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Abstract—Differential privacy (DP) has been integrated into
graph neural networks (GNNs) to protect sensitive structural
information, e.g., edges, nodes, and associated features across
various applications. A prominent approach is to perturb the
message-passing process, which forms the core of most GNN
architectures. However, existing methods typically incur a privacy
cost that grows linearly with the number of layers (e.g., GAP
published in Usenix Security’23), ultimately requiring excessive
noise to maintain a reasonable privacy level. This limitation
becomes particularly problematic when multi-layer GNNs, which
have shown better performance than one-layer GNN, are used to
process graph data with sensitive information.

In this paper, we theoretically establish that the privacy budget
converges with respect to the number of layers by applying privacy
amplification techniques to the message-passing process, exploiting
the contractive properties inherent to standard GNN operations.
Motivated by this analysis, we propose a simple yet effective
Contractive Graph Layer (CGL) that ensures the contractiveness
required for theoretical guarantees while preserving model utility.
Our framework, CARIBOLﬂ, supports both training and inference,
equipped with a contractive aggregation module, a privacy
allocation module, and a privacy auditing module. Experimental
evaluations demonstrate that CARIBOU significantly improves
the privacy-utility trade-off and achieves superior performance
in privacy auditing tasks.

I. INTRODUCTION

Graph neural networks (GNNs) [1]], designed for operating
over structural data, have achieved success in various domains,
including social networks [2l] and recommendation systems [3]].
At their core, many GNN architectures are built upon the
message-passing paradigm, where node representations are
iteratively updated by aggregating information from their
neighbors. However, graph structures often encode sensitive
information about relationships and attributes. As a result,
GNNs are vulnerable to privacy attacks, including membership
inference [4-6] and attribute inference [7, 8]]. These vulnera-
bilities highlight the urgent need for robust privacy protection
mechanisms in graph learning.
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Differential privacy (DP) [9H11] has emerged as a foun-
dational framework to provide formal guarantees against
data leakage, with widespread applications in machine learn-
ing [12} [13]], synthetic data generation [[14], and beyond. In the
context of GNNs, recent works [[15} [16] have advanced privacy
protection through edge-level DP (EDP) [17] and node-level
DP (NDP) [18} [19] guarantees. The primary approach employs
perturbed message passing, which injects calibrated Gaussian
or Laplace noise into aggregation layers to protect the edge or
node memberships in a training graph. While these approaches
have provided formal privacy guarantees, they share a critical
limitation: the privacy loss grows linearly with the number of
layers K or graph hops. This, in turn, severely degrades model
utility.

Recent advances have shown that multi-layer GNNs, es-
pecially deeper GCNs, are essential in capturing complex
relationships [20] and analyzing graphs with long-range inter-
actions [21} 22]]. For instance, in large biological networks,
long-range dependencies influence protein functions, requiring
more than 10 hops of message passing [23]]. In social networks,
privacy-sensitive relationships propagate through multi-hop
neighborhoods [24] 25]. As reported in [23], increasing the
network depth leads to a substantial improvement in accuracy
from 72.5% to 88.2%. However, the aforementioned linear
dependence on K is particularly challenging for multi-layer
GNNs as larger K leads to larger privacy parameter ¢, a.k.a
weak privacy guarantee.

Interestingly, empirical studies [4] have shown that mem-
bership inference attacks are not particularly more success-
ful against multi-layer GNNSs, suggesting that the linear
dependency of privacy cost on network depth might be an
overestimation. This observation aligns with the phenomenon
known as “over-smoothing” [26] in GNNs, where node
representations become increasingly homogeneous as network
depth increases and consequently making membership inference
more challenging. This homogenization effect might actually
provide inherent privacy benefits due to the contractive nature
of GNN aggregation operations. This observation motivates
our central research question:

Can we achieve differentially private graph learning with a
convergent (bounded) privacy budget, thereby improving the
privacy-utility trade-off for deeper GNNs?

In this work, we answer this question affirmatively. Prior
perturbed message-passing mechanisms [[17-H19] assume that
privacy loss grows linearly with depth, yet empirical results
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Fig. 1: Comparing Calibrated Noise for Perturbed Message
Passing. Previous analysis requires o2 oc O(K), and our analy-
sis demands 02 o o((1—c{<)(1+q)/((1+c{<)(1—CL))),
where C| is Lipchitz constant. With sensitivity constrained
to norm 1, the signal-to-noise ratio is markedly low as K
increases, severely impacting utility.

show that deeper GNNs can be less vulnerable to membership
inference. We attribute this phenomenon to the contractive
nature of common aggregation operators. In theory, we analyze
this contractive property underlying over-smoothing, which
leads to bounded sensitivity, so the privacy budget converges
with the number of layers K (see Figure [I) instead of growing
linearly. This motivates CARIBOU, a privacy-preserving GNN
framework that enforces contractiveness to mirror real-world
GNN behaviors while achieving convergent privacy budget
through privacy amplification.

A. Overview of Convergent Privacy Analysis

For a perturbed message-passing GNN with K layers, the
standard approach analyzes the privacy loss at each step and
then applies the DP composition theorem to aggregate the total
privacy cost. This approach is common in existing privacy
analyses of perturbed message-passing GNNs [15] [16] 27],
resulting in a privacy budget that scales linearly with K,
specifically ¢ = O(K/o?)+O(\/K /o). Thus, as K increases,
the amount of injected noise ¢ must also grow, leading to
degraded utility particularly when a small € is desired; see
Section [[II| for a motivating empirical study.

Inspired by recent advances in privacy amplification [28 [29]]
through hidden states and contractive iterative processes, we
observe that a similar amplification effect can be exploited
in GNNs. Here, contractiveness refers to the property that
the distance between two inputs is reduced after applying
the operation, implying reduced distinguishability of outputs
from a privacy perspective. The potential privacy amplification
in GNNs arises from the following two observations: (1)
GNNss typically do not expose intermediate node embeddings
during training or inference, focusing only on the final node
representations. (2) Standard message-passing operations, such
as those used in Graph Convolutional Networks (GCNs) [1]]
(the dominant model in practice and in empirical studies [4]),
are inherently contractive, a property that also underlies the
over-smoothing phenomenon [26]. We theoretically validate
this insight by showing that the privacy loss of a K-layer
perturbed message-passing process with contractive layers

satisfies a convergent privacy budget. Specifically, instead of
growing linearly with K, we show that the privacy budget

follows a convergent form: ¢ = O (U*CL;M) , where
(I+CF)(1—Cv)

C\ is the Lipschitz constant of the message-passing operator

(see Theorem [3] for details). Our improved privacy analysis

is achieved by recasting the multi-layer perturbed GNN as a

Contractive Noisy Iteration (CNI) process [29] and applying

the privacy convergence results established for CNIs.

To leverage this analysis in practice, we design a simple
yet effective Contractive Graph Layer (CGL) that enforces
the contractiveness required for our theoretical guarantees
while maintaining model expressivity. The CGL layer builds
upon standard GCN-style aggregation, augmented with residual
connections [30] and mean aggregation normalization [31],
ensuring expressiveness across many layers without exposing
sensitive edge information.

We quantitatively characterize the privacy guarantees of CGL
by carefully bounding the Lipchitz constant of the perturbed
message-passing operation (Proposition [T) and the sensitivity
of the perturbed message-passing with respect to both edge-
level privacy (Theorem [)) and node-level privacy (Theorem [3).
Together, these results allow us to explicitly quantify the privacy
budget of the CGL layer using our general theory, culminating
in the final privacy guarantee stated in Theorem [6]

B. CARIBOU: Framework and Evaluation

Building on perturbed CGL, we realize a private framework
CARIBOU for GNN inference and training. CARIBOU includes
contractive aggregation module, privacy allocation module, and
privacy auditing module. Together, our design enables achieving
convergent privacy guarantees while maintaining strong GNN
performance across graphs with varying interaction ranges.

To evaluate CARIBOU, we conduct extensive experiments
over nine graph datasets, including commonly-used real-
world datasets and synthetic chain-structured datasets for
developing configurable interaction ranges. The experimental
results demonstrate that CARIBOU improves non-trivial utility
over standard graph and chain-structured datasets. Compared
with several SOTA baselines, CARIBOU’s EDP and NDP show
significant utility improvements, especially in high privacy
regimes, and reasonable computational overhead. Table
presents a comprehensive comparison, which is explained in
Section Ablation studies are provided to understand the
relation between privacy-utility hops and various ranges of
graph, and the choice of hyper-parameters of CGL. In addition
to privacy verification, we perform auditing experiments based
on two membership inference attacks [4, [34]], demonstrating
CARIBOU’s robustness.

