Through the Authentication Maze: Detecting
Authentication Bypass Vulnerabilities in Firmware
Binaries

Nanyu Zhong!23:4

, Yuekang Li®, Yanyan Zou'23*1, Jiaxu Zhao''?3, Jinwei Dong

1,2,3,4 1,2,3,4

, Yang Xiao

Bingwei Peng!234, Yeting Lil:234, Wei Wang! 23, Wei Huo®231
"nstitute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China
3Key Laboratory of Network Assessment Technology, Chinese Academy of Sciences, China
4Beijing Key Laboratory of Network Security and Protection Technology, China
SUniversity of New South Wales, Australia
{zhongnanyu, zouyanyan, zhaojiaxu, dongjinwei, Xxiaoyang, pengbingwei, liyeting, wwei, huowei} @iie.ac.cn,
yuekang.li@unsw.edu.au

Abstract—Embedded web services are widely integrated into
network devices such as routers and gateways. These services are
often exposed to public networks, making them attractive targets
for authentication bypass attacks. Such vulnerabilities allow at-
tackers to gain privileged access without valid credentials, posing
serious risks to device integrity and network security. Existing
detection techniques rely heavily on manual analysis or rigid
heuristics, making them ineffective against diverse and evolving
authentication schemes. We present AuthSpark, a novel dynamic
analysis framework for detecting authentication bypass vulnera-
bilities in firmware binaries. AuthSpark leverages execution trace
similarity between successful and failed authentication attempts
to locate credential checks. It then tracks authentication-related
variable propagation to identify authentication success logic.
Finally, it employs a customized greybox fuzzer with task-
specific power scheduling and mutation strategies to explore
bypass paths. We evaluate AuthSpark on firmware from 32 real-
world devices containing 14 known vulnerabilities. AuthSpark
successfully identifies 42 out of 44 credential checks and detects
14 of the known vulnerabilities. More importantly, when applied
to the latest firmware versions, AuthSpark discovers six zero-
day authentication bypass vulnerabilities, four of which received
official assignments (three CVEs and one PSV). These results
highlight AuthSpark’s effectiveness and its potential to uncover
critical security flaws in real-world systems.

I. INTRODUCTION

Embedded systems [43] are key components of modern
network infrastructure, including routers, firewalls, gateways.
Their security is vital to protect users and enterprises globally.
Web services are widely deployed on these devices and often
exposed to public networks for remote access. This exposure
creates a large and vulnerable attack surface.

In recent years, many techniques have been proposed to
detect vulnerabilities in web services of embedded system

TThese authors are co-corresponding authors.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.242757
www.ndss-symposium.org

firmware [5], [29], [49], [51]. Most approaches focus on
memory-related flaws, while logic vulnerabilities remain un-
derstudied. A key type of such logic vulnerability is authen-
tication bypass. These vulnerabilities allow attackers to gain
privileged access without valid credentials. Once bypassed,
attackers can perform post-authentication operations, modify
configurations, and compromise connected networks. Such
flaws are especially dangerous, as they may grant access
needed to exploit other vulnerabilities.

To detect authentication bypass vulnerabilities, researchers
have proposed several techniques, most of which are over a
decade old. Two representative examples are Firmalice [38]
(2015) and Weasel [37] (2013). Both adopt a two-phase
strategy: first, they locate authentication-related code either
manually or heuristically; then, they apply symbolic execu-
tion to explore paths from unauthenticated inputs that reach
privileged operations without proper checks. Later, general-
purpose frameworks such as Avatar [48] and Symbion [17]
were introduced to enhance symbolic execution for firmware
analysis, both of which can be leveraged by authentication
bypass vulnerability detection.

A key limitation of existing approaches is their reliance on
heuristics or manual effort to identify authentication-related
code. This restricts them to specific authentication patterns
or web requests. However, web services often use diverse
and evolving authentication schemes. Existing tools lack the
generalizability to handle such diversity. As a result, new
vulnerabilities continue to emerge. For example, CVE-2023-
20198 [7], an authentication bypass flaw in Cisco IOS XE,
compromised over 140,000 systems and was actively exploited
in the wild [6], [8], [34]. To address this, we need to develop
metaheuristics that are general enough to support diverse
authentication mechanisms.

By analyzing authentication bypass vulnerabilities reported
in recent years, we observe a common underlying rationale.
Despite diverse authentication mechanisms, a vulnerability ex-

ists if there is an execution path that reaches the authentication
success state without proper credential checks. Based on this
insight, detecting such vulnerabilities requires identifying three
key elements: @ the credential checks; @ the code representing
the authentication success state; ® the bypass paths between
them. Advances in symbolic execution and fuzzing have made
exploring bypassing paths relatively straightforward. Thus, the
main challenge lies in accurately identifying credential checks
and authentication success codes. While existing techniques
partially incorporate this idea, they do not focus explicitly
on solving this problem. Therefore, we propose to focus on
addressing this challenge systematically and effectively.

We make two key observations to precisely identify cre-
dential checks and authentication success codes. First, across
different authentication mechanisms, execution traces for suc-
cessful and failed authentication requests are highly similar
before the credential checks but diverge significantly after-
ward. This change in similarity can signal the location of
the credential checks. Second, the results of credential checks
propagate through specific variables. Tracking the propagation
of these variables helps locate the code corresponding to
authentication success.

Based on these observations, we propose AuthSpark, a
metaheuristic-based approach for detecting authentication by-
pass vulnerabilities in firmware binaries. First, AuthSpark
uses dynamic analysis to generate execution traces for suc-
cessful and failed authentication requests. It then compares
these traces to identify credential checking code, referred
to as credential verification statements in our methodology.
Next, AuthSpark tracks the propagation of the variables
storing the results of credential checks to locate authentication
success codes, termed authentication-success basic blocks.
Finally, AuthSpark employs a specialized greybox fuzzer to
explore authentication bypass paths, using power scheduling
and mutation strategies tailored to this task.

We conducted a comprehensive evaluation of AuthSpark
on a dataset of 32 devices containing 14 known vulnera-
bilities. For localization of credential verification statements,
AuthSpark correctly identified 42 out of 44 locations. For
vulnerability detection, it successfully detected 14 known
vulnerabilities using the identified authentication-success basic
blocks, demonstrating the effectiveness of our approach. More
importantly, when applied to the latest firmware of the 32
devices, AuthSpark discovered six zero-day vulnerabilities,
four of which received official assignments (three CVEs and
one PSV).

In summary, we make the following contributions:

« We analyze the rationale behind authentication bypass vul-
nerabilities and reveal the limitations of existing methods
and metaheuristics in detecting them.

« We propose the first dynamic approach for detecting au-
thentication bypass vulnerabilities. It leverages dynamic
information to identify credential verification statements
and authentication-success basic blocks, and uses this in-
formation to help a customized fuzzer effectively detect

o User Credential

. P 9 Access Token
<«

o Token Credential , Resource
5

0 Response
<
<

®

Web Server

Client

(a) The process of Token-based authentication

Attack Vector o

Login request handler

Rl B RN
Attacker IM, Access Token
Attack Vector e

Protected Resources requests
handlers

—
N—

] - .
Database Configuration

Credential Verification

(b) Threat Model of Authentication Bypass Vulnerability

Y

Password System Shell

Fig. 1: Authentication Process and Vulnerability Illustration

authentication bypass vulnerabilities.

« We implement AuthSpark, a novel dynamic analysis frame-
work that automatically dissects authentication logic, accu-
rately detects known authentication bypass vulnerabilities,
and uncovers six previously unknown ones.

II. BACKGROUND AND RELATED WORK
A. Authentication Module

Authentication is the process by which your identity is
confirmed through the use of some kind of credential [15].
As illustrated in Figure 1(a), a typical authentication workflow
for web services consists of four steps: @ the client submits
credentials to the web server, ® the web server validates
these credentials and issues an access token upon successful
verification, @ the user presents this token to access protected
resources, and @ the server verifies the token before granting
access to the requested resources. This token-based authenti-
cation pattern has become the de facto standard in the web
services [20] of modern embedded systems.

Modern embedded systems support multiple authentication
mechanisms to accommodate diverse use cases and security
requirements, each falling into one of two fundamental cat-
egories: (1) User credentials: authentication factors used to
prove user identity during the login process. These include
passwords, PIN codes, and digital certificates. (2) Token
credentials: authentication proofs issued by the server after
successful login, used to maintain authenticated sessions and
access protected resources. These include session cookies,
JWT tokens, OAuth access tokens, API keys, and session IDs.

B. Related Work

While various studies have examined authentication by-
passes targeting specific vulnerability root causes or particular

authentication mechanisms, such as misconfigurations [36],
hardcoded credentials [19], [24], or specific authentication
mechanisms [2], [12], [16], [27], [42], we focus on general-
purpose approaches that can systematically identify authen-
tication bypass vulnerabilities across different authentication
mechanisms.

Firmalice [38] and Weasel [37] represent general-purpose
detection approaches for authentication bypass vulnerabilities,
not targeting specific authentication mechanisms. Both follow
a two-phase process: first locating authentication-related code
either heuristically or manually, then employing symbolic
execution to discover paths from unauthenticated user inputs
that bypass authentication checks and reach authentication suc-
cess code. Firmalice [38] requires firmware security policies,
manually provided by human analysts, to locate privileged
codes that should only execute after successful authentication.
Once located, it symbolically finds paths from user inputs
requiring unique constraint solutions to indicate bypasses. Un-
like Firmalice, Weasel [37] focuses on backdoor detection by
finding any feasible path from user input to backdoor functions
that avoids authentication validation code. To identify authen-
tication validation code, Weasel employs a dynamic approach:
it first collects execution traces, then it tries to construct
decision trees through differential analysis and identifies the
dominator nodes as the authentication validation codes. As
a result, the limited execution traces collected significantly
constrains Weasel’s identification ability.

Despite enhancements from tools like Avatar [48] and
Symbion [17] for binary symbolic execution, these methods
share critical limitations: they rely on manual annotation or
heuristic-based identification of unauthenticated user inputs
and authentication success code, failing to provide a compre-
hensive, generalizable solution for identifying these elements.

In the domain of fuzzing for embedded systems, various
works have improved different aspects of the fuzzing process.
FirmFuzz [40], FirmAFL [53] and greenhouse [41] focus on
emulation adaptation, while IoTFuzzer [4], SRFuzzer [49],
Snipuzz [14] and housefuzz [47] enhance mutation strategies
and feedback mechanisms. However, none specifically target
authentication bypass vulnerabilities.

III. THREAT MODEL

This paper focuses on attacks targeting web services in
embedded systems, specifically investigating logic flaws that
enable anonymous users to bypass authentication mechanisms.
We define authentication bypass vulnerabilities as security
flaws allowing attackers to circumvent authentication mecha-
nisms, directly executing privileged functionality or accessing
protected resources without proper credentials. From a security
perspective, web service endpoints are either protected (requir-
ing valid token credentials) or public (e.g., login operations,
static resources). Based on this classification, authentication
bypass vulnerabilities can only occur at endpoints involving
credential verification: login operations and token-protected
resources. As illustrated in Figure 1(b), we identify two pri-
mary attack vectors: @ bypassing user credential verification

to obtain valid token credentials without providing correct
user credentials; @ bypassing token credential verification
to directly access protected resources without valid token
credentials. We assume attackers can craft arbitrary HTTP
requests and have knowledge of API endpoints but lack valid
user or token credentials. This threat model guides our analysis
to identify authentication related codes and detect potential
bypass paths in real-world embedded systems.

IV. MOTIVATING EXAMPLE
A. The Authentication Bypass Vulnerability

Figure 2 presents an authentication bypass vulnerability
discovered by our tool in a real-world embedded systems.
The device implements a web service based on the lighttpd
framework [28] with a custom authentication module. All
HTTP requests are processed through function sub_4040,
which determines authentication outcomes by invoking ei-
ther ntlm_authentication or basic_authentication for NTLM [10]
or Basic [35] authentication respectively. In addition, this
backend has configuration file which determines requests from
which type of user agents should be handled by NTLM
authentication.

Normally, Basic authentication and NTLM authentication
are two separate routines. For basic authentication, usernames
and passwords are used. The front-end stores the username
and password as a base64 string in the Authorization entry of
the request header sent to the back-end. The workflow of a
successful Basic authentication is shown by steps to
in Figure 2. For NTLM authentication, the back-end first
checks the name of the user agent (step @), then invokes
parse_ntim_info (step @) to parse the NTLM payload and set the
smb_info.gflag to 1 if the payload is successfully parsed. After
that, the back-end invokes ntim_authentication (step @), checks
the authentication information (step @), and goes through
another check (step ®) before success (step @).

