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includes smart city solutions from Samsara [5], smart home
systems from companies like Google [6], Samsung [7] and
Apple [8], Teladoc Health’s smart healthcare and health mon-
itoring products [9], as well as industrial IoT deployments [10]
and connected vehicles [11]. The common underlying commu-
nication protocols, including LoRaWAN [12], Zigbee [13], and
Bluetooth Low Energy (BLE) [14], all leverage AES as their
core encryption mechanism to ensure secure data transmission
and storage in data centers.

Unlike Wi-Fi or cellular networks, which are typically
equipped with high-performance devices having sufficient
computing power to support complex encryption algorithms
and frequent key renewal, typical IoT devices are resource-
constrained. So, they usually do not support frequent key re-
newal and rely on pre-shared keys for encryption. A significant
vulnerability then arises when IoT devices are deployed in
potentially insecure environments where attackers have full
control over the device. In such scenarios, attackers can extract
encryption keys, thereby compromising all data encrypted with
the same key. For example, Butun et al. [15] indicate that
an attacker with full access to a device running LoRaWAN
v1.1 can extract AES keys due to the explicit exposure of
key-related information during the Over-the-Air Activation
(OTAA) key distribution process. And Camurati et al. [16]
demonstrate that AES keys used in BLE can be extracted
using Simple Power Analysis (SPA), exploiting the direct
exposure of key material through physical access. In both
cases, the key is compromised due to its direct exposure to the
attacker with full control. Tournier et al. [17] also note that
gateways control the network and handle all data transmission
in common IoT topologies. Therefore, preventing key exposure
in the gateways is more important. White-box cryptography
addresses this issue by transforming cryptographic operations
into protected lookup tables, preventing direct exposure of
secret keys, thereby enhancing security in these vulnerable
IoT ecosystems.

A. Threat Model

The white-box threat model was first introduced by Chow
et al. [18], [19] to model severe threat scenarios (e.g., unat-
tended IoT deployment scenarios). In this model, attackers
completely control the execution environments of encryption
algorithms, so they can access or even modify the source code,
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I. INTRODUCTION

The past decades have witnessed an enormous increase
in the Internet of Things (IoT) networks. As a result, data
transmitted via IoT networks has increased simultaneously
and become an invaluable resource [1], making its protection
a critical concern. As one of the most effective encryption
methods, the Advanced Encryption Standard (AES) [2] has
been widely adopted as an IoT protocol solution for handling
large volumes of valuable data efficiently, which ensures the
confidentiality and integrity of IoT data. Typical scenario
that utilizes AES for data protection in IoT network [3], [4]
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internal states, and execution behavior, which aligns with the
vulnerable IoT scenarios. In terms of terminology, encryption
algorithms that are secure in the white-box threat model are
called white-box encryption algorithms (WBEAs), the imple-
mentations of WBEAs are called white-box implementations,
and the study of how to construct WBEAs is called white-box
cryptography.

It is worth noting that the security goal of WBEAs is not
simply the key-extraction security, or more formally, unbreak-
ability [20]. Instead, it is the basic goal that all WBEAs
should achieve. However, unbreakability alone is insufficient
for practical use, as it does not protect against attacks such as
code-lifting or preimage attacks. In these attacks, an adversary
can either copy the entire program code and use it as a
larger effective key in another device or reverse the encryption
functionality to obtain the decryption functionality. Therefore,
WBEAs should achieve additional security goals for practical
meanings in different scenarios. In addition, the security goal
for white-box decryption algorithms under the standard white-
box threat model focuses primarily on unbreakability [20].
While a fully-privileged white-box attacker can directly de-
crypt ciphertexts by code-lifting without extracting the secret
key, the goal of white-box decryption algorithms is to make
this process more difficult by increasing the workload for the
attacker.

These additional goals are divided into two branches:
• Security goals in standard white-box cryptography

strictly follow the original assumptions of the white-box
threat model [19]. The most widely used is the one-
wayness [20] of encryption, which requires that adver-
saries with complete access to the implementations of en-
cryption algorithms cannot decrypt ciphertexts. Hardware-
binding is another security goal that some recently proposed
WBEAs [21] tried to satisfy. It requires that WBEAs can
only be executed on the intended devices. Traceability [20]
is a specific goal for digital rights management (DRM)
systems. It requires that decryption modules in the play-
ers of digital contents can be traced if they are illegally
redistributed.

• Security goals in weak white-box cryptography does not
strictly follow the original assumptions of white-box attack
contexts in [19] and suppose that there are some restrictions
on the adversaries’ access privilege, such as the number of
queries [22] or accessible storage [23]. For example, space
hardness [23], [24] requires that adversaries with partial ac-
cess to the implementations of encryption/decryption algo-
rithms cannot obtain encryption/decryption functionalities.
Incompressibility [20], [25] is similar to space hardness, and
it requires that adversaries given implementations of encryp-
tion/decryption algorithms cannot find functional equivalent
but smaller implementations.

The security goals mentioned above are summarized in Fig-
ure 1.

Our study considers unbreakability and one-wayness and
excludes other security goals for the following reasons: (1)
Incompressibility [25], [20] and space-hardness [23], [24] are

Fig. 1. Security goals for white-box cryptography

defined in weaker assumptions and they should be treated
as security goals in the gray-box threat model, which is
beyond the scope of this paper. (2) Achieving hardware-
binding [21] requires hardware modification, which deviates
from the traditional objective of white-box cryptography to
provide software-only solutions. (3) Traceability [20] lacks
generality since it only captures DRM scenarios. The formal
definitions of unbreakability and one-wayness are presented
below. Unlike black-box encryption schemes, there is currently
no formal security proof for WBEAs. The security of WBEAs
is mainly based on analysis of their resistance to existing
attacks. A detailed security analysis of WBSLT is presented
in Section IV.

Typically, a white-box encryption scheme is a tuple of
four algorithms (KG,Enc,Dec and WBIG). KG is the key
generation algorithm; Enc is the encryption algorithm; Dec
is the decryption algorithm; and WBIG is the white-box
implementation generation algorithm. The last algorithm takes
a key and a random value as input and outputs a WBEA.
Moreover, RSP is the space of random values for WBIG,
and MSP is the message space for Enc.

Fig. 2. Security models for white-box cryptography

A number of prior works [26], [27], [20], [28] dealt with
security models for white-box encryption. For conciseness,
the security models and the corresponding security definitions
in [20] are used in this paper. Two scenarios are investigated
here, reflecting two different security objectives. The first
objective we explored is to decrypt the ciphertexts, using a
given WBEA (in Figure 2(a)), and to extract the secret key
from a given WBEA (in Figure 2 (b)). To evaluate these
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objectives, four types of attacks are considered, collectively
referred to as ATK, including chosen plaintext attack (CPA),
chosen ciphertext attack (CCA), re-compilation attack (RCA),
and a combined CCA + RCA attack. We note that RCA allows
the adversary to have oracle access to the white-box implemen-
tation generation algorithm WBIG(k, r′), while r′

$←− RSP is
kept secret; here, the symbol $←− denotes selecting an element
from a set at random. Let OATK(·) be the oracle for the ad-
versary, then algorithms Enc(·), Dec(k, ·), WBIG(k, RSP )
and {Dec(k, ·) ,WBIG(k,RSP )} are queried, when CPA,
CCA, RCA, and CCA + RCA are carried out, respectively.

Security definitions for one-wayness and unbreakability are
given below. The former security is stronger than the latter,
because a successful extraction of the secret key implies
successful decryption of ciphertexts, while the reverse does
not hold.

Definition I.1 (One-Wayness). In the security game shown in
Figure 2(a), given SuccOW−ATK

A,WBIG = Pr [m′ = m], the scheme
is (τ, σ)-secure with respect to OW −ATK, if and only if for
any adversary A running in time of at most τ , the probability
SuccOW−ATK

A,WBIG ≤ σ.

Definition I.2 (Unbreakability). In the security game shown in
Figure 2(b), given SuccUBK−ATK

A,WBIG = Pr [k′ = k], the scheme
is (τ, σ)-secure with respect to UBK − ATK , if and only
if for any adversary A running in time of at most τ , the
probability SuccUBK−ATK

A,WBIG ≤ σ.

Definitions I.1 and I.2 strictly follow the original assump-
tions of the white-box threat model [18], which assume an ad-
versary can do anything to the given white-box implementation
(i.e., [Encrk] ), at their will. This assumption is used in most
security definitions [26], [27], [20], [28], WBEA designs [18],
[29], [30], [31], [32], [33], and cryptanalysis [34], [35], [36],
[37], [38], [39], [40], [41].

B. Existing White-Box Encryption Algorithms

After Chow et al. [18] presented the first two WBEAs,
namely, the white-box AES (WB-AES) [18] and white-box
DES (WB-DES) [19], white-box cryptography has attracted
great interest from both industry and academia.

In industry, white-box cryptography is reported to be widely
used in practical security solutions. For example, the white
paper on EMV Payment Tokenization published by the U.S.
Payments Forum claimed that white-box cryptography is used
to obfuscate tokenized payment keys [42]. The Irdeto Acti-
vaCloak for Media, an SDK for digital rights management,
uses white-box cryptography to mitigate content key extrac-
tion [43]. The Verimatrix XTD, a security solution for mobile
applications, uses white-box cryptography to dissolve key
information and protect sensitive data [44].

In academia, numerous WBEAs have been proposed, which
are divided into two categories according to the security
assumptions: (i) Standard white-box cryptography, such as
white-box AES [18], [45], [31], [29], [30], [32], [46], white-
box SHARK [47], that aim to construct implementations with

unbreakability and one-wayness for some standardized block
ciphers, and (ii) Weak white-box cryptography, such as
SPACE [23], SPNbox [24], and WhiteBlock [25], that can
achieve provable unbreakability and quantifiable code-lifting
security (incompressibility/space hardness) by restricting the
amount of the data that attackers can obtain. As weak white-
box cryptography poses restrictions on attackers’ ability, it
only reflects limited real-world scenarios. Therefore, this paper
focuses on protecting encryption algorithms in the standard
white-box threat model. Unless otherwise stated, WBEAs refer
to algorithms constructed in the standard white-box threat
model.

SLT ciphers are a category of standard white-box cryptog-
raphy block ciphers that alternately perform substitutions and
linear transformations on the cipher state for several rounds.
Unlike SPN ciphers, which use permutation operations (P-
boxes) to rearrange bits instead of linear transformations, SLT
ciphers focus on linear mappings to achieve diffusion. The
formal definition is presented as follows:

Definition I.3 (Substitution-Linear Transformation Cipher). A
cipher is called an SLT cipher if it contains R(≥ 1) rounds of
bijective function F(x1, x2, · · · , xs) on Fn

2 , where xi ∈ Fm
2

and n is the block length that satisfies n = sm. For 1 ≤ r ≤ R,
the round function F [r](x1, x2, · · · , xs) operates as follows:

(i) Round key addition: Add an n-bit round key k[r] =(k[r]1 ,
k
[r]
2 , · · · , k[r]s ) to the state to compute yi = k

[r]
i ⊕xi for

1 ≤ i ≤ s.
(ii) Substitution: Compute zi = S

[r]
i (yi) for 1 ≤ i ≤ s,

where the (nonlinear) invertible substitution boxes (S-
boxes) S

[r]
1 , S[r]

2 , · · · , S[r]
s are part of the cipher speci-

fication and independent of the key.
(iii) Linear transformation: Left-multiplying an n × n in-

vertible matrix M [r] over F2 with the vector z =
(z1, z2, · · · , zs) ∈ Fn

2 .