Contribution. In terms of our new insights (Section , our
contribution includes:

1) A novel privacy analysis for GNNs that leverages the
contractiveness of message-passing operations to achieve
convergent privacy costs, even for deep networks; (Sec-
tion

2) The design of perturbed CGL and a practical differentially
private GNN framework — CARIBOU with provable



TABLE I: Comparison between Private GNNs. EDP and NDP summarizes the results of private GNNs in Table

Framework Mechanism Complexity per Layer Calibrated Noise (o) EDP Utility | NDP Utility
PertGraph [32][17] Graph perturbation o(vVPh) o 1
DPDGC [27] Decoupled graph with perturbation O(|E|) x VK
GAP [33] Perturbed message passing O(|E)) x VK
_K
CARIBOU Perturbed message passing O(|E)) x \/rnin(K7 1+gt" }fgt)

privacy guarantees and superior utility-privacy tradeoffs;
(Section [TV)

3) Extensive experimental validation across multiple graph
datasets with varying structural properties, demonstrating
significant improvements over state-of-the-art private GNN
approaches. (Section [VI))

II. PRELIMINARY
A. Message Passing Graph Neural Networks

Graph Neural Networks (GNNs) are a class of neural net-
works that operate on graph-structured data. Most GNNs follow
the message-passing paradigm [20], where nodes iteratively
aggregate information from their neighbors to update their
representations.

1) Message Passing Layers: Let G = (V, E) be a graph,
where V' denotes the set of vertices (or nodes) and E denotes
the set of edges. Let X (¥) € RIVIXd be the node feature matrix
at layer k, where d is the dimension of the node features.
Additionally, we use Xq(Lk) € R? to denote the feature vector
of node u at layer k. Each layer of a message passing GNN
can be generally written as,

MPG(X() =0 (v (X P, @penid(XP, X1))),

(1)
where o is a non-linear activation function, A/(u) is the set of
neighbors of node u, ¢ is a function that computes the message
from node v to node u, & represents the aggregation function
that processes all messages from the neighbors of node u, and
1) is a function that updates the node feature vector of node
with the aggregated messages. GCN [35]] and its variants are
common examples of message passing GNNs.

2) Applications of Message Passing GNNs: Message passing
GNNs leverage GNN layers to iteratively refine node represen-
tations, which are then employed in tasks like node classifi-
cation [32], link prediction [36], and graph classification [37].
Multi-layer GNNs like deep GNNs [38] [39] are especially
suitable to process long-range graphs [21} 22] by capturing
dependencies between distant nodes, which is crucial for tasks
like molecular property prediction [40], protein interaction
modeling [41], and complex node interaction modeling [20].

B. Differential Privacy for GNNs

Definition 1 (Differential Privacy [42]). Given a data universe
D, two datasets D, D’ C D are adjacent if they differ by
only one data instance. A random mechanism M is (e, d)-
differentially private if for all adjacent datasets D, D" and for
all events S in the output space of M, we have Pr(M(D) €
S) < ePr(M(D') € S)+4.

Intuitively, DP [42] theoretically quantifies the privacy of a
model by measuring the indistinguishability of the outputs of
a mechanism M on two adjacent datasets D and D’. It can
be classified into bounded DP and unbounded DP depending
on the construction of D’, where the former is by replacing a
data instance of D and the latter is by addition / removal of a
data sample of D. The privacy budget € is smaller representing
a stronger privacy guarantee, while J is a slackness quantity
that relaxes the pure DP constraint.

1) Privacy Definition on Graphs: In the context of graph
data, the notion of adjacency refers to the graph structure,
which can be defined as edge-level adjacency (Definition [2))
and node-level adjacency (Definition [3).

Definition 2 (Edge-level adjacency [43]]). Two graphs G; =
{V1,E;} and Gy = {V;, Ey} are considered as edge-level
neighboring if they differ in a single edge (through addition
or removal of the edge), i.e., (Vo = Vi) A (=(Ex N Ey) = ¢;)
where e; € Fj.

Definition 3 (Node-level adjacency [43]). Two graphs G; =
{V1,E;} and G2 = {V,, Ey} are considered as node-level
neighboring if they differ in a single node and its incident
edges (through addition or removal of the node and its incident
edges), i.e., 7(VoN'V1) = {n;, {ei; }v;} where n; € (V1UV3)
and {e;; }v; connects to n,.

2) Perturbed Message Passing with DP: To incorporate DP
into GNNSs, one can add noise to the message passing layer,
following the perturbed message passing approach [33]. Given
a graph G and message passing function MP, we define a
sequence {X ®)}K " of node feature matrices by:

X (k1) — H;C(Mpg(X(k)) + Z(k)) )

where X (©) = X is the input feature matrix, Z*) ~ A/(0,0?)
is Gaussian noise, and IIx projects features back to bounded
set K (typically constraining || X, ||z < 1 for each node u).
The privacy guarantees of perturbed message passing depend
on the sensitivity of the mechanism:

Definition 4 (Sensitivity of Perturbed Message Passing). Let
MP¢, MPg be the perturbed message passing mechanisms
applied to neighboring graphs G, G’. Define the sensitivity as:

A(MP) = MPg(X) — MPg/ (X 3
(MP) = max max [MPg(X) e (X)r G
where the maximum is taken over all adjacent graphs and all
node feature matrices in /C.

The sensitivity determines the scale of noise required for
privacy guarantees. Lower sensitivity allows for less noise
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Fig. 2: Message Passing on Chain-structured Dataset

addition while maintaining the same privacy level, directly
affecting the utility-privacy trade-off in differentially private
GNNs .

3) Privacy Accounting: Privacy accounting process analyzes
the total privacy budget for the composition of several (adaptive)
private algorithms. A common approach for analyzing the
Gaussian mechanism in perturbed message passing is through
Rényi differential privacy (RDP) [9] and its composition
theorem.

Definition 5 (Rényi differential privacy [9]). A randomized
algorithm M is (o, €)-RDP for a > 1, € > 0 if for every
adjacent dataset X, X', we have D, (M(X)||M(X")) < e,
where D, (P||Q) is the Rényi divergence of order o between
probability distributions P and () defined as:

Do (PlQ) = — logEang [(gg;)]

Theorem 1 (Composition of RDP [9]). If My,..., M
are randomized algorithms satisfying, respectively, (a,€1)-
RDP, ..., («,¢€,)-RDP, then their composition defined as
(M1(S), ..., Mk(S)) satisfies (o, €1 + - - - + €)-RDP.

In this work, we present our privacy results in terms of
RDP for ease of interpretation, while our underlying analysis
employs the tighter f-DP framework. This analysis leverages
recent advances in privacy amplification techniques [44, [29]
to achieve stronger privacy guarantees. The technical details
of our convergent privacy analysis are discussed in §[1I-B]

III. PRIVATE MULTI-LAYER GNNS INITIATIVE

Multi-layer GNNss [38] [39] are vital in tasks like modeling
molecular structures, where some properties depend on long
range interactions [21} 45 [22]] of the nodes [46l 47]. Specifi-
cally, they require messages flowing across multiple hops before
reaching a target node through stacking multiple layers to
exchange information across K-hop neighborhoods. However,
ensuring privacy in multi-layer GNNs poses key challenges.
In this section, we outline and illustrate these challenges via
a motivating case study (Section [[IlI-A)), ultimately motivating
our new design insights (Section based on contractive
message passing.

A. Observations on Privacy Accumulation and Performance
Degradation

1) A Case Study on GAP’s Performance on Learning Long-
Range Interactions: To further investigate this phenomenon,
we evaluate K -layer GAP on the chain-structured dataset (see
Figure [2)), which is adopted in [48] 49] to examine long-range
interaction learning capabilities. Specifically, this dataset creates
a controlled environment for evaluating GNN performance on
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Fig. 3: Motivating Experiments of Classification Model over
Chain-structured Datasets.

long-range interactions. A model without learning from graph
structure such as MLP would fail since most nodes in the
dataset have zero-valued feature vectors regardless of their
chain type. For a message-passing GNN to correctly classify
nodes positioned K hops away from the informative first node,
it must perform at least K propagation steps to transfer the
meaningful features across the chain as shown in Figure [2] This
requirement becomes particularly challenging in the private
setting as noise must be injected after each message passing
layer, potentially overwhelming the signal being propagated.

Figure [3| compares GAP’ accuracy of its non-private version
(blue solid line) with its private versions (dashed lines), under
different privacy budgets € € {1,2,4,8,16,32}. It shows a
binary node classification over multiple 8-node chains as a
case study. The red solid line in Figure [3] represents random
guessing (50% accuracy).

Our exploration reveals a stark contrast between private and
non-private settings:

o Non-private setting. GAP’s accuracy consistently improves
with increasing layer depth, as message passing enables
feature propagation across the chain. The model achieves
satisfactory performance after sufficient depth (K > 8),
ultimately reaching perfect classification (100% accuracy)
at K = 15 hops—demonstrating the necessity of deep
architectures for capturing long-range dependencies.

e Private setting. Privacy protection dramatically degrades
model utility. As shown in Figure [3] even with relatively
generous privacy budgets (e = 16 or € = 32), performance
remains marginally above random guessing (50%). Crucially,
increasing depth offers no benefit and often harms perfor-
mance, as noise accumulates exponentially across layers.
This confirms our theoretical concerns: standard approaches
to privacy in GNNs fundamentally limit the ability to learn
long-range interactions.

2) Empirical (Counter-Intuitive) Observation: Deeper GNNs
May Enhance Privacy: Recent work by [50] revealed a counter-
intuitive phenomenon: deeper GNNs empirically exhibit lower
vulnerability to membership and link inference attacks. This
challenges standard privacy composition analysis, which sug-
gests privacy risk increases with model depth due to multiple
queries of the graph data. The insight stems from the over-
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Fig. 4: Overview of CARIBOU. The framework integrates CAM, PAM, PDM (Section . Combining CAM and PAM can
form PCMP. Together, these modules enable scalable and accurate private GNN learning under a convergent privacy budget.

smoothingﬂ [26]] phenomenon, where node representations
become indistinguishably homogeneous phenomenon, where
node representations converge toward similar values as depth
increases, making it inherently difficult for adversaries to
distinguish individual nodes or infer sensitive relationships.