However, an attacker can craft a malicious request to bypass
the authentication using the User-Agent entry of an NTLM
authentication request and the Authorization entry of a Basic
authentication request. The main reason is that the mixture of
entries from both types of authentication triggers a corner case
where both authentication routines think it is the responsibility
of the other routine to handle the request and therefore no
authentication is done in the end. First, since User—Agent

is WebDrive, the back-end sets the ua_flag to 3 (step @)
and will invoke ntim_authentication later on (step ®). Second,
because the Authorization entry is for Basic authentication,
parse_ntim_info will fail and the value of smb_info.gflag will
remain 2. Therefore, in ntim_authentication, the authentication
check for the Authorization entry will be skipped (steps ©,0,0).
And ntlm_authentication returns authentication success without
doing any authentication checks at all (step ©).

B. Limitations of Existing Techniques

From the vulnerability introduced in Figure 2, we can
observe that different from memory-related vulnerabilities,
authentication bypass vulnerabilities are logic vulnerabilities

1int sub_27D0 (server *srv, connection *conn){ 1.1 int sub_4040(server *srv, connection *conn, plugxn data spy{| | 1int smb_info_init(server *srv, connection

2 2. conn.ua_flag = 2; 2 *conn) {

3 user_agent = get_element (conn.req.headers, "user-Agent"); 3 sub_27D0(srv, conn); 3_ - -conn.smb_info.qflag = 2;

4 for(i = 0; srv.ua _cfg.cnt >i; i++){ 4 . ,1 if (parse_ntlm_info(szv, co n))eo

5 cfg = get_config_values(srv,srv.ua_cfg.items[i],...); 5 smb info_init(srv, conmn);* 5 conn.smb_info.qflag = 1;

Gooox.f (!stenomp (user_agent, ofg.ua_str, cfg.ua len)) - - | -|-&7 pif T conn.ua_flag == 3)gq /| 6 . -conn.smb_info.state = 0; o e

7 conn.ua flag = 3j- - = === === ===~ T v10 = ntlm authentication(srv, conn)' l' o

8 break; ‘8 else if (conn.ua_flag == 2) . N T A

9 } 9 ...v10 = basic_authentication{srv, conn);® T

10} 410 TES w10 N u| 1int ntlm_authentication(server *srv,
--111 ,/ return 2; // auth failure \ *| 2connection *conn) {

1 int basic_authentication(server *srv, connection *conn){ 12 lse 3

2 3 7 return 1; // auth success 1| @~ »if (conn.smb_info.qflag == 2){

3 do_account_authentication (*user, *passwd) (o 141} N printf(..., "host_query do the BASIC|

4 ST - . % 1 | 6aythentication");

5 printe(..) vesror 455..."); Configuration File auth_ntlm_ua: WebDrive] \ o oto LABEL 36; o

6 return 2; // auth failiwe._ - \ W 8

7, Basic Authentication Request Header) \ e if (smb_send session_auth(srv, conn,

g/,) return 0; // auth success 0o User-agent: Mozilla/s. | ign lm_dat:;t;;n—;)

’ Authorization: Basic YWRtaW46YWRtaWd= \Lg LABEL_: 36:

R et 13 -p-if (conn.smb_info.state == 5){
;1:1(: do_account_authentication (char user, char passwd) { [Ty ————— e P i Connoo
3 o User-Agent: WebDrive D 15nflm data)

i "logi N iyati 16 return 2; // auth failure
4 printf(..., "login success\n"); Authorization: NTLM TIRMTVNTUAADARA. .. ruthentication| |19
5 result = 1; // auth success thentication }
. } — Variable 18 | printf(..., "leave

Authentication Bypass Request . 19ntim ication") ;

7 e \ = . .
8 return result ° User-Agent: WebDrive \ [20 return 0;)3(00// auth success
9} Authorization: Basic XXXXXXXXXX \[21)

Fig. 2: Overview of CVE-2025-2492.

which do not emit explicitly observable signals (like crashes)
when triggered. Therefore, it is important to make the trig-
gering of such vulnerabilities observable to detect them. For
this purpose, understanding the authentication workflows is
necessary, which is the focus of existing techniques.

Most existing techniques focus on leveraging particular
authentication patterns or specific web requests. However,
different targets can have very different authentication mech-
anisms and processes. Moreover, even one target can have
multiple authentication routines, such as Basic authentication
and NTLM authentication in the motivating example. There-
fore, existing techniques are often specific to certain types
of authentication bypass patterns, lacking generalizability and
scalability.

As shown in Figure 2, the statement highlighted at lines
4 and 5 of do_account_authentication is recognized as the
authentication-related codes by Firmalice because it contains
“login success”, however, NTLM-based routines lack such
lexical clues, causing Firmalice to miss the NTLM-related
vulnerabilities entirely. For Weasel, a representative heuristic-
based approach, it can not handle such multi-authentication
mechanisms either. It can only identify sub_4040 as the au-
thentication validation function, and misses two other au-
thentication validation functions (i.e., basic_authentication and
ntlm_authentication).

C. Observations and Inspirations

To find a general solution for detecting authentication by-
pass vulnerabilities regardless of the authentication workflows,
we need to understand their nature. The rationale of authen-
tication bypass vulnerabilities is simple: there is an execution
path to reach the code representing the authentication success
states without going through proper credential checks. Accord-
ingly, we can simplify the detection of authentication bypass
vulnerabilities into three key steps: @ Identifying the creden-
tial check results; @ Identifying the authentication success
codes; ® Explore the bypass paths. Therefore, in this work, we
propose to focus effort on solving these key issues, especially

the precise identification of the authentication success codes
and credential check results.

We introduce the key concepts to describe these types of
authentication related code. Authentication variables (AVs)
are the variables that store the authentication outcomes. Ex-
amples of authentication variables are highlighted in blue
in Figure 2. Authentication conditional statements are con-
ditional statements that check the values of authentication
variables and diverge the control flow. Specifically, for each
authentication mechanism, there is a unique authentication
conditional statement called credential verification statement
(CVS), and it is usually the initial authentication conditional
statement for an authentication mechanism. Its functionality
is to verify the correctness of the credential provided in the
request. Examples of authentication conditional statements are
highlighted in orange in Figure 2. There are two types of
basic blocks whose executions depend on the authentication
conditional statements. Authentication-success basic blocks are
basic blocks that are executed if and only if authentication suc-
ceeds, while authentication-failure basic blocks are executed
otherwise.

We make two observations about the characteristics of
authentication related code:

o Observation 1. For authentication success requests and
authentication failure requests, their execution traces are
highly similar before the CVSs but are very different after
the CVSs. For example, in Figure 2, no matter whether a
request causes authentication to succeed or fail, the program
always needs to set certain flags (sub_27D0, smb_info_init).
However, after reaching the CVSs, the execution traces are
very different with failures terminate earlier.

o Observation 2. Identifying CVSs can help improve the
identification of authentication-success basic blocks. The
authentication-success basic blocks are dominated by the ba-
sic blocks containing authentication conditional statements
that in turn can be determined by CVSs. In other words,
all execution paths reaching the authentication-success basic

rification Statement Detection

Auth By

Path Mining

Auth Success () Basic Block
Request

Execution Path

Divergence Point Identification

3 ovs

([Auth Failure
Request

[evs i

Extraction And Pa

i m% ; |0
N | H —— Auth Bypass Pum):(——

CVS Identification via

Alerts

Similarity Scoring [Coverage] Distance [String [

Guided Fuzzing

Validate

\ Dynamic Instrumentation ‘

Trace-to-Pseudocode Alignment

Authentication-success Basic Block Identification

by

Output

Vauth: Cauth. Bsucc. Bfai

Auth-Related Function
Extraction

Inter-procedural Iterative
Dataflow Analysis

Vv,
if (auth() O Vauth
D Cauth
lauthisucc =1 ‘ lauthisucc = 0‘ b 4 B B
[

Fig. 3: Overview of AuthSpark

blocks must also pass through the authentication conditional
statements.

Based on observations, we can get inspiration for designing
the techniques used by AuthSpark to identify precisely the
CVSs and authentication-success basic blocks.

« Inspiration 1. We can craft authentication success requests
and authentication failure requests and differentiate their
execution traces to locate CVSs. The execution traces have
high similarity before the CVSs but diverge sharply after-
wards, resulting in low similarity.

« Inspiration 2. The authentication variables used by CVSs
are propagated to affect the execution of authentication-
success basic blocks in two ways: (1) they are returned
upward to calling functions for further validation, and (2)
they flow forward to subsequent program points where they
control access to resources and privileged operations. The
propagation patterns are easier to identify and they can
help with the identification of authentication-success basic
blocks.

V. METHODOLOGY

Figure 3 depicts the overview of AuthSpark. It works mainly
in four phases. @ Preprocessing. AuthSpark collects pairs of
dynamic execution traces by dynamic instrumentation, each of
which comprises both successful and failure authentication re-
quests, and transforms the traces into sequences of pseudocode
statements for subsequent analysis. @ Credential Verification
Statement Detection. For each of the trace pairs, AuthSpark
extracts all divergence points using differential analysis, and
identifies the CVS from these candidates based on the ranking
derived from their trace-similarity scores. @ Authentication-
success Basic Block Identification. Starting from the de-
tected CVS, AuthSpark extracts authentication-related func-
tions and performs iterative inter-procedural dataflow analysis
to identify authentication variables and their propagation paths.
Through this analysis, it locates all authentication conditional
statements and determines the authentication-success basic
blocks related to these statements’ outcomes. @ Authentication

Bypass Path Mining. Three complementary fuzzing strate-
gies, i.e., coverage-guided, distance-guided, and string-guided
fuzzing, are employed to explore paths from unauthenticated
inputs toward authentication-success basic blocks. When any
of these blocks is reached, a validation check is performed
to verify whether an authentication bypass vulnerability is
discovered.

A. Preprocessing

Paired Authentication Requests. To identify authentication
related code, AuthSpark performs differential analysis on a
pair of authentication requests: one valid (success) and one
invalid (failure). This minimal input requirement applies to
both user and token credentials, as defined in Section II-A.
For example, in token-based authentication, the request pair
is generated by capturing a successful request (Request A)
and mutating only the token field to create an invalid variant
(Request B), such as replacing the token with a dummy value
like “AAA”. Such a scoped mutation ensures that any behav-
ioral divergence in execution traces arises from the credential
verification, which is essential for subsequent analysis.
Dynamic Instrumentation. With the request pair constructed,
AuthSpark uses QEMU-based dynamic instrumentation to
record execution traces for both requests. The instrumentation
logs basic block entries to produce a precise control-flow trace.
These traces provide the foundation for identifying divergences
in execution paths attributable to credential checks.
Trace-to-Pseudocode Alignment. To enable subsequent
variable- and statement-level analysis, which is difficult to
perform directly on assembly, AuthSpark aligns each dynamic
trace with its corresponding pseudocode representation gen-
erated by IDA Pro [21]. AuthSpark constructs an interpro-
cedural control flow graph (ICFG) at the pseudocode level.
Each ICFG node corresponds to a decompiled basic block
containing high-level statements. To reconstruct semantically
accurate execution paths, each basic block in the dynamic
trace is mapped to its corresponding pseudocode block by
resolving its constituent instructions. To handle interprocedural
and concurrent behaviors (e.g., thread interleaving), AuthSpark

recovers and propagates call-stack context at each call site.
This produces an ordered, context-aware pseudocode trace
faithfully representing the observed execution.

To support identification of authentication-success basic
blocks, AuthSpark further constructs statement-level control
dependence graph (CDG) and data dependence graph (DDG)
for each function in the binary.

B. Credential Verification Statement Detection

The credential verification statement (CVS) refers to the
code location where authentication outcomes are determined,
typically implemented as conditional branches that validate
user or token credentials (e.g., the result of strcmp). Based
on Inspiration 1, AuthSpark employs a two-stage differential
analysis approach: first identifying divergence points from
execution trace pairs, then scoring them to pinpoint the most
probable CVS.

Divergence Point Identification. To identify all divergence
points between two execution traces, we employ the Longest
Common Subsequence (LCS) algorithm [3]. We treat the last
element of this identified common subsequence as a candidate
divergence point, since it marks the final shared behavior
before the corresponding divergent segment. However, directly
applying LCS to raw traces, which often contain tens of
thousands of basic blocks, is computationally prohibitive [45].
To address this, we adopt a divide-and-conquer strategy based
on call stack contexts. We first abstract each trace into a
sequence of call-stack entries at function call sites, where
each entry is represented as a “(call-stack, trace index)” tuple.
Applying LCS to these call-stack sequences yields reliable
alignment positions (detailed in Appendix A), which partition
the original traces into smaller aligned segments. Within each
segment, LCS can then be applied efficiently for fine-grained
divergence detection, and the last element of each local LCS
result is extracted as a candidate divergence point.

CVS Identification via Similarity Scoring. Not all diver-
gence points correspond to credential checks. Guided by
Inspiration 1, which characterizes the CVS as the bound-
ary between identical and diverging execution, we assign a
similarity-based score to each divergence point. To opera-
tionalize this, we use the RO algorithm [44], which computes
a normalized similarity score in the [0, 1] by identifying
matching blocks while preserving their relative order.

