NETCAP: Data-Plane Capability-Based Defense
Against Token Theft in Network Access

Osama Bajaber Bo Ji Peng Gao
Virginia Tech Virginia Tech Virginia Tech
obajaber@vt.edu boji@vt.edu penggao@vt.edu

Abstract—Tokens play a vital role in enterprise network access
control by enabling secure authentication and authorization
across various protocols (e.g., JSON Web Tokens, OAuth 2.0).
This allows users to access authorized resources using valid
access tokens, without the need to repeatedly submit credentials.
However, the ambient trust granted to all processes within an
authorized host, combined with long token lifetimes, creates
an opportunity for malicious processes to hijack tokens and
impersonate legitimate users. This threat affects a wide range
of protocols and has led to numerous real-world incidents.

In this paper, we present NETCAP, a new defense mecha-
nism designed to prevent attackers from using stolen tokens to
access unauthorized resources in enterprise environments. The
core idea is to introduce unforgeable, process-level capabilities
that are bound to authorized processes. These capabilities are
continuously embedded in the processes’ network traffic to
target resources for validation and are frequently refreshed.
This binding between process identity and capability ensures
that even if access tokens are stolen by malicious processes,
they cannot be used to pass authentication without valid ca-
pabilities. To support the high volume of requests generated by
processes in the network, NETCAP introduces a novel data-plane
design based on programmable switches and eBPF. Through
multiple optimization techniques, our system supports inline
generation and embedding of capabilities, allowing large volumes
of traffic to be processed at line rate with little overhead. Our
extensive evaluations show that NETCAP maintains line-rate
network performance across a variety of protocols and real-world
applications with negligible overhead, while effectively securing
these applications against token theft attacks.

I. INTRODUCTION

Token-based authentication is widely adopted for network
access control across enterprise environments (e.g., cloud
platforms, enterprise networks, data centers), and is used by
various protocols and services (e.g., OAuth, Kerberos, HTTPS,
FTP, and RDP). After a client is authenticated (e.g., through
credentials such as username and password), the service issues
an access token. This token is lightweight and allows the client
application to access the requested resources without requiring
repeated authentication. However, a major threat associated
with token-based authentication is access token hijacking. In

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240273
www.ndss-symposium.org

such attacks, an adversary can steal a valid access token and
use it to access the services before the token expires.

This threat is broad and manifests in various forms across
different environments. For instance, in cloud and web envi-
ronments, stolen tokens from the browser cache can enable
session hijacking attacks [1]]. In enterprise networks, attackers
may extract Kerberos ticket-granting tickets from memory in
pass-the-ticket attacks [2], gaining unauthorized permissions
to services. In remote administration settings, memory scrap-
ing techniques [3] can be used to extract in-memory SSH
private keys, allowing attackers to execute arbitrary remote
commands. This risk is further exacerbated in data centers and
large-scale cloud deployments, where tokens are frequently
passed between processes and stored in shared memory, dra-
matically increasing the attack surface for token theft. Such
attacks have resulted in numerous security breaches in high-
profile organizations [4], [].

illustrates this threat scenario. When a client machine
attempts to access a server, the server application issues an
access token to the client upon successful authentication.
However, an attacker, operating a malicious process P2 on
the same client machine or P3 on a different machine, can
steal the access token issued to the legitimate process P1 using
various means. For example, an Apache server may issue a
JSON Web Token (JWT) stored in the client browser’s local
storage. Attackers can steal such tokens using techniques like
cross-site scripting [[6], which injects malicious scripts into
web pages to extract tokens from browser storage, or memory
scraping [1]], which retrieves tokens from application memory
due to improper memory management. With a stolen token,
the attacker can impersonate the legitimate client process and
access protected server resources. In we show
how this threat materializes in real attacks against different
protocols using various exploitation techniques.

This threat stems from two fundamental issues in current
token-based schemes: (1) Access tokens are not bound to
specific authorized processes. Authentication servers rely on
ambient trust, granting all processes within an authorized
host equal access to the token. Since access tokens typically
encode only user-level information, they cannot differentiate
between processes on the client. As a result, any process,
including malicious ones, can reuse a valid token to access
protected resources. (2) Access tokens have a long lifetimes,
often ranging from hours to days (see [Table I). This extended

A similar paradigm shared by
i various authentication protocols

Client Authentication

Token Token

D:

ata - -
Packet | Token / 4 1-? 4 L;
Data -

Data
Packet | Token

Server

Internal
Attacker

External
Attacker

Data
Token

Fig. 1: Access token hijacking is a prevalent threat that
manifests in different forms across various protocols (e.g.,
OAuth, Kerberos, SMTP, RDP, HTTPS).

validity window gives attackers ample opportunity to exploit
a stolen token to cause damage before it expires.

Prior efforts have primarily focused on developing protocol-
specific countermeasures by enhancing the security of authen-
tication protocols. These include mechanisms for detecting to-
ken misuse [7]], strengthening token validation procedures [8]],
[9], and hardening protocol implementations [10]. However,
none of these solutions directly address the fundamental
ambient trust issue, where access tokens are implicitly trusted
by any process on a host once issued. Consequently, new
zero-day attacks [[L1] continue to emerge that bypass these
defenses, forcing defenders into an endless arms race of
patching vulnerabilities after exploitation.

Goal & challenges. In this work, we aim to directly address
the fundamental issue of ambient trust and distinguish pro-
cesses making access requests. Our idea is to enable a form of
lightweight authentication credential that is cryptographically
bound to the identity of the requesting process. Without this
credential, any access request will fail validation.

However, several key challenges need to be addressed:
(1) Directly modifying existing access tokens to incorporate
process identity would lead to a protocol-dependent solution,
requiring substantial changes to each protocol and application.
Such an approach lacks scalability and generalizability. (2)
Supporting secure access requests from every process in the
network results in substantial traffic volume, and continuously
handling these requests presents significant performance chal-
lenges. Ideally, the defense system should verify each process-
level access request in real time without adding latency or
degrading overall network performance.

Contributions. We present NETCAP, a defense system de-
signed to secure network access against access token hijacking.
To address the ambient trust problem, we introduce the notion
of a capability, a lightweight, unforgeable token that grants
its holder access to a specific resource. During capability
generation, we cryptographically bind the capability to the
identifier (i.e., PID) of the authorized process using a secure
hash function (see [Eq. (I)). This binding ensures that the
capability is unforgeable and enables NETCAP to distinguish
authorized processes from unauthorized ones. The authorized

TABLE I: Token lifetime for different services

Token Type Service Token Lifetime
JWT Web APIs 1 hour to 7 days [13]
OAuth 2.0 Mobile [14], web [15], and IoT [16] Hours to months [17]

Kerberos authentication
Secure Shell (SSH) Protocol

Service ticket
SSH authentication keys

10 hours [18]
Indefinitely [19

process embeds its unique capability in outbound traffic to
remote resources, while NETCAP continuously validates the
capability along with relevant traffic metadata, ensuring that
only requests from legitimate processes are allowed.

The key advantage of introducing this separate capability,
alongside the original access token, is that even if the token
is stolen, requests lacking a valid capability will be rejected.
This design also adds an additional layer of protection while
remaining protocol-independent, requiring no modifications
to underlying protocols or applications and complementing
existing protocol-specific enhancements.

To efficiently handle high volumes of access requests,
NETCAP introduces a novel data-plane design that lever-
ages a co-design between programmable switches and eBPF
to implement the capability mechanism directly within the
network data plane. Programmable switches offer data-plane
programmability via the P4 language [12], enabling custom
packet processing at Tbps line rate. This makes it feasible
to design specialized packet formats that carry capabilities,
and to inspect and validate them in real time. eBPF is an
emerging kernel technology that enables sandboxed programs
to run safely within the operating system (OS) kernel, without
requiring modifications to the kernel source code, host OS,
or user-space applications, simplifying deployment. We devel-
oped lightweight eBPF programs to efficiently trace processes,
bind capabilities within hosts, and embed them into outbound
traffic. Additionally, we designed a set of optimization tech-
niques to support efficient capability generation, validation,
refresh, and management.

We carefully designed our capability-based defense protocol
and its data-plane realization to ensure robust coordination
among components and strong resilience against different
attack vectors, including capability replay attacks, IP/PID
spoofing, and attempts to disrupt the normal operations of

legitimate processes (see [Section III-B).

We compared NETCAP’s switch-based design with an
eBPF-only design (i.e., without the switch data plane), which
suffers from both security and performance limitations. As
shown in the eBPF-only design incurs latency
that is four orders of magnitude higher than our switch-based
design, incurring noticeable delays in user access. It also be-
comes easily saturated as packet rates increase (e.g., 20K pack-
ets/s), making it vulnerable to saturation attacks. In contrast,
NETCAP’s switch-based design sustains over 600K packets/s
at line rate with negligible delays. Offloading enforcement
to the switch data plane is not merely an optimization; it is
essential for maintaining resilience against saturation attacks
and preventing the host from becoming a bottleneck.

Evaluations. We deploy NETCAP in a physical testbed and
use synthetic and real-world enterprise traces for evaluations.
We extensively evaluate NETCAP in terms of defense ef-
fectiveness, scalability, system capacity, and overhead. The
results demonstrate that: (1) NETCAP can protect a wide range
of protocols from attackers attempting to hijack legitimate
users’ sessions while adding only a negligible 130 nanosec-
onds overhead to the packet processing time. (2) NETCAP
can successfully scale to real-world enterprise traces from
DARPA OpTC [20] and LANL Unified Host and Network [21]]
datasets, while achieving 99.9 Gbps throughput on the 100
Gbps (per-port) programmable switch, incurring negligible
overhead to legitimate traffic. (3) NETCAP can seamlessly
support different real-world applications (e.g., Apache Server,
NodeJS Server, and FTP Server) without modifying the appli-
cations’ code. (4) The eBPF-based programs add a negligible
3-9 microseconds to the total time of the monitored kernel
events, imposing minimum overhead on the host performance.
NETCAP is the first work to realize capabilities within the
data plane to mitigate token hijacking for secure network
access. It introduces a capability-based defense that extends
beyond a single host to enforce in-network, process-level
authentication for remote resource access, while achieving
high-throughput validation. NETCAP supports a wide range
of protocols and can be seamlessly deployed without modifi-
cations to underlying protocols, applications, or kernel source
code. We open-source the prototype of NETCAP at [22]

II. BACKGROUND

Capabilities-based access control. To enforce access control
at the process level, one approach is identity-based access
control (IBAC), where a central authority (e.g., an access
control list) verifies access rights based on the identities of
subjects (e.g., processes) and objects (e.g., resources) [23l].
However, this approach is difficult to scale due to the large
number of rules and the dynamic nature of process activities
such as frequent spawning and termination, resulting in high
management overhead. In contrast, capability-based access
control [24] adopts a decentralized model. The capability itself
serves as proof of access rights to specific resources, thereby
simplifying access control management.

Capabilities have been used to regulate access in cloud
computing [25] and the Internet of Things [26]. However,
these systems operate at a coarse granularity and lack the
ability to distinguish between individual processes within a
host. Other efforts have integrated capabilities into operating
systems (OSes) [27]], [28] to control process access to memory
locations, but these solutions are confined to a single host.
Moreover, unlike NETCAP, these systems require extensive
modifications to the OS kernel to enforce capabilities. To
date, no existing work enforces capabilities for processes that
continuously access remote resources.