This observation suggests that standard privacy analysis may
be overly pessimistic. The conventional approach of adding
noise that scales linearly with depth may be unnecessarily
conservative, as the natural privacy amplification properties of
over-smoothing could enable tighter privacy bounds with less
noise per layer.

B. Core Idea for Convergent Privacy

Our insight is to identify and leverage the inherent privacy
amplification that occurs in multi-layer GNNs through con-
tractiveness (Definition [6). When nodes aggregate information
from their neighbors (e.g., graph convolution), the resulting
representations necessarily become more similar to each other.

Definition 6 (Contractive Map). A map f : R? — R? is said
to be contractive with respect to a norm || - || if there exists a
constant ¢ < 1 such that for all z,y € R%: ||f(z) — f(y)| <
c|lx —y|| where c is the contractiveness coefficient that governs
the rate of contraction.

Designing Private GNNs with Convergent Privacy. We aim to
leverage the privacy amplification properties of contractive map
to design a new framework for private GNNs. This framework is
inspired by the recent advances in differentially private gradient
descent (DP-GD) [28, [29]], which has shown that the privacy
cost can converge to a finite value even with arbitrarily many
iterations. Motivated by it, we aim to translate the advanced
privacy analysis techniques from DP-GD to GNNs. We observe
that perturbed message passing (Equation [2) in GNNs follows
a strikingly mathematical parallel pattern as DP-GD: This
parallel structure enables to leverage the insight of convergent
privacy analysis in the context of GNNs, provided we ensure
two critical conditions:

2Incidentally, another similar phrase is “over-fitting”, which refers to a model
performing well on training data but poorly on unseen data due to memorization.
We emphasize that they are different concepts to avoid confusion.

1) Hidden intermediate embeddings: Release only the final
node representations X () after K layers, concealing all
intermediate states; (Section |1'_V|)

2) Contractive message passing: Design the message passing
operation MP¢ to be provably contractive with coefficient
¢ < 1, ensuring |[MPg(X) —MPg(Y)|r <c¢|X - Y|F
for all node feature matrices X, Y. (Section [[V-A)

When the perturbed message passing step is contractive with

respect to the ¢, norm, the distance between GNNs trained

on neighboring datasets shrinks at each step. Consequently,
the influence of individual data points diminishes, leading to
the amplified privacy rooted from “over-smoothing” effect.

Accordingly, our insight challenges the previous analysis on

private GNNs that accumulates the privacy loss from multi-hop

GNN aggregations linearly, and simultaneously removes the

over-estimated privacy loss of finally released GNN model to

derive a much tighter bound.

IV. PRIVATE GNNS WITH CONTRACTIVENESS

Building on insights in Section [[Il, we propose CARIBOU,
a modular private GNN framework with convergent privacy
budget (Figure [), including three key modules:

1) Contractive Aggregation Module (CAM, § [[V-A):
We propose a new design of message passing layers
with carefully controlled Lipschitz constants to ensure
contractiveness so that we can add a reasonable, small yet
sufficient noise to protect the computed message passing;
Then, we realize a new DP mechanism of perturbed mes-
sage passing that only releases final node representations
X (K) | preventing adversary from exploiting intermediate
states and thus amplifying the privacy guarantee rooted
in hidden node embeddings.

2) Privacy Allocation Module (PAM, § IV-B): PAM ensures
efficient privacy budget allocation for edge- and node-level
DP guarantees, in which noise calibration is based on new
convergent privacy analysis.

3) Privacy Auditing Module (PDM, § [V-C): PDM empir-
ically audits graph DP through tests such as membership
inference attacks, ensuring theoretical guarantees align
with practical deployments.

Security Model. Aggregation-based GNNs such as

GCN [35], GCN-II [30], and SAGE [51]] reveal only the final



CGL Contractive Graph Layer.
RDP Rényi differential privacy.
MIA Membership Inference Attacks.
K The number of layers or hops.
€,0 Privacy parameters: budget, noise scale.
CL,A Lipchitz constant, sensitivity.
ai,az, 3 Hyper-parameters of CGL.

TABLE II: Acronyms & Symbols

node embeddings, keeping intermediate embeddings hidden.
The final node embeddings learned in this DP manner can
be subsequently applied to downstream tasks such as node
classification [52f], link prediction [36]], and graph classifica-
tion [37]]. Since DP introduces utility loss, GAP [33] seeks to
improve model utility by concatenating all intermediate node
embeddings from the K layers. However, it causes the noise
scale o to grow linearly as O(y/K/€2), and this privacy bound
is loose. This work takes a step further beyond GAP, removing
the assumption that all intermediate node embeddings must be
revealed under a more realistic security model [S3]].

Overall, CARIBOU (Figure [ achieves accurate and pri-
vate multi-layer GNNs, which theory will be established in
Section [V] Table [[I] summarizes acronyms and symbols.

A. Contractive Aggregation Module

Contractive operations in GNNs, such as the graph convo-
Iution (GConv) layer [1]], inherently reduce privacy risks by
mitigating the memorization of GNN parameters through the
over-smoothing phenomenon [26]. This property aligns well
with the need for K-layer aggregation in long-range graphs,
where a target node aggregates embeddings from distant source
nodes. However, directly stacking K GConv layers, as shown
in Figure [3] is suboptimal due to limited expressive power [30]
and heightened sensitivity to DP noise [54].

To address these limitations, we propose the Contractive
Aggregation Module (CAM), centered on the Contractive Graph
Layer (CGL). The CGL introduces adjustable coefficients
to enhance flexibility and utility while maintaining privacy.
Formally, the CGL is defined as:

XHHD = CL (0 AX P + apMean(X ™)) + X O, (4)

where 0 < C| < 1 ensures contractiveness, and oy, as, 3 >
0 with a7 + as = 1 are hyperparameters. Here, A is the
symmetrically normalized adjacency matrix |, Mean(X (k))
computes the mean of node embeddings, and X (*) represents
the initial node features.

Analysis of hyperparameters. The hyperparameter C| ensures
the contractiveness by bounding the magnitude of the output
embeddings. Specifically, C| enforces a Lipschitz constraint,
ensuring that small changes in the input embeddings X (*¥)
result in proportionally small changes in the output X (F+1),
The coefficients a1, ae govern the relative contributions of the

3A=D"3 (A+T1 )Df% has been widely adopted after GCN emerged,
where D is the degree matrix and I is the identity matrix.

graph-based aggregation AX® and the mean-based aggre-
gation Mean(X ("')), respectively. By satisfying the constraint
a1 + ag = 1, these coefficients ensure a convex combination
of the two components. A higher ai; emphasizes the influence
of the graph topology, leveraging structural information from
the adjacency matrix A. The parameter (3 controls the residual
connection X (9 calculated independently of the graph
topology, incorporating the characteristics of the initial node
X () into the output. This residual term mitigates the vanishing
gradient problem by preserving a direct path for gradient flow.

Together, the CGL combines three key components: (1)
the graph-based aggregation AX®) (2) the mean-based
aggregation Mean(X (%)), and (3) the residual connection
£X () This design balances the trade-off between privacy and
utility by limiting the propagation of noise while preserving
expressive power.

Comparison with existing design. GAP [33]] enhances
expressiveness by connecting all intermediate embeddings but
lacks contractiveness, compromising utility and privacy. In
contrast, CGL introduces adjustable coefficients, achieving a
balanced trade-off between privacy, utility, and generalizability.
Table [ summarizes the general design characteristics between
GAP and CARIBOU.

B. Privacy Allocation Module

For multi-hop aggregation, the features from the previous
hop X *—1) are aggregated using the adjacency matrix A
to enable message passing to neighboring nodes. To ensure
privacy, Gaussian noise N (11, 0?) is added to the aggregated
features, where the noise variance o2 is determined by the
privacy budget €, ensuring compliance with DP guarantees.

Building on Section [[V-Al we integrate CAM and PAM to
design the Perturbed Contractive Message Passing (PCMP)
(Algorithm [T). By leveraging contractiveness, PCMP ensures
bounded privacy loss for long K-hop graphs, eliminating the
linear growth of privacy loss with K. A subsequent projection
step enforces Lipschitz constraints, maintaining consistent
scaling across hops. After K iterations, PCMP outputs private
feature matrices X (K ), which are passed to the classification
module.

Privacy Budget Allocation. The privacy budget is distributed
across K hops to ensure the total privacy loss adheres to
the specified ¢ and . The noise scale is calibrated based
on the sensitivity of graph operations and the desired DP
guarantees, using a noise allocation mechanism (NAM) that
limits noise accumulation under Lipschitz constraints. The
maximum allowable noise calibration (see Corollary [I) is
constrained by K’ = min(K, (1 + CL)/(1 — CL)).