The score for each divergence point d is defined as:

P(d) = Simbaefore X (1 - 5 X Simafter) (1)

where Simpefore and Simgge; denote the sequence similarity
before and after d, respectively. The exponent o (with o > 1)
amplifies the reward for near-identical prefixes, while g (re-
stricted to 0 < 8 < 1) applies a moderate penalty to post-
divergence similarity. AuthSpark uses Equation 1 to assign
each divergence point a score and produce a prioritized ranking
of candidate CVSs. Analysts can then confirm the true CVS
by examining candidates in order of priority, as higher-ranked
divergence points, particularly those appearing earlier in the
execution traces, are more likely to correspond to credential

checks. In practice, the configuration (a, 8) = (3,0.2) pro-
vides a reliable ranking across devices, and our evaluation
(Section VII-B) shows that the top-ranked candidate is the
correct CVS for most firmware samples. As shown in Figure 2,
this method successfully identifies the credential statement
(Label @) in do_account_authentication.

C. Authentication-success Basic Block Identification

Starting from the identified CVS, AuthSpark first extracts
the initial authentication variables. It then models the sub-
sequent analysis as a standard forward data-flow problem
on the ICFG and performs an iterative data-flow analysis to
derive new authentication variables. Based on Inspiration 2,
AuthSpark tracks how these variables propagate and are used
in the program so that it can systematically identify the
authentication conditional statements and the authentication-
success basic blocks that depend on the CVS. The overall
workflow appears in Alg. 1.

During the iterative analysis, AuthSpark maintains three
types of authentication-related code elements, each represented
as a set:

1) Authentication variables (AVs), denoted by Vum. Each
element has the form (v, val, z), where v is a variable, val is
its value, and z is the authentication success or failure outcome
carried by v.

2) Authentication conditional statements (ACSs), denoted
by Caum- Each element has the form (c, branch, x), where c is
a conditional statement, branch denotes the condition is true
or not, and x is the authentication outcome.

3) Authentication-success and authentication-failure basic
blocks (ASBBs, AFBBs), denoted by Bgycec, Brail, respectively.
These blocks appear on success or failure traces of the
authentication logic.

As detailed in Alg. 1, AuthSpark first inserts the CVS into
Cauh as the starting point of the authentication logic (line 2—
3). The getBranches function extracts the branch outcomes
of statement s from the successful and failed authentication
traces. It then applies MapDynamicInfoTol CFG to map the dy-
namic execution information from authentication request pair
traces onto ICFG nodes. This information includes function
return values, variable values, and function argument values,
and this mapping supports precise analysis in later stages.
The analysis proceeds iteratively to identify ASBBs. In each
iteration, it selects functions containing any authentication-
related code elements (line 7, GetAuthRlateFunc) and analyzes
their basic blocks in topological order (line 11). For each
basic block, AuthSpark applies the customized AuthGen and
AuthKill functions (lines 12-16) to compute the generation
and kill sets, which are designed to track AVs. Based on these
sets, AuthSpark updates the OUT set of the block and extends
Vauth- It then calls UpdateAuthConds and UpdateAuthBlocks
(lines 17-18) to update Caym, Bsuce, and Bgy. The process
continues until no new authentication-related code elements
appear, (i.e., X = AP™), at which point the analysis converges
and produces the final ASBBs.

Alg. 1: Auth-success basic blocks Identification

Alg. 2: Authentication Variables Gen/Kill Analysis

Input : Credential verification statement s, program’s ICFG
execution traces Psucc and prail
Output: Authentication-success basic blocks Bgyce
1 vauth — @, Bsucc — @, Bfail — @ Xprev <~ @,
2 (Brsuc, Breil) <— getBranches(s, (Psuce, Prail))
3 Cauth < {(8, BTsucc, succ), (s, Bri, fail) };
4 MapDynamicInfoTol CFG(psuce, Prail, ICFG);

5 while 3.X S {Vautll, Caurh, Bsucm Bfail} X 79 X7 do

6 AP — {Vauth7 Cauth» Bsucc: Bfail};
7 relevantFuncList = GerAuthRlateFunc(Cautn, Vaun, ICFG);
8 foreach f € relevantFuncList do

foreach block B € f.blocks do
10 | OUT([B] « 0;
11 foreach block B € f.blocks in topological order do
12 INB]«+ U OUT[P];

Pepred(B)
13 geng < AuthGen(B, Van, Caun);
14 killg < AuthKill(B, Vaun);
15 OUT[B] <+ geng U (IN[B] — killg);
16 Vauth = Vaun U OUT[B];
17 Caulh —
UpdaleAMthcondS(B, Vaulh, caulh7 Bsucc, B[ail, Psucc pfail);ls

18 (Bsucc, Bfaj]) < UpdateAuthBlocks(B, Caulh; Bsucc, Bfail);

19 return Bi..;

AuthSpark maintains the authentication variable set Vym
using customized AuthGen and AuthKill functions (Alg. 2).
These two functions compute the generation and kill sets
for AVs during data-flow analysis, supporting the analysis of
local variables, global variables, and function return variables.
Specifically, the AuthGen function identifies AVs based on
three conditions. A variable is marked as an authentication
variable if it satisfies any of the following conditions:

1) Control dependency condition (lines 4-6). If an as-
signment’s control dependencies come from a strict subset
of the identified authentication conditional branches in Cyyp,
and all these branches correspond to the same authentication
outcome (either success or fail), the variable is marked as
an AV. AuthSpark then records the associated authentication
outcome for this assignment via determineAuthOutcome. The
strict subset requirement ensures that the assignment occurs
exclusively under a single authentication outcome, thereby
excluding variables whose control dependencies span mixed
authentication outcomes. AuthSpark leverages the constructed
pseudocode-level CDG to obtain the control dependencies for
each assignment (ControlDepsPost in Alg. 2). The “Post”
notation indicates we only consider control dependencies
occurring after the CVS, as we focus on how authentication
results influence subsequent behavior. For example, as shown
in Figure 4, AuthSpark only considers control dependencies
starting from “C1”.

2) Copy propagation condition (lines 7-8). If a variable
receives its value from an authentication variable in V

1 Func AuthGen (B, Vaum, Coun)

2 geng < 0

3 foreach statement s € B do

4 if s is assign v = val and ControlDepsPost(s) C Cauth
then

5 X < determineAuthOutcome(s, Cquth);

6 L geng < geng U {(v, val, x)};

7 if s is copy assign v = v’ and 3 (v’, val’, x) € Vau, then
| geng < geng U {(v, val’, x)};

9 if s is return stmts with vrer and (Vrer € vars(Vautn)
or ControlDepsPost(s) NCqutn 7 0) then

10 func <— getContaining Func(s);

1 Valsuce, Valgqir < evaluateRetVal(s, Vautn);

12 if valsyce # valyq; then

geng < geng U
{(func, valycc, succ), (func, val 441, fail) };

"L

14 return geng;

15 Func AuthKill (B, Vam)

16 killp < 0;

17 foreach statement s € B do

L if s redefines v and 3(v, _,) € Vaun then

19 L killg + killg U {(v,_,_) € Van};

20 return killg;

through a copy statement, it inherits the authentication status.

3) Function return variable condition (lines 9-13). If a
return statement contains an authentication variable or its con-
trol dependencies include any ACS, AuthSpark first retrieves
its enclosing function via getContainingFunc and evaluates
the return values under success and failure contexts using
evaluateRetVal. If the two return values differ, the function’s
return value is also considered an authentication variable.

Correspondingly, the AuthKill function (lines 15-20) re-
moves authentication variables that are redefined, ensuring
the correct maintenance of authentication variable states. In
this algorithm, (v,_,) denotes all AV elements whose variable
component is v. It is important to note that killing a variable
only removes its authentication property at the current program
point, not at previous points.

Building upon the identified authentication variables,
AuthSpark needs to further determine which conditional state-
ments and basic blocks are related to authentication logic
(Alg. 3). We design the UpdateAuthConds and UpdateAuth-
Blocks functions to identify ACSs and ASBBs during iteration.

The UpdateAuthConds function employs two strategies to
identify ACS: @ Variable-based identification (lines 3-6). It
checks whether a conditional statement uses only authentica-
tion variable in V,, (extracted via refVars). If so, AuthSpark
uses an SMT solver [46], based on the values of these
authentication variables, to infer the authentication outcome
of the branch. After the outcome is inferred, AuthSpark
records the conditional statement together with the evaluated
branch direction and its corresponding authentication outcome
into Cyyp. @ Dynamic trace-based identification (lines 7-12).

’ Round 1 ‘ ’ Round 2 ‘ ’ Round 3 ’ Round ?
********* i i i I S i Syt W
do_account_authentication -> var: int . [l basic_authentication EEESSE'CLEEER.1 . : sub_4040 -> var: int . X
| 1
| | |
| i *passwd) ! |
| . I \
\ Bl @)|resuic = 1; | |result = 0; ‘.BZ . I c4 v1o |
| I)| return 0 ‘ return 2 ‘ B4 : !
[| .
: " . B7 | return 1 ‘ return 2 ‘ BS : Continue. ..
| . S o
Round 1 Round 2 sub_1A5C -> var: int . | Round 3
| |
C4,False,
(C1,True, succ) (c2,False, succ)(C3, False, succ) | | do account authentication (fuser, | | ((u raise ::;)
(C1,False, fail) (C2,True,fail) (C3,True,fail) | Cc3 - *pasgwd) | , '
(v5,0,succ) (V6,1, succ)
(V1,1,suce) (V2,1,suce) | (v3,0,succ) (V4,0,succ) | | - c c
@ (V1,0,£ail) (V2,0,fail) (V3,2.fail) (V4.2 fail) \ \ @ (v5,2,£ail) (V6,2,fail)
B,
a1 83,85 | B ’ i£(19) ‘ return 2 ‘BS | &7
! Crad
B2 B4,B6 Il | @ B8

Fig. 4: The ASBBs identification process in the motivation example. “C1-C4” denotes ACSs, “V1-V6” denotes AVs, and
“B1-B8” denotes ASBBs and AFBBs. Among them, V2, V3, V4, and V6 are function return variables identified as AVs. The
table shows the newly identified authentication-related code elements in each iteration round.

Alg. 3: Authentication Conditionals and Blocks Update

1 Func UpdateAuthConds (B, Vauth, caulh7 Bsucc, Bfaih Psucc, pfail)
2 foreach s € B and s is cond stmts do

3 if refVars(s) C vars(Vautn) then
4 foreach x € {succ, fail} do
5 branch < EvalBranch(s, Vauth, X);
6 Cauth < Cauth U {(s, branch, x)};
if s € dynamic traces then

foreach x € {succ, fail} do
9 Br, = getBranches((s, pz);
10 Blockop, = EvalBlock(—Brg, s);

// T is the opposite outcome of x

1 if Blockopp € Bz then
12 L Cautn < Caun U {(8, Brg, x), (s, =Brz, X) };

13 return Couen;

14 Func UpdateAuthBlocks (B, Couth, Bsuce, Brait)
15 s = FirstStmt(B);

16 if ControlDepsPost(s) C Cqutn then

17 X <— determineAuthOutcome(s, Cautn);

18 L B, + B, U{B};

19 return (Bsucanail);

This rule leverages dynamic traces to infer implicit ACSs
that are not directly tied to authentication variables. If, in
a successful authentication trace, the branch not taken by a
conditional statement leads to a basic block in the AFBBs
set Bpi, AuthSpark infers that taking the opposite branch
would result in authentication failure. This behavior is fully
consistent with the semantics of ACSs, in which the two
branch directions correspond to the two authentication out-
comes. Symmetrically, the same reasoning applies to failure
traces. Therefore, AuthSpark adds both branch directions and
their corresponding authentication outcomes to Cyy-

Based on the updated Cuy, the UpdateAuthBlocks func-
tion determines whether the current basic block should be
included in the authentication-success or authentication-failure

block sets. It checks whether the control dependencies of the
block’s first statement form a non-empty subset of Cyyp. If
so, AuthSpark determines the corresponding authentication
outcome based on the matched element’s outcome in Cuyp
via determineAuthOutcome and inserts the block into the
appropriate basic-block set (Bgyce or Bi)-

Example of the ASBBs Identification Process. Figure 4
illustrates AuthSpark’s iterative analysis process on the basic
authentication logic in our motivation example. AuthSpark
first generates pairs of HTTP requests for Basic authentication
under the default configuration and identifies the conditional
statement C1 as the CVS by analyzing their execution paths.
Before the analysis begins, this CVS is added as the initial
element of Cyy, €.g., (C1, True, succ).

