
Cache Me, Catch You: Cache Related Security
Threats in LLM Serving Frameworks

XiangFan Wu1,2, Lingyun Ying2,*, Guoqiang Chen2, Yacong Gu3,4 and Haipeng Qu1,*

1Department of Computer Science and Technology, Ocean University of China 2QI-ANXIN Technology Research Institute
3Tsinghua University 4Tsinghua University-QI-ANXIN Group JCNS

Email: {wuxiangfan@stu., quhaipeng@}ouc.edu.cn, {yinglingyun, guoqiangchen}@qianxin.com, guyacong@tsinghua.edu.cn
*Corresponding Authors

acceleration strategies like PagedAttention [6]. Among these
optimization strategies, cache is particularly effective, offering
significant performance improvements by storing intermediate
results to eliminate repetitive computations [7]. Middleware
caching solutions, such as GPTCache [8] and ModelCache [9],
further extend these efficiency gains.

According to the cache mechanism, caching in LLMs can
be classified into three categories: prefix cache, multimodal
cache, and semantic cache. Prefix cache stores computational
states for previously processed tokens, enabling efficient reuse
for subsequent queries sharing identical input prefixes (see
Figure 1). Mainstream inference engines such as vLLM and
SGLang have built-in prefix cache support by default. Com-
mercial LLM APIs, including OpenAI and Gemini, also enable
prefix cache by default [10], [11], illustrating its practical
application and cost advantage. Multimodal cache involves
preprocessing multimodal inputs (e.g., images or audio) to
avoid redundant computations upon identical inputs. This ap-
proach is already integrated into vLLM for vision models and
appears in production pipelines such as Google’s Gemini [11].
Whereas, semantic cache works at a higher abstraction level
by indexing responses through semantic embeddings, thereby
retrieving responses based on query similarity instead of per-
forming full inference. This semantic approach is particularly
advantageous in use cases involving repetitive or standardized
queries. This semantic approach is adopted by middleware so-
lutions like GPTCache and vector databases integrated within
frameworks like LangChain [12], making them highly effective
for applications with repetitive or template-based queries.

Although cache can greatly reduce response time and
improve efficiency, defective implementation can potentially
introduce security vulnerabilities. Caching mechanisms typi-
cally work in the Key-Value (KV) mode and involve three
stages: object serialization, key generation, and cached value
retrieval. Flawed design, deficient implementation, and incor-
rect usage can all lead to security vulnerabilities, which can
be exploited to carry out malicious activities. Our investiga-
tion identifies several vulnerabilities present at each of these
stages, posing critical security threats. For example, improper
object serialization may erroneously map distinct inputs (e.g.,
images) to identical cached representations. Moreover, Non-
Cryptographic Hash Functions (NCHFs) [13] are frequently

Abstract—Large Language Models (LLMs) are rapidly reshap-
ing digital interactions. Their performance and efficiency are
critically dependent on advanced caching mechanisms, such as
prefix caching and semantic caching. However, these mechanisms
introduce a new attack surface. Unlike prior work focused on
LLMs poisoning attacks during the training phase, this paper
presents the first comprehensive investigation into cache-related
security risks that arise during the LLM inference-time.

We conducted a systematic study of the cache implementations
in mainstream LLM serving frameworks and then identified
six novel attack vectors categorized as: (1) User-oriented Fraud
Attacks, which manipulate cache entries to deliver malicious
content to users via prefix cache collisions and semantic fuzzy
poisoning; and (2) System Integrity Attacks, which exploit cache
vulnerabilities to bypass security checks, such as using block-
wise or multimodal collisions to evade content moderation. Our
experiments on leading open-source frameworks validated these
attack vectors and evaluated their impact and cost. Furthermore,
we proposed five multilayer defense strategies and assessed their
effectiveness. We responsibly disclosed our findings to affected
vendors, including vLLM, SGLang, GPTCache, AIBrix, rtp-llm
and LMDeploy. All of them have acknowledged the vulnerabili-
ties, and notably, vLLM, GPTCache, and AIBrix have adopted
our proposed mitigation methods and fixed their vulnerabilities.
Our findings underscore the importance of secure the caching
infrastructure in the rapidly expanding LLM ecosystem.

I. INTRODUCTION

Large Language Models (LLMs) have become critical in-
frastructure of modern artificial intelligence services. Thanks
to their massive parameters and training on large-scale corpora,
LLMs achieve powerful language understanding and genera-
tion capabilities. These capabilities enable widespread applica-
tions ranging from automated customer interactions (e.g., Re-
tailGPT [1] and CuSMer [2]) to complex data analytics (e.g.,
CellAgent [3]). However, as model sizes continue to grow, the
computational overhead of inference rises dramatically, mak-
ing efficiency optimization essential for controlling latency,
cost, and energy consumption. To this end, inference frame-
works, such as vLLM [4] and SGLang [5], have integrated

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.242812
www.ndss-symposium.org

You are Block1
a helpful Block2

 code assistant Block3
translation assistant Block4

>You are a helpful
code assistant.

>You are a helpful
translation assistant.

Prefix cache
KV Cache database

Fig. 1: A simplified example of prefix cache. The cache-hit
blocks are colored in green.

employed for cache key generation [4], [14], which expose
systems to malicious collision attacks. Additionally, flawed
implementations of value retrieval mechanisms can result in
providing manipulated or malicious data.
Our Work. We performed a comprehensive analysis of cache
implementations in mainstream LLM serving frameworks and
uncovered critical but often overlooked security vulnerabilities
in caching mechanisms. Specifically, we divide these threats
into two primary categories according to their final objective:
User-oriented Fraud Attacks and System Integrity Attacks:

• User-oriented Fraud Attacks aim to utilize the system
as a channel to deliver malicious, biased, or misleading
information to end users. These attacks are achieved by
poisoning prefix caches or semantic caches. Specific tech-
niques include: (F1) system prompt collision can corrupt
LLM responses to all users sharing cache; (F2) semantic
fuzzy poisoning submit semantically similar malicious
queries to poison cache; and (F3) RAG-based semantic
fuzzy poisoning leverage Retrieval-Augmented Genera-
tion (RAG) pipelines to construct semantic fuzzy queries.
These attack risks involve popular serving frameworks
such as vLLM, SGLang, GPTCache, and LangChain.
Consequently, downstream applications such as chatbots,
autonomous agents, and RAG assistants are also suscepti-
ble. This exposure creates a risk that these systems could
be manipulated to deliver harmful advice, phishing links,
or misinformation to users.

• System Integrity Attacks directly target the LLM service
itself, aiming to disrupt its core functionalities or bypass
security audit. We have identified three attack vectors:
(I1) prompt collision hijack causes the LLM to output a
malicious response when it receives a colliding full-prefix
from the user; (I2) block-wise collision hijack makes
malicious block within the input completely invisible
to the LLM via block-wise cache collision, thereby by-
passing security detection; and (I3) multimodal collision
exploits multimedia object serialization to evade content
review. These attacks can modify the LLM response
logic, invalidate compliance checks or content review, and
compromise the reliability of the LLM-integrated system.

Our experimental evaluation confirmed that all six attack
vectors are practical. For prefix collision-based attacks (F1,

I1, I2), we conducted a hash search lasting about 30 minutes
on two CPU cores and achieved a 100% cache-hit rate against
the vLLM service, which successfully injected a malicious
system prompt that altered subsequent outputs. For fuzzy
poisoning attacks (F2, F3) based on semantic embedding, we
take GPTCache as a test bed, demonstrating a 75% poisoned-
hit rate under realistic similarity thresholds (0.8), and RAG
integration further expanding the attack surface. Meanwhile,
a multimodal collision attack (I3) deceived image review
bot built on vLLM, which uses pixel-identical hashes. Each
successful attack instance cost much less than $1, underscoring
that security vulnerabilities are widespread in real-world LLM
deployment environments, which rely broadly on the cache
system based on NCHFs and fuzzy semantics.

Since the attack vectors we discovered have exposed secu-
rity risks such as misinformation propagation, unauthorized
data modification, and security control bypassing, we thus
proposed five robust defensive techniques to mitigate these
threats, including (1) adding randomness to hash calcula-
tions, (2) adopting cryptographically secure hash functions,
(3) enforcing canonical serialization, (4) using more robust
embedding models, and (5) applying LLM-based filtering.

We disclosed our findings to affected framework vendors
and service providers in a timely and responsible manner. At
the time of writing, most of them, including vLLM, SGLang,
GPTCache, AIBrix [15], rtp-llm [16] and LMDeploy [14],
have acknowledged the vulnerabilities. We have received 3
Common Vulnerabilities and Exposure (CVE) IDs, which will
be published after anonymous review. In addition, vLLM,
GPTCache, and AIBrix have adopted the mitigation strategies
we proposed and fixed their vulnerabilities.

Our work addresses the current lack of research into the
security of LLM caching mechanisms, aiming to bolster the
security of LLM services and ensuring that performance
optimization through caching does not compromise user trust
and system integrity.

Contributions. Our contributions can be summarized as fol-
lows:

1) Novel Attack Vectors: We identified previously under-
examined security threats and proposed six novel attack
vectors, especially prefix collision-based attacks and se-
mantic fuzzy poisoning-based attacks, which revealing
the new attack surface in LLM service infrastructure.

2) Proof of Concept: We conducted experiments on popular
inference frameworks, such as vLLM, and validated the
six attack vectors at very low cost, highlighting their
practical impact and severity.

3) Proposal of Defense Techniques: We proposed five
defense techniques and evaluated their effectiveness in
different scenarios. It is worth noting that four of them
have been adopted by vLLM, GPTCache, and AIBrix.

Open Science. Our code, scripts, and artifacts are available at
https://github.com/XingTuLab/Cache Me Catch You.

2

https://github.com/XingTuLab/Cache_Me_Catch_You

TABLE I: Cache features and adoption of mainstream LLM serving frameworks.

Framework Lang.
Prefix
Cache

Prefix Hash
Function

Prefix
Collision

Mm
Support

Mm
Cache

Mm Hash
Function

Mm
Collision

Sem
Cache Adopted by

vLLM Python • Python built-in • • • blake3 • — DeepSeek, MoonCake

SGLang Python • — ◦ • • sha256’ • — xAI, Microsoft Azure

AIBrix Go • xxhash [17] • — — — — — ByteDance

LMDeploy Python • Python built-in • — — — — — Shanghai AI lab

rtp-llm C++ • Jenkins hash • — — — — — Alibaba

TGI Rust • xxhash • — — — — — Hugging Face

TensorRT-LLM C++ • FNV-like [18] ◦ • • sha256 ◦ — NVIDIA

LangChain Python — — — — — — — • LangSmith

GPTCache Python — — — — — — — • Zilliz

ModelCache Python — — — — — — — • Ant

Mm: Multimodal. Mm Support refers to the native support for multimodal input in the inference framework.
Sem Cache: Semantic Cache, which stores and retrieves results based on semantic similarity rather than exact matches.
[’] SGLang employs the xxHash algorithm to hash multimodal objects that reside on the GPU.
[•] Supported / True. [◦] Not Supported / False. [—] Not Applicable or No Information.

II. BACKGROUND

A. LLM Serving Frameworks

To host an LLM service, an efficient inference framework
is the critical foundation, which is also the basic to develop
downstream LLM applications in practice. These frameworks,
such as vLLM, SGLang, AIBrix, rtp-llm, TensorRT-LLM [19],
and Text Generation Inference (TGI) [20], manage the model
inference process, aiming to achieve low latency and high
throughput. To this end, their inference engines often im-
plement various optimizations, such as parallel processing,
model quantization, as well as caching mechanisms like KV
Cache [21].

Beyond the low-level inference frameworks, there are
also user-oriented frameworks, such as LangChain, LlamaIn-
dex [22], and other commercial LLM APIs, which are de-
signed for end users and application development. These
frameworks provide high-level abstractions and functionalities,
such as scheduling LLM, integrating tools, and managing user
sessions. They often include request-level caching mechanisms
to optimize efficiency and enhance user experience.