PCMP integrates contractive aggregation and privacy-
preserving perturbation for private message passing. Noise
calibration begins by determining the sensitivity of graph
operations and computing the noise scale. At each hop, the
CGL aggregates features while maintaining contractiveness
through adjustable coefficients. Gaussian noise is added to
ensure privacy, and embeddings are normalized to enforce



Algorithm 1 Perturbed Contractive Message Passing (PCMP)

Require: Graph G = (V, ) with adjacency matrix A; The
number of hops K; Lipchitz constant C|, DP parameters
¢, &; Initial normalized features X(?);
Ensure: Private aggregated node embeddings X&),
1:
2: > Calculate the Required Noise Calibration (from PAM).
3: if Edge-level privacy then
4: Calculate A(CGL) through Equation [6]
5: else if Node-level privacy then
6
7
8
9

: Calculate A(CGL) through Equation
: end if
: Calculate o2 through Theorem [6]

10: > Perturbed Contractive Message Passing (from CAM).
1: for k=0,..., K —1do
122 XED o O (a; AX P + apMean(X R))) + 3 X (©)

13: > Contractive graph layer: compute node embeddings.
14 XU+ o XD LA (4, (A(CGL))%0?)

15: > DP Perturbation.
16: X (D) I (X F) > Projection with norm 1.
17: end for

18:

19: Return: X )

Lipschitz constraints. This iterative process produces private
embeddings suitable for downstream tasks.

C. Privacy Auditing Module

Message passing mechanisms integrate graph structures
by recursively aggregating and transforming node features
from neighbors. Membership Inference Attacks (MIA) on
graph examine the vulnerability of message passing to infer
whether specific nodes or edges were part of a GNN’s
training set [34]. The adversaries exploit black-box access
to the GNN, querying it with selected data and analyzing
outputs (e.g., class probabilities) to infer membership. To align
theoretical privacy guarantees with practical deployments, we
propose an empirical auditing module. This module simulates

an adversary to evaluate GNN privacy before deployment.

Extending Carlini et al. [55]’s MIA framework to graphs, we
define a graph-specific privacy auditing game (Definition
and implement two real-world attacks [4) 34] for privacy
verification.

Definition 7 (Graph-based Privacy Auditing Game). The game
proceeds between a challenger C and an privacy auditor A:

1) The challenger samples a training graph in the transductive
setting (a set of subgraphs in the inductive setting) G < G
and trains a model fp < 7 (G) on the dataset G.

2) The challenger flips a bit b, and if b = 0, samples a fresh
challenge point from the distribution (x,y) < G (such
that (z,y) ¢ G). Otherwise, the challenger selects a point

from the training set (z,y) &
3) The challenger sends (z,y) to the adversary.

4) The adversary gets query access to the distribution G, and
to the model fp, and outputs a bit b < A% (z,y).
5) Output 1 if b = b, and O otherwise.

The attacker can output either a “hard prediction,” or a
continuous confidence score, thresholded as a reference to
yield a membership prediction.

D. Putting it Together

As shown in Figure ] before and after the perturbed message
passing, CARIBOU employs an encoder and a classification
module (CM) to process the node features. To ensure com-
pliance with DP guarantees, the framework utilizes standard
DP-SGD during pre-training.

Upon completing the private K-hop aggregations, the
resulting private graph embeddings are passed to the CM. The
CM integrates two key components: (1) the graph-agnostic node
features X (), which capture individual node characteristics
independent of the graph structure, and (2) the private, topology-
aware aggregated features X'(!), which encode structural
information from the graph. This dual integration enhances the
model’s expressiveness while preserving privacy.

To improve classification accuracy, CARIBOU adopts a head
MLP architecture proposed by Sajadmanesh et al. [33] as the
CM. This design ensures that the CM effectively combines
the information from both feature sets, enabling robust node
classification. Furthermore, the CM guarantees efficient training
by leveraging the graph-agnostic features X (?), ensuring
a lower-bound performance even in scenarios where graph
topology is unavailable.

V. CONVERGENT PRIVACY ANALYSIS

In this section, we present a convergent privacy analysis for
perturbed message-passing GNNs with respect to the number
of hops. We review the standard privacy analysis for a one-
layer perturbed message-passing GNN, and then observe that
the privacy cost grows linearly with the number of layers
under standard composition theorems. We then shift our focus
to a convergent privacy analysis for perturbed GNNs whose
message-passing layers are contractive. In particular, we draw
upon the framework of contractive noisy iteration (CNI) from
[29], recasting the multi-layer perturbed GNN as a CNI process.
Our analysis reveals that, under hidden intermediate states and
contractive message-passing layers, the privacy cost converges
as the number of hops increases. Finally, we specialize this
result to our proposed CARIBOU. We show that CARIBOU’s
message-passing operation is contractive, derive its sensitivity,
and thereby establish concrete bounds on both edge-level and
node-level differential privacy for arbitrarily many hops. All
proofs are deferred to the Appendix [A]

A. Contractive Noisy Iteration and Convergent Privacy

Many GNNs, such as GCN, use "mean-type" aggregation,
mixing a node’s representation with that of its neighbors.
Intuitively, iterative mixing could "amplify" privacy, but existing
analyses yield only linear compositions. Our key observation
is that perturbed message passing in a contractive GNN layer



behaves analogously to noisy gradient descent or noisy iterative
maps [28,156} I57]], where recent work has demonstrated privacy
amplification via iteration.

Below, we introduce the framework of contractive noisy
iteration (CNI) from [29], and the meta theorem proved by
[29] that provides a tight privacy guarantee for CNI processes.

Definition 8 (Contractive Noisy Iteration (CNI)[29, Defini-
tion 3.1]). Consider a sequence of random variables

XD = I g (X D) + 2, )

where each map ¢y, is Lipchitz continuous, Z*) ~ A/(0, o 1)
are i.i.d. Gaussian noise vectors independent of X (%) and Il
is a projection operator onto a convex feasible set  C R¢. This
iterative process is called contractive noisy iteration (CNI).

A special case of CNI considered in [29] is the noisy gradient
descent, where the contractive functions are the gradient update
steps for some fixed loss function f, and the noise distribution
&, is Gaussian. This situation is similar to the perturbed
message passing mechanism in a contractive GNN layer, where
the contractive function ¢, = MP¢ is the message passing
operation for a fixed graph G.

The complete privacy analysis of CNI processes in [29]] in-
volves concepts of trade-off functions and Gaussian differential
privacy (GDP). GDP can be converted to the more familiar
Rényi Differential Privacy (RDP) framework:

Lemma 1 (GDP Implies RDP [29, Lemma A.4]). If a
mechanism is u-GDP, then it satisfies (oz, % auz) -RDP for
all > 1.

With this connection established, we now state the key meta
theorem from [29] that analyzes the CNI process and provides
a tight privacy guarantee.

Theorem 2 (Meta Theorem on CNI [29, Theorem C.5]).
Let { XM - and { X"V represent the output of CNI
processes,
CNI(X D {1 {N(0,0° 1)}, K), and
CNI(X O { i iy, AN(0,0° 1) 1y, K).
Assume that:

o @1 and ¢} are Lipschitz continuous,
o each ¢y, @), is y-Lipschitz, with v <1 for k=2,... K,
o [[op(z) — ()| < s forall xand k=1,... K,

Then the tradeoff function T(X ), X'(K)Y satisfies,

T(X ), X"50) > TN(0, 1), N (15, 1)),

j0 — JL= s
1+7vK1—~v0

Remark 1. The theorem above slightly generalizes the original
result from [29] by relaxing the Lipschitz condition to require
v < 1 only for k > 2 rather than for all iterations. This
relaxation is critical for analyzing our CARIBOU architecture,
where the first message-passing layer includes the residual term

where,

BX ) potentially making it non-contractive while subsequent
layers remain contractive. The proof extends the original
argument by carefully tracking the influence of the first layer
on the privacy guarantee.

By utilize the above meta theorem and property of Gaussian
tradeoff function, we can derive the privacy guarantee for
a K-layer perturbed message-passing GNN with contractive
message passing layers.

Theorem 3 (]29, Theorem 4.2] adapted for GNNs). Let MP
be a message passing mechanism of a GNN such that the
message passing operator MP ¢ for any graph G is contractive
with Lipschitz constant v < 1 for layers k > 2. Assume the
sensitivity of MP is A(MP) and the noise scale is 0. Then, a
K-layer perturbed message passing GNN with MP satisfies,

1 A?2(MP)1—+K 1+~
o, —(
2 0?2 14~+4K1-—+~

) -RDP,

A?(MP) 1% 14+ + loi(i/15)75) -DP.

o . 1
which is equivalent to (ioz 0T 1E K 1oy

The upshot is ghat as K — oo, the privacy parameter
converges to %a%i—l, rather than growing unbounded
with K as in standard composition. This result enables
meaningful privacy guarantees even for deep GNNs with many

message-passing layers.

B. Edge- and Node-Level Privacy of CARIBOU

We now specialize to the CARIBOU architecture and
establish both edge-level and node-level DP guarantees. Recall
the contractive graph layer (CGL) of CARIBOU:

CGL:  X* ) = ¢ (0 AX® fayMean(X P))+4X (O,

where 0 < Cp < 1, and hyper-parameters, «aq,as,5 >
0,1 + ag = 1. In order to establish the privacy guarantees
of CARIBOU, we need to determine the sensitivity and the
Lipschitz constant of the message passing layer CGL.