Despite many SLT-based WBEAs being proposed in the last
two decades, they have all been demonstrated to lack suffi-
cient unbreakability. We conducted a comprehensive review of
white-box cryptography by searching Google Scholar and Se-
mantic Scholar using the keywords “white-box cryptography,”
“white-box implementation,” “white-box cryptanalysis,” and
“white-box attack” for the period between 2002 and 2025. This
search yielded 1330, 607, 41, and 8750 papers, respectively.
By analyzing the titles of these papers, we identified 80 papers
focused on white-box defensive schemes and 164 papers about
attacks on white-box defenses (244 in total). Additionally, a
search of papers citing these identified papers led to 2267
distinct citations, but no new papers on white-box defensive
schemes or attacks were found. After a careful manual screen-
ing on the 244 papers, we identified 11 papers that can produce
concrete white-box SLT (WB-SLT) encryption schemes, and
they were broken by key-extraction attacks soon after their
proposal as shown in Figure 3.

Their drawbacks can be classified into two categories: (i)
Existing designs focused on protecting individual parts
that hold fragments of the secret key, but failed to prevent
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Lee et al. [45]

Xu et al. [46] Seker et al. [52]

Lee et al.’s [51]

BS [48]

Fig. 3. WB-SLT schemes and related cryptanalysis

attackers from analyzing multiple components together to
uncover the broader computation logic. Thus, their internal
structure can be identified by algebraic cryptanalytic attacks
to progressively remove protections. For example, the BGE
attack [34] successfully broke Chow et al.’s WB-AES [18]; the
MGH attack [38] targeted the white-box SLT cipher following
Chow et al.’s design; the LRDRP attack [36] compromised
Karroumi’s WB-AES [30] which improved Chow et al.’s de-
sign by introducing dual AES specifications; the BS attack [48]
was effective against white-box implementations that followed
a certain structural pattern, including the aforementioned de-
signs as well as Xu et al.’s WB-AES [46] which introduced
dummy rounds within Chow et al.’s WB-AES, and Bringer
et al.’s WB-AES [32] which introduced perturbations. (ii)
Existing works [49], [50], [51], [52] require extra memory
usage and execution time in order to defend against or
slow down differential computation analysis (DCA) [53],
and differential fault analysis (DFA) [54] that require
little knowledge of the design or internal structure of the
implementation. Nevertheless, these countermeasures have
proven ineffective against more advanced versions. Higher-
order and adaptive variants of DCA [55], [56], [57], [58], [59]
and DFA [58], [60] continue to break these implementations.
The aforementioned drawbacks lead to the following WBEA
design challenges:

C1: How to obscure the structure of SLT-based compo-
nents to resist algebraic cryptanalytic attacks, DCA and
DFA?

C2: How to maintain the efficiency of the WBEAs when
achieving higher security level?

C. Our Design
In this paper, we focus on substitution-linear transformation

(SLT) ciphers and propose a novel design framework WBSLT
to secure SLT ciphers in the white-box threat model and
address the design challenges above.

SLT ciphers, which include AES [2], SERPENT [61],
SHARK [62], etc., are a famous category of block ciphers
that alternately perform substitution and linear transformation.
Our framework WBSLT takes arbitrary SLT ciphers as input
and generates table-based implementations that can achieve
unbreakability and one-wayness. Due to the inherent symmetry
between encryption and decryption processes in SLT ciphers,
WBSLT can be adapted to protect decryption keys with a few
modifications.

To address C1, we observe that algebraic cryptanalytic [63],
[34], [36], [48], [38], [35], [41] attacks commonly involve
isolating and analyzing groups of interconnected components
that collectively realize key-dependent functionalities. Rather
than protecting individual components in isolation, which
has proven insufficient, WBSLT strategically fuzzes the in-
teractions among neighboring components. This is achieved
by partially leaving each component’s computation to the
next component and protecting each table with randomized
transformations. By doing so, WBSLT mitigates the effec-
tiveness of attacks that rely on tracing or isolating dis-
tinct transformation layers or encoding patterns. Additionally,
lightweight and widely adopted side-channel defenses masking
and shuffling [64], [52], [49], and external encoding [18] that
recommended by Chow et al., are incorporated to resist DCA
and DFA. These measures are integrated into the protected
structure and are compatible with the fuzzing strategy.

To address C2, we apply masking, shuffling and external
encoding strategically and selectively as they introduce per-
formance overhead. We combine the input external encoding
with the protection transformations for the first round, and the
output external encoding with the protection transformations
in the last round to reduce additional operations and memory
usage. Furthermore, the masking scheme is integrated with the
shuffled output of key-dependent and protection tables, thereby
avoiding extra masking operations.

Our key contributions are summarized as follows.
• Design of WBSLT: We proposed WBSLT, a novel frame-

work for designing secure white-box implementations of
arbitrary SLT ciphers. WBSLT fuzzes the boundaries of
components to defend algebraic cryptanalytic attacks, and
is compatible with existing countermeasures against side-
channel leakage.

• Security Analysis of WBSLT. We conducted a compre-
hensive security analysis on WBSLT’s white-box security,
i.e., unbreakability and one-wayness. The analysis indicates
that WBSLT is resistant to various key-extraction attacks,
including algebraic cryptanalytic attacks, DCA and DFA,
and prevents attackers from decrypting a ciphertext even if
the encryption program is compromised. To the best of our
knowledge, no existing WBEAs can achieve unbreakability.

• A Novel Metric of Structure Security. We propose a
novel security metric, distinguishable SA-structure number
(DSASN), to measure fuzziness between rounds. It indicates
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the minimum number of layers in a secret-key embedded
indivisible SA structure, where S denotes a bijective substi-
tution layer and A denotes a bijective affine transformation
layer. However, existing metrics such as white-box diver-
sity (WBD) and white-box ambiguity (WBA) [18] cannot
achieve this goal.

• Application of WBSLT on AES and Optimization. We
present optimization strategies to decrease the storage and
improve the efficiency of WB-AES generated by WBSLT.
Our optimized WB-AES is expected to replace existing
insecure WB-AES schemes.

• Efficiency Analysis, Evaluation, and Comparison. Our
analysis and evaluation indicate that WBSLT is efficient
with reasonable memory usage. The implementations of
SLT ciphers with different round numbers and block sizes
achieve encryption speeds from 0.01 to 7.90 MB/s across
various platforms. Our optimized and general WB-AES-128
implementation achieves encryption speeds from 0.18 to
3.29 and 0.06 to 0.97 MB/s with average power from 1.11 to
3.77 and 1.12 to 3.79 W, and the tables with size 9.78 and
38.37 MB can be generated from 178.32 to 2504.97 and
589.39 to 8012.94 ms consuming 534.12 to 2947.27 and
1972.51 to 9301.01 J energy. Moreover, our optimized and
general WB-AES-128 can be integrated into 86.96% and
82.61% of popular IoT gateways running several wireless
communication protocols with no efficiency reduction and
negligible power increase.
The remainder of this paper is organized as follows: Sec-

tion II presents our proposed design framework; Section III
describes the design of our optimized WB-AES; Section IV
analyzes the security and attack resistance of our design; Sec-
tion VI provides experimental evaluations and comparisons,
and our conclusions are given in Section VII.

II. WBSLT: THE DESIGN FRAMEWORK

In this section, we first present two key threats that motivate
the design of our framework and then introduce the core
strategies in our design. Finally, we summarize our design by
illustrating the entire construction and discussing its computa-
tional consumption and compatibility with current white-box
implementations. The frequently used symbols are listed in
Table I.

The core strategy of WBSLT is to fuzz the boundaries of
rounds in a fully-tabulated white-box implementation. It can
be adapted to a number of white-box implementations with
slight modifications, especially the implementation based on
an SLT cipher. An example is presented in Section III.

A. Design Rationale

As mentioned in Section I-B, the design of WBSLT is
motivated by the following two drawbacks of existing white-
box cryptography. The first drawback is structural vulner-
abilities that exist in current WBEAs. An adversary could
still pick up a group of tables, composite them into an object
for specialized cryptanalysis, then extract the secret key; and
tables corresponding to an encryption round could be easily

TABLE I
FREQUENTLY USED SYMBOLS

Symbol Description
n Block length in bits, n = sm.
s Number of sub-blocks.
m Sub-block length in bits.

t, t1, t2

Number of bits a normal adder outputs. If m is odd,
t1 = ⌈m

2
⌉, t2 = ⌊m

2
⌋ and t is not considered. If m is

even, t = t1 = t2 = m
2

.

q
Number of bits in each input halves of a partial adder
that is not summed up.

h1, h2
Functions that sum up two q bits and concatenate with
bits that are already summed up.

r,R Round index and the total number of rounds.
Ln The set of all n× n invertible binary matries.
Sn The set of all n-bit permutations.

M [r],M
[r]
i

The n × n linear transformation matrix M [r] in SLT
cipher, and the i-th block of the matrix M [r] =

[M
[r]
1 ,M

[r]
2 , · · · ,M [r]

s ] that are partitioned by group
of columns.

A[r], A
[r]
i

The protection matrix A[r] ∈ Ln, and the i-th block
of the matrix A[r] = [A

[r]
1 , A

[r]
2 , · · · , A[r]

s ] that are
partitioned by group of columns.

B
[r]
i The protection matrix B

[r]
i ∈ Lm.

T
[r]
i

Function that performs a round operations of an SLT
cipher protected by linear and nonlinear transformations.

F
[r]
i Function serving to enhance protection after T [r]

i .
u, v, c Permutation transformations.

x,x0,x1
The unmasked value x and mask shares x0,x1, satis-
fying x = x0 ⊕ x1.

σ Shuffling transformation.
Gi External input encoding before the first round.

collected to form a group of tables having a mathematical
representation as SAS or SASAS structure, where ‘S’ stands
for a (layer of) bijective substitution and ‘A’ stands for
a bijective affine transformation. The second drawback is
masking, shuffling and external encoding, which are used to
defeat DCA and DFA, requiring extra encryption time and
computational resources.