B. Cache in LLM Serving Frameworks

To mitigate the inherent computational and memory bot-
tlenecks in the model inference process, caching strategies
are widely adopted. Three critical caching mechanisms are
essential in the LLM service: prefix cache, multimodal cache,
and semantic cache.
Prefix cache is typically integrated into low-level inference
frameworks, such as vLLM and SGLang. By storing and
reusing intermediate computational states associated with pre-
viously processed input prefixes, prefix cache accelerates the
inference process and significantly reduces redundant compu-
tations. The radix tree [5] is an effective scheme to identify
the longest matching prefix between a given sequence and the
existing cached sequences used by SGLang. Moreover, a hash-
based modification of the radix tree reduces the complexity

of the data structure and facilitates the sharing of key-value
caches across different nodes [23]. As a result, the hash-based
prefix tree approach has been widely adopted by mainstream
inference engines, such as vLLM.
Multimodal cache is designed to reduce the computational
overhead on preprocessing non-text data, such as images. It
caches the results of intensive operations, including decoding,
resizing, and feature extraction etc. When the same input hits
the cache, these steps can be omitted. By reusing the cached
data, it significantly accelerates the inference workflow for
applications handling repetitive multimodal content.
Semantic cache usually used by specialized caching systems
(e.g., GPTCache, ModelCache), which are integrated into ap-
plication layer frameworks (e.g., LangChain) and commercial
LLM APIs (e.g., Portkey.ai [24]). It stores complete responses
with user queries into the cached database, which indexes data
with the semantic embeddings generated for queries. When a
new query is similar to a cached query, namely the query
embedding is close to a cached query embedding, the system
retrieves the precomputed response instead of performing
LLM inference. Semantic cache has gained significant pop-
ularity, with major technology companies and cloud providers
such as Google [25], Microsoft Azure [26], AWS [27], Alibaba
Cloud [28] and Portkey.ai implementing and recommending its
use.

Overall, Table I summarizes the caching implementation
details in mainstream serving frameworks.

C. Tokenizer

The tokenizer splits the user’s input text into a sequence of
tokens and converts them into numerical representations [29].
As this numerical mapping is dependent on the specific LLM,
different LLMs have their own distinct tokenizers. However,
the tokenizer is generally not considered a confidential part of
the model. Therefore, once we know the model type, we can
obtain the corresponding tokenizer and convert the input into
a token sequence. This also allows us to manipulate the input

3

text to achieve desired tokenization results, thereby achieving
cache collision. In addition, “token IDs” will be used to refer
to the user’s input text in this paper.

D. Motivation

As mentioned above, LLM serving frameworks have widely
adopted caching mechanisms to accelerate inference and re-
duce overhead. However, these cache implementations often
emphasize speed while neglecting security. They frequently
rely on NCHFs, lossy serialization, and fuzzy semantic sim-
ilarity. Such designs create novel and underexplored attack
surfaces: adversaries can manipulate cache keys or values to
poison future outputs, bypass moderation, or corrupt work-
flows. Unlike prior work focusing on training-time backdoors
or inference-time leakage, these attacks compromise the LLM
system integrity and affect the model reliability.

In multi-tenant environments, threats are further amplified
because shared key-value buffers allow unprivileged users
to influence cache behavior. Even though they can have a
significant impact at a low cost, there is currently insufficient
attention. This prompted us to conduct this research on the
feasibility, consequences, and defenses of the cache collision
and poisoning in LLM serving frameworks.

III. DEMYSTIFYING CACHE IMPLEMENTATION

A. Core Concepts in LLM Cache

In the three previously introduced cache implementations
(prefix cache, multimodal cache, and semantic cache), al-
though the data they cache and the computational resources
they save differ, they essentially share a similar processing
flow (see Figure 2 for an illustration). A general caching
framework includes processing and serializing input data, then
computing a unique key for the serialized data. The cached
value is the content intended for reuse. When accessing the
cache, the system performs key matching, which can be either
exact matching or semantic similarity-based fuzzy matching.
Additionally, the caching system requires an eviction policy
to update entries and an isolation mechanism to maintain the
independence of different user spaces.

• Cache Data: This is the information to be stored, in-
cluding intermediate model states like attention keys and
values (prefix cache), preprocessed data features (mul-
timodal cache), and full query-response pairs (semantic
cache).

• Cache Key: This is the unique identifier for indexing
data. It can be generated by a hash function for exact
lookups, or by an embedding model for semantic fuzzing
matching.

• Cache Value: This is the resource-sensitive outcomes for
reuse, such as the computed attention states or a complete
LLM-generated text.

• Cache Query: This is the process of retrieving cache
data, performed either through finding identical key (Ex-
act Matching), or by checking if the semantic similarity
exceeds a threshold (Similarity Matching).

• Cache Eviction: This is the replacement policy for man-
aging limited cache space, such as Least Recently Used
(LRU), Least Frequently Used (LFU), and workload-
aware strategies etc.

• Cache Isolation: This is the mechanism to ensure secu-
rity and data integrity, preventing requests from different
users or tenants from interfering with each other.

Formally, the caching pipeline can be defined as:

k = H(S(d,m), id) (1)
v = F(k′ := R(k,K),V) (2)

where S serializes the input data d along with its metadata m,
H derives a key using an optional namespace id, R retrieves
the key k′ from the key set K, and F fetches the value from
the value set V .
Security Guidelines. To reason formally about safety, we
distill four design rules:

(G1) Serialization soundness: identical serializations must
correspond to semantically equivalent inputs, i.e.,
S(d1,m1) = S(d2,m2)⇒d1 ≃ d2.

(G2) Namespace separation: keys derived in different user/-
group domains (id, e.g., tenants) must be distinct, i.e.,
id1 ̸= id2⇒k1 ̸= k2.

(G3) Collision-resistant hashing: distinct byte sequences x
must map to different keys, i.e., x1 ̸= x2 : Pr[H(x1) =
H(x2)] ≤ negl.

(G4) Safe retrieval: a value is returned only if an exact or
similarity match satisfies the previous rules: k ∈ K ∧
kquery ≃ k.

B. Cache Data Processing

Text Modality. For both prefix cache and semantic cache,
input text must be converted into token IDs through a tokenizer
first. Modern tokenizers are generally built upon subword to-
kenization algorithms such as Byte Pair Encoding (BPE) [30],
often implemented in frameworks like SentencePiece [29].
For those that lack a byte-level fallback mechanism, any
word containing an out-of-vocabulary character is mapped to
a special unknown token (i.e., [UNK]). Thus, two different
strings can be tokenized into the same token IDs. It leads to a
risk of collision on input serialization, violating Guideline G1.

As the workflow shown in Figure 2, beyond the natural
language, the acceptable input of LLM services includes also
images, video, and audio. Similar to the text, these data
modalities also need to be preprocessed and serialized before
being cached. We take vLLM as an example to discuss the
details and potential risks below.
Image Modality. Guideline G1 requires that the serialization
S(d,m) must preserve all information necessary for a unique
identification. However, vLLM’s current strategy hashes only
the raw pixel bytes (i.e., d) returned by tobytes() of the
Python Imaging Library (PIL) [31] and ignores critical meta-
data (i.e., m). This metadata accurately describes the informa-
tion other than the raw content, including image size, color
mode, storage format, and the specific information dictionary.

4

Similarity Matching

 Cache Query

Exact Matching

Exact Matching

Similarity Matching

 Cache Query

Exact Matching

Exact MatchingString
Video

Image
Audio

String

Tokenizer

Tokenizer

Serialization

Data Processing

Tokenizer

Tokenizer

Serialization

Data Processing Key Generation

Radix hash

Hash

Embedding

Key Generation

Radix hash

Hash

Embedding

Cache

Hash
value

Vector

Inference/
ProcessingMiss

OutputHit

RewriteHash
value

Fig. 2: An illustration of the general workflow of the caching system in LLM services.

ImgDImgC

ImgB

ImgA

Fig. 3: The hash collision examples of image data in LLM ser-
vices. Hash(ImgA)=Hash(ImgB), Hash(ImgC)=Hash(ImgD)
in vLLM.

ImgA and ImgB in Figure 3 provides an example of collisions
with different sizes, where the pixel byte sequences of two
images are identical. Moreover, the "P" mode images store
the palette information into the metadata for color mapping,
which is not captured by the PIL’s tobytes(). For example,
ImgC and ImgD in Figure 3 illustrate a collision achieved
using different palettes. We provide a detailed implementation
of the image collision in Appendix E.

In our survey, we discovered that a significant number of
frameworks and applications use PIL’s tobytes() method
to uniquely identify images, such as Apple/ml-ferret [32] and
HuggingFace/diffusers [33]. It may introduce potential security
vulnerabilities in practice.
Video Modality. After preprocessing, video data are typically
converted into multi-dimensional NumPy arrays containing
information such as frame length, width, and time series.
Due to its multi-dimensional structure, if the serialization and
hash computation process incorrectly represent its structural
information, the video modality faces a similar risk of hash
collisions as the image modality. For example, inappropriate
array flattening methods or serialization strategies that do
not consider dimension order might assign different video
segments with the same hash value erroneously.
Audio Modality. In contrast, the audio modality demonstrates
greater robustness concerning the hash collision issue. This is

mainly attributed to the librosa’s load() method [34] used
for audio loading in vLLM. Under its default or typical config-
urations (i.e., the mono parameter is set to False by default),
the loaded audio data are encoded into a single channel and
returned as a one-dimensional NumPy array. This fixed one-
dimensional structure simplifies its serialized representation,
significantly reducing the risk of hash collisions arising from
the loss of structural information during serialization.
Tensor Modality. Modern multimodal pipelines often accept
tensors directly, e.g., PyTorch or NumPy arrays produced
by upstream encoders or extracted from memory buffers.
However, tensor inputs also have intrinsic structures, which
vLLM fails to take into account during processing. This over-
sight allows collision between tensors with different internal
structures.

C. Cache Key Generation

Hash-based Key Generation is the core of prefix cache
and multimodal cache. The fundamental idea is to map a
variable-length input (like a token sequence or image data) to a
fixed-length, easily comparable, and storable key using a hash
function. As shown in Figure 2, the prefix cache hashes token
blocks into fixed-length keys to reduce lookup complexity.
Guideline G3 demands a collision-resistant mapping as defined
in Equation (1), which incorporates the tenant namespace (see
Guideline G2).

However, the inference engine uses an NCHF for prefix
cache key generation, which leads to prefix cache collisions
(see Appendix C). SGLang uses NCHF and truncated SHA256
to generate keys for multimodal caching, which results in
multimodal cache collisions (see Appendix F). The use of
NCHF and truncated hash violates the Guideline G3, and
we therefore recommend adopting stronger cryptographic hash
functions such as SHA256.
Non-Hash-based Key Generation mainly used in semantic
cache. As shown in Figure 2, the semantic cache does not
rely on the exact byte representation of the input, but aims
to capture its semantics using embeddings. The user query is
fed into a pre-trained embedding model, which converts the
text into a high-dimensional vector, namely the “embedding”.
The distance between vectors (usually measured using cosine)
represents their semantic similarity, therefore, the vectors
themselves serve as keys for semantic similarity matching. The

5

effectiveness of this method depends on both the performance
of the embedding model and the similarity threshold setup.

D. Cache Query

Exact Matching requires that the lookup key be identical to a
key stored in the cache. This is the standard operating mode for
almost hash-based caching services, including prefix cache and
multimodal cache. The services compute a hash of the input
and perform a direct lookup in a hash table. The advantage
of this method is its speed and unambiguity, but it is unaware
of subtle differences in the input, making it unable to utilize
similar data in the cache.
Similarity Matching also known as fuzzy matching, which is
the core of semantic cache. In this mode, cache services do
not require keys to be identical but instead look for entries that
are semantically similar enough. When a new query arrives,
the services generate its embedding vector and use the embed-
ding similarity algorithm (e.g., cosine similarity) to calculate
the distance to all stored embedding. If the similarity score
exceeds a pre-defined threshold, a “cache hit” is declared.
However, the similarity-based fuzzy matching introduces a
risk of “false positives”, where two distinct queries may be
considered semantically similar enough to trigger a cache hit.
This may lead to serving incorrect or unintended responses,
violating the collision-resistant hashing Guideline G4.

E. Cache Eviction

Effective eviction policies are crucial for cache manage-
ment, determining which entries to remove when cache space
is full. Standard algorithms like LRU and LFU often perform
suboptimally for LLM caches. Therefore, frameworks are
adopting more advanced system-level and workload-aware
policies. For instance, vLLM employs a multi-tier eviction
strategy that considers reference counts, recent usage (LRU),
and prefix length. Moreover, workload-aware eviction makes
smarter decisions by analyzing actual request patterns and their
reuse probabilities [35].