Proposition 1. The message passing layer CGL of CARIBOU
is contractive with Lipschitz constant C < 1 with respect to
the input X®), for any k > 2.

The sensitivity of the message passing layer CGL regarding
edge-level and node-level adjacency graphs is determined as
follows.

Theorem 4 (Edge-level Sensitivity of CGL). Let G be a graph
and Dy, be the minimum node degree of G. The edge level
sensitivity A, of the message passing layer CGL is

1 C(Dmin)

AG(CGL) = \/iCLOél ( (Dmin + 1)(Dmin + 2) * Dmin +1

1
+
\/Dmin + 2\/Dmin + ]-)’
(6)

where C(Dpmin) is a piecewise function defined as

Duin _ _ _ Duin
C(Dmin) = { (\/3Dmi:+1i) VDmin+2
V2SN

Dmin >3
1 S Dmin S 3

(N




Intuitively, the edge-level sensitivity A, will be smaller if
the minimum degree D.,;, is larger or the Lipschitz constant
Cy is smaller. The node level sensitivity A,, of the message
passing layer CGL is determined as follows.

Theorem 5 (Node-level Sensitivity of CGL). Let G be a graph
and D .y be the maximum node degree of G. The node level
sensitivity A, of the message passing layer CGL is

V Dmax

A, (CGL) =1+ CMQCLM +a1CL (

‘V| + 1 (Dmin + 1)(Dm1n + 2)
+O(Dmin) V Dmax + 1 )
\/Dmin + 1 \/Dmin + 2

®)
where C(Dyyin) is defined as in equation [7}

From the above, we can see that the node-level sensitivity
A,, will be smaller if the maximum degree D, is smaller,
the minimum degree D,,;, is larger, or the Lipschitz constant
(' is smaller.

Using the contractive constraint in Proposition 1| and the
sensitivity results in Theorem [4] and Theorem [5] we can
apply Theorem [3] to derive the following privacy guarantee
(Corollary [I)) for the message-passing layer CGL of CARIBOU.
Specifically, for Lipchitz constant 0.8, a 10-layer GNN realizes
(o, 3.62aA%/5?)-RDP (versus (a, 5aA?/0?)-RDP for GAP),
meanwhile 2-layer GNN is (o, 0.99aA2/0?)-RDP (versus
(a, A% /5?)-RDP for GAP). That is, more privacy costs are
saved as the number of layer increases.

Corollary 1 (DP Guarantees for CGL layers). Let G be a graph
and K be the number of hops (CGL layers) in CARIBOU. Then
the K-hop message passing of CARIBOU satisfies:

a A2 1-CE1+CL
— — min{ K L -RDP
(a5 i { K T G iy ) on

where A = A,(CGL) from Theorem {|for edge-level privacy,
or A = A, (CGL) from Theorem [3] for node-level privacy. In
particular, as K — o0, it converges to (a, %?—; }fgt) -RDP.

Also, the RDP guarantees imply the following DP guarantees:
a A? 1-cf1+CL log(1/9)
22 minl K L

(2 o2 mm{ ’1+c{<1—q}+

a—1

For a complete analysis, we integrate the node-level privacy
guarantees into an overall DP bound for the entire training
process of CARIBOU. Specifically, we assume that the private
DAE and CM satisfy («, epag(e))-RDP and (a, ecm(a))-
RDP, respectively. By privacy composition, CARIBOU’s overall
privacy budget ecarigou is then derived as shown in Theorem@
The terms epag(«) and ecm(«) individually quantify the
privacy contributions from the DAE and CM modules, while
the remaining aggregation term accounts for node-level privac
loss during K-hop message passing. Finally, the %
term incorporates the privacy failure probability §, ensuring
conventional privacy guarantees across the inference process.

,5> -DP.

Theorem 6 (CARIBOU’s Privacy Guarantee). For any a > 1,
let DAE training and CM training satisfy («, eppe(a))-RDP

and («, ecm(a))-RDP, respectively. Then, for the maximum
hop K > 1, privacy failure probability 0 < 6 < 1, Lipschitz
constant 0 < C < 1, and noise variance 2, CARIBOU satis-
fies (ecariBou, 5)-DI£’, where ecariBou = €pae(a) + ecm(a) +
%?—: min ¢ K, 1;%}( ifgt} + loi(i{‘;). Here, A = A.(CGL)
from Theorem W|for edge-level privacy, or A = A, (CGL) from
Theorem 5| for node-level privacy.

VI. EXPERIMENTAL EVALUATION

The empirical evaluation includes privacy-utility trade-offs,
privacy audits, ablation studies of hops and hyper-parameters,
and computational overhead.

Datasets. CARIBOU was tested over nine graph datasets.
Five of the datasets have been broadly used to evaluate GNN
methods, including Photo and Computers [38], Cora
and PubMed [39], Facebook [60]. We also adjusted the
synthetic chain-structured dataset developed under [48] into
various scales, termed Chain-S, Chain-M, Chain-L and
Chain-X. The chain-structured dataset has been used to
understand the relations between privacy/utility and hops, as
described in Section It is considered as an important
benchmark to assist the development of long-range interaction
GNNs by the ML community [21]]. More details on datasets,
model configurations, experiments, and privacy configurations
are specialized in full-version paper.

Baselines. We compare CARIBOU with multiple base-
lines [27, 33, [17, 61, 32] about edge-level private GNNs
and vanilla GNNs. To our best knowledge, GAP [33] and
DPDGC [27] are the strongest baselines for perturbed message
passing under Gaussian mechanisms in both edge/node-level
DP GNNs. In addition, we consider another research direction,
i.e., first perturbing the graph through randomized response and
then training GNNs over the perturbed graph PertGraph [17].
For a comprehensive evaluation, we adopt both research lines of
works as our baselines. MLP is a baseline commonly compared
with GNNs to demonstrate how well GNNs utilize graph
structures, as it provides a reference counterpart to which
GNNs learn the only node features without graph topology.

A. Trade-offs of Privacy and Accuracy

We first compare CARIBOU with the baseline methods on
all datasets for their downstream classification tasks and report
top GNN model utility of both EDP and NDP. We run each
model 3 times for each group of hyper-parameters, reporting
the top classification accuracy in Table For the experiments
about NDP, we set the max node degree D, .« to 20, following
the experiment setup of GAP.

Regarding the standard graph datasets, for Computers,
PubMed, Cora and Photo, CARIBOU can outperform all
the other baselines in most cases with varying €, no matter
for EDP or NDP. As established in Theorem [5| NDP requires
injecting more noise compared to EDP under the same privacy
budget, hence, the accuracy of NDP is often lower than
EDP for standard datasets. In particular, CARIBOU is the
only framework that can surpass MLP of most cases in NDP



TABLE III: Comparison of Classification Accuracy for EDP and NDP. The and the are
highlighted, respectively. The symbol 1 represents that the best accuracy improves the second-best accuracy by more than 10%.

The symbol V¥ represents the accuracy less than 55%, close to random guess on the chain-structured datasets.

| Dataset |  Computers | Facebook | PubMed | Cora | Photo | Chain-S | Chain-M | Chain-L |  Chain-X
CARIBOU 9 74.0% 9 84. 82.5 70.0%
o DPDGC 8.3
- GAP o . J [ 61.7'
PertGraph % Z
CARIBOU [e]
_ DPDGC
€= GAP ] : y 67.5% [
PertGraph 48.1% v X . 43.8% v
CARIBOU g 39.59 95.¢ 90.69
4 DPDGC : : :
- GAP . 68.5% . . 65.6%
PertGraph . 50.3% ¥
CARIBOU 92.2% 74.4% 96.0%
. DPDGC . I . 94.6%
- GAP Z % %
PertGraph
CARIBOU C 85
=16 DPDGC <
- GAP E . . . J 70.0% 61.7%
PertGraph B b . X . 43.8% v 475% v 51.7% v
CARIBOU ¢ /o 89.9% 88.6 95.9% 93 78
— DPDGC : : . : :
- GAP . € u X o 65.0% 61.7% J
PertGraph E | B 5 . 43.8% v 47.5% v 51.7% v 51.0% v
NDP (max node degree = 20) |
CARIBOU 78.12% 85.00% 68.33% 66.00%
DPDGC 56.72% 39.09% v 59.12% 33.58% Vv 46.39% v 57.50% m 54.55% ¥
e=1 GAP 36.71% v 35.07% v 55.06% 33.95% v 30.88% v 65.62% 55.0% v 58.33% 59.00%
PertGraph 29.51% v 20.73% v 18.45% v 21.07% v 59.38% 60.00% 56.67% 55.00% v
MLP 56.25% 55.0% ¥ 55.0% ¥ 5L.0% ¥
CARIBOU 92.24% iz 95.10% 84.38% 85.00% 70.00% 65.00%
DPDGC 66.07% 45.37% v 68.60% 31.92% v 57.92% 57.50% m
€e=2 GAP 47.92% v 39.97% v 67.82% 33.39% v 36.05% v 65.62% 55.00% v 58.33% g
PertGraph 34.30% v 21.43% v 19.93% v 23.46% v 59.38% 56.67% 55.00% v
MLP 56.25% 55.0% ¥ 55.0% ¥ 5L0% ¥
CARIBOU 92.249 0 % .369 90.62% 82.50% 71.67%
DPDGC 72.35% 48.81% v 32.10% v 73.49% 57.50%
e=4 GAP 61.84% 47.02% v 79.33% 33.39% v 45.33% v 65.62% 55.00% v 58.33%
PertGraph 36.12% v 23.01% v 40.30% v 21.59% v 25.78% v 0
MLP v 51.0% v
CARIBOU 0 87.1: 87. C 87.50% 73.3: 69.00%
DPDGC . . . 57.50% 59.60%
€e=38 GAP 68.52% 48.33% v 82.35% 31.55% v 68.46% 55.00% v 58.33% 59.00%
PertGraph 37.38% Vv 24.53% v 42.07% v 26.38% v 28.36% v R 60.00% 56.67% 55.00% v
MLP : 55.0% ¥ 55.0% ¥ 5L0% ¥
CARIBOU 9 88. 0 & 7 70.00%
DPDGC 50.85% . . . 57.50% 59.60%
e=16 GAP 49.98% v . . . 65.62% 5 % 58.33% 59.00%
PertGraph 26.88% v . 33. 60.00% 55.00% v
MLP 49.92% v . : .34% . 55.0% v 51.0% v
CARIBOU 0 73 A 87. 9. % 82.50 75.00%
DPDGC 81.33% 51.19% 64.02% 86. 57.50%
€=32 GAP 76.95% 57.01% 80.25% 65.62% 55.00% v 58.33%
PertGraph 46.40% v 31.30% v 47.53% v 29.89% v 41.68% v 60.00% 56.67% 55.00% v
MLP 50.27% Vv 85.87% 55.0% vV 55.0% v 51.0% v
Non-Private
CARIBOU . 79.0% 39.9% 3¢ i 100.0% 100.0% 100.0%
DPDGC 9 : :
Plain GAP 91.0% 79.0% b 0 o 00.0% 100.0% 100.0%
€ =00 PertGraph 91.6% 9 94.2% 59.4% 55.0% ¥ 60.0% 58.0%
MLP 85.82% 51.35% v 87.45% 75.83% 91.98% 59.38% 55.0% v 53.33% v 51.0% v