To mitigate the two drawbacks, we transform the cryp-
tographic algorithm into pre-generated look-up tables, se-
cured through linear and nonlinear transformations. To further
obscure sensitive variables, we integrate normal and partial
adders, making the boundary between (a group of) look-up
tables fuzzy to protect the secret key against white-box attacks.
Technically, the computational functionality of one component
is partially performed by consecutive components. As long as
the adversaries are unable to determine the boundary of certain
computational functionalities, they can not execute further
attacks. This approach is applicable to various concrete white-
box implementations of SLT ciphers and is compatible with
countermeasures against DCA and DFA. We enhance security
by applying masking, shuffling and external encoding to the
algorithm. Figure 4 is an overview of our design.

B. Protected Round Transformations

First, each round of the SLT cipher is protected by
linear and nonlinear transformations as well as masking
and shuffling, which are implemented as look-up tables.
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Fig. 4. An overview of the proposed design

Let t1 = ⌈m2 ⌉ and t2 = ⌊m2 ⌋. For the r-th round, where
r ∈ {1, 2, · · · , R}, and i, j ∈ {1, 2, · · · , s}, let matrices
A[r]∈$Ln, B[r]

i ∈$Lm, M [r]
i and A

[r]
i be the i-th block of the

matrix M [r] and A[r] that are partitioned by group of columns,
and B[r] = diag(B

[r]
1 , · · · , B[r]

s ), which serve as linear pro-
tections. Let permutations f

[r]
2i−1, g

[r]
2i−1∈$St1 , f [r]

2i , g
[r]
2i ∈$St2 ,

u
[r]
i,2j−1, v

[r]
i,2j−1∈$St1 and u

[r]
i,2j , v

[r]
i,2j∈$St2 , which serve as

nonlinear protections.
The function T

[r]
i : Fm

2 → Fn
2 (1 ≤ r ≤ R) is given by

T
[r]
i =(u

[r]
i,1|| · · · ||u

[r]
i,2s) ◦

(
((A[r])

−1
·M [r])i·

)
◦ S[r]

i ◦ ⊕
k
[r]
i

◦ (B[r]
i ·) ◦ (f [r]

2i−1||f
[r]
2i ),

(1)

and the function F
[r]
i : Fm

2 → Fn
2 (1 ≤ r < R ) is given by

F
[r]
i = (v

[r]
i,1|| · · · ||v

[r]
i,2s) ◦

(
(B[r])−1 ·A[r]

i ·
)
◦ (g[r]2i−1||g

[r]
2i ), (2)

where the symbol || stands for working in parallel when it is
used between functions.

The output of each function is protected by mask-
ing and shuffling. Specifically, for an output x =

(x1, x2, · · · , xs) ∈ (Fm
2 )s produced by T

[r]
i , before it

is protected by the permutation (u
[r]
i,1|| · · · ||u

[r]
i,2s), a ran-

dom mask x0 = (x0,1, x0,2, · · · , x0,s) ∈ (Fm
2 )s is gen-

erated. A masked output x1 = (x1,1, x1,2, · · · , x1,s) ∈
(Fm

2 )s is then computed such that x1 = x ⊕ x0. The
tuple ((x0,1, x1,1), (x0,2, x1,2), · · · , (x0,s, x1,s)) ∈ (Fm

2 ×
Fm
2 )s replaces the original output (x0, x1, · · · , xs), and

the number of permutations is accordingly expanded
to protect the masked output. Subsequently, element-
wise shuffling σ[r] : {1, 2, · · · , s} → {1, 2, · · · , s}
is applied to the masked tuple, and the final output
is ((x0,σ[r](1), x1,σ[r](1)), (x0,σ[r](2), x1,σ[r](2)), · · · , (x0,σ[r](s),
x1,σ[r](s))). To preserve the correctness of the subsequent
addition phase, all T

[r]
i functions must be shuffled in the

same way. The outputs of the F
[r]
i functions undergo a similar

masking and shuffling process.
The look-up tables of functions T

[r]
i and F

[r]
i are imple-

mented by precomputing all possible input-output pairs and
storing them in tables T

[r]
i and F

[r]
i , which is equivalent to

T
[r]
i (x) = T

[r]
i [x] and F

[r]
i (x) = F

[r]
i [x].

C. Special Addition Enabling Fuzzy Boundary

Second, the addition operations are modified to eliminate
the nonlinear protections on the input and add new
nonlinear protections on the output. And certain addition
operations are partially executed to fuzz the boundaries
between each round, thus protecting sensitive variables
from being attacked.

Since the output is protected by a permutation in the final
step, adding two outputs correctly requires first applying the
inverse of their respective permutations. After performing
the addition, the result is then protected again using a new
permutation. Here we assume t = t1 = t2 (i.e. m is even)
for simplicity, and let 1 ≤ q ≤ t. The output of T [r]

i and F
[r]
i

can be treated as 4s t-bit vectors α
[r]
i,l,j , i ∈ {1, 2, · · · , s}, l ∈

{1, 2, · · · , 2s}, j ∈ {1, 2}. For each l and j, the s outputs
are added first, resulting in the masked output of the round
transformation. This process is done by s− 1 normal adders.
The normal adder is a mapping from Ft

2 × Ft
2 to Ft

2 that first
applying the inverse of the two inputs’ respective permutations
and then adds them up, and finally outputs the protected sum.
Figure 5(a) illustrates the structure of a normal adder with
t = 4, where cin1 , cin2 , cout∈$St.

Then for each l, the two masked values are added by a
partial adder. It is a mapping from Ft

2 × Ft
2 to Ft+q

2 and only
t − q bits are added up, which is the key point to fuzz the
boundary. Figure 5(b) illustrates the structure of a partial adder
with t = 4, q = 2, where cin1 , cin2 ∈$St, c̃out∈$St+q .

c1
in c2

in

⊕

cout

c1
in c2

in

⊕

c out

(a) Normal adder (traditional) (b) Partial adder (proposed)

~

Fig. 5. Structures of adders (t = 4, q = 2)

An addition network consists of 2s−1 adders (trapeziums),
is shown in Figure 6 with s = 4. Each pair of directly
connected cin and cout is mutually inverse. All adders are
implemented as look-up tables.

Since the final output is partially added, the function T
[r]
i

and F
[r]
i are corresponding modified to compelete the addition

operations. The function T
[r]
i : Ft1+t2+2q

2 → Fn
2 is given by

T
[r]
i =

(
u
[r]
i,1|| · · · ||u

[r]
i,2s

)
◦
(
((A[r])

−1
·M [r])i·

)
◦ S[r]

i

◦ ⊕
k
[r]
i

◦ (B[r]
i ·) ◦

(
h1 ◦ f [r]

2i−1||h2 ◦ f [r]
2i

)
,

(3)

and the function F
[r]
i : Ft1+t2+2q

2 → Fn
2 (1 ≤ r < R ) is given

by
F

[r]
i = (v

[r]
i,1|| · · · ||v

[r]
i,2s) ◦

(
(B[r])−1 ·A[r]

i ·
)

◦
(
h1 ◦ g[r]2i−1 ∥ h2 ◦ g[r]2i

)
,

(4)
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c1
in

c5
out

c2
in
⊕

c3
in

c6
out

c4
in
⊕

c5
in

c6
in

⊕

Partial adder

Normal adder

…
c1

out

…
⊕

…
c2

out

…
⊕

…
c3

out

…
⊕

…
c4

out

…
⊕

…

t-bit data

(t-q)-bit data

(t+q)-bit data

q-bit data

Fig. 6. An addition network consisting of seven adders

where the functions h1 : Ft1−q
2 × Fq

2 × Fq
2 → Ft1

2 and h2 :
Ft2−q
2 × Fq

2 × Fq
2 → Ft2

2 are given by

h1(α1, β, γ) = α1 ∥ (β ⊕ γ), h2(α2, β, γ) = α2 ∥ (β ⊕ γ), (5)

with α1 a (t1 − q)-bit value, α2 a (t2 − q)-bit value, β and
γ q-bit values, and the symbol || standing for concatenation,
when it is used between binary strings.

D. External Encoding
Third, we apply external encoding to the input and the

output of the algorithm, respectively.
The external encoding consists of input and output encod-

ing. The output encoding has two options. The first option uses
2s addition networks, each addition network consists of s− 2
normal adders and one partial adder to process the output. This
fuzzes the boundary of the whole encryption and is expected to
have high security, resulting in a ciphertext expansion rate of
t+q
t . The second option uses 2s traditional addition networks

completely constructed by normal adders. The advantage of
the second option is that the ciphertext retains the size of the
plaintext (we exclude initial vectors and paddings). Since the
input boundary of the last round is still fuzzy, we have not
found any existing attacks that can threaten this choice. As
for the input encoding, which is used before the first round,
it is implemented by using s look-up tables given by Gi

(i ∈ {1, 2, · · · , s}), as well as a layer of 2s addition networks,
each addition network consists of s−2 normal adders and one
partial adder. Each Gi is a mapping from Fm

2 to Fn
2 , as given

by
Gi =(v

[0]
i,1|| · · · ||v

[0]
i,2s) ◦ (B

[1] ·A[0]
i ·) ◦ gi, (6)

where v
[0]
i,2j−1∈$St1 , v

[0]
i,2j∈$St2 and gi∈$Sm for each j ∈

{1, 2, · · · , s}, A[0]∈$Ln and A
[0]
i is the i-th block of the matrix

A[0] that is partitioned by group of columns .

E. The Entire Construction and Computational Consumption
Analysis

The entire construction involving the first, intermediate, and
final rounds is illustrated in Figure 7.

Denote look-up tables corresponding to T
[r]
i , F

[r]
i , Gi, nor-

mal adder, partial adder and addition network as T-table, F-
table, G-table, NA-table, PA-table and AN-table, respectively.
For a tuple of cipher parameters (R,n,m, q), the sizes of T-
table, F-table, G-table and AN-table are R · n2

m · 2
m+2q−2,

(R− 1) · n
2

m · 2
m+2q−2, n2

m · 2
m−2, 2m−1 ·R · nm · (n−

m
2 + q)

bytes, respectively.
The overall storage consumption (in byte) is

2m−2

m
·
(
(2R− 1) · n2 · 22q + n2 + n(2n−m+ 2q)R

)
. (7)

If the addition networks in the last round consist of completely
normal adders, then the overall storage consumption (in byte)
can be calculated similarly as

2m−2

m
·
(
(2R− 1) · n2 · 22q + n2 + n(2n−m+ 2q)R− n+ q

)
. (8)

Regarding efficiency, in a single encryption, look-up opera-
tions on T-tables, F-tables, G-tables, NA-tables, and PA-tables
are executed R · n

m , (R − 1) · n
m , n

m , 8R · n
m · (

n
m − 1), and

4R · n
m times, respectively.

