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obtain signatures for malware, thereby bypassing the checks of
operating systems and antivirus software. This threat is known
as “code-signing abuse”. Notable related security breaches
include Stuxnet [36] (2010), RedLine [28] (2022), and the
NVIDIA certificate compromise [34] (2022), all involving
stealing private keys to sign malware. Recently, VirusTotal
reported [56] that nearly millions of malware samples have
abused signatures, highlighting the gravity of the current
situation.

So far, research on code-signing abuse remains limited in
both scope and depth. Unlike the Web Public Key Infrastruc-
ture (Web PKI), where various threats have been systemat-
ically analyzed [10], [21], [32], [46], [50], the code-signing
ecosystem faces unique obstacles. The lack of open, large-
scale dataset (available only from real-world samples) and
ground-truth on abuse cases impede scalable measurements in
this field. Kim et al. [26] conducted the most comprehensive
analysis of code-signing abuse to date in 2017, revealing
vulnerabilities in CA issuance, client-side protections, and
developer key management. Their analysis benefited from 111
certificates with specific abusing types, a scale that has yet
to be expanded. As code-signing abuse remains pervasive,
larger-scale fine-grained measurements are essential to have
a global view of the current ecosystem, and to understand
abusive behaviors and strategies that remain explored.
Research questions. Our goal is to understand the current
security landscape of the code-signing abuse ecosystem, espe-
cially from the strategic level of the adversaries. Specifically,
we aim to answer the following questions: Q1: What is the
current security status of the code-signing abuse ecosystem?
Q2: What flaws do abusers exploit, and what strategies do
they employ for abuse? Q3: What are the root causes of the
rampant abuse of code signing and how to mitigate it?
Our work. We started by building a large-scale fine-grained
code signature abuse dataset for measurements. We collected
6.9M samples from VirusShare [55], spanning from Oct. 2020
to Oct. 2024, and 3.8M signed samples from a partnering
security company for their inclusion from May 2006 to Sep.
2024. Particularly, we focus on code-signing for Windows
portable executable (PE) files, as Authenticode is the most
widely used signature mechanism and PE files are its primary
target. We extracted 3,216,113 malicious PE files with code
signatures as the base dataset. As 78.25% of the samples in
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In this work, we conducted a large-scale measurement of code-
signing abuse using 3,216,113 signed malicious PE files collected 
from the wild. Through fine-grained classification, we identified 
43,286 abused certificates and categorized them into five abuse 
types, creating the largest labeled dataset to date. Our analysis 
revealed that abuse remains widespread, affecting certificates 
from 114 countries issued by 46 Certificate Authorities (CAs). We 
also observed the evolution of abuser techniques and identified 
current limitations in certificate revocation. Furthermore, we 
characterized abusers’ behaviors and strategies, uncovering five 
tactics to evade detection, reduce costs and enhance abusing 
impact. Notably, we uncovered 3,484 polymorphic certificate 
clusters and, for the first time, documented real-world instances 
of malware leveraging polymorphism to evade revocation checks. 
Our findings expose critical flaws in current code-signing prac-
tices, and are expected to raise community awareness of the abuse 
threats.

I. INTRODUCTION

Code signing is a vital security mechanism that applies
digitalsignatures to code or executables. It enables the veri-

fication of developer identities and software integrity. As one
of the dominant operating systems, Windows adopts Authen-
ticode [37] as its code-signing standard and offers WinTrust
APIs [39] for signature verification. During installation, soft-
ware from untrustworthy developers or lacking valid signatures
would be detected and flagged, and alerted to users by verifiers
using WinTrust APIs. Major certificate authorities (CAs) now
commonly offer code-signing certificates, allowing legitimate
developers with verified identities to obtain trusted certificates
and use the private key to sign their software.

However, the code signing mechanism has also become a
target of attacks. Attackers exploit flaws in the mechanism to
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our dataset were signed after 2017, our analysis shows the
most recent state of the ecosystem.

To further investigate abusive behaviors and tactics, we
need to understand the types of abuse and their underlying
reasons. A primary challenge is the lack of ground-truth. The
known largest labeled dataset of abuse types [25] contains 111
abused certificates, which is insufficient for in-depth analy-
sis. Therefore, we first leverage the CA-published revocation
reason codes as ground-truth references, and propose a new
fine-grained classification method. By combining numerous
auxiliary datasets (e.g., threat intelligence and company in-
formation), this method could classify abused certificates into
five types: Invalid Signature, Untrusted Certificates, Steal
Certificates, Steal Developer IDs and Fake Developer IDs.
We applied this method to the base dataset, and obtained the
largest labeled code-signing abuse dataset to date, comprising
43,286 certificates and 3,216,113 signed malicious samples.
Using this dataset, we conducted an in-depth measurement of
the code-signing ecosystem.
Main findings. Our analysis confirms that code-signing abuse
remains severe, and the abusing techniques are evolving. While
the low-tech type of abuse Invalid Signature still prevails
(accounted for 89.5%, dominant before 2017), abusers are
increasingly adopting advanced methods like Steal Certificates
and Steal Developer IDs. The samples of such abuse types
increased fourfold in the past 7 years (2017-2023) compared
to the preceding 7 years (2010-2016). Malicious samples
leveraging these advanced techniques can bypass client-side
verification, significantly escalating the threat. Such abuse is
widespread, affecting certificates from 114 countries issued
by 46 CAs. While previous work [26] identified Symantec
as the most affected CA in 2017, we revealed shifts in the
ecosystem, with CAs like Sectigo and COMODO now facing
greater threats. We also assessed the compliance of the current
code-signing certificate revocation. Encouragingly, CAs have
improved transparency, with 45.72% of post-2020 revocations
providing specific reasons, which are valuable for inferring
the causes of abuse. However, overall revocation deployment
remains inadequate, with only 17.56% of certificates signed
malware in our dataset being revoked. In addition, we first
introduce a new challenge faced by CAs in revoking abused
certificates: the difficulty in maintaining revocation infras-
tructure after the invalidation of CRL and OCSP signing
certificates, a situation we refer to as “Ghost Certificates”.
It hinders CAs from revoking abused certificates, even when
abuse is detected.

We then analyzed the tactics used by code-signing abusers,
and found 5 strategies in the certificate application and signa-
ture deployment process to reduce costs or evade detection. For
example, abusers deliberately apply through CAs in countries
with lax identity verification to evade detection. They also em-
ployed dual-signature (10.17%, signing the same sample with
certificates of different cryptographic algorithms) to enhance
compatibility. Particularly noteworthy is the certificate poly-
morphism strategy, in which the same entity obtains multiple
certificates from the same or different CAs using the same (or

slightly modified) identity. We identified 3,484 polymorphic
clusters, confirmed their wide usage by abusers (26.82%), and
uncovered new obfuscation techniques like visual confusion to
evade CA identity checks. For the first time, we discovered 315
real cases of malware using polymorphism to evade revocation
checks by well-known CAs like Sectigo (related certificates
have been revoked upon our report).

Our study highlights the current flaws in code signing prac-
tices, especially on the CA side, such as lax certificate content
restrictions, lenient identity verification and unproactive abuse
governance. We also propose feasible mitigations to increase
the ecosystem transparency and proactive abuse supervision.
To date, we have reported issues to the top 20 CAs by abuse
volume. Sectigo, GlobalSign, and Entrust have confirmed our
report and executed revocations. We hope this work could raise
awareness and call for more standardized regulations of code-
signing. Besides, we released the labeled dataset of abused
certificates to facilitate future research (see Appendix I).
Contributions. Our main contributions include:
• We developed a new fine-grained classification method for
code-signing abuse and built the largest dataset labeled with
abuse types to date.
• We provided an in-depth analysis of the code-signing abuse
ecosystem, revealed the current security state and disclosed
various tactics used by real-world abusers.
• We identified flaws in the current CA code-signing practices,
and provided recommendations to increase the transparency of
the system and the proactivity of abuse regulation.

II. BACKGROUND AND RELATED WORK

A. Overview of code-signing

Code-signing process. Code signing is vital for combating
malware on mainstream operating systems. To sign software,
a developer first obtains a certificate from a (trusted) CA
after authentication, then uses the associated private key to
sign a hash (e.g., SHA-256) of the software. The code-
signing certificate and signature are bundled with the software
and delivered to clients. A detailed structure of code-signing
signature is provided in Appendix A. During download and
installation, the operating system or antivirus software would
verify the certificate and signature. Certificate validation au-
thenticates the developer’s identity, while signature verification
ensures the integrity of the software, collectively strengthening
security. For instance, the Windows verifier using the WinTrust
APIs [39] warns users about software with missing, invalid, or
untrusted signatures, highlighting potential installation risks.
Code-signing abuse. Code-signing certificates from CAs are
theoretically supposed to be issued only to verified develop-
ers, safeguarding their benign software with signatures. The
standard organization CA/Browser Forum (CA/B) explicitly
mandates that CAs must not issue code-signing certificates
for the signing of suspect code [16].

However, research and security incidents [26], [34] indicate
that attackers would exploit the code-signing process, applying
signatures to malware to evade alerts from operating systems
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Fig. 1: Types of code-signing abuse.

and antivirus programs, to amplify the potency of their mal-
ware. We refer to the situation where malicious software is
equipped with code signatures as “code-signing abuse”.

To achieve their abuse objectives, attackers may employ a
variety of methods. For instance, attackers have been known
to use tools [44], [53], [54] to replicate TLS certificates
from well-known websites or extract signatures from legiti-
mate software, which are then embedded into malware. More
sophisticated attacks exploit weaknesses in the code-signing
certificate issuance and management process, e.g., stealing
valid certificates (private keys) from legitimate companies to
impersonate trusted applications [28], [34], [36], leveraging
shell companies [23] or impersonating legitimate organizations
to deceive CAs into issuing fraudulent certificates [22], [52].
We detail each abuse type and its impact in Section II-B.
Revocation mechanism. Code-signing PKI introduces a
unique mechanism absent in Web PKI: the use of Time Stamp
Authority (TSA) to record the exact creation time of the
signature. This allows a signature to remain valid even after
the certificate expires, as long as it was applied within the
certificate’s validity. Therefore, if code-signing abuse is not
promptly governed, malware could continue to pass signature
verification on client systems indefinitely.

