
PhyFuzz: Detecting Sensor Vulnerabilities with
Physical Signal Fuzzing

Zhicong Zheng∗
USSLab, Zhejiang University

Hangzhou, China
zheng zhicong@zju.edu.cn

Jinghui Wu∗
USSLab, Zhejiang University

Hangzhou, China
jinghuiwu@zju.edu.cn

Shilin Xiao∗
USSLab, Zhejiang University

Hangzhou, China
xshlin@zju.edu.cn

Yanze Ren
USSLab, Zhejiang University

Hangzhou, China
yzren@zju.edu.cn

Chen Yan†
USSLab, Zhejiang University

Hangzhou, China
yanchen@zju.edu.cn

Xiaoyu Ji
USSLab, Zhejiang University

Hangzhou, China
xji@zju.edu.cn

Wenyuan Xu
USSLab, Zhejiang University

Hangzhou, China
wyxu@zju.edu.cn

Abstract—Sensor vulnerabilities can be exploited by physical
signal attacks to cause erroneous sensor measurements, endan-
gering systems that rely on sensors to make critical decisions.
While hundreds of existing studies have discovered numerous
sensor vulnerabilities, they are all driven by manual expert
analysis and require a time-consuming process of trial and
error. The absence of automated approaches to assist in the
detection of sensor vulnerabilities has posed a major roadblock to
bridging the gap between sensor security research and industrial
applications. In this paper, we propose PhyFuzz, a new physical
signal fuzzing paradigm that relies on physical testing signals to
detect existing and potentially new types of sensor vulnerabilities
without humans in the loop. To cope with the unprecedented
challenges of fuzzing with physical signals, such as the infinite
searching space of signal parameters and the black-box design of
diverse sensor hardware, we design a unique fuzzing algorithm
that enables efficient testing signal construction and effective
feature discretization for sensor vulnerability identification and
assessment. We implement PhyFuzz as a prototype that can sup-
port fuzz testing with acoustic, laser, and electromagnetic signals.
Our experiment shows that it can identify 46 vulnerabilities on
13 sensors of 9 different types, including 6 undisclosed cases.

I. INTRODUCTION

Sensors are devices that can convert the physical world
into electrical signals. They are essential in cyber-physical
systems (CPS) and have been widely adopted in intelligent
applications [1]. Over the last decade, security researchers
have discovered various sensor vulnerabilities that enable
attacks based on malicious physical signals such as sound,
electromagnetic (EM) waves, and laser [2]. These attacks can
disrupt or falsify sensor measurements and cause malfunction,
manipulation, or even damage to other systems that rely on
sensors [3]–[7].

Detecting sensor vulnerabilities, including existing and new
instances on a large number of sensors, is fundamental to
making trillions of sensors [8] more trustworthy. However,
compared with the academic and industrial achievements in
detecting software and system vulnerabilities, we are still in an
early stage with sensors. Different from vulnerabilities in the
digital domain, sensor vulnerabilities originate from hardware
defects and are exploited by physical signals. For example,
studies have shown that signals outside the designed input
signal type or range of microphones, such as a modulated
laser [9], EM wave [10], or ultrasound [11], can be converted
into illusive human voices due to unexpected photoacoustic
effects, EM coupling, and nonlinearity of amplifiers. These
vulnerabilities are difficult for security practitioners to identify
by analyzing sensor firmware, circuit, or other design docu-
ments following existing security procedures. As a result, all
existing research has manually conducted exhaustive physical
experiments to discover new sensor vulnerabilities, which
heavily depend on expert knowledge and are time-consuming.
In addition, existing practices are difficult to scale to other
types of sensors due to divergent hardware structures and
working principles. To the best of our knowledge, there is
no automated,expert-knowledge-independent, and generalized
method to assist in the detection of sensor vulnerabilities, im-
peding sensor security research and industrial security testing.

In this paper, we design PhyFuzz, the first fuzz testing
approach based on physical signals to automatically detect
existing and potentially new sensor vulnerabilities. The basic
strategy is to generate various unexpected physical signals
as fuzz testing input to a sensor under test (SUT) and then
monitor for exceptions in its output to reveal vulnerabilities.
However, due to the distinct nature of sensor vulnerabilities
compared with those of software systems, fuzzing a sensor
requires solving several unprecedented challenges.

Challenge 1: How to efficiently generate physical fuzzing
signals? Since the nature of sensor vulnerabilities suggests
that sensors may potentially respond to any unexpected phys-
ical stimuli, there is no restraint on physical signals, such as

∗These authors contributed equally to this work
†Chen Yan is the corresponding author
Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240029
www.ndss-symposium.org

the length, format, modality, etc. Unlike the digital input in
traditional fuzzing, the input space of physical signal fuzzing
is continuous and infinite.