Through multiple rounds of analysis, AuthSpark progres-
sively uncovers authentication logic elements. @ In Round
1, AuthSpark analyzes the do_account_authentication function,
where the assignment result=1 in basic block B1 satisfies
the control dependency condition; the variable result (de-
noted as V1 in Fig. 4) is marked as an authentication
variable. The subsequent returnresult statement marks the
do_account_authentication function return variable (as V2 shown
in Fig. 4) as an authentication variable, because it meets the
Function return variable condition. @ In Round 2, the anal-
ysis expands to all functions calling do_account_authentication
. Conditional statements C2 and C3 are added to C, as
they check authentication variable V2 in Fig. 4. Notably,
function sub_1A5C, though not on the current execution path,
is still analyzed because it contains authentication-related
logic and calls do_account_authentication. The return variable
of basic_authentication marks V'3 as an authentication variable
since its control dependency includes C2, which belongs to
Cauth- ® In Round 3, the assignment v10 = basic_authentication(
srv, conn) in sub_4040 satisfies the copy propagation condition,
allowing the variable v10 to inherit the authentication property
from the basic_authentication function return variable.

Throughout each iteration, the UpdateAuthBlocks function

updates ASBBs and AFBBs by checking whether each basic
block’s control dependencies form a subset of Cuyy. For
instance, basic block BT has a control dependency (C4, False).
Since this branch corresponds to the authentication-success
outcome recorded in Cuyy, B7 is added to Bgye.. Similarly,
B8 is added to Bg;. The analysis continues to iterate until
no new authentication-related code elements are identified, at
which point it converges and produces the final ASBBs.

D. Authentication Bypass Path Mining

Authentication bypass vulnerability detection involves iden-
tifying execution traces that reach By, without proper creden-
tial verification. Upon reaching any block in By, AuthSpark
employs a validation module to confirm the presence of
a vulnerability. Directed fuzzing efficiently explores paths
toward specific targets, with By serving as natural fuzzing
targets. Multi-target directed fuzzing is employed with three
complementary guidance strategies to systematically explore
potential bypass paths.

Following existing directed-fuzzing techniques, all Bgyec
blocks are treated as targets, and coverage and distance metrics
are employed for test prioritization. Inspired by Atropos [18],
AuthSpark instrument string comparison functions (e.g., strcmp
, strncmp, strstr) to capture their runtime values. The captured
dynamic strings are utilized in two ways: (1) they are incor-
porated into a dictionary for string-based mutations, and (2)
they are used as constraints for mutation generation. Together,
these strategies efficiently guide fuzzing toward Bc.:

1) Coverage Score. Priority scores are computed as the ratio
of newly covered edges to the cumulative total number of
covered edges.

2) Distance Score. For each test case, AuthSpark compute
the control-flow distance to each By, block and calculate
a weighted average distance, adjusting weights based on
historical changes to reward progress or penalize stagnation.

3) String-guided Mutation Generation. We define critical
branches as conditionals that prevent test cases from reaching
target blocks and that, if taken differently, would enable
progress toward Bg.. For instance, in Figure 2, if (v10) at
line 9 in sub_4040 is a direct critical branch whose false
branch leads to authentication success. To generate mutations
that steer execution toward target basic blocks, AuthSpark
identify critical branches by analyzing the last divergence
points between the test case execution trace and the target
reachable paths. To determine whether a critical branch is
user-controlled, it analyze its control dependencies to identify
whether it is driven directly by string-comparison operations
or indirectly through function return values. For branches
controlled indirectly through return values, AuthSpark further
trace these dependencies inter-procedurally to locate the under-
lying string-comparison operations. Once such string compar-
ison functions are identified, AuthSpark employ SMT solvers
to compute string values satisfying the target branch direction,
using these as mutation targets for specific input fields. In
Figure 2, strncmp compares user input against cfg.ua_str, which
is captured dynamically (e.g., loaded from a config file) as

"WebDrive" at runtime. This string comparison determines the
outcome of the condition conn.ua_flag == 3 in sub_4040, thereby
controlling the corresponding branch direction. By mutating
the input field to satisfy this comparison, AuthSpark increases
the probability of taking the intended branch and reaching the
target basic block.

By integrating these three guidance strategies, AuthSpark

combines coverage and distance metrics to calculate test case
priorities for scheduling. Considering computational overhead,
AuthSpark performs string-guided mutation generation only
when new edge coverage is discovered.
Validation Module. During fuzzing, dynamic string mutations
may cause AuthSpark to inadvertently generate requests that
accidentally reach public endpoints not present in the original
seeds. In unified authentication architectures, all requests,
including both public and protected ones, are routed through
the same authentication function. As a result, non-login public
endpoints also trigger Bgy.. However, per our threat model
(Section III), authentication bypass affects only protected
endpoints. To eliminate false positives, AuthSpark employ
differential testing, triggered when test cases reach any Bgycc
block. Specifically, the module first normalizes the test case
by: (1) performing URL normalization and decoding, and (2)
replacing headers with initial values since routing resides in
URLSs or bodies [30]. It then constructs two variants of the nor-
malized request: one with valid authentication credentials and
another with invalid credentials, and compares their responses.
If both yield identical responses, the endpoint is public;
otherwise, the test case represents an authentication bypass
on a protected endpoint. Notably, we exclude login endpoints
from this validation to ensure that test cases bypassing user
credential verification (attack vector @ in Figure 1(b)) are not
incorrectly filtered out.

VI. IMPLEMENTATION

We implement AuthSpark as a comprehensive dynamic
analysis framework consisting of approximately 25,000 lines
of Python code and 3,000 lines of C code. The system contains
three major components:

1) Rehosting and Dynamic Instrumentation. AuthSpark op-
erates on top of a system-level firmware rehosting environ-
ment. For each firmware sample, either FirmAE’s rehosting
framework [31] or the vendor’s native NFV-based execution
mechanism is used to boot the firmware image, which is
then run on a customized QEMU-based system emulator.
The emulator is built upon QEMU [32] 9.0.0 [33] running
in TCG mode, where lightweight instrumentation is injected
during dynamic binary translation to extract coverage feedback
and memory values. The current implementation supports
both x86 and ARM architectures. To collect traces on other
architectures or hardware-in-the-loop devices, we implement
a lightweight GDB-based tool [11] that works through the
device’s shell debugging interface. This tool is used solely
for trace collection, as feedback-driven fuzzing relies on the
instrumentation available only in our QEMU-based emulator.

2) Static Analysis Framework. The static analysis compo-
nent is architecture-agnostic and is built on IDA Pro [21] and
the IDALib plugin [22], [23]. AuthSpark constructs control-
flow graphs from IDA microcode and further transform them
into statement-level control- and data-dependence graphs. This
framework enables execution-trace parsing, CVS detection,
and ASBBs identification across multiple architectures.

3) Fuzzing Framework. The fuzzing subsystem extends ND-
Fuzz [50] with HTTP protocol support, customized schedul-
ing, and specialized mutation modules. It uses By, identified
by AuthSpark as directed fuzzing targets and incorporates
dynamically extracted dynamic strings as mutation dictionaries
to improve mutation relevance and effectiveness.

VII. EVALUATION

Research Questions. We conducted a comprehensive evalua-
tion of AuthSpark on real-world embedded systems to address
the following research questions:

« RQ1: How effective is AuthSpark in identifying creden-
tial verification statements and authentication-success basic
blocks for detecting known vulnerabilities?

RQ2: How does AuthSpark perform in detecting authenti-
cation bypass vulnerabilities compared to baseline fuzzing
tools?

RQ3: How effective is AuthSpark in discovering unknown

vulnerabilities in real-world embedded systems?

A. Evaluation Setup

Dataset. To evaluate AuthSpark, we constructed a firmware
dataset following two criteria: @ Nine firmware samples were
selected because they had known vulnerabilities. These vul-
nerabilities should be present in the binary and accompanied
by detailed information, either publicly available or manually
confirmed by us, such as triggering paths and exploitation
details, enabling us to validate their root causes. @ To further
validate the effectiveness of AuthSpark, 23 additional firmware
samples were selected from the FirmAE [31] testing set or
prior research [5], [30], [51], [52] by applying three filtering
steps to remove redundancy: (1) keeping only one version per
device series per vendor, (2) retaining images with distinct
authentication frameworks, and (3) ensuring successful full-
system emulation.

In total, 32 firmware samples from 12 vendors were in-
cluded in the dataset, covering 14 known vulnerabilities !.
As shown in the 2nd and 3rd columns of Table I (details
in Table VII), our dataset covers eight device types and four
architectures. It consists of 32 devices, including 23 routers,
two NAS devices, two access points, and five devices of other
types. All of the firmware samples are rehosted using either
FirmAE or manual fixes to enable system-level emulation,
and configured to ensure proper access to the target web
services. Due to limitations in instrumentation or emulation
(e.g., incomplete boot or unsupported ISA features), two

TABLE I: Basic information of the dataset. The devices
using QEMU-based instrumentation and their related known
vulnerabilities are depicted in the 6th and the 7th columns.
The devices using GDB-based tracing and their related known
vulnerabilities are depicted in the 8th and the 9th columns.

Vendor Type Architecture #Device #1-day QEMU GDB
#Device #l-day #Device #1-day
. Router/ ARMLE/
DLink IPCamera MIPS(BE/LE) 3 3 ! 0 4 3
TPLINK Router ARMLE 2 0 2 0 0 0
Fortigate Firewall X86 1 1 1 1 0 0
F5 ADC X86 1 3 1 3 0 0
Ivanti Gateway X86 1 1 1 1 0 0
QNAP NAS X86 1 1 0 0 1 1
Trendnet Bridge/ ARMLE 2 0 2 0 0 0
Router
ARMLE/
NETGEAR Router/AP MIPSLE 11 2 10 1 1 1
Zyxel NAS ARMLE 1 1 1 1 0 0
belkin Router MIPSLE 1 0 0 0 1 0
ARMLE/
ASUS Router MIPSLE 4 2 3 2 1 0
Linksys Router MIPSLE 2 0 0 0 2 0
Total 8 4 32 14 22 9 10 5

complementary methods were developed to collect execution
traces: (1) QEMU-based instrumentation, which covers 22
devices with nine known vulnerabilities, referred to as dataset-
1, and (2) a lightweight GDB-based tracing tool, which covers
ten additional devices with five known vulnerabilities, referred
to as dataset-2.
Input of AuthSpark. After rehosting the firmware, AuthSpark
requires pairs of authentication-success and authentication-
failure requests as input. In our experiments, AuthSpark is
evaluated on each device’s default web service, yet it can
also be applied to other services that implement authen-
tication mechanisms. We manually captured requests that
could successfully pass authentication and those that failed
authentication as authentication request pairs. During the login
authentication stage, valid or invalid admin/password pairs
were used to capture authentication request pairs containing
user credentials. When accessing protected resources after
successful login authentication, authentication requests con-
taining token credentials that were correct and those that were
manually modified to contain incorrect token values were
captured. As a result, two credential types, user credentials
and token credentials are both considered.

All evaluation were conducted on an Ubuntu 20.04 with
Intel Xeon Platinum 8358 (64 cores) and 512GB RAM.

B. RQI: Identification of Authentication Related Code

To evaluate the effectiveness of AuthSpark in identifying
CVSs and ASBBs, the dataset consists of both dataset-1
and dataset-2. Among the 32 firmware samples, 12 samples
employ two credential types, whereas 18 samples use only
one type due to design choices or because authentication is
handled by non-binary programs (details in the 4th column of
Table VI in the Appendix). Based on the definition of CVS
and the credential types employed in the dataset, there are
in total 44 CVSs whose locations were manually confirmed.
In these 44 CVSs, 11 were confirmed to be bypassed by the
14 known vulnerabilities®. It should be noted that identifying

IThe AuthSpark DATA-site [1] provides detailed information on the dataset
along with the complete input and output data used in our evaluation.

10

2There is one CVS that is bypassed by two vulnerabilities, and another
CVS bypassed by another three vulnerabilities.

44 1
12}
%]
> 42 " o . <
o — . \é PN /\
& 40 ;z - . N <\
2 < /s \/ N \\
> 38 .. \. I W
<] AN
36 4 N D T Y P 4 o —
b Y, / ASAANAN
Q "
£ 34 ~.
p=} .
b 4 .
2 324
@
]
E 30 - —e— p=0.1 —<— p=0.6
=} 28 p=0.2 $=0.7
() b —i— =03 —e— p=0.8
= —e- p=0.4 $=0.9
26 —— p=0.5 p=1.0
T T T T T T T T T T — T
S T S S T JC R NP SR IR O

a (Parameter)

Fig. 5: CVS identification results under different parameter
combinations («, 8). Each line represents a different 5 value
ranging from 0.1 to 1.0.

TABLE II: CVS identification results of AuthSpark and
Weasel. The “#V-CVS” column reports the number of CVSs
bypassed by known vulnerabilities, with the number of vul-
nerabilities listed in parentheses. The “TP” column reports the
number of correctly identified CVSs for each tool.