Certificate revocation is an essential solution to counter
code-signing abuse. Ideally, upon discovering a certificate
used for signing suspicious code, the CA should conduct
an investigation and publish revocation information once the
abuse has been confirmed. Due to the TSA, the CA must
specify the effective date of revocation, thus invalidating
signatures made after that date. As with Web PKI, revocation
information is published through Certificate Revocation Lists
(CRLs) and the Online Certificate Status Protocol (OCSP).
However, a previous study [27] has observed a significant
delay in releasing certificate revocation information. There
may be considerable numbers of certificates that have been
used to sign malware and remain unrevoked (i.e., the abuse is
still in effect).

B. Types of code-signing abuse

Abuse types. Code-signing abuse can enable cybercrimes like
distributing malware, aiding attackers in the obfuscation of
identity and evasion of scrutiny. “Obfuscation of identity”
means that attackers use forged signatures and certificates that

do not disclose their true identities. “Evasion of scrutiny”
requires these signatures and certificates to be credible enough
to pass signature validation checks. As this paper concentrates
on code-signing abuse on the Windows platform, “pass sig-
nature validation checks” can specifically refer to the official
Windows system verifier using the WinTrust APIs, and various
antivirus engines on the Windows platform. Based on the
techniques that attackers employ, we categorize code-signing
abuse into five types (T1∼T5), as depicted in Figure 1.

Invalid Signature (T1) involves samples with unrecognized
(incorrect format) or mismatched signatures. One common T1
strategy for an attacker without a valid code-signing certificate
is to directly copy an existing signature and certificate from
other software or web servers [44], [53], [54]. Typically,
this method fails Windows’ WinTrust API validation checks,
resulting in an “Unknown developer” warning (as shown in
Figure 1) to the user. Steal Certificate Key (T2) indicates that
the abuser has obtained the legitimate software publisher’s cer-
tificate private key or gained access to their signing machine,
typically due to the publisher’s inadequate protection of their
private key. In T3 and T4, abusers obtain certificates from
CAs by exploiting vulnerabilities in the identity validation
process of CAs. Steal Developer ID (T3) involves obtaining
certificates by appropriating the identities of other real entities
or individuals. Fake Developer ID (T4) refers to creating fake
identities, like shell companies that have not been legally
registered. Both T3 and T4 aim to conceal the developers’
true identities to prevent being traced and penalized once
their signed malware is detected. Note that, since samples of
T2∼T4 are all signed with code signing certificates issued by
trusted CAs, they would trigger no anomaly warnings when
executed on Windows clients. As depicted in Figure 1, users
would be implied that the file was from “Verified Developer”.
Untrusted Certificate (T5) infers attackers signing samples
with certificates from untrustworthy root certificates (self-
built root certificates that are absent from the Trusted Root
Program [6]). These samples would also trigger “Unknown
Developer” warnings during execution.
Research scope. As mentioned above, we refer to the practice
of attaching code signatures to malicious software as “code-
signing abuse”. As illustrated in Figure 1, T1 and T5 involve
straightforward abuse methods that are easily detected by
clients and trigger prominent user warnings, limiting their
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effectiveness. In contrast, T2∼T4 represent scenarios where
attackers have access to the private keys of certificates issued
by public trusted CAs. Their validation results and user
notifications on Windows are indistinguishable from benign
software. Given their heightened stealth and broader impact,
this work primarily focuses on analyzing the threat of code-
signing abuse from T2∼T4. Moreover, attackers might employ
more sophisticated techniques, such as certificate forgery via
hash collisions exemplified by the 2012 Flame malware’s MD5
collision [38]. However, such attacks have become largely
impractical since Microsoft deprecated MD5 certificates in
2013. Accordingly, we exclude sophisticated attacks like hash
collisions from our scope and leave them to future work.

C. Related work

Previous studies on Public Key Infrastructure security have
primarily focused on Web PKI (HTTPS) due to its high
data accessibility and mature regulations. Researchers can
actively collect data by TLS scanning [13], [20], [21], [46]
or passively analyze TLS traffic [1], [5], [45]. Public datasets
like Censys [7] and Rapid7 [51] have also served studies
on HTTPS deployment [15] and hijacking [2]. Certificate
Transparency (CT) [17] initiative by Chrome also offers CA
issuance records that facilitate public audits. In comparison,
the code signing PKI ecosystem is more closed and opaque,
posing constraints such as the difficulty in obtaining scalable
datasets and ground-truth references, leading to the current
insufficient research.

Among the few prior studies on code-signing PKI, Kotzias
et al. [30] first analyzed Windows code certification abuse in
2015. At that time, code signing abuse was mainly associ-
ated with potentially unwanted program (PUP) rather than
malware (only 5%-12% of abuse cases). In 2017, Kim et
al. [26] conducted the first systematic study on code-signing
abuse by malware. Their analysis was based on 111 abused
certificates, which was primarily case-driven study rather than
scalable measurements. At that time, a key challenge to do
scalable analysis was the absence of ground-truth, and a
follow-up study on the code-signing underground [31] noted
that previous classification methods could be bypassed by
attackers. In contrast, our work benefits from recent im-
provements in CA revocation transparency (as discussed in
Section IV-C), allowing us to use CA-published revocation
codes as the ground-truth. Based on this, we develop a scalable
classification method, resulting in the largest and reliable
dataset of fine-grained code-signing abuse to date. This allows
us to analyze the ecosystem with in-depth measurements,
especially for understanding the behaviors and strategies of
abusers. Experience from other research areas (e.g., Telephony
threats [18], [49], [59], DNS abuse [4], [19]) suggests that a
deeper understanding of attacker behavior can help identify
flaws and design effective defenses. Our fine-grained dataset
enables us to achieve this for the first time in the code-signing
field. In 2018, Kim et al. [27] evaluated the effectiveness
of certificate revocation in code signing PKI. They still do
not involve in-depth research on abuse types and behavioral

analysis. Besides, the security industry has gained attention
on code-signing abuses, but they predominantly published
technical reports [56], [58] with superficial overview of the
abuse, lacking in-depth analyses of abuse types, tactics, and
other details.

III. METHODOLOGY

To investigate the current ecosystem of code-signing abuse,
we first collected malicious software in the wild. As well-
labeled datasets are scarce, we developed an approach lever-
aging signing-related features to label abused certificates into
specific abuse types, and obtained so far the most extensive
labeled code-signing abuse dataset. Figure 2 depicts the data
processing workflow. This section details dataset sources,
abuse type labeling, and certificate association.

A. Data collection
The primary data in this paper are malicious PEs with

code signatures. There are two main sources used in prior
studies: 1) datasets provided by commercial companies, such
as Symantec [26], [30] and 2) publicly available datasets, e.g.,
VirusShare [30], [33]. Our datasets also originate from these
two sources. We also collected complementary datasets and
tools to extract code-signature features to identify abuse types.

Note: In this paper, malicious sample denotes any sample
that is labeled as either malware or a potentially un-
wanted program (PUP). Malware denotes clearly harm-
ful software (e.g., trojans, ransomware, and backdoors).
PUPs denotes software that is unwanted by users (e.g.,
adware and bundlers) and typically compromises privacy
or weakens the computer’s security, yet is generally
regarded as less malicious than malware [29], [30].

Collect malicious samples. We collected all samples released
by VirusShare between Oct. 2020 and Oct. 2024 (6,946,816
in total), a public malware repository also used in prior code
signing studies [30], [33]. After filtering, we retained 176,968
signed PE samples. In addition, we collected 3,828,744 signed
PE files (May 2006 - Sep. 2024) from a leading cybersecurity
company. These samples originated from the company’s client
security software and vendor exchanges, and were flagged
as malicious based on aggregated detections from multiple
antivirus engines in the company’s sample analysis system.
Ultimately, the merged dataset comprises 3,962,788 signed PE
files after 42,924 signed duplicates were removed based on
sample hash. As previous studies used pre-2017 datasets [26],
[30], our dataset aims to offer a more current view of the
code-signing abuse landscape.
Extract code signing features. We developed a code signing
extraction program based on pkcs7 [12], which supports dual
signatures to retrieve the SignedData and X.509 certificates.
Additionally, we extracted related information of samples from
the Resource Section, such as ProductName and FileDescrip-
tion. To further distinguish code-signing abuse types and gain
insights into the abuse behaviors, we also extracted sample
characteristics from the following aspects:

4



Fig. 2: Overview of the data processing flow.

TABLE I: Labeled dataset of abused samples and certificates.

Types of Abuse Total Malware PUP
# Samples # Certs # Samples # Certs # Samples # Certs

Invalid Signature (T1) 1,287,115 20,672 1,092,762 15,539 194,353 8,168
Certificates from Public CAs 1,913,973 23,252 228,206 11,797 1,685,767 15,647

Steal Certificate Key (T2) 21,991 284 7,010 238 14,981 97
Steal Developer ID (T3) 3,070 193 2,933 184 137 19
Fake Developer ID (T4) 1,480 125 1,071 114 409 18
Unspecified 1,887,730 22,650 217,469 11,261 1,670,261 15,513

Untrusted Certificate (T5) 15,035 8,259 9,872 7,989 5,163 340
Total 3,216,113 43,286 1,330,838 32,155 1,885,275 18,211
1 For samples that use dual-signature, the two signatures may belong to different types of abuse. Thus

these samples may be counted multiple times under different types of abuse.
2 An abused certificate can be counted multiple times if it falls under different abuse types, such as T1

and T5, across various samples.

1) Antivirus scanning results. Although both sources label
their samples as malicious, we further filtered the merged
dataset to align criteria and reduce false positives. We scanned
all collected samples using the antivirus engines on VirusTo-
tal [57], and gathered information including the malware fam-
ily, compilation time, and time of first observation. Following
prior work [30], we retained only samples labeled as malicious
by at least three antivirus engines (denoted as cmal ≥ 3),
yielding 3,216,113 filtered malicious samples.