III. OUR OPTIMIZED WB-AES AND A COMPARISON WITH
CHOW ET AL.’S WB-AES

In this section, we describe the design of our optimized
WB-AES. Our optimized WB-AES benefits from the feature
of AES, in which the diffusion transformation is two 32-
bit to 32-bit operations (i.e., MixColumns and ShiftRows).
Thus, our optimized WB-AES should achieve a lower storage
footprint of 9.78 MB and increased operational efficiency
than directly applying our approach to Chow et al.’s WB-
AES (i.e., the general WB-AES) with 38.37 MB storage
footprint. Although there is storage overhead compared to
traditional AES, our optimized and general WB-AES can be
deployed on 20 (86.96%) and 19 (82.61%) out of 23 popular
IoT gateways [65], [66], respectively. In a more resource-
constrained scenario, the minimum storage footprint is 2.35
MB with q set to 1, which can be deployed on 22 (95.65%)
of 23 popular IoT gateways. Although it remains secure, we
recommend setting q to 2 for a larger security margin, resulting
in unacceptable attack costs.

There are five types of tables used in Chow et al.’s WB-
AES, namely type Ia, Ib, II, III, and IV. In our optimized
WB-AES, type Ia, Ib, II, and III tables are changed to type
Ia’, Ib’, II’ and III’, correspondingly. Type IV tables (normal
adders) are still used in our WB-AES, and type IV’ tables are
used to denote partial adders.

The differences between our optimized WB-AES and Chow
et al.’s WB-AES are briefed as follows: (i) the normal adder
at the end of each addition network is replaced by a partial
adder, (ii) in each round, type II and III tables of Chow et
al.’s WB-AES are modified to a 12-bit to 128-bit tables, and
these tables’ mathematical representation is changed to fit two
connected partial adders; and (iii) the input of type Ib tables
is also changed to 12-bit.

In the description of our optimized WB-AES and the com-
parison with Chow et al.’s WB-AES, we denote ID,OE ∈$ Sb
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G-tables

T-tables

F-tables

T-tables

4-bit data

8-bit data

12-bit data

Concatenate two

6-bit data to 12-bit

Addition network

First round Last roundIntermediate round(s)

Fig. 7. The first, intermediate, and last rounds of the entire construction (n = 64, m = 8)

the input decoding and output encoding, Mask the mask-
ing scheme and σ[r] the shuffling technique as described
in Section II-B. For r ∈ {1, 2, · · · , 10}, i, j ∈ {1, 2, 3, 4},
denote L

[r]
i,j ∈$ L8, L

[r]
i = diag{L[r]

i,1, L
[r]
i,2, L

[r]
i,3, L

[r]
i,4},

MB
[r]
i = [MB

[r]
i,1,MB

[r]
i,2,MB

[r]
i,3,MB

[r]
i,4] ∈$ L32, k

[r]
i,j be

one byte of the round key and k
[r]
sr(i,j) be one byte of the

round key after ShiftRows operation, S be the S-box and
MC = [MC1,MC2,MC3,MC4] be the MixColumns matrix.

  σ[r]◦(MB·MCi·)
[32×32]·[32×8]  

Li,j[r]

S(x⊕ki,j[r-1])

ID ID

Chow et al.’s
design

OE
8 OEs
…… OE

ID ID
+ + + +

Type II’

Mask Mask……

OE
8 Masks

OE OE OE

Fig. 8. Our type II’ table compared with Chow et al.’s type II table

Type II’ tables are the most important in terms of security,
because each type II’ table implicitly contains an 8-bit segment
of the round key. Therefore, we first describe our changes to
the structure of type II tables. We set q = 2, so that each
type II table is modified to a 12-bit to 128-bit table; thus,
the table’s mathematical representation is changed to fit two
connected partial adders. The structure of a type II’ table is
shown in Figure 8, as well as its comparison with Chow et
al.’s type II table.

Type III’ tables serve to annihilate inserted mixing bijections
of the type II’ tables in two consecutive rounds. Similarly, we
modified a type III table of Chow et al.’s WB-AES to a 12-

σ[r]◦((Li[r+1])-1·(MB-1)i·)
[32×32]·[32×8]

Mask Mask……

OE
8 Masks

OE

Chow et al.’s design

OE
8 OEs
…… OE

ID ID
ID ID

+ + + +

Type III’

OE OE

Fig. 9. Our type III’ table compared with Chow et al.’s type III table

bit to 128-bit type III’ table in our optimized WB-AES; thus,
the type III’ table’s mathematical representation was changed
to fit two connected partial adders. The structure of type III’
table and a comparison with Chow et al.’s type III table is
illustrated in Figure 9.

The structures of a type IV table (normal adder) and a type
IV’ table (partial adder) are shown in Figure 10.

c1
in c2

in

⊕

cout

c1
in c2

in

⊕

c out~
Type IVType IV’

Fig. 10. The structure of type IV and IV’ tables

Type Ia’ and Ib’ tables, as shown in Figures 11 and 12, are
used to protect the input and output of the algorithm. Denote
U, V ∈$L128, U−1 is left-multiplied with the input, and it is
then left-multiplied by the diagonal matrix that consists of
the inverse of L

[1]
i,j to construct a type Ia’ table. Similarly, V

is inserted before the output encoding of the last round to
construct a type Ib’ table.
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(L[1])-1·Ui-1

[128×128]·[128×8]

ID

OE 32 OEs OE
. . . . . .

Chow et al.’s design

ID ID

Type Ia’

Fig. 11. Our type Ia’ table compared with Chow et al.’s type Ia table

Chow et al.’s design

Vi
[128×8]

Li,j[10]

S(x⊕ksr(i,j)[9])⊕ki,j[10]

ID ID
ID ID

+ + + +

OE 32 OEs OE
. . . . . .

Type Ib’

Fig. 12. Our type Ib’ table compared with Chow et al.’s type Ib table

IV. SECURITY ANALYSIS AND ATTACK RESISTANCE

This section introduces the new distinguishable SA-structure
number (DSASN) metric alongside existing metrics WBD and
WBA for evaluating the safety level of WBEAs. We present
the metric values for our optimized WB-AES design and com-
pare them with existing schemes, showing improved security.
We also analyze resistance against several known attacks,
demonstrating strong protection offered by our approach.

A. White-Box Cipher Metrics

In this section, we first introduce a new white-box cipher
metric distinguishable SA-structure number (DSASN), and
two existing metrics white-box diversity (WBD) and white-
box ambiguity (WBA), which measure the safety level of
WBEAs. The metrics value of our optimized WB-AES, as
well as the comparisons with other WB-AES schemes, are also
presented. The comparison results show that our approach is
safer than other WB-AES schemes.

1) DSASN: This metric measures the minimum number of
layers in the indivisible SA-structure related to the key, where
SA-structure begins with one bijective substitution (S) layer,
followed by a bijective affine transformation (A) layer, and
continues to alternate between S and A layers sequentially.
The reason for proposing this metric is that existing metrics
are table or component oriented, lacking the measurement for
the whole structure of white-box designs. While structural
analysis [48] poses a significant threat to white-box designs
with DSASN less than or equal to 5.

Since our approach fuzzes the boundaries between every
round by partial adders, the adversaries cannot find a small
group of look-up tables that form an SA-structure. The only
SA-structure they can get is the entire white-box algorithm,
whose DSASN value is 5R, where R is the number of rounds.
In contrast, other WB-AES schemes [18], [32], [30], [51], [50]
are facing the risk by the structural analysis, because they all

have the SA-structure within a single round, which has the
DSASN value 5.

TABLE II
COMPARISON OF DSASN OF OUR OPTIMIZED WB-AES AND OTHER

WB-AES SCHEMES

WB-AES scheme ours [18] [30] [51] [32] [50]
DSASN value 50 5 5 5 5 5

2) WBD and WBA: WBD measures how many distinct
constructions exist for a table of that type, and WBA measures
the number of distinct constructions that produce exactly the
same table of that type. We provide the following proposition
about formulas to compute WBD and WBA of tables in
SLT cipher with our design. The type IV table is omitted
because it is the same as Chow et al.’s design [18]. We
set m even for simplicity, and denote t = t1 = t2. The
number of n × m full rank matrices over F2 is denoted by
Ψ(n,m) = 2n ·

∏m−1
k=0 (1− 2k−n).

Proposition 1. For type I, type II, type III and type IV’ tables
in SLT cipher with our approach, formulas to compute WBD
and WBA are shown as the third column in Table III.
Proof.
1) Type I (an instance of G-table)

WBD: There are one m-bit input decoding and 4s t-bit
output encoding, with an n ×m nonsingular matrix. The
number of different encoding is 2m!, and (2t!)4s for decod-
ing. The number of possible matrices is Ψ(n,m). There-
fore, the WBD for type I table is 2m!×Ψ(n,m)× (2t!)4s.
WBA: Given the input decoding is known, for a certain
n×m matrix that produces the output, there are m! possible
matrices that can produce the same output set. And the
output encoding are determined by the input decoding and
matrix. Therefore the WBA of type I table is at least
2m!×m!.

2) Type II (an instance of T-table)
WBD: There are 2 (t + q)-bit input decoding, an m ×m
nonsingular matrix, an m-bit round key, followed by an
n×m nonsingular matrix, 4 Mask functions and 16 t-bit
output encoding. Therefore the WBD of type II table is
(2t+q!)2 ×m!× 2m ×Ψ(n,m)× 23n × (2t!)4s.
WBA: Given the two input decoding are known, for a
certain n × m matrix that produces the output, there are
m! possible matrices that can produce the same output.
And 4s out of 6s output encoding can be randomly chosen
because of the Mask functions, and the rest of the 2s output
encoding are determined by the other values. Therefore the
WBA of type II table is at least (2t+q!)2 × m! × 2m ×
Ψ(n,m)× (2t!)6s.

3) Type III (an instance of F-table)
WBD: There are 2 (t + q)-bit input decoding, an n × m
matrix, 8 Mask functions and 32 t-bit output encod-
ing. Therefore the WBD of type III table is (2t+q!)2 ×
Ψ(n,m)× 23n × (2t!)8s.
WBA: Given the two input decoding are known, for a
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TABLE III
WBD AND WBA FORMULAS OF SLT CIPHER WITH OUR APPROACH AND COMPARISON OF OUR OPTIMIZED WB-AES AND CHOW ET AL.’S WB-AES (N/A

STANDS FOR NOT APPLICABLE)

Metric Table SLT cipher with our approach Our optimized WB-AES Chow et al.’s WB-AES

WBD

Type I 2m!×Ψ(n,m)× (2t!)2s 22923.2 22419.7

Type II (2t+q!)2×Ψ(m,m)×Ψ(n,m)×23n+m×(2t!)4s 21,272.2 2768.7

Type III (2t+q!)2 ×Ψ(n,m)× 23n × (2t!)4s 2954 2698.5

Type IV (2t!)3 2132.8 2132.8

Type IV’ (2t!)2 × 2t+q! 2384.5 N/A

WBA

Type I 2m!×m! 21,049.6 2546.1

Type II (2t+q!)2 ×Ψ(m,m)× 2m ×Ψ(n,m)× (2t!)6s 2632.25 2128.75

Type III (2t+q!)2 ×Ψ(n,m)× (2t!)6s 2620.6 2117.1

Type IV 2t!× 2t 248.2 248.2

Type IV’ 2t!×
(

2t

2t−q

)
× 2t−q! 252.84 N/A

certain n × m matrix that produces the output, there are
m! possible matrices that can produce the same output set.
And 4s out of 6s output encoding can be randomly chosen
because of the Mask functions, and the 2s remaining output
encoding are determined by the other values. Therefore the
WBA of type III table is at least (2t+q!)2 × Ψ(n,m) ×
(2t!)6s.