Vendor #CVS #v.cvs _ AuthSpark Weasel
TP #V-CVS TP #V-CVS
DLk g T3 8 209 0
TPLINK 3 0 2 00 1 0()
Fortigate 2 L1 1) 0 0
F5 1 13 1 13 0 00
Tvanti 2 i 2 1 0 0@
QNAP 2 o2 1w 1)
Trendnet 2 00 2 00 0 0
NETGEAR 12 202 12 22 10 22
Zyxel 1 1) 0o 0
belkin 1 0 1 00 0 0
ASUS 7 200 7 2@ 2 0(0)
Linksys 3 0 3 00 0 0
Total W ad & 11dd 16 30

a bypassed CVS is necessary to discover an authentication
bypass vulnerability. The 2nd and 3rd columns of Table II
illustrate these CVSs.
Credential Verification Statement Identification.
Hyperparameter. To determine appropriate scoring param-
eters for CVS identification, a semi-dense sweep is first
conducted over the parameter space in Equation 1, evaluating
all combinations of o € {1,...,50} and 8 € {0.1,...,1.0}.
In this experiment, only the top-ranked CVS reported by
AuthSpark in each configuration is selected to compare with
the corresponding ground truth, and identified as a true positive
if they are the same. The best-performing parameter combi-
nation from this sweep is then used for the rest of the paper.
Figure 5 demonstrates the necessity of tuning the reward
coefficient o and penalty weight 5. In summary, AuthSpark
achieves peak performance at five parameter combinations
including (3,0.2), (5,0.3), (7,0.4), (8,0.5), and (10,0.6),
each achieving the same 42 correct CVSs. The worst case is
(1,1), at which only 27 out of 44 CVSs (61.4%) are identified.
Such results indicate that both parameters must remain within

TABLE III: Ablation configurations for identifying ASBBs.

Authentication

Authentication variables conditional statements

Experiment Mode

11

Control Copy Function Variable- Dynamic
dependency propagation return variable based trace-based
AuthSpark v v v v v
AuthSpark-NoCopy v X v v '
AuthSpark-NoFunc v v X v v
AuthSpark-NoVarCond v v v X v
AuthSpark-NoDynamicCond v v v v X

a moderate range to yield effective similarity scoring. In the
rest of the paper, AuthSpark adopts (3,0.2) as the default
configuration. In addition, all 44 CVSs are ranked at top-4
candidate CVSs identified by AuthSpark, further indicating
the effectiveness of AuthSpark.

Comparison. Both AuthSpark and Weasel [13] aim to identify
credential verification code, so the comparison is conducted
between them. For a fair comparison, we reimplemented
Weasel’s core algorithm to support firmware analysis, other-
wise it could only deal with user-mode applications. Similarly
to AuthSpark, only the top-ranked output in Weasel’s candi-
date list is considered the result. In addition, Weasel identi-
fies authentication validation functions rather than individual
CVSs. To address this discrepancy, we labeled a Weasel report
as a true positive if the function contains at least one correct
CVS.

The comparison results are presented in the 4th to 6th
columns of Table II. With the configuration («, 5) = (3,0.2),
AuthSpark correctly identified 42 out of the 44 CVSs (95.5%),
whereas Weasel identified only 16 out of 44 (36.4%). More-
over, AuthSpark successfully identified all 11 CVSs associated
with the 14 known vulnerabilities, while Weasel detected
only three of them. Detailed CVS identification results for
all devices, including per-device breakdowns, are provided in
Appendix Table VI.

Two CVSs are missed by AuthSpark because they do not
rank in top-1 positions. Both of them have extremely long
execution traces, which challenges the design assumption of
AuthSpark. The long execution trace makes the code differ-
ences induced by the actual authentication logic occupy only
a small fraction, making AuthSpark more likely to misrank
them. The deep analysis is described in Appendix Section B.

In contrast, Weasel’s decision-tree—based identification and
the large number of divergence points make it ineffective.
For the failure cases, Weasel tends to incorrectly report either
the callers or the callees of the true authentication validation
functions, or even completely unrelated functions, exhibiting
three types of false positives. The detailed analysis is described
in Appendix Section C.

Authentication-success Basic Block Identification.

To validate the effectiveness of our authentication-success
basic block identification, we evaluated the ability of
AuthSpark and its variants to analyze firmware samples.
The variants are constructed to selectively disable the rules
involved in identifying V,un and C,ug. Table IIT summarizes
these configurations. The control-dependency rule is retained
in all variants because it forms the foundation of AuthSpark
for two reasons: (1) Authentication variables serve as the

TABLE IV: For each vendor, the table reports the number of authentication-related code elements identified under different
ablation configurations. “#1-day” indicates the number of known vulnerabilities whose triggering paths cover at least one
authentication-success basic block in Bgy... Detailed per-device results are provided in Table VII.

Vendor AuthSpark AuthSpark-NoCopy AuthSpark-NoFunc AuthSpark-NoVarCond AuthSpark-NoDynamicCond
#auth #Couth #Bsuee #l-day #Vaum #Cautn #Bsuce #1-day #Vaun #Cautn #Bsuee #l-day #Vaum #Cautn #Bsuce #1-day #Vaun #Caun #Bsuee #1-day
DLink 39 25 28 3 20 14 15 1 15 13 15 1 21 8 12 1 36 22 25 3
TPLINK 9 6 6 0 5 2 2 0 7 5 5 0 9 3 3 0 9 6 6 0
Fortigate 4 59 69 1 9 17 24 0 2 3 3 0 12 3 3 0 41 59 69 1
F5 5 3 2 3 2 1 1 0 2 1 1 0 2 1 1 0 5 3 2 3
Ivanti 9 5 12 1 6 4 6 0 3 2 4 0 8 5 6 0 8 5 10 1
QNAP 13 77 100 1 7 45 67 1 1 3 3 0 10 3 4 0 12 76 96 1
Trendnet 5 5 9 0 4 5 8 0 1 4 5 0 3 2 3 0 5 5 9 0
NETGEAR 49 67 89 2 30 51 71 0 34 56 76 0 16 12 22 0 49 65 87 2
Zyxel 4 3 5 1 2 1 2 1 1 1 2 0 3 1 2 1 4 3 5 1
belkin 6 3 3 0 5 2 2 0 3 2 2 0 6 1 1 0 6 3 3 0
ASUS 38 27 51 2 16 16 28 1 9 12 13 0 21 12 16 0 37 21 43 2
Linksys 14 8 9 0 5 4 4 0 2 3 3 0 11 4 4 0 13 7 8 0
Total 232 288 383 14 111 162 230 4 80 105 132 1 122 55 77 2 225 275 363 14

initial carriers through which authentication state propagates
during analysis, and (2) All authentication variables infer-
ences, including function-return variables, require considering
their control-dependency relationship with Cay. Moreover, the
known vulnerabilities associated with the identified ASBBs are
also evaluated. For each known vulnerability, its payload is
executed to determine whether the triggering path covers any
basic block in the identified By, set. If so, the vulnerability
is considered to be potentially exposed.

The results are summarized in Table IV. The full version
of AuthSpark, which enables all identification rules, discovers
most authentication-related elements, identifying 383 ASBBs
and exposing all 14 known vulnerabilities. Furthermore, the
ablation variants reveal the contribution of individual rules:
@ AuthSpark-NoCopy: disabling the copy-propagation rule
yields only 230 identified ASBBs (60.1% of the full version)
and exposes only four vulnerabilities. & AuthSpark-NoFunc:
disabling the function return variable rule results in only
132 identified ASBBs (34.5% of the full version), exposing
only one vulnerability. ® AuthSpark-NoVarCond: removing
the variable-based ACS rule produces the fewest ASBBs (77
blocks) and exposes only two vulnerabilities. @ AuthSpark-
NoDynamicCond: disabling the dynamic trace-based ACS rule
reduces the number of identified ACSs and ASBBs (13 and
20 fewer than full AuthSpark, respectively). Notably, disabling
such a rule would result in the discovery of one fewer 0-day
vulnerability (referring to Report Issue 1 in Table V), even
though it did not impact the number of known vulnerabilities
in the experiment.

Disabling any identification rule not only reduces the
number of elements in the corresponding category but also
decreases related elements. For the two AV-related variants,
the number of AVs decreases by 121 and 152, respectively,
which also leads to a reduction of 126 and 183 ACSs.
This demonstrates that function-return variables constitute a
substantial portion of AVs, and disabling this rule greatly
diminishes the propagation of authentication state to ACSs and
ASBBs. For the two ACS-related variants, the number of ACSs
decreases by 233 and 13, which in turn reduces the number
of AVs by 110 and 7. This shows that the variable-based
ACSs identification rule plays a central role in propagating
authentication state, and removing it significantly reduces both

AVs and ASBBs.

Overall, the ablation results clearly demonstrate that re-
moving any major identification rule substantially weakens
AuthSpark’s identification capability. Compared with the full
AuthSpark configuration, the variants AuthSpark-NoCopy,
AuthSpark-NoFunc, and AuthSpark-NoVarCond exhibit a re-
duction by a factor of 1.67-4.97 in the number of ASBBs
(383 vs. 230, 132, and 77), which directly leads to a significant
decline in their ability to expose the known vulnerabilities. De-
tailed ASBBs identification results for all variants, including
per-device breakdowns, are provided in Appendix Table VII.

C. RQ2: Fuzzing for Authentication Bypass Vulnerability De-
tection

To evaluate the effectiveness of AuthSpark in detecting
authentication bypass vulnerabilities, its performance is com-
pared against two ablation variants and three existing web
service fuzzing tools:

o AuthSpark-NoStr, which disables the provision of dynamic
strings for fuzzing.

o AuthSpark-NoStr-NoMautate, which further removed string-
guided mutation generation, retaining only basic fuzzing
capabilities.

e SRFuzzer [49], which specializes in fuzzing web services
on embedded systems.

e Snipuzz [14], which performs response-guided fuzzing for
embedded systems.

e BooFuzz [25], which is a general-purpose protocol fuzzer
supporting various network protocols.

Since existing fuzzers do not originally support detecting
authentication bypass vulnerabilities, they are equipped with
the ability to monitor the execution of basic blocks in By,
which in turn enables the fuzzers to detect such vulnerabilities.
As fuzzing requires QEMU-based instrumentation support,
dataset-1 that contains 22 firmware samples was used, which
covers nine known vulnerabilities. Each firmware sample was
fuzzed for 24 hours and the process was repeated five times.

Detailed detection results of authentication bypass vulnera-
bilities are presented in Table V, where the rows labeled with
CVE identifiers present the detection results for all known
vulnerabilities. AuthSpark detected all nine known vulnerabil-
ities. Among the two ablated variants, AuthSpark-NoStr de-

12

TABLE V: Authentication bypass vulnerability detection of
AuthSpark. Column abbreviations: AS = AuthSpark; AS-NS
= AuthSpark-NoStr; AS-NSM = AuthSpark-NoStr-NoMutate;
SR = SRFuzzer; SN = Snipuzz; BO = BooFuzz.

Vendor #Fuzz Devices Bug ID AS AS-NS AS-NSM SR SN BO
DLink 1 Report Issue 1 v v v v v v
TPLink 2 X X X X X X
Fortigaete 1 CVE-2022-40684 v X X X X X
CVE-2020-5902 v X X X X X
F5 1 CVE-2021-22986 v v v X X X
CVE-2022-1388 v v v X X X
Ivanti 1 CVE-2023-46805 v v X X X X
Trendnet 2 X X X X X X
Report Issue 2 v « % « « «
(PSV-2025-0044)
NETGEAR 10 Report issue 3 v % % % © %
(PSV-2025-0044)
CVE-2021-34977 v v X X X X
CVE-2023-4473 v X x X X X
Zyxel ! Report Issue 4 v « % % % %
(CVE-2024-6342)
CVE-2021-32030 v v ' X X X
CVE-2021-20090 v v X X X X
ASUS ’ ?ce\p/(l)arfzﬁisg?zzz) v v v oV
Cvramsses ¢ * x XX
#1-day 9 6 3 0 0 0
Total 22 #0-day 6 3 2 2 2 2

1int sub 1A5C(int al, int a2){

st_samba_mode = nvram get_st_samba_mode (v5) ;

if (st_samba_mode == 1 && !strstr(url, "aware")){
strcpy (a2->username, "guest");
strcpy (a2->passwd, &unk_5608) ;

}

else{

®daUms WwN

do_account_authentication (username, passwd)
return 2; // auth failure ¥

11
12
13
14
15
16 }

}
i£(13)
j = malloc(50);

return 1; // auth success ¢

Fig. 6: Code snippet for case study.

tected only six known vulnerabilities, and AuthSpark-NoStr-
NoMutate detected three known vulnerabilities, demonstrating
the critical importance of both dynamic string extraction and
specialized mutation strategies. None of the remaining three
fuzzers, SRFuzzer, Snipuzz, and BooFuzz, detected any of the
known vulnerabilities.

Case Study. It is worth noting that although CVE-2021-34977
is a known 1-day authentication bypass vulnerability, no public
technical details are available. During fuzzing of the NET-
GEAR XR300, AuthSpark independently rediscovered this
vulnerability. Our analysis shows that the bypass is triggered
inside the authentication routine: any request whose URL
contains the substring “rpc” bypasses the CVS in function
sub_39BC4 and directly triggers the execution of an ASBB.