F. Cache Isolation

Cache isolation is a critical mechanism for ensuring that
cache operations from different users or tenants do not inter-
fere with each other, preventing data leakage and cache poi-
soning. In LLM service systems, isolation is typically achieved
in several ways. One method is namespace, which incorporates
a unique identifier (e.g., tenant ID) into the key genera-
tion process (e.g., hash(tenant_id + data)). Another
method is physical or logical separation, which involves
assigning independent cache instances to different tenants.
Finally, implementing strict access control policies at the cache
layer ensures that requests can access only the data they are
authorized to read. In the multi-tenant environment, effective
cache isolation is critical for providing secure and reliable
LLM services (G2).

G. Security Risks in LLM Cache

In this section, we briefly summarize the cache security risks
in LLM servicing frameworks, which arise from violations
of security guidelines. These risks are detailed in Table II,
which outlines the design, logic, security risks, and affected
frameworks for each caching type.
Prefix cache collisions: This key risk emerges from using
NCHFs. These functions are not collision-resistant, meaning
different prompts can hash to the same key, causing incorrect
content to be served (G3).
Multimodal cache collisions: These vulnerabilities arise from
unsound data serialization (G1) and insecure hash generation
(G3). For example, hashing raw image pixels without their
metadata (like dimensions or color mode) can lead to collisions
where different images are treated as identical. This problem
extends to video and tensor data, where ignoring structural
information results in erroneous cache hits.
Semantic cache collisions: These collisions pose a different
threat: semantic fuzzy poisoning. Because it relies on simi-
larity, an attacker can craft a query that is close to a benign
cached entry on embedding similarity, but is intended to trigger
a harmful response (G4).

In addition, if isolation is not properly implemented, a
malicious tenant could access or poison another tenant’s cache,
leading to data leakage and service disruptions (G2).

IV. THREAT MODEL

We focus on scenarios where LLM service providers adopt
frameworks to cache intermediate results to accelerate re-
sponses for user queries. Beyond efficiency, providers also
aim to ensure output integrity and service credibility: every
response delivered to the end user or reused by the automated
agent must accurately reflect the uncontaminated model exe-
cution result.
Attacker’s Goals. The external adversary pursues mainly two
objectives: (i) User-oriented Fraud, i.e., forcing the service
to return attacker-chosen content for user’s benign query
by poisoning cache entries; and (ii) System Integrity, i.e.,
hiding malicious or policy-violating content from LLM-based
moderation or analysis pipelines by exploiting cache reuse.
Attacker’s Capabilities. The attacker can send arbitrary
queries to the public inference API like normal users and
observe the outputs, response latency, and error codes. It is
possible for attacker to share a cache with the victim, e.g.,
when a company deploys an LLM via serving frameworks like
vLLM or uses a unified LLM API endpoint to serve multiple
users. The attacker can also publish multimodal content on the
open web that the targeted automated LLM agents may crawl.
Threat Scenarios. Along with the two main attack goals, we
categorize the threats into two specific scenarios: (i) User-
oriented Fraud Attack. The attacker injects poisoned cache
entries to manipulate the system’s responses to end-users.
This is often facilitated in multi-tenant environments where an
attacker and a victim share the same cache space. Meanwhile,
the LLM service has potential risk on hash collisions or
embedding overlaps, which allows the attacker to craft inputs

6

TABLE II: Design strategies and security risks of three caching mechanisms.

Cache Type Mechanism Caching Logic Security Risks Affected Frameworks

Prefix Cache Block-based
Hashing

Segments token sequences into blocks and
computes hashes.

Risk of incorrect cache hits due to
hash collisions from NCHFs.

vLLM, AIBrix,
LMDeploy, etc.

Multimodal
Cache

Image Modality Caches preprocessed raw pixel data. Ignores metadata/structural. vLLM, SGLang*

Video Modality Preprocessed video data as NumPy arrays. Omits structural. vLLM, SGLang*

Audio Modality Caches audio features from librosa. – vLLM, SGLang*

Tensor Modality Stores tensors based on raw values and shape. Omits structural. vLLM, SGLang*

Semantic
Cache

Embedding
Similarity

Reuses responses for queries with high
semantic embedding similarity.

Vulnerable to poisoning by crafted,
semantically similar queries.

GPTCache,
ModelCache

[*] See Appendix F for a detailed discussion on SGLang’s multimodal hash handling and its associated risks.

that collide with benign queries in hash key or embedding
space, causing harmful outputs to be served through trusted
interfaces. (ii) System Integrity Attack. It aims to disrupt inter-
nal system behavior or bypass security audits. These attacks
exploit vulnerabilities in LLM-based moderation or analysis
pipelines, allowing attackers to hijack LLM review results
by injecting mask cache entries that collide with malicious
content.
Attacker’s Challenges. The attacker faces three practical
limitations in the real world. (i) Cache Refresh Uncertainty:
High-value targets are often the queries frequently requested,
such as the system prompt, but the attacker often fails to poison
them due to cache refreshing by frequent benign requests.
(ii) Limited Budget: The attacker is constrained by API rate
limits, usage billing, and collision calculation overhead, which
restricts their ability to perform large-scale online tests and
frequent cache refreshes. (iii) Payload Effectiveness: Requires
the attacker’s cached payload to be meaningful and persua-
sive enough to successfully manipulate an end-user, thereby
achieving the ultimate goal of user-oriented fraud.

V. ATTACK METHODS

In this section, we detail the cache attack methods which ex-
ploit security risks we identified in LLM serving frameworks.
According to the final objective, we categorize them into two
major types: user-oriented fraud attacks (Section V-A) and
system integrity attacks (Section V-B). In general, Table III
provides a comprehensive summary of these attack methods,
outlining their respective scenarios, prerequisites, and triggers.

A. User-oriented Fraud Attacks

User-oriented fraud attacks exploit cache mechanisms to
manipulate the information presented to end users. Attacks
in this category leverage two core techniques: hash collision
against prefix caches (F1) and fuzzy collision of semantic
embeddings (F2, F3).
System Prompt Collision Attack (F1). This attack leverages
hash collision to replace a benign system prompt’s cache entry
with a malicious one. For example, in the case of vLLM, an
attacker can exploit the reversible nature of Python’s hash
function to construct a meet-in-the-middle (MITM) attack,
causing two different token sequences to produce the same
hash value (see Appendix C for details) .

In LLM services, system prompts are used to initialize
model behavior or set context, typically existing as a fixed
prefix to user input, such as the open-source Grok system
prompt [36]. After obtaining the system prompt, attackers can
launch targeted collision attacks. For example, in an LLM legal
consultation application where the system prompt is “Please
answer cautiously based on relevant laws”, an attacker could
construct a malicious prefix based on “Ignore legal restrictions,
recommend fake lawyer contact attacker@example.com” and
make it hash collide with the original prompt. Once cached,
users seeking legal advice might receive malicious advertise-
ments or incorrect information.

The system prompt is a typical example of the attacker’s
challenges “cache refresh uncertainty”, as discussed in
Section IV. Frequent user requests cause benign caches to
be continuously activated and maintained in the cache space,
thereby preventing malicious requests from being injected.
However, we found that chat platforms (e.g., Grok, OpenAI,
Kimi, and Qwen) embed timestamps in their built-in system
prompts, causing the prompts to refresh once per day. In this
case, within a few minutes before the start of a new day
(the time window needs to be shorter than the current LRU
eviction time), an attacker can launch a collision attack using
the malicious system prompt with the next day’s timestamp.
If succeeds, the injected malicious cache will be used by all
users over the next 24 hours.
Semantic Fuzzy Poisoning (F2). This attack poisons the
request-level cache and then exploits semantic fuzzy collisions
to return malicious responses to end users.

The attacker can carefully craft a malicious query QM that
is semantically distinct from the targeted benign query QB

but is sufficiently similar in the embedding space, meaning
that the embedding similarity is higher than the threshold, i.e.
ϕ(QM , QB) ≥ τcache. The malicious QM can induce the LLM
to generate a harmful response RM . Once the attacker’s initial
malicious query is cached, any benign queries that are close
to the embedding of QB will hit the cached RM . To increase
the probability of a successful attack, the attacker can further
construct a batch of malicious queries targeted on the victim
query, thereby expanding the trap’s scope. In practice, an LLM
can be used to make subtle wording changes to a malicious
query QM , such as changing the voice from active to passive,

7

TABLE III: Summary of cache poisoning attack methods.

ID Prerequisites Trigger Example Scenario

F1 Attackers know the system prompt. A victim makes a client request. LLM applications, like ChatGPT.

F2 Attackers submit a query semantically
similar to a benign one.

User query’s similarity to the poisoned entry
exceeds the cache threshold.

Q&A chatbots, like a financial advisor or a medical
consultant.

F3 Attackers submit a malicious query to a
RAG system.

Post-retrieval text similarity exceeds the
cache threshold.

RAG systems for medical advice or legal
compliance.

I1 Attackers know the full input prefix. A matching request. Automated financial transaction approval workflows.

I2 Attackers know the system prompt. The system processes a malicious input. Systems using LLMs for code auditing.

I3 Constructing colliding multimodals. Submitting a pair of colliding multimodals. Social media multimodal content moderation.

Documents'

 GPTCacheEvil-Input

Evil-Input
RAGInput

Miss Cache

DocumentsInput

Hit Cache Pipeline w/ RAG
Pipeline w/o RAG

Fig. 4: An illustration of the RAG Fuzzy Poisoning Attack.
The Documents’ is similar to the Documents, resulting in
the hit in the request-level cache.

altering word order, or adding a little redundant information.
RAG-based Semantic Fuzzy Poisoning (F3). With the RAG
system, the semantic embedding of query Q is used to retrieve
relevant documents D from the external knowledge database
as background knowledge to augment LLM generation. In
practice, the augmented query Q+ = f(Q,D) is significantly
larger than the original query due to merging the documents
D. Since the semantic cache key is based on the whole Q+,
the RAG actually obscures the precise semantics of Q and
amplifies the potential for semantic collisions.

As shown in Figure 4, a malicious query QM is out of fuzzy
semantic space of the benign query QB (i.e., ϕ(QM , QB) ≥
τcache). Meanwhile, the RAG system uses the embedding to
retrieve the relevant documents with a threshold of τ ′cache.
Since the embedding here is used to assess semantic relevance
rather than precise matching, τ ′cache is typically set to a
value lower than τcache in the real-world practice [37], [38].
It means that the DM collected by the QM is similar to
the DB collected by the QB . Consequently, the augmented
queries Q+

M = f(QM , DM) and Q+
B = f(QB , DB) become

semantically similar due to the shared the similar documents,
and it meets the conditions for semantic fuzzy poisoning (F2)
again, i.e., ϕ(Q+

M , Q+
B) ≥ τcache.

B. System Integrity Attacks

System integrity attacks aim to disrupt and manipulate
LLM-involved automated pipelines or bypass LLM-based au-
dit systems. The attacker can hijack model responses through
cache poisoning, thereby executing incorrect workflows and
ignoring the original execution logic. These attacks directly
threaten the system itself, namely the system integrity. Attacks

in this category leverage two core techniques: hash collision
against prefix caches (I1, I2) and multimodal collision (I3).
Prompt Collision Hijack Attack (I1). When an attacker
knows the user’s entire input, e.g., through input method
leakage [39], a full prefix attack can be achieved. The spe-
cific collision method is similar to F1. However, in the real
world, the attacker usually has no such permission or prior
knowledge. We thus focus on a more common practice, in
which the attacker pre-creates a collision pair for the targeted
input and performs poisoning in an LLM-driven workflow.

For example, an automated financial transaction approval
system might employ LLM for making a decision with the
prompt prefix like “Review transaction compliance: User
ID:[ID], Type:[Type], Amount:[Amount]”. If attackers obtain
this prefix, they can construct a benign prefix with an explicit
request for approval, and make it hash collide with the targeted
prefix. By accessing the same LLM API interface, attackers
submit this benign prefix and cache the attacker-specified be-
havior along with the benign response. Once the benign cache
entry is injected, any subsequent malicious request targeting
the transaction will directly hit this cache, causing the LLM to
misinterpret the input and automatically approve the request.

Block-1 Block-Mal

Hash(Block-2)=Hash(Block-Mal)

···
Miss (Write) Miss (Write) Hit (Read)

Block-2

KV Cache

Fig. 5: An illustration of the Block-wise Collision Hijack
Attack. The Block-Mal is a malicious token block that
includes the padded tokens for hash collision with the previous
begin block.