Programmable data planes. Programmable switches have
gained widespread attention for their ability to support data-
plane programmability through the P4 language [12], while

? Ingress Pipeline Egress Pipeline 'gT
RN mHEA R
SN R - Y — —
REE Rt N i R AR — R AN
IR I W R
GRS - — R

& | Stage 1 Stage 2 : Stage n-1 Stage n %

Fig. 2: Protocol independent switch architecture (PISA)

achieving Tbps line-rate performance. illustrates the
Protocol Independent Switch Architecture [12]]. A P4 program
defines the packet headers and protocols, along with a pro-
grammable parser that extracts these headers. The headers are
then processed through multiple hardware stages in the switch,
each performing match/action operations. After processing, a
programmable deparser reconstructs the packet headers before
forwarding the packets. The main P4 processing takes place
in a pipeline of match/action tables, where each table matches
on specific keys (e.g., header fields) and applies actions such
as arithmetic or bitwise operations. Each hardware stage
includes Arithmetic Logic Units (ALUs) to support packet-
level computations. Static RAM (SRAM) and Ternary Content
Addressable Memory (TCAM) are used to store table entries,
supporting exact and wildcard (range) matches, respectively.
SRAM can also be configured as register arrays to maintain
state across packets for stateful processing. However, these
memory resources are inherently limited, with hundreds of MB
of SRAM and tens of MB of TCAM available. This poses a
major challenge when designing efficient data-plane solutions.

III. NETCAP SYSTEM OVERVIEW

[Fig. 3illustrates the high-level operational flow of NETCAP.
Once a server authenticates a process, an eBPF program
instructs the programmable switch to generate a capability and
send it to the client host. On the client side, another eBPF
program manages the capabilities issued to all authorized
processes and appends them to their outbound traffic. The
switch continuously monitors the traffic, inspects the attached
capabilities, and performs in-line validation. If the capability
is valid and not expired, the switch removes it and forwards
the remaining data packets to the server for resource access.

Below, we provide a more detailed explanation of each
step. Certain low-level details are intentionally omitted to aid
understanding of the high-level flow. In and [V]
we present the complete protocol and system design, detailing
how the components are coordinated.

A. High-Level Operational Flow
Phase 1: Initial Setup: This phase describes how a new
client joins the protection with proper information setup.

(Step 1) A new client installs the eBPF program to participate
in NETCAP’s protection mechanism.

(Step 2) A client process initiates authentication by sending
user credentials (e.g., username and password) to

Client J %;]

(e

o Client Authentication

Token

Data
Packet QT

HeBPF

Data-Plane

Capability-Based Defense Server

© | HenrF (2] B
Capability Map Token ||Capability
P1->Cl o
P2 ->None Data
P1 Packet | Token|[Capability
Internal il el
Attacker
s Data
™ Packet | Token
_________ >
External Missing capability!
Attacker

Data
Token

Missing capability!

ST

I Legend:
C: Capability

Fig. 3: NETCAP introduces a data-plane, capability-based defense leveraging programmable switches and eBPF to prevent
malicious processes from using stolen tokens to gain unauthorized access. @) The client process first authenticates using valid
credentials (e.g., username and password). @ If successful, the server-side eBPF program signals the switch to generate a
capability for the authorized process. @ The client-side eBPF program binds the capability to the authorized process. @ The

switch verifies the capability internally and forwards only the

validated data packets to the server. @ Expired capabilities

are continuously refreshed by the switch and resubmitted to the authorized process. @ Internal attackers cannot reuse stolen
tokens without the matching process-bound capability. @ Similarly, if an attacker exfiltrates a token to an external machine,

any traffic lacking the required capability will be dropped.

the server. At the same time, the eBPF program
inserts the process ID (PID) into the first packet of
the connection, signaling that the client process is
requesting a new capability from NETCAP.

(Step 3) The programmable switch intercepts this packet and
caches the PID and the flow’s 5-tuple in a register.
This information will later be used to generate an
unforgeable capability. The switch then removes the

PID and forwards the packet to the server.

(Step 4) Once the server authenticates the process, an eBPF
program on the server detects this event. It then sends
a crafted response packet back to the client, carrying

a signal that indicates a successful authentication.

(Step 5) Upon receiving the signal packet, the programmable
switch matches the destination network address with
the previously cached S5-tuple. The switch then
knows that the process associated with the cached

PID has been successfully authenticated.

Phase 2: Capability Generation: This phase describes how
NETCAP generates a unique, unforgeable capability for an
authorized process and sends it to the client for use.

(Step 6) The switch knows that a new client from an unseen
source has been authenticated and intends to join

the protection. The switch then generates a unique
Device ID to distinguish the client.

The switch uses the cached PID, Device ID, and
other information (e.g., current timestamp) to gener-
ate a capability. To ensure unforgeability and strong
security guarantees, we leverage Chaskey [29], [30],
a lightweight and secure cryptographic function. The
capability is computed following [Eq. (T)] with a
secret key maintained in the switch’s storage. This
construction ensures that the capability is uniquely
bound to the authorized process’s PID and the target
service, and is resilient against forgery.

(Step 7)

(Step 8) The switch reuses the response packet that carried
the authentication signal, replaces the signal with the
generated capability and Device ID, and sends the

modified packet back to the client.

(Step 9) Upon receiving the modified response packet, the
eBPF program on the client extracts the capability
and binds it to the authorized process by storing it

alongside the process’s PID in a BPF map (Fig. 3).

Phase 3: Capability Validation: This phase describes how
the capability is incorporated into outbound traffic and used
for continuous validation.

(Step 10) When the client process sends data packets to access
resources, the eBPF program on the client constructs
a custom capability packet (see [Fig. 4). This packet
includes the PID of the sending process, the cor-
responding capability retrieved from the BPF map,
and the Device ID. The eBPF program transmits the
capability packet alongside the data packets.

(Step 11) Upon receiving the capability packet, the switch
recalculates the capability value using its stored
secret key and the information in the packet (e.g.,
PID, service IP and port). Data packets are forwarded
only if the recalculated value matches the received
capability value.

In we further describe how NETCAP periodi-

cally rotates keys and updates capabilities to enhance security.

B. Threat Model

Our threat model aligns with established network secu-
rity research [31], [32]], [33] and defenses leveraging pro-
grammable switches [34], [35], [36], [37], [38]. NETCAP
is designed for controlled network environments (e.g., cloud
providers, enterprise networks, data centers), where a central
authority manages clients, servers, and switches. Our trusted
computing base includes programmable switches, the control
plane, and the eBPF-based programs. Attackers are assumed
either on the victim’s host or controlling a separate network
node, aiming to steal access tokens through various techniques
like memory scraping [[1]], XSS [6]], and network sniffing [39]].
We do not consider attackers who trick users into revealing
credentials (e.g., usernames and passwords), as they can au-
thenticate directly as legitimate users. We assume attackers do
not have root access, as this gives unrestricted control, such
as disabling the host program, terminating victim processes,
injecting malicious code into processes, or altering process
PIDs. This assumption is realistic and aligned with many prior
host-level defenses [31]], [32], [33]]. Note that even under these
assumptions, the attack surface remains substantial, with nu-
merous ways for attackers to steal and misuse tokens, leading
to many high-profile data breaches across organizations [4],
[S]. NETCAP ensures that regardless of how the token was
stolen, only authorized processes with valid user credentials
can obtain capabilities to access the service.

We also consider advanced attackers who attempt to com-
promise NETCAP directly or exploit NETCAP to interrupt
legitimate processes. In we enumerate these
advanced adversaries and explain how the design of NETCAP
is resilient against them.

IV. IN-NETWORK CAPABILITY-BASED DEFENSE

In this section, we detail the capability design, the switch
primitive, and the techniques we developed to support in-line,
real-time capability generation, validation, and refresh.

A. Capability Design

The capability needs to be resilient against forgery to ensure
the overall security of the protocol. Prior in-network defenses

(e.g., for user anonymity [40] and DDoS mitigation [37])
primarily rely on built-in hash functions in programmable
switches, such as CRC16 and CRC32. However, the CRC hash
functions are non-cryptographic and insecure. Their short hash
lengths make them vulnerable to chosen-plaintext attacks [41]],
allowing attackers to brute-force a captured CRC value and
recover the key. Additionally, CRCs possess algebraic proper-
ties (e.g., CRC(A)® CRC(B) = CRC(A® B)) that can be
exploited to expose the key without brute-forcing [42]. Such
threats significantly undermine the security of the defenses.
To overcome these limitations, we adopt Chaskey [30], a
secure and lightweight cryptographic function, to generate
unforgeable capabilities. Chaskey uses a 128-bit secret key to
process messages in 128-bit blocks and produces a message
authentication code (MAC). It offers strong provable security
against forgery and differential attacks, with formal proofs
establishing its security bounds in the standard model [29].
Chaskey’s 128-bit output ensures that capability collisions
are cryptographically negligible. According to the birthday
bound [43]], even with 1 million active capabilities per switch,
the collision probability remains extremely low, on the order
of 1027, In contrast, CRC32 reaches ~50% collision prob-
ability after only ~65K capabilities, underscoring the need
for a secure hash function like Chaskey. Despite its stronger
security guarantees, Chaskey adds only ~400 nanoseconds
to the computation time compared to CRC in programmable
switches, which is negligible given that typical RTTs are
in the milliseconds. Chaskey was specifically developed for
microcontrollers and resource-limited systems, making it well-
suited for data-plane deployment on programmable switches.

Formally, a capability, denoted as C, is computed as follows:

C = Chaskeyg (Device_ID || TPy || Portsye
|| Protocol || PID || TS || Nonce) (1)

We explain each component of the equation below:

¢ Device_ID: Source IP addresses are inherently unreliable
and can be spoofed from user space. To address this, when
the switch receives a capability request for the first time
from the client, it assigns a unique Device ID to that
client. Including the Device ID in the capability computation
ensures that capabilities are bound to specific clients. That is,
a different client with a different Device ID cannot replay the
capability issued to a legitimate client and pass validation.

o [Py, Portg,., Protocol: These fields form the 3-tuple
identifier of the service-bound flow, where svc denotes the
remote service. This ensures the capability is tied to a
specific service endpoint. The client-side port (Portciient)
is omitted as it may vary across flows.

o PID: The process ID of the authorized process. Including
it ensures that the capability C is bound to the specific
authorized process, hence removing ambient trust.

Key Version
2-bit

Padding

L2 | L3 | L4
‘ | | 2-bit

Capability | PID | Timestamp | Type
128-bit 16-bit 18-bit 2-bit

Fig. 4: NETCAP’s capability packet format with standard
Layer 2-4 headers

e TS: The timestamp at which C is generated. This field
is used to compute the capability’s validity period and
determine whether it has expired.

« Nonce: A random value generated and stored by the switch.
It introduces entropy into the input, making it more difficult
for attackers to reverse-engineer the capability.

o K: A 128-bit secret key used to securely compute C. The key
is generated by the switch, stored in a match/action table,
and is never shared with any host.