4) Type IV’ (an instance of PA-table)
WBD: There are 2 t-bit input decoding and 1 (t + q)-bit
output encoding. Therefore the WBD of type IV’ table is
(2t!)2 × 2t+q!.
WBA: Given one input decoding is known, by enumerating
all the XORed bits that are decoded to 0 by the other input
decoding, we can uniquely determine the output encoding.
Therefore, the WBA of type IV’ table is 2t!×

(
2t

2t−q

)
×2t−q!.

This concludes the proof.□

B. Analysis of Algebraic Cryptanalytic Attacks Resistance

In this section, we analyze the resistance of our approach
against algebraic cryptanalytic attacks, including the BGE
attack [34], LRDRP [36] attack, MGH attack [38], and BS
attack [48]. These attacks combine a series of lookup tables,
and some of these tables contain portions of secret keys. By
performing table-lookup operations on these tables in order,
the data transformation can be equivalently represented as a
function F . The function is a composition of several (pos-
sibly concatenated) constituent functions. Let f1, f2, . . . , fn
be constituent functions such that the composite function is
given by F = f1 ◦ f2 ◦ · · · ◦ fn. For any input x, the value
of F (x) is given by F (x) = f1(f2(· · · fn(x) · · · )). And the
concatenation of these functions results in a new function
f = (f1, f2, · · · , fn) formed by applying each function to its
respective input f(x) = (f1(x1), f2(x2), . . . , fn(xn)) where
x = (x1, x2, . . . , xn).

Definition IV.1 (Attack Boundary). Let F be a function com-
posed of a sequence of constituent functions f1, f2, . . . , fn,
and let X be its input domain. The attack boundary is
defined as the tuple (X,F (X)), representing the domain

and codomain of F . This boundary represents the interface
accessible to the attacker.

Definition IV.2 (PATK(X,F (X))). Given an attack strat-
egy ATK ∈ {BGE,MGH,LRDRP,BS}, we define
PATK(X,F (X)) as a logical predicate that must hold over
the attack boundary for the attack to succeed.

To evaluate the resistance of our white-box implementa-
tion against these attacks, we analyze whether the required
properties PATK are preserved or disrupted by our design.
Let F ′ denote the corresponding function synthesized by
WBSLT, with domain X ′ and codomain F ′(X ′). We compare
PATK(X,F (X)) with PATK(X

′, F ′(X ′)).
Our analysis demonstrates that for each of the aforemen-

tioned attacks, the critical properties required for a successful
key-recovery attempt do not hold in the case of the white-
box implementation generated by WBSLT. In particular,
WBSLT disrupts function separability and obscures structural
patterns necessary for the reconstruction of key-dependent
tables. This effectively prevents the adversary from isolating
or recovering any functional boundaries, thereby thwarting
the cryptanalytic process.We further empirically validate our
analysis. Specifically, we adapted the open-source BGE [67]
and BS [68] attacks to target our optimized WB-AES imple-
mentation. And we developed the LRDRP and MGH attacks
according to the paper and evaluated our resistance since there
are no open-source implementations available. Each of the
four attacks was conducted on 10,000 independent white-box
instances of WBSLT. Experimental results show that all these
40,000 attempts failed, and indicate that WBSLT is resistant
to all these attacks.

1) BGE Attack: The BGE attack [34] is the first successful
attack against Chow et al.’s WB-AES, which was improved
further by Tolhuizen [40] and Lepoint et al. [36] for higher
efficiency. The main intermediate structure used in the BGE
attack is shown in Figure 13, where the details of bijections
P r
i,j , T r

i,j and Qr
i,j (i, j ∈ {0, 1, 2, 3}, r ∈ {1, 2, · · · , 10}) are

defined as follows.

P r
i,j : F4

2 × F4
2 → F8

2, P
r
i,j = (Lr−1

i,j )−1 · ◦(Dr
i,j,0, D

r
i,j,1), (9)
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where Dr
i,j,0, D

r
i,j,1 : F4

2 → F4
2 are bijective permutations,

(Dr
i,j,0, D

r
i,j,1) denotes the function concatenated by Dr

i,j,0

and Dr
i,j,1, and (Lr−1

i,j )−1 is the inverse of a random 8 × 8

nonsingular binary matrix Lr−1
i,j .

T r
i,j : F8

2 → F8
2,

T r
i,j =

{
S ◦ ⊕kr

i,j
, 1 ≤ r ≤ 9,

⊕k11
i,j−i

◦ S ◦ ⊕k10
i,j

, r = 10,

(10)

where kri,j ∈ F8
2 denotes a byte of round key, ⊕kr

i,j
denotes

bitwise XOR operation with key byte kri,j , and S denotes the
AES SubBytes operation.

Qr
i,j : F8

2 → F4
2 × F4

2, Q
r
i,j = (Er

i,j,0, E
r
i,j,1) ◦ Lr

i,j−i·, (11)

where Er
i,j,0, E

r
i,j,1 : F4

2 → F4
2 are bijective permutations,

(Er
i,j,0, E

r
i,j,1) denotes the function concatenated by Er

i,j,0 and
Er

i,j,1, Lr
i,j−i is a random 8×8 nonsingular binary matrix. The

equivalent function F required by BGE attack is defined as

F : (F4
2)

8 → (F4
2)

8, F = Qr ◦MC · ◦T r ◦ P r, (12)

where Qr = (Qr
0,j , Q

r
1,j+1, Q

r
2,j+2, Q

r
3,j+3), T r = (T r

0,j ,
T r
1,j+1, T

r
2,j+2, T

r
3,j+3) and P r = (P r

0,j , P
r
1,j+1, P

r
2,j+2,

P r
3,j+3) are concatenated functions, MC is the matrix cor-

responding to the AES MixColumns operation. And we de-
note Fi(x0, x1, x2, x3) as the i-th output element yi when
evaluating (y0, y1, y2, y3) = F (x0, x1, x2, x3), where i ∈
{0, 1, 2, 3}, xi, yi ∈ F4

2 × F4
2.

MC

Attack boundary (X, F(X))
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r r
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Equivalent function F

Fig. 13. The crux of the BGE attack and the boundaries required

The attack predicate PBGE((F4
2)

8, F ((F4
2)

8)) required by
the BGE attack is

∀x0, x1, x2, x3 ∈ F4
2 × F4

2,∃x′
0 ∈ F4

2 × F4
2, x

′
0 ̸= x0,

F0(x0, x1, x2, x3) = F−1
0 (x′

0, x1, x2, x3).
(13)

It is worth noting that F−1
0 (x′

0, x1, x2, x3) is not explicitly
available, but can be inferred by exhaustively evaluating F
with the first input fixed as F0(x0, x1, x2, x3), and then select-
ing the first element of output whose last three elements match
(x1, x2, x3). This is because knowledge of the equivalent
function F relies on performing table lookups rather than the
underlying transformations, meaning that only forward com-
putation is feasible. The process of inferring F−1 from F is
illustrated in Figure 14. However, the actual observed behavior
reveals an expanded and property-changed attack boundary:
instead of matching outputs from different inputs, we observe a

persistent mismatch for all alternative inputs relative to a fixed
one. This indicates a fundamentally altered relationship and
satisfies the modified attack predicate PBGE((F6

2)
8, F ′((F6

2)
8))

which is

∃x′
0, x1, x2, x3 ∈ F6

2 × F6
2,∀x0 ∈ F6

2 × F6
2, x0 ̸= x′

0

F ′
0(x

′
0, x1, x2, x3) ̸= F ′−1

0 (x0, x1, x2, x3),
(14)

where F ′ denotes the equivalent function implemented by
WBSLT using a modified structure with an addition network
over outputs of Type II’ tables as illustrated in Figures 6 and 8.

In conclusion, the BGE attack fails against white-box
implementations generated by WBSLT, because protection
mechanisms in WBSLT eliminate exploitable algebraic rela-
tionships, thereby preventing key extraction.

F

𝑥0, 𝑥1, 𝑥2, 𝑥3

𝑦0, 𝑦1, 𝑦2, 𝑦3
F -1Table 

lookup
Input-output 

relation

Fig. 14. Deriving the inverse function by forward input-output relations.

2) MGH Attack: The MGH attack [38] was inspired by
the BGE attack, and designed to extract the secret key from
white-box implementations of a generic class of substitution-
permutation network (SPN) block ciphers (i.e., SLT ciphers).
The main intermediate structure used in the MGH attack is
shown in Figure 15, where the details of bijections fr

i , ⊕kri ,
Sr
i and fr+1

i (i ∈ {0, 1, · · · , s}, r ∈ R) are defined as follows.

fr
i : F

m
2
2 × F

m
2
2 → Fm

2 , fr
i = (Lr−1

i )−1 · ◦(Dr
i,0, D

r
i,1), (15)

where Dr
i,0, D

r
i,1 : F

m
2
2 → F

m
2
2 are bijective permutations,

(Dr
i,0, D

r
i,1) denotes the function concatenated by Dr

i,0 and
Dr

i,1, (Lr−1
i )−1 is the inverse of a random m×m nonsingular

binary matrix Lr−1
i .

⊕kr
i
: Fm

2 → Fm
2 , ⊕kr

i
(x) = x⊕ kr

i , (16)

where kri ∈ Fm
2 denotes a byte of round key.

