
Shadow in the Cache: Unveiling and Mitigating
Privacy Risks of KV-cache in LLM Inference

Zhifan Luo1, Shuo Shao1, Su Zhang2, Lijing Zhou2, Yuke Hu1,*, Chenxu Zhao1, Zhihao Liu1, Zhan Qin1,3,*

1State Key Laboratory of Blockchain and Data Security, Zhejiang University 2Huawei Technology
3Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security

{luozhifan, shaoshuo ss, yukehu, zhaocx 7, zhihao liu, qinzhan}@zju.edu.cn; {zhangsu14, zhoulijing}@huawei.com

Abstract—The Key-Value (KV) cache, which stores intermediate
attention computations (Key and Value pairs) to avoid redundant
calculations, is a fundamental mechanism for accelerating Large
Language Model (LLM) inference. However, this efficiency
optimization introduces significant yet underexplored privacy
risks. This paper provides the first comprehensive analysis of these
vulnerabilities, demonstrating that an adversary can reconstruct
sensitive user inputs directly from the KV-cache. We design and
implement three distinct attack vectors: a direct Inversion Attack,
a more broadly applicable and potent Collision Attack, and a
semantic-based Injection Attack. These methods demonstrate
the practicality and severity of KV-cache privacy leakage issues.
To mitigate this, we propose KV-Cloak, a novel, lightweight,
and efficient defense mechanism. KV-Cloak uses a reversible
matrix-based obfuscation scheme, combined with operator fusion,
to secure the KV-cache. Our extensive experiments show that
KV-Cloak effectively thwarts all proposed attacks, reducing
reconstruction quality to random noise. Crucially, it achieves this
robust security with virtually no degradation in model accuracy
and minimal performance overhead, offering a practical solution
for trustworthy LLM deployment.

I. INTRODUCTION

Large Language Models (LLMs) have ignited a paradigm
revolution in artificial intelligence [24], [36], profoundly
impacting various domains and applications, such as machine
translation [44], chatbots [40], code generation [14], and content
creation [47]. However, the immense scale of these models,
characterized by billions or even trillions of parameters, coupled
with the need to process extensive input sequences and engage
in multi-turn dialogues, presents a substantial challenge to their
efficient deployment and inference. This computational demand
often translates into high latency and resource consumption,
hindering broader accessibility and real-time applicability [22].

To address the efficiency bottlenecks in LLM inference,
researchers have proposed several optimization techniques [38],
[49]. Among these, the Key-Value cache (KV-cache) mecha-
nism has emerged as a crucial and widely adopted solution [28],
[47]. During the autoregressive generation process typical of

*Corresponding author(s).

LLM Server

Client

①Input ⑥Output

Compute Node

Compute Node

KV-cache

Storage

④KV-cache
Transfer

Entry

Adversary

Leaked KV-cache

Will KV-cache leak my privacy?

KV-cache will leak your privacy.

Fig. 1: Overview of the privacy-preserving LLM inference
workflow and the associated KV-cache leakage threat model.
While user-server communication is encrypted (black lines),
the KV-cache is often transmitted and stored in plaintext (red
dashed lines), creating a surface for privacy attacks.

LLMs, the attention mechanism computes key (K) and value
(V) matrices for each token based on its preceding tokens. The
KV-cache stores these intermediate attention computations (the
K and V pairs) for tokens that have already been processed
within the input sequence. By reusing these cached K and V
pairs for the generation of subsequent tokens, the KV-cache
significantly reduces redundant computations. This dramatically
accelerates inference speed and improves throughput, especially
for tasks involving long contexts or interactive sessions, making
LLMs more practical for real-world deployment.

However, the storage and potential sharing of the KV-cache
introduce significant yet underexplored privacy concerns [39],
[41], as illustrated in Figure 1. This vulnerability stems from a
critical trade-off made in production systems: while end-user
communication with the LLM service is typically encrypted,
the KV-cache itself is almost always processed, transmitted
between compute nodes, and persisted in plaintext. This design
choice is a concession to performance, as the unacceptable
latency overhead from cryptographically securing the often
gigabyte-scale KV-cache would violate the stringent demands
of real-time inference. Notably, this risk is amplified in the
emerging paradigm of confidential Model-as-a-Service (MaaS).
Here, TEE adoption for inference privacy [5], [10] introduces

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240258
www.ndss-symposium.org

a critical architectural trade-off: high-throughput architectures
require deliberately externalizing the massive KV-cache from
the TEE’s protection boundary. This architectural design—not
a vulnerability—directly exposes the KV-cache to the Cloud
Service Provider (CSP), who inherently possesses it without
requiring any additional exploit [43].

Crucially, the direct correlation between the KV-cache and
user inputs [7], [21], combined with its architectural exposure
in plaintext, creates a severe and practical attack vector. A
critical research gap therefore exists in mitigating these risks,
necessitating a practical and secure defense mechanism.

In this paper, to bridge the research gap, we present the
first comprehensive study on the privacy risks of KV-cache in
LLM inference. Specifically, we primarily study and answer
the following two research questions:

• RQ1: Is an adversary able to reconstruct user inputs
from the KV-caches?
To address this question, we conduct a systematic investi-

gation, demonstrating that attacks against the KV-cache are
not only feasible but also diverse and broadly applicable. We
design and implement three distinct classes of targeted privacy-
stealing attacks. Each attack exposes inherent privacy risks of
KV-caches from a different perspective.

We first explore two relatively direct attack paths. The first
is the KV-cache Inversion Attack, leveraging known model
weight matrices to directly reverse-calculate the input from
the KV-cache. The second, more general-purpose approach
is the KV-cache Collision Attack. This attack reframes
input reconstruction as a matching task based on forward
computation: an adversary iteratively uses a local model
instance to generate KV-caches for candidate inputs and
compares them against the intercepted target KV-cache to
find a match. Because this method does not rely on any reverse
computation, it has broader applicability. Finally, we introduce a
novel, semantic-based KV-cache Injection Attack. This attack
leverages the LLM’s powerful capability to understand and
execute instructions. By appending a specific instruction, such
as “Repeat the previous content,” to the end of an intercepted
KV-cache context, an adversary can induce the model to “echo”
or generalize the core information held within the KV-cache.

Collectively, these attacks reveal that privacy leakage from
the KV-cache is not merely a theoretical concern. Their diversity
and feasibility constitute a significant threat to real-world LLM-
based applications, underscoring the urgent necessity of design-
ing specialized and efficient privacy-preserving mechanisms
for the KV-cache.

• RQ2: Can defenders effectively and efficiently mitigate
or prevent user privacy leakage from the KV-cache?
In response to this challenge, this paper provides an affir-

mative answer by first analyzing the shortcomings of existing
privacy-preserving techniques. Conventional methods like full
cryptographic encryption [2] or Homomorphic Encryption
(HE) [26] introduce prohibitive computational overhead and
latency, rendering them impractical for the high-throughput
demands of LLM inference. Meanwhile, applying Differential

Privacy (DP) [11] requires adding a level of noise that
often severely degrades the model’s inference accuracy to
an unacceptable degree. Even specialized solutions like KV-
Shield [41], while lightweight, suffer from critical security
flaws. Their fixed shuffling mechanism, as we analyzed in
Section V-A, is vulnerable to statistical analysis and is incom-
patible with modern LLM architectures that use features like
Rotary Positional Embedding (RoPE) [32]. These limitations
highlight the urgent need for a novel defense mechanism.

Therefore, we propose KV-Cloak, a lightweight and secure
KV-cache obfuscation mechanism addressing these challenges.
At its core, KV-Cloak employs a reversible matrix-based
obfuscation scheme that guarantees lossless model accuracy.
Its security is multi-layered: it applies secret invertible linear
transformations to obscure statistical properties, and critically,
introduces a one-time random permutation matrix for each data
block. This dynamic permutation prevents adversaries from
building stable algebraic relations across multiple queries. To
further enhance performance, KV-Cloak utilizes operator fusion,
algebraically fusing a portion of the secret obfuscation matrices
into the LLM’s attention layer weights offline. This shifts the
primary computational cost away from the latency-sensitive
online inference phase, striking an effective balance between
robust security, lossless accuracy, and high performance.

Our contributions can be summarized as follows.
• Revealing the privacy risks of KV-cache in LLM in-

ference: We systematically investigate the privacy risks of
the KV-cache by designing and implementing three distinct
attacks, Inversion, Collision, and Injection attacks.

• Proposing a lightweight and effective method to mitigate
privacy leakage: We propose KV-Cloak, a novel and prac-
tical defense mechanism that uses a lightweight, reversible
matrix-based obfuscation scheme combined with operator
fusion to protect the KV-cache without degrading model
accuracy and with minimal performance overhead.

• Conducting extensive experiments to evaluate attacks and
defenses: We conduct a systematic evaluation to empirically
demonstrate and quantify the feasibility of attacks that
reconstruct user input from the KV-cache of state-of-the-
art LLMs, establishing it as a practical and severe threat. We
further prove that our proposed KV-Cloak is a highly practical
solution that achieves robust security, near-lossless model
fidelity, and high efficiency simultaneously. Our experiments
show that KV-Cloak, with its negligible impact on accuracy
and minimal latency overhead (mostly < 1%), successfully
resolves the stark trade-off between security and utility that
plagues alternative approaches such as DP.

II. BACKGROUND AND RELATED WORK

A. Transformer-based LLM Inference

Prevailing LLMs, such as LLaMA [35], DeepSeek [24]
and Qwen [40], are predominantly based on the Transformer
decoder architecture [47].
Self-Attention Mechanism. For an input token xi, the self-
attention layer generates Query (qi), Key (ki), and Value

2

(vi) vectors via linear transformations. Crucially, modern
architectures incorporate RoPE, denoted as Rd

Θ,i:

qi = xiW
⊤
q Rd

Θ,i, ki = xiW
⊤
k Rd

Θ,i, vi = xiW
⊤
v . (1)

where W(·) are learnable weight matrices. The attention score
aij is computed as the scaled dot product between qi and
preceding keys kj≤i. The final output oi is the weighted sum
of values projected by Wo:

aij =
exp(qikj

⊤/
√
d)∑i

t=1 exp(qikt
⊤/

√
d)

, oi =
(∑i

j=1 aijvj

)
W⊤

o .

(2)

Autoregressive LLM Inference. LLM inference models the
sequence probability P (x1, . . . , xn) through autoregressive
decomposition [6]. The generation process predicts tokens
sequentially based on the conditional probability:

P (x1, . . . , xn) =

n∏
i=1

P (xi|x<i). (3)

While effective for capturing dependencies, this sequential
nature implies that generating xi depends on the full history
x<i. Without caching, the model must re-compute the Key
and Value vectors for all preceding tokens at each step. This
computational redundancy creates a substantial bottleneck for
real-time inference.

KV-cache in LLM Inference. To mitigate the computational
redundancy of autoregressive generation, LLMs utilize the KV-
cache mechanism [28]. Instead of recalculating the Key (K) and
Value (V) matrices for the entire context window at each step,
the system persists these intermediate states. When generating
a new token xi, the model only computes the current qi, ki, vi,
performs attention between qi and the cached history, and
subsequently appends the new (ki, vi) pair to the cache. This
strategy significantly reduces latency but necessitates managing
a persistent state proportional to the sequence length.

B. Privacy Attacks against LLMs

1) Inference-Phase Inversion Attacks: Inference-time privacy
attacks are categorized into: (1) Output-based, reconstructing
inputs from final probabilities or embeddings [19], [25]; and
(2) Intermediate-state-based, exploiting internal representa-
tions [37]. While early works like Vec2Text [25] focused on
sentence embeddings, Embed Parrot [37] demonstrated that
deep hidden states allow for more accurate reconstruction.

However, current research often overlooks the KV-cache.
Unlike fused hidden states, the KV-cache retains the primitive
Key (K) and Value (V) vectors—the raw inputs to the attention
mechanism. Crucially, to support autoregressive generation,
the KV-cache is architecturally designed for persistence,
making it a richer and more exploitable surface than transient
computational states.

2) Limitations of Side-Channel Attacks: Existing threats
to the KV-cache are primarily side-channel attacks, such as
PromptPeek [39], which infers prompts by measuring latency
variations caused by cache sharing. However, the practicality

of such timing attacks is severely mitigated by modern memory
management.

Systems like PagedAttention [17] manage the KV-cache in
non-contiguous blocks (defaulting to 16 tokens). To trigger a
cache hit (and thus a timing signal), an adversary must correctly
guess an entire block simultaneously. With a vocabulary size
|V | ≈ 105, the search space explodes to |V |16, rendering brute-
force side-channels computationally infeasible. In contrast,
we address the direct access threat model. Given that KV-
caches are often processed in plaintext for performance, a
compromised system allows adversaries to bypass probabilistic
guessing and perform precise, per-token collision attacks.