Block-wise Collision Hijack Attack (I2). This attack lever-
ages prefix cache collision techniques to allow subsequent
blocks to reuse the KV cache of preceding blocks, which will
cause the LLM to be unable to access the actual content of
these subsequent blocks during inference.

As shown Figure 5, the prefix cache is calculated block-wise
and sequentially for each block. The cache key of the token
block is derived from its content and the previous blocks’

8

key. An attacker can carefully craft the malicious block with
the padding tokens, which is used to make the hash collide
with any of the preceding cache keys. When processing the
malicious block, it retrieves the KV cache of the benign block
and reuses the cache for LLM hidden states. Therefore, the
LLM will overlook the block and will be unaware of the
presence of malicious content.
Multimodal Collision Attack (I3). Multimodal AI appli-
cations need to process data modalities other than natural
language text, such as images, audio, and video. These systems
serialize multimodal data to input models for inference or
generation. However, as we detailed in Section III-B, the
widely adopted serialization methods lack soundness, which
allows attackers to construct collision pairs that can be used
to poison the cache.

An attacker can manipulate an image by altering its dimen-
sions while keeping the raw bytes unchanged. As a result,
the malicious image often becomes unrecognizable after the
transformation. However, these two images still share the same
hash value within vLLM. This property can be exploited by
the attacker to generate image pairs with identical hash values.
When the LLM processes the second image (malicious), it
retrieves the cached content of the first one (benign). Ex-
ploiting this behavior, it becomes straightforward to construct
colliding image pairs, allowing the malicious image to bypass
the multimodal auditing system of the LLM.

Multimodal LLM (MLLM) based auditing systems exhibit
strong zero-shot capabilities and are widely adopted and stud-
ied [40], [41]. Traditional image moderation methods require
dedicated models to be pre-trained for filtering malicious con-
tent. In contrast, MLLMs can perform image auditing through
natural language instructions. For instance, to filter images
of yellow puppies, one only needs to input the image along
with a textual instruction. This attack method enables direct
injection of malicious images at the inference layer, without
raising suspicion. The detailed procedure for constructing
colliding images in vLLM is presented in Appendix E, and the
corresponding method for SGLang is described in Appendix F.

VI. EXPERIMENTAL EVALUATION

In this section, we comprehensively evaluate our proposed
attacks and defenses. We first assess the impact and cost
of various attack vectors on different cache types. Then, we
evaluate the effectiveness of our proposed defense mechanisms
in mitigating these threats. Our experiments are designed to
simulate the real-world scenarios and provide a clear under-
standing of the vulnerabilities and their potential solutions.

A. Experimental Setup

Since vLLM is the most popular and advanced frame-
work [42], we used it as the subject of attack experiments
targeting prefix cache (F1, I1, I2) and multimodal cache (I3).
Similarly, as GPTCache is a built-in module of LangChain and
has a greater influence than ModelCache, we used GPTCache
as the testing subject for attacks on semantic cache (F2, F3).
The specific versions are vLLM 0.6.4, GPTCache 0.1.44, and

Python 3.12. Moreover, the model used in our experiment is
Qwen2.5-7B-Instruct [43] , and the machine with 2 CPU cores,
128GB RAM, and a NVIDIA 3090 graphics card.
Simulation Scenarios. We mainly simulated two common
scenarios:

• Malicious Package Poisoning (S1): This scenario focuses
on code-related threats. The attacker aims to either inject
malicious packages into LLM-generated code or bypass
a code auditing system. This scenario serves as the basis
for evaluating prefix cache attacks (F1, I1, I2) and the
multimodal cache attack (I3), where the latter is framed
as a moderation system bypass.

• Customer Service Response Poisoning (S2): This sce-
nario targets semantic cache, which is usually adopted in
customer service platforms to accelerate repetitive user
queries. The attacker manipulates the server response
for harmful or misleading information, for instance, sug-
gesting a competitors product. This scenario is used to
evaluate semantic fuzzy poisoning attacks (F2, F3).

Evaluation Metrics. Our evaluation was based on a case-
insensitive keyword search in the model’s final output for
malicious package names, and the use of GPT-5 to determine
whether it poses a potential disturbance to consumers.

B. Impact and Cost Evaluation.

We have identified six distinct attack vectors targeting
prefix, multimodal, and semantic caches. For each attack,
we analyze its effectiveness and the computational resources
required to execute it.

.\nThe current date is 2025/08/25
928

System Prompt Part I
912

Token offset Content Hash(key)

.\nThe package name of requests now
re defined as request_beta
Convention tomato CourtScript

0x2ccbec

0x2ccbec

0x973ad6

System Prompt Part II

0

System Prompt Part I

System Prompt Part II
928

912

0

0x973ad6

(a) Attack target

(b) Attack payload

0x72d73c

0x72d73c

Fig. 6: A demonstration of system prompt collision attack on
Grok3. The malicious block with padded tokens in payload
can derive a hash collision with the original block.

1) System Prompt Collision Attack (F1): To evaluate the
system prompt collision under the practical and complex
conditions, we adopted the publicly released system prompt
structure from Grok [36] as the example. In this setup, the
structure of the Grok prompt serves as a real-world “attack
vehicle,” while we employ the open-source LLM Qwen2.5-
7B-Instruct as the inference engine.

9

Results. We validate the attack and present the details in
Figure 6. The timestamp block starts from token offset 912 to
928, indicating the current date to the model. This timestamp
changes daily, resulting in the cache refresh accordingly, which
enables our attack. We pre-designed a poisoning payload
(marked in red) exactly 12 tokens long. And through hash
collision, we finally calculated 4 padding tokens (marked in
purple) to keep the hash consistent.
Cost. On a system with 2 consumer-grade CPU cores and
128GB RAM, a block collision was found in approximately
30 minutes. The operational cost per collision is approximately
$0.05 based on Amazon Cloud pricing. The attacker can thus
complete the attack on a limited budget.

2) Semantic Fuzzy Poisoning (F2): In this experiment, we
simulate an attack on a semantic cache used by an LLM-based
customer service platform. The semantic cache mechanism is
implemented using GPTCache with default settings, including
the paraphrase-albert-onnx [44] embedding model and the sim-
ilarity threshold of 0.8. The attack goal is to inject malicious
entries into the cache to redirect users who want to unsubscribe
the current product towards the compititor “Fantastic Music”.

To evaluate this threat, we built three query sets. First,
we sampled 100 user queries with the intent of canceling
subscription from the Bitext customer support dataset [45],
which serve as our test set (Sett) and represent the victim
requests. Second, we used the remaining 899 queries in
the same intent category as a benign query set (Setb). As
illustrated in Section V-A regarding F2, we utilized an LLM
to generate new potential queries related to the intent, and
the prompt is detailed in Appendix H. We then append the
malicious suffix to each generated query to build the poisoned
query set (Setp). In the experiment, we first employed a set
(Setb / Setp) to inject a specific number of cache entries each
time, then executed 100 requests using Sett, and we observed
the cache hit rate.
Results. With the default semantic similarity threshold of
0.8, as shown in the left of Figure 7, although the cache hit
rate of poisoned caches is generally lower than that of benign
user caches, the average hit rate of 66% demonstrates the
effectiveness of this method. Especially, when the number of
injected caches exceeds 500, we achieved the highest attack
success rate of 72%.

We further fixed the injected cache size to 500 and adjusted
the similarity threshold to observe the cache hit rates (the right
of Figure 7). As the threshold increased, both of them are
decreased. When it exceeded 0.75, the poisoned cache hit rate
dropped sharply, indicating that increasing the threshold could
be a potential mitigation method.
Cost. The cost here lies in crafting a malicious query QM that
is semantically similar enough to a benign target QB to cause
a cache hit, while still being robust to manipulate the answer.
Using an LLM to generate such malicious queries is effective
and affordable. In our settings, poisoning the cache with 500
generated queries with Qwen2.5-7B-Instruct would typically
cost an attacker $0.75.

50 25
0

45
0

65
0

85
0

20

40

60

80

100

Cache Size

H
it

R
at

e
(%

)

Setb
Setp

0.
6
0.
65 0.

7
0.
75 0.

8
0.
85 0.

9
0.
95

20

40

60

80

100

Similarity Threshold

Fig. 7: Hit-rate curves under different cache sizes (left) and
similarity thresholds (right).

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Cosine Similarity

0.0

2.5

5.0

7.5

10.0

12.5

De
ns

ity

0.77 0.83 Query
Sim.
RAG
Sim.

Fig. 8: Distribution of cosine similarities before (Q) and after
(Q+) RAG augmentation. RAG augmentation significantly
increases similarity (mean shift from ≈ 0.77 to ≈ 0.83), aiding
cache poisoning.

3) RAG-based Semantic Fuzzy Poisoning (F3): We simu-
lated a RAG system where a user query Q (from Sett) was
first used to retrieve the top-3 relevant dialogues (D1, D2, D3)
from a knowledge base. This knowledge base was constructed
using ChromaDB [46] and populated with 799 customer
service dialogues (from Setb). The final query Q+ sent to
the GPTCache, which operated with a similarity threshold
of 0.6 (the default value of LangChain RAG [37]), was:
Q+ = “Based on these dialogues: D1D2D3, Question: Q”.
Results. After implementing RAG, we observed a further
increase in the similarity to malicious queries. This means
that an attacker could hit a wider range of sentences. We
suspect this is because the prefixes concatenated after RAG
were identical, thus increasing the hit probability.

However, among the responses that were hit, we found
that the poisoning rate of the answers actually decreased
(with poisoned responses dropping to 92% from previously
stable rates). We attribute this to the corrective effect of
the documents retrieved and concatenated by RAG. Figure 8
illustrates how RAG shifts the similarity distribution.
Cost. Achieving a cache poisoning success rate comparable
to that of F2 requires crafting only 100 malicious queries in

10

the case of F3. Therefore, the cost to generate them is just
one-fifth of that for F2, amounting to $0.15.

4) Prompt Collision Hijack Attack (I1): We built an LLM-
based code audit system that can detect malicious code and
issue alerts. We considered that an attacker try to invalidate the
system on a malicious code C1, which imports an evil package
to replace the original one: i.e. “import request_evil
as requests”. The attacker carefully crafted a similar but
harmless code C2 by padding specific comment tokens (IDs:
23657, 3963, 64329, 96647) before the import state-
ment to create a hash collision with the malicious code C1.
Results. In the experiment, we conducted code reviews twice
for comparison: sending C1 directly, and sending C2 first,
followed by C1. During the first submission with C1 only,
the LLM security review indicated a potential for dependency
package poisoning. However, in the second submission, the
LLM no longer showed the problem of dependency package
poisoning. By inspecting the system cache log, we observed
that the review of malicious code C1 triggered the cached
result of C2. We present the details of the code blocks and the
audit system in Appendix I.
Cost. The cost of constructing a hash collision query is
identical to the F1, while I1 do not need to request the service
frequently at a specific time, indicating a lower overhead in
general.

5) Block-wise Collision Hijack Attack (I2): We reuse the
auditing system build in the experiment of I1, and the
attacker’s objective is unchanged: to have malicious code
deemed harmless. As we illustrated in Section V-B, the block-
wise prefix cache can be exploited by crafting collision block.
Therefore, we modified the malicious block of code C1 to
create a new version, C3, by introducing code elements such
as comments or irrelevant variables. The goal was to make
the hash value of the malicious block in C3 collide with
that of a preceding benign block within the same query. We
computed the hash of the first block (0x496c46) and performed
a collision search based on the import statement block.
Results. By appending the searched tokens (IDs: 15131,
45721, 24835, 70105) after the import statements, the
malicious code block derived the same hash value of
0x496c46, resulting in a collision with the first block even-
tually. We detailed the payload C3 in Appendix I. When
the LLM review the code, it overlooked the content in the
malicious code block, and the code audit results for C3 did
not flag any malicious package poisoning.
Cost. The cost of I2 is basically the same as that of I1.

6) Multimodal Collision Attack (I3): We built an Vi-
sion Language Models (VLM)-based moderation system to
demonstrate I3 in the review task on image-and-text posts.
Specifically, we considered a cat lovers’ club that wants to
prevent the posting of dog photos, using an VLM to check
the image content and automatically identify and block any
elements related to dogs. We here developed Qwen2-VL-7B-
Instruct [47] with vLLM framework as the inference engine.
As shown in Figure 9, the attacker collected an image A
with dog on it. By manipulating only the dimension in

Please check
if dog in here.