Sr
i : Fm

2 → Fm
2 , Sr

i (x) = S[x], (17)

where S denotes a substitution box.

fr+1
i : Fm

2 → F
m
2
2 × F

m
2
2 , fr+1

i = (Er
i,0, E

r
i,1) ◦ Lr

i ·, (18)

where Er
i,0, E

r
i,1 : F

m
2
2 → F

m
2
2 are bijective permutations,

(Er
i,0, E

r
i,1) denotes the function concatenated by Er

i,0 and
Er

i,1, Lr
i is a random m×m nonsingular binary matrix. The

equivalent function F required by MGH attack is defined as

F : (Fm
2 )s → (Fm

2 )s, F = fr+1 ◦Mr · ◦Sr ◦ ⊕kr ◦ (fr)−1,
(19)

where (fr)−1 = ((fr
1 )

−1, (fr
2 )

−1, · · · , (fr
s )

−1), ⊕kr =
(⊕kr

1
, ⊕kr

2
, · · · ,⊕kr

s
), Sr = (Sr

1 , S
r
2 , · · · , Sr

s ) and fr+1 =
(fr+1

1 , fr+1
2 , · · · , fr+1

s ) are concatenated functions, and Mr

is the diffusion matrix. And we denote Fi(x0, x1, x2, x3) as
the i-th output element yi when evaluating (y0, y1, · · · , ys) =
F (x0, x1, · · · , xs), where i ∈ {0, 1, · · · , s}, xi, yi ∈ Fm

2 .
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Attack boundary (X, F(X))
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Fig. 15. The crux of the MGH attack and the boundaries required

Specifically, the attack predicate PMGH((Fm
2 )s, F ((Fm

2 )s))
required by the MGH attack is

∀c ∈ (Fm
2 )s−1,[

∀x1, x2 ∈ Fm
2 , Fi(x1, c) = Fi(x2, c) =⇒ x1 = x2

∧ ∀y ∈ Fm
2 ,∃x ∈ Fm

2 , y = Fi(x, c)

]
.

(20)

However, the actual observed behavior deviates significantly,
showing an expanded and property-changed attack boundary.
In this case, we observe the existence of outputs that cannot
be reached by any input under fixed conditions, violating the
expected surjectivity. This altered behavior satisfies the mod-
ified attack predicate PMGH((Fm+2q

2 )s, F ′((Fm+2q
2 )s)) which

is

∀c ∈ (Fm+2q
2 )s−1,∃y ∈ Fm+2q

2 ,∀x ∈ Fm+2q
2 , F ′

i (x, c) ̸= y, (21)

and F ′ is the equivalent function implemented by WBSLT
using a modified structure with an addition network over
outputs of Type II’ tables as illustrated in Figures 6 and 8.

In conclusion, the MGH attack fails against white-box
implementations generated by WBSLT because no component
of the input can be isolated or algebraically reversed.

3) LRDRP Attack: The LRDRP attack [36] is another
specialized attack against Chow et al.’s WB-AES. It starts from
finding collisions in the output of the coordinate functions
to recover fragments of the round keys, forming the crux
of the attack in Figure 16. The details of bijections P

(r,j)
i ,

AES(r,j) and Q
(r,j)
i (i, j ∈ {0, 1, · · · , s}, r ∈ {1, 2, · · · , 10})

are defined as follows.

P
(r,j)
i : F4

2 × F4
2 → F8

2,

P
(r,j)
i = (Lr−1

i,j )−1 · ◦(Dr
i,j,0, D

r
i,j,1),

(22)

where Dr
i,j,0, D

r
i,j,1 : F4

2 → F4
2 are bijective permutations,

(Dr
i,j,0, D

r
i,j,1) denotes the function concatenated by Dr

i,j,0 and
Dr

i,j,1, (Lr−1
i,j )−1 is the inverse of a random 8×8 nonsingular

binary matrix Lr−1
i,j .

AES(r,j) : F4
256 → (F8

2)
4,

AES(r,j) =

{
MC(r,j) · ◦ S ◦ ⊕k(r,j) , 1 ≤ r ≤ 9,

⊕k̂(11,j) ◦MC(r,j) · ◦ S ◦ ⊕k(10,j) , r = 10,
(23)

where k(r,j) ∈ (F8
2)

4 denotes four bytes of round keys, ⊕k(r,j)

denotes XOR operation with the keys, S denotes the AES

SubBytes operation, MC(r,j) denotes the matrix corresponding
to AES MixColumns operation.

Q
(r,j)
i : F8

2 → F4
2 × F4

2, Q
(r,j)
i = (Er

i,j,0, E
r
i,j,1) ◦ Lr

i,j−i·, (24)

where Er
i,j,0, E

r
i,j,1 : F4

2 → F4
2 are bijective permutations,

(Er
i,j,0, E

r
i,j,1) denotes the function concatenated by Er

i,j,0 and
Er

i,j,1, Lr
i,j−i is a random 8×8 nonsingular binary matrix. The

equivalent function F required by LRDRP attack is defined as

F : (F4
2)

8 → (F4
2)

8, F = Q(r,j) ◦AES(r,j) ◦ P (r,j), (25)

where Q(r,j) = (Q
(r,j)
0 , Q

(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3 ) and P (r,j) =

(P
(r,j)
0 , P

(r,j)
1 , P

(r,j)
2 , P

(r,j)
3 ) are concatenated functions. And

we denote Fi(x0, x1, x2, x3) as the i-th output element yi
when evaluating (y0, y1, y2, y3) = F (x0, x1, x2, x3), where
i ∈ {0, 1, 2, 3}, xi, yi ∈ F4

2 × F4
2.
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Fig. 16. The crux of the LRDRP attack and the boundaries required

Specifically, the attack predicate PLRDRP((F4
2)

8, F ((F4
2)

8))
required by the LRDRP attack is

∀α ∈ F4
2 × F4

2,∃β ∈ F4
2 × F4

2,

F0(α, 0, 0, 0) = F0(0, β, 0, 0).
(26)

In contrast, the observed behavior reveals a fuzzed and
expanded attack boundary with fundamentally altered prop-
erties. Rather than preserving this symmetry, we find that
certain inputs now lead to outputs that cannot be matched
by any counterpart, breaking the expected equivalence.
This modified behavior satisfies the altered attack predicate
PLRDRP((F6

2)
8, F ′((F6

2)
8)) which is

∃α ∈ F6
2 × F6

2,∀β ∈ F6
2 × F6

2,

F ′
0(α, 0, 0, 0) ̸= F ′

0(0, β, 0, 0).
(27)

In conclusion, WBSLT invalidates the algebraic assump-
tions underlying LRDRP, preventing attackers from isolating
exploitable collisions, and thus effectively neutralizing this
attack.

4) BS Attack: The BS attack [48] is a form of struc-
tural cryptanalysis targeting substitution-affine transformation
networks (SANs). It is capable of recovering an equivalent
representation of certain cipher constructions, such as a 2.5-
round SAN. Based on the description in [48], a classical
2.5-round SAN is shown in Figure 17. The BS attack is a
prominent threat to white-box implementations of SLT ciphers.
Regardless of how well the details of a round transformation
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are hidden in computational components (e.g., look-up tables),
if adversaries can identify the boundaries of a round, they
can easily acquire an equivalent representation of the round
transformation. This enables adversaries to decrypt ciphertext
without the secret key. The bijections Si,j and Ah (i ∈
{0, 1, 2}, j ∈ {0, 1, · · · , s}, h ∈ {0, 1}) are defined as follows.

Si,j : Fm
2 → Fm

2 , Si,j(x) = Si,j[x], (28)

where Si,j denotes an invertible S-box.

Ah : Fn
2 → Fn

2 , Ah = ⊕Bh ◦ Lh·, (29)

where Lh is a random nonsibgular n×n binary matrix, Bh ∈
Fn
2 is a random value. And the equivalent function F required

by BS attack is defined as

F : (Fm
2 )s → (Fm

2 )s, F = S2 ◦A1 ◦ S1 ◦A0 ◦ S0. (30)

Attack boundary (X, F(X))

0,0S

0,1S
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Fig. 17. The crux of the BS attack and the boundaries required

Specifically, the attack predicate PBS((Fm
2 )s, F ((Fm

2 )s))
required by the BS attack is

(∀x1, x2 ∈ (Fm
2 )s, F (x1) = F (x2) =⇒ x1 = x2)

∧ (∀y ∈ F ((Fm
2 )s),∃x ∈ (Fm

2 )s, y = F (x)).
(31)

However, the observed behavior reveals a significantly ex-
panded and property-changed attack boundary. Rather than
preserving bijectivity, the function now exhibits collisions: two
distinct inputs map to the same output, violating the injective
requirement. This altered behavior satisfies the modified attack
predicate PBS((Fm+2q

2 )s, F ′((Fm+2q
2 )s)) which is

∃x1, x2 ∈ (Fm+2q
2 )s, x1 ̸= x2, F

′(x1) = F ′(x2). (32)

In conclusion, WBSLT obstructs an adversary’s ability to
uniquely characterize the affine or substitutional structure,
thereby thwarting the BS attack.

C. Analysis of DCA and DFA Resistance

This section illustrates the resistance of our approach against
DCA and DFA. The analysis and experiment demonstrate that
these attacks cannot break the white-box implementation based
on WBSLT.

1) Differential Computation Analysis: DCA [53] is the soft-
ware counterpart of the differential power analysis, which can
help adversaries extract the secret key embedded in the look-up
tables without much knowledge of the detailed construction.

Adversaries collect a bunch of traces that are produced while
the program is running, and guess all possible keys until a
guessed key gains a high enough correlation score with the
collected traces. This key will be selected as the correct key.

Specifically, denote I(pi, k
∗
i ) as an intermediate state of the

program with input pi and the corresponding secret key k∗i ,
and L(I(pi, k∗i ))+ δ as the leaked information (e.g. the value
of a certain bit) with noise δ when program runs into state
I(pi, k

∗
i ). The adversary first collects t traces for n inputs

(p1, p2, · · · , pn)
vi = (v1, v2, · · · , vt), i ∈ {1, 2, · · · , n}, (33)

and then uses a distinguish function D to calculate the corre-
lation score γkj

of the j-th guessed key kj

γkj = D((v1,v2, · · · ,vn); (p1, p2, · · · , pn)). (34)

If the guessed key is correct, then it will get a relatively high
correlation score, or vise versa.

There are several improvements to the original DCA [53].
Bogdanov et al. proposed the higher-order DCA (HO-
DCA) [69], breaking linear masking without external encod-
ing. And Goubin et al. proposed data-dependency HO-DCA
(DDHO-DCA) [56], breaking the linear and nonlinear masking
and avoiding the exponential explosion of the window size at
the same time. Moreover, Tang et al. further improved DDHO-
DCA (IDDHO-DCA) [59] that can break the dummy shuffling
and SEL masking without external encoding.

TABLE IV
SUCCESS RATE OF THE IDDHO-DCA [59] ATTACK TARGETING A BYTE

OF THE ROUND KEY IN WB-AES, WITH AND WITHOUT WBSLT

Scheme Success Rate
WB-AES without WBSLT 1

WB-AES with WBSLT
103

25600
= 0.004023

(≈ 1
256

, close to random guessing)

We conduct the latest IDDHO-DCA [59] on Chow et
al.’s WB-AES with and without WBSLT, repeating 25600
times for each case, to evaluate the resistance of WBSLT to
DCA. In the absence of WBSLT, the actual key consistently
ranks first in every trial, yielding an average rank of 1.
Consequently, the success rate of the IDDHO-DCA attack in
this scenario is 100%, as depicted in Table IV. In contrast,
when WBSLT is applied, the rank of the actual key becomes
approximately uniformly distributed, with an observed average
rank of 128.13—close to the theoretical median of 128 for a
uniform distribution over 256 candidates. Under this condition,
the success rate of the IDDHO-DCA attack drops significantly
to just 0.40% as shown in Table IV, which is statistically close
to random guessing (i.e., 1

256 ). Since complete recovery of the
AES key requires correctly identifying all 16 bytes of a round
key, the probability of a successful attack Prsucc is only

Prsucc = (
1

256
)16 = 2−128. (35)

In summary, our approach is able to resist the DCA [53],
[69], [56], [59]. Our approach can resist DCA for two reasons.
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First, we use external encoding to protect the input before
the first round and output after the final round, while DCA is
infeasible on implementations with external encoding. Second,
the protected tabulated implementation adds extra randomness
to the intermediate state of the program, which adds further
protection against DCA.