III. ATTACK LANDSCAPE: INPUT RECONSTRUCTION FROM
KV-CACHE

While the KV-cache serves as a cornerstone for efficient
LLM inference, it concurrently introduces a critical and
underexplored privacy surface. Unlike deep hidden states that
represent fused semantic information, entries in the KV-cache
maintain a direct, element-wise correspondence to the tokens in
the user’s input sequence. This structural characteristic implies
that an adversary gaining access to the KV-cache does not
merely obtain abstract embeddings, but potentially holds the
raw materials to reverse-engineer the original user prompt.

In this section, we investigate the central research question: Is
an adversary able to reconstruct user inputs from the KV-cache?
We first define a realistic threat model grounded in modern
cloud architectures, and subsequently detail three distinct attack
vectors designed to exploit this vulnerabilities.

A. Threat Model

This work focuses on the threat landscape of LLM inference
services within a confidential computing paradigm. We consider
the inference service provider as the adversary.

Adversary’s Objective. The primary objective of the adversary
is to recover the user input prompt from the accessed KV-cache.
We target verbatim reconstruction because it represents the
most severe breach of privacy, allowing the extraction of exact
credentials, PII, or proprietary logic contained in the input.

Adversary’s Capabilities. We assume the adversary can obtain
both the KV-cache and the model weights, but does not observe
the ephemeral runtime activations within the GPU registers.
These assumptions are well-grounded in the realities of current
confidential computing inference paradigms:
• KV-cache Access. The adversary is capable of obtaining

the KV-cache stored by the LLM server. This is a realistic
assumption, as high-throughput and scalable cloud-native
services deliberately externalize the large-scale KV-cache
to non-secure memory or persistent storage pools to meet
performance demands [43]. We thus consider this access a
result of an intentional performance-security trade-off, not a
traditional vulnerability.

• Foundation Model Access. We assume a gray-box setting
where the adversary can access the foundation model weights.
This access is realistic through two primary paths: (1) For

3

closed-source services, the CSP inherently owns the model
and possesses the weights. (2) For services built on open-
source models, the provider may be required to disclose the
base model for licensing compliance, or the model can be
identified using fingerprinting techniques [8], [27].

B. Input Reconstruction Attacks from KV-cache

This section investigates the risk of user input leakage
from KV-cache data during LLM inference. We systematically
present three attack vectors, namely Inversion Attack, Collision
Attack, and Injection Attack, for reconstructing the original
user inputs from the KV-cache. These attacks differ in com-
plexity, applicability, and exploited vulnerabilities, collectively
illustrating the threat landscape.

1) KV-cache Inversion Attack: As illustrated in Figure 2a,
the KV-cache Inversion Attack functions as a baseline algebraic
adversary. It attempts to mathematically invert the attention
mechanism by exploiting the linear projection of Key (k) and
Value (v) vectors.

Attack Formulation. Based on the forward pass definition
in Eq. (1), an adversary possessing the plaintext KV-cache
and the model weights (Wk,Wv) can theoretically recover the
input state xi of the attention layer via matrix inversion:

xi = ki(R
d
Θ,i)

−1(W⊤
k)−1, xi = vi(W

⊤
v)−1. (4)

Architectural and Semantic Constraints. While algebraically
sound, the feasibility of this attack in production environments
is severely limited by two fundamental constraints: (1) The
attack strictly requires the projection matrices Wk and Wv to be
square and full-rank invertible. This condition holds for legacy
Multi-Head Attention (MHA) [36] architectures (e.g., LLaMA-
7B). However, modern State-of-the-Art (SOTA) models, includ-
ing LLaMA-3 [12], Qwen [40], and DeepSeek [24], adopt
efficiency optimizations such as Grouped-Query Attention
(GQA) [3] or Multi-Head Latent Attention (MLA) [30]. These
mechanisms typically project inputs into lower-dimensional
subspaces, resulting in non-square matrices where unique inver-
sion is mathematically impossible (i.e., the problem becomes
ill-posed). (2) the attack’s effectiveness is largely confined to
the first decoder layer’s KV-cache, as its inversion directly
yields the input sequence’s embeddings, allowing for precise
mapping back to the vocabulary. In contrast, applying Eq. (4) to
deeper layers recovers intermediate hidden states. These states
represent semantically fused contextual information rather than
discrete tokens. Reversing these deep representations into text
is a non-trivial problem that necessitates training auxiliary
inversion models [37], thereby increasing the adversary’s
computational cost and reducing fidelity.

Consequently, while the Inversion Attack serves as a the-
oretical proof-of-concept for KV-cache leakage, its reliance
on specific architectural properties (MHA) and layer positions
(Layer 0) limits its utility against modern, deep LLMs. This
motivates the need for the more robust attacks.

2) KV-cache Collision Attack: Unlike the Inversion Attack
which suffers from architectural constraints, the KV-cache

Collision Attack is a universal, forward-matching adversary
applicable to any layer. Instead of algebraically reversing the
projection, this attack reframes input reconstruction as a search
problem: identifying the token in the vocabulary that, when
processed by a local model, yields a KV-cache entry most
similar to the intercepted target.

Fundamental Principle: Reconstruction as Optimization.
The core premise is that the KV-cache exhibits distance-
preserving properties for identical tokens under the same
context. We formalize the attack as finding the optimal token
t∗ at position i that minimizes the distance metric D (e.g.,
Frobenius norm) between the leaked cache Kleaked and the
local generation Klocal(t):

t∗i = argmin
t∈V

D
(
K

(i)
leaked,K

(i)
local(t|x<i)

)
. (5)

The attack’s success hinges on statistical separability: the
distance for the ground-truth token, dtarget, must be statistically
distinguishable from the distribution of distances for incorrect
tokens, dother.

Attack Procedure. As illustrated in Figure 2b, the attack
proceeds iteratively token-by-token. For each unknown position
i: (1) Candidate Generation: The adversary selects candidate
tokens from the model’s vocabulary V to test. (2) Local
Simulation: For each candidate token t, the adversary performs
a forward pass using their local model instance to generate the
corresponding KV-cache entry K

(i)
local(t). (3) Collision Matching:

The adversary computes the distance D between the local entry
and the intercepted target K(i)

leaked. The candidate that minimizes
this distance (i.e., creates a “collision” with the leaked state)
is identified as the correct token xi, appended to the sequence,
and the process advances to i+ 1.

Implementation Optimizations. A naive exhaustive search
over the entire vocabulary (V ≈ 105) entails prohibitive latency
and VRAM consumption, as verifying the global minimum
distance requires inferring every candidate token. To render the
attack practical, we implement three synergistic optimizations
that transform the problem from a global search into an efficient
sequential decision process: (1) Batched Outlier Detection
(Enabling Early Exit). Instead of calculating distances for the
full vocabulary to find the minimum, we process candidates
in batches. We fundamentally shift the decision logic: rather
than comparing a candidate against all other tokens in V ,
we determine if a candidate constitutes a statistical outlier
within its current batch (i.e., dt < µbatch − 3σbatch). Crucially,
this allows for an early exit: once a collision is statistically
confirmed within a batch, the search terminates immediately
without evaluating the remaining vocabulary. (2) Probability-
Guided Prioritization. To maximize the efficacy of the early
exit mechanism, we employ a probability-guided search. We
sort the candidate tokens based on the model’s predicted
probabilities P (xi|x<i). This reordering ensures that the correct
token—which typically carries a high probability—is placed in
the first few batches. Consequently, the collision is triggered
near the start of the search process, drastically reducing the

4

……
User Input

LLM Server

……
Leaked KV-cache

…
…

Vocabulary

Match

Local LLM
Predicted

Query

Predicted

KV-cache

× =
𝑥 𝑘

× =

𝑘 𝑥

𝑊𝑘

𝑊𝑘
-1

Repeat Instruction

Local LLM
Predicted

Query

……

Leaked KV-cache

……

……
……

…

(a) KV-cache Inversion Attack.

……
User Input

LLM Server

……
Leaked KV-cache

…
…

Vocabulary

Match

Local LLM
Predicted Query Predicted KV-cache

× =
𝑥 𝑘

× =

𝑘 𝑥

𝑊𝑘

𝑊𝑘
−1

Repeat Instruction

Local LLM
Predicted

Query

……

Leaked KV-cache

……

……
……

…

(b) KV-cache Collision Attack.
……

User Input
LLM Server

……
Leaked KV-cache

…
…

Vocabulary

Match

Local LLM
Predicted

Query

Predicted

KV-cache

× =
𝑥 𝑘

× =

𝑘 𝑥

𝑊𝑘

𝑊𝑘
-1

Repeat Instruction

Local LLM
Predicted

Query

……

Leaked KV-cache

……

……
……

…

(c) KV-cache Injection Attack.

Fig. 2: Workflow of the three proposed KV-cache input reconstruction attacks.

average number of inferences required. (3) Search Space
Pruning. Distinct from prioritization, we explicitly truncate
the search space by discarding the “long tail” of tokens
with negligible probabilities (e.g., keeping only the top-k%
candidates). While prioritization accelerates the average case,
pruning bounds the worst-case complexity. It prevents the
adversary from wasting resources iterating through tens of
thousands of implausible tokens in the rare event that the
target is not found in the high-probability regions.

Enhancement via Chosen-Plaintext Attack (CPA). A critical
challenge is determining the optimal decision threshold τ . A
static heuristic (e.g., 3σ-rule) is often suboptimal due to the
varying entropy of different tokens. However, an adversary with
CPA capabilities—who can feed known inputs to the model
and observe the resulting KV-cache—can profile the precise
statistical behavior of dtarget and dother.

This prior knowledge allows for an adaptive thresholding
strategy. We formulate the success probability for a candidate
at rank r as:

P (success|r) = P (dother > τ)r−1 × P (dtarget < τ). (6)

This formulation explicitly captures the trade-off: a stricter
threshold minimizes False Positives (accepting an incorrect
predecessor) but risks False Negatives (rejecting the target).
By dynamically adjusting τ based on the expected rank
r and the profiled distributions from CPA, the adversary
maximizes P (success), significantly boosting reconstruction
fidelity compared to static baselines.

3) KV-cache Injection Attack: Unlike Inversion and Colli-
sion attacks which rely on precise algebraic state matching,
the KV-cache Injection Attack exploits the semantic instruction-
following capabilities of LLMs to exfiltrate private contexts.

Architectural Constraint: The Missing Query. Architec-
turally, a stand-alone KV-cache is computationally dormant.
The self-attention mechanism requires a current Query vector
(Q) to drive the attention scoring (Softmax(QK⊤)) and state
transitions. Consequently, an adversary cannot simply “resume”
inference from a stolen cache; a new input stimulus is required
to generate the necessary activation state.

Attack Mechanism: Contextual Hijacking. To overcome
this, we weaponize the LLM’s instruction-following nature.
As shown in Figure 2c, the adversary appends a crafted
directive (e.g., “Repeat the previous content.”) to the intercepted

KV-cache. This injection serves two purposes: (1) Stimulus
Generation. The directive creates the requisite Q vectors to
activate the attention mechanism. (2) Forced Exfiltration. The
LLM attends to the stolen K/V pairs as historical context.
Bound by its alignment training, the model executes the
instruction, effectively “echoing” or summarizing the latent
private information stored in the cache.

Strategic Advantages: Robustness and Efficiency. This attack
offers distinct advantages in robustness compared to the Colli-
sion Attack. Specifically, it remains effective against KV-cache
eviction strategies like H2O [46]. While such lossy compression
breaks the strict mathematical correspondence required for
algebraic attacks, it typically preserves the semantic gist of
the context. The Injection Attack successfully exploits these
residual semantic vectors to hallucinate or reconstruct private
data. Furthermore, the attack is highly efficient, requiring
only a single generation pass. This attack underscores that a
comprehensive defense must render the KV-cache semantically
unintelligible, not just algebraically obfuscated.

IV. EVALUATION OF ATTACKS

A. Experimental Setup

Models. To demonstrate attack universality, we select seven
state-of-the-art LLMs spanning diverse parameter scales (1B–
8B) and attention mechanisms. Our evaluation prioritizes
modern GQA architectures, including the LLaMA-3.2 series
(1B & 3B-Instruct), LLaMA-3.1-8B [12], and Qwen2.5-
Math-7B [40]. Crucially, we incorporate DeepSeek-R1-Distill-
LLaMA-8B [13] (LLaMA-3.1-8B-Distilled) to assess robust-
ness against fine-tuned models where weight parameters diverge
from their base counterparts. Finally, to verify generalizability
across architectural evolutions, we evaluate legacy MHA models,
specifically LLaMA-7B and LLaMA-2-7B.