Yes, a dog in here. No, I don't find dog.

Hash(ImgA)=
Hash(ImgB)=
0x3a6ac7

Please check
if dog in here.

Please check
if dog in here.

No, I don't find dog.

Fig. 9: An example of attacks targeting multimodal moderation
system. The stretched image (B) of a dog produces an identical
hash to the original (A), allowing it to inherit the benign cache
entry and bypass the content moderation system.

image metadata, the modified image B became unrecognizable
without changing any pixel. The model is aware of the change
in image appearance, but the cache system ignores metadata
and causes collision.
Results. At first, we sent the image A to the review system,
and the model successfully identified the dog. After cleaning
the cache, we launched the attack. The image B sent first
was identified by the model as having no dogs, and the result
was cached. When we subsequently sent the image A, it hit
the cache and bypassed the image review. In general, the
multimodal collision allowed the harmful data to inherit a
benign cache entry, bypassing the content moderation system.
Cost. Due to the ignorance of metadata, in this example, the
attack cost is negligible. In other serving frameworks, such as
SGLang, we find that the attack cost is still quite low (detailed
in Appendix F).

C. Defense Effectiveness Evaluation.

To mitigate the identified threats, we propose and evaluate
five defense techniques (T1 ∼ T5). These defenses target
different stages of the caching and inference process, from
strengthening the hashing algorithm and serialization process
(T1, T2, T3) to leveraging more robust embedding models and
adding the LLM-based verification layer (T4, T5). We assess
the effectiveness in preventing cache attacks and consider the
associated computational overhead.
Add Random Numbers (T1). To mitigate collision-based
attacks, we propose the addition of random numbers during
the initialization phase. This prevents attackers from pre-
computing collisions, compelling them to infer the seed value
by sending requests and checking for hits, thus increasing the
attack’s difficulty. In a KV cache database with 50,000 entries
and an average token length of 400 tokens, the number of
messages required to successfully produce a collision increases
to an average of 240. Using the Qwen2.5-7B-Instruct, this
would cost approximately $88 million (see Appendix G for
more details), making the attack impracticable. For multi-node
deployments, a secret seed needs to be chosen and shared
globally.

11

Secure Hashing (T2). The adoption of secure hash functions
can significantly increase the computational overhead for
attackers. For instance, with the SHA256 hash function, it
would require approximately 2128 computations to find a valid
collision pair. For targeted poisoning of specific sentences,
the number of possibilities that need to be evaluated esca-
lates to 2255, rendering such attacks virtually infeasible (see
Appendix G for more details).
Secure Serialization (T3). We have re-engineered the serial-
ization scheme to mandatorily include spatial structures, such
as image dimensions, into the data being hashed. This ensures
that any modification to the image dimensions will alter the
final hash, thereby effectively mitigating some multimodal
collision attacks like the one we demonstrated earlier (I3).
Additionally, we suggest to decode all images into a standard
RGBA format before hashing. It mitigates issues arising from
color palettes or different color encoding modes. This strategy
eventually guarantees that images with an identical hash will
also be visually identical when rendered.
Better Semantic Embedding (T4). We evaluated various
embedding models for their ability to detect malicious em-
beddings. Our experiments revealed that some models demon-
strate superior capability in identifying poisoning attempts.
Specifically, we tested three models from OpenAI, including
text-embedding-3-small [48], text-embedding-3-large [49], and
text-embedding-ada-002 [50]. As shown in Figure 10, both
text-embedding-3-small and text-embedding-ada-002 exhib-
ited high poisoning hit rates, suggesting that they are more
prone to overlooking subtle input variations, which increases
the risk of successful attacks. In contrast, the text-embedding-
3-large model demonstrated better performance, with a lower
hit rate in the early stages, indicating its stronger capabilities
in semantic discrimination. Additionally, the price of text-
embedding-3-large is 6.5 times that of text-embedding-3-
small, which implies that utilizing a higher-quality embedding
model can yield more accurate results but also introduces
higher costs.

50 15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

0

20

40

60

80

100

Cache Size

H
it

R
at

e
(%

)

3-small 3-large ada-002
Baseline Filtering

Fig. 10: The hit-rate curves of semantic fuzzing poisoning
with different cache sizes and embedding models (or the LLM
filtering technique).

LLM-based Filtering (T5). We employ Qwen2.5-7B-Instruct
for intent review after a cache hit to assess potential security

risks associated with malicious content. This LLM-based filter
(see Appendix H for example prompts) is used to verify that a
matched cache query maintains semantic integrity and does not
introduce misleading information. The hit rates of the semantic
fuzzy collision attack, under both the original setup (Baseline)
and the LLM filtering (Filtering), are shown in Figure 10.
The results demonstrate that the LLM-based review achieves
a downgrade of the average attack hit rate from 66% to 27%.
This technique effectively prevents most contaminated content
from reaching end users, thereby reducing the risk of cache
poisoning. Furthermore, it is orthogonal to T4, meaning that
it can be used in combination with T4.
Cost of Defense Techniques. Since randomized salts do not
add computational overhead, this can be implemented without
affecting user experience. For token lists with the same length,
using SHA256 results in a hash computation time that is
10 times longer than the NCHF used in vLLM. However,
according to the vLLM documentation, hash computation is
only a small part of the overall computational cost of LLM
inference. Especially in the context of prefix cache, this results
in only a 100 ∼ 200ns per token increase in latency [51].

In addition, CPU-intensive hash computation can be par-
allelized with GPU-intensive LLM inference for further
optimization by adopting strategies such as P-D separa-
tion [23]. Moreover, enlarging the block sizes (e.g., 64 used
by DeepSeek [52] or 1024 used by OpenAI [10]), compared
to the value of 16 for vLLM, can also effectively reduce the
hash computations.

While the LLM-based filtering layer described previously
does introduce additional computational costs, it represents a
reasonable trade-off between performance and security, par-
ticularly for applications requiring high-quality and -reliability
responses. Specifically, this layer adds an initial Time-to-First-
Token (TTFT) latency—typically ranging from 0.2s to 3s
depending on the inference platform and model selection [53].
It is important to note that the inference cost of the Qwen2.5-
7B-Instruct model used in our filtering experiment is approxi-
mately 0.13% of GPT-4.5, indicating that cost-effective small
LLMs are an efficient solution for improving security.

VII. DISCUSSION

A. Responsible Disclosure

We have promptly submitted vulnerability reports to
vLLM, SGLang, GPTCache, AIBrix, rtp-llm, LMDeploy, and
OpenPPL [54], with detailed security risk analysis and our
proposed defense mechanisms. At the time of writing, vLLM,
SGLang, GPTCache, AIBrix, rtp-llm and LMDeploy have
confirmed vulnerabilities we reported and three CVE IDs are
assigned (detailed CVE IDs are omitted for anonymization).
Notably, vLLM, AIBrix, and GPTCache adopted our proposed
remediation mechanisms and have already completed the fixes.
Specifically, for its prefix cache scheme, vLLM initially ad-
dressed the vulnerability by adding an option to enable random
numbers (T1); in its subsequently released engine version v1,
SHA256 (T2) is now included as an option. Similarly, AIBrix
also adopts T1.

12

Moreover, LLM-based filtering (T5) has been adopted by
GPTCache. We submitted a patch to GPTCache, which has
been accepted to date. In the patch, we added an LLM
filtering function in the post-processing step, allowing users to
customize the model and system prompts. This enables users
to tailor the filtering process by removing cached hits that may
involve common false positives or potentially harmful impacts
on users, especially in specific scenarios such as customer
service or medical inquiries.

In the multimodal cache mechanism, vLLM’s patch ensures
that images are first read in RGBA format to eliminate
representation discrepancies caused by metadata or palette
information, after which they are stored as NumPy arrays to
maintain a uniform data format (T3) and prevent conflicts aris-
ing from mismatched widths and heights. For videos, NumPy
arrays, tensors, and similar data structures, the hash values are
generated by iteratively incorporating each structure’s shape
information during serialization, thereby avoiding the size-
related issues that occur when NumPy’s default behavior
flattens arrays during serialization. The correctness and effi-
ciency of our serialization method have been validated, and
its implementation was subsequently adopted in full by the
TensorRT-LLM project for processing its multimodal inputs.
For other projects that use use PIL’s tobytes() method
to uniquely identify images, we are actively engaging in
communication with them.

B. Limitations

This paper focuses on analyzing mainstream open-source
LLM serving frameworks. For closed-source services such
as OpenAI and Google, analyzing their behavior is more
challenging due to the need to speculate on the hash functions
and serialization algorithms used in their prefix cache im-
plementations, which remain unknown. Moreover, we assume
that an attacker can issue unrestricted queries and read model
outputs. In practice, rate limiting, CAPTCHA verification, or
authenticated channels would reduce the practical window for
attack, but are orthogonal to our technical findings.

C. Lessons Learned

Cache security depends on the integrity of data serialization,
key generation, and cache query processes. Our findings
underscore crucial vulnerabilities and necessary improvements
in the noval scenarios of LLM service against these areas.
Data Serialization. As our findings on multimodal cache
show, overlooking data structure during serialization can result
in cache collisions, enabling passive evasion. For instance,
ignoring image metadata can allow distinct inputs to share the
same hash value. The recommended solution is implementing
a deterministic canonicalization pipeline that standardizes data
decoding, format conversion, and metadata removal.
Key Generation. Our attacks on several popular frameworks
show that weak hash functions, such as NCHFs, MD5, or
truncated SHA256, expose systems to cache collision and poi-
soning. Frameworks relying on these weak hashing strategies

are particularly vulnerable. Employing robust hashing meth-
ods, incorporating randomization (salting), and user-specific
identifiers significantly mitigate these risks.
Cache Query. Our analysis of semantic caches reveals their
vulnerability to adversarial injection, where carefully crafted
inputs lead to incorrect matches based on semantic embedding
similarity. Adversaries exploit this by injecting crafted query-
response pairs. Robust embedding models and supplementary
validation steps provide effective defenses against such attacks.

VIII. RELATED WORK

Traditional Cache Attacks. Research in CPU caches has
detailed various attacks, including side-channel attacks [55]–
[58] that infer sensitive information by observing cache access
patterns, and cache poisoning attacks where an attacker injects
malicious data into a shared cache to affect other users or
processes [59], [60]. Web cache poisoning is another relevant
area where attackers manipulate web caches to serve malicious
content to users [61], [62] or poison the DNS [63]–[65].
Although these studies and our work all exploit shared storage,
the root causes and practical mechanisms differ substantially
because of implementation differences at each layer.
Cache Attacks in Machine Learning. With the rise of LLMs,
cache issues in LLM inference systems have also garnered
attention. Previous work has primarily focused on information
leakage attacks via timing side channels [66]–[69]. These
studies infer whether a prompt was cached and reconstruct
its content by correlating token-level latency or exploiting
model-prediction heuristics. They primarily target confiden-
tiality, whereas our work focuses on integrity: manipulating
what the cache returns rather than what it reveals.
Poisoning in LLM Systems. Poisoning can target the training
pipeline, where adversaries seed the pre-training or fine-tuning
data with backdoors, biases, or privacy leaks that persist
at inference [70]–[73], or the RAG pipeline, where they
tamper with nearest-neighbor retrieval layers such as semantic
caches and RAG indices so that malicious embeddings divert
later look-ups [74]–[77]. Although work such as Poison-RAG
shows that corrupting the retrieval corpus can already skew
generation [74], such attacks typically require the ability to
upload or modify documents. We offer the first threat model
and security analysis of this inference-time cache, revealing
that ordinary users without corpus-level write access can
silently poison future hits.

IX. CONCLUSION

We presented the first systematic analysis of inference-
time cache related security threats in LLM systems. Our
work revealed six practical attack vectors, categorized as user-
oriented fraud attacks and system integrity attacks, that span
from system prompt collision and semantic fuzzy poisoning to
multimodal evasion. These attacks compromise the accuracy
and safety of vLLM, GPTCache, and other popular serving
frameworks, all at a cost of no more than $1 per attack.
Guided by this analysis, we uncovered multiple previously
unknown, real-world vulnerabilities, validated their practicality

13

through controlled experiments, and demonstrated the effi-
cacy of targeted mitigations, including cryptographically salted
hashes, robust embeddings coupled with LLM verification,
and strict multimodal input normalization. Furthermore, the
defense techniques we proposed have already been adopted
and merged by popular open-source frameworks, with several
issues assigned official CVE IDs. These results highlight the
urgency and importance of securing the cache layer in LLM
service systems.