Considering that malware is more malicious and poses a
greater threat than PUPs, we focus mainly on malware-related
abuse. To this end, we adopted an approach similar to previous
studies [30] to distinguish malware and PUPs, by constructing
a list of 13 PUP-related keywords and determining the sample
type based on their presence in the tags returned by 11 AV
engines. A sample was classified as a PUP if at least half of
the engines recognized it as such (denoted as rpup ≥ 0.5);
the remaining samples are treated as malware. Ultimately,
our dataset comprised 1,330,838 signed malware samples and
1,885,275 signed PUP samples. In Section V and Section IV,
all measurement results, except for the certificate polymor-
phism analysis, are based on malware samples. The sensitivity
analysis for cmal and rpup is presented in Appendix B.

2) Revocation information. When a certificate is abused to
sign malware, the CA should promptly revoke it via CRL or
OCSP, ideally specifying reasons like key compromise after
thorough investigations. While CA revocations are often de-
layed [27], explicitly revoked certificates with detailed reason
codes remain valuable for identifying abuse types.

Only revocation information published by trusted CAs is
reliable. We extracted 23,252 entity certificates issued by
trusted CAs from 1,913,973 samples (subset of 3,216,113)
and obtained CRL links from their “Authorized Information

Access” extension, resulting in 531 deduplicated CRLs. We
attempted to access these CRLs through clients located in
multiple countries (to circumvent potential inaccessibility due
to region-specific blocking). Ultimately, CRL information was
obtained for 97.27% of the 23,252 certificates, enabling veri-
fication of certificate revocation status. Discussion of reasons
for CRL retrieval failures and their implications is provided in
Appendix C. Totally, we identified 3,309 revoked certificates,
of which 598 provided specific revocation reasons. These data
will serve as ground truth to classify abuse behaviors.

3) Signature validation results. SignTool [40], based on the
WinTrust APIs, is the official signing tool of Microsoft, offer-
ing functions such as code signing and signature verification.
We employed SignTool to verify the signatures and certificate
chains of collected samples, and recorded the returned result-
ing messages, as shown in Table V in Appendix D. Notably,
some samples with recognizable signatures by our parsing
program are not identified by the Windows SignTool due
to non-standard signature format, returning a “No signature
found” code. We regard them as the “low-tech” type of abuse
(“Invalid Signature”) and retain them for analysis.

4) Organization information. The legitimacy of the com-
pany registration of an applicant is crucial in differentiating
between “Steal Developer ID” and “Fake Developer ID”.
OpenCorporates [48], the known largest open database of
company information, offers in-depth details such as incor-
poration dates and operational status. OpenCorporates gathers
its data primarily from official public sources, which ensures
the reliability and provenance of the information. Although not
exhaustive, this dataset aids in confirming the registration and
existence of specific company entities or executives, thereby
identifying fake developer identities. We parsed Subject Com-
monName field from certificates of the code signature samples
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to query in that database and ended up with 167 registrations.

B. Label abuse types

After getting 3,216,113 malicious samples, we take the
following steps to classify them into different abuse types.
Step-I: Identify Invalid Signature Samples. While the re-
mained samples all contained code signatures as indicated by
our parsing program, these signatures may not be recognized
by SignTool (error message “No signature found” in Table V
in Appendix D) or mismatched (error code 0x80096010 in
Table V) with the code files. We categorized those samples as
Invalid Signature (T1).
Step-II: Discover Untrusted Certificate. For the remaining
samples with matched signatures, if their certificates were
issued by untrusted CAs (error code 0x800B010A in Table V),
they would be labeled as Untrusted Certificates (T5).
Step-III: Find Steal Certificate Key. All remaining samples
are from attackers in possession of private keys of certificates
issued by legitimate CAs. Then, to classify these into the
T2∼T4 categories, we primarily rely on the revocation reasons
stated by the CA in the revocation information. As per CA/B
standards [16], CAs MUST promptly investigate and revoke
any certificate found to be abused, recording the reasons in
the revocation details. Of the 23,252 abused certificates from
1,913,973 samples remaining, we identified 3,309 revoked cer-
tificates, and 598 of these provide explicit revocation reasons.
The term “KeyCompromise” indicates private key theft, and
we identified 5,764 samples meeting the relevant criteria (T2).
Step-IV: Distinguish Steal Developer ID and Fake Devel-
oper ID. The revocation code “PrivilegeWithdrawn” signifies
“directly obtained from CA”. This code includes two abuse
types - Steal Developer ID and Fake Developer ID, which we
distinguish by verifying the existence of the holder’s identity
entity. We use the OpenCorporates database to confirm duly
registered corporations. If the entity mentioned in the certifi-
cate is present in the database, we categorize the certificate
as Steal Developer ID (T3). If the entity is not found, we
deduce that the attacker has created a shell company identity
(Fake Developer ID) to request a certificate from a CA (T4).
In addition, certificates that do not receive a clear category
label after the above categorization process will be marked as
“Unspecified”.

Ultimately, we obtained the labeled dataset as illustrated
in Table I. It is the largest abused code-signing certificates
dataset to date, with a scale exceeding that of any other known
datasets [25] (111 certs).

C. Certificate association

Certificate polymorphism. Previous studies [31] have re-
ported a phenomenon known as “certificate polymorphism” in
code-signing abuse. This refers to the practice where the same
entity applies multiple certificates from the same or different
CAs with the same (or slightly modified) identity. By doing
so, the abuser can obtain multiple certificates at a relatively
low cost while evading scrutiny from CAs for revocation. This
strategy saves on the financial costs of registering multiple

companies and allows other certificates to remain active even
if one is revoked, as CAs may not recognize them as coming
from the same entity. We developed a correlation method
based on the principle of certificate polymorphism, to trace
various abused certificates back to the same certificate holder.
This method not only facilitates subsequent analysis of abuse
behavior, but also helps to label additional abused certificates.
Identify polymorphic certificates. The identification of the
certificate holder relies on two key fields in the certificate
content: the subject name and the public key. In other words,
our association method operates on two assumptions: 1) cer-
tificates sharing the same public key originate from the same
certificate holder; 2) certificates using the same or similar
CommonName (CN) in the subject name come from the same
certificate holder. Public key can be matched through direct
field comparison. In contrast, the key challenge for CN-based
association is to assess the similarity between CN fields. We
first reviewed proposed methods in existing studies on this
task, including: 1) measuring the normalized edit distance
(NED) between CN fields [30], and 2) preprocessing (e.g.,
converting all letters to lowercase, removing non-alphabetic
characters) for exact matching (PEM) [31]. These approaches
all suffer from certain limitations: they cannot handle syn-
onyms (e.g., Fuzhou Chuangyijiahe vs. Fujian Chuangyiji-
ahe) or visually confusing letter substitutions (e.g., AppIe
vs. Apple), which are commonly used evasion techniques
in polymorphic certificates. Therefore, we leverage the LLM
GPT-4 [47] to refine the outputs of these methods and improve
recognition accuracy. Specifically, subject CN fields were
extracted from certificates issued by public CAs and paired
as inputs. Using the NED and PEM methods, we obtained
8,262 and 7,823 candidate CN pairs, respectively. The results
of these two methods were then merged and fed into the
GPT-4 LLM for refinement. We carefully designed prompts to
guide its decisions based on prior research and our empirical
observations (see Appendix E for details). In total, this process
yielded 8,110 CN pairs that satisfied our matching criteria.
After recognition, certificates with “similar” subject names
would be grouped into one cluster. If two certificates from
different clusters share a public key, we merge the clusters.
We identified a total of 12,989 clusters, of which 3,484 exhibit
polymorphism, indicating that the same holder has multiple
different certificates. The polymorphism phenomenon will be
explained in detail in Section VI.

We also evaluate the effectiveness of our LLM-based
method and compare it against NED and PEM. As the
evaluation dataset, we use all CN pairs that are labeled as
“similar” by at least one of the three methods. First, we
randomly sample 300 pairs for manual review and find that
all annotations are consistent with the LLM’s outputs. We
then manually inspect only those pairs on which the three
methods disagree. In this set, all correct identifications made
by PEM are a subset of those made by our LLM-based method,
while NED introduces 152 false positives. Finally, to address
potential randomness in LLM outputs, we assess its stability
and observe 99.66% agreement across three independently
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repeated tests, as detailed in Appendix E. Overall, these results
indicate that our approach to identifying similar common
names outperforms existing methods.
Labeling Unspecified Certificates. Certificate association fur-
ther refines our labeling in Section III-B. We observe that
clusters obtained from certificate association contain abused
certificates of only a single type, indicating that holders within
a cluster typically employ one abuse method. For example,
if two certificates are registered with the same fake identity
and one is labeled Fake Developer ID, the other should be
as well. Leveraging this insight, we start from certificates
already labeled as T2∼T4 and propagate labels to unlabeled
certificates sharing the same CN or public key. To be conser-
vative, we apply this method only to certificates that have
signed malware. Additionally, to evaluate this method, we
conduct a hold-out experiment by dividing the labeled dataset
into training and test subsets and propagating labels from
the training set to the test set. Under a 1:9 train–test split,
the method achieves 100% accuracy with 84.41% coverage,
demonstrating the reliability of this method (see Appendix F
for details).

Ultimately, this refinement of the labeling procedure yields
287 previously unspecified certificates (159 Steal Certificate
Key, 65 Steal Developer ID, 63 Fake Developer ID), which
are incorporated into the final results in Table I.