Datasets. To simulate realistic privacy leakage scenarios, we
utilize the LMSYS-Chat-1M dataset [48], which comprises
real-world user interactions collected from inference services.
We construct a test set by randomly sampling 1,000 instances,
ensuring a rich variety of dialogue and instruction-following
contexts. Analysis of attack generalization across domain-
specific datasets is provided in Appendix C3.

Evaluation Metrics. BERTScore [45] and ROUGE-L [23] are
used to measure the similarity between the original input and
the text reconstructed from the KV-cache. BERTScore, based

5

on the all-mpnet-base-v2 model, is better at capturing
semantic similarity, while ROUGE-L primarily reflects lexical-
level precision and recall.

B. Attack Effectiveness

This section evaluates the feasibility of reconstructing user
inputs via the proposed Inversion, Collision, and Injection
attacks. We systematically test these vectors against the models
defined in Section IV-A. Detailed ablation studies are provided
in Appendix C.

1) Experimental Settings: Beyond standard reconstruction,
we introduce two specific scenarios to evaluate attack robust-
ness under restricted adversarial knowledge: (1) Fine-tuning
Mismatch: We attack the fine-tuned LLaMA-3.1-8B-Distilled
assuming the adversary only possesses weights from its base
model (LLaMA-3.1-8B). This validates effectiveness when
exact model weights are unavailable. (2) Cross-Architecture
Mismatch: We employ LLaMA-7B parameters to attack LLaMA-
2-7B to assess generalizability across disjoint architectures.

Regarding data scope, the Inversion and Collision attacks
operate on single-layer KV-caches. To characterize layer-wise
vulnerability, we evaluate these attacks on the first, middle,
and last layers respectively. In contrast, the Injection Attack
utilizes the complete, multi-layer KV-cache to leverage the
model’s full semantic processing capabilities.

2) Results of KV-cache Inversion Attack: As detailed in
Table I, the efficacy of the Inversion Attack generally hinges
on two conditions: (1) access to the first-layer KV-cache, and
(2) an algebraically invertible projection matrix, typical of MHA.
Under these constraints, we achieve near-perfect reconstruction
fidelity (≈ 100%), whereas deeper layers yield unintelligible
noise (< 10%) due to semantic fusion. Notably, the GQA-
based LLaMA-3.2-1B also exhibits high first-layer vulnerability
(≈ 100%). We attribute this to the model’s high projection rank
relative to its hidden state dimension. This distinct property
allows the least squares method to effectively recover inputs
despite the non-square nature of the projection matrix.

Takeaway 1: The Inversion Attack is effective against the
first-layer KV-cache of MHA models, with exceptions for
architectures possessing high-rank projection matrices.

3) Results of KV-cache Collision Attack: Unlike the In-
version Attack, the Collision Attack relies on forward-pass
matching using the Frobenius norm. As shown in Figure 3, we
observe that distances for incorrect tokens (dother) approximate
a Gaussian distribution, whereas the target token (dtarget)
manifests as a distinct statistical outlier. By setting an outlier
threshold of 3σ below the batch mean (batch size=256, see
Appendix C1), we achieve high reconstruction accuracy across
all layers of all tested models (Table I). Crucially, this method
overcomes the architectural constraints of MHA; it is effective
even against the fine-tuned LLaMA-3.1-8B-Distilled using only
public base model weights, demonstrating robustness against
parameter divergence.

Efficiency via Probability-Guided Pruning. To enhance
practicality, we evaluate truncating the search space based
on model-predicted probabilities. Experimental results on
LLaMA-3.2-1B (Figure 4) indicate that searching only the
top 1/8 of tokens retains 96.1% of the full-search fidelity. This
optimization reduces the average reconstruction time per layer
from 5.06s to 2.17s (< 43% of the original latency), rendering
the attack highly efficient for real-time scenarios.

Takeaway 2: The Collision Attack is a universal threat,
achieving high fidelity across diverse architectures (including
fine-tuned models) and layers, with high efficiency via
probability pruning.

4) Collision Attack Enhanced with Prior Knowledge (Col-
lision+): We further evaluate the potency of integrating
adversarial prior knowledge (i.e., adaptive thresholding based
on assumed token rank r).

Efficacy on Fine-tuned Models. As detailed in Table I, assum-
ing a rank r = 8 yields near-perfect reconstruction (≈ 100%)
across all open-source models. For the fine-tuned LLaMA-3.1-
8B-Distilled, we analyze the impact of rank assumptions in
Figure 5. In the first layer, where the actual average target
rank is ≈ 4, using the optimal threshold boosts accuracy to
138.6% of the baseline. Conversely, the middle layer shows no
improvement, implying an actual rank > 128. In the last layer,
optimal rank alignment (64 ≤ r ≤ 128) increases accuracy to
139.0% relative to the baseline.

Statistical Justification. To further illustrate this, we analyze
distance distributions using “The Bitter Lesson” excerpt (Fig-
ure 3). For the open-source model, the heuristic 3σother threshold
yields a 0.13% false-positive rate, capping per-token success
at 91.84% (assuming r = 64). By switching to a statistically
derived threshold, we eliminate false positives, achieving 100%
success. Similarly, for the fine-tuned model, the enhanced
threshold improves per-token success from 91.79% to 97.82%,
dramatically increasing full-sequence reconstruction fidelity.

Takeaway 3: Augmenting the Collision Attack with model-
specific prior knowledge achieves near-perfect (≈ 100%)
user-input recovery accuracy.

5) Results of KV-cache Injection Attack: We evaluate
semantic exfiltration using the optimal directive identified in
Appendix C2: “Repeat the previous content”. As detailed in
Table I, this vector achieves an average BERTScore of 0.58 and
ROUGE-L of 0.42. While these metrics are lower than those
of the exact-match Collision Attack, they confirm significant
leakage of the input’s core meaning.

Notably, the attack exhibits peak performance on LLaMA-7B.
This supports the hypothesis that the MHA mechanism retains
higher contextual fidelity within the KV-cache compared to
compressed variants like GQA. Consequently, MHA caches
are more semantically intelligible to the model, increasing
vulnerability to instruction-based extraction. This imposes a

6

TABLE I: Reconstruction fidelity (BERTScore and ROUGE-L) of attacks against unprotected KV-cache across different models
and layers. “Collision+” denotes the attack enhanced with prior knowledge.

Type Model Metric
Inversion Collision Collision+ Injection

First Mid Last First Mid Last First Mid Last All

Identical

LLaMA-7B
BERTScore (↑) 1.000 0.065 0.092 0.449 0.769 0.611 1.000 1.000 1.000 0.765
ROUGE-L (↑) 1.000 0.036 0.062 0.500 0.562 0.436 1.000 1.000 1.000 0.687

LLaMA-3.2-1B
BERTScore (↑) 1.000 0.084 0.057 0.877 0.791 0.894 1.000 1.000 1.000 0.544
ROUGE-L (↑) 0.994 0.038 0.000 0.709 0.617 0.680 0.994 0.994 0.994 0.315

LLaMA-3.2-3B-Instruct
BERTScore (↑) 0.055 0.095 0.083 0.782 0.668 0.820 1.000 1.000 1.000 0.540
ROUGE-L (↑) 0.000 0.000 0.000 0.732 0.456 0.621 0.994 0.994 0.994 0.324

LLaMA-3.1-8B
BERTScore (↑) 0.071 0.061 0.062 0.873 0.652 0.764 1.000 1.000 1.000 0.616
ROUGE-L (↑) 0.000 0.000 0.001 0.825 0.443 0.564 0.994 0.994 0.994 0.447

Qwen2.5-Math-7B
BERTScore (↑) 0.229 0.105 0.105 0.918 0.552 0.783 1.000 0.983 0.996 0.422
ROUGE-L (↑) 0.186 0.000 0.000 0.842 0.355 0.580 1.000 0.977 0.996 0.286

Finetune
LLaMA-3.1-8B-Distilled BERTScore (↑) 0.083 0.062 0.081 0.642 0.492 0.635 0.894 0.258 0.762 0.610

(LLaMA-3.1-8B) ROUGE-L (↑) 0.000 0.000 0.001 0.633 0.227 0.413 0.868 0.122 0.479 0.421

Cross-Arch
LLaMA-2-7B BERTScore (↑) 0.067 0.086 0.084 0.058 0.070 0.069 0.075 0.062 0.060 0.087
(LLaMA-7B) ROUGE-L (↑) 0.038 0.057 0.031 0.013 0.000 0.002 0.052 0.017 0.024 0.019

0 10 20 30 40 50 60
Distance

0

2

4

6

8

D
en

si
ty

 (T
ar

ge
t D

is
ta

nc
es

)

Target:
: 0.00
: 0.00

Other:
: 42.37

: 5.37

0.00

0.02

0.04

0.06

0.08

D
en

si
ty

 (O
th

er
 D

is
ta

nc
es

)
 26.26

 1.52

(a) The distributions of LLaMA-3.1-8B model.

20 30 40 50
Distance

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

 (T
ar

ge
t D

is
ta

nc
es

)

Target:
: 20.90

: 2.31

Other:
: 40.28

: 3.94

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

 (O
th

er
 D

is
ta

nc
es

)

 28.45
 26.28

(b) The distributions of LLaMA-3.1-8B-Distilled model.

Fig. 3: Distance distributions of target tokens dtarget (orange) versus incorrect tokens dother (blue) in the Collision Attack. The
input is an excerpt from “The Bitter Lesson”(see Appendix B). The attack targets the last-layer KV-cache of LLaMA-3.1-8B
(left) and LLaMA-3.1-8B-Distilled (right) using weights from the base model. Vertical lines indicate the heuristic threshold
(3σother, green dotted) and the prior-knowledge enhanced threshold (r = 64, red dashed).

1/16 1/8 1/4 1/2 1
Truncation Ratio

65

70

75

80

85

90

95

100

A
tt

ac
k

Su
cc

es
s R

at
e

(%
)

90.9%

96.1%
98.4% 99.5% 100.0%

Attack Success Rate
Average Time

0

1

2

3

4

5

Av
er

ag
e

Ti
m

e
(s

)

1.62s

2.17s

2.76s

3.54s

5.06s

Fig. 4: The effect of truncating the probability-sorted vocabulary
on reconstruction fidelity and attack time. Experiments were
run with a batch size of 256 and an outlier threshold of 3σother.

critical requirement for defenses: a protected KV-cache must be
rendered semantically unparsable to the LLM itself, preventing
the model from being weaponized to interpret stolen contexts.

Takeaway 4: Even without verbatim recovery, Injection
Attacks successfully exfiltrate core user intent, necessitating
defenses that neutralize semantic intelligibility.

C. Attack Robustness under Partial Knowledge Scenarios

To assess practical applicability, we evaluate the robustness
of our attacks under a relaxed threat model characterized by two
realistic constraints: incomplete data interception and model
parameter mismatch.

Incomplete KV-cache Data. Our analysis reveals distinct
data requirements across attack vectors. The Injection Attack
necessitates the full, cross-layer context and fails when data is
fragmented. Conversely, the Collision Attack exhibits superior
robustness; possessing the KV-cache from any single layer is
sufficient to perform high-fidelity input reconstruction.

Model Mismatch. We further evaluate the scenario where the
adversary’s local model differs from the target service model.
Experiments confirm that attack effectiveness hinges on the
correlation of weight parameters.

7

21 22 23 24 25 26 27 28

Assumed Token Position in Vocabulary

40

60

80

100

120

140
A

tt
ac

k
Su

cc
es

s R
at

e
R

at
io

 (%
)

138.2%

52.9%

118.0%

138.6%

49.4%

126.7%

136.7%

50.0%

132.1%
135.8%

43.9%

136.9%

135.2%

46.3%

135.9%

133.2%

44.6%

139.2%

129.9%

47.2%

138.8%

106.7%

56.5%

138.4%

Baseline (100%)

First Layer Attack
Middle Layer Attack
Last Layer Attack

Early Positions (2-64)
Late Positions (128-256)

Fig. 5: Collision Attack experiments on LLaMA-3.1-8B-
Distilled using optimal thresholds derived for different assumed
token ranks (r).

• Fine-tuning Mismatch (Gray-box): We targeted a fine-
tuned model (LLaMA-3.1-8B-Distilled) assuming the adver-
sary only possesses the open-source base model (LLaMA-
3.1-8B). Results in Table I show that the attack remains
highly effective, suggesting that fine-tuning preserves the
fundamental weight correlations exploited by our mechanism.