B. Capability Packet

One way for clients to transmit their capabilities and for the
switch to return newly generated ones is to embed capabilities
directly into data packets using a custom header. However,
this design introduces significant performance overhead in
two critical paths: (1) the switch data plane, which must
compute capabilities using a cryptographic algorithm, and (2)
the client’s network stack, where modifying packet headers is
CPU-intensive. As shown in our evaluations in
this design leads to significant throughput degradation.

To avoid impacting the performance of data packet process-
ing, we adopt a decoupled design in which capability infor-
mation is transmitted via separate control packets, referred to
as capability packets, by both clients and the switch.

IFig. 4] shows our capability packet format. The switch
distinguishes capability packets from other packets using a
reserved bit set in the IP fragment field [44]]. The Capability
field stores the capability value of the current connection. The
Device ID and PID verify the sender’s identity. The Timestamp
field indicates the time the capability was generated.

The Type field is used to distinguish between different types
of capability packets in NETCAP:

o (Type=0) packets are sent by the switch to deliver a newly
generated capability to the client (Step 8 in [Section ITI-A)).

o (Type=1) packets are sent from the client to the switch and
carry the process’s capability for validation to gain service

access (Step 10 in [Section TIT-A).

o (Type=2) packets act as ACKs from the client to the switch
to ensure reliable delivery of newly generated capability. The
switch retransmits the capability if no ACK is received.

Lastly, the Key Version field helps identify which secret key
was used to generate the capability during key rotation. This
allows the switch to validate a capability with the correct key

version (more details in [Section IV-E).
C. Capability Generation

When a client initiates a new connection, the client-side
eBPF program inserts the sending process’s PID into the

checksum field of the first packet and sets the reserved IP
fragment bit to 1. Upon receiving this packet, the switch
extracts the PID and stores it in a hardware register using the
flow’s 5-tuple (IPg;., Portg,c, IPg4gt, Portqss, Protocol) as the
key and the PID as the value. The switch then recalculates the
checksum and clears the reserved bit before forwarding the
packet to its destination.

Once the client process completes successful authentica-
tion with the service, the switch generates a capability for
the authorized process. A naive approach to detecting this
event is to inspect the payload of packets sent from the
server. However, many applications encrypt their traffic [45],
preventing the switch from verifying authentication via deep
packet inspection. Another approach is to analyze network
traffic patterns between the client and server to infer successful
authentication [46]. However, traffic volume is an unreliable
indicator, as different applications exhibit varying patterns
before and after authentication. For instance, FTP often shows
a sharp increase in traffic post-authentication, whereas SSH
may exhibit little change.

In contrast, we design a more reliable mechanism by
developing an eBPF program on the server to detect successful
authentication events. The detailed operations of this program
are described in [Section V-Bl

Once the client process is authenticated, the server-side
eBPF program signals the switch by encoding a flag in the
reserved bit of the TCP header [47] of a client-bound data
packet (Step 4 in [Section ITI-A). Upon receiving this signal,
the switch looks up the flow’s 5-tuple in its hardware register
to retrieve the associated PID. If the client is not seen before,
NETCAP generates a unique Device ID to distinguish the
client and stores this ID in a local hardware register. If the
same client later requests another capability, NETCAP uses
the client’s IP address to retrieve the corresponding Device
ID from the register.

With both the PID and Device ID available, the switch
computes a new capability using Chaskey, following [Eq. (T)]
To transmit the capability back to the client, the switch must
work around the limitation that data planes cannot create new
packets. To overcome this, the switch clones an existing data
packet, repurposes it as a capability packet, and reprocesses it
through the pipeline. The switch then embeds the computed
capability into the capability packet, sets the appropriate
header fields (i.e., Type=0, as described in [Section I'V-BJ), and
forwards the capability packet to the client.

Once the client receives the capability, it replies with an
ACK packet (Type=2) to confirm receipt. If the server does
not receive this ACK, it retransmits the authentication signal
to ensure reliable delivery. The connection is dropped if the
switch does not receive a signal from the service within a
configurable timeout period, which can be set through our
APIs (i.e., SetSignalTimeout in [Table IIJ).

D. Capability Validation

To access the service, the client process must send a capa-
bility packet containing its current capability C for validation

by the switch. To verify C, the switch performs two checks:
(1) C is valid, and (2) C has not expired. For the first check,
the switch recomputes it following If the received C
matches the recomputed capability, its validity is confirmed.
Otherwise, the connection is dropped. For the second check,
the switch determines C’s current lifetime by calculating the
difference between the current timestamp and C’s creation time
carried in the capability packet. If the received C passes both
checks, the process’s data traffic is forwarded.

If C passes the first validity check but its lifetime exceeds the
permitted duration, the switch generates a refreshed capability
C’ with a new timestamp and Nonce. The switch then transmits
C’ back to the process using a dedicated capability packet
(Type=0) and requires an ACK from the client to confirm re-
ceipt (Type=2). This ACK-based mechanism not only ensures
reliable delivery of capabilities but also prevents communica-
tion interruption during network failures. We describe failure

handling in more detail in |Section VI-B

Cached capability decisions. For a client to keep accessing
a service, NETCAP needs to ensure that each data packet is
authorized to reach its destination. A naive approach would
transmit a capability packet alongside every data packet.
However, this imposes high processing overhead on clients
due to high packet generation and saturates the network with
a large volume of capability packets.

To improve efficiency, NETCAP employs an in-network
capability decision cache using a customized software-defined
switch register, called CapDec, which is implemented as a
register array in the switch’s hardware SRAM. CapDec maps
H(Flow’s 5-tuple ID, Device ID, PID) to a cached de-
cision. Instead of sending a capability packet along with every
data packet, our client-side eBPF program transmits a capabil-
ity packet once every t seconds (see details in [Section V-A),
and the switch caches the resulting decision. Data packets from
client processes do not carry capabilities. Instead, they include
only the Device ID and PID, embedded in the IP checksum and
TCP urgent pointer fields, respectively. A reserved bit in the
IP version field is set to indicate that this data packet carries
process-level metadata. When data packets arrive at the switch,
the switch extracts the PID and Device ID and matches them
against CapDec. If an entry is found with an “allow” decision,
the switch recomputes the packet checksum before forwarding
it. This ensures the correct delivery of the packets.

The interval t is configurable through our API (i.e.,
SetHostInterval in [Table II). Our evaluations in [Sec]
show that sending one capability packet per second
achieves a good balance between security and efficiency. This
configuration enables timely capability validation while sig-
nificantly reducing overhead. Overall, this approach maintains
line-rate throughput with negligible network overhead.

E. Capability Refresh

Unlike existing access tokens that often have long lifetimes
(see [Table T), NETCAP adds an additional layer of security
by issuing each capability with a limited lifetime (e.g., within

seconds). When the switch detects that a received capability
has expired (by comparing the current timestamp with the
Timestamp field in the capability packet), it refreshes the
capability using an updated timestamp and a new secret key
through key rotation.

However, refreshing capabilities introduces a timing chal-
lenge. When the switch detects that a received capability
has expired, it must generate and deliver a new one to the
process. During this window (i.e., between detecting expiration
and the client receiving the updated capability), the client
might continue to send the expired capability packet to keep
accessing the service. If each of these capability packets
triggered a new refresh, the switch could generate multiple
valid capabilities simultaneously for the same process and
destination. This results in inconsistencies.

A naive mitigation strategy is to stall the client’s traffic
until the refreshed capability reaches the process. However,
this causes delays and degrades application performance. To
avoid this, NETCAP employs a lightweight refresh coordi-
nation mechanism using a temporary stateful cache in the
switch. When a capability is detected as expired, the switch
immediately generates a new one and records a temporary
entry containing the expired capability, the client’s Device
ID, and the PID. This entry serves as a short-term marker to
prevent redundant refreshes. If additional capability packets
(not data packets) arrive from the same connection during the
refresh process, they are dropped without triggering another
refresh. Meanwhile, data packets from the same connection
are allowed to continue flowing. Once the client receives
the updated capability, it sends an ACK packet (Type=2) to
confirm receipt. The switch then removes the temporary entry
and resumes regular validation using the refreshed capability.

Key rotation. Secret keys stored in the switch are crucial
for securing capabilities and preventing forgery. Although
Chaskey is designed to resist forgery and differential at-
tacks [29], implementing a key rotation mechanism provides
an added layer of protection against practical risks such as
accidental key leakage, control plane misconfigurations, or
administrative mishandling.

In NETCAP, the switch rotates both the secret key and
nonce at a configurable interval, adjustable via our APIs
(Section VI-B). Even if an attacker leaks the current key,
it becomes invalid quickly, significantly reducing the attack
window. However, directly replacing an old key with a new
key can cause inconsistencies. For example, a secret key K1
is updated to K2 after a capability is sent to an authorized
process. When the process sends back the capability, NETCAP
will not be able to validate it with the current key. To
prevent this, NETCAP temporarily retains the old key for
an additional 5 seconds to validate expired capabilities and
generate refreshed ones. This period accounts for typical wide-
area network (WAN) delays and packet retransmissions under
moderate congestion, ensuring active connections can refresh
their capabilities before the old key is discarded [48]].

V. LIGHTWEIGHT EBPF PROGRAMS

We design lightweight eBPF programs for the client and
server to manage process capabilities and send authentication
signals, respectively. eBPF [49] provides a secure sandbox
for running user-defined programs within the kernel. These
programs attach to kernel hooks (e.g., network events and
system calls), enabling custom functionality without modifying
the kernel or loading new modules. This allows seamless
deployment and broad applicability of our defense system.

A. Client-Side Program

[Fig. 5] illustrates the architecture of our client-side eBPF
program, which operates at ingress and egress hooks to support
capability extraction, trace intra-host process activities, and
facilitate packet transmission.

Kernel hook points. To achieve high-performance packet
processing, we attach a custom eBPF program to the XDP
(eXpress Data Path) hook [50], enabling our logic to run
directly in the network stack. When a capability packet arrives
with the reserved IP fragment bit set, our XDP program
extracts the capability packet fields into a structure we call
Cap, which contains three fields: Capability, Timestamp,
and Key_Version.

To accurately associate each capability with its process, we
investigated several binding designs. One design is to maintain
a dynamic process tree in BPF maps of all active processes
and use their ancestry information to derive a unique process
identifier by hashing the parent PIDs. However, continuously
updating and synchronizing this tree across thousands of
concurrent processes introduced significant lookup and syn-
chronization overhead in the kernel, especially as processes
frequently spawn and terminate.

Instead, NETCAP uses a lightweight and robust PID-binding
mechanism that tracks process system calls through kernel
tracepoints. When a capability packet is received, NETCAP
extracts the PID of the process receiving the network connec-
tion. This is done by tracing the system call used to accept
the connection as the packet reaches the transport layer of
the kernel network stack. NETCAP then binds the extracted
capability to the receiving process by storing it in a BPF map,
CapMap (PID, IP,,.,Port,.->Cap).