settings, showing effective GNN learning over structural graphs. —graph topology, which is more challenging. Accordingly, model
We leave ablation study for different max node degrees in utility is more sensitive to the added noise realized by perturbed
Section [VI-CS| message passing. This sensitivity is due to their sparse chain
structure: non-zero features are present only at the first node of
each chain. Information must propagate from this source, and
it can be degraded by noise accumulation during propagation.
In this case if the small training set, by chance, contains an

For standard benchmark datasets with informative node
features, the utility of our model approaches that of non-
private methods as the privacy e increases. For chain-structured
graphs, the learning task primarily relies on the underlying

10



imbalanced selection of nodes (e.g., sampling nodes only near
the end of a chain, far from the feature source), the task
becomes significantly more difficult. This can lead to higher
variance in results. To ensure a fair comparison, we use the
exact same data split for all models mentioned above.

Takeaway 1. CARIBOU achieves a more favorable
privacy-utility trade-off than other baselines across standard
graph datasets, chain-structured datasets with various
parameter settings.

B. Privacy Auditing

Following the PAM outlined in Section we focus on
black-box, membership-based privacy audits that match the
theoretical guarantees of our DP mechanisms and those of
prior perturbed message-passing methods [27, [33]]. Under this
threat model, LinkTeller [4] and G-MIA [34] are canonical and
complementary: LinkTeller targets edge-level membership by
asking whether a specific edge exists in the training graph; G-
MIA targets node-level membership by deciding whether a node
and its connected edges were used during training. We adopt
G-MIA’s attacking settings of TSTF, where models have been
trained on subgraph and tested on full graph. The adversary
knows the whole graph G and all edges contained in G but
has no access to the subgraphs used for early training. Both
attacks (i) are specifically designed for GNNS, (ii) operate in the
transductive setting considered in our analysis, (iii) require only
query access to GNN models, and (iv) are publicly available and
already used to evaluate DP-GNN defenses. This makes them
ideal choices as mechanism-level auditing tools in CARIBOU.

In Table [IV] (in Appendix), we report the AUC (Area
Under the Curve) score about the attack effectiveness, when
CARIBOU is being attacked. AUC is a major metric to evaluate
the membership inference attack [4, 62]. Specifically, AUC
measures true positive rate against the false positive rate on
various classification thresholds, and a score of 0.5 suggesting
random guessing. We found CARIBOU is very effective against
LinkTeller, by dropping the attack AUC from between 0.86 to
0.998 across all standard datasets (¢ = inf) to less than 0.500
(e ranges from 1 to 32). The similar effect was also observed by
Wu et al. (e.g., less than 0.5 attack precision for 3-layer GCN
for high density belief, shown in Table IX) [4]] and Tang et al.
(e.g., less than 0.5 attack AUC sometimes in Figure 10) [63].
For G-MIA, its AUC on the 5 datasets are already lower than
LinkTeller by a notable margin when € = inf (between 0.567
to 0.702 for the 5 datasets), so the impact of CARIBOU is
relatively small. But we observe on Cora, CARIBOU is able
to drop AUC from 0.645 to 0.500.

Takeaway 2. In privacy auditing, CARIBOU’s shows
effective resistance to membership inference attacks.

C. Ablation Study

1) Impact of K: Both CARIBOU and GAP perform K-hop
aggregations under K aggregation layers. Here we evaluate
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Fig. 5: Comparison between CARIBOU (colored boxes) and
GAP (blue lines) for ablation study.

the impact of K on accuracy on the chain-structured datasets
(Chain-S, Chain-M and Chain-L), as their classification
results highly depend on long-range interactions. In full-
version paper, we compare CARIBOU and GAP on varying
e and varying K, respectively. The result of GAP is drawn
with lines and the result of CARIBOU is illustrated with the
colored boxes, because CARIBOU also depends on other hyper-
parameters C|, a1, 5 and we use the colored boxes to represent
the interquartile range over 5 runs of their different value
combinations.

In Figure [5a] we show the result of one setting (¢ = 4
on Chain-M), and CARIBOU achieves higher accuracy at
every K. In addition, the highest accuracy happens at K = 10
(close to the number of nodes per chain) for CARIBOU, and
the classification accuracy fluctuates when K varies for both
CARIBOU and GAP. Across all datasets, GAP’s accuracy
degrades monotonically with depth, consistent with its privacy
noise variance growing linearly in the number of layers
(62 « K). In contrast, CARIBOU benefits from additional
depth and then plateaus, owing to its convergent privacy cost
with respect to depth. This behavior shows that CARIBOU
can leverage deeper architectures and realize the contractive
privacy amplification guaranteed by our analysis.

2) Impact of e: We assess how e affects the performance of
CARIBOU and GAP, by flipping K and ¢ from the previous
ablation study. Specifically, we evaluate the three chain-
structured datasets (Chain—S, Chain—-Mand Chain-L), and
for each dataset, we use the same K for both CARIBOU and
GAP, and then change € from 1 to 32.

We present the full results in the full-verison paper and
one setting in Figure [5b] (K = 10 on Chain-S). When K is
much less than the number of nodes per chain, e.g., K =1 vs.
8-nodes chain, CARIBOU and GAP cannot realize satisfactory
accuracy (both under 75%) even for non-private settings, as
features from distant nodes cannot be effectively learnt. If K is
near to or larger than the number of nodes per chain (e.g., when
K =10 for Chain-s, as shown in Figure [5b), though both
GAP and CARIBOU see very high accuracy for non-private
mode, the accuracy of GAP drops to 50% at ¢ = 1 and further
decreases with increased e, suggesting the noise magnitude are
not properly controlled. On the other hand, CARIBOU sees
steady growth of accuracy along with increased €, which is a
desired outcome for privacy protection.



TABLE IV: Privacy Auditing via LinkTeller and G-MIA. AUC score is reported.

Dataset LinkTeller G-MIA

€ = inf ‘ e=1 ‘ e=2 ‘ e=4 ‘ e=38 ‘ e=16 ‘ e=232 € = inf ‘ e=1 ‘ e=2 ‘ e=4 ‘ e=28 ‘ e=16 ‘ e=32
Facebook 0.977 0.463 | 0.483 | 0482 | 0478 0.472 0.462 0.567 0.587 | 0.587 | 0.587 | 0.583 0.587 0.588
PubMed 0.981 0.446 | 0.442 | 0441 | 0.445 0.442 0.449 0.600 0599 | 0.598 | 0598 | 0.601 0.601 0.605
Cora 0.998 0.427 | 0.448 | 0399 | 0.443 0.451 0.450 0.645 0500 | 0.500 | 0.500 | 0.500 0.500 0.500
Photo 0.962 0475 | 0.404 | 0421 | 0.428 0.417 0.434 0.678 0.677 | 0.682 | 0682 | 0678 0.672 0.676
Computers 0.860 0367 | 0.364 | 0372 | 0.363 0.361 0.384 0.702 0701 | 0.661 | 0.707 | 0.708 0.711 0.701

I ISB TABLE V: Noise Scale ¢ under Different K. We set
87.50 87.50 92 g 85.06 86.90 87.82 I
AQ(MP) =1,a=6,CL =0.9 and ¢ = 4,5 = 0.001.