• Architectural Mismatch (Black-box): In contrast, cross-
architecture attacks (e.g., using LLaMA-7B to attack LLaMA-
2-7B) fail completely. Reconstruction similarity drops to
levels statistically indistinguishable from random guessing
(< 0.1). This confirms that the Collision Attack relies on
the algebraic correspondence of weight parameters, which
is absent across disjoint architectures.

V. KV-CLOAK: A LIGHTWEIGHT KV-CACHE DEFENSE

A. Motivation for KV-Cloak

Limitations of Existing Privacy-Preserving Techniques.
Current privacy-preserving techniques fundamentally struggle
to balance security, efficiency, and utility when applied to the
massive, latency-sensitive KV-cache. We analyze their specific
limitations below:

• Cryptographic Methods (Overhead Bottleneck): Standard
cryptographic techniques [4], [34], such as symmetric AES
encryption, provide confidentiality by ensuring data remains
in ciphertext during storage and transmission, requiring de-
cryption only for legitimate use. A more advanced approach,
Homomorphic Encryption (HE) [2], [26], allows for direct
computation on encrypted data, theoretically enabling parts of
the attention mechanism to operate on the KV-cache without
ever decrypting it. However, despite their strong security
guarantees, the immense computational overhead and latency
introduced by these methods are prohibitive. Given that the
KV-cache can be tens or hundreds of gigabytes, applying
full encryption or HE is unsuitable for the high-throughput,
low-latency requirements of LLM inference.

• Differential Privacy (Utility Trade-off): Applying Differ-
ential Privacy involves injecting calibrated noise into the
Key-Value vectors to mask individual data points [1], [20],
[42]. However, the sparse and sensitive nature of attention
mechanisms creates a severe utility-privacy trade-off. To
achieve a meaningful level of privacy, the required amount
of noise would significantly degrade the LLM’s inference
accuracy to an unacceptable degree.

• KV-Shield (Security and Compatibility Flaws): KV-
Shield [41] is the only existing lightweight obfuscation
scheme for KV-cache. It synchronously permutes atten-
tion weight rows (Wq,Wk,Wv) to shuffle cache elements,
obfuscating them before an attention score is calculated.
The obfuscated attention output is then de-obfuscated for
subsequent steps. We identify two critical failures in this
design: (1) Security Flaws. First, the simple shuffling
preserves the inherent statistical distribution of the data,
leaving it highly vulnerable to our proposed Collision Attacks.
Second, the reliance on a fixed obfuscation key lacks dynamic
randomness, rendering the scheme defenseless against CPA.
(2) Architectural Incompatibility. The shuffling disrupts
relative positioning, making it incompatible with RoPE used
in SOTA models (e.g., LLaMA, Qwen).

Design Objectives. The deficiencies of prior works necessitate
a specialized defense for KV-cache. We define three mandatory
design goals for a practical solution:
• Robust Security: The mechanism must resist targeted recon-

struction attacks by effectively masking both the algebraic
and statistical properties of the cache.

• Lossless Model Fidelity: It must preserve the exact math-
ematical equivalence of the attention mechanism, ensuring
zero degradation in generation quality.

• Negligible Overhead: The defense must operate with
minimal latency, ideally shifting computational costs offline
to maintain high inference throughput.
To meet these objectives, we propose KV-Cloak, a novel

defense mechanism that synergizes reversible matrix obfusca-
tion with operator fusion to deliver robust security, lossless
model fidelity, and negligible inference overhead.

B. Naive Defense: Reversible Linear Obfuscation

To mitigate privacy risks with minimal overhead, we first
consider a naive defense that employs reversible linear trans-
formations to obscure the statistical properties of the KV-cache.
In the context of modern inference frameworks (e.g., vLLM),
we denote the key vectors for a single attention head within a
PagedAttention block as a matrix K ∈ Rb×d, where b is the
block size and d is the head dimension. Since the protection
mechanism applies analogously to value vectors, we focus our
analysis on K. The obfuscation transformation is defined as:

K ′ = SKM, (7)

where S ∈ Rb×b and M ∈ Rd×d are secret, randomly
generated invertible matrices. This transformation aims to

8

𝐾⊤

(෠𝑃𝐾)⊤

×

×

𝑞 𝑎

𝑞 𝑎 ෠𝑃⊤

Permute

𝑉𝐾

෠𝑃𝐾 ෠𝑃𝑉

𝑜 = 𝑎𝑉

× =

𝑜′ = 𝑎 ෠𝑃⊤ ෠𝑃𝑉 = 𝑎𝑉 = 𝑜

× =

෠𝑃𝑉
𝑎 ෠𝑃⊤

𝑎
𝑉

𝑜

𝑜′

Fig. 6: Illustration of the KV-Cloak block-wise shuffling
mechanism. By permuting K and V vectors within a block,
the mechanism eliminates positional side channels while
maintaining mathematical equivalence in the attention output.

conceal the raw content of K while preserving the matrix
dimensions necessary for storage allocation.

Security Analysis. Despite its operational simplicity, this
scheme is fundamentally insecure under a CPA model due to
its fixed linear structure. While a real-world adversary cannot
generate arbitrary matrix K directly (as K is constrained
by the model’s embedding projection of valid tokens), we
demonstrate that this constraint does not preclude a full
compromise. An adversary can circumvent this restriction
by mounting a differential attack through carefully crafted
prompts. Specifically, the adversary chooses two inputs yielding
plaintexts K1 and K2, thereby controlling the difference
∆K = K1 − K2. Due to the linearity of the scheme, the
observed ciphertext difference is ∆K ′ = S(∆K)M . By
systematically crafting inputs such that ∆K approaches a series
of standard basis matrices (i.e., matrices with a single non-zero
entry), the adversary can isolate and solve for the columns
of S and the rows of M . This algebraic attack enables full
recovery of the secret matrices (up to a scalar ambiguity) with
a computational complexity of only O(b2d+ bd2), rendering
the naive defense ineffective against determined adversaries.

C. One-Time Pad Block-wise Shuffling

1) Eliminating Redundant Positional Information in KV-
cache: To enhance the security of the obfuscation scheme, we
introduce additional randomness by eliminating the architec-
tural redundancy of the KV-cache. We observe that the physical
memory ordering of k, v vectors is computationally superfluous
during inference, as positional semantics are intrinsic to the
vectors via RoPE.

Mechanism. We implement a dynamic, block-wise random
permutation. By reordering k, v pairs within each block while
maintaining their internal correspondence, we decorrelate the
physical storage index from the logical token sequence. As
illustrated in Figure 6, this operation preserves the mathematical
invariance of the attention mechanism while imposing a
combinatorial complexity barrier of b! on the adversary. Given
typical block sizes b ∈ {16, 32, 64} [17], this renders brute-
force matching computationally infeasible.

Formalization. The enhanced obfuscation employs a locally
generated, one-time pad permutation matrix P̂ before applying

20 10 0 10 20
Element Value of K-cache

10 5

10 4

10 3

10 2

10 1

Pr
ob

ab
ili

ty
 D

en
si

ty
 (l

og
)

 = 0.030
 = 2.452

4 2 0 2 4
Element Value of V-cache

10 4

10 3

10 2

10 1

100

Pr
ob

ab
ili

ty
 D

en
si

ty
 (l

og
)

 = -0.000
 = 0.313

Fig. 7: Value distribution of KV-cache elements (K and V)
for LLaMA-3.2-1B. The data is collected during inference on
“The Bitter Lesson”.

the linear transformations:

K ′ = SP̂KM. (8)

Crucially, for efficiency, P̂ is ephemeral and does not require
storage. The inference engine performs subsequent compu-
tations directly on the de-obfuscated permuted state P̂K
without reconstructing the original order, thereby incurring
zero additional storage overhead for the permutation key.

2) Rank Preservation and Implicit Key Recovery: A critical
challenge arises when the original matrix K exhibits low rank
(e.g., rank 1 in cases of identical repeated tokens). In such
scenarios, the permutation entropy collapses, as row shuffling
becomes statistically invisible. To guarantee obfuscation ro-
bustness, we introduce a secret additive mask matrix A before
permutation. Thereby, we can ensure the transformed matrix
(K + A) maintains sufficient rank to preserve cryptographic
strength of P̂ . However, explicitly storing the unique one-time
pad P̂ for every block would reintroduce significant storage
overhead. We resolve this by designing A to enable implicit
key recovery without P̂ .

Magnitude-based Positional Embedding. We exploit the
numerical characteristics of attention activations. As shown in
Figure 7, elements of k, v vectors are statistically bounded by
a threshold θK (e.g., typically < 100). Leveraging this, we
construct A to function as a “positional beacon” by embedding
values significantly larger than θK into specific coordinates.
This ensures that the matrix (K +A) maintains enough rank.

Zero-Storage Recovery. Since the “beacons” in A dominate
the magnitude of K, the permuted mask term P̂A remains
statistically separable from P̂K within the ciphertext P̂ (K+A).
During de-obfuscation, the system dynamically identifies the
row permutation indices by detecting these high-magnitude
outliers, allowing it to reconstruct P̂A on-the-fly. Subtracting
this reconstructed mask yields the permuted state P̂K required
for inference. This mechanism effectively offloads the storage
of P̂ into the data itself.

Formalization. The complete obfuscation logic integrates this
additive masking with the linear and permutation layers:

K ′ = SP̂ (K +A)M, (9)

where P̂ ∈ {0, 1}b×b is the ephemeral one-time pad, and
A is the structured mask. This composite transformation
simultaneously secures cache statistics and enables efficient,

9

stateless recovery without compromising model accuracy.
3) Security Analysis: The security of KV-Cloak relies funda-

mentally on the confidentiality of its secret matrices (S,M,A).
Under a standard CPA model, an adversary attempting to
recover these keys faces a prohibitive computational barrier.
Our analysis indicates that the time complexity to solve for
the keys is O((b2d+ bd2) · b!). Crucially, the factorial term b!,
introduced by the dynamic block-wise permutation, renders
brute-force key recovery computationally infeasible.

This computational hardness is complemented by layered
security mechanisms designed to mitigate specific attack
vectors: (1) The one-time pad permutation severs the explicit
token-to-vector positional correspondence at an information-
theoretic level, invalidating the premise of Collision Attacks.
(2) A reversible algebraic transformation via secret matrices
(S,M) completely disrupts the cache’s statistical distribution
properties (e.g., mean, variance), neutralizing profiling and
data mining attacks. (3) The combined obfuscation renders the
cache semantically unintelligible and unparsable by pristine
(unmodified) models, thereby thwarting Injection Attacks that
attempt to leverage the model’s own capabilities.

D. Implicit Obfuscation via Operator Fusion

To minimize the runtime latency overhead introduced by
the obfuscation and de-obfuscation processes, we propose
an operator fusion strategy. This approach integrates the
obfuscation operators directly into the model’s weight matrices
offline, thereby rendering the online computational impact
negligible while maintaining strict mathematical equivalence.

Transformed Vectors and Invariance. We introduce two
secret, invertible matrices, M1,M2 ∈ Rd×d, to transform the
query, key, and value vectors (q, k, v) and the output projection
Wo. The transformed vectors (qm, km, vm) and the modified
output weight Wm

o are defined as:
qm = q(M−1

1)⊤,
km = kM1,
vm = vM2,
Wm

o = Wo(M
−1
2)⊤.

(10)

This design ensures that the core attention mechanism remains
invariant. Specifically, the attention scores (scaled dot-product
of query and key) are preserved:

qmi (kmj)⊤ =
(
qi(M

−1
1)⊤

)
(kjM1)

⊤
= qi(M

−1
1)⊤M⊤

1 k⊤j

= qi(M1M
−1
1)⊤k⊤j = qik

⊤
j .

(11)
Similarly, the output of the attention head is mathematically
identical to the unprotected, guaranteeing lossless accuracy:

vmj (Wm
o)⊤ = (vjM2)

(
Wo(M

−1
2)⊤

)⊤
= vjM2(M

−1
2)W⊤

o = vjW
⊤
o .

(12)

This invariance guarantees that the model’s output is mathe-
matically identical to that of the original, unprotected model,
ensuring lossless accuracy.