To ensure the binding is safely removed when a process
terminates, we attach an eBPF program to the exit path of the
kernel process termination tracepoint sched_process_exit.
This program triggers upon process termination and imme-
diately deletes the corresponding entry from CapMap before
the kernel allocator reuses the PID. This design maintains
accurate PID bindings, ensuring that the corresponding binding
is removed before the PID is reassigned to a new process.

To identify the sending process of each packet, we trace
system calls that initiate network connections and extract the
process’s PID and destination address (IP and port). These
values serve as keys for lookup in CapMap. If a match
exists, the associated Cap is copied into a second map:
OutCap(sport->[Cap, last_TS]). To transmit capability

Trace
network
connections

Intra-Host Process
Activities aGBPF

Userspace
................... Conmel
Kernel
» Network
____________ |_____________ Stack ___________l___________
Extract | CapMap E Append i OutCap '
capability | H(PID, IPsvc, Portsve) | Cap | capabilities !|Portctient | [Cap, last_TS]
packet header E [i periodically . v '
XDP IngressaeaPF i 1 TC Egress ﬁeBPF:

Fig. 5: Architecture of the client-side eBPF program

packets, we attach an egress eBPF program at the TC hook. It
checks whether the outgoing packet’s source port is marked in
OutCap. If so, it constructs and transmits the capability packet.
Appending capability information directly to every data
packet is CPU-intensive. As shown in this
can cause a 30% throughput drop. To avoid this, the program
sends capabilities in separate capability packets, as mentioned
in Since eBPF cannot generate new packets due
to the lack of dynamic memory allocation, we use the BPF
helper function bpf_clone_redirect. This allows the egress
program to clone an outgoing data packet, repurpose it as a
capability packet, and send it to the switch. Note that cloned
packets are not part of the main application data stream. Since
these packets are sent independently, they do not affect the
application’s sending rate or degrade its performance.

In-kernel capability management. To store capabilities asso-
ciated with processes, one way is to use a BPF map keyed by
PID. However, this method fails when a process communicates
with multiple destinations, each requiring a distinct capability.
Nested maps could store multiple capabilities per PID. How-
ever, eBPF limits map sizes to fixed allocations, which may be
insufficient for processes requiring more capabilities or result
in wasted space for processes with few entries.

To address this challenge, we design a specialized mapping
structure that supports a variable number of capabilities per
process. Specifically, we update our CapMap to use a hash
key: CapMap(H(PID, IPg,., Portg,.)->Cap). This hash-
keyed map distinguishes capabilities by both the process and
destination, supporting efficient lookup.

Timed capability transmission. As discussed in
sending capabilities with every data packet intro-
duces noticeable traffic overhead. To mitigate this, our client-
side program sends one capability packet every ¢ seconds. It
tracks the last transmission time (last_TS) in the OutCap map
and sends a new capability when the elapsed time exceeds t.
The decision is then cached in the switch’s CapDec register.

B. Server-Side Program

The server needs to signal to the switch whether a process
has been successfully authenticated, so that the switch will
generate the corresponding capability. A strawman solution
is to modify server applications to explicitly coordinate with

NETCAP. However, this approach requires extensive changes
to existing applications or protocols, significantly reducing the
compatibility and scalability of the defense. An alternative
is to inspect outgoing data packets from the server using
an eBPF program hooked at the egress point. However, this
is also impractical because application-layer data is often
encrypted (e.g., HTTPS, TLS), preventing eBPF programs
from accessing or interpreting the actual payload.

To facilitate broad applicability, it is preferable to design a
protocol-independent solution that does not require modifying
applications or their underlying authentication protocols. To
achieve this, our current implementation detects successful
authentications by monitoring application logs. Such logs con-
tain the whole network 5-tuple ID and login status, making it
ideal to infer when a client process successfully authenticates.
This approach avoids intrusive instrumentation of the running
services. Application logs have been extensively used in prior
research efforts [S1] and enterprise-grade security tools [S2]
to trace internal application behavior.

Specifically, we design a lightweight server-side program
that monitors application logs and signals the switch to
generate capabilities. It combines a user-space component
with an eBPF program for efficient operation. The user-
space component monitors application logs using a lightweight
parser, and matches log entries against patterns for successful
authentications using regular expressions. When a match is
found, the app extracts the client’s network flow ID. An eBPF
program on the TC egress path then receives the flow ID
and marks matching client-bound packets with the successful
signal. A key advantage of this approach is its scalability.
Adding new logs to monitor or updating the patterns for
detecting successful authentication entries is straightforward.
Administrators can easily update the user-space component
with the new log file path and revised regular expressions,
without any changes to the running service code.

Application logs may be targeted by attackers seeking to
cover their traces. Many existing defense mechanisms, such
as intrusion detection based on host audit logs [S1], [33]
or lateral movement detection using application logs [S3],
implicitly assume that logs are part of the trusted computing
base and remain untampered. Ensuring tamper-evident logging
to support different defense applications is a parallel and active
area of research. Recent efforts have proposed techniques such
as encrypted access logging [54] to harden the logs. NETCAP
can benefit from these solutions.

VI. HANDLING PRACTICAL REQUIREMENTS
A. Resilience Against Advanced Attackers

We provide a security analysis of how NETCAP counters
various advanced attackers who are aware of our defense
design and attempt to bypass it.

Replay capability packets. An attacker may attempt to replay
captured packets containing valid capabilities, substituting a
malicious payload directed at the destination server. However,
our client-side program adds the sending process’s PID to

all connections in the kernel space, which is beyond the
attacker’s control. Since the PID is included in the capabil-
ity computation (Eq. (T)), the switch can detect when the
incoming packet’s PID does not generate a capability that
matches the replayed one, and consequently drops the connec-
tion. Additionally, a malicious user may try to misuse their
own legitimate capability to access an unauthorized service.
However, since NETCAP incorporates the service’s network
address into the capability computation, the switch can easily
detect any mismatch in the intended service address.

IP and PID spoofing. IP addresses are unreliable [55] and
can be spoofed from user space. Advanced man-in-the-middle
(MiTM) attackers may replay captured capability packets from
another client with a spoofed victim’s IP. To prevent this,
NETCAP assigns a unique Device ID to each client when
it joins the network. Consequently, our client-side program
attaches the received Device ID to outgoing capability and data
packets. Because the Device ID is included in the capability
computation (Eq. (T)), spoofing the IP is ineffective. The
switch detects that the Device ID in the packet does not
match the one used to generate the capability, and drops the
connection. Since NETCAP stores the Device ID in protected
kernel memory and appends it via the client program in the
kernel space, attackers cannot tamper with or spoof the Device
ID. Any attempt to reuse a stolen Device ID from another host
results in a capability mismatch and is dropped by the switch.
An attacker on the same victim’s host may attempt PID
spoofing. However, this approach fails as the OS enforces
unique PIDs for active processes. If the attacker instead uses
the same PID on a different host, the attack is still detected.
As described above, since the Device ID is included in the
capability computation (Eq. (T)), the switch detects a mismatch
between the attacker’s Device ID and the original Device ID
used to generate the capability, dropping the connection.

Denial-of-service. NETCAP remains resilient even under
Tbps-scale attacks by processing all packets entirely in
the data plane at line rate (as shown in our evaluations
in [Section VII-D). However, attackers can launch a denial-
of-capability attack by flooding the switch with many new
capability requests, overwhelming the switch register used for
caching capability requests. This could evict legitimate process
requests from the cache register, denying them the ability
to receive capabilities. To counter this, NETCAP employs a
rate-limiting strategy that caps the number of requests from a
specific PID on a client in a given time frame. This allows
NETCAP to restrict malicious processes without disrupting
benign processes. Also, NETCAP periodically evicts inactive
entries to free up switch memory.

Secret key compromise. An attacker may attempt to brute
force all possible secret keys to derive the one used by
the switch to generate capabilities. However, NETCAP uses
the secure Chaskey algorithm [29]]. Its high computational
complexity, coupled with the 128-bit key, makes brute-forcing
computationally infeasible. Keys may also leak due to admin

TABLE II: NETCAP’s configuration APIs

Configuration API
AddService(IP, port)
AddPort(switch_id, port)
SetLifetime(switch_id, lifetime)
SetHostInterval(IP, interval)

SetSignalTimeout(duration)

Description

Add a new service to NETCAP

Enable NETCAP on switch port

Set key lifetime for a specific switch

Adjust host’s capability packet sending interval

Set the timeout for receiving signals from services

errors or control plane misconfigurations. As discussed in
NETCAP incorporates an additional protection layer
by updating keys frequently (e.g., every 1-5 seconds), further
reducing the potential damage.

B. Operational Deployment

Programmable switches provide in-network programmabil-
ity at line rate while matching the cost and performance of
legacy switches ($12K for a Tofino 6.5Tbps switch [37]]).
They are increasingly adopted by major enterprises (Meta [S6],
Google [57], etc.), ISPs (AT&T [58]], SK Telecom [39], etc.),
and switch manufacturers (Cisco [60], Juniper [61], etc.). NET-
CAP builds on this momentum to protect services in cloud and
enterprise networks. A natural deployment is to run NETCAP
on Top-of-Rack (ToR) or edge switches. This applies to cloud
data centers and enterprise networks, as both environments
share similar architectures (e.g., racks of servers connected to
ToR switches and client nodes connected to edge switches
to reach internal services). On hosts, NETCAP uses eBPF,
which is widely adopted in cloud-native environments and data
centers for network management and security monitoring [49].
Our eBPF-based programs are lightweight, require no changes
to the OS or application code, and are loaded once at system

startup. They impose minimal overhead (see [Section VII-DJ),

making them practical for real-world deployment.

Incremental deployment. NETCAP supports partial network
deployment without requiring changes to the entire network.
The defense remains effective as long as at least one NETCAP-
enabled switch exists between the client and server. Such
a design enables the gradual adoption of NETCAP in non-
P4 environments. NETCAP also allows environments where
clients with and without our client-side program can coexist.
This is configurable via our API, AddPort, to run NETCAP
on selected switch ports, while forwarding all other traffic.
Clients without our eBPF programs can still connect, but they
will not benefit from NETCAP’s protection.

Failure handling. We designed robust mechanisms in NET-
CAP to handle common network and system failures. To
address packet loss, NETCAP uses ACKs between switches
and hosts to confirm delivery of control packets, such as
capability packets and authentication signals (refer to
for more details). The sender retransmits if an ACK
is not received. For communication between the controller
and the switches, NETCAP uses UDP with a timeout-based
mechanism to exchange secret keys. While UDP is lightweight
and efficient, it does not guarantee delivery, so the controller

10

resends secret key updates if ACKs are not received within a
predefined window. In the event of a switch failure or reboot,
any cached capability decisions stored in the switch’s local
registers are lost. Clients may experience brief disruptions
during this recovery window, as data packets relying on miss-
ing capabilities could be dropped. However, because clients
periodically resend their capabilities (every 1-2 seconds), these
cached entries are quickly reconstructed with minimal delay,
and the switch can refresh these capabilities if needed.