87

87.50 5 8450 86.72

87.27

88.19

Y
&
0.8

85.79

84
B 5250 B
82 °

88.38  88.01 -85

88.38 88.56

(b) Cora

)< 77.49 77.49 7749 77.49 77.49 71.49

~
o 8100

59.38

59.38 59.38

78.12 | 81.25 81.73 8155 81.55 8137 8155

87.50 | 84.38 87.50

84.38 WL 00.62

LWLl 87.50 90.62

86.72 87.27

ol
ay
6

> 84.50
S

) 82.84
S

65
S 8266
60

87.08 88.38

1.0
@
]
N
&

81.25 87.27 87.64

(c) Chain-S

68.75 65.62 68.75

6827 68.27 6827 70.66

RCRVE 57.50

90.62

87.50

81.25 [EIALY 86.16 87.27

88.38 88.56 88.56

86.72 87.27 88.01 88.38 88.01

(e) Chain-S (f) Cora

Fig. 6: Classification Accuracy under C|, aq, 8 of CGL.

Takeaway 3. Private GNNs face fundamental trade-offs
between privacy, utility, and model depth K. Model utility
becomes more susceptible to the DP noise if GNNs are
tightly coupled with the underlying graph structure.

3) Noise scaling with depth: Here we analyze how the noise
scale changes with the number of layers K under standard linear

composition and under convergent privacy analysis (Theorem 3).

For a general study, we remove the effect of node degree
Dyin, Diax derived from a particular dataset and fix the
target DP parameters €,d. In this case, the dependence of
the calibrated noise on depth is governed by depth K. To make
this comparison concrete, we instantiate a representative setting
by normalizing the sensitivity: A?2(MP) = 1, = 6,C = 0.9.
Setting A?(MP) = 1 removes a common multiplicative factor
and highlights the qualitative dependence on K. The choice
a = 6 is common and simplifies the expressions, while
CL = 0.9 represents a standard contractive layer.

K | 1 2 4 8 16 32 64 128
Linear 1.07 152 215 3.04 430 6.07 8.56 12.11
Convergent | 1.07 1.52 2.14 3.00 4.07 4.66 4.66 4.67

Table [V] reports the proportional values of o for several
representative depths K, assuming the same target privacy
budget € = 4. Under linear composition, the required o grows
proportionally to K, becoming large for deep GNNs. In contrast,
under CARIBOU’s analysis, the required o grows from 1 to a
bounded constant (here approximately 4.7) and then saturates.
This study highlights CARIBOU can support deep architectures
without unbounded noise growth.

4) hyper-parameters related to contractiveness: We studied
the impact of hyper-parameters C|, a7, in CGL. In Ap-
pendix, we draw Figure [6] of classification accuracy using
Chain-Sand Cora. As C| constrains the features learned
at each aggregation, in the relatively weak privacy guarantee
(e = 16, 32), Figures [6a] and [6b] empirically confirms that
the accuracy improves with C| increases. In contrast, for
strong privacy guarantee (¢ = 1,2), larger C| reduces the
model accuracy due to the accumulated large noise. Small C|.
enforces strong contraction, accelerating privacy convergence
and reducing effective sensitivity, but overly small values may
reduce expressive power. Larger C| increases representational
capacity but slows contraction and slightly increases noise
amplification.

Figures[6c| and [6d] describe the ratio (a1) of learning from the
graph, where a; = 1.0(a2 = 0.0) means the information from
adjacent matrix is utilized at the maximum degree. Larger o
leads to higher accuracy across varying € in general, suggesting
CARIBOU is able to achieve good balance between graph
connectivity and privacy. The impact of 3, which decides the
power of residual connection between node features and CGL,
is different on the two datasets. Since Chain-S is designed
to tailor graph topology over node features, increasing /3 to a
large value (e.g., 15) might hurt accuracy. For Cora with rich
node features, the model accuracy is generally increased along
with .

Takeaway 4. All parameters o,Cy, 5, a7 in perturbed
CGL contribute to the privacy-utility trade-off.

5) Impact of Dyax, Dmin: Figure [7| shows an example
(e = 2) of the classification accuracy of NDP under different
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maximum node degrees, and more ablation study results are
shown in full-version paper. As shown in Figure on the
Photo dataset, CARIBOU consistently realizes the highest
accuracy under different maximum node degrees ranging from
5 to 100. Improving maximum node degree for DPDGC can
slightly increase the classification accuracy when maximum
node degree is 20, while the number of maximum node degree
does not help for PertGraph and GAP. For the Chain-S
dataset in Figure classification accuracy of CARIBOU is
improved when the maximum node degree is increased and
relatively small. In addition, CARIBOU outperforms baseline
works significantly, i.e., approximated 20%-25% higher than
the second best GAP.

The sensitivity formulas in Theorems (]3] explicitly depend
on structural properties of the graph, particularly minimum
degree D,yi, and maximum degree D, ,x. Our empirical results
(Table [ reflect these theoretical dependencies: (i) High-
degree graphs such as Photo exhibit lower noise and higher
accuracy; (ii) Low-degree or chain-like graphs incur higher
sensitivity and lower accuracy, but CARIBOU mitigates the
impact.

VII. FUTURE WORKS AND DISCUSSIONS

More GNN models. CARIBOU is instantiated and evaluated
primarily with commonly used message-passing architectures,
where contractiveness naturally emerges or can be enforced
by design. Extending our convergent privacy framework to
a broader class of GNNs, including attention-based models
(e.g., GAT), spectral convolution methods, and emerging graph
transformers would be a natural next step, but new research
problems will emerge. For instance, these models differ in
their Lipschitz properties, aggregation operators, and feature
mixing patterns, which may influence the achievable privacy
amplification and the expressiveness—contractiveness trade-
off. Developing a unified analysis for these graph families,
or designing contractive variants of non-message-passing
architectures, is an open and promising direction.

White-box attacks and defenses. Our privacy auditing focuses
on black-box membership threats, which align with the theoreti-
cal guarantees of perturbed message passing. However, stronger
adversaries with white-box access to gradients, intermediate
embeddings, or partial training states can mount reconstruction,
inversion, or property inference attacks that fall outside our
current threat model. Prior work has shown that gradient-
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based attacks can recover fine-grained structural information,
especially in over-parameterized models. Investigating the
extent to which contractiveness mitigates these stronger threats,
and designing DP mechanisms that remain robust under partial
or full white-box exposure, warrant future research. Such anal-
yses may require combining CARIBOU with complementary
techniques such as gradient perturbation, secure aggregation,
or private feature compression.

VIII. RELATED WORKS

Multi-layer GNNs. Recent literature shows that multi-layer
GNNs hold significant potential for modeling long-range
dependencies and complex relational structures crucial for many
real-world applications. Node labels and attributes may depend
on distant nodes, necessitating the aggregation of information
over larger receptive fields [64] through multi-layer GNNs.
Notably, Li et al. [23] demonstrated, through the 1000-layer
GNN, that increasing the network depth attains substantial
gains in accuracy, e.g., from 72% with shallow GNNs to
88% with hundred- and thousand-layer GNNs, by capturing
distant features. However, enforcing DP in multi-layer GNNS is
particularly challenging, as these GNN models aggregate node
embeddings over deeper layers and broader neighborhoods.
Current research still lacks an effective solution to injecting
DP noise to multi-layer GNNs with privacy-utility balance.

Differentially private GNNs. Graphs consist of edges and
nodes. Corresponding to instance-level DP [9] 65, 53], the
“instance” of graphs can be an edge or a node, naturally
called edge-level DP (EDP) and node-level DP (NDP). GNNs
have emerged as a key approach for applications over graph-
structured data, such as intrusion detection [66, |67]], social
recommendation [68]], and drug discovery [69]. Sharing trained
GNN model can lead to privacy risks [7} 5], typically member-
ship inference attack (MIA) [S5, 15]. MIA stems from “overfit-
ting”, where models can memorize training memberships [70],
either an edge or a node. Consequently, GNNs can leak sensitive
information about their edge- or node-level neighbors.

To address these risks, existing research works [27, 33]]
have integrating DP with GNNs to achieve EDP and NDP.
One research direction is to utilize graph perturbation (e.g.,
LPGNet [32] and LapGraph [17]) through a randomized
response mechanism and adding discrete DP noise to the
adjacency matrix. Then, the perturbed graph is passed to GNNs
for subsequent training tasks, where the graph perturbation is
required only once and also irrelevant to the GNN architectures.
However, the GNN model utility is low when being trained over
a perturbed graph when the privacy budget is tight, for example,
< 40% accuracy of € = 1,2, 3,4 reported in LPGNet [32].

To improve utility, perturbed message-passing mechanism
(PMP) [33] has been proposed by adding the calibrated
Gaussian noise to the message-passing layer, and DPDGC
perturbs the decoupled graph convolution [27]. As PMP realizes
a better trade-off of privacy and utility, our work extends
the research line of PMP. Table [I] presents a comprehensive
comparison. Albeit their efforts on EDP and NDP, leveraging
the contractive hidden node embeddings in private GNNs for



amplifying privacy remains an underexplored avenue; thus,
CARIBOU fills this gap.