Fusion under RoPE. Implementing this fusion requires
incorporating the input projection x and the position-dependent
RoPE matrix Rd

Θ,i. The transformed vectors are expressed as:
qm = xW⊤

q Rd
Θ,i(M

−1
1)⊤

km = xW⊤
k Rd

Θ,iM1

vm = xW⊤
v M2

Wm
o = Wo(M

−1
2)⊤

. (13)

From Eq. 13, fusing M2 into the value and output weights
is straightforward: we pre-compute (Wm

v)⊤ = W⊤
v M2 and

Wm
o = Wo(M

−1
2)⊤. However, fusing M1 into Wk and Wq

presents a challenge due to the intermediate application of
RoPE. The fusion is algebraically feasible if and only if the
secret matrix M1 and the RoPE matrix Rd

Θ,i commute, i.e.,
Rd

Θ,iM1 = M1R
d
Θ,i. In this case, Eq. 13 simplifies to:

km = xW⊤
k (M1R

d
Θ,i) = x(W⊤

k M1)R
d
Θ,i. (14)

This reordering allows us to absorb M1 into the weight matrix
as (Wm

k)⊤ = W⊤
k M1. A symmetric logic applies to Wq .

To satisfy this commutativity constraint, we structurally
design M1 as a invertible block-diagonal matrix composed of
2×2 rotation-scaling sub-matrices, analogous to the structure of
RoPE (detailed in Appendix A). Additionally, we constrain M2

to be a random invertible rotation-scaling matrix and calibrate
the scaling factors of both matrices. This ensures that after
the transformation with mask A, the padding tokens remain
statistically distinguishable as outliers for implicit key recovery.

Offline Computation and Online Efficiency. Consequently,
the obfuscation operators are fully fused into the attention layer
parameters offline. The new pre-computed weights are:

Wm
q = M−1

1 Wq

Wm
k = M⊤

1 Wk

Wm
v = M⊤

2 Wv

Wm
o = Wo(M

−1
2)⊤

. (15)

During online inference, the KV-Cloak obfuscation is applied
to the cache generated by these fused weights:

K ′ = SP̂ (Km +A), (16)

By eliminating explicit online matrix multiplications with M ,
the cost for protecting one KV-cache block is reduced to the
multiplications with S, P̂ , and S−1. This totals approximately
b3 + 2b2d floating-point operations. For an LLaMA-3.1-8B
instance (b = 16, d = 128, D = 4096), this overhead represents
merely 0.83% of the KV-cache re-computation cost (detailed in
Appendix F), verifying that KV-Cloak achieves robust security
with minimal performance impact.

VI. EVALUATION OF KV-CLOAK

A. Experimental Settings

We perform a systematic evaluation across three dimensions:
Security, Model Accuracy, and Performance Overhead. To
benchmark the efficacy of KV-Cloak, we compare it against
three distinct baselines: (1) a standard, unprotected system

10

TABLE II: Comparison of defense mechanisms (KV-Cloak vs. DP) against input reconstruction attacks on LLaMA-7B, LLaMA-
3.2-1B, and LLaMA-3.1-8B-Distilled.

Model Protect Type Metric
Inversion Collision Collision+ Injection

First First Mid Last First Mid Last All

LLaMA-7B

Original
BERTScore (↓) 1.000 0.449 0.769 0.611 1.000 1.000 1.000 0.765
ROUGE-L (↓) 1.000 0.500 0.562 0.436 1.000 1.000 1.000 0.687

KV-Cloak
BERTScore (↓) 0.091 0.070 0.069 0.071 0.036 0.036 0.036 0.082
ROUGE-L (↓) 0.068 0.000 0.000 0.000 0.044 0.044 0.044 0.000

(108, 10−5)-DP
BERTScore (↓) 0.085 0.082 0.672 0.344 0.109 0.937 0.991 0.085
ROUGE-L (↓) 0.065 0.041 0.433 0.197 0.097 0.901 0.979 0.009

LLaMA-3.2-1B

Original
BERTScore (↓) 1.000 0.877 0.791 0.894 1.000 1.000 1.000 0.544
ROUGE-L (↓) 0.994 0.709 0.617 0.680 0.994 0.994 0.994 0.315

KV-Cloak
BERTScore (↓) 0.085 0.072 0.074 0.069 0.051 0.051 0.051 0.079
ROUGE-L (↓) 0.009 0.000 0.000 0.000 0.002 0.002 0.002 0.000

(108, 10−5)-DP
BERTScore (↓) 0.633 0.849 0.763 0.849 0.973 0.995 1.000 0.393
ROUGE-L (↓) 0.622 0.604 0.587 0.604 0.966 0.989 0.994 0.248

LLaMA-3.1-8B-Distilled

Original
BERTScore (↓) 0.083 0.642 0.492 0.635 0.885 0.251 0.829 0.610
ROUGE-L (↓) 0.000 0.633 0.227 0.413 0.858 0.112 0.552 0.421

KV-Cloak
BERTScore (↓) 0.093 0.070 0.070 0.069 0.041 0.041 0.041 0.088
ROUGE-L (↓) 0.002 0.000 0.000 0.000 0.003 0.003 0.003 0.000

(108, 10−5)-DP
BERTScore (↓) 0.079 0.320 0.440 0.566 0.526 0.267 0.824 0.118
ROUGE-L (↓) 0.003 0.291 0.185 0.351 0.530 0.122 0.543 0.049

(Plaintext), (2) a defense based on differential privacy with
Gaussian noise (DP), and (3) a defense via standard crypto-
graphic encryption (AES).

KV-Cloak Configuration. Our implementation involves matrix
multiplications with invertible secret matrices S and M , and
an additive mask A. We configure these parameters to balance
security and numerical stability:
• Block Size b: To maintain compatibility with the Page-

dAttention mechanism (e.g., vLLM), we experimented with
standard block sizes of b ∈ {16, 32, 64}.

• Secret Matrices S,M : To minimize precision loss during
the matrix inversion required for de-obfuscation, we sample
S and M strictly from the orthogonal group.

• Additive Mask A and Padding: To preserve numerical
precision, the additive mask A and padding values are
magnitude-constrained. We sample elements of A uniformly
from [3θK , 4θK] and set padding to 1.5θK . Here, θK denotes
the maximum absolute value observed in the K-cache during
calibration on an excerpt from “The Bitter Lesson”. This
methodology is symmetrically applied to the V-cache.

DP Baseline Configuration. To establish a strong DP baseline,
we conducted an ablation study (detailed in Appendix D) to
optimize the trade-off between privacy and utility. We set
the clipping threshold to the 50th percentile of the L2 norm
distribution observed across the dataset. Based on this, we
apply Gaussian noise calibrated for (ϵ = 108, δ = 10−5)-DP
independently to the K/V caches. We explicitly select ϵ = 108

because stricter privacy budgets (e.g., ϵ = 107) resulted in
near-zero inference accuracy (see Table VIII).

B. Evaluation of Security

This section evaluates the capability of KV-Cloak against the
three proposed reconstruction attacks. We benchmark against

the Plaintext baseline and Differential Privacy mechanisms,
applying the attacks to the protected KV-cache.
Defense Efficacy Comparison. As summarized in Table II
(evaluation on the remaining models can be found in Appendix
E), the Plaintext baseline is highly vulnerable, yielding high
attack success rates on all three attacks. In stark contrast,
applying KV-Cloak drastically degrades reconstruction quality.
The BERTScore of all attack outputs drops to a level consistent
with random chance, and the ROUGE-L score falls to nearly 0.
These results are statistically indistinguishable from comparing
the original input with a random string, demonstrating that
semantic reconstruction is entirely disrupted. This proves
that KV-Cloak effectively protects the private information
within the KV-cache. For the DP baseline, security is heavily
dependent on the privacy budget ϵ. With a weak budget of
ϵ = 108, while Inversion and Injection attacks are mitigated,
the Collision Attack remains effective, recovering substantial
private information.
Statistical Indistinguishability Analysis. To understand the
root cause of defense failure or success, we analyze the
distance distributions of target tokens (dtarget) versus other
tokens (dother) for the Collision Attack on LLaMA-3.2-1B
(Fig. 8). Under DP protection, the two distributions remain sta-
tistically distinguishable. Consequently, utilizing an enhanced
threshold with prior knowledge yields a per-token success
rate of 94.84% for (107, 10−5)-DP, rising to nearly 100%
(equivalent to Plaintext) for (108, 10−5)-DP. Conversely, KV-
Cloak achieves distribution collapse: the distributions of dtarget
and dother become completely indistinguishable. This eliminates
the statistical separability required for the attack, resulting in
a 0% success rate.
Robustness against Enhanced Attacks. To assess the robust-
ness of our defense, We further evaluate by subjecting KV-
Cloak to the enhanced Collision Attack (utilizing adversarial

11

0 10 20 30 40
Distance

0

50

100

150

D
en

si
ty

 (T
ar

ge
t D

is
ta

nc
es

)
Target:

: 0.00
: 0.00

Other:
: 30.99

: 4.01

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

 (O
th

er
 D

is
ta

nc
es

)

 18.96
 1.81

(a) The distributions of LLaMA-3.2-1B model without protection.

0 2500 5000 7500 10000
Distance

0.0000

0.0005

0.0010

0.0015

D
en

si
ty

 (T
ar

ge
t D

is
ta

nc
es

)

Target:
: 3429.40
: 1215.19

Other:
: 3429.51
: 1214.97

0.0000

0.0005

0.0010

0.0015

D
en

si
ty

 (O
th

er
 D

is
ta

nc
es

)

 -215.39
 3429.40

(b) The distributions of LLaMA-3.2-1B model with KV-Cloak.

35 40 45 50 55
Distance

0.0

0.1

0.2

0.3

0.4

D
en

si
ty

 (T
ar

ge
t D

is
ta

nc
es

)

Target:
: 37.09

: 1.05

Other:
: 48.41

: 2.79

0.00

0.05

0.10

0.15

D
en

si
ty

 (O
th

er
 D

is
ta

nc
es

)

 40.03
 39.93

(c) The distributions of LLaMA-3.2-1B model with (107, 10−5)-DP.

10 20 30 40
Distance

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

 (T
ar

ge
t D

is
ta

nc
es

)

Target:
: 11.71
: 0.38

Other:
: 33.20

: 3.78

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

 (O
th

er
 D

is
ta

nc
es

)

 21.86
 13.69

(d) The distributions of LLaMA-3.2-1B model with (108, 10−5)-DP.

Fig. 8: Distance distributions of target tokens dtarget (orange) versus incorrect tokens dother (blue) in the Collision Attack. The
experiment targets the last-layer KV-cache of LLaMA-3.2-1B using an excerpt from “The Bitter Lesson”. Subplots display
distributions under four conditions: (a) Plaintext, (b) KV-Cloak protection, (c) (107, 10−5)-DP protection, and (d) (108, 10−5)-DP
protection. Vertical lines indicate the heuristic threshold (3σother, green dotted) and the prior-knowledge enhanced threshold
(r = 64, red dashed).

prior knowledge) across multiple LLMs. As shown in Table II,
KV-Cloak demonstrates consistent resilience. Even against this
advanced vector, reconstruction accuracy remains near-zero,
and outputs are qualitatively equivalent to random noise. This
confirms that KV-Cloak effectively neutralizes both algebraic
and statistical attack vectors.

Takeaway 5: KV-Cloak completely thwarts all proposed
attacks, reducing the quality of reconstructed text to a level
statistically indistinguishable from random noise.

C. Inference Accuracy

To rigorously assess model fidelity, we simulate a disaggre-
gated inference service employing a prefill-decode architecture.
In this pipeline, the KV-cache generated during the prefill
phase is secured using either DP or KV-Cloak, transferred,
and subsequently utilized by the decode node for token
generation. We employ two standard benchmarks to measure
utility: MMLU [15], [16] for massive multitask knowledge and
SQuAD [29] for reading comprehension.

We evaluated KV-Cloak across all experimental models

TABLE III: Impact of KV-Cloak on inference accuracy (higher
is better) across various models, using a block size of 16.

Model
Plaintext KV-Cloak (108, 10−5)-DP

MMLU SQuAD MMLU SQuAD MMLU SQuAD

LLaMA-7B 0.304 0.646 0.304 0.652 0.016 0.000

LLaMA-3.2-1B 0.335 0.457 0.335 0.458 0.262 0.258

LLaMA-3.2-3B-Instruct 0.619 0.652 0.619 0.652 0.379 0.012

LLaMA-3.1-8B 0.668 0.708 0.668 0.709 0.283 0.026

LLaMA-3.1-8B-Distilled 0.584 0.568 0.584 0.570 0.108 0.001

Qwen2.5-Math-7B 0.620 0.630 0.620 0.632 0.042 0.000

(results detailed in Table III). The empirical data corroborates
our theoretical design: KV-Cloak exhibits zero degradation in
model performance. Unlike Differential Privacy, which forces
a trade-off between utility and privacy via noise injection, KV-
Cloak leverages reversible linear transformations. This ensures
that the de-obfuscated attention states are mathematically
identical to the plaintext baseline. Consequently, the impact
on inference accuracy is negligible across both benchmarks,

12

0

10000

20000

30000

40000
L

at
en

cy
 (m

s) y = 3438.5x - 251.1

y = 3020.9x - 864.1

Prefill
AES

2 4 6 8 10 12
KV-cache Size (GB)

0

200

400

600

L
at

en
cy

 (m
s)

y = 52.73x + 23.11

y = 15.41x + 20.77

y = 4.88x + 2.64

KV-Cloak
KV-Cloak (fused)
DP

Fig. 9: Micro-benchmark of latency overhead (ms/GB) versus
KV-cache size on LLaMA-3.1-8B.

confirming that KV-Cloak is a practically lossless solution.