Configuration APIs. NETCAP provides a set of APIs (shown
in through the switch control plane. It allows admin-
istrators to easily customize capability requirements to meet
their networks’ needs with little effort and no low-level data
plane programming. They can specify which services require
capabilities by defining IP addresses and ports, set secret key
lifetimes based on client risk levels (e.g., shorter lifetimes for
high-risk clients), and configure default lifetimes for services
without specific settings. Administrators can also control how
frequently client programs send capabilities and define time-
outs for how long switches wait for service authentication
signals before dropping connections. Once defined, the control
plane automatically translates API calls into the corresponding
data plane configurations (e.g., match/action table entries and
associated actions) to orchestrate the defense.

VII. EVALUATION

We implemented NETCAP using ~2500 lines of code. The
switch program is developed in P44, and the controller is writ-
ten in Python. The client and server programs are implemented
in eBPF using BCC 0.23.0. To monitor application logs, we
developed the user-space application using ~150 lines of code
in Python without modifying the service’s code.

We aim to answer the following key research questions
on the defense effectiveness, scalability, real-world application
support, and NETCAP’s overhead, through extensive evalua-

tions on our physical testbed (see and using

real-world enterprise workload datasets.

(RQ1) How effective is NETCAP’s capability-based scheme
in protecting various protocols and services?

(RQ2) How efficiently does NETCAP process capability re-
quests within the network?

(RQ3) What impact does NETCAP have on network and host
performance?

(RQ4) How well does NETCAP support complex real-world
server applications?

(RQS5) How does NETCAP’s switch-based design compare
with an alternative eBPF-only design?

A. Testbed Setup & Attack Implementations

Testbed. Our testbed is consistent with prior programmable
network works [36], [37], [35], [34]. It mirrors real-world
deployments, where a P4-enabled Top-of-Rack (ToR) switch
runs NETCAP to protect machines within a rack. The testbed

User Authentication eBPF
C \ C
r Pl J JWT .
JWT \/ Data + IS Node.js
g Server

Data +| JWT X
Attacker __ N\ JWTM/‘
Q]

Fig. 6: Preventing JWT theft and usage from an attacker’s
machine

consists of three servers connected to a physical Tofino P4
switch with 32x100 Gbps ports. The servers are equipped
with Intel Xeon E5-2430 CPUs (2.20 GHz) and 64 GB RAM,
running Ubuntu 20.04 with kernel version 5.15.0. One server
acts as the client, attempting to authenticate and access various
services hosted on the second server. The third server is set
up to act as an external attacker, aiming to gain unauthorized
access to the running services. We deploy three real-world
services that require authentication and generate tokens for
authorized clients. In addition, we evaluate NETCAP using
two real enterprise workloads: the LANL Unified Host and
Network dataset [21] and the DARPA OpTC dataset [20]. The
LANL dataset contains activities from 17K hosts, while the
DARPA OpTC dataset contains activities across 1K hosts.

We present three representative attacks targeting widely
used protocols: (1) OAuth 2.0 session hijacking, (2) Kerberos
pass-the-ticket attacks, and (3) SSH lateral movement. These
scenarios reflect real-world threats across cloud platforms,
enterprise identity systems, and remote administration settings.
However, NETCAP’s protocol-agnostic design enables broader
applicability beyond these specific examples.

Attack 1: Web application session hijacking. OAuth 2.0 is a
widely used authorization protocol in web services [62]. Upon
client authentication, the server generates an access token,
often in the form of a JWT. We set up a Node.js server running
an OAuth 2.0 service that generates and validates JWTs. On
the client machine, we use a terminal process to initiate a curl
command that sends valid credentials to the web server and
receives a JWT. This JWT is stored in the client’s file system.
We then initiate a wget process to retrieve a confidential file
from the web server using the JWT. Concurrently, we set
up an external attacker that exploits a vsftpd service running
in the client’s system with a malicious backdoor [63]. Using
Metasploit [64]], we gain access and exfiltrate the client’s JWT
to the attacker via scp. Using the stolen JWT, we retrieve
the confidential file without requiring valid credentials.
illustrates the JWT theft attack.

Attack 2: Kerberos pass-the-ticket attack. Kerberos is a
widely used authentication service, particularly in identity

o eBPF
User Authentication ‘Authentication
¢ \ c Server
1| TGT
TGT TGT
TGT FTP Server
e X

Fig. 7: Denying the usage of a valid TGT to access the target
server

User Authentication eBPF
e c
Pl L Data
SSH SSH
Control Data 3
o ‘xServer

Fig. 8: Preventing SSH session hijacking

management systems (e.g., Windows Active Directory) [65].
It issues a Ticket Granting Ticket (TGT), which is a token that
authenticates clients to request access to specific services. We
use a client machine to authenticate with the Kerberos server
and receive a TGT for FTP server access. Using a malicious
user account on the client system, we exploit a vulnerability
in the vsftpd service [63]] running on the system to gain access
to the victim’s account. This allows the attacker to access
the legitimate client’s memory and harvest the TGT from the
Kerberos ticket cache. We then utilize Impacket [66] with the
stolen TGT to gain the needed permissions to access the FTP
server. [Fig. 7| illustrates the TGT theft attack.

Attack 3: Lateral movement via SSH multiplexing. SSH
is a critical tool for secure remote connections and system
administration [9]. It supports SSH multiplexing, which allows
a client to create multiple SSH sessions over a single network
connection using a control socket. This socket is created
after the client successfully authenticates with their SSH keys.
Consider the scenario (illustrated in [Fig. 8) where we deploy a
malicious attacker with access to the client’s machine. We run
an SSH client that uses its private SSH keys to authenticate
to an SSH server. We set up the attacker to exploit SSH
multiplexing by reconfiguring the SSH configuration file to
enable this feature. Consequently, when the legitimate SSH
process establishes a connection and authenticates to the server
via SSH keys, a control socket is opened. This allows the
attacker to create their own SSH processes and establish
sessions to the server without authentication.

g 1250 1 TN T

2 |t

S 1008 —— Forwarding baseline (benign traffic)

‘a 75 NetCap (benign traffic)

) 009 u. Attack traffic (3 attack cases)

g 2507

E O- * Weveree-'..... | N ! e'
0 20 40 60

Time (sec)

Fig. 9: NETCAP blocks all session hijacking attempts while
imposing negligible overhead on benign traffic

B. RQI: Defense Effectiveness

We evaluate the effectiveness of NETCAP in countering the
three attacks we constructed (Section VII-A)). To quantify the
network performance, we measure the throughput using iperf3.
We compare the throughput achieved under NETCAP to the
forwarding baseline, which just forwards packets without our
defense scheme. We manually assign a valid capability to
the iperf3 process on the client machine. We set the lifetime
of capabilities to 10 seconds and configure the client-based
program to send a capability packet every 1 second.

When the attacker steals tokens (Attack 1, 2) or hijacks
SSH sessions (Attack 3), they initiate traffic via malicious pro-
cesses. Since these processes lack the necessary capabilities,
NETCAP drops their traffic. As shown in[Fig. 9] NETCAP suc-
cessfully blocks all unauthorized traffic across three scenarios,
resulting in O throughput for malicious attempts. Meanwhile,
we can observe that the throughput of benign traffic is similar
to that of the forwarding baseline. The results demonstrate
that NETCAP effectively blocks malicious connections with
negligible network overhead.

C. RQ?2: Scalability with Real-World Workloads

We evaluate NETCAP’s scalability using the LANL Unified
Host and Network dataset [21] and the DARPA OpTC dataset
[20]. Both datasets contain real-world traces from enterprise
networks. We replay the traces of both datasets to the physical
switch using the Distributed Internet Traffic Generator (D-
ITG) [67]. We modify the server-side eBPF program to send
a signal to the switch for every new network flow. This allows
NETCAP to generate and validate capabilities for all network
flows. We configure the capability lifetime at 10 seconds, with
the client-side program sending a capability packet every 3
seconds in one experiment run and 1 second in a different
run. To quantify the latency added by NETCAP to network
flows, we measure the flow completion time (FCT) of both
experiment runs under the forwarding baseline and NETCAP.

illustrates the cumulative distribution function
(CDF) of the FCT across both datasets while NETCAP is
running. As NETCAP validates and refreshes capabilities in-
side the hardware, we observe no significant changes in FCT
across both datasets, whether the client-side program sends a

1.0 /‘_____________ 1.0 :’......-..............
l’ ¥
. 0.8 ! E 0.8 "
8 —— No defense O i — Nodefense
0.6 NetCap (3sec) 0.61}! NetCap (3sec)
=== NetCap (Isec) ! === NetCap (Isec)
0441 0.4 . .
0 500 1000 0 75 140
FCT (sec) FCT (sec)

(a) FCT in LANL (b) FCT in DARPA OpTC

Fig. 10: NETCAP imposes negligible overhead under real-
world enterprise workloads

capability packet every 3 seconds or 1 second. This confirms
that NETCAP scales with real-world enterprise traces while
performing an effective fine-grained capability validation.

Maximum number of active connections. We leverage a
feature of the P4 compiler to measure NETCAP’s capacity
for handling active connections. The P4 compiler ensures that
compiled programs fit within the switch’s hardware pipeline
and are guaranteed to run at line rate. Programs that exceed
available hardware resources are rejected at compilation time.
Using this feature, we gradually increase the maximum num-
ber of active connections in the switch’s match/action table
until the P4 compiler rejects the program and record the
largest number supported. We find that up to 200K concurrent
connections can be supported at the same time. This is more
than the number of active connections found in Facebook
frontend clusters, which range between 10K-100K [68].

D. RQ3: System Overhead

Capability traffic overhead. We analyze the traffic overhead
of generating capability packets at varying intervals. We set
up a client-side eBPF program that sends a 64-byte capability
packet at different intervals. To simulate real-world workloads,
we generate 100K connections through the switch, which is
the typical number of active connections found in enterprise
clusters [68]]. shows total capability traffic over 60 sec-
onds. Sending a capability packet every 1 second adds 366 MB
of traffic overhead, but ensures frequent capability refreshes.
Conversely, sending capability packets less frequently (every
10-15 seconds) significantly reduces traffic overhead by 93%,
while still refreshing capabilities within seconds. These results
indicate that the interval at which capability packets are sent
significantly impacts the traffic volume.

Separate vs. appended capability packet headers. We
evaluate the performance of NETCAP when appending capa-
bilities to data packets (NETCAP-appended) versus sending
them separately (NETCAP-separate). We measure the network
throughput under the two configurations using the iperf3 tool.
As shown in [Fig. 12] embedding capabilities directly into
data packets (NETCAP-appended) results in a noticeable drop
in throughput. This drop is attributed to the added latency
incurred by (1) the eBPF program inserting the capability

12

<

1 3 5 8§ 10 13 15

Capability packet interval (in sec)

Traffic overhe

Fig. 11: Traffic overhead from generating capability packets
at different intervals

§ 12501 o oA A~ Sz~

& 1000 :

= NI U Deth RO

g 7501 —— Forwarding baseline

g« 500 ----- NetCap-seperate (1 second)

% @ NetCap-append (3 seconds)

o 250 7

EE @ NetCap-append (1 second)

I 01_® i i i i i i
0 10 20 30 40 50 60

Time (sec)

Fig. 12: Network performance of separate capability packet
stream compared to directly modifying data packets

header at the TC hook and (2) the switch cloning packets
to construct capability packets. In contrast, transmitting capa-
bilities in a separate stream of capability packets (NETCAP-
separate) maintains throughput levels similar to the forwarding
baseline, as capability packets are processed independently
from the data packets. These observations are consistent with

our testbed experiments in

eBPF-based programs overhead. We evaluate the client-side
program’s overhead by measuring the average latency of the
eBPF programs over 10K runs. The client-side program incurs
an additional 7-8 microseconds to craft capability packets in
the egress TC hook. Since these packets are not part of the
data stream, they do not impact the throughput of the active
connections. For the ingress eBPF program, the client-side
program adds a negligible 2-3 microseconds to parse capability
packets. For the server-side program, our TC egress program
incurs a one-time 7-8 microseconds overhead to append the
signal to a single packet in a connection, which is negligible.

