN

FN
FoV
FP
FSM
GSMA
GUTI
IMSI
LTE
MAC
MCS
MME
MNO
M-TMSI
NAS
NTP
PCCH
PDCCH
PDU
PRB
RF
RNTI
RRC
SA
SDR
SMS
S-TMSI
UE

UL
USB
USRP
VoIP
VoLTE

E-UTRA Absolute Radio Frequency Channel
Number

False Negative

Field of View

False Positive

Finite State Machine

GSM Association

Globally Unique Temporary Identifier
International Mobile Subscriber Identity
Long-Term Evolution

Medium Access Control

Modulation and Coding Scheme
Mobility Management Entity

Mobile Network Operator

MME Temporary Mobile Subscriber Identity
Non-Access Stratum

Network Time Protocol

Paging Control Channel

Physical Downlink Control Channel
Protocol Data Unit

Physical Resource Block

Radio Frequency

Radio Network Temporary Identifier
Radio Resource Control

Stand-Alone (5G deployment mode)
Software-Defined Radio

Short Message Service

SAE Temporary Mobile Subscriber Identity
User Equipment

Uplink

Universal Serial Bus

Universal Software Radio Peripheral
Voice over IP

Voice over LTE



	Introduction
	Background and Related Work
	Background
	Identifiers in Cellular Networks
	Broadcast Messages in Cellular Networks

	Related Work

	Measurement and Data-Collection Methodology
	Measurement of Identifier Characteristics
	Identifier Distribution
	Service-Specific Traffic Patterns
	GUTI Persistence and Predictability
	Unchanging GUTI
	Predictable Reassignments
	Implications


	GUTI Identification Framework
	Overview
	Requirements
	Visual-RF Correlation Principle
	Threat Model

	GUTI Identification Algorithm
	Real-World Experiments
	Experimental Setup
	GUTI Identification Results
	Single-Device Experiments (E1–E4)
	Multi-Device Experiments (E5–E6)
	Large-Scale and Cross-Country Experiments (E7–E12)
	Analysis of Missed Service Cases

	Attack Scenarios: Location Tracking

	Evaluation
	Required Number of Observations
	Error-Rate Analysis (10kB / 2s detector)
	Parameter Sensitivity of FSM Thresholds (tau-gap and tau-ver) 
	Sensitivity of tau-gap 
	Sensitivity of tau-ver 

	Comparison with Existing Attacks

	Discussion
	Practical Attack Requirements
	Limitations
	Discrepancy between Standards and Implementation
	5G Feasibility
	Countermeasures and Quantitative Evaluation

	Concluding Remarks
	Ethical Considerations
	References
	Appendix A: Detailed FSM Algorithm
	State Space Definition
	FSM State Specifications
	State S0 (INIT)
	State S1 (SCAN)
	State S2 (COLLECT)
	State S3 (FILTER)
	State S4 (VERIFY)

	State Transition Table
	Continuous Service Filtering
	Main Algorithm
	FSM Complexity Analysis
	FSM Robustness Guarantees

	Appendix B: Formal Definition of No-Burst Intervals