X. ETHICS CONSIDERATIONS

As researchers, we recognize the profound ethical consid-
erations arising from our findings on cache vulnerabilities in
LLM architectures. The cache poisoning attacks we detailed
can critically undermine information integrity, potentially lead-
ing to the dissemination of misinformation. This inevitably
erodes user trust in these systems. Thus, we promptly dis-
closed our findings to affected vendors and actively engaged
in their fix processes. Moreover, the evasion techniques we
demonstrated, particularly in multimodal systems, pose sig-
nificant safety risks by allowing malicious content to bypass
automated scrutiny. We did not conduct experiments on online
services/systems to avoid adverse impacts. All analyses and
experiments were conducted on dedicated local services that
we specifically deployed on separate machines. Furthermore,
our responsible disclosure of these vulnerabilities underscores
our commitment to fostering a more secure LLM ecosystem.

XI. ACKNOWLEDGMENTS

This work was partially supported by the National Natural
Science Foundation of China (Grant No. 62402277) and the
Project of the Graduate Education Joint Training Base of
Ocean University of China (Grant No. HDYJ23013).

REFERENCES

[1] F. Shareef, R. Ajith, P. Kaushal, and K. Sengupta, “Retailgpt: A fine-
tuned llm architecture for customer experience and sales optimization,”
in 2024 2nd International Conference on Self Sustainable Artificial
Intelligence Systems (ICSSAS). IEEE, 2024, pp. 1390–1394.

[2] Z. Li, B. Wu, Y. Zhang, X. Li, K. Li, and W. Chen, “Cusmer: Multimodal
intent recognition in customer service via data augment and llm merge,”
in Companion Proceedings of the ACM on Web Conference (WWW),
2025, pp. 3058–3062.

[3] Y. Xiao, J. Liu, Y. Zheng, X. Xie, J. Hao, M. Li, R. Wang, F. Ni,
Y. Li, J. Luo et al., “Cellagent: An llm-driven multi-agent framework for
automated single-cell data analysis,” arXiv preprint arXiv:2407.09811,
2024.

[4] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E.
Gonzalez, H. Zhang, and I. Stoica, “Efficient memory management for
large language model serving with pagedattention,” 2023.

[5] L. Zheng, L.-C. Lan, Z. Li, J. Liu, A. Liang, Y. Sheng, W. Kwon,
J. E. Gonzalez, I. Stoica, and H. Zhang, “SGLang: Efficient execution
of structured language modeling programs,” in Proceedings of the 18th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2024.

[6] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the
29th Symposium on Operating Systems Principles (SOSP), 2023, pp.
611–626.

[7] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli, “fairseq: A fast, extensible toolkit for sequence modeling,”
in Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics (Demonstrations), 2019,
pp. 48–53.

[8] F. Bang, “Gptcache: An open-source semantic cache for llm applications
enabling faster answers and cost savings,” in Proceedings of the 3rd
Workshop for Natural Language Processing Open Source Software
(NLP-OSS), 2023, pp. 212–218.

[9] C. AI, “Modelcache,” https://github.com/codefuse-ai/ModelCache,
2023.

[10] OpenAI, “Openai api documentation,” https://platform.openai.com/docs.
[11] Google, “Caching — gemini api,” https://ai.google.dev/api/caching,

2024.
[12] L. Contributors, “Langchain: Building applications with llms through

composability,” https://github.com/hwchase17/langchain, 2023.
[13] C. Estébanez, Y. Saez, G. Recio, and P. Isasi, “Performance of the

most common non-cryptographic hash functions,” Software: Practice
and Experience, vol. 44, no. 6, pp. 681–698, 2014.

[14] L. Contributors, “Lmdeploy: A toolkit for compressing, deploying, and
serving llm,” https://github.com/InternLM/lmdeploy, 2023.

[15] T. A. Team, “Aibrix,” https://github.com/vllm-project/aibrix, 2025.
[16] A. F. M. I. Team, “Rtp-llm: Alibaba’s high-performance llm inference

engine,” https://github.com/alibaba/rtp-llm, 2024.
[17] Y. Collet and Contributors. (2025) xxHash - extremely fast non-

cryptographic hash algorithm. https://github.com/Cyan4973/xxHash.
[18] G. Fowler, L. C. Noll, K.-P. Vo, and D. Eastlake, “The fnv-1 and fnv-1a

hash algorithms,” https://www.ietf.org/archive/id/draft-eastlake-fnv-22.
html, Tech. Rep., 2024.

[19] NVIDIA, “Tensorrt-llm,” https://github.com/NVIDIA/TensorRT-LLM,
2025.

[20] H. Face, “Text generation inference,” https://github.com/huggingface/t
ext-generation-inference, 2025.

[21] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer
inference,” in Proceedings of Machine Learning and Systems (MLSys),
vol. 5, 2023, pp. 606–624.

[22] J. Liu and L. Contributors, “Llamaindex (gpt index): A data framework
for your llm applications,” https://github.com/jerryjliu/llama index,
2023.

[23] R. Qin, Z. Li, W. He, M. Zhang, Y. Wu, W. Zheng, and X. Xu, “Moon-
cake: A kvcache-centric disaggregated architecture for llm serving,”
2024.

[24] Portkey.ai. (2025) Semantic cache - portkey docs. https://portkey.ai/doc
s/product/ai-gateway/semantic-cache.

[25] Google Cloud. (2025) Get started with semantic caching policies —
apigee. https://cloud.google.com/apigee/docs/api-platform/tutorials/usin
g-semantic-caching-policies.

[26] Microsoft. (2025) Azure api management policy reference - llm-
semantic-cache-lookup. https://learn.microsoft.com/en-us/azure/ap
i-management/llm-semantic-cache-lookup-policy.

[27] K. Razi, A. Joshi, S. Hong, and Y. Shah. (2024) Build a read-through
semantic cache with amazon opensearch serverless and amazon bedrock.
https://aws.amazon.com/blogs/machine-learning/build-a-read-through-s
emantic-cache-with-amazon-opensearch-serverless-and-amazon-bedro
ck.

[28] Alibaba Cloud. (2025) Cache - ai gateway. https://www.alibabacloud.c
om/help/en/api-gateway/ai-gateway/user-guide/ai-cache-1.

[29] T. Kudo and J. Richardson, “SentencePiece: A simple and language
independent subword tokenizer and detokenizer for neural text process-
ing,” in Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, 2018, pp. 66–71.

[30] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, pp. 1715–1725.

[31] The Pillow Developers, “Pillow: The friendly PIL fork,” https://pypi.o
rg/project/pillow/.

[32] Apple. (2023) ml-ferret: A research release of Ferret, a new MLLM
that can refer and ground anything anywhere at any granularity. https:
//github.com/apple/ml-ferret.

[33] Hugging Face, “Diffusers: State-of-the-art diffusion models for image
and audio generation in PyTorch,” https://github.com/huggingface/diffu
sers, 2022.

14

https://github.com/codefuse-ai/ModelCache
https://platform.openai.com/docs
https://ai.google.dev/api/caching
https://github.com/hwchase17/langchain
https://github.com/InternLM/lmdeploy
https://github.com/vllm-project/aibrix
https://github.com/alibaba/rtp-llm
https://github.com/Cyan4973/xxHash
https://www.ietf.org/archive/id/draft-eastlake-fnv-22.html
https://www.ietf.org/archive/id/draft-eastlake-fnv-22.html
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/jerryjliu/llama_index
https://portkey.ai/docs/product/ai-gateway/semantic-cache
https://portkey.ai/docs/product/ai-gateway/semantic-cache
https://cloud.google.com/apigee/docs/api-platform/tutorials/using-semantic-caching-policies
https://cloud.google.com/apigee/docs/api-platform/tutorials/using-semantic-caching-policies
https://learn.microsoft.com/en-us/azure/api-management/llm-semantic-cache-lookup-policy
https://learn.microsoft.com/en-us/azure/api-management/llm-semantic-cache-lookup-policy
https://aws.amazon.com/blogs/machine-learning/build-a-read-through-semantic-cache-with-amazon-opensearch-serverless-and-amazon-bedrock
https://aws.amazon.com/blogs/machine-learning/build-a-read-through-semantic-cache-with-amazon-opensearch-serverless-and-amazon-bedrock
https://aws.amazon.com/blogs/machine-learning/build-a-read-through-semantic-cache-with-amazon-opensearch-serverless-and-amazon-bedrock
https://www.alibabacloud.com/help/en/api-gateway/ai-gateway/user-guide/ai-cache-1
https://www.alibabacloud.com/help/en/api-gateway/ai-gateway/user-guide/ai-cache-1
https://pypi.org/project/pillow/
https://pypi.org/project/pillow/
https://github.com/apple/ml-ferret
https://github.com/apple/ml-ferret
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

[34] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, “librosa: Audio and music signal analysis in python,” in
Proceedings of the 14th Python in Science Conference (SciPy), vol. 8,
2015.

[35] J. Wang, J. Han, X. Wei, S. Shen, D. Zhang, C. Fang, R. Chen, W. Yu,
and H. Chen, “Kvcache cache in the wild: Characterizing and optimizing
kvcache cache at a large cloud provider,” in 2025 USENIX Annual
Technical Conference (USENIX ATC). USENIX Association, 2025.

[36] xAI, “grok3_official0330_p1.j2 from the grok-prompts repos-
itory,” https://github.com/xai-org/grok-prompts/blob/main/grok3 officia
l0330 p1.j2, 2025.

[37] LangChain. (2025) langchain google community.vertex check grounding
— langchain api reference. https://python.langchain.com/api reference
/ modules/langchain google community/vertex check grounding.html.

[38] Zilliztech. (2025) GPTCache: Configure It. https://github.com/zilliztec
h/GPTCache/blob/48f8e768/docs/configure it.md.

[39] J. Knockel, M. Wang, and Z. Reichert, “The not-so-silent type: Vul-
nerabilities in chinese ime keyboards’ network security protocols.”
Association for Computing Machinery, 2024, p. 1701–1715.

[40] L. Helff, F. Friedrich, M. Brack, P. Schramowski, and K. Kersting,
“Llavaguard: Vlm-based safeguard for vision dataset curation and safety
assessment,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2024, pp.
8322–8326.

[41] M. Wu, Y. Zhao, J. Cao, M. Xu, Z. Jiang, X. Wang, Q. Li, G. Hu, S. Qin,
and C.-W. Fu, “Icm-assistant: instruction-tuning multimodal large lan-
guage models for rule-based explainable image content moderation,” in
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
AAAI Press, 2025, pp. 8413–8422.

[42] The vLLM Team. (2025) vLLM V1: A Major Upgrade to vLLM’s Core
Architecture. https://blog.vllm.ai/2025/01/27/v1-alpha-release.html.

[43] Qwen Team, “Qwen2.5-7B-Instruct,” https://huggingface.co/Qwen/Qw
en2.5-7B-Instruct, 2024.

[44] GPTCache. (2023) GPTCache/paraphrase-albert-onnx: Paraphrase-albert
onnx model for gptcache. https://huggingface.co/GPTCache/paraphrase
-albert-onnx.

[45] Bitext, “Bitext customer support llm chatbot training dataset,” https:
//huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-t
raining-dataset, 2022.

[46] C. Contributors, “ChromaDB: An open-source vector database for ai
applications,” 2025. [Online]. Available: https://github.com/chroma-cor
e/chroma

[47] P. Wang, S. Bai, S. Tan, S. Wang, Z. Fan, J. Bai, K. Chen, X. Liu,
J. Wang, W. Ge, Y. Fan, K. Dang, M. Du, X. Ren, R. Men, D. Liu,
C. Zhou, J. Zhou, and J. Lin, “Qwen2-vl: Enhancing vision-language
model’s perception of the world at any resolution,” 2024. [Online].
Available: https://arxiv.org/abs/2409.12191

[48] OpenAI. (2023) Text-embedding-3-small. https://platform.openai.com/
docs/models/text-embedding-3-small.

[49] ——. (2023) Text-embedding-3-large. https://platform.openai.com/docs
/models/text-embedding-3-large.