Takeaway 6: KV-Cloak is virtually lossless, preserving the
model’s fidelity and core utility without any degradation.

D. Evaluation of Performance Overhead

Computational Overhead. To accurately assess the upper
bound of performance impact, we employ a conservative,
worst-case micro-benchmark simulating a prefill-decode split.
Measurements are conducted on a serial PyTorch implementa-
tion without custom CUDA kernels, isolating the algorithmic
overhead. As illustrated in Figure 9, latency scales linearly.
Standard AES encryption incurs a prohibitive cost of 3020.9
ms/GB, nearly rivaling the prefill latency (3438.5 ms/GB) itself.
In stark contrast, KV-Cloak with operator fusion introduces
a negligible overhead of just 15.41 ms/GB. This constitutes
merely 0.45% of the prefill latency, ranking second only to the
insecure DP scheme (4.88 ms/GB). In practical deployments,
unavoidable network latency would further mask this minimal
computation cost, confirming the efficiency of our design.

Storage Overhead. The storage Overhead for KV-Cloak’s se-
cret matrices (S,M,A) is negligible. The total size, 2nkvl(b

2+
3
2d+1), is orders of magnitude smaller than the protected cache.
Quantitatively, for LLaMA-3.1-8B (using block size b = 16),
the overhead is merely 898 KB; even for a 1T-parameter model
like Ling-1T [18] (scaling to b = 64), it remains only 20.9
MB. This MB-scale footprint allows all cryptographic keys
to securely reside within the limited memory of TEEs with
negligible management overhead.

Takeaway 7: KV-Cloak introduces negligible computational
and storage overhead to the inference pipeline.

VII. DISCUSSION AND FUTURE WORK

While KV-Cloak provides a solid foundation for protecting
the KV-cache, we identify several limitations, which in turn
open up exciting avenues for future research.
Key Management and Hardware Security Integration. The
security of KV-Cloak fundamentally relies on the confidentiality
of its (megabyte-scale) key matrices. Currently, we assume
these secrets are protected via TEEs. Future work should deeply
integrate KV-Cloak with hardware-level security mechanisms,
such as TEEs or confidential GPUs, to construct a more robust
defense-in-depth architecture. Furthermore, to counter long-
term cryptanalysis in persistent services, developing efficient,
low-latency key rotation protocols is essential.
Performance Optimization via Co-Design. Although our
evaluation shows minimal overhead, hyper-scale deployment
demands further optimization. At the software level, latency
can be masked through the asynchronous generation of One-
Time Pad (OTP) matrices, decoupling security operations from
the critical inference path. At the hardware level, an algorithm-
hardware co-design approach—implementing dedicated GPU
intrinsics for block-wise permutation and matrix multiplica-
tion—could render the obfuscation cost virtually transparent.
Adaptation to Quantized Models. Our current prototype
targets floating-point models. As the industry shifts to integer
quantization (e.g., INT8 or INT4) for efficiency, extending KV-
Cloak becomes a priority. This requires designing new lossless
reversible transformations for discrete data types, potentially
based on structures like modular arithmetic.

VIII. CONCLUSION

This research exposes a critical security flaw at the heart of
modern LLM inference systems: the privacy risk of data leakage
from the KV-cache. We have demonstrated the feasibility of
reconstructing sensitive user inputs through three novel attack
strategies, with our Collision Attack proving particularly effec-
tive across various models. This underscores the urgent need
for dedicated protection mechanisms that do not compromise
the efficiency gains the KV-cache provides.

In response, we designed KV-Cloak. By employing a
lightweight, reversible obfuscation technique, KV-Cloak neu-
tralizes the identified threats without degrading model accuracy
or imposing significant latency. It is designed for seamless in-
tegration into existing high-performance inference frameworks
like vLLM. Our work provides a vital contribution to building
secure and trustworthy AI, offering a blueprint for balancing
the competing demands of performance and user privacy in
the next generation of LLM services. It establishes that strong
privacy protection can be achieved without sacrificing the utility
and efficiency that have made these models so powerful.

ACKNOWLEDGMENT

This research is supported in part by the “Pioneer” and
“Leading Goose” R&D Program of Zhejiang (2024C01169),
and the National Natural Science Foundation of China under
Grants (62441238, U2441240).

13

ETHIC CONSIDERATIONS

This research aims to enhance the privacy and trustworthiness
of LLM inference, but we acknowledge the dual-use nature of
the vulnerabilities and attack methods we have uncovered. To
fulfill our ethical responsibilities and mitigate any potential for
misuse, we have committed to a policy of responsible disclosure.
Prior to the public dissemination of this paper, we will share
our findings, including the details of the vulnerabilities and
our proposed defense, with the developers of major affected
inference frameworks, such as vLLM. Furthermore, all of our
attack validation experiments were conducted exclusively on
public and non-sensitive academic datasets. No real user data
was involved at any stage of our research. We firmly believe that
by taking these responsible measures, the positive contributions
of our defensive work, KV-Cloak, will far outweigh the risks
associated with the disclosure of these attacks. We are confident
that this work will encourage the community to build more
trustworthy AI services that are secure by default.

REFERENCES

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[2] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Computing Surveys, vol. 51, no. 4, pp. 1–35, 2018.

[3] J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón, and
S. Sanghai, “Gqa: Training generalized multi-query transformer models
from multi-head checkpoints,” arXiv preprint arXiv:2305.13245, 2023.

[4] M. N. Alenezi, H. Alabdulrazzaq, and N. Q. Mohammad, “Symmetric
encryption algorithms: Review and evaluation study,” International
Journal of Communication Networks and Information Security, vol. 12,
no. 2, pp. 256–272, 2020.

[5] APPLE. (2024) Private cloud compute: A new frontier for ai
privacy in the cloud. [Online]. Available: https://security.apple.com/blog/
private-cloud-compute/

[6] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic
language model,” Journal of Machine Learning Research, vol. 3, no.
Feb, pp. 1137–1155, 2003.

[7] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee,
A. Roberts, T. Brown, D. Song, U. Erlingsson et al., “Extracting training
data from large language models,” in USENIX Security Symposium, 2021,
pp. 2633–2650.

[8] Y. Chen, C. Shen, C. Wang, and Y. Zhang, “Teacher model fingerprinting
attacks against transfer learning,” in USENIX Security Symposium, 2022.

[9] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser,
M. Plappert, J. Tworek, J. Hilton, R. Nakano, C. Hesse, and J. Schul-
man, “Training verifiers to solve math word problems,” arXiv preprint
arXiv:2110.14168, 2021.

[10] G. Dhanuskodi, S. Guha, V. Krishnan, A. Manjunatha, R. Nertney,
M. O’Connor, and P. Rogers, “Creating the first confidential gpus,”
Communications of the ACM, vol. 67, no. 1, pp. 60–67, 2023.

[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of Cryptography
Conference. Springer Berlin Heidelberg, 2006, pp. 265–284.

[12] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle,
A. Letman, A. Mathur, A. Schelten, A. Vaughan et al., “The llama 3
herd of models,” arXiv preprint arXiv:2407.21783, 2024.

[13] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma,
P. Wang et al., “Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning,” arXiv preprint arXiv:2501.12948, 2025.

[14] Y. He, H. She, X. Qian, X. Zheng, Z. Chen, Z. Qin, and L. Cavallaro,
“On benchmarking code llms for android malware analysis,” in ACM
SIGSOFT International Symposium on Software Testing and Analysis
Workshop, 2025.

[15] D. Hendrycks, C. Burns, S. Basart, A. Critch, J. Li, D. Song, and
J. Steinhardt, “Aligning ai with shared human values,” International
Conference on Learning Representations, 2021.

[16] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and
J. Steinhardt, “Measuring massive multitask language understanding,” in
International Conference on Learning Representations, 2021.

[17] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E.
Gonzalez, H. Zhang, and I. Stoica, “Efficient memory management
for large language model serving with pagedattention,” in Symposium
on Operating Systems Principles, 2023.

[18] A. Li, B. Liu, B. Hu, B. Li, B. Zeng, B. Ye, C. Tang, C. Tian, C. Huang,
C. Zhang et al., “Every activation boosted: Scaling general reasoner to
1 trillion open language foundation,” arXiv preprint arXiv:2510.22115,
2025.

[19] H. Li, M. Xu, and Y. Song, “Sentence embedding leaks more information
than you expect: Generative embedding inversion attack to recover
the whole sentence,” in Findings of the Association for Computational
Linguistics: ACL 2023, 2023, pp. 14 022–14 040.

[20] X. Li, Z. Qin, K. Ren, C. Gong, S. Feng, Y. Hong, and T. Wang,
“Delay-allowed differentially private data stream release.” in Network
and Distributed System Security Symposium, 2025.

[21] Y. Li, S. Shao, Y. He, J. Guo, T. Zhang, Z. Qin, P.-Y. Chen, M. Backes,
P. Torr, D. Tao, and K. Ren, “Rethinking data protection in the (generative)
artificial intelligence era,” arXiv preprint arXiv:2507.03034, 2025.

[22] B. Lin, C. Zhang, T. Peng, H. Zhao, W. Xiao, M. Sun, A. Liu,
Z. Zhang, L. Li, X. Qiu et al., “Infinite-llm: Efficient llm service for
long context with distattention and distributed kvcache,” arXiv preprint
arXiv:2401.02669, 2024.

[23] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out, 2004, pp. 74–81.

[24] A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng,
C. Zhang, C. Ruan et al., “Deepseek-v3 technical report,” arXiv preprint
arXiv:2412.19437, 2024.

[25] J. Morris, V. Kuleshov, V. Shmatikov, and A. M. Rush, “Text embeddings
reveal (almost) as much as text,” in Conference on Empirical Methods
in Natural Language Processing, 2023, pp. 12 448–12 460.

[26] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 1999, pp. 223–
238.

[27] D. Pasquini, E. M. Kornaropoulos, and G. Ateniese, “Llmmap: Finger-
printing for large language models,” in USENIX Security Symposium,
2025.

[28] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer
inference,” Proceedings of Machine Learning and Systems, vol. 5, pp.
606–624, 2023.

[29] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+
questions for machine comprehension of text,” in Conference on
Empirical Methods in Natural Language Processing, 2016.

[30] Z. Shao, D. Dai, D. Guo, B. L. B. Liu), Z. Wang, and H. Xin,
“Deepseek-v2: A strong, economical, and efficient mixture-of-experts
language model,” ArXiv, vol. abs/2405.04434, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:269613809

[31] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” in International Conference on Learning
Representations, 2017.

[32] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu, “Roformer: Enhanced
transformer with rotary position embedding,” Neurocomputing, vol. 568,
p. 127063, 2024.

[33] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang,
and T. B. Hashimoto, “Stanford alpaca: An instruction-following llama
model,” 2023.

[34] E. Thambiraja, G. Ramesh, and D. R. Umarani, “A survey on various
most common encryption techniques,” International Journal of Advanced
Research in Computer Science and Software Engineering, 2012.

[35] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro et al., “Llama: Open and efficient
foundation language models,” arXiv preprint arXiv:2302.13971, 2023.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Annual
Conference on Neural Information Processing Systems, vol. 30, 2017.

[37] Z. Wan, A. Cheng, Y. Wang, and L. Wang, “Information leakage from
embedding in large language models,” arXiv preprint arXiv:2405.11916,
2024.

14

https://security.apple.com/blog/private-cloud-compute/
https://security.apple.com/blog/private-cloud-compute/
https://api.semanticscholar.org/CorpusID:269613809

[38] Z. Wan, X. Wang, C. Liu, S. Alam, Y. Zheng, J. Liu, Z. Qu, S. Yan,
Y. Zhu, Q. Zhang et al., “Efficient large language models: A survey,”
Transactions on Machine Learning Research, 2024.