D. RQ3: Unknown Vulnerability Discovery

All fuzzers were applied to detect 0-day authentication
bypass vulnerabilities in the latest firmware versions of the de-

13

vices in dataset-1. As shown in Table V, the rows marked “Re-
port Issue” indicate the 0-day authentication bypass vulnerabil-
ities detected during fuzzing. Using guided fuzzing, AuthSpark
successfully discovered six 0-day vulnerabilities. Among the
two ablated variants, AuthSpark-NoStr detected only three
0-day vulnerabilities, and AuthSpark-NoStr-NoMutate de-
tected two. The remaining three fuzzers detected two O-
day vulnerabilities. All six 0-day vulnerabilities detected by
AuthSpark have been verified on the latest firmware versions
and confirmed by the respective vendors, with four identifiers
assigned, including three CVE IDs and one PSV ID.

Case Study. All fuzzers detected Report Issue 1 and Report
Issue 5 by monitoring the ASBBs identified by AuthSpark. @
Report Issue 1. In the DIR665 firmware, a weak authentication
check is performed for a subset of post-authentication requests,
accepting them as long as the request appears to originate
from the MAC address of a previously authenticated device.
@ Report Issue 5. As illustrated in Figure 6, when the Samba
service is enabled by administrators, specific URL requests
can bypass authentication entirely. The vulnerability arises
because enabling Samba mode causes the code execution
trace to have the same effect as successful authentication
(i.e., do_account_authentication returns 1). AuthSpark success-
fully identified the ASBBs within this function, enabling the
detection of the vulnerability.

VIII. DISCUSSION

Extensibility of AuthSpark. The core design scope of
AuthSpark also imposes several inherent limitations. Certain
authentication implementation patterns fall outside the behav-
iors AuthSpark is designed to model, which may hinder its
analysis and prevent full reconstruction of the authentication
logic. @ Authentication state may be stored in unconventional
carriers, such as in Juniper SRX [26] where the authentication
result is also written to a session file and later verified
only through file contents. AuthSpark does not yet support
tracking such diverse forms of authentication-state storage,
which we leave for future work. @ Static-analysis limitations
may hinder AuthSpark’s handling of complex data structures.
In cases where the authentication result resides in a structure
accessed through multi-level pointers, static analysis may
fail to propagate the state beyond the current basic block,
preventing complete tracking. ® Authentication logic may
span multiple modules, as in SonicWall GMS [39] whose
processing involves both Apache and Tomcat. AuthSpark
can currently analyze the authentication logic within each
module individually, but stitching these partial analyses into a
complete end-to-end authentication flow remains future work.

Although AuthSpark focuses on detecting authentication
bypass vulnerabilities in back-end binary programs written in
C/C++ for embedded web services, the proposed method can
be extended to analyze authentication models in other types of
services and implementations written in different programming
languages. This paper provides researchers with a clearer un-
derstanding of the implementation of authentication modules,

facilitating more detailed analysis of potential vulnerabilities
therein.

Threat to Validation. First, AuthSpark only supports back-
end programs developed with C and C++. Second, the pre-
cision of the disassembly engine may impact the outcomes
of control flow and data flow analysis, thus affecting trace-
to-pseudocode alignment accuracy. We implemented best-
effort alignment strategies and observed no impact on By
identification across all evaluated cases. Third, there may be
errors in the ground truth manually confirmed.

Responsible Disclosure. We have responsibly disclosed all
vulnerabilities we found. We provided detailed information
and PoC to the vendors for each vulnerability, facilitating their
confirmation and reproduction of the vulnerabilities.

IX. CONCLUSION

In this paper, we presented AuthSpark, a novel dynamic
analysis technique for detecting authentication bypass vul-
nerabilities. AuthSpark identifies authentication-success basic
blocks by analyzing execution traces and enhances effective-
ness through static analysis. These blocks serve as targets
for directed fuzzing, enabling automated discovery of bypass
paths. AuthSpark correctly locates 42 out of 44 credential
verification statements, detects all 14 known vulnerabilities,
and uncovers six zero-day flaws, with three CVEs and one
PSV assigned.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable feedback. This work is partly supported
by Chinese National Natural Science Foundation (Grants
#62032010, #62202462, #62302500).

ETHICS CONSIDERATIONS

The primary ethical consideration in our work is ensuring
that the vulnerabilities identified by AuthSpark are responsi-
bly disclosed. We follow the vulnerability disclosure process
outlined in §VIII to notify vendors and relevant organizations
[9], aiming to reduce the risk of exploitation by attackers. All
vulnerabilities are confirmed in a controlled local environment,
ensuring the legitimacy of the investigation. Additionally, our
work does not involve human subjects, personal data, or other
activities with significant ethical concerns.

REFERENCES
[1]
[2]

Anonymous. Authspark data. https://anonymous.4open.science/r/
AuthSpark_DATA-5F17, 2025. Accessed: 2025.

David Basin, Patrick Schaller, and Jorge Toro-Pozo. Inducing authenti-
cation failures to bypass credit card {PINs}. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 3065-3079, 2023.

Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest
common subsequence algorithms. In Proceedings Seventh International
Symposium on String Processing and Information Retrieval. SPIRE
2000, pages 39-48. IEEE, 2000.

Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang
Lin, XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang,
and Kehuan Zhang. Iotfuzzer: Discovering memory corruptions in iot
through app-based fuzzing. In NDSS, pages 1-15, 2018.

[3]

[4]

14

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]

Libo Chen, Yanhao Wang, Quanpu Cai, Yunfan Zhan, Hong Hu, Jiaqi
Linghu, Qinsheng Hou, Chao Zhang, Haixin Duan, and Zhi Xue. Sharing
more and checking less: Leveraging common input keywords to detect
bugs in embedded systems. In 30th USENIX Security Symposium
(USENIX Security 21), pages 303-319, 2021.

Cisco. Active exploitation of cisco ios xe software web management
user interface vulnerabilities. https://blog.talosintelligence.com/active-
exploitation- of-cisco-ios-xe-software/, 2023. Accessed: 2023.

Cisco. Cisco auth bypass vulnerability. https://sec.cloudapps.cisco.com/
security/center/content/CiscoSecurity Advisory/cisco-sa-iosxe- webui-
privesc-j22SaA4z, 2023. Accessed: 2023.

Cisco. Cisco authentication bypass vulnerability with active in-the-wild
exploitation. https://github.com/ShadowOps/CVE-2023-20198-Scanner/
blob/main/Exploitation_Explainer.md, 2023. Accessed: 2023.

CVE. Cve database. https://www.cve.org/, 2025. Accessed: 2025.

Eric Glass Davenport. The ntlm authentication protocol and security
support provider. https://curl.se/rfc/ntlm.html. Technical Specification.
GDB developers. Gdb source. https://sourceware.org/gdb/, 2025.
Accessed: 2025.

Nguyen Minh Duc and Bui Quang Minh. Your face is not your password
face authentication bypassing lenovo—asus—toshiba. Black Hat Briefings,
4:158, 2009.

explosion. weasel github. https://github.com/explosion/weasel, 2025.
Accessed: 2025.

Xiaotao Feng, Ruoxi Sun, Xiaogang Zhu, Minhui Xue, Sheng Wen,
Dongxi Liu, Surya Nepal, and Yang Xiang. Snipuzz: Black-box fuzzing
of iot firmware via message snippet inference. In Proceedings of
the 2021 ACM SIGSAC conference on computer and communications
security, pages 337-350, 2021.

Google Cloud. Authentication overview. https://cloud.google.com/docs/
authentication, 2025. Accessed: 2025.

Ryan Grandgenett, William Mahoney, and Robin Gandhi. Authentication
bypass and remote escalated i/o command attacks. In Proceedings of
the 10th Annual Cyber and Information Security Research Conference,
pages 1-7, 2015.

Fabio Gritti, Lorenzo Fontana, Eric Gustafson, Fabio Pagani, Andrea
Continella, Christopher Kruegel, and Giovanni Vigna. Symbion: Inter-
leaving symbolic with concrete execution. In 2020 IEEE Conference on
Communications and Network Security (CNS), pages 1-10. IEEE, 2020.
Emre Giiler, Sergej Schumilo, Moritz Schloegel, Nils Bars, Philipp Gorz,
Xinyi Xu, Cemal Kaygusuz, and Thorsten Holz. Atropos: Effective
fuzzing of web applications for {Server-Side} vulnerabilities. In 33rd
USENIX Security Symposium (USENIX Security 24), pages 4765-4782,
2024.

Songming Han, Jieke Lu, and Shaofeng Ming. Hardcoded vulnerability
mining method in a simulated environment based on router backdoor
detection technology. In Proceedings of the 2024 International Con-
ference on Generative Artificial Intelligence and Information Security,
pages 280-284, 2024.

D. Hardt. The oauth 2.0 authorization framework. RFC 6749, October
2012. https://www.rfc-editor.org/rfc/rfc6749.

Hex-Rays. The interactive disassembler pro is a computer software
disassembler which generates assembly language code from machine-
executable code. https://hex-rays.com/ida-home/, 2005.

Hex-Rays. An ida plugin which makes it possible to write scripts for ida.
https://www.hex-rays.com/products/ida/support/idapython_docs/, 2019.
Hex-Rays. Idalib allows you to use the c++ and ida python apis outside
ida as standalone applications. https://docs.hex-rays.com/user-guide/
idalib, 2024.

Yikun Jiang, Wei Xie, and Yong Tang. Detecting authentication-bypass
flaws in a large scale of iot embedded web servers. In Proceedings of the
8th International Conference on Communication and Network Security,
pages 56-63, 2018.

jtpereyda. boofuzz github. https://github.com/jtpereyda/boofuzz, 2025.
Accessed: 2025.

Juniper. Juniper srx. https://www.juniper.net/gb/en/products/security/
srx-series.html, 2025. Accessed: 2025.

Ejin Kim and Hyoung-Kee Choi. Security analysis and bypass user
authentication bound to device of windows hello in the wild. Security
and Communication Networks, 2021(1):6245306, 2021.

Lighttpd. lighttpd. https://www.lighttpd.net/, 2025. Accessed: 2025.
Hangtian Liu, Shuitao Gan, Chao Zhang, Zicong Gao, Hongqi Zhang,
Xiangzhi Wang, and Guangming Gao. Labrador: Response guided

https://anonymous.4open.science/r/AuthSpark_DATA-5F17
https://anonymous.4open.science/r/AuthSpark_DATA-5F17
https://blog.talosintelligence.com/active-exploitation-of-cisco-ios-xe-software/
https://blog.talosintelligence.com/active-exploitation-of-cisco-ios-xe-software/
https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-iosxe-webui-privesc-j22SaA4z
https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-iosxe-webui-privesc-j22SaA4z
https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-iosxe-webui-privesc-j22SaA4z
https://github.com/Shadow0ps/CVE-2023-20198-Scanner/blob/main/Exploitation_Explainer.md
https://github.com/Shadow0ps/CVE-2023-20198-Scanner/blob/main/Exploitation_Explainer.md
https://www.cve.org/
https://curl.se/rfc/ntlm.html
https://sourceware.org/gdb/
https://github.com/explosion/weasel
https://cloud.google.com/docs/authentication
https://cloud.google.com/docs/authentication
https://www.rfc-editor.org/rfc/rfc6749
https://hex-rays.com/ida-home/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://docs.hex-rays.com/user-guide/idalib
https://docs.hex-rays.com/user-guide/idalib
https://github.com/jtpereyda/boofuzz
https://www.juniper.net/gb/en/products/security/srx-series.html
https://www.juniper.net/gb/en/products/security/srx-series.html
https://www.lighttpd.net/

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

directed fuzzing for black-box iot devices. In 2024 IEEE Symposium
on Security and Privacy (SP), pages 1920-1938. IEEE, 2024.
Hangtian Liu, Lei Zheng, Shuitao Gan, Chao Zhang, Zicong Gao,
Honggqi Zhang, Yishun Zeng, Zhiyuan Jiang, and Jiahai Yang. Eagleye:
Exposing hidden web interfaces in iot devices via routing analysis. In
NDSS, 2025.

prOv3rbs. Firmae. https://github.com/prOv3rbs/FirmAE, 2025. Accessed:
2025.

QEMU. Qemu. https://www.qemu.org/, 2025. Accessed: 2025.
QEMU. Qemu 9.0.0. https://www.qemu.org/2024/04/23/qemu-9-0-0/,
2025. Accessed: 2025.

Rapid7. Cve-2023-20198: Active exploitation of cisco ios xe
zero-day vulnerability. https://www.rapid7.com/blog/post/2023/10/
17/etr-cve-2023-20198-active-exploitation- of-cisco-ios-xe- zero-day-
vulnerability/, 2023. Accessed: 2025.