We also measure the storage overhead of maintaining the
CapMap in kernel memory. With 4GB of recommended kernel
memory for eBPF programs, a 32-bit hash key, and a 20-byte
capability struct value, we can store up to ~167M capabilities
inside the kernel memory. This number of capabilities is
sufficient considering the typical number of processes in a
Linux system of 65,536 (each process can have up to 2.5K
capabilities at the same time).

Switch resource utilization. We retrieve the switch resource
utilization for NETCAP via the Intel P4 Insight tool. As

13

reported, NETCAP consumes only a small amount of the
shared storage resources (8% of SRAM and 0.1% of TCAM).
As NETCAP offloads capabilities to client machines, it reduces
its impact on the memory resources inside the switch. Addi-
tionally, NETCAP consumes 80% of the HashUnit capacity to
generate and validate capabilities. Current HashUnit utilization
remains low, allowing NETCAP to run alongside more feature-
rich P4 programs (e.g., tna_simple_switch.p4), as HashUnits
are generally used less by other network programs.

Throughput and latency. We evaluate NETCAP’s impact
on network throughput and latency by comparing its capa-
bility operations to a basic P4 program that only forwards
packets. The comparison results are shown in After
successful compilation, the pipelined nature of the switch
hardware ensures that NETCAP’s P4 program operates at a
rate of 99.9Gbps per port, matching the forwarding baseline.
As for the latency, NETCAP introduces an additional 110-
130 nanoseconds to match data packets with the capability
decision. This increase is negligible considering that the RTT
in typical enterprise networks spans several milliseconds.

E. RQ4: Support for Complex Applications

To evaluate NETCAP’s transparency, we assess how our
capability-based scheme supports different complex server
applications. We compare the network performance of data
transfers under NETCAP and the forwarding baseline across
Apache, Node.js, and FTP servers. Each server is configured
with JWT-based authentication to generate tokens. We gener-
ate 1K client requests with capability lifetimes of 3 seconds
and 1 second. shows the CDFs of the FCT for the
applications under both lifetimes. NETCAP maintains line rate
performance for all applications while processing all requests.

F. RQ5: Comparison with eBPF-Only Design

We compare NETCAP’s switch-based design against an
eBPF-only design (i.e., without the switch data plane) that we
implement, which represents NETCAP’s logic running entirely
on the server. Specifically, we move NETCAP’s switch-side
capability generation and validation logic into an ingress eBPF
program. This program validates capability packets, refreshes
expired ones, and stores security decisions in BPF maps,
which are later matched against incoming data packets. This
comparison allows us to evaluate (1) the responsiveness of
capability validation, and (2) the resilience to saturation attacks
under heavy capability refresh loads.

Capability validation responsiveness. The eBPF-only design
faces serious limitations in both performance and security.
We measure the time to validate a capability and install a
security decision. The eBPF-only design suffers from 12 mil-
liseconds delays to process a single capability packet. These
delays stem primarily from frequent kernel-user space context
switches and the overhead of accessing BPF maps. Executing
secure cryptographic MACs (i.e., Chaskey) on the server CPU
further increases this overhead, causing bottlenecks in packet
processing and reducing network throughput by up to 40%.

1.0

1.0< .‘- B = ==l P = GmE=E W 1.0’ “ e EmE=EE S = Fs
H g Il
i " i
1! 0.8 ’ 1!
w087 ¢ o / w 081 4
f f
8 i — No defense 8 0.6 —— No defense 8 i — No defense
0.61} NetCap (3sec) / NetCap (3sec) 0.67 ! NetCap (3sec)
§ === NetCap (Isec) 041 '.' = = = NetCap (1sec) ;=== NetCap (Isec)
0.4~ : : : : : T - ; ; - - 04 = : : : : :
00 0.1 02 03 04 05 o 1 2 3 4 5 0.0 0.1 02 03 04 05
FCT (sec) FCT (sec) FCT (sec)

(a) Apache server FCT

(b) FTP server FCT

(¢) Node.js server FCT

Fig. 13: NETCAP achieves native network performance across various complex real-world applications (Apache, FTP, Node.js)

while validating capabilities at the process-level

~ 100 6005
'§ - Throughput S
[

D w77 Latency 400 2
2. 50 g
= =
%‘3 200 >
= g
0 3

Baseline (Fwd) Match Cap Decmon Traffic w/o Cap
Action

Fig. 14: Impact of NETCAP on throughput and switch pro-
cessing latency compared to the forwarding baseline

Such latency is too high for practical deployments, causing
noticeable delays in user access. In contrast, NETCAP’s in-
network implementation validates capabilities in the data
plane, reducing delays to 2 microseconds in our Tofino 1
switch while processing packets at line rate (99.9 Gbps per
port). This represents a performance improvement of four
orders of magnitude over the eBPF-only design.

Resilience against saturation attacks. Beyond performance
implications, the eBPF-only design introduces a single point
of failure that can be easily exploited. We simulate an attacker
flooding both designs with expired capabilities to be refreshed.
In the eBPF-only design, the server CPU handles every refresh,
allowing the attacker to quickly overwhelm the server and
exhaust its processing capacity. As shown in[Fig. T3] the eBPF-
only design begins to saturate at an attack rate of 20K packet-
s/s, and drops 99% of capability requests once the attack rate
reaches 200K packets/s. At this point, legitimate clients could
no longer receive refreshed capabilities, losing access to their
services. In contrast, NETCAP processes capabilities within
the data plane, maintaining a stable performance for legitimate
clients and refreshing 100% of capabilities regardless of attack
rate. These results show that offloading capability enforcement
to the switch data plane is not just an optimization, but
a necessity for resilience against saturation attacks and for
preventing the server from becoming a bottleneck.

g 100 A Z

% 80 %,

‘5 60 —— NetCap

2 401 = = = ¢BPF-only design

g 20 ’.’

2 01 . . asssnsnn
10K 20K 100K 200K 500K 600K

Attack strength (Capability packets /s)

Fig. 15: Resilience against saturation attacks in server-based
approach compared to NETCAP’s in-network approach

VIII. DISCUSSION

Capability delegation. Complex modern applications often
involve a parent process delegating tasks to child processes.
For example, an update-manager process responsible for
managing software updates on a system may spawn a child
curl process to download software updates. In this scenario,
the child process receives capabilities from NETCAP, but the
parent process will lack the capability to communicate with the
server without re-authenticating itself. To relax this constraint,
our client-side program treats the parent as equally trusted and
assigns a new capability to both the authorized child and its
parent. This enables seamless capability reuse strictly between
parent and child processes without introducing an additional
attack surface. We should note that supporting on-demand
capability delegation between arbitrary processes would re-
quire careful eBPF-based designs for secure delegation and
revocation, which we leave for future work.

Offloading eBPF programs to SmartNIC. Currently, eBPF
programs can only attach to the TC egress hook, where they
access the packet’s socket buffer [38]]. This leads to slower pro-
cessing as the TC hook requires modifying the socket buffer’s
metadata. As a result, adding extra headers to every outgoing
packet at the TC hook will degrade network performance.

14

NETCAP avoids this by using separate capability packets,
avoiding costly operations on data packets. Alternatively, the
eBPF program can run on a SmartNIC [69] (assuming the
client is equipped with a SmartNIC). This approach enables
faster packet processing within the NIC, reducing the overhead
of real-time packet manipulation. NETCAP can leverage this to
design a system that appends capability headers directly to data
packets. However, this solution requires careful coordination
between the SmartNIC and kernel eBPF programs that trace
process activity. We will leave the integration of process-level
visibility on SmartNICs for future work.

eBPF security. eBPF provides a secure sandbox environment
for running user-defined programs in the kernel, enforced by
a strict verifier to prevent unsafe or malicious operations that
could crash or compromise the kernel. While several recent
works [70], [71]] have exploited bugs in the verifier to accept
unsafe eBPF programs, allowing arbitrary reads and writes,
many opposing works [[72], [73] have proposed techniques to
enhance safety verification. Additionally, further efforts aim
to harden eBPF against compromised eBPF programs [74]]
through fine-grained BPF privileges [[75]. Such efforts further
bolster the security of our eBPF programs.

TEE. Trusted execution environments (TEEs) and NETCAP
address fundamentally different threat surfaces. TEEs protect
code and data confidentiality within enclaves and provide
attestation to prove execution integrity. However, they protect
tokens only while inside the enclave. Token thefts that occur
outside enclaves (e.g., man-in-the-middle attacks, vulnerable
applications) remain largely unprotected. In contrast, NET-
CAP’s in-network, process-level authentication ensures only
authorized processes can access remote resources, regardless
of how or where a token is stolen.

IX. RELATED WORK

In-network programmability. Programmable switches are
widely used in data centers to offload various networking
tasks [76], [77], [78]]. Another line of works developed de-
fense primitives inside the network to defend against covert
channels [35]], cross-host attacks [36], distributed denial-of-
service [37]], [38], privacy threats [40], and RDMA vulnera-
bilities [[79]. Unlike NETCAP, these works do not continuously
authenticate processes to mitigate token hijacking.
Leveraging programmable switches and eBPF,
P4Control [36] prevents cross-host lateral movements
by performing in-network decentralized information flow
control (DIFC). It assigns identical labels to processes within
hosts to track attacker movement and stop cross-host attacks.
In contrast, NETCAP addresses a fundamentally different
problem: preventing attackers from exploiting stolen tokens
to gain unauthorized network access. It achieves this by
performing in-network, process-level authentication using
capabilities that are cryptographically bound to process
identifiers. NETCAP further introduces new techniques for
secure capability creation, refresh, and process binding in
the data plane, along with optimizations for high-throughput

15

validation. Together, systems like NETCAP and P4Control
highlight a promising research direction toward co-designing
programmable switches and eBPF for end-to-end security
enforcement across hosts and the network.

eBPF for cybersecurity. Existing efforts leveraged eBPF to
develop offensive tools and eBPF-based malware [80], [81].
Other works explored new attacks that exploit eBPF programs
to compromise cloud containers [74]. On the defensive side,
several works [82], [83] utilized eBPF to enhance OS logging.
NETCAP employs eBPF in a new way to enhance authentica-
tion schemes and enable process-level capabilities within the
OS without kernel modifications.