D. Limitations

Accuracy of revocation reasons. Empirical research on the
specific reasons for certificate abuse is scarce. Therefore, the
revocation reasons published by CAs, although not necessarily
completely accurate, are the most credible references to iden-
tify abuse types. The CSBR [16] sets clear requirements for
CAs’ abuse investigations and certificate revocations, which
supports the reliability of these records. Besides, RFC 5280 [8]
specifies revocation-reason values but offers little guidance,
so interpretations may vary among CAs. Our understand-
ing aligns with the policies published by Microsoft [9] and
Mozilla [42]. We also identified two CAs that publish detailed
explanations, which are consistent with us.
Coverage of revocation reasons. Certificates that can be
directly classified using CA-published revocation codes make
up only approximately 20% of all revoked certificates, which
is one limitation of our methodology. Nevertheless, the pro-
portion of CAs providing specific revocation reasons has in-
creased in recent years, improving our coverage for newer cer-
tificates: 31.90% of certificates issued after 2017 and 45.72%
issued after 2020 include such reasons. In Section III-C, we
further broaden the set of identifiable abuse types through
certificate association. Overall, our labeled dataset of abused
code-signing certificates is the largest to date.
Scope of abuse behaviors. Our identification of abused sam-
ples is based on VirusTotal detections. Consequently, highly
sophisticated attacks that evade VirusTotal (e.g., certificate-
collision attacks [38]) would not appear in our dataset, which
constitutes a limitation of this study. Nevertheless, because
our labeling relies on the aggregated decisions of multiple

VirusTotal engines, we expect attacks that simultaneously
evade all of them to be relatively rare.
Coverage of OpenCorporates. We use the OpenCorporates
database to distinguish between T3 and T4. Although its cover-
age limitations might bias classification accuracy by overstate
shell-company prevalence, OpenCorporates remains the most
comprehensive dataset and is used in prior research [26].
We manually verified its coverage by using search engines
to locate official government records for corporate entities.
Evaluating 50 randomly selected entities from our dataset, we
found that OpenCorporates could achieve a coverage of 90%.
Accuracy of certificate association. We leveraged the LLM-
based method for associating and clustering abused certifi-
cates. A limitation of it is LLM’s poor interpretability. How-
ever, in Section III.C, we evaluated the effectiveness of this
method through manual inspection and a hold-out experiment,
showing that it is currently the best available approach.

IV. CURRENT STATUS OF CODE-SIGNING ABUSE

Using the above methodology, we collected 1,330,838
malware samples with code signatures, of which 1,113,634
(83.68%) labeled specific abuse types (T1∼T5), forming to
date the largest labeled code-signing abuse dataset. Based on
signing timestamps (see Appendix G for details), the majority
of our samples (78.25%) were issued after 2017. Thus, the
dataset enables an in-depth analysis of the current code-signing
abuse ecosystem. This section discusses the types, scale, trends
of abuse and the deployment of CA revocation.

A. Abuse type changes

Our labeled dataset with specific abuse types enables a
more granular analysis of the abusing trends. It was found
that the dominant abuse type was invalid signature (accounted
for 89.5%, dominant before 2017), while only a few samples
were signed by untrusted certificates. We plotted the number of
abused certificates for T2∼T4 of code-signing over the past
approximately 20 years in Figure 3. As shown in the main
graph, after 2012, possibly due to the deployment of Windows
signature verification mechanisms and malware protection
strategies, attackers began to use more costly abuse ways,
i.e., abusing certificates from legitimate CAs. The samples of
such abuse types increased fourfold in the past 7 years (2017-
2023) compared to the preceding 7 years (2010-2016). We
further scrutinized the data related to legitimate CA certificate
abuse from 2012 to 2024, and calculated the change in the
number of abused certificates of each type, which is shown
in the upper-left sub-figure. We omitted the cases where the
revocation reason remains unspecified. We found a noticeable
increase in the number of certificates involved in Fake and
Steal Developer ID. Although these abuse types have been
reported [26], it is clear that they have not been effectively
curbed. In other words, we find the technical level of code
signing abusers has advanced, which also imposes higher
demands on the efficiency of detecting abuse.

We further analyzed the stealth capabilities of samples
signed by certificates from different abuse types. VirusTotal

7



Fig. 3: Trends in types of code signature abuse.

uses multiple antivirus engines to detect the maliciousness of
software. We discovered that the average number of engines
that marked samples involving Steal Certificate Key, Steal
Developer ID, and Fake Developer ID as malicious were
36.96, 41.42, and 34.44. It indicates that malware involving
T2 and T4 can bypass certain antivirus engines. Additionally,
we calculated the time interval from the signature date of the
malware to the first detection by VirusTotal, which averaged
50.83 days. Specifically, the intervals for Steal Certificate Key,
Steal Developer ID, and Fake Developer ID were 66.04 days,
25.48 days, and 39.47 days. This also suggests that samples
involving stolen certificate keys have a longer active period
in the wild and are more difficult to hunt by VirusTotal.
Furthermore, we observed that 77.78% of certificates continue
to sign benign samples after being stolen, indicating the abuse
is covert for victims.

B. Scale and trends of abuse

Based on our dataset, we found that at least certificates from
114 countries issued by 46 CAs have been abused to sign
malware samples, indicating a persistent problem in the current
code-signing ecosystem. The next question is, from which CAs
are the certificates being abused more severely?

To make an objective assessment, we need to consider
the market share of the entire code-signing ecosystem, in-
cluding both malware and benign samples. By collaborating
with a leading cybersecurity company, we obtained a dataset
of 15,190,141 benign software samples with signatures. It
includes samples crawled from popular public software down-
load sites and reported by their Windows client-side security
software. The benign samples were signed from 2000 to 2023,
with 88.23% after 2017, demonstrating their comparability to
our malware sample dataset.

Fig. 4: CA distributions in signatures of benign samples and
malware samples.

Fig. 5: Fraction of malware signatures in the overall sample
by CA and year.

We extracted code-signing timestamps and the root CA
information of the signing certificates from benign samples. To
estimate the CA market share, we calculated the proportion of
sample quantities and analyzed its changes over time, as shown
in Figure 4(a). In the early stage, there were relatively few
CA organizations providing code-signing services. Especially
before 2015, Verisign held an absolute majority. Kim et al.
noted that as of 2017, Symantec (including the Verisign and
Thawte brands) dominated the code-signing ecosystem [26].
However, significant changes occurred in this ecosystem fol-
lowing Symantec’s acquisition by DigiCert in 2020. In recent
years, several new players have entered the code-signing
ecosystem, particularly DigiCert, which has experienced rapid
business growth and has now become the new mainstream.

We then compared the CA activeness in the code-signing
abuse ecosystem. Since invalid signatures (T1) and untrusted
certificates (T5) do not reflect the real situation of public
CAs, we focus solely on certificates issued by public CAs.
As shown in Figure 4(b), the abuse ecosystem is more diverse
and less concentrated than benign signing, suggesting that the
abuse behavior is prevalent across various CA organizations,
even for non-popular ones. Besides, there are also a few CAs
that have been more severely abused. We can see that, the
proportion of abused certificates from Sectigo, COMODO,
and WoSign significantly exceeds their benign market share.
Figure 5 further shows, for each CA, the fraction of its issued
certificates that were abused to sign malware. In addition to the
three CAs discussed above, USERTrust, Starfield, and Certum
also exhibit high abuse rates. However, the situation with
Microsoft is the opposite, which may suggest that Microsoft
has been highly effective in preventing abuse. We evaluated the
prices of one-year Organization Validation (OV) certificates
sold by the top 10 CAs by market share. Then the analysis
shows no significant relationship between certificate price and
either market share (p-value = 0.287) or the number of abused
certificates (p-value = 0.262), with significance assessed at
the conventional threshold of 0.05. Therefore, the high abuse
rate may suggest potential security vulnerabilities that may be
exploited by abusers.

C. Revocation situation

Revocation is expected to serve as a defense mechanism,
distrusting abused certificates and thereby deactivating the
malware they signed. Ideally, a certificate should be promptly
reported to the CA once it has been found to be abused, and the
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CA should investigate the abuse and issue the revocation notice
with specific reasons upon confirmation. Prior studies [26],
[27] have disclosed the insufficient and delayed deployment of
revocation by code-signing authorities. We reassess the current
revocation status with our dataset.

We found that CAs may have improved their regulation of
certificate abuse in recent years but it remains inadequate.
Based on our dataset, 11,797 certificates were abused to
sign malware, 2,072 (17.56%) of which have been revoked,
and 450 (21.72%) have been published with clear reasons
for revocation. The revocation rate is lower compared to
the results of Kim’s work in 2017 [26] (27/111, 24.32%).
Figure 6 shows the distribution of revocation statuses for the
abused certificates. The horizontal axis represents its issuance
dates, and the vertical axis indicates the number of malware
samples each certificate signed. The left part shows non-
revoked certificates and the right part shows revoked ones
with colors indicating revocation reasons. It can be seen that
certificates effectively revoked by CAs are concentrated among
those issued in recent years (especially after 2019), indicating
CAs’ increasing focus on this issue. However, there has not
yet been an effective revocation for older certificates, even
those that are quite harmful, such as one (issued on Jul. 2,
2013) that signed 2,089 malware samples. Overall, out of
228,206 malware samples signed by certificates from public
CAs, 178,376 samples had unrevoked certificates. As of this
writing, 91,346 samples still could pass validation of SignTool
(including revocation).

Fig. 6: Revocation status of abused certificates.

Besides, from the right part of Figure 6, we can see that
CAs are providing more specific revocation reasons, allowing
us to better label the dataset. Note that “cessationOfOper-
ation” refers to revocation due to entity closure or service
termination. “Superseded” means that a new, more appropriate
certificate has replaced it. These revocation reasons do not
match T2∼T4 discussed in this paper, so the corresponding
certificates are also marked as “unspecified” in Table I.

Additionally, we found that many CAs still face challenges
in setting an “effective revocation date”, which determines the
validity of binaries signed by a certificate. Binaries signed after
this date are invalid, while those signed before remain valid.
Hard revocation involves setting the date to the certificate’s
start of validity or earlier, invalidating all signed binaries.
To address abuse, CAs must set the effective revocation date

to that of the earliest instance of abuse or implement hard
revocation.