J. Reschke. The ’basic’ http authentication scheme. Technical report,
RFC 7617, 2015.

Nadav Rotenberg, Haya Shulman, Michael Waidner, and Benjamin
Zeltser. Authentication-bypass vulnerabilities in soho routers. In
Proceedings of the SIGCOMM Posters and Demos, pages 68-70. 2017.
Felix Schuster and Thorsten Holz. Towards reducing the attack surface
of software backdoors. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 851-862,
2013.

Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice-automatic detection of authen-
tication bypass vulnerabilities in binary firmware. In NDSS, volume 1,
pages 1-1, 2015.

Sonicwall. ~ Sonicwall gms.
management-and-reporting/global-management-system, 2025.
cessed: 2025.

Prashast Srivastava, Hui Peng, Jiahao Li, Hamed Okhravi, Howard
Shrobe, and Mathias Payer. Firmfuzz: Automated iot firmware intro-
spection and analysis. In Proceedings of the 2nd International ACM
Workshop on Security and Privacy for the Internet-of-Things, pages 15—
21, 2019.

Hui Jun Tay, Kyle Zeng, Jayakrishna Menon Vadayath, Arvind S Raj,
Audrey Dutcher, Tejesh Reddy, Wil Gibbs, Zion Leonahenahe Basque,
Fangzhou Dong, Zack Smith, et al. Greenhouse:{Single-Service} rehost-
ing of {Linux-Based} firmware binaries in {User-Space} emulation. In
32nd USENIX Security Symposium (USENIX Security 23), pages 5791—
5808, 2023.

Christian Tiefenau, Maximilian Héring, Mohamed Khamis, and Emanuel
von Zezschwitz. " please enter your pin"—on the risk of bypass
attacks on biometric authentication on mobile devices. arXiv preprint
arXiv:1911.07692, 2019.

Wikipedia contributors. Embedded system. https://en.wikipedia.org/
wiki/Embedded_system, 2025. Accessed: 2025.

Wikipedia contributors. Gestalt pattern matching. https://en.wikipedia.
org/wiki/Gestalt_pattern_matching, 2025. Accessed: 2025.

Wikipedia contributors. Lcs algorithm. https://en.wikipedia.org/wiki/
Longest_common_subsequence, 2025. Accessed: 2025.

Wikipedia contributors. Smt. https://en.wikipedia.org/wiki/Satisfiability_
modulo_theories, 2025. Accessed: 2025.

Haoyu Xiao, Ziqi Wei, Jiarun Dai, Bowen Li, Yuan Zhang, and Min
Yang. Housefuzz: Service-aware grey-box fuzzing for vulnerability
detection in linux-based firmware. In 2025 IEEE Symposium on Security
and Privacy (SP), pages 3801-3819. IEEE, 2025.

Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti,
et al. Avatar: A framework to support dynamic security analysis of
embedded systems’ firmwares. In NDSS, volume 14, pages 1-16, 2014.
Yu Zhang, Wei Huo, Kunpeng Jian, Ji Shi, Haoliang Lu, Longquan
Liu, Chen Wang, Dandan Sun, Chao Zhang, and Baoxu Liu. Srfuzzer:
An automatic fuzzing framework for physical soho router devices to
discover multi-type vulnerabilities. In Proceedings of the 35th annual
computer security applications conference, pages 544-556, 2019.

Yu Zhang, Nanyu Zhong, Wei You, Yanyan Zou, Kunpeng Jian, Jiahuan
Xu, Jian Sun, Baoxu Liu, and Wei Huo. Ndfuzz: a non-intrusive
coverage-guided fuzzing framework for virtualized network devices.
Cybersecurity, 5(1):21, 2022.

Jiaxu Zhao, Yuekang Li, Yanyan Zou, Zhaohui Liang, Yang Xiao,
Yeting Li, Bingwei Peng, Nanyu Zhong, Xinyi Wang, Wei Wang,
and Wei Huo. Leveraging semantic relations in code and data to
enhance taint analysis of embedded systems. In 33rd USENIX Security

https://www.sonicwall.com/products/
Ac-

15

[52]

[53]

Symposium (USENIX Security 24), pages 70677084, Philadelphia, PA,
August 2024. USENIX Association. https://www.usenix.org/conference/
usenixsecurity24/presentation/zhao.

Jiaxu Zhao, Yuekang Li, Yanyan Zou, Yang Xiao, Naijia Jiang, Yeting
Li, Nanyu Zhong, Bingwei Peng, Kunpeng Jian, and Wei Huo. From
constraints to cracks: Constraint semantic inconsistencies as vulner-
ability beacons for embedded systems. In 34th USENIX Security
Symposium (USENIX Security 25). USENIX Association, August 2025.
https://www.usenix.org/conference/usenixsecurity25/presentation/zhao.
Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu,
and Limin Sun. {FIRM-AFL}:{High-Throughput} greybox fuzzing of
{IoT} firmware via augmented process emulation. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1099-1114, 2019.

https://github.com/pr0v3rbs/FirmAE
https://www.qemu.org/
https://www.qemu.org/2024/04/23/qemu-9-0-0/
https://www.rapid7.com/blog/post/2023/10/17/etr-cve-2023-20198-active-exploitation-of-cisco-ios-xe-zero-day-vulnerability/
https://www.rapid7.com/blog/post/2023/10/17/etr-cve-2023-20198-active-exploitation-of-cisco-ios-xe-zero-day-vulnerability/
https://www.rapid7.com/blog/post/2023/10/17/etr-cve-2023-20198-active-exploitation-of-cisco-ios-xe-zero-day-vulnerability/
https://www.sonicwall.com/products/management-and-reporting/global-management-system
https://www.sonicwall.com/products/management-and-reporting/global-management-system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Gestalt_pattern_matching
https://en.wikipedia.org/wiki/Gestalt_pattern_matching
https://en.wikipedia.org/wiki/Longest_common_subsequence
https://en.wikipedia.org/wiki/Longest_common_subsequence
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://www.usenix.org/conference/usenixsecurity24/presentation/zhao
https://www.usenix.org/conference/usenixsecurity24/presentation/zhao
https://www.usenix.org/conference/usenixsecurity25/presentation/zhao

APPENDIX
A. LCS Optimization for Trace Analysis

To mitigate the computational complexity of applying LCS
to lengthy execution traces, our approach employs call-stack-
based segmentation to divide traces into manageable units.

Call Stack Information. Through trace analysis, we re-
cover the call stack information at each function call sites,
obtaining tuples of (call stack, trace index). For example,
as shown in Figure 2, the call to do_account_authentication

yields the tuple ([sub_4040, basic_authentication, 0x4218],

59123), where “Ox4218” is the call site address within
basic_authentication and “59123” is the execution index in the
address-level trace.

Alignment Point Identification. From each trace, we ex-
tract the sequence of call stacks at all function call sites,
each with its trace index. Consider two traces with call stack
sequences (call site addresses omitted for clarity), where A and
B-F denote functions and — represents the call relationship:

e Trace 1: [(A,100), (A — B,250),(A — C,550), (A —
D,850), ...

o Trace 2: [(A,120), (A — B,270),(A — C,380), (A —
E,620), ..

where each tuple contains (call stack, trace index). Applying
LCS to the call stack portions identifies the common subse-
quence [A, A— B, A— C] with length 3. Assuming a context
window threshold of 3 (this value can be empirically adjusted
based on the required matching context between execution
sequences), these matching entries become alignment points:
(100, 120), (250, 270), and (550, 380). These alignment point
pairs indicate which trace positions should be aligned, effec-
tively segmenting the traces into comparable units for efficient
divergence detection.

Trace Segmentation. Using these alignment points, we
partition the lengthy execution traces into smaller segments.
Within each segment pair, we further divide the traces into
multiple units and efficiently apply LCS to identify divergence
points without computational overhead.

The necessity of this optimization is demonstrated in our
experiments: when disabled, the analysis crashed during dif-
ferential point extraction on ASUS RT-AC68U, which contains
over 70,000 basic blocks in its execution trace. This segmen-
tation technique enables our system to handle such large-scale
traces that would otherwise be computationally infeasible.

B. False-Positive Analysis of CVS Identification in AuthSpark

As shown in Table VI, the correct CVS for both FortiOS and
TP-Link Archer C8 does not appear in the top-1 of AuthSpark
’s ranked results. The underlying causes for these two cases are
similar, and we take FortiOS as a case study to illustrate this
issue. In FortiOS, the full execution traces of the authentication
request pairs span more than 50,000 basic blocks, while the
true authentication logic affects only a very small portion of
these traces. Because the correct CVS introduces only a short-
lived divergence in the successful and failed traces, the two
traces quickly converge again and continue to share a long

16

common prefix. As a result, when a later conditional statement
introduces another divergence, the long common prefix shared
by the two traces keeps its prefix similarity extremely high
(e.g., 0.99), while the suffix similarity becomes much lower
(0.12 vs. 0.66 at the correct CVS). Under Equation 1, this
combination yields a higher overall score for the unrelated
statement, causing AuthSpark to incorrectly rank it above the
correct CVS.

This false positive illustrates a general challenge: in ex-
tremely long traces, when the code differences induced by the
actual authentication logic occupy only a small fraction of the
total execution, the differential signal becomes overshadowed
by other incidental divergence points, making misranking more
likely.

C. False-Positive Analysis of CVS Identification in Weasel

In our comparison, Weasel correctly identifies 16
authentication-verification functions using its top-ranked
candidate for each device. Weasel identifies credential-
verification code by constructing decision trees from multiple
request traces and selecting the dominator nodes as candidate
validation functions. For the failure cases, Weasel exhibits
three types of false positives:

o Type I (15 cases): No call-relationship to the true valida-
tion function. These occur because when the number of
divergence points is large, different divergence points may
share similar dominator-like structural patterns, causing
unrelated nodes to be mistakenly ranked as candidates.
Type II (13 cases): Functions that are callers of the
correct validation function. These arise because Weasel
tends to select functions that are invoked more frequently
across requests, making common callers appear as high-
ranked candidates.

Type III (2 cases): Functions that are callees of the
correct validation function.

Overall, these results show that relying solely on decision-
tree—derived dominator patterns is fundamentally insufficient
for accurately identifying credential-verification logic.

D. Detailed Results of CVSs Identification

Table VI summarizes the detailed results of CVS identifica-
tion. The table reports not only the top-1 accuracy but also the
accuracy behavior under different («, 3) settings, illustrating
how the similarity-scoring parameters influence identification
quality. In particular, it includes the hyperparameter study
where o = 3 is fixed and § is varied from 1 to 0.1 (parameter
settings that yield identical results are not shown), showing
how different 3 values affect the ranking performance. All
intermediate and final outputs produced by AuthSpark and
Weasel during their detection procedures, as well as the exact
firmware versions of each evaluated device, are available on
the AuthSpark_DATA site [1].

E. Detailed Results of ASBBs Identification

Table VII presents the detailed results of ASBBs identifica-
tion, along with comprehensive information about the firmware

TABLE VI: The detailed top-1 results of credential verification code identification. The notation («,/3) denotes a set of
hyperparameter pairs with o = 3, arranged to show an overall increasing trend in CVS identification. The table reports the
CVS identification results for AuthSpark and Weasel. The “#Diff” column reports the number of divergence points. The
last column lists the function in which each credential verification point resides, i.e., the authentication function. The ‘“Weasel
Ranking” column shows the ranking produced by Weasel and the position of the correct authentication function in that ranking.