Device-level continuous authentication. Traditional continu-
ous authentication techniques have centered on verifying the
user at the device level, particularly for smartphones and
virtual/augmented reality (VR/AR) systems. These approaches
authenticate users through biometric data (e.g., fingerprints
and voice) [84], [85] or behavioral patterns (e.g., keystroke
dynamics) [86]. While these methods effectively verify users
on devices, they still implicitly trust all processes on an authen-
ticated device. In contrast, NETCAP is the first to enforce fine-
grained, network-level access control by associating access
capabilities with individual processes rather than assuming
device-level trust.

X. CONCLUSION

NETCAP is a protocol-independent, capability-based system
designed to prevent attackers from using stolen tokens to gain
unauthorized access to remote resources. It is the first solution
to leverage programmable data planes for deploying a line-
rate, capability-based defense that enables continuous access
validation with negligible overhead.

There are several promising directions for future work.
First, NETCAP’s capability-based system can be extended
to restrict memory access within the OS without excessive
changes to the underlying kernel. This can be achieved by
leveraging our eBPF programs to enforce fine-grained security
decisions directly within the kernel. Second, we can extend our
eBPF programs to support dynamic capability delegation and
revocation across processes in different hosts to enable more
complex workflows. Third, NETCAP can leverage SmartNICs
to offload our eBPF programs onto the NICs, enabling faster
packet modification and integrating process-level visibility
directly at the network interface.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and our
shepherd for their constructive comments and suggestions.
This work is supported in part by the National Science Foun-
dation under grant CNS-2442171 and the Google Academic
Research Award. Any opinions, findings, and conclusions
made in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

[6]
[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

[22]
(23]

[24]

[25]

[26]

[27]

REFERENCES

MITRE, “Steal application access token,” https://attack.mitre.org/techn
iques/T1528/, 2024.

R. Becwar, “Use alternate authentication material: Pass the ticket,” https:
/lattack.mitre.org/techniques/T1550/003/, 2023.

A. Pingios, “Remote service session hijacking: Ssh hijacking,” https:
/lattack.mitre.org/techniques/T1563/001/, 2020.

G. Rosen, “Security update,” https://about.fb.com/news/2018/09/securi
ty-update/, 2018.

R. Lakshmanan, “Nearly 100,000 npm users’ credentials stolen in github
oauth breach,” https://thehackernews.com/2022/05/nearly-100000-npm
-users-credentials.html, 2022.

NIST, “Cve-2017-5638 detail,” https://nvd.nist.gov/vuln/detail/cve-201
7-5638, 2024.

L. Roy, S. Lyakhov, Y. Jang, and M. Rosulek, “Practical Privacy-
Preserving authentication for SSH,” in USENIX Security, 2022, pp.
3345-3362.

E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague, “Oauth
demystified for mobile application developers,” in ACM CCS, 2014, p.
892-903.

S. K. Singh, S. Gautam, C. Cartier, S. Patil, and R. Ricci, “Where the
wild things are: Brute-Force SSH attacks in the wild and how to stop
them,” in USENIX NSDI, 2024, pp. 1731-1750.

T. A. Rahat, Y. Feng, and Y. Tian, “Cerberus: Query-driven scalable
vulnerability detection in oauth service provider implementations,” in
ACM CCS, 2022, p. 2459-2473.

“Recent github supply chain attack traced to leaked spotbugs token,”
https://www.bleepingcomputer.com/news/security/recent- github-suppl
y-chain-attack-traced- to-leaked- spotbugs-token/.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” in ACM
SIGCOMM CCR, 2014, p. 87-95.

Okta, “What is the lifetime of okta minted json web tokens(jwt),” https:
/Isupport.okta.com/help/s/article/What-1s- the-lifetime-of-the-JWT- tok|
ens?language=en_US, 2023.

H. Wang, Y. Zhang, J. Li, H. Liu, W. Yang, B. Li, and D. Gu, “Vulner-
ability assessment of oauth implementations in android applications,” in
ACSAC, 2015, p. 61-70.

S.-T. Sun and K. Beznosov, “The devil is in the (implementation) details:
an empirical analysis of oauth sso systems,” in ACM CCS, 2012, p.
378-390.

S. Sciancalepore, G. Piro, D. Caldarola, G. Boggia, and G. Bianchi,
“Oauth-iot: An access control framework for the internet of things based
on open standards,” in /JEEE ISCC, 2017, pp. 676—681.

Microsoft, “Refresh tokens with oauth 2.0,” https://learn.microsoft.co
m/en-us/linkedin/shared/authentication/programmatic-refresh-tokens,
2023.

——, “Maximum lifetime for service ticket,” https://learn.microsoft.co
m/en-us/previous-versions/windows/it- pro/windows- 10/security/threa
t-protection/security- policy-settings/maximum-lifetime- for-service-tic
ket, 2017.

K. Patil, “Four reasons why ssh key management is challenging,” https:
/Iwww.appviewx.com/blogs/four-reasons- why-ssh-key-management-1
s-challenging/, 2024.

A. W. and O. M., “Operationally transparent cyber datase,” https://gith
ub.com/FiveDirections/OpTC-datal 2020.

M. J. M. Turcotte, A. D. Kent, and C. Hash, “Unified host and network
data set,” in World Scientific, 2018, pp. 1-22.

“NetCap source code,” https://github.com/peng- gao-lab/netcap!

R. S. Sandhu and P. Samarati, “Access control: principle and practice,”
in IEEE Communications Magazine, 1994, pp. 40—48.

J. B. Dennis and E. C. Van Horn, “Programming semantics for multi-
programmed computations,” in Commun. ACM, 1966, p. 143-155.

A. Birgisson, J. G. Politz, U. Erlingsson, A. Taly, M. Vrable, and
M. Lentczner, “Macaroons: Cookies with contextual caveats for decen-
tralized authorization in the cloud,” in NDSS, 2014.

S. Gusmeroli, S. Piccione, and D. Rotondi, “Iot access control issues:
A capability based approach,” in IEEE IMIS, 2012, pp. 787-792.

J. Z. Yu, C. Watt, A. Badole, T. E. Carlson, and P. Saxena, “Capstone:
A capability-based foundation for trustless secure memory access,” in
USENIX Security, 2023, pp. 787-804.

16

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]
[42]
[43]
[44]

[45]

[40]

(471

(48]

[49]
[50]

[51]

[52]

[53]

R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton, M. Roe, S. Son, and M. Vadera, “Cheri: A hybrid capability-
system architecture for scalable software compartmentalization,” in
IEEE S&P, 2015, pp. 20-37.

N. Mouha, B. Mennink, A. Van Herrewege, D. Watanabe, B. Preneel,
and I. Verbauwhede, “Chaskey: an efficient mac algorithm for 32-bit
microcontrollers,” in SAC, 2014, pp. 306-323.

M. Francisco, B. Ferreira, M. V. Fernando, E. Ramos, and S. Marin,
“PAChaskey: An efficient MAC algorithm for PISA switches,” in /IEEE
ICNP, 2024.

Y. Ji, S. Lee, M. Fazzini, J. Allen, E. Downing, T. Kim, A. Orso,
and W. Lee, “Enabling refinable Cross-Host attack investigation with
efficient data flow tagging and tracking,” in USENIX Security, 2018, pp.
1705-1722.

P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, and P. Mittal, “AIQL:
Enabling efficient attack investigation from system monitoring data,” in
USENIX ATC, 2018, pp. 113-125.

X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Unicorn:
Runtime provenance-based detector for advanced persistent threats,” in
NDSS, 2020.

Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and X. Luo,
“Programmable In-Network security for context-aware BYOD policies,”
in USENIX Security, 2020, pp. 595-612.

J. Xing, Q. Kang, and A. Chen, “Netwarden: Mitigating network covert
channels while preserving performance,” in USENIX Security, 2020, pp.
2039-2056.

O. Bajaber, B. Ji, and P. Gao, “P4control: Line-rate cross-host attack
prevention via in-network information flow control enabled by pro-
grammable switches and ebpf,” in IEEE S&P, 2024, pp. 146-146.

Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jagen: A High-Performance Switch-Native
approach for detecting and mitigating volumetric DDoS attacks with
programmable switches,” in USENIX Security, 2021, pp. 3829-3846.
S. Yoo, X. Chen, and J. Rexford, “Smartcookie: Blocking large-scale
syn floods with a split-proxy defense on programmable data planes,” in
USENIX Security, 2024.

MITRE, “Capec-102: Session sidejacking,” https://capec.mitre.org/data
/definitions/102.html, 2018.

T. Datta, N. Feamster, J. Rexford, and L. Wang, “SPINE: Surveillance
protection in the network elements,” in USENIX FOCI, 2019.

S. Yoo and X. Chen, “Secure keyed hashing on programmable switches,”
in SPIN, 2021, p. 16-22.

G. Ewing, “Reverse-engineering a crc algorithm,” https://www.csse.can
terbury.ac.nz/greg.ewing/essays/CRC-Reverse- Engineering.html,

D. R. Stinson, Cryptography: Theory and Practice. Chapman and
Hall/CRC, 2005.

“The security flag in the ipv4 header ietf rfc3514,” https://www.ietf.org
[rfc/rte3514.1xt.

E. Papadogiannaki and S. Ioannidis, “A survey on encrypted network
traffic analysis applications, techniques, and countermeasures,” in ACM
Comput. Surv., 2021.

B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,
D. Xu, and J. Qian, “Eavesdropping on Fine-Grained user activities
within smartphone apps over encrypted network traffic,” in USENIX
WOOoT, 2016.

IBM, “Tcp header field definitions,” https://www.ibm.com/docs/en/aix/
7.2?topic=protocols-tcp-header-field-definitions.

“Computing tcp’s retransmission timer,” https://datatracker.ietf.org/doc
/html/rfc6298.

“ebpf official website,” https://ebpf.io/.

T. Hgiland-Jgrgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The express data path: Fast
programmable packet processing in the operating system kernel,” in
CoNEXT, 2018, p. 54-66.

L. Yu, S. Ma, Z. Zhang, G. Tao, X. Zhang, D. Xu, V. E. Urias, H. W. Lin,
G. F. Ciocarlie, V. Yegneswaran et al., “Alchemist: Fusing application
and audit logs for precise attack provenance without instrumentation.”
in NDSS, 2021.

“What is an access log?” https://www.crowdstrike.com/en-us/cybersec
urity- 101/observability/access-logs/.