[39] G. Wu, Z. Zhang, Y. Zhang, W. Wang, J. Niu, Y. Wu, and Y. Zhang,
“I know what you asked: Prompt leakage via kv-cache sharing in
multi-tenant llm serving,” in Network and Distributed System Security
Symposium, 2025.

[40] A. Yang, B. Zhang, B. Hui, B. Gao, B. Yu, C. Li, D. Liu, J. Tu, J. Zhou,
J. Lin et al., “Qwen2.5-math technical report: Toward mathematical
expert model via self-improvement,” arXiv preprint arXiv:2409.12122,
2024.

[41] H. Yang, D. Zhang, Y. Zhao, Y. Li, and Y. Liu, “A first look at efficient
and secure on-device llm inference against kv leakage,” in Workshop on
Mobility in the Evolving Internet Architecture, 2024, pp. 13–18.

[42] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex, “Differentially private
model publishing for deep learning,” in IEEE Symposium on Security
and Privacy. IEEE, 2019, pp. 332–349.

[43] M. Yuan, L. Zhang, L. Zeng, S. Jiang, B. Yang, D. Duan, and G. Xing,
“Scx: Stateless kv-cache encoding for cloud-scale confidential transformer
serving,” in Proceedings of the ACM SIGCOMM 2025 Conference, 2025,
pp. 39–54.

[44] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin et al., “Opt: Open pre-trained transformer
language models,” arXiv preprint arXiv:2205.01068, 2022.

[45] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “BERTScore:
Evaluating text generation with BERT,” in International Conference on
Learning Representations, 2020.

[46] Z. Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song, Y. Tian,
C. Ré, C. Barrett, Z. Wang, and B. Chen, “H2o: Heavy-hitter oracle for
efficient generative inference of large language models,” Advances in
neural information processing systems, vol. 36, pp. 34 661–34 710, 2023.

[47] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong et al., “A survey of large language models,” arXiv
preprint arXiv:2303.18223, vol. 1, no. 2, 2023.

[48] L. Zheng, W.-L. Chiang, Y. Sheng, T. Li, S. Zhuang, Z. Wu, Y. Zhuang,
Z. Li, Z. Lin, E. P. Xing, J. E. Gonzalez, I. Stoica, and H. Zhang,
“Lmsys-chat-1m: A large-scale real-world llm conversation dataset,” in
International Conference on Learning Representations, 2024.

[49] Z. Zhou, X. Ning, K. Hong, T. Fu, J. Xu, S. Li, Y. Lou, L. Wang,
Z. Yuan, X. Li et al., “A survey on efficient inference for large language
models,” arXiv preprint arXiv:2404.14294, 2024.

APPENDIX

A. Proof of Commutativity with Rotary Position Embedding

Denoting both Rd
Θ,i and the random invertible matrix M1

as a 2× 2 block matrix, we obtain:

Rd
Θ,i =

[
C −S
S C

]
,M1 =

[
T Y
U Z

]
, (17)

where C, S ∈ R d
2×

d
2 are shown in Eq. (18), assuming that

T,U, Y, Z ∈ R d
2×

d
2 are all random matrices.

C =


cos iθ0 0 · · · 0

0 cos iθ1 · · · 0
...

...
. . .

...
0 0 · · · cos iθ d

2−1

 ,

S =


sin iθ0 0 · · · 0

0 sin iθ1 · · · 0
...

...
. . .

...
0 0 · · · sin iθ d

2−1

 .

(18)

If the secret matrix M1 and the RoPE matrix Rd
Θ,i commute,

then:[
T Y
U Z

] [
C −S
S C

]
=

[
C −S
S C

] [
T Y
U Z

]
. (19)

With j and k as subscripts of matrix elements, Eq. (20) is
equivalent to the following system of linear equations:

tjk cos iθj − ujk sin iθj = tjk cos iθk + yjk sin iθk
tjk sin iθj + ujk cos iθj = ujk cos iθk + zjk sin iθk
yjk cos iθj − zjk sin iθj = −tjk sin iθk + yjk cos iθk
yjk sin iθj + zjk cos iθj = −ujk sin iθk + zjk cos iθk

(20)
Calculating the equation, the T,U, Y, Z need to satisfy the
following relationship: yjj = −ujj ,

zjj = tjj ,
tjk = ujk = yjk = zjk = 0, (j ̸= k)

. (21)

Specifically, the structure of M1 is defined as follows in
Eq. (22),

M1 =



t0 0 · · · 0 −u0 0 · · · 0
0 t1 · · · 0 0 −u1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · t d

2−1 0 0 · · · −u d
2−1

u0 0 · · · 0 t0 0 · · · 0
0 u1 · · · 0 0 t1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · u d

2−1 0 0 · · · t d
2−1


.

(22)

B. Input Text for Parameter Calibration

The following text, an excerpt from “The Bitter Lesson” by
Rich Sutton, was used as model input in our experiments to
analyze the numerical characteristics of the KV-cache (e.g., for
parameter calibration as described in Section IV-B4).

Input Text for Parameter Calibration

One thing that should be learned from the bitter lesson
is the great power of general-purpose methods, of
methods that continue to scale with increased compu-
tation even as the available computation becomes very
great. The two methods that seem to scale arbitrarily in
this way are search and learning. The second general
point to be learned from the bitter lesson is that the
actual contents of minds are tremendously, irredeemably
complex; we should stop trying to find simple ways
to think about the contents of minds, such as simple
ways to think about space, objects, multiple agents, or
symmetries.

C. Additional Experiments about Attacks

1) Ablation Study of Collision Attack: Outlier Detection
Threshold. We experimented with different outlier detection
thresholds on the LLaMA-3.2-1B model. The results are shown
in Table IV. We observed that setting the threshold to 3σother
(i.e., treating a value as an outlier if it is more than three
standard deviations below the mean of the dother distribution,
which corresponds to approximately 0.13% of a standard

15

TABLE IV: Impact of different outlier detection thresholds on
reconstruction accuracy, with a fixed batch size of 256.

Model Layer Metric
Gap

2σ 2.5σ 3σ 3.5σ 4σ

LLaMA-3.2-1B

First
BERTScore (↑) 0.531 0.783 0.877 0.821 0.719
ROUGE-L (↑) 0.358 0.579 0.709 0.706 0.663

Mid
BERTScore (↑) 0.419 0.619 0.791 0.820 0.724
ROUGE-L (↑) 0.310 0.482 0.617 0.661 0.592

Last
BERTScore (↑) 0.579 0.807 0.894 0.878 0.727
ROUGE-L (↑) 0.455 0.615 0.680 0.648 0.485

Average Time(s) 1.17 2.13 5.06 12.65 21.58

TABLE V: Impact of different batch sizes on reconstruction
accuracy, using a fixed outlier detection threshold of 3σother.

Model Layer Metric
Batch Size

64 128 256 512 1024

LLaMA-3.2-1B

First
BERTScore (↑) 0.830 0.856 0.877 0.869 0.837
ROUGE-L (↑) 0.711 0.723 0.709 0.666 0.594

Mid
BERTScore (↑) 0.765 0.786 0.791 0.771 0.753
ROUGE-L (↑) 0.590 0.617 0.617 0.588 0.554

Last
BERTScore (↑) 0.837 0.865 0.894 0.902 0.887
ROUGE-L (↑) 0.513 0.616 0.680 0.674 0.636

Average Time(s) 12.94 7.58 5.06 4.04 4.62

normal distribution) yields the highest reconstruction accuracy.
A threshold that is too low (e.g., 2σother) leads to misidenti-
fying incorrect tokens as the target, thus reducing accuracy.
Conversely, a threshold that is too high (e.g., 4σother) can cause
the correct token to be missed, which also decreases accuracy
while significantly increasing the attack time. Therefore, we
set the outlier detection threshold to 3σother for all subsequent
experiments.

Batch Size. We evaluated the effect of different batch sizes
on the LLaMA-3.2-1B model. As shown in Table V, with the
outlier threshold fixed at 3σother, a batch size of 256 achieves
the highest reconstruction accuracy. Theoretically, a larger
batch size may provide a more robust statistical sample of
the dother distances, leading to higher accuracy. However, our
experiments show that as the batch size increases beyond
256, the reconstruction accuracy paradoxically decreases. We
attribute this to a mismatch between the batch size and the
fixed threshold; a larger batch would likely require a higher,
more stringent threshold to maintain accuracy. However, larger
batches increase GPU memory consumption, and a higher
threshold would multiplicatively increase attack time. To
balance accuracy, memory usage, and attack speed, we chose
a batch size of 256 for our experiments.

2) Ablation Study of Injection Attack: We tested various
instructions against each model’s KV-cache, with the results
shown in Table VI. The instruction “Repeat the previous
content.” achieved the highest overall reconstruction accuracy
across all models, with an average BERTScore of 0.58 and
ROUGE-L of 0.42.

3) Attack Generalization Across Datasets: To validate the
generalization capability of proposed attack, we also conducted
evaluations on two datasets from different domains: Alpaca [33]

TABLE VI: Impact of different adversarial instructions on
Injection Attack success rates.

Model Metric
Inject Instruction

Ins1 Ins2 Ins3 Ins4

LLaMA-7B
BERTScore (↑) 0.765 0.716 0.557 0.598
ROUGE-L (↑) 0.687 0.606 0.449 0.473

LLaMA-3.2-1B
BERTScore (↑) 0.544 0.533 0.423 0.353
ROUGE-L (↑) 0.315 0.358 0.232 0.217

LLaMA-3.2-3B-Instruct
BERTScore (↑) 0.540 0.360 0.506 0.271
ROUGE-L (↑) 0.324 0.157 0.358 0.124

LLaMA-3.1-8B
BERTScore (↑) 0.616 0.544 0.432 0.457
ROUGE-L (↑) 0.447 0.365 0.275 0.279

LLaMA-3.1-8B-Distilled
BERTScore (↑) 0.610 0.536 0.348 0.434
ROUGE-L (↑) 0.421 0.348 0.218 0.249

Qwen2.5-Math-7B
BERTScore (↑) 0.422 0.381 0.413 0.329
ROUGE-L (↑) 0.286 0.222 0.281 0.194

Note: The specific instructions are: “Repeat the previous content.”
(Ins1), “Summarize the previous content.” (Ins2), “Repeat what I
said.” (Ins3), and “Summarize what I said.” (Ins4).

(instruction-following) and GSM8K [9] (mathematical rea-
soning). As shown in Table VII, our attacks achieved high
reconstruction accuracy across all tested datasets. This result
confirms that the effectiveness is not confined to specific data
distributions or task types, but is instead highly generalizable.

D. DP Baseline Parameter Selection

To establish a robust DP baseline, we first defined its
parameterization methodology. We then conducted experiments
to select a configuration that balances utility and privacy for
comparison against KV-Cloak.
• Noise Application: As illustrated in Figure 7, the element

distributions of the K and V caches differ significantly.
Consequently, we apply (ϵ, δ)-DP Gaussian noise to the
K and V tensors independently.

• Clipping Threshold C: The noise magnitude in DP is
determined by the function’s sensitivity, which we control
by clipping the Frobenius norm of the K and V tensors. To
find an appropriate clipping threshold, we generated 1,000
long sequences (approximately 2,000 tokens each) from the
MMLU dataset, recorded the distribution of the resulting KV-
cache Frobenius norms, and experimented with thresholds
corresponding to different percentiles of this distribution.

• Privacy Budget ϵ: This parameter governs the fundamental
trade-off between privacy and utility. We evaluated a wide
range of ϵ values to map out their impact on model accuracy.

• Failure Probability δ: This represents the probability of
the privacy guarantee being violated. We adopt the common
standard value of δ = 10−5 for all DP experiments.
Our experimental results, presented in Table VIII, reveal a

stark trade-off between privacy and model accuracy for the DP
baseline. Under conventionally strong privacy settings (e.g.,
ϵ = 1 or ϵ = 10), model accuracy on both MMLU and SQuAD
collapses to the level of random guessing, regardless of the
chosen clipping threshold. Accuracy only begins to recover

16

TABLE VII: Attack generalization across datasets on LLaMA-3.2-1B.

Model Datasets Metric
Inversion Collision Collision+ Injection

First First Mid Last First Mid Last All

LLaMA-3.2-1B

Alpaca
BERTScore (↑) 1.000 0.942 0.910 0.936 1.000 1.000 1.000 0.570
ROUGE-L (↑) 1.000 0.897 0.700 0.923 1.000 1.000 1.000 0.374

GSM8K
BERTScore (↑) 1.000 0.890 0.716 0.911 1.000 1.000 1.000 0.632
ROUGE-L (↑) 1.000 0.784 0.493 0.800 1.000 0.999 1.000 0.496

LMSYS-Chat-1M
BERTScore (↑) 1.000 0.877 0.791 0.894 1.000 1.000 1.000 0.544
ROUGE-L (↑) 0.994 0.709 0.617 0.680 0.994 0.994 0.994 0.315

TABLE VIII: Privacy-utility trade-off: LLaMA-3.2-1B infer-
ence accuracy under DP with varying noise (ϵ) and clipping
thresholds. The 50th percentile norm is highlighted as the
baseline for subsequent comparisons.