2) Differential Fault Analysis: Since the use of external en-
coding can effectively protect secret keys from being extracted
by DCA, Amadori et al. proposed the DFA [54] to break
white-box implementations with bijective external encoding.
This attack assumes that the external encoding E is defined
as

E : (F8
2)

16 → (F8
2)

16, E(x) 7→ (E0(x0)||E1(x1)|| · · · ||E15(x15)),
(36)

where Ei : F8
2 → F8

2(i = 0, 1, · · · , 15) are 8-bit bijective
encoding. It uses a technique similar to BGE attack [34] to
remove the external encoding, and the standard DFA to extract
secret keys. The original DFA was improved by Amadori et
al. themselves in [60], in which the attack was simplified and
more efficient using heuristic analysis. Tang et al. proposed an
adaptive version in [58] that introduced a new adaptive DFA
model which assumes that an adversary can adaptively collect
the intermediate values of a specific function and launch DFA
with chosen inputs.

However, DFA only applies to 8-bit encodings, while our
design uses a 128-bit external encoding G : F128

2 → F128
2 .

We conduct the DFA [54] on our approach using Dark-
Phoenix [70]. After 1,000 attack attempts, not a single byte of
the secret key was recovered, thereby supporting the conclu-
sion that our approach is resistant to DFA.

D. Analysis of One-Wayness

In this section we analyze why WBSLT satisfies the one-
wayness property, that is, why it is infeasible to get an
equivalent decryption algorithm from the white-box encryption
implementation.

From a brute-force perspective, recovering an equivalent
decryption algorithm would require reconstructing both the
external encoding and each protected round transformation.
For a typical SLT cipher with input size n and R rounds,
recovering the input-output relationship of a single round
transformation or external encoding would require evaluating
2n input-output pairs. So the overall effort to recover all rounds
is R× 2n, which is infeasible for typical ciphers.

From a cryptanalysis perspective, all the attacks discussed in
Section IV-B involve a step to get equivalent representations of
the protected lookup tables. However, WBSLT fundamentally
obstructs this process in each case, rendering these attacks
ineffective. Nevertheless, a potential concern arises for the
AES case: due to the small domain of certain intermediate
computations, it is feasible to collect all input-output pairs of
one round using 4 × 248 queries. This raises the question of
whether the full cipher can be recovered by assembling these
round-by-round equivalents. However, the protection intro-
duced by WBSLT does not stop at round transformations. The
external encoding layer remains a robust barrier. Recovering

its equivalent representation requires observing the full input-
output behavior of the cipher. For AES, this entails 2128 input-
output pairs. Moreover, the best known algorithm [71] for
recovering a linear equivalent of the external encoding has time
complexity 1283× 2128, which is beyond practical feasibility.

In conclusion, it is infeasible for an attacker to get an
equivalent decryption algorithm from the white-box imple-
mentation, neither by analyzing the entire input and output
nor round by round.

V. ANALYTIC COMPARISON WITH RELATED STUDIES

In this section, we compare some well-known WB-AES
schemes with our general and optimized WB-AES schemes.

As shown in Table V, we compare our general and opti-
mized WB-AES schemes with Chow et al.’s [18], Bringer et
al.’s [32], Xiao et al.’s [29], Karroumi’s [30], Bai et al.’s [72],
as well as three Lee et al.’s WB-AES schemes based on
re-encoding [31], masking [51], and table redundancy [50]
techniques, which are denoted as Lee et al.’s (Re-encoding),
Lee et al.’s (Mask) and Lee et al.’s (Table), respectively. The
data presented in the second and third columns (storage and
efficiency) are based on AES-128. Note that our two WB-AES
schemes both use normal adders in the final layer of the addi-
tion network. The column that lists the decryption efficiency
only considers the operations for eliminating external encoding
(i.e., it does not include the standard AES decryption). The
existing WB-AES schemes’ efficiencies are similar to or worse
than our proposed WB-AES schemes. Although the storage
consumption of our approach is relatively large, they are still
affordable in most application scenarios.

Table V clearly shows that existing WB-AES schemes[18],
[29], [30], [31], [32], [72], [51], [50] are not sufficiently
secure. Most of them are even classified as insecure under the
weaker security definition. Only our general and optimized
WB-AES schemes are secure under the stronger security
definition.

VI. EXPERIMENTS

In this section, we conduct experiments to answer the
following three research questions (RQs):
• RQ1: How do different SLT configurations, as well as the

SHARK and PRESENT cipher specifications, impact the
encryption performance of WBSLT?

• RQ2: How do our optimized and general WB-AES compare
with other WB-AES schemes in terms of execution and
energy efficiency during table generation and encryption,
across different platforms?

• RQ3: How do our optimized and general WB-AES affect
execution and energy efficiency when implemented with
wireless communication protocols, compared with tradi-
tional AES?

A. Experiment Setup

The performance evaluations of SLT and WB-AES were
carried out on four high-performance platforms and four
resource-limited platforms as listed in Table VI. Protocol
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TABLE V
COMPARISON OF STORAGE, EFFICIENCY, AND SECURITY OF WB-AES SCHEMES1

WB-AES Storage (Calculated) Efficiency (Calculated) Security

Encryption (MB) Decryption (KB) Encryption Decryption UBK OW

Chow et al.’s [18] 0.73 5 3104L 64L+ 216B No No
Bringer et al.’s [32] 568 0 N/A 0 No No
Xiao et al.’s [29] 20.02 4 80L+ 11 · 221B 216B No No
Karroumi’s [30] 0.73 5 3104L 64L+ 216B No No
Lee et al.’s [31] (Re-encoding) 1.16 5 3104L 64L+ 216B No No
Lee et al.’s [51] (Mask) 17.54 5 2512L 64L+ 216B No No
Lee et al.’s [50] (Table) 0.99 5 3024L 64L+ 216B No No
Our general WB-AES 38.37 8.75 20160L 48L+ 216B Yes Yes
Our optimized WB-AES 9.78 8.75 5280L 48L+ 216B Yes Yes
1 Storage: calculated storage of static data, such as look-up tables and matrices; B/L: bitwise/table lookup operation; OW: the stronger security definition

one-wayness (Definition I.1; UBK: the weaker security definition unbreakability (Definition I.2.

TABLE VI
SPECIFICATIONS OF EVALUATION PLATFORMS

Category Device Processor

high-
performance

PC 1 Intel® Core™ i7-11800H@2.3GHz
PC 2 AMD Ryzen 7 5700X3D@3.0GHz
Cloud VM 1 2vCPU: Intel Ice Lake@2.70GHz
Cloud VM 2 4vCPU: AMD EPYC Bergamo@3.10GHz

resource-
limited

UP Nezha Intel Alder Lake-N@2.0GHz
Raspberry Pi 5 ARM Cortex-A76@2.4GHz
Smartphone 1 Qualcomm Snapdragon 8 Elite@4.47GHz
Smartphone 2 Qualcomm Snapdragon 778G@2.40GHz

performance assessments were performed on two Raspberry
Pi units, with LoRaWAN and Zigbee supported by external
modules, and BLE enabled through the onboard chipsets. The
performance results are the average of 1,000 executions. The
development of our table generation and encryption programs
benefits from WBMatrix library by Tang et al. [73]. The
compared WB-AES algorithms are based on Tang et al.’s
implementations [74]. All programs and state-of-the-art algo-
rithms are developed using the C programming language.

B. SLT Encryption Performance Evaluation

To evaluate the encryption performance of WBSLT with
different SLT configurations, we generated tabulated imple-
mentations, corresponding to 6-to-32-round 64-bit and 128-
bit SLT ciphers, with the parameter m sets to 8 and q
sets to 2 to be compatible with most currently used block
ciphers [2], [75], [76], [77]. Many well-known block ciphers,
such as the SHARK (64-bit, 6-round), KHAZAD (64-bit, 7-
round), AES-128 (128-bit, 10-round), SERPENT (128-bit, 32-
round), and PRESENT (64-bit, 30-round), fall into this range.
We also generated and evaluated WBSLT-based SHARK and
PRESENT implementations.

The results of encryption efficiency are presented in Fig-
ure 18. The results show that the encryption efficiency changes
almost linearly with block size and rounds. Additionally,
the performance of WBSLT when applied to SHARK and
PRESENT is consistent with our general evaluation of SLT
configurations, suggesting that the white-box implementations

generated by our design framework work reasonably well on
various platforms.
Answer to RQ1: The encryption efficiency of WBSLT on
SLT ciphers shows linear scalability with block size and
rounds across various cipher configurations, as well as the
SHARK and PRESENT cipher specifications.

C. Our Optimized and General WB-AES Execution Efficiency
and Energy Consumption Evaluation and Comparison

Our optimized and general WB-AES, corresponding to
AES-128 that consists of 16 T-tables and 16 F-tables in each
round, were generated. Our optimized WB-AES follows Chow
et al.’s design, and benefits from the 32-bit MixColumns and
ShiftRows operations.

In terms of execution efficiency of our optimized and gen-
eral WB-AES, the table generation time varies from 178.32-
2504.97 and 589.39-8012.94 ms as shown in Figure 19 (a),
and the encryption speed varies from 0.18-3.29 and 0.06-
0.97 MB/s as shown in Figure 19 (c), respectively. In terms
of energy efficiency of our optimized and general WB-AES,
the table generation consumes 534.12-2947.27 and 1972.51-
9301.01 J as shown in Figure 19 (b), and the encryption power
varies from 1.11-3.77 and 1.12-3.79 W as shown in Figure 19
(d), respectively.

The performance of Chow et al.’s WB-AES [18] (expected
to have the same performance as Karroumi’s [30] and Lee et
al.’s [31]), Xiao et al.’s WB-AES [29] and Lee et al.’s two WB-
AES schemes [51], [50] have also been evaluated on various
platforms for the efficiency comparison, despite these white-
box implementations being insecure.