To assess the effectiveness of revocation mechanisms, we
checked abused samples that had timestamped signatures.
Among 1,354 revoked certificates associated with these sam-
ples, 322 (23.78%) were set with incorrect revocation dates
(i.e., not equal to or earlier than the earliest abuse time of
the certificate), resulting in 2,792 (10.19%) abused samples
remaining valid. The incorrect revocation rate is lower com-
pared to the results of Kim’s work in 2017 [26] (7/27, 25.93%).
Besides, 941 certificates (69.50% of 1,354) employed a hard
revocation mechanism. Although samples of “Steal Developer
ID” and “Fake Developer ID” should all be subject to hard
revocation, we found their hard revocation rates are 96.55%
and 96.49% respectively.

D. Ghost Certificates

Section IV-C showed that the revocation rate of abused
certificates remains unacceptably low, a shortcoming attributed
in [27] to CAs’ delayed identification of abuse and improper
maintenance of revocation information. However, we observed
an underappreciated but systemic cause rooted in the current
timestamping mechanism and revocation infrastructure.

Fig. 7: Ghost Certificate.
We refer to this issue as “ghost certificates”, i.e., code-

signing certificates that have been abused but cannot be
revoked, as shown in Figure 7. This problem arises from a
structural limitation in the current revocation system. Verify-
ing the revocation status of abused leaf certificates requires
requesting CRL or OCSP. Both CRL and OCSP responses
must be digitally signed to ensure authenticity. Although
standards like RFC 5280 [8] and the CA/B Forum Baseline
Requirements [16] do not strictly mandate that these responses
be signed with the original issuer certificate, Microsoft clients
default to using the intermediate certificate for validation as
the issuer of CRL and OCSP response signatures. This raises
a critical question: if the intermediate certificate has expired
or been revoked, can it still be used to issue valid revocation
responses for its previously issued certificates?

Notably, the certificate chain may remain valid despite
the expiration or revocation of the intermediate certificate,
due to the TSA mechanism and the fact that the certificate
was issued before expiration/revocation. As a result, revoking
the abused end-entity certificate remains essential, yet such
revocation encounters structural obstacles. When we reported
this issue to a major Certificate Authority, they confirmed
that the expired intermediate certificate prevented them from

9



revoking the abused certificate we identified. Although the CA
did not disclose the specific reason, its Certificate Policy (CP)
indicates compliance with ETSI EN 319 411-1 [14], under
which private keys of expired intermediate certificates shall
be destroyed, making revocation impossible.

In our dataset comprising 9,725 certificates confirmed as
abused yet remaining unrevoked, we assessed the prevalence of
ghost-certificate conditions through analysis of CRL metadata.
We ultimately identified 3,789 (38.96%) certificates meeting
the conditions for ghost certificates, issued under 48 distinct
issuer certificates. Among these certificates, 3,545 had issuer
certificates that had already expired by the time of writing,
35 had issuers that were formally revoked (e.g., due to
cessationOfOperation), and 411 were issued by CAs that
had ceased operation entirely (e.g., StartCom), resulting in
a complete cessation of revocation information publication.
These empirical findings demonstrate that ghost certificates are
not isolated anomalies but rather a prevalent and foreseeable
outcome arising from the structural characteristics of the code-
signing PKI, rather than from CA negligence.

Worse still, the number of ghost certificates will inevitably
grow over time. Because every issuer certificate eventually
expires, abused code-signing certificates that remain unde-
tected or unrevoked at that point become effectively immor-
tal: their associated malware will remain valid indefinitely.
This structural limitation helps explain why revocation rates
stagnate despite CA efforts. The challenges posed by ghost
certificates are discussed in Section VII-A, with possible
mitigation strategies in Section VII-B.

V. ABUSE STRATEGIES

The above analysis indicates that code-signing abusers re-
main active. To better identify the vulnerabilities and propose
effective mitigation measures, we need an in-depth analysis
of attackers’ behaviors and strategies. This section describes
the strategies we observed at multiple stages from our labeled
dataset, including certificate application, signing, and dissemi-
nation of malware samples, aimed at evading checks, reducing
costs, and expanding the impact of attacks.

A. Application strategy

Strategy-I: exploit differences in authentication policy le-
niency across countries. The “Country” field in the certificate
subject name can help identify the geographical location of
the certificate holder. We separately tallied the geographic
distribution of certificates in benign and malware samples. In
benign samples, certificate holders are distributed across 123
countries/regions, while in malware samples, they span 114
countries/regions. According to the number of certificates, the
top three countries for benign holders are the United States
(32.78%), China (18.13%), and Germany (8.11%), reflecting
the prosperous software development industries in these three
countries. However, by analyzing the geographical locations of
malware developers, we found that there is a certain tendency
in their distribution across countries.

The top three countries are China (CN), Korea (KR), and
the United Kingdom (GB) for certificates in “Steal Certificate
Key”, the United Kingdom (GB), Slovenia (SI) and Denmark
(DK) for “Steal Developer ID”, and Russia (RU), Armenia
(AM), Vietnam (VN) for “Fake Developer ID”. We noticed
that Armenia, Vietnam and Slovenia are only ranked 85th,
48th and 35th respectively in benign samples. This significant
ranking discrepancy may indicate vulnerabilities in CAs’ iden-
tity verification. After communicating with well-known CAs
and looking up their policies, we learn that they often verify an
entity’s operational and physical existence through third-party
sources, including local government public data and global
public corporate databases. However, these data’s credibility
varies from country to country, resulting in data from less
trustworthy countries affecting the global software ecosystem.
Strategy-II: use short-term certificates to reduce costs.
CA providers typically offer certificates with varying validity
periods, from one to three years, with longer durations com-
manding higher prices. For instance, the price for DigiCert’s
OV certificate is $539 for a one-year term, $1,024 for two
years, and $1,536 for three years. We found that among the
certificates used to sign benign samples, one-year certificates
(350-380 days) accounted for 29.25%. In contrast, for abused
certificates obtained directly from CAs (T3, T4), one-year
certificates accounted for 84.22%, significantly higher than
the normal proportion. Since these certificates are specifically
applied for malware, they are usually put to use immediately
after issuance.

Moreover, abusers commonly opt for short-term certificates
to minimize costs and facilitate renewal, as the certificate may
be revoked once its signed malware is detected. The phe-
nomenon of certificate polymorphism, which will be discussed
next, further illustrates abusers’ tendency to maintain multiple
short-term certificates.
Strategy-III: utilize polymorphic certificates to circumvent
blocks. Certificate polymorphism denotes the scenario wherein
a single entity holds multiple distinct certificates. This includes
multiple stolen certificates from the same victim as well as
multiple certificates acquired directly from CAs by the same
abuser. Although previous studies [30], [31] have proposed
the concept of certificate polymorphism, they did not explore
its strategies and inherent threats in-depth. In this work, we
proposed a clustering method to find polymorphic certificates
(in Section III-C). Our study scope on certificate polymor-
phism includes all the abused samples where the attacker owns
the trusted certificates (i.e., T2∼T4), including 23,252 abused
certificates and 1,913,973 samples of both malware and PUPs.

We find the phenomenon is widespread among abuse cer-
tificates. 13,747 out of 23,252 abused certificates (59.12%)
exhibit polymorphism, forming 3,484 polymorphism clusters.
Of these, 1,255 clusters contain certificates from multiple
CAs and 68 clusters contain certificates from multiple coun-
tries/regions. Table II shows the top 5 clusters in all samples
and malware samples (ordered by the number of certificates).
The top cluster in all samples is typically PUP-dominated,
but it invariably includes some malware. It can be seen
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TABLE II: Top 5 clusters of certificate polymorphism in all samples/malware samples.
Group CN Example #Cert #CA #CN #Country #PK Revocation Rate Issuance Time EV Rate #Sample Submission Time Samples Type

#15 Fried Cookie 784 25 337 26 530 0.64% 2003∼2022 1.02% 30,690 2009∼2024 Mainly PUP
#108 Alpha Criteria 140 4 139 1 140 0% 2015∼2018 0% 4,116 2015∼2023 Mainly PUP
#95 New Media Holdings 125 3 85 1 125 0% 2014∼2016 0% 7,811 2014∼2023 PUP

#2825 Yu Bao 113 1 1 1 113 0% 2015∼2017 0% 187 2015∼2020 Mix

A
ll

#43 Superior Media 69 5 69 1 69 1.45% 2016∼2020 0% 2,683 2017∼2023 Mainly PUP
#3632 LADA 21 1 21 2 18 0% 2017∼2018 0% 30 2017∼2018 Mal
#1252 AMCERT 18 1 3 1 18 55.56% 2021∼2023 0% 171 2021∼2024 Mal
#2209 Sichuan Xunyou 18 6 1 1 18 61.11% 2013∼2019 16.67% 55 2017∼2020 Mal
#1097 Financial Security 13 3 2 1 13 7.69% 2015∼2023 61.54% 2,496 2016∼2023 MalM

al
w

ar
e

#4494 5000 LIMITED 12 1 1 1 12 0% 2018 0% 32 2019∼2020 Mal

that, polymorphic clusters exhibit diversity in their forms. For
example, the 1st cluster in all samples contains 784 abused
certificates using 337 common names (CNs) in certificate
subjects and 530 public keys (PKs). In comparison, the 4th
cluster uses the same CN among 113 certificates with changing
public keys. Top clusters dominated by malware are smaller
but more recent, with some even using EV certificates to
boost the credibility of malware. Notably, in most top malware
clusters, the revocation status of abused certificates is poor,
which may suggest that the polymorphic application has a
certain evasive effect.

Fig. 8: Signing time distribution in top clusters.

Additionally, Figure 8 illustrates the relationship between
certificate issuance and signing times in the top cluster. This
shows that malware abusers typically apply for certificates at
intervals, possibly to avoid suspicion from CAs. In contrast,
PUP abusers continuously apply for and use new certificates,
likely related to the customized demands of gray market
clients. We provide a more in-depth introduction to polymor-
phic behavior in Section VI.