IX. CONCLUSION

In this study, we provide a theoretical analysis establishing
a convergent privacy budget for private deeper GNNs. Our
analysis addresses a longstanding limitation in perturbed
message-passing architectures, namely, the linear accumulation
of noise with depth, by showing that privacy loss can remain
bounded as the number of layers increases. Consequently,
deeper models can be deployed with a significantly improved
privacy-utility trade-off. Our analysis is broadly applicable,
requiring only two conditions that are commonly satisfied in
practice: the use of hidden intermediate states (also a standard
design choice) and contractive message passing layers, which
are often observed empirically.

To demonstrate the practical implications of our theory,
we introduce a novel private GNN framework, CARIBOU,
which incorporates a simple yet effective Contractive Graph
Layer (CGL) that theoretically guarantees the contractiveness
required by our analysis. CARIBOU further integrates opti-
mized privacy budgeting, and modular auditing mechanisms
to deliver strong privacy guarantees while preserving model
utility. Empirical results show that CARIBOU substantially
improves the privacy-utility trade-off and enhances robustness
to membership inference attacks.
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APPENDIX

A. Proof of results in Section

Proof of Proposition[l] Let Y=V Y'*=1 ¢ K be two
inputs to the message passing operator MP ¢ at layer k. Since
k > 2, the residue term X ©) jg independent of the input
Y #=1) and Y"1 and thus does not affect the Lipschitz
constant. We can write the difference between the outputs of
CGL as follows:

ICGL(Y *+ D) — CGL(Y" D)
<O (e AY *=Y 4 apMean(Y 1)) 4+ gx (@
— CL (g AY"F=D 4 ayMean(Y' D)) — gxX O
< Cpllon (AY =D — Ay "(k=1))
+ ag(Mean(Y *=Y) — Mean(Y’k=1)))|
< Cu(on + o) [YFD — YD)
= L[y =D -y,

where the second line follows from the fact that the operator
norms of A and Mean are bounded by 1. O

Proof of Theorem ] Let G, G’ be two edge adjacent graphs
and A, A’ be the corresponding adjacency matrices of G, G’
respectively. Without loss of generality, we assume that the



edge ey, is added to G to form G’ for two nodes v and v.
Then the CGL layer updates the node features as follows:

when the minimum degree D,,;, of G is larger than 3, the
function f(z) is maximized at = Dyy;,, and we have

X~ Car AXO) + agMean(XE0)) 4 5x @, AKX = (AKX,
1
(k) _ A v /(k—1) 1(k—1) (0) <
X" =CL(a1A'X + agMean(X ) + B8X". = (Do + 1) (Don +2)
Dmin 1 1
The diff.erence between the two outputs is given b.y. the + VDo + 1( N2 ) - VDo +2)
aggregation of A and A’. Then the edge-level sensitivity 1

A.(CGL) is the amount to bound | AX ) — A’ X'() | ;.. Since
only one edge is added, the difference between A and A’ is

_|_
\/Dmin + 2\/Dmin + 1

only on the row corresponding to w and v.

For row u, we need to bound ||(AX ), —

(A’ Xk
For (AX®),,, we can write it as

1
NS e

(AX R, XK

du+1 e

©)
where d,, is the degree of node v in graph G and N, is the
neighbors of node u in graph G. For (A’X(¥)),, with the

same notation for d,, and IN,, we can write it as

) 1 1
AX®y =~ x4 x ()
WXE =353 2 v
+ ! Xk
Vi, +2/d +1 "
(10)

where d) is the degree of node v in graph G'.
Then there is

Mull2.

where we use the fact that the minimum degree of G is larger
than that of G. When 1 < Dmin < 3, we can bound the

function f(z) by f(3) = 7 \/5. is results in
I(AX @), — (A X®),
. 1 PRI S
~ (Dmin + 1)(Dmin + 2) V4 \/5"V/Dupin +1
1
+

\/Dmin + 2\/Dmin + 1

For notation convenience, we use C(Dy,,) to denote the
piecewise function of D,,;,, which is defined as

D D
min_ — e Dnin >3
C(Dmin) = mm+1 Dmint2 (1D

Therefore, the effect of modifying an edge on a single node
u of AX®) is bounded by

< 1 C(Dmin)
o (Dmin + 1)(Dm1n + 2) vV Dmin +1 (12)
1

+
\/Dmin + 2\/Dmin +1

The same analysis can be applied to the row v of AX®)
and A’ X (®). The edge sensitivity A.(CARIBOU) can then be
bounded as the following:

)

I(AX W), — (A XD, 2
1 1
<||l——x &) _ x (k)
- ‘ d,+1°" dy +2°" ||,
Z Z w)
weN\/ﬁ\/d +1 R Vdu + \/d +1
(k)
Vd, + \/d’
1 1 1

<2+

(du+1)(du+2) Z AV +1(\/d T1 Vd,t2
. 1

o+ 2/d, + 1
< 1 n dy ( 1 _ 1 )
N (du + 1>(du + 2) \/dw + 1 \/du + 1 \/du + 2

1

+

Vdy, +2/d +1
To bound —= +1( dl —— dl +2), we study the monotonicity
of the function f(z) = 7ot~ vags for z > 0. It turns out

that f(z) only has one positive critical point and is around
x = 2.9, and when evaluated on integers, f(z) increases from

x = 1 to x = 3 and then decreases from x = 3 to co. Thus,

A (CARIBOU) := max JAX®) — A’ X0 5

<aiCy [[I(AX®), — (A'X®), |13
+(AX®), - (AXD), |3
1 C(Dmin)
< V2,0
_fal L((Dm1n+l)(Dm1n+2)+ Dmin+1
1

)

Proof of Theorem ] Let G, G’ be two node adjacent graphs
and A, A’ be the corresponding adjacency matrices of G, G’
respectively. Without loss of generality, we assume that the

_l’_
\/Dmin + 2\/Drnin + 1
O
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node v is added to G to form G’ and connected to nodes N, can be bounded by
in G. The layer updates the node features as follows: R N
o ’ ; S IAX®), — (AXW),],

uEN,
~ 1 Drnin
X® = C(a AXT + apMean(X 7)) + 5X0, < B <<D ot DD 2) e
X' = Oy A’ X" R 4 ap,Mean’(X'F=D)) + X (O, ueN, mm m mn

1
+
VDuin + 24/d, + 1)
1 + C(Dmln)
)(Dmin + 2) Dmin + 1

The difference between the two outputs is given by the ,
aggregation of A and A’ as well as the mean operator Mean = |d,| ( (Dyin + 1
and Mean’ since G’ has one more node than G. Then the e

node-level sensitivity A, (CGL) can be bounded as follows: + 1
\/Dmin + 2\/6% + 1
Vv d;; + C(Dmin) d;
A, (CGL) ~ (Dmin + 1)(Dmin + 2) Diyin +1
— (k)Y _ 1 x (k)
max CGL(X M) — CGL/(X )] ¢ A ST
~ ~ . !
<1 X2 + Z aCL(AX®), — (A’X®)), |, VDin + 2¢/d, +1
u€N, < vV d;; + C(Dmin)\/ d; 1
+ Z asCL|Mean(X ®),, — Mean’ (X)), | " (Dmin + 1)(Dwmin +2)  vVDmin+1 v/ Diin + 2
uEN, < V Dmax + C(Dmin) V Dmax 1
o (Dmin + 1)(Dmin + 2) \/Dmin + 1 \/Dmin + 2’

where Di,ax is the maximum degree of the graph G and d,

o e .
For the first term || X7 |2, it is bounded by 1 by constraint of . degree of node v in graph G'. Additionally, there is

KC. For the second term, we can argue similar as in the proof

of Theorem [ For nodes u € N, there is ||Mean(X(k'))u - Mean'(X(k))uHQ
1 1 1
| x (k) _ x (k) _ X({C)
o 7 2 X e 2 K T e
[(AX®)), — (A’ X®), |2 weV we 2

1 1 1 (k) 1 (k)
<l xm_ 1 xwm < 3 X - by
_‘du+1 e R VIV D 2 e

2
| T - Y e | S e
SRV ATV, T A2V, T Vi+1

where |V is the number of nodes in graph G.

(k) Then for the node-level sensitivity of one layer of CGL, we

1
+ X3
||\/du+2\/d;+1 !
1

9 have
1 1 1
<——er+ Z ( — ) A, (CGL)
dy, +1)(dy +2 dy +1 Vdy +1 dy +2
+ ’ ~ ~
Vi, +2/d, +1 <X 2+ Y erCLll(AX®), — (A X R, |,
< 1 + dy ( 1 ~ 1 ) uEN,
T (du+1)(du+2) V1 Vdy+1 Jdy+2 + Y aCiMean(X®)), — Mean'(X*)), ||
1 u€N,
+
V DII] X
Vdy +24/d, +1 §1+o¢1CL( N
< 1 + C(Dmin> (Dmin + 1)(Dmin + 2)
- (Dmin + 1)(Dmin + 2) \/Dmin —+ 1 +C(Dmin) V Dmax 1
+ 1 \/Dmin + 1 \/Dmin + 2
VDiin +24/d, + 1 2|V|
v C
Tty

Then the summation term 3, . [(AX®), — (A’ X®), |5
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