N N 3} ‘Weasel Weasel’s .
‘Vendor Model WEB Type Credential Type #Diff (3,1) (3,0.7) (3,0.6) (3,0.5) (3,04) (3,02) (3,0.1) Weasel Ranking Auth Function Auth Function
DCS-930L alphapd User 12 X X X v v v v X 6/14 websUrlProcessRequest websCheckRealm
DIR-300 cgibin User 3 v v v v v v v X -/1 sessioncgi_main authentication
Token 4 v v v v v v v X -15 servicecgi_main sub_40819C
DLink DIR-505L User lighttpd 1 v v v v v v v v 1/6 do_login do_login
in
DIR-665 htpd User 3 v v v v v v v v 12 sub_EE6C sub_EE6C
Token 10 v v v v ' v v X 515 sub_15244 sub_B818
DIR-882 goahead User 2 v v v v ' v v X 3/3 sub_424090 sub_42141C
Token 5 v v v v v v v X 11723 sub_423DF4 sub_422FDC
TPLINK Archer_C3150 hitpd User 4 v ' v v ' v v v 1/6 sub_13524 sub_13524
Token 10 X X v v v v v X 4/10 sub_D22C sub_D898
Archer_C8 httpd User 20 X X X X X X X X -/31 sub_1EAS54 sub_C393C
. B § 2 §
Fortigate FortioS httpd User 23 X X X X X X X X /44 sub_AA2850 sub_230A950
Token 13 x x v v v v v x -/61 sub_AD5750 sub_216A2B0
F5 BIGIP apache Token 42 v v v v v v v X 3/29 log_error_core sub_59B0
. Ivanti Connect 'VPN-Token 26 v v v v v v X 4/121 sub_97200 sub_9B660
Ivanti Secure httpd
RestAPI-Token 27 v v v v v v v 17/33 sub_F48B0 sub_F3E20
QNAP TS-231P thttpd User 7 X X X X v v v X -/13 main Check_Local_User_Password
Token 3 v v v v v v v v 173 auth_get_session auth_get_session
TEW-828DRU httpd User 6 v v v v v v v X 3/4 sub_1479C sub_13DD8
Trendnet
TEWS800 httpd User 2 X X v v v v v X 2/14 sub_AAFC sub_B888
‘WNR3500 httpd User 4 X X X X X v v v 177 sub_AF90 sub_AF90
XR300 httpd User 24 v v v v v v v v 177 sub_39BC4 sub_39BC4
EX6200 htpd User 3 v v v v v v v v 177 sub_1C67C sub_1C67C
Token 33 v v v v v v v X /11 sub_DDIC sub_1COC4
R6200V2 httpd User 11 v v v v v v v v /14 sub_ED50 sub_ED50
NETGEAR R6300V2 httpd User 17 v v v v v v v v 19 sub_EE74 sub_EE74
R6400v2 httpd User 18 v ' v v ' v v v 1710 sub_10DC4 sub_10DC4
R6700V3 mini-httpd User 21 v v v v v v v v 1/56 sub_103DC sub_103DC
R7000 mini-httpd User 18 x v v v v v v v /15 sub_1123C sub_1123C
R7000P mini-httpd User 23 v v v v v v v X 2/32 sub_19F00 sub_10F3C
R8000 httpd User 16 v ' v v ' v v v 118 sub_10694 sub_10694
WAC104 mini-httpd User 4 v v v v v v v v 1713 sub_406ADC sub_406ADC
Zyxel NAS326 apache Token 3 v v v v v v v X -142 ap_send_error_response sub_17A4
belkin F7D4301 httpd User 1 v ' v v ' v v X 2/3 ht_SetLoginIP sub_42D4F8
RT-AC68U lighttpd User 39 v v v v v v v X -/31 stat_cache_get_entry sub_2F0C
Token 37 v v v v v v v X 46/145 sub_4040 do_account_authentication
RT-AX56U mini-hitpd User 6 v v v v ' v v v 1710 sub_30518 sub_30518
ASUS Token 17 v v v v v v v x 10/58 sub_SFFDC sub_SB478
DSL-AC88U mini-httpd User 5 v ' v v ' v v v 177 sub_222CC sub_222CC
Token 38 v v v v ' v X X -167 sub_199C0 sub_1D9F8
RT_N10 mini-httpd User 2 v v v v v v v X 2/3 sub_40507C sub_40425C
Linkevs E1000 hitpd User 1 v v v v v v v X -14 set_login_info login_check
SY$ Token 5 v v v v v v v X -2 set_accept_language sub_41CFE4
WRT320N httpd User 2 v v v v v v v X 5/6 send_headers sub_41BC44
35 36 39 40 41 42 40 16

samples in the AuthSpark evaluation dataset, including device
model, device type, web server type, and architecture. The
“Trace” column indicates how execution traces were collected,
either via GDB or QEMU. For architectures such as MIPS or
for hardware-in-the-loop devices where QEMU instrumenta-
tion is unavailable, GDB was used as an alternative to obtain
the required traces.

Notably, as observed from the detailed per-device results in
Table VII, FortiOS and QNAP TS-231P exhibit exceptionally
large numbers of ASBBs. This significant difference stems
from their request-processing architecture. These devices first
parse the URL to determine which handler function should

17

process the request, and authentication-protected URLs have
their authentication checks embedded within their respec-
tive handler functions. This results in multiple authentication
function calls distributed across different URL handlers. In
contrast, other devices call the authentication function once at
the beginning, then dispatch to different handlers based on the
URL. Static variable propagation is particularly effective for
the former architecture as it can trace authentication outcomes
across all distributed authentication function calls.

F. Vulnerability Detection Examples During Fuzzing

During fuzzing, whenever any basic block in the ASBBs set
is executed and subsequently validated as a true positive by

TABLE VII: Basic information of the tested devices and the detailed results of recognizing authentication-related code elements
across AuthSpark and its ablation variants. A vulnerability is considered detected if its triggering path reaches any block in
the authentication-success basic-block set (Bgyc). The last two columns report the number of identified 1-day and O-day
authentication-bypass vulnerabilities, respectively. Column abbreviations: AS = AuthSpark ; A1 = AuthSpark-NoCopy; A2 =
AuthSpark-NoFunc; A3 = AuthSpark-NoVarCond; A4 = AuthSpark-NoDynamicCond.

Model Arch Trace DevType Vauth Cauth Bsuce Brail 1-day #vuln 0-day #vuln
AS Al A2 A3 A4 |AS Al A2 A3 A4 |AS Al A2 A3 A4 |AS Al A2 A3 A4 |AS Al A2 A3 A4|AS Al A2 A3 Ad
DCS930L MIPSLE GDB _ IPCamera | 5 2 3 2 5] 6 3 3 1 5|6 3 4 3 5|5 3 3 2 5]0 0 00 0[]0 0 0 0 0
DIR-300 MIPSLE GDB Router |22 6 3 8 19|10 4 4 2 8|10 4 4 2 8|10 3 3 2 8/0 0 0 0 0[0 0 0 0 0
DIR-505L MIPSBE GDB Router 303 3 3 3|2 2 2 1 2|2 2 2 2 2|2 2 2 2 20 0 0 0 0[0 0 0 0 0
DIR-665 ARMLE QEMU Routr | 4 4 4 4 4|2 2 2 2 2|3 3 3 3 3|2 2 2 2 20 0 0 0 01 1 1 1 0
DIR-882 MIPSLE GDB Router |5 5 2 4 5|5 3 2 2 5|7 3 2 2 7|5 3 2 2 5|3 1 1 1 3/0 0 0 0 0
Archer C3150 ARMLE QEMU Router | 6 3 4 6 6|5 1 4 2 5|5 1 4 2 5|4 1 3 2 4/0 0 0 0 0/0 0 0 0 0
Archer_C8 ARMLE QEMU Router 3 02 3 3 3|1 1 1 1 1|1 1 1 1 1|1 1 1 1 1/0 0 0 0 0[0 0 0 0 0
FortiOS X86 QEMU Firewall |41 9 2 12 41(59 17 3 3 59|69 24 3 3 69|55 15 2 2 5|1 0 0 0 1/0 0 0 0 0
BIGIP X86 QEMU ADC s 2 2 2 5|3 1 1 1 3|2 1 1 1 22 1 1 1 2/3 0 0 0 3|0 0 0 0 0
'S‘f:‘c“utr’ec""““‘ X8 QEMU Gateway | 9 6 3 8 8|5 4 2 5 5|12 6 4 6 10[10 5 2 4 101 0 0 0 1|0 0 0 0 0
TS-231P X86 GDB NAS 13 7 1 10 1277 45 3 3 76[100 67 3 4 96|74 4 2 3 741 1 0 0 1|0 0 0 0 0
TEW-828DRU ARMLE QEMU Router |4 3 0 2 4|2 2 1 1 2|5 4 1 2 5|2 2 1 1 2|0 0 0 0 0[0 0 0 0 0
TEWS00 ARMLE QEMU MediaBridge| 1 1 1 1 1|3 3 3 1 3|4 4 4 1 43 3 3 1 3/0 0 0 0 0[0 0 0 0 0
WNR3500 ARMLE QEMU Router |2 I 2 2 2|2 1 2 1 2|2 1 2 1 2|1 1 1 1 1]/0 0 0 0 0[0 0 0 0 0
XR300 ARMLE QEMU Router |13 7 5 1 13|14 5 6 1 12/19 9 9 2 17|14 4 6 1 141 0 0 0 1]/0 0 0 0 0
EX6200 ARMLE QEMU AP 8 2 1 3 8|5 3 2 2 5|5 3 2 2 5|5 3 2 2 5[0 0 00 0[0 0 0 0 0
R6200V2 ARMLE QEMU Router | 2 2 2 1 2|4 4 4 1 4|5 5 5 1 5|4 4 4 1 410 0 0 0 0[/0 0 0 0 0
R6300V2 ARMLE QEMU Router |5 4 5 1 5|6 5 6 1 6|6 5 6 1 6|4 4 4 1 410 0 0 0 0[0 0 0 0 0
R6400v2 ARMLE QEMU Router | 4 3 4 1 49 8 9 1 9|12 11 12 2 12/9 9 9 1 9]0 0 0 0 0[0 0 0 0 0
R6700V3 ARMLE QEMU Router | 6 4 6 1 6|7 6 7 1 7/[10 8 10 3 103 3 3 1 3]/0 0 0 0 0|1 0 1 0 1
R7000 ARMLE QEMU Router 1 1 1 1 1]2 2 2 1 2|4 4 4 2 4|1 1 1 1 1]/0 0 0 0 0|1 1 1 1 1
R7000P ARMLE QEMU Router 1 1 1 1 1]l6 6 6 1 6|8 8 8 1 8|4 4 4 1 410 0 0 0 0[0 0 0 0 0
R8000 ARMLE QEMU Router | 4 3 4 1 4 |11 10 11 1 1112 11 12 1 12/5 5 5 1 5|0 0 0 0 0[0 0 0 0 0
WAC104 MIPSLE GDB AP 3 02 3 3 3/1 1 1 1 1/6 6 6 6 6|1 1 1 1 1/1 0 0 0 1[0 0 0 0 0
NAS326 ARMLE QEMU NAS 4 2 1 3 403 1 1 1 3|5 2 2 2 5|1 1 1 1 1|1 1 0 1 1|1 00 0 1
F7D4301 MIPSLE GDB Router |6 5 3 6 6|3 2 2 |1 3 2 2 1 33 2 2 1 3[0 0 0 0 0[0 0 0 0 0
RT-AC68U ARMLE QEMU Router |17 5 1 8 17|13 8 4 5 112 15 4 6 22|11 7 2 4 11/0 0 0 0 0|2 1 0 0 2
RT-AX56U ARMLE QEMU Router |9 6 2 5 8|7 5 4 3 5|15 7 4 4 13[10 5 3 2 91 1 0 0 1[0 0 0 0 0
DSL-AC88U ARMLE QEMU Router 8 4 4 4 8|4 2 2 2 3|6 4 3 4 5|3 2 1 2 31 00 0 1/0 0 0 0 0
RT_N10 MIPSLE GDB Router | 4 1 2 4 4|3 1 2 2 2|4 2 2 2 3[3 2 1 1 20 0 0 0 0[0 0 0 0 0
E1000 MIPSLE GDB Router 8 3 1 6 8|4 2 2 2 4|5 2 2 2 5|4 2 2 2 4/0 0 0 0 0[0 0 0 0 0
WRT320N MIPSLE GDB Router | 6 2 1 5 5|4 2 1 2 3|4 2 1 2 3|2 1 1 2 3/0 0 0 0 0[0 0 0 0 0
Total 232 111 80 122 225|288 162 105 55 275|383 230 132 77 363|263 146 80 52 260|14 4 1 2 146 3 3 2 5

the verification module, AuthSpark records the corresponding
test case. Each example includes the complete fuzzing request
as well as the ASBBs blocks triggered by the authentication-
bypass payload. A subset of fuzzing-detection examples for
known vulnerabilities is provided on the AuthSpark DATA
site [1].

G. Effectiveness of Validation Module.

We also analyzed the effectiveness of the validation module
in eliminating false alarms caused by public endpoints trig-
gering Bg,., with the most significant example being in the
ASUS RT-AX56U. In this case, the module reduced alerts
from 2,689 to 158 within 24 hours, with all filtered requests
confirmed to be accessing non-login public endpoints. This
targeted filtering approach maintains high precision while
preserving the detection capability for critical authentication
vulnerabilities.

18

	Introduction
	Background and Related Work
	Authentication Module
	Related Work

	Threat Model
	Motivating Example
	The Authentication Bypass Vulnerability
	Limitations of Existing Techniques
	Observations and Inspirations

	Methodology
	Preprocessing
	Credential Verification Statement Detection
	Authentication-success Basic Block Identification
	Authentication Bypass Path Mining

	Implementation
	Evaluation
	Evaluation Setup
	RQ1: Identification of Authentication Related Code
	RQ2: Fuzzing for Authentication Bypass Vulnerability Detection
	RQ3: Unknown Vulnerability Discovery

	Discussion
	Conclusion
	References
	Appendix
	LCS Optimization for Trace Analysis
	False-Positive Analysis of CVS Identification in AuthSpark
	False-Positive Analysis of CVS Identification in Weasel
	Detailed Results of CVSs Identification
	Detailed Results of ASBBs Identification
	Vulnerability Detection Examples During Fuzzing
	Effectiveness of Validation Module.