Model Norm Ratio Metric
ϵ

1 10 107 108 109

LLaMA-3.2-1B

50%
MMLU (↑) 0.051 0.052 0.052 0.262 0.299
SQuAD (↑) 0.000 0.000 0.000 0.258 0.443

90%
MMLU (↑) 0.053 0.053 0.045 0.259 0.309
SQuAD (↑) 0.000 0.000 0.000 0.171 0.435

95%
MMLU (↑) 0.052 0.053 0.045 0.252 0.309
SQuAD (↑) 0.000 0.000 0.000 0.136 0.437

TABLE IX: Effectiveness of the Inversion, Collision, and
Injection attacks against different layers of the KV-cache from
the LLaMA-3.2-1B model, under various DP mechanisms.

Model Protect Type Metric
Inversion Collision Injection

First First Mid Last All

LLaMA-3.2-1B

Plaintext
BERTScore (↓) 1.000 0.877 0.791 0.894 0.544
ROUGE-L (↓) 0.994 0.709 0.617 0.680 0.315

(107, 10−5)-DP
BERTScore (↓) 0.096 0.469 0.651 0.672 0.131
ROUGE-L (↓) 0.073 0.353 0.402 0.336 0.067

(108, 10−5)-DP
BERTScore (↓) 0.633 0.849 0.763 0.849 0.393
ROUGE-L (↓) 0.622 0.604 0.587 0.604 0.248

(109, 10−5)-DP
BERTScore (↓) 0.994 0.808 0.786 0.886 0.524
ROUGE-L (↓) 0.980 0.635 0.610 0.667 0.304

when the privacy budget is substantially relaxed: at ϵ = 108,
it reaches 59.13% of the unprotected baseline’s accuracy; and
at ϵ = 109, it improves to 93.61%. This extreme sensitivity is
due to the highly sparse nature of the KV-cache, where most
elements are near zero. Directly adding noise disproportionately
perturbs the cache’s delicate structure, severely degrading
model performance unless the noise is made negligible by
an extremely large ϵ. And its defensive efficacy, presented in
Table IX, is strongly correlated with the privacy budget ϵ. With
a weak budget of ϵ = 108, the accuracy of the Inversion and
Injection attacks is reduced, but the Collision Attack can still
recover some useful information. As ϵ is strengthened to 107,
the overall attack success rate decreases further. However, the
Collision Attack can still achieve a reconstruction with over
55% semantic similarity. Importantly, this protection comes
at the cost of model accuracy, a trade-off we will discuss in
detail in the next section.

To balance security and accuracy for our comparative
analysis, we selected ϵ = 108 and a clipping norm at the
50th percentile for subsequent experiments, as this offered a
reasonable degree of utility for the DP baseline.

E. Evaluation of Security on the Remaining Models

As shown in Table X, KV-Cloak completely thwarts all our
proposed attacks, reducing the quality of any reconstructed text
to a level statistically indistinguishable from random noise.

F. Performance Analysis and the Impact of Operator Fusion

A critical aspect of any practical defense mechanism is
its performance overhead. In this section, we analyze the
computational cost of KV-Cloak and demonstrate the significant
efficiency gains achieved through our operator fusion technique.

Overhead of a Naive Implementation. Without operator
fusion, a naive implementation would apply the obfuscation
transform K ′ = SP̂ (K + A)M and its inverse as explicit.
Neglecting the computationally inexpensive matrix additions
involving A, the primary overhead stems from matrix multipli-
cations. For a single KV-cache block of size b× d:
• The obfuscation operation requires approximately b3 (for
SP̂), b2d (for (SP̂)K), and bd2 (for (SP̂K)M) floating-
point multiplications.

• The de-obfuscation requires an additional b2d (for S−1K ′)
and bd2 (for (K ′)M−1) multiplications.

This results in a total of approximately b3 + 2b2d + 2bd2

multiplications per block per decoding step. To put this into
perspective, the cost of re-computing the same KV-cache block
from the LLM’s hidden states (dimension D) is b ·D · d. For a
model like LLaMA-3.1-8B (with b = 16, d = 128, D = 4096),
the naive obfuscation overhead constitutes a substantial 7.1%
of the re-computation cost.

Efficiency Gains from Operator Fusion. By fusing the
matrix M and its inverse into the model’s weights offline, as
described in Section V-D, we eliminate the two most expensive
online multiplications (bd2 terms). The online obfuscation
and de-obfuscation, governed by Eq. (16), now only require
approximately b3 + 2b2d multiplications.

Revisiting the LLaMA-3.1-8B example, this optimization
reduces the computational overhead to just 0.83% of the re-
computation cost. This represents a nearly 8-fold reduction in
latency compared to the naive implementation (specifically, the
new cost is 11.72% of the original overhead). This dramatic
improvement makes the runtime performance impact of KV-
Cloak minimal and highly practical for real-world deployment.

Auxiliary Costs. Our analysis primarily focuses on floating-
point multiplications, which dominate the computational cost.
However, we acknowledge other minor costs, such as the

17

TABLE X: Efficacy of Defense Mechanisms Against Input Reconstruction Attacks on the Remaining Models.

Model Protect Type Metric
Inversion Collision Collision+ Injection

First First Mid Last First Mid Last All

LLaMA-3.2-3B-Instruct

Original
BERTScore (↓) 0.055 0.782 0.668 0.820 1.000 1.000 1.000 0.540
ROUGE-L (↓) 0.000 0.732 0.456 0.621 0.994 0.994 0.994 0.324

KV-Cloak
BERTScore (↓) 0.088 0.069 0.070 0.069 0.033 0.033 0.033 0.088
ROUGE-L (↓) 0.000 0.000 0.000 0.000 0.042 0.042 0.042 0.000

(108, 10−5)-DP
BERTScore (↓) 0.061 0.223 0.592 0.760 0.967 0.938 1.000 0.129
ROUGE-L (↓) 0.000 0.261 0.360 0.517 0.951 0.907 0.994 0.032

LLaMA-3.1-8B

Original
BERTScore (↓) 0.071 0.873 0.652 0.764 1.000 1.000 1.000 0.616
ROUGE-L (↓) 0.000 0.825 0.443 0.564 0.994 0.994 0.994 0.447

KV-Cloak
BERTScore (↓) 0.076 0.069 0.069 0.069 0.041 0.041 0.041 0.084
ROUGE-L (↓) 0.004 0.000 0.000 0.000 0.003 0.003 0.003 0.000

(108, 10−5)-DP
BERTScore (↓) 0.076 0.343 0.526 0.614 0.639 0.986 0.999 0.115
ROUGE-L (↓) 0.003 0.328 0.284 0.419 0.639 0.947 0.994 0.057

Qwen2.5-Math-7B

Original
BERTScore (↓) 0.229 0.918 0.552 0.783 1.000 0.983 0.996 0.422
ROUGE-L (↓) 0.186 0.842 0.355 0.580 1.000 0.977 0.996 0.286

KV-Cloak
BERTScore (↓) 0.099 0.069 0.069 0.070 0.112 0.112 0.113 0.075
ROUGE-L (↓) 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(108, 10−5)-DP
BERTScore (↓) 0.108 0.879 0.274 0.317 0.331 0.432 0.373 0.325
ROUGE-L (↓) 0.018 0.790 0.100 0.143 0.336 0.445 0.404 0.208

TABLE XI: Impact of PagedAttention block size on LLaMA-
3.2-1B inference accuracy under KV-Cloak protection.

Model Metric Plaintext
Block Size

16 32 64

LLaMA-3.2-1B
MMLU (↑) 0.335 0.335 0.335 0.335
SQuAD (↑) 0.457 0.463 0.462 0.460

generation of the one-time permutation matrix P̂ , the element-
wise additions for the mask A, and function call overhead.
These costs are considered secondary for several reasons: the
generation of P̂ can be performed asynchronously in parallel
with other computations; matrix addition has a much lower
complexity than multiplication; and any remaining overhead
can be further optimized through techniques like computation
graph optimization and hardware acceleration.

G. Architectural Compatibility with PagedAttention

The compatibility of KV-Cloak with modern inference
engines stems from its core “block-oriented” design prin-
ciple. All cryptographic operations—both obfuscation and
de-obfuscation—are self-contained within a single physical
memory block. This design intentionally creates no cross-
block dependencies, allowing a memory manager like vLLM to
schedule, copy, swap, and share physical blocks freely, without
any awareness of their obfuscated contents.

To empirically validate this compatibility, we evaluated KV-
Cloak with the most common PagedAttention block sizes:
16, 32, and 64. We measured accuracy on LLaMA-3.2-1B
(Table XI) and latency on LLaMA-3.1-8B (Table XII). As
shown in Table XI, KV-Cloak is virtually lossless. It preserves
the baseline MMLU accuracy perfectly and results in negligible,
statistically insignificant variations on SQuAD. In terms of
performance (Table XII), the overhead of the optimized, fused

TABLE XII: Computational overhead of KV-Cloak (Fused
vs. No Fuse) across different PagedAttention block sizes on
LLaMA-3.1-8B.

Model Prefill Type
Block Size

16 32 64

LLaMA-3.1-8B 3438.5
No Fuse

52.73 45.45 28.60
+1.53% +1.32% +0.83%

Fused
15.41 10.17 12.33

+0.45% +0.30% +0.36%

implementation remains consistently low, adding only < 0.45%
latency relative to the prefill computation across all block sizes.

These results confirm that KV-Cloak’s design has no funda-
mental conflicts with the PagedAttention memory management
model. Its negligible impact on accuracy and its low, stable
overhead across various block sizes demonstrate that a full
integration into an inference engine like vLLM is a practical
and feasible engineering task.

H. Broader Impact of KV-Cloak for LLM Inference Security

Although KV-Cloak targets the KV-cache specifically, it
underscores a broader issue: the internal states of large
language models represent a rich and vulnerable attack sur-
face. As models grow in scale and architectural complexity
(e.g., via Mixture-of-Experts [31]), they produce substantial
context-dependent intermediate data—such as activations and
attention weights—that may leak sensitive information. KV-
Cloak introduces a lightweight, structure-aware obfuscation
approach as an alternative to costly cryptographic methods.
By exploiting mathematical reversibility, it preserves model
accuracy while embedding sufficient algebraic complexity
to resist cryptanalysis. This algorithm-architecture co-design
paradigm offers a promising direction for enhancing LLM
inference security.

18

	Introduction
	Background and Related Work
	Transformer-based LLM Inference
	Privacy Attacks against LLMs
	Inference-Phase Inversion Attacks
	Limitations of Side-Channel Attacks

	Attack Landscape: Input Reconstruction from KV-cache
	Threat Model
	Input Reconstruction Attacks from KV-cache
	KV-cache Inversion Attack
	KV-cache Collision Attack
	KV-cache Injection Attack

	Evaluation of Attacks
	Experimental Setup
	Attack Effectiveness
	Experimental Settings
	Results of KV-cache Inversion Attack
	Results of KV-cache Collision Attack
	Collision Attack Enhanced with Prior Knowledge (Collision+)
	Results of KV-cache Injection Attack

	Attack Robustness under Partial Knowledge Scenarios

	KV-Cloak: A Lightweight KV-cache Defense
	Motivation for KV-Cloak
	Naive Defense: Reversible Linear Obfuscation
	One-Time Pad Block-wise Shuffling
	Eliminating Redundant Positional Information in KV-cache
	Rank Preservation and Implicit Key Recovery
	Security Analysis

	Implicit Obfuscation via Operator Fusion

	Evaluation of KV-Cloak
	Experimental Settings
	Evaluation of Security
	Inference Accuracy
	Evaluation of Performance Overhead

	Discussion and Future Work
	Conclusion
	References
	Appendix
	Proof of Commutativity with Rotary Position Embedding
	Input Text for Parameter Calibration
	Additional Experiments about Attacks
	Ablation Study of Collision Attack
	Ablation Study of Injection Attack
	Attack Generalization Across Datasets

	DP Baseline Parameter Selection
	Evaluation of Security on the Remaining Models
	Performance Analysis and the Impact of Operator Fusion
	Architectural Compatibility with PagedAttention
	Broader Impact of KV-Cloak for LLM Inference Security