The comparison results in Figure 19 show that the encryp-
tion and table generation performance of our optimized WB-
AES is much better than that of Xiao et al.’s WB-AES and Lee
et al’s WB-AES (Mask), and is similar to that of Chow et al.’s
WB-AES and Lee et al’s WB-AES (Table), while our general
WB-AES presents slight performance overhead. Moreover,
our optimized WB-AES is approximately three times more
efficient than our general WB-AES. This improvement can
be attributed to the smaller table size and fewer operations
required by our optimized WB-AES. The experimental results
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Fig. 18. Our SLT’s encryption performance under various configurations

Fig. 19. The performance evaluation of different WB-AES schemes on various platforms

are consistent with the analytical comparison presented in
Section V.
Answer to RQ2: Our optimized WB-AES performs rea-
sonably well. It outperforms Xiao et al.’s and Lee et
al.’s (Mask) WB-AES schemes in both encryption speed
and table generation time and energy, and have similar
performance compared with existing high-performance
WB-AES schemes, while our general WB-AES presents
a little performance overhead. Additionally, our optimized
WB-AES is approximately three times more efficient than
our general WB-AES, indicating the effectiveness and
necessity of our optimization.

D. Real-World Applicability Evaluation

To evaluate real-world applicability, we integrated our opti-
mized WB-AES into three widely used wireless communica-
tion protocols: BLE, LoRaWAN, and Zigbee. Each protocol
was tested using the traditional AES, our optimized WB-
AES, and our general WB-AES under the same hardware and
environmental conditions listed in Table VII.

TABLE VII
SPECIFICATIONS OF PROTOCOLS AND CHIPSETS

Protocol Chipset
BLE 5.0 Cypress CYW43455
BLE 5.3 Infineon CYW55572
LoRaWAN Semtech SX1262
Zigbee 3.0 Silicon Labs EFR32MG21

Fig. 20. The wireless protocol communication performance evaluation of
using AES, our optimized WB-AES, and our general WB-AES

As shown in Figure 20, the integration of our optimized
and general WB-AES resulted in an approximately 2.6%–4.0%
and 4.0%-5.5% increase in average power consumption, and
0.6%-1.1% and 1.2%-2.4% increase in average CPU usage
across all the protocols, respectively, while data transmission
speed remained unchanged. When integrated into wireless
communication protocols, our optimized WB-AES is up to
1.45% more efficient in data transmission power and 1.55%
more efficient in CPU usage compared with our general WB-
AES, while the data transmission speed is the same. This
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behavior is attributed to the fact that AES-based encryption
occupies only a small portion of the total transmission time,
with the majority consumed by protocol-specific operations.
Therefore, encryption is not a critical performance bottleneck.
Answer to RQ3: Our optimized and general WB-AES
introduce a negligible impact on data transmission speed,
power efficiency and CPU usage. Moreover, our optimized
WB-AES is slightly more efficient than the general version
in computation efficiency and requires less storage than
our general WB-AES. These results indicate that both
our optimized and general WB-AES are suitable for
secure integration into wireless protocols such as BLE,
LoRaWAN, and Zigbee, especially when robust security is
a priority.

VII. CONCLUSIONS

Based on the analysis of common vulnerabilities in existing
WBEAs, we proposed a new design framework for tabu-
lated white-box implementations. The framework fuzzes the
boundaries of computational functionalities in look-up tables
corresponding to an arbitrary SLT cipher, thus deterring an
adversary from analyzing certain groups of tables required by
most cryptanalysis of WBEAs. Security analysis indicates that
our proposed approach is resistant to known attacks, while
computational consumption analysis shows that its efficiency
and memory footprint are reasonable. Experimental results
demonstrate that these white-box implementations perform
well on various computing platforms. Furthermore, the pro-
posed approach and associated techniques can be adapted to
other ciphers. We aim to explore their adoption beyond SLT
ciphers in future work.
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APPENDIX A
ARTIFACT APPENDIX

The proposed WBSLT is a novel design framework for tab-
ulated white-box implementations of substitution-linear trans-
formation (SLT) ciphers. This artifact appendix presents setup,
configuration, and evaluation details.

A. Description & Requirements

This section provides the necessary information for ac-
cessing the artifact, hardware and software requirements, and
benchmarks.

18



1) How to access: The source code is available on Zenodo
with DOI: https://doi.org/10.5281/zenodo.17543341. There are
two alternative ways to access the artifact.

• Access through Github:
https://github.com/mmt200088/NDSS2026-WBSLT.git.

• Access through Docker:
https://hub.docker.com/r/gaotianchen/ndss2026-wbslt.

2) Hardware dependencies:

• Hardware dependencies 1 (HD1):
– Raspberry Pi 4b.
– Raspberry Pi 5.
– SX1262 LoRa Node with Semtech SX1262 chipsets.
– Sonoff Zigbee 3.0 USB Dongle Plus with Silicon Labs

EFR32MG32 chipset.
3) Software dependencies:

• Software dependencies 1 (SD1):
– GCC ≥ 8.1.
– Python ≥ 3.10.
– CMake ≥ 2.8.

• Software dependencies 2 (SD2):
– GCC ≥ 8.1.
– Python ≥ 3.10.
– CMake ≥ 2.8.
– Golang ≥ 1.13.
– pip ≥ 24.0.
– libgmp-dev ≥ 6.3.0.
– libntl-dev ≥ 11.5.1.

4) Benchmarks:

• Experiments E1, E2 and E4 can be run on a commodity
desktop machine, where E1 and E2 require SD1 and E4
requires SD2. Experiment E3 requires access to IoT gate-
ways supporting communication protocols Bluetooth Low
Energy (BLE), LoRaWAN and Zigbee with requirements
HD1 and SD1, and we have provided guides of using SSH
to our own infrastructure in README in the artifact.

• Experiment E2 involves comparison with other
white-box AES (WB-AES) implementations in
https://github.com/scnucrypto/WBMatrix, and we
have included these implementations in the artifact.

B. Artifact Installation & Configuration

This section provides the steps to install and configure the
artifact using either Github or Docker.

• Access through Github:

$ git clone https://github.com/mmt200088/
NDSS2026-WBSLT.git

$ cd NDSS2026-WBSLT
$ sh setup.sh

• Access through Docker:

$ docker pull gaotianchen/ndss2026-wbslt
$ docker run -it ndss2026-wbslt /bin/bash

C. Major Claims

The artifacts support the following major claims presented
in our paper:

• (C1): WBSLT is a novel framework to design secure
white-box implementations of arbitrary SLT ciphers with
efficient encryption speed. Experiment (E1) proves this
claim by:
– (RQ1 in initial submission) Generating white-box im-

plementations under various SLT cipher configurations
and evaluating the encryption speed, for which the
results are illustrated in Figure 15.

– (Major revision) Generating white-box implemen-
tations of WBSLT-based white-box SHARK and
PRESENT for encryption speed evaluation.

• (C2): WBSLT can be applied on AES-128 and generate
the general WB-AES implementation. We also present
optimization strategies to decrease the storage and im-
prove the efficiency of the general WB-AES. The gener-
ated WB-AES implementation performs reasonably well.
Experiment (E2) proves this claim by:
– (RQ2 in initial submission) Generating our optimized

WB-AES implementation and compare the table gen-
eration time and encryption speed with other WB-AES
implementations, for which the results are illstrated in
Figure 16.

– (Major revision) Generating our general WB-AES im-
plementation and compare the table generation time
and encryption speed with other WB-AES implemen-
tations and our optimized WB-AES.

• (C3): Our optimized and general WB-AES can be in-
tegrated into wireless communication protocols BLE,
LoRaWAN and Zigbee with no efficiency degradation.
Experiment (E3) proves this claim by:
– (RQ3 in initial submission) Integrating our optimized

WB-AES implementation into these protocols to com-
pare the data transmission speed with the original AES
implementation, for which the results are illustrated in
Figure 17.

– (Major revision) Integrating our optimized WB-AES
implementation into these protocols to compare the
data transmission speed with the original AES imple-
mentation.

• (C4): WBSLT fuzzes the boundaries of components to
defend against various white-box attacks. Experiment
(E4) proves this claim by:
– (Initial submission) Conducting DCA and DFA attacks

on WBSLT, for which the analysis and results are
illustrated in Section 4.3.

– (Major revision) Conducting algebraic and structural
attacks (i.e., BGE, MGH, LRDRP and BS attacks)
on WBSLT, for which the analysis are illustrated in
Section 4.2.
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D. Evaluation

The following experiments prove the major claims above
and validate the functionality of the artifacts.

1) Experiment (E1): [SLT Application Experiment] [5
human-minutes + 6 compute-hour]: This experiment generates
white-box implementations under various SLT configurations,
and evaluates their encryption speed using the generated
implementations.

[Preparation] None beyond Appendix A-B.
[Execution] Run

$ cd NDSS2026-WBSLT/E1-SLT-Application
$ sh run-e1.sh

After completion, the results will be stored in NDSS2026-

WBSLT/E1-SLT-Application/results/.
[Results] Run

$ sh run-get-results.sh

After completion, the data will be stored in NDSS2026-WBSLT

/E1-SLT-Application/results/data.csv, and an illus-
tration figure will be stored in NDSS2026-WBSLT/E1-SLT-

Application/results/figure.png. The results will fol-
low similar trends in Figure 15.

2) Experiment (E2): [AES Performance Experiment] [5
human-minutes + 4 compute-hour]: This experiment generates
our general and optimized white-box implementations, and
evaluates the table generation and encryption efficiency.

[Preparation] None beyond Appendix A-B.
[Execution] Run

$ cd NDSS2026-WBSLT/E2-AES-Performance
$ sh run-e2.sh

After completion, the results will be stored in NDSS2026-

WBSLT/E2-AES-Performance/results/.
[Results]

$ sh run-get-results.sh

After completion, the data will be stored in NDSS2026-WBSLT

/E2-AES-Performance/results/data.csv, and an illus-
tration figure will be stored in NDSS2026-WBSLT/E2-AES-

Performance/results/figure.png. The results will fol-
low similar trends in Figure 16.

3) Experiment (E3): [IoT Integration Experiment] [20
human-minutes + 1 compute-hour]: This experiment tests
IoT protocol communication efficiency using traditional AES
implementation and our general and optimized WB-AES im-
plementations.

[Preparation] Please refer to Section 5.3.1 in the README
in the artifact to install and configure the VPN.

[Execution] Please refer to Section 5.3.2 in the README
in the artifact to run this experiment on our machines.

[Results] Please refer to Section 5.3.3 in the README in
the artifact to get the results.

4) Experiment (E4): [Attack Resistance Experiment] [5
human-minutes + 7 compute-hour]: This experiment conducts
various white-box attacks on our WBSLT to test the resistance.

[Preparation] None beyond Appendix A-B.
[Execution] Run

$ cd NDSS2026-WBSLT/E4-Attack-Resistance
$ sh run-e4.sh

After completion, the results will be stored in NDSS2026-

WBSLT/E4-Attack-Resistance/results/.
[Results]

$ sh run-get-results.sh

After completion, the result will be displayed on the terminal.
The attack results of DCA attack should follow similar trends
in Table 4, and the results of other attacks should have zero
success time on WBSLT.
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