G. Ho, A. Sharma, M. Javed, V. Paxson, and D. Wagner, “Detecting
credential spearphishing in enterprise settings,” in USENIX Security,
2017, pp. 469-485.

https://attack.mitre.org/techniques/T1528/
https://attack.mitre.org/techniques/T1528/
https://attack.mitre.org/techniques/T1550/003/
https://attack.mitre.org/techniques/T1550/003/
https://attack.mitre.org/techniques/T1563/001/
https://attack.mitre.org/techniques/T1563/001/
https://about.fb.com/news/2018/09/security-update/
https://about.fb.com/news/2018/09/security-update/
https://thehackernews.com/2022/05/nearly-100000-npm-users-credentials.html
https://thehackernews.com/2022/05/nearly-100000-npm-users-credentials.html
https://nvd.nist.gov/vuln/detail/cve-2017-5638
https://nvd.nist.gov/vuln/detail/cve-2017-5638
https://www.bleepingcomputer.com/news/security/recent-github-supply-chain-attack-traced-to-leaked-spotbugs-token/
https://www.bleepingcomputer.com/news/security/recent-github-supply-chain-attack-traced-to-leaked-spotbugs-token/
https://support.okta.com/help/s/article/What-is-the-lifetime-of-the-JWT-tokens?language=en_US
https://support.okta.com/help/s/article/What-is-the-lifetime-of-the-JWT-tokens?language=en_US
https://support.okta.com/help/s/article/What-is-the-lifetime-of-the-JWT-tokens?language=en_US
https://learn.microsoft.com/en-us/linkedin/shared/authentication/programmatic-refresh-tokens
https://learn.microsoft.com/en-us/linkedin/shared/authentication/programmatic-refresh-tokens
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/security-policy-settings/maximum-lifetime-for-service-ticket
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/security-policy-settings/maximum-lifetime-for-service-ticket
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/security-policy-settings/maximum-lifetime-for-service-ticket
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/security-policy-settings/maximum-lifetime-for-service-ticket
https://www.appviewx.com/blogs/four-reasons-why-ssh-key-management-is-challenging/
https://www.appviewx.com/blogs/four-reasons-why-ssh-key-management-is-challenging/
https://www.appviewx.com/blogs/four-reasons-why-ssh-key-management-is-challenging/
https://github.com/FiveDirections/OpTC-data
https://github.com/FiveDirections/OpTC-data
https://github.com/peng-gao-lab/netcap
https://capec.mitre.org/data/definitions/102.html
https://capec.mitre.org/data/definitions/102.html
https://www.csse.canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-Engineering.html
https://www.csse.canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-Engineering.html
https://www.ietf.org/rfc/rfc3514.txt
https://www.ietf.org/rfc/rfc3514.txt
https://www.ibm.com/docs/en/aix/7.2?topic=protocols-tcp-header-field-definitions
https://www.ibm.com/docs/en/aix/7.2?topic=protocols-tcp-header-field-definitions
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://ebpf.io/
https://www.crowdstrike.com/en-us/cybersecurity-101/observability/access-logs/
https://www.crowdstrike.com/en-us/cybersecurity-101/observability/access-logs/

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]
[64]

[65]

[66]
[67]

[68]

[69]

C. O. Pérez, A. Daffalla, T. Ristenpart, and C. Tech, “Encrypted
access logging for online accounts: Device attributions without device
tracking,” in USENIX Security, 2025.

S. Jero, W. Koch, R. Skowyra, H. Okhravi, C. Nita-Rotaru, and
D. Bigelow, “Identifier binding attacks and defenses in Software-Defined
networks,” in USENIX Security, 2017, pp. 415-432.

“Facebook engineering. disaggregate: Networking recap,” https://engine
ering.fb.com/2017/01/30/data-center-engineering/disaggregate- network
ing-recap/.

“Onf, in collaboration with microsoft, google and intel, brings sdn to
sonic™.” https://p4.org/ont-in-collaboration- with-microsoft- google-and
-intel-brings-sdn-to-sonic/,

“Making the switch: Disruptive telecom white box collaboration ac-
celerates and opens the platform, powering unprecedented network
performance and insights,” https://about.att.com/story/white_box_co
llaboration.html.

“Using programmable chip and open source sw toward disaggregated
network packet broker and 5g upf,” https://opennetworking.org/wp-con
tent/uploads/2020/12/10_350pm_Chris_Park.pdf,

“Cisco joins the p4 consortium as a premier member in 2025,” https:
/Ip4.org/cisco-joins-the-p4-consortium- as-a-premier-member-in-2025/,
“Juniper advancing disaggregation through p4 runtime integration,” http
s://blogs.juniper.net/en-us/engineering-simplicity/juniper-advancing-dis
aggregation-through-p4-runtime-integration,

D. Hardt, “The oauth 2.0 authorization framework,” https://datatracker.
ietf.org/doc/html/rfc6749,

NIST, “Cve-2011-2523 detail,” https://nvd.nist.gov/vuln/detail/CVE-2
011-2523, 2021.

Rapid7, “Metasploit framework,” https://docs.rapid7.com/metasploit/m
sf-overview/, 2008.

Microsoft, “Kerberos authentication overview,” https://learn.microsoft.
com/en-us/windows- server/security/kerberos/kerberos-authentication-o
Verview.

fortra, “Impacket,” https://github.com/fortra/impacket.

A. Botta, A. Dainotti, and A. Pescape, “A tool for the generation of
realistic network workload for emerging networking scenarios,” Comput.
Netw., pp. 3531-3547, 2012.

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making stateful
layer-4 load balancing fast and cheap using switching asics,” in ACM
SIGCOMM, 2017, p. 15-28.

M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli, G. Siracusano,
G. Bianchi, A. Cammarano, A. Palumbo, L. Petrucci, and R. Bifulco,
“hXDP: Efficient software packet processing on FPGA NICs,” in
USENIX OSDI, 2020, pp. 973-990.

17

[70]
[71]

[72]

[73]

(74

[75]
[76]
(771

[78]

[79]

[80]
[81]
[82]
[83]

[84]

[85]

[86]

NIST, “Cve-2023-39191 detail,” https://nvd.nist.gov/vuln/detail/CVE-2
023-39191, 2023.

——, “Cve-2020-8835 detail,” https://nvd.nist.gov/vuln/detail/CVE-202
0-8835, 2020.

L. Nelson, J. V. Geffen, E. Torlak, and X. Wang, “Specification and
verification in the field: Applying formal methods to BPF just-in-time
compilers in the linux kernel,” in USENIX OSDI, 2020, pp. 41-61.

E. Gershuni, N. Amit, A. Gurfinkel, N. Narodytska, J. A. Navas,
N. Rinetzky, L. Ryzhyk, and M. Sagiv, “Simple and precise static
analysis of untrusted linux kernel extensions,” in ACM PLDI, 2019, p.
1069-1084.

Y. He, R. Guo, Y. Xing, X. Che, K. Sun, Z. Liu, K. Xu, and Q. Li,
“Cross container attacks: The bewildered ebpf on clouds,” in USENIX
Security, 2023, pp. 5971-5988.

J. Corbet, “Finer-grained bpf tokens,” https://lwn.net/Articles/947173/.
N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula:
Scalable load balancing using programmable data planes,” in ACM
SOSR, 2016.

A. Devraj, L. Wang, and J. Rexford, “Redact: Refraction networking
from the data center,” in ACM SIGCOMM CCR, 2021, p. 15-22.

J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
hardware accelerated network monitoring to concurrent and dynamic
queries with *Flow,” in USENIX ATC, 2018, pp. 823-835.

J. Xing, K.-F. Hsu, Y. Qiu, Z. Yang, H. Liu, and A. Chen, “Bedrock:
Programmable network support for secure RDMA systems,” in USENIX
Security, 2022, pp. 2585-2600.

G. Fournier, S. Baubeau, and S. Baubeau, “ebpf, i thought we were
friends,” in DEFCON, 2021.

J. Dileo, “Evil ebpf: Practical abuses of an in-kernel bytecode runtime,”
in DEFCON, 2019.

R. Sekar, H. Kimm, and R. Aich, “eaudit: A fast, scalable and deployable
audit data collection system,” in IEEE S&P, 2024, pp. 87-87.

S. Y. Lim, B. Stelea, X. Han, and T. Pasquier, “Secure namespaced
kernel audit for containers,” in ACM SoCC, 2021, p. 518-532.

S. Eberz, K. B. Rasmussen, V. Lenders, and 1. Martinovic, “Evaluating
behavioral biometrics for continuous authentication: Challenges and
metrics,” in ACM AsiaCCS, 2017, p. 386-399.

H. Feng, K. Fawaz, and K. G. Shin, “Continuous authentication for voice
assistants,” in MobiCom, 2017, p. 343-355.

S. P. Banerjee and D. L. Woodard, “Biometric authentication and
identification using keystroke dynamics: A survey,” Journal of Pattern
recognition research, pp. 116139, 2012.

https://engineering.fb.com/2017/01/30/data-center-engineering/disaggregate-networking-recap/
https://engineering.fb.com/2017/01/30/data-center-engineering/disaggregate-networking-recap/
https://engineering.fb.com/2017/01/30/data-center-engineering/disaggregate-networking-recap/
https://p4.org/onf-in-collaboration-with-microsoft-google-and-intel-brings-sdn-to-sonic/
https://p4.org/onf-in-collaboration-with-microsoft-google-and-intel-brings-sdn-to-sonic/
https://about.att.com/story/white_box_collaboration.html
https://about.att.com/story/white_box_collaboration.html
https://opennetworking.org/wp-content/uploads/2020/12/10_350pm_Chris_Park.pdf
https://opennetworking.org/wp-content/uploads/2020/12/10_350pm_Chris_Park.pdf
https://p4.org/cisco-joins-the-p4-consortium-as-a-premier-member-in-2025/
https://p4.org/cisco-joins-the-p4-consortium-as-a-premier-member-in-2025/
https://blogs.juniper.net/en-us/engineering-simplicity/juniper-advancing-disaggregation-through-p4-runtime-integration
https://blogs.juniper.net/en-us/engineering-simplicity/juniper-advancing-disaggregation-through-p4-runtime-integration
https://blogs.juniper.net/en-us/engineering-simplicity/juniper-advancing-disaggregation-through-p4-runtime-integration
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://nvd.nist.gov/vuln/detail/CVE-2011-2523
https://nvd.nist.gov/vuln/detail/CVE-2011-2523
https://docs.rapid7.com/metasploit/msf-overview/
https://docs.rapid7.com/metasploit/msf-overview/
https://learn.microsoft.com/en-us/windows-server/security/kerberos/kerberos-authentication-overview
https://learn.microsoft.com/en-us/windows-server/security/kerberos/kerberos-authentication-overview
https://learn.microsoft.com/en-us/windows-server/security/kerberos/kerberos-authentication-overview
https://github.com/fortra/impacket
https://nvd.nist.gov/vuln/detail/CVE-2023-39191
https://nvd.nist.gov/vuln/detail/CVE-2023-39191
https://nvd.nist.gov/vuln/detail/CVE-2020-8835
https://nvd.nist.gov/vuln/detail/CVE-2020-8835
https://lwn.net/Articles/947173/

	I Introduction
	II Background
	III NetCap System Overview
	III-A High-Level Operational Flow
	III-B Threat Model

	IV In-Network Capability-Based Defense
	IV-A Capability Design
	IV-B Capability Packet
	IV-C Capability Generation
	IV-D Capability Validation
	IV-E Capability Refresh

	V Lightweight eBPF Programs
	V-A Client-Side Program
	V-B Server-Side Program

	VI Handling Practical Requirements
	VI-A Resilience Against Advanced Attackers
	VI-B Operational Deployment

	VII Evaluation
	VII-A Testbed Setup & Attack Implementations
	VII-B RQ1: Defense Effectiveness
	VII-C RQ2: Scalability with Real-World Workloads
	VII-D RQ3: System Overhead
	VII-E RQ4: Support for Complex Applications
	VII-F RQ5: Comparison with eBPF-Only Design

	VIII Discussion
	IX Related Work
	X Conclusion
	References