B. Implementation strategy

Strategy-I: leverage tactics as dual-signature to increase
compatibility. Dual signing means applying two signatures
to the same sample, typically to enhance its compatibility.
For example, one signature uses SHA1 (compatible with older
operating systems), and another uses SHA256. We discovered
that dual signing is already used in code-signing abuse. Out of
the 228,206 malware samples labeled as “Certificates Signed
by Public CAs”, 23,200 (10.17%) used dual-signing. This
phenomenon indicates that code-signing abusers are becoming
more diligent in increasing the usability of their samples.
They not only strive to provide valid signatures but also
use dual signing technology to enhance compatibility, further
expanding the applicability and threat impact of their samples.
Strategy-II: sign malicious samples with multiple (evolv-
ing) abuse strategies. The Authenticode of a sample is a

signature of its core code implementation and can be con-
sidered a unique identifier of one software. We found that
abusers may use multiple code-signing abuse methods for
the same software (with unique Authenticode). We found
9 Authenticodes involved in multiple abuse strategies, and
5 of them have been signed by both T1 and T2∼T4. We
further compared the detection time by VirusTotal for the
same Authenticode under different abuse types. The results
showed that, five samples initially employed the basic tactic of
forging signatures, and later transitioned to more sophisticated
abuse types after being detected by VirusTotal. This suggests
that abusers could progressively enhance their techniques to
evade detection methods, which coincides with the findings of
abusing type changes we discussed in Section IV-A.

VI. CERTIFICATE POLYMORPHISM

In this section, we perform a detailed analysis of certificate
polymorphism, one of the most unique and critical strate-
gies adopted by code-signing abusers. We extend our study
scope to include all T2∼T4 samples (including unspecified
samples), covering both malware and PUPs. The inclusion
of PUPs is due to two reasons: firstly, this phenomenon was
initially observed in PUPs, with fewer instances in malware
at the time; secondly, we found that malware and PUPs are
often mixed in large clusters. We discuss how abusers apply
for polymorphism certificates, and real-world cases where
polymorphism facilitates the circumvention of CA checks in
certificate application and revocation.

A. Polymorphism patterns

Certificate polymorphism consists of two patterns: “Public
Key Reuse”, where multiple certificates share a pair of public
and private keys, and “Subject Obfuscation”, where certificates
have similar subject names. Both patterns indicate that the
holders of these certificates point to the same entity. Below we
discuss the details of these patterns based on our observation.
Public key reuse. We found 745 certificates (3.20%) exhibit
public key reuse, involving 226 distinct public keys. The most
common instance (129 public keys) of reuse is found in dual-
signing certificates, where the two certificates use the same key
but different signing algorithms. Another common scenario
(56 public keys) of key reuse occurs during certificate renewal,
where holders may reuse the key from the old certificate when
applying for the new one.

In addition to the above common scenarios, we also discov-
ered abnormal cases of public key reuse. A particularly notable
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TABLE III: Obfuscation strategies in certificate polymor-
phism.

Strategy Ratio Example

Abbreviation
Replacement 35% Monitor, OOO

Monitor, LLC

Case
Substitution 35% HASTINGS INTERNATIONAL B.V.

Hastings International B.V.

Punctuation
Change 16% Onekit Internet S,L

Onekit Internet S.L

Word
Segmentation 5% Suzhou MorningSun IT LLC

Suzhou Morning Sun IT LLC

Visual
Confusion 5% STELLAR PC SOLUTIONS

STELLAR PC SOLUTlONS

case is cluster #15 in Table II, which includes 251 certificates
with the same public key, almost issued by Thawte. Despite
these certificates using 89 subject names and originating from
26 different countries, their signed samples all belong to the
same family, InstallCore. InstallCore is an adware platform
from Israel often bundled with software installations, known
for delivering PUPs and even malware. It offers certificate
application and code-signing services for PUP developers. We
hypothesize that, for operational convenience, InstallCore uses
the same public key across different applicants. This practice
contravenes the code-signing certificate issuance principle, as
it involves issuing certificates to intermediaries rather than the
actual entities, indicating potential authentication issues.
Subject obfuscation. We also observed that the abuser may
apply for multiple certificates using “similar” common names
by carefully modifying subject fields, which can be con-
sidered as a form of obfuscation. This practice was quite
prevalent, with 5,999 certificates (25.80%) exhibiting this
behavior. The top 5 frequently observed obfuscation strategies
are summarized in Table III. The most common strategy
is altering the abbreviations (35%) of company names. For
instance, “Limited Liability Company” is abbreviated as LLC
in English, but it is OOO in Russian. Notably, visual confusion
is a more clear malicious category, e.g., replacing the “I”
in “SOLUTION” with a lowercase “l”, which is a common
phishing tactic. Besides, we identified cases of concealed
obfuscation using special (e.g., unprintable) characters. As
shown in Figure 9, the applicant utilized visual confusion
(“i” and “l”) to construct cert-3 based on cert-2, and also
created a more concealed cert-1 by replacing the original space
characters with “U+00A0”, which is an unprintable character
and could be rendered the same as a space. Therefore, cert-1
visually seems indistinguishable from cert-2, although they are
different at the encoding level. Similarly, “U+00AD” is also
an unprintable character and could be rendered the same as
“-”. We identified “U+00A0” in 20 certificates’ subject name
and “U+00AD” in 3 certificates.

Subject obfuscation assists abusers in bypassing identity
verification and certificate revocation. Abusers may employ
this method for two reasons: 1) creating shell companies or
masquerading as legitimate companies is costly, so abusers
seek to obtain as many certificates as possible under the same

Fig. 9: Polymorphic certificates with special characters.

identity; 2) when abuse is detected, it is difficult to readily
identify other abused certificates linked to that entity based
solely on the certificate information.

B. Case study

This case study shows the use of certificate polymorphism to
evade revocation mechanisms. Kotzias et al. [30] demonstrated
how PUP clusters exploit this technique. As abuse methods
evolve, malware has begun to use the same approach. For
the first time, we identified real-world instances of malware
leveraging polymorphism to bypass revocation checks.
Inconsistent revocation. We attempted to identify instances
of certificate polymorphism circumventing CA verification in
clustering results, and identified 315 (9.04%) clusters showing
inconsistent revocation, meaning some certificates used for
signing malware were revoked while others remained active.
Below, we will introduce the details by case studies.

According to CA/B Forum requirements [16], CAs are
required to track entities signing suspect code and deny them
new certificates (see Req.1 in Appendix H). However, current
enforcement is insufficient, allowing abusers to exploit certifi-
cate polymorphism to continue application. One case is cluster
#1252 (in Table II) with 18 abused certificates. The earliest
malware sample signed with these certificates was detected
by antivirus engines on Jun. 25, 2021. Sectigo subsequently
performed a hard revocation of the two earliest certificates.
The attacker then continuously obtained 16 new certificates
from Sectigo under fake identities. Only 7 were eventually
revoked, highlighting Sectigo’s failure to enforce the suspect
entity list during issuance and revocation.
High-risk case. We also found polymorphic certificates fa-
cilitating high-risk APT campaigns. Cluster #1051 comprises
11 unrevoked certificates from 4 CAs with consistent subject
names, responsible for 93 malware and 25 PUP samples.
Notably, one certificate signed a sample linked to APT27 [35].
Issued in 2016, this certificate initially signed more than 60
benign samples before pivoting to malware, eventually signing
the APT sample shortly before expiration. We confirmed with
its issuing CA that this is a “ghost certificate”, which makes
revocation impossible. Although Windows blocks this specific
APT sample, our tests confirm that other malware signed by
this certificate still passes Windows’ signature verification.
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VII. DISCUSSION

A. Root cause and weaknesses

The security of code-signing relies on multiple factors.
Prior research in 2017 [26] proposed three main deficiencies:
inadequate client-side protections, publisher-side key misman-
agement, and CA-side verification failures. So far, notable
enhancements have been made on the client and publisher
sides, such as Windows SmartScreen [41] and the industry
standard for storing keys on certified hardware modules [11].
But CAs still fall short in defending against code-signing
abuse. Specifically, our findings reveal following weaknesses:

1) Lack of strictness and standardization in issuance. We
found that CAs’ verification of applicants’ identities during
the issuance process may have lacked scrutiny, enabling cases
of Steal Publisher ID and Fake Publisher ID. The verification
may rely on information from third-party databases, and flaws
in these databases pose security risks to the issuance process.
Besides, we found cases where intermediaries applied for and
managed certificates on behalf of developers. Intermediaries
might reuse keys across identities, posing security risks to
key management. In certificate polymorphism, we found that
abusers often make minor adjustments to subject names during
the application to obtain multiple certificates under one iden-
tity. One common method is to insert invisible or non-printable
characters, which can be prevented if CAs standardize the
permitted range of characters in the fields during the issuance.

2) Unproactive abuse governance. We found CAs currently
still adopt a “passive” role in governing code-signing abuse.
Although CA/B has explicitly mandated that entities known
to have intentionally signed suspect code should not be issued
new certificates [16], there seems to be a lack of proactive
identification of high-risk entities. In certificate polymorphism,
we discovered that the same abuser, after having a certificate
revoked, can continue to apply for new certificates by slightly
altering the subject name. CAs also primarily rely on reports
from subscribers and third parties to initiate abuse investi-
gations, rarely taking proactive measures to monitor issued
certificates. Victims may also be unaware of the abuse (e.g.,
private key leakage), leading to delayed revocation.

Besides, CAs may also be affected by design flaws within
the code-signing PKI: 3,789 (38.96%) certificates satisfy the
ghost-certificate conditions, whose invalid issuer certificates
hinder revocation even when abuse is detected, thereby hin-
dering effective mitigation. The root cause of this issue stems
from two factors. First, the current standards and best practices
that CAs follow impose weak requirements on revocation
processes and fail to account for the difficulty of maintaining
revocation services once issuer certificates become invalid.
Second, Windows clients rely solely on certificate-specified
CRL/OCSP, without any additional revocation mechanisms,
leaving ghost certificates effectively non-revocable.

B. Mitigation suggestions

We outline practical measures for CAs, OS vendors, and
security systems to address the identified issues.