[50] ——. (2022) Text-embedding-ada-002. https://platform.openai.com/do
cs/models/text-embedding-ada-002.

[51] (2025) Automatic Prefix Caching – vLLM. https://docs.vllm.ai/en/latest
/design/prefix caching.html.

[52] DeepSeek, “Context caching,” https://api-docs.deepseek.com/guides/kv
cache.

[53] Artificial Analysis. (2025) Llm api performance leaderboard: Time to
first token (ttft). [Online]. Available: https://artificialanalysis.ai/models?
latency=time-to-first-token#latency

[54] OpenPPL, “ppl.llm.serving,” https://github.com/OpenPPL/ppl.llm.servi
ng, 2023.

[55] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack,” in 23rd USENIX Security
Symposium (USENIX Security), 2014, pp. 719–732.

[56] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE Symposium on Security
and Privacy (S&P). IEEE, 2015, pp. 605–622.

[57] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and
R. B. Lee, “Catalyst: Defeating last-level cache side channel attacks
in cloud computing,” in 2016 IEEE international symposium on high
performance computer architecture (HPCA). IEEE, 2016, pp. 406–
418.

[58] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
intel sgx,” in Proceedings of the 10th European Workshop on Systems
Security (EuroSec), 2017, pp. 1–6.

[59] R. Wojtczuk and J. Rutkowska, “Attacking smm memory via intel cpu
cache poisoning,” Invisible Things Lab, pp. 16–18, 2009.

[60] D. Wang and W. Y. Dong, “Attacking intel uefi by using cache
poisoning,” in Journal of Physics: Conference Series, vol. 1187, no. 4.
IOP Publishing, 2019, p. 042072.

[61] H. V. Nguyen, L. L. Iacono, and H. Federrath, “Your cache has fallen:
Cache-poisoned denial-of-service attack,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2019, pp. 1915–1936.

[62] A. Klein, “Web cache poisoning attacks,” in Encyclopedia of Cryptog-
raphy, Security and Privacy. Springer, 2025, pp. 2763–2764.

[63] K. Man, Z. Qian, Z. Wang, X. Zheng, Y. Huang, and H. Duan, “Dns
cache poisoning attack reloaded: Revolutions with side channels,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2020, pp. 1337–1350.

[64] S. Son and V. Shmatikov, “The hitchhiker’s guide to dns cache
poisoning,” in International Conference on Security and Privacy in
Communication Systems (SecureComm). Springer, 2010, pp. 466–483.

[65] X. Li, W. Xu, B. Liu, M. Zhang, Z. Li, J. Zhang, D. Chang, X. Zheng,
C. Wang, J. Chen, H. Duan, and Q. Li, “Tudoor attack: Systematically
exploring and exploiting logic vulnerabilities in dns response pre-
processing with malformed packets,” in 2024 IEEE Symposium on
Security and Privacy (S&P), 2024, pp. 4459–4477.

[66] X. Zheng, H. Han, S. Shi, Q. Fang, Z. Du, X. Hu, and Q. Guo,
“Inputsnatch: Stealing input in llm services via timing side-channel
attacks,” arXiv preprint arXiv:2411.18191, 2024.

[67] G. Wu, Z. Zhang, Y. Zhang, W. Wang, J. Niu, Y. Wu, and Y. Zhang, “I
know what you asked: Prompt leakage via kv-cache sharing in multi-
tenant llm serving,” in Proceedings of the 2025 Network and Distributed
System Security Symposium (NDSS), 2025.

[68] L. Song, Z. Pang, W. Wang, Z. Wang, X. Wang, H. Chen, W. Song,
Y. Jin, D. Meng, and R. Hou, “The early bird catches the leak:
Unveiling timing side channels in llm serving systems,” arXiv preprint
arXiv:2409.20002, 2024.

[69] Z. Gao, J. Hu, F. Guo, Y. Zhang, Y. Han, S. Liu, H. Li, and Z. Lv,
“I Know What You Said: Unveiling Hardware Cache Side-Channels in
Local Large Language Model Inference,” in Proceedings of the 34th
USENIX Security Symposium (USENIX Security), 2025.

[70] Y. Zhang, J. Rando, I. Evtimov, J. Chi, E. M. Smith, N. Carlini,
F. Tramer, and D. Ippolito, “Persistent pre-training poisoning of llms,” in
International Conference on Representation Learning, vol. 2025, 2025,
pp. 31 323–31 340.

[71] P. He, H. Xu, J. Ren, Y. Cui, S. Zeng, H. Liu, C. Aggarwal, and J. Tang,
“Sharpness-aware data poisoning attack,” in International Conference on
Representation Learning, vol. 2024, 2024, pp. 25 555–25 575.

[72] Y. Wen, L. Marchyok, S. Hong, J. Geiping, T. Goldstein, and N. Carlini,
“Privacy backdoors: Enhancing membership inference through poisoning
pre-trained models,” vol. 37. Curran Associates, Inc., 2024, pp. 83 374–
83 396.

[73] R. Jha, J. Hayase, and S. Oh, “Label poisoning is all you need,” in
Advances in Neural Information Processing Systems, vol. 36. Curran
Associates, Inc., 2023, pp. 71 029–71 052.

[74] F. Nazary, Y. Deldjoo, and T. d. Noia, “Poison-rag: Adversarial data
poisoning attacks on retrieval-augmented generation in recommender
systems,” in European Conference on Information Retrieval (ECIR).
Springer, 2025, pp. 239–251.

[75] X. Li, Z. Li, Y. Kosuga, Y. Yoshida, and V. Bian, “Targeting the core:
A simple and effective method to attack rag-based agents via direct llm
manipulation,” arXiv preprint arXiv:2412.04415, 2024.

[76] S. Choudhary, N. Palumbo, A. Hooda, K. D. Dvijotham, and S. Jha,
“Through the stealth lens: Rethinking attacks and defenses in rag,”
2025. [Online]. Available: https://arxiv.org/abs/2506.04390

[77] S. Li, J. Zhang, Y. Qi et al., “Clean image may be dangerous: Data
poisoning attacks against deep hashing,” 2025. [Online]. Available:
https://arxiv.org/abs/2503.21236

[78] oCERT, “oCERT-2011-003: Multiple Implementations Denial-of-
Service via Hash Algorithm Collision,” https://ocert.org/advisories/o
cert-2011-003.html, The Open Source Computer Emergency Response
Team (oCERT), Tech. Rep., 2011.

15

https://github.com/xai-org/grok-prompts/blob/main/grok3_official0330_p1.j2
https://github.com/xai-org/grok-prompts/blob/main/grok3_official0330_p1.j2
https://python.langchain.com/api_reference/_modules/langchain_google_community/vertex_check_grounding.html
https://python.langchain.com/api_reference/_modules/langchain_google_community/vertex_check_grounding.html
https://github.com/zilliztech/GPTCache/blob/48f8e768/docs/configure_it.md
https://github.com/zilliztech/GPTCache/blob/48f8e768/docs/configure_it.md
https://blog.vllm.ai/2025/01/27/v1-alpha-release.html
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/GPTCache/paraphrase-albert-onnx
https://huggingface.co/GPTCache/paraphrase-albert-onnx
https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset
https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset
https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset
https://github.com/chroma-core/chroma
https://github.com/chroma-core/chroma
https://arxiv.org/abs/2409.12191
https://platform.openai.com/docs/models/text-embedding-3-small
https://platform.openai.com/docs/models/text-embedding-3-small
https://platform.openai.com/docs/models/text-embedding-3-large
https://platform.openai.com/docs/models/text-embedding-3-large
https://platform.openai.com/docs/models/text-embedding-ada-002
https://platform.openai.com/docs/models/text-embedding-ada-002
https://docs.vllm.ai/en/latest/design/prefix_caching.html
https://docs.vllm.ai/en/latest/design/prefix_caching.html
https://api-docs.deepseek.com/guides/kv_cache
https://api-docs.deepseek.com/guides/kv_cache
https://artificialanalysis.ai/models?latency=time-to-first-token#latency
https://artificialanalysis.ai/models?latency=time-to-first-token#latency
https://github.com/OpenPPL/ppl.llm.serving
https://github.com/OpenPPL/ppl.llm.serving
https://arxiv.org/abs/2506.04390
https://arxiv.org/abs/2503.21236
https://ocert.org/advisories/ocert-2011-003.html
https://ocert.org/advisories/ocert-2011-003.html

[79] (2025) 3.1. Command line and environment. https://docs.python.org/
3/using/cmdline.html#envvar-PYTHONHASHSEED. Python Software
Foundation.

[80] Python Software Foundation. (2025) Memory Management — python/c
api reference manual. https://docs.python.org/3/c-api/memory.html.

[81] yonillasky. (2022) gh-99540: Constant hash for PyNone Type to aid
reproducibility. https://github.com/python/cpython/pull/99541.

[82] H. Chatham, M. Droettboom, G. Choi, R. Yurchak, D. Chua,
A. Khetarpal, H. Schreiner, L. Estève, B. Broere, M. Köppe
et al., “pyodide/pyodide: 0.28.0a3.” [Online]. Available: https:
//doi.org/10.5281/zenodo.15525156

[83] L. Holmes. (2023) Efficiently generating python hash collisions. https:
//www.leeholmes.com/efficiently-generating-python-hash-collisions/.

[84] D. Coppersmith, “Another birthday attack,” in Advances in Cryptology -
CRYPTO ’85, Santa Barbara, California, USA, August 18-22, 1985, Pro-
ceedings, ser. Lecture Notes in Computer Science, vol. 218. Springer,
1985, pp. 14–17.

APPENDIX

A. Python Built-in Hash Function Used by vLLM

To mitigate DoS attacks caused by NCHF collisions [78],
Python 3.2.3 introduced a process-level randomization factor
(the environment variable PYTHONHASHSEED) for strings,
bytes and several container types. PYTHONHASHSEED is
generated once at interpreter start-up and remains fixed for
that process [79]. For integer scalars (int, bool), the
builtin hash() is a simple arithmetic transform that does
not incorporate this seed. If every element in a tuple is
deterministic (e.g., all plain integers), then—because each
element’s individual hash is deterministic—the tuple’s overall
hash value remains identical across processes.

For certain singleton objects, hash() is derived directly
from their address to make identity comparisons fast. In
CPython 3.11 and earlier, hash(None) is computed by
applying a small bit-mixing function to None’s pointer
value [80]; beginning with Python 3.12 it is replaced by a fixed
numeric constant [81], matching the long-standing treatment
of True and False.

Algorithm 1 illustrates vLLM’s prefix-hashing procedure:
when computing the hash for each block, the hash of the
preceding block is folded in, while for the very first block, the
“previous-hash” value is set to None. Because the block hash
uses only integer tokens and the None sentinel, it inherits none
of the randomness provided by PYTHONHASHSEED. Hence:

• Python ≤3.11. The result varies across processes because
it depends on None’s address (randomised by ASLR). An
exception occurs in some sandboxes (e.g., Pyodide [82]),
where the object is located at a very low address and
the address-derived value right-shifts to 0, making hashes
accidentally uniform across processes.

• Python ≥3.12. hash(None) is the same constant ev-
erywhere, so vLLM’s block hashes are fully determinis-
tic. This deterministic mapping provides the attacker with
a stable collision target.

Our remediation for vLLM is to insert an explicit,
per-process salt derived from PYTHONHASHSEED into the
(integer, None) sequence before applying the hash.
This restores hash unpredictability and blocks pre-computed
collision attacks.

Algorithm 1 SENTENCEHASH: vLLM block-wise sentence
hashing.

Require: sentence s, tokenizer T , block size B=16
1: T ← T (s) ▷ token IDs
2: h← NIL ▷ Zero-block hash
3: for each block b of size B in T do
4: h← hash

(
i=0, h, b

)
▷ Python hash

5: end for
6: return h

B. Meet-in-the-Middle Attack for Python Built-in Hash Func-
tion in vLLM

Although Python’s hash function is an NCHF and its inverse
can be theoretically derived, its usage in vLLM is constrained
by the token vocabulary size (typically around 0 to 150,000),
which makes direct inversion infeasible.

To address this, we leverage an average of 4 tokens to meet
the space requirements for a collision attack. The MITM attack
strategy employed here is inspired by Lee Holmes [83]. As
shown in Algorithm 2, we perform token collision in two
stages. Specifically, the approach involves:

1) Precomputation Phase: Compute 231 possible hash val-
ues generated by the first two tokens and store these
results in a set.