For CAs. CAs should take concrete actions across issuance,
revocation, and abuse governance. 1) Increase transparency of
revocation and issuance. Increasing transparency will facilitate
a better code-signing audit. For revocation, we recommend
that CAs disclose not only the reason codes but also detailed
information of relevant entities. This would help align with the
policy of not issuing certificates to high-risk entities [16]. For
the issuance, using artifact and identity logs under frameworks
like Sigstore [43] can support audits and help legitimate
certificate holders detect abuse. 2) Proactively detect abusive
behavior. We expect CAs to take a more proactive role in
abuse governance by considering the issuance history of enti-
ties, proactively using antivirus engines to monitor malicious
signing activities, and auditing polymorphic certificates upon
discovering abuse and timely revoking abused certificates. 3)
Establish standards for certificate subject names. We recom-
mend that the Common Name field of the certificate subject
should only contain meaningful strings that can indicate the
applicant identity. The fields should reject visually ambiguous
letters, meaningless punctuation, or non-printable characters,
to mitigate the impact of polymorphic abuses.
For operating system vendors. The operating system’s sig-
nature verification logic may need to be adjusted, especially
for mitigating “ghost certificates”. Beyond updating standards
to instruct CAs not to use intermediate certificates in code-
signing chains to sign CRL/OCSP responses, Windows should
adjust its signature validation logic by decoupling CRL/OCSP
checks from the code-signing chain, thereby enabling CAs to
update revocation infrastructure or rotate keys independently.
For security systems. Client side may need to rely on security
systems to adopt proactive abuse governance. As operating
system checks may be insufficient to counter abuse, security
systems can play a more proactive role. For example, by
aggregating threat intelligence to maintain blocklists of high-
risk certificates and assist users in blocking related malware.
SmartScreen [41] is one such mechanism: it evaluates certifi-
cate reputation to block potential abuse.

C. Discussions with certificate authorities

We have emailed all reachable CAs except those that were
unreachable due to mergers, acquisitions or closures. All top
20 CAs with the most abused certificates have been notified.
So far, Sectigo, GlobalSign and Entrust have confirmed the
reported certificates were indeed at risk of abuse and have
revoked them. They also acknowledge the need for more
proactive abuse mitigation. Some CAs have tried flagging
suspicious identities based on abuse patterns but with limited
success. Our clustering approach may help identify high-risk
subscribers. During our communication, we confirmed the
existence of ghost certificates. A leading CA confirmed that
some of the abused certificates we reported were issued by a
certificate that is expired, which makes revocation impossible.

VIII. CONCLUSION

Code signing is a crucial mechanism for verifying the
publisher’s identity and ensuring the code’s integrity. However,
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code-signing abuse poses a significant threat. This paper
conducted a large-scale measurement study of the real-world
ecosystem of code-signing abuse. We developed a fine-grained
classification method for abused certificate types, obtaining
the largest labeled dataset of abused certificates (43,286 certs)
to date. Utilizing this dataset, we conducted an in-depth
analysis of the code-signing ecosystem and abusers’ behaviors,
revealing a series of abuse strategies. We thoroughly analyzed
certificate polymorphism behavior and identified real cases to
evade detection. Finally, we offer targeted recommendations
to mitigate the abuse of code signing.
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ETHICS CONSIDERATIONS

Three points of our experiments may raise ethical con-
cerns: 1) the collection and analysis of malicious datasets, 2)
exposing weaknesses in current code signing practices and
3) releasing labeled dataset. We refer to authoritative ethical
guidelines such as the Menlo Report [24] and carefully design
our experiments to minimize potential risks.

First, we followed the recommendations outlined in [3], and
used public datasets and company datasets to collect malicious
samples. As for data processing from public datasets, all
downloaded data related to the malicious samples was securely
stored on a dedicated experimental server to prevent leaks.
After extracting relevant features, the original executables
of the malicious samples were deleted. The company’s data
comes from a security company with which we have a
research partnership. The researchers are interns who complete
the relevant data analysis within the company. Notably, all
processing and analysis tasks were conducted on a researcher-
controlled server. Second, for the vulnerability disclosure, we
have emailed all reachable CAs, including the top 20 with the
most abused certificates. We have actively engaged with them
to share the problematic signing certificates and revocation
information we have identified. Recognizing the complexity
of CA ownership structures(e.g., acquisition chains), we used
CCADB records to identify each CA’s final owner. For ex-
ample, the final owner of Comodo, USERTrust, Intel External
Issuing CA 7B, and OneSign OV Code Signing CA is Sectigo.
We also encountered more complex cases—for instance,
GoGetSSL certificates involve both Sectigo and DigiCert—and
GoGetSSL confirmed that our abuse reports were forwarded
to the appropriate owners. So far, we have received responses
from three mainstream CAs (see Section VII-C for details).
Last, we released the labeled abused certificate dataset. To

mitigate ethical risks, we only disclosed the certificates that
have signed malware.
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APPENDIX

A. Overview of the Authenticode signature format

Authenticode signatures can be embedded in a Windows
PE file at a specific location defined by the Certificate Table
entry in the Optional Header Data Directories [37]. During
the signing process, the algorithm used to compute the Au-
thenticode hash for the file intentionally excludes certain PE
fields, ensuring that modifications to these fields do not alter
the hash value. Figure 10 offers a simplified illustration of how
the Authenticode signature is embedded within a Windows PE
file. It highlights the location of the embedded signature and
identifies the PE fields excluded from the hash computation.
Additionally, it indicates the key fields that were primarily
considered when collecting the signature dataset for this study.

Fig. 10: Overview of the Windows PE file format and the
Authenticode signature format.

B. Sensitivity analysis of data processing

We conducted a sensitivity analysis of the thresholds (cmal

and rpup) used in our data processing pipeline to assess their
impact on the downstream abuse classification. Although the
choices of these two thresholds followed prior work [30], we
aimed to examine how varying them affects the labeled sample
dataset constructed in this paper.
Filter malicious samples. cmal denotes the number of an-
tivirus engines that label a sample as malicious. When select-
ing malicious samples, we set the threshold c∗mal = 3 and
retain only samples with cmal ≥ c∗mal. This yields a labeled
dataset with 3,216,113 malicious samples and 43,286 abused
certificates. We then evaluate how the labeled dataset changes
when the threshold is varied to c∗mal ± 1, as summarized in
Table IV. Overall, changing the threshold to c∗mal = 2 or
c∗mal = 4 has only a marginal effect on the labeled dataset:
the total number of malicious samples varies by +0.43% and
−0.22%, respectively, relative to the baseline setting.

Distinguish malware and PUPs. rpup denotes the fraction
of antivirus engines that label a sample as PUP. When distin-
guishing malware and PUPs, we set the threshold r∗pup = 0.5
and classify a sample as PUP only if rpup ≥ r∗pup. This results
in 1,330,838 malware samples and 1,885,275 PUP samples.
We further examine how the labeled dataset is affected when
the threshold is adjusted to r∗pup±0.1, as reported in Table IV.
In particular, setting r∗pup to 0.4 or 0.6 only slightly perturbs
the labeled dataset: certificate entries change by at most
4.35%, with an average change of 2.25%. Our experiments
indicate that the threshold adopted in data processing does
not materially affect the subsequent data analysis.

C. Details on fetching CRLs

We began the retrieval process with 531 deduplicated CRLs.
We initially excluded 38 CRL Distribution Points (CDPs)
utilizing LDAP URLs, as this protocol is not supported
by the CA/Browser Forum Baseline Requirements (CSBR,
which mandates HTTP support). Subsequently, we attempted
to retrieve the remaining CRL files via HTTP, successfully
downloading 371 of them. The reasons for the retrieval failures
are detailed in Table VI. The majority of failures were caused
by CAs no longer providing the CRLs (maintenance lapsed).

Failures to retrieve some CRLs did not materially affect
revocation-status queries for most certificates: 97.27% of the
23,252 certificates have accessible CRLs, enabling verification
of whether the certificate had been revoked. This is because
CRLs are highly centralized: many certificates issued by the
same CA share the same CRL endpoint. Among the CRLs
we obtained, the 50 largest lists (by number of entries) cover
92.45% of all certificates. In other words, most revocation
checks rely on a relatively small set of widely used CRLs,
so failures tend to affect only a long tail of CRLs that cover
relatively few certificates rather than the bulk of our dataset.

D. Error code of SignTool

The error codes and corresponding messages returned by
the SignTool signature validation are illustrated in Table V.

E. Refine Cluster Method with LLM

This section describes the methods we used to determine
whether the subject CN fields of two certificates are similar
during the certificate association process.
Method design. To this end, we introduce the state-of-the-art
natural language processing method, Large Language Model
(LLM), to achieve more accurate CN association recogni-
tion. Our method is named LLM for Certificate Clustering
(LLM4CC). We employ GPT-4 [47], one of the top-performing
LLMs currently, and carefully construct prompts to guide its
recognition based on prior research findings and observational
experiences.
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TABLE IV: Impact of c∗mal and r∗mal on the labeled dataset of abused samples and certificates.

Types of Abuse Total Malware
# Samples # Certs # Samples # Certs

Forged Signature (T1) (+0.44, -0.22) (+1.78, -1.44) [-4.47, +3.22] [-1.20, +3.14]
Certificates from Public CAs (+0.43, -0.22) (+1.86, -1.53) [-4.62, +3.23] [-1.14, +3.44]

Steal Certificate Key (T2) (+0.58, -0.31) (+4.23, -1.41) [-4.47, +3.31] [-1.26, +3.36]
Steal Developer ID (T3) (+1.40, -0.55) (+3.63, -1.55) [-4.98, +3.41] [-1.09, +4.35]
Fake Developer ID (T4) (+1.69, -0.47) (+3.20, -1.60) [-2.52, +2.43] [-0.88, +1.75]
Unspecified (+0.44, -0.21) (+1.80, -1.52) [-4.62, +3.24] [-1.15, +3.44]

Untrusted Certificate (T5) (+0.29, -0.43) (+1.39, -1.95) [-3.61, +4.37] [-0.99, +4.25]
Total (+0.43, -0.22) (+1.82, -1.46) [-4.49, +3.23] [-1.15, +3.30]
1 (∆c∗mal=2,∆c∗mal=4) denote the relative changes (in %) in the total numbers of samples and

certificates when c∗mal is set to 2 and 4, compared to the baseline configuration (3).
2 [∆r∗pup=0.4,∆r∗pup=0.6] denote the relative changes (in %) in the numbers of malware samples and

certificates when r∗pup is set to 0.4 and 0.6, compared to the baseline configuration (0.5).

TABLE V: Error codes from SignTool verification.

Abusing Type Error Code Message

T1 - No signature found
0x80096010 The digital signature of the object did not verify

T5 - A certificate chain processed, but terminated in a root certificate which is not trusted provider
0x800B010A A certificate chain could not be built to a trusted root authority

T2∼T4
- Valid

0x800B010C A certificate was explicitly revoked by its issuer
0x800B0101 A required certificate is not within its validity period

TABLE VI: The reasons for CRL retrieval failures.

Failure Reason Description Count

HTTP 502 The CA no longer provides this CRL 91
HTTP 404 The CA no longer provides this CRL 9
HTTP 403 The CA no longer provides this CRL 7

Others CRL misconfiguration, etc 15

Total CRL file not retrievable 122

Requirement: Below, I will input the names of two com-
panies or individual entities as strings. Please help me
determine if the two entities are the same.
Principles: 1) Ignore common substrings in the name that
indicate company status, such as “LLC”, “Co.”, “OOO”,
“Inc” etc, and focus only on meaningful strings. 2) Over-
look non-alphabetic characters in the name, such as punc-
tuation marks like “.”, “,”, etc. 3) Ignore the case of letters
and the singular/plural forms.
Criteria: 1) Some confusing letters in the words are ac-
ceptable. For instance, “Google” and “GooIe” or “G00gle”
can be viewed as the same entity. 2) If two strings have
a few differences, but the semantics are obviously similar,
they can also be regarded as the same entity, even if they
might not be in the same language. 3) If removing a part
of one string does not affect its overall meaning and it
then becomes identical to the other string, it can also be
considered the same entity. 4) If the meaningful substring
is a rare word, then it can be considered the same entity
even if there are only one or two letters differing.
I will list some pairs of strings in the format of A@B below.
For each pair, you only need to answer with “Y” or “N”.
“Y” means the two are the same entity, and “N” means
otherwise.

The specific steps are as follows. We extracted the CNs
from the certificates and paired them as input. Using the NED
and PEM methods, we obtained 8,262 and 7,823 qualified
CN pairs, respectively. The results from these two methods
were then merged and input into LLM4CC for refinement.
LLM4CC would respond whether the paired combination
meets the matching criteria. Specifically, we utilized the GPT-
4 API, entering the following prompt in the content with the
role “system”, and inputting the string pairs to be evaluated
(Certificate Subject Name CN field) in the content with the
role “user”. Ultimately, we obtained 8,110 CN pairs.

Evaluation. We evaluate the effectiveness of LLM4CC and
compare it with the two existing methods in prior work,
NED [30] and PEM [31], from both design and experimental
perspectives. First, from the design level, existing methods
that rely on rule-based matching or exact matching have
relatively weak scalability. We compared the capabilities of
different certificate association methods in Table VII. Here,
 means that the certificate association method can handle the
obfuscation strategy related to certificate polymorphism, while
#indicates the opposite. Our proposed LLM4CC method is
capable of covering a wider variety of cases. We also evaluate
those methods from the experimental level. We applied NED,
PEM, and LLM4CC to our dataset, identifying 8,262 string
pairs deemed similar by at least one method. Then we used
manual review to check their effectiveness. Manual inspection
revealed that LLM4CC demonstrated remarkable precision,
with a random sample of 300 perfectly aligned with manual
annotations. Then, we manually examined the parts where
the three methods differed. We found that PEM’s correct
identifications were a subset of LLM4CC, and NED produced
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TABLE VII: Comparison of different certificate association methods.

Abbreviation Replacement Case Replacement Punctuation Change Word Segmentation Visual Confusion

NED # #    
PEM     #

LLM4CC      

Reversing Word Order Synonym Singular-Plural Change Latin Letter Transcription Special Character

NED # #  #  
PEM  # # #  

LLM4CC      

152 false positives (e.g., Shang Hai Zi Wei Wang Luo Ke Ji
You Xian Gong Si vs. Shang Hai Shen Wei Wang Luo Ke Ji
You Xian Gong Si). Besides, considering the potential issue of
randomness in LLM output, we also evaluated the stability of
LLM4CC, and found a 99.66% consistency over three rounds
of independently repeated tests. In summary, we believe the
method of identifying similar common names in this paper
outperforms existing ones.

F. Method and Evaluation for Labeling Unspecified Certifi-
cates

We discovered that certificate association aids in categoriz-
ing unspecified certificates in previous steps. After applying
the approach in Section III-B, we obtained 424 certificates
labeled as T2∼T4. Clustering revealed that these belong to
379 clusters, each with a unique abuse type, indicating holders
typically use a single abuse method. Then we can categorize
one unlabelled certificate as the same abuse type as other
labeled certificates within the same cluster. Such expansion
draws not only from statistical observations but also adheres
to the principles of code-signing abuse. For instance, if a
certain certificate’s public key is stolen, other certificates using
this key can be considered stolen. Similarly, if a certificate is
deemed as a fake ID, all certificates applied by that holder
using that ID (i.e., certificates with the same CN name or key)
should be classified as Fake ID. To reduce potential false pos-
itives, we only apply extended tagging to certificates that have
signed malware. This method enhances the labeling method in
Section III-B and has led to the identification of 287 previously
unspecified certificates (159 Steal Certificate Key, 65 Steal
Developer ID, 63 Fake Developer ID). Table I presents the
final results incorporated with these 287 certificates.

In summary, we adopt two steps to categorize abuse types
of certificates. First, we leverage the revocation reasons for
labeling, drawing from the revocation information published
by corresponding CAs. Although CA-provided information
cannot be guaranteed to be 100% accurate, it remains the most
authoritative reference for identifying abuse types. Second,
we employ the association method for extended labeling,
operating under the assumption that certificates held by the
same attacker typically exhibit the same type of code signing
abuse. To evaluate this assumption, we apply it to our labeled
dataset from the first step. We divide the labeled dataset into
training and testing subsets at different proportions, and the
validation results are presented in Table VIII. We find that its
accuracy is high, but the recall capability strongly depends on

TABLE VIII: Evaluation of certificate association methods.

Train:Test Coverage Accuracy

1:9 84.41% 100%
2:8 88.74% 100%
3:7 91.14% 100%
4:6 92.57% 100%

the size of the already-labeled training dataset. In this paper,
we use this method to label another 287 certificates based on
157 labeled certificates.

Fig. 11: Timestamp distribution of malware samples.

G. Samples distribution

We conducted a statistical analysis of the signing times pro-
vided by time stamping authorities of our collected malware
samples, to better understand their distribution. The signing
times are chosen in preference to compilation times stored in
the “TimeDateStamp” field within the “IMAGE FILE

HEADER” of the file header because, without valid times-
tamp signatures, this field can be modified by attackers to
mislead security personnel or software and obscure malicious
activities. We found a total of 116,783 malware samples had a
valid signing timestamp, ranging from Mar. 1, 2001 to Apr. 23,
2024. According to the signing timestamps, the majority of our
samples (78.25%) were issued after 2017. Therefore, analysis
based on this data is expected to reveal new phenomena in the
code-signing abuse ecosystem.

H. Requirements of CA/B Forum

Req.1 originates from Section 4.2, “Certificate Application
Processing”, of the CA/B Baseline Requirements [16].

Req.1 The CA MUST also maintain and check an internal
database listing Certificates revoked due to Code Signatures
on Suspect Code and previous certificate requests rejected by
the CA. CAs MUST not issue new or replacement Code Signing
Certificates to an entity that the CA determined intentionally
signed Suspect Code.
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I. Artifact Appendix

[Available badge] In this work, we conducted a large-scale
measurement of code-signing abuse using signed malicious PE
files collected from the wild. Through fine-grained classifica-
tion, we identified a number of abused certificates and catego-
rized them into five abuse types, creating the largest labeled
dataset to date. To support open science, we release the above
dataset and have filtered it to address ethical considerations.
Our artifact is permanently archived at https://doi.org/10.5281/
zenodo.17666996. Besides, the artifact can also be accessed at
https://github.com/XingTuLab/Code Signing Abuse Dataset.

The artifact is a dataset of revoked certificates used to sign
malware. As described in Section “Ethics Considerations”, we
only release malware-related abused certificates, excluding
PUPs, to avoid reputational harm to some legitimate develop-
ers. Considering the potential security risks of publishing all
certificates, as unrevoked certificates and signed samples might
be exploited by attackers, we release only confirmed revoked
abused certificates, whose signatures can no longer pass client-
side verification and thus pose no threat. In addition, since
the signed software samples are commercially sensitive, we
do not provide the original files but instead include URLs to
their corresponding VirusTotal analysis reports.

TABLE IX: Description for abused certificate CSV file.

Field Description

Cert MD5 MD5 hash of the abused certificate.
Serial Serial Number of the abused certificate.
Subject Subject Common Name (CN) of the abused certificate.
Issuer Issuer Common Name (CN) of the abused certificate.
Country Subject Country (C) of the abused certificate.
Valid From “Not Before” timestamp of the abused certificate.
Valid To “Not After” timestamp of the abused certificate.

Sample URL to the VirusTotal report for a representative malware
sample signed with the abused certificate.

Abuse Type Labeled abuse type of the abused certificate.

The artifact contains a CSV table and a ZIP folder of
certificate files. The CSV file mainly records metadata of abu-
sive certificates—such as hash, serial number, subject, issuer,
validity period, and abuse type—and provides the VirusTotal
report of one representative software sample signed by each
certificate, as shown in Table IX. The ZIP folder contains
the original .cer files of all abused certificates listed in the
CSV. Each file is named after its MD5 value, and the total
number of certificates (2,072) is consistent with the description
in Section IV-C of the paper.
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