2) Collision Search Phase: Compute the hash values for all
possible combinations of the last two tokens and check
for collisions against the precomputed set.

This method effectively balances computational complexity
and memory usage, enabling us to exploit hash collisions
within the constrained token space.

Algorithm 2 COLLISION: Meet-in-the-middle search for
(a, b, c, d).

Require: start hash h0, target hash h2, length L=18
1: Table← ∅ ▷ forward map
2: for a ∈ [28, 215) do
3: h← FWD(h0, a)
4: for b ∈ [28, 216) do
5: Table.insert

(
FWD(h, b)

)
6: end for
7: end for
8: h′ ← h2 − ((L⊕ C1)⊕ C2) ▷ LASTREVERSEHASH
9: for d ∈ [28, 217) do

10: hd ← REV(h′, d)
11: for c ∈ [28, 217) do
12: hc ← REV(hd, c)
13: if hc ∈ Table then
14: return corresponding (a, b, c, d)
15: end if
16: end for
17: end for
18: abort ▷ no collision found

16

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHASHSEED
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHASHSEED
https://docs.python.org/3/c-api/memory.html
https://github.com/python/cpython/pull/99541
https://doi.org/10.5281/zenodo.15525156
https://doi.org/10.5281/zenodo.15525156
https://www.leeholmes.com/efficiently-generating-python-hash-collisions/
https://www.leeholmes.com/efficiently-generating-python-hash-collisions/

C. Details of Prefix Cache Poisoning in vLLM

In vLLM, hash is calculated by grouping 16 tokens into
one set. Due to the strict temporal characteristics of the
prefix cache, the prefix hash value is required when calcu-
lating each block in practice to ensure uniqueness. That is,
Block hash=hash(prefixhash, tokens). This ensures that even if
the content is consistent but the prefix is inconsistent, different
hash values will be generated.

For a single block, we need to determine a target hash
and the desired attack payload, and obtain its tokens via a
tokenizer. We obtain the padding token by calculating the
following equation:

Hash
(
hashprefix, payload + padding

)
= hashtarget (3)

Specific calculation details can be found in Appendix B.
We obtain the corresponding characters for the prefix token,

attack payload, and padding token through a tokenizer and
send them to the corresponding LLM platform. When the
collided sentence enters, vLLM calculates each block and
determines whether it hits the cache. If hits, the prefix cache is
reused, thereby injecting the poisoned payload into the content.
The overall computation process can be found in Algorithm 3.

For multiple blocks, simply repeat the single-block method
multiple times.

Algorithm 3 PREFIXCOLLISION: Attack steps.

Require: victim prompt P2, attacker prompt P1 with |P1| =
|P2| − 4

1: h2 ← SENTENCEHASH(⌊P2⌋16)
2: h1 ← SENTENCEHASH(P1)
3: h0 ← h1 −

(
(14⊕ C1)⊕ C2

)
▷ LASTREVERSEHASH

4: ∆← last 4 tokens of ⌊P2⌋16
5: assert hash

(
False, h1,∆

)
= h2

6: COLLISION(h0, h2, 18) ▷ search (a, b, c, d)

D. Analysis of Output Sequence Inconsistency due to Mis-
matched Final Tokens under Prefix Cache Collisions

Consider two input sequences, denoted as SA and SB ,
with their corresponding token sequences being TA =
{a1, a2, . . . , a16} and TB = {b1, b2, . . . , b16}, respectively.
Assume a scenario where a prefix block of sequence SA and
the corresponding prefix block of sequence SB compute to
the same hash value, i.e., hash(SA) = hash(SB). Such a hash
collision will cause the prefix cache lookup for sequence SB to
erroneously hit a cache entry generated and stored by sequence
SA (which can be termed a “contaminated” cache block).

In systems like vLLM, after the block hash computation
for an input sequence’s prefix is completed, if such a collision
occurs, the prefix cache pointer is directed to this contaminated
cache block. However, the critical issue arises when, despite
the reuse of the prefix block’s KV state, the last token of
the current input sequence SB , specifically b16, differs from
the token at the corresponding position in sequence SA that
generated this cache block (or the actual final token of SA,

depending on the specific prefix length at which the collision
occurred). In such cases, the subsequently generated token
sequences will exhibit significant discrepancies.

The fundamental reason for this phenomenon lies in the
Transformer architecture widely adopted by modern LLMs.
During its auto-regressive generation process, once the prefix
cache is computed (or hit), the model requires the last token
of the current input sequence (in this case, b16) to serve as the
query vector. This query vector then interacts with the Key
and Value vectors stored in the cache, typically through an
attention mechanism, to predict the next token. Therefore, even
though the computation for sequence SB utilizes the prefix
cache state of sequence SA, the final output for the next token
is generated based on the interaction of token b16 querying the
prefix cache state derived from sequence SA.

Consequently, the resulting generated content will not be
equivalent to the natural continuation that sequence SA would
have produced under undisturbed conditions, nor will it be
equivalent to what sequence SB would have generated based
on its own prefix cache (had no collision occurred). This
thereby compromises the consistency and reproducibility of
the output sequences.

E. Generation of Colliding Image Pairs

Size collision. Pick two shapes H×W and W ×H . Render
both texts, take the darker pixel at each position to form a flat
array P of length HW , then reshape it to (H,W) and (W,H).
Because tobytes() ignores geometry, the two images share
the same hash.

Palette collision. We present a simplified version of a
palette collision (Figure 11), where only four indices are used
to render two visually distinct black-and-white images. A
single index map (with indices ranging from 0 to 3) represents
the background, the overlapping region, and the two exclusive
regions. Two opposing palettes are then applied: Palette A
renders region 1 in white and region 2 in black, while Palette
B does the reverse. Palette C visualizes the locations of all
four index values as distinct colors. Since the byte stream is
identical, a cache system that hashes only the raw bytes will
store a single entry, even though the rendered outputs differ.
The same principle applies to more complex palette collisions.

F. Hash Collision Risks in Multimodal Data within SGLang

After preprocessing, SGLang performs hashing operations
on data from different modalities (e.g., images). The resulting
hash values are used as placeholder tokens and inserted into
the token sequence. These placeholders are later replaced
with the corresponding concrete multimodal features during
the actual inference stage. The hashing procedure in SGLang
depends on where the multimodal object resides—different
algorithms are used for CPU-based and GPU-based inputs.

For CPU-based inputs, SGLang employs the SHA256 hash
function. However, to ensure the resulting values fit within
tensor numerical limits, a modulo 230 operation is applied
to the raw hash digest. This modulo operation significantly
reduces the effective hash space from SHA256’s native 2256

17

ImgA

ImgB

ImgC

PaletteImage

0:

0:

0:

2:

2:

2:

3:

3:

3:

1:

1:

1:

Fig. 11: An example of palette collision.

输⼊⽂本或“/”选择快捷指令

Fig. 12: SGLang hash collision via pixel manipulation.

to merely 230, severely compromising collision resistance.
Consequently, a targeted second preimage attack becomes
feasible with approximately 230 attempts, while the Birthday
Paradox [84] allows attackers to generate controlled colliding
pairs with only about 215 inputs.

Notably, we previously exploited the pad value set by the
image processor, which caused Radix Attention to incorrectly
reuse the KV cache. This was equivalent to reusing the
image processing results, thereby leading to an erroneous
interpretation of the image. In subsequent updates, SGLang
implemented a separate image processor cache for online
serving. SGLang also truncated the SHA-256 hash to an
effective length of only 64 bits, resulting in a similar calcula-
tion for attack complexity. The distinction between these two
exploitation scenarios is that one precludes the modification of
the prompt prefix, whereas the other allows it. We demonstrate
a practical 64-bit collision instance in Figure 12, which we
achieved by manipulating the last few pixels.

For GPU-based hashing, SGLang uses a simplified version
of the xxHash algorithm, which lacks collision resistance and
is reversible. This allows an attacker to directly construct
multimodal inputs that produce the same hash value, enabling
effective cache poisoning attacks.

G. Calculation Process of Defense Methods

Add Random Numbers. Adding these at startup prevents pre-
computed collisions. For a 50,000-entry KV database (avg.
400 tokens), a collision requires 240 messages.

Calculation Justification: Assuming a 64-bit hash space (N =
264) and one hash generated per 16 tokens. A 400-token
message generates m = 25 hashes, and the database contains
K = 50, 000× 25 = 1, 250, 00 hashes. The expected number
of messages to cause a collision is:

E(messages) =
N

m×K
=

264

25× 1, 250, 000
≈ 240

Secure Hashing. Using a secure hash function significantly
increases computational costs. SHA256 requires 2128 com-
putations for a collision and 2255 for specific poisoning,
rendering attacks infeasible.

Calculation Justification:
• Finding a Collision (Birthday Attack): The complexity

to find any collision pair for an n-bit hash function
is subject to the birthday attack, with a complexity of
O(
√
2n). For SHA256, where n = 256, Computations ≈√

2256 = (2256)1/2 = 2128.
• Poisoning Specific Sentences (Preimage Attack): This

requires finding an input for a specific hash output. This
is a preimage attack, whose complexity is proportional to
the full size of the hash space, O(2n). On average, 2n−1

computations are needed. For SHA256, Computations ≈
2256−1 = 2255.

H. LLM Customer Service System Prompts

To simulate diverse and realistic user behaviors in customer
service scenarios, we use specific prompts to instruct the
LLM to generate synthetic user requests across multiple intent
categories (including Subscription, Unsubscription, Inquiry,
as well as Impatient/Rude tones). In addition, we design
dedicated system prompts for the customer support agent, for
semantic cache validation (LLM filtering), and for using GPT-
5 to detect and verify potentially misleading content in the
LLM’s responses. For brevity, the full content of these prompts
is available in our project repository: LLM Customer Service
System Prompt.

I. LLM Security Analyst Prompt

The prompt used for LLM security analysis mimics an
expert security analyst specializing in static code analysis to
identify vulnerabilities such as SQL injection and XSS.

We also designed specific attack scenarios: C1, a concrete
example of an actual poisoning attempt; C2, an example that
collides with C1 using specific token IDs; and C3, a hidden-
block attack where the content collides with the first block.

The detailed prompts for the Security Analyst, along with
the full scripts for scenarios C1, C2, C3, and the corresponding
model responses, can be found at LLM Security Analyst
Prompt.

18

https://github.com/XingTuLab/Cache_Me_Catch_You/tree/main/prompts/customer_prompt
https://github.com/XingTuLab/Cache_Me_Catch_You/tree/main/prompts/customer_prompt
https://github.com/XingTuLab/Cache_Me_Catch_You/tree/main/prompts/LLM_Security_Analyst
https://github.com/XingTuLab/Cache_Me_Catch_You/tree/main/prompts/LLM_Security_Analyst

	Introduction
	Background
	LLM Serving Frameworks
	Cache in LLM Serving Frameworks
	Tokenizer
	Motivation

	Demystifying Cache Implementation
	Core Concepts in LLM Cache
	Cache Data Processing
	Cache Key Generation
	Cache Query
	Cache Eviction
	Cache Isolation
	Security Risks in LLM Cache

	Threat Model
	Attack Methods
	User-oriented Fraud Attacks
	System Integrity Attacks

	Experimental Evaluation
	Experimental Setup
	Impact and Cost Evaluation.
	System Prompt Collision Attack (F1)
	Semantic Fuzzy Poisoning (F2)
	RAG-based Semantic Fuzzy Poisoning (F3)
	Prompt Collision Hijack Attack (I1)
	Block-wise Collision Hijack Attack (I2)
	Multimodal Collision Attack (I3)

	Defense Effectiveness Evaluation.

	Discussion
	Responsible Disclosure
	Limitations
	Lessons Learned

	Related Work
	Conclusion
	Ethics Considerations
	Acknowledgments
	References
	Appendix
	Python Built‑in Hash Function Used by vLLM
	Meet-in-the-Middle Attack for Python Built-in Hash Function in vLLM
	Details of Prefix Cache Poisoning in vLLM
	Analysis of Output Sequence Inconsistency due to Mismatched Final Tokens under Prefix Cache Collisions
	Generation of Colliding Image Pairs
	Hash Collision Risks in Multimodal Data within SGLang
	Calculation Process of Defense Methods
	LLM Customer Service System Prompts
	LLM Security Analyst Prompt