Challenge 2: How to detect vulnerabilities with limited
feedback information? Traditional feedback-guided fuzzing
method relies on code coverage or a state machine to drive
case generation and monitors for resource leaks or crashes
to reveal vulnerabilities [12]. However, such information is
unavailable in sensors that are often treated as a black box. It
is difficult to access sensor runtime information apart from its
input signals and output measurement readings.

To address these challenges, we propose a comprehensive
solution comprising five key technical components: 1) a signal
construction set that reduces the input searching space; 2)
a feature discretization algorithm that transforms continuous
sensor output into discrete feature coverage, thereby promoting
efficient exploration of diverse vulnerabilities; 3) an integrated
hardware and software platform capable of generating phys-
ical signals and communicating with the SUT; 4) enhanced
fuzzing techniques specifically optimized for PhyFuzz; 5) an
automated bug indicator to analyze fuzzing result and quantify
vulnerability impacts.

In this paper, we implemented PhyFuzz on a prototype
that can support fuzz testing with acoustic, laser, and electro-
magnetic signals. We validated the effectiveness of PhyFuzz
on 13 sensors of 9 different types and found that: 1) It can
reliably detect a wide range of known vulnerabilities reported
in existing studies. 2) It can detect more numbers and types of
sensor vulnerabilities within the same time budget compared
with manual analysis, such as sweep testing. 3) It can discover
indications of new types of vulnerabilities and assist in further
expert analysis.

Our contribution can be summarized as follows:
• We propose the first physical signal fuzzing paradigm that

generates physical testing signals to detect sensor vulnera-
bilities without requiring manual trial and error.

• We design a fuzzing algorithm that minimizes the input
space of physical test signals with a signal construction set
and extracts the discrete feature coverage from the sensor
output as feedback to guide black-box sensor fuzzing.

• We implement PhyFuzz with three physical signal modal-
ities on a prototype. Our experiment shows that it can
identify 46 vulnerabilities on 13 sensors of 9 different types,
including 6 undisclosed cases.

II. BACKGROUND

A. Sensor Vulnerability

Definition. Sensor vulnerability refers to hardware defects
arising from the non-ideal characteristics of materials, elec-
trical components, mechanical structures, and other factors
during the design and manufacturing processes of sensors.
These vulnerabilities can be exploited by attackers to carry out
transduction attacks [2], resulting in the generation of false
sensor readings. For example, in the case of a microphone
sensor, an attacker may exploit the nonlinearity of its amplifier

to inject ultrasonic signals [11], the photoacoustic effect of its
diaphragm to inject laser signals [9], or the electromagnetic
coupling of its internal wiring to inject electromagnetic sig-
nals [10]. These attacks can cause the microphone to produce
false audio outputs without the presence of audible audio
inputs. The discovery of such vulnerabilities poses a significant
threat to CPS. Since CPS relies heavily on sensors to perceive
and interact with the physical environment, sensors represent
a broad attack surface due to their direct exposure to external
physical stimuli and their inability to distinguish between
legitimate and malicious signals. Therefore, identifying and
mitigating sensor vulnerabilities is critical to ensuring the
security of CPS, particularly in safety-critical applications such
as unmanned aerial vehicles (UAVs) and robotics.

Vulnerability Detection vs. Performance Test. There is
a fundamental distinction between sensor performance testing
and sensor vulnerability detection. Performance testing aims to
evaluate a sensor’s performance under its intended operating
conditions, typically assessing metrics such as sensitivity, lin-
earity, accuracy, and precision [13]. These tests are conducted
in accordance with established standards or specifications [14].
In contrast, vulnerability detection serves as a complementary
approach designed to uncover abnormal sensor behavior under
unintended conditions, specifically when exposed to malicious
signals such as acoustic, optical, or electromagnetic signals.
Moreover, while sensors are generally subject to electro-
magnetic compatibility (EMC) testing, existing research has
highlighted limitations in these tests. In particular, the test sig-
nals used in EMC assessments suffer from limited frequency
range, signal strength, and diversity in signal construction to
effectively reveal electromagnetic-related vulnerabilities [15].
Consequently, we argue that there is a critical need to explore
a comprehensive method for sensor vulnerability detection.

B. Fuzzing

Fuzzing, also known as fuzz testing, has been proven
effective in detecting vulnerabilities in numerous applications,
especially in software testing. A fuzzing process typically in-
cludes case generation and execution monitoring [12]. During
case generation, a generator, which can be a set of pre-defined
grammars [16], [17], a data-based neural network [18], or
a feedback-guided mutation unit [19], [20], will iteratively
generate a number of test cases as input. Execution monitoring
tracks the program’s runtime information with each input,
reports the discovered bugs, and provides feedback to the
generator. Traditional software fuzzing typically adopts the
coverage of code or logical paths triggered under the test
as feedback. Based on accessible knowledge of the target
object, fuzzing can be classified into three types: black-box,
grey-box, and white-box fuzzing [12]. Black-box fuzzing can
only utilize the input and output of the program, while white-
box fuzzing can obtain all internal states during execution.
Grey-box fuzzing can access partial internal information via a
monitor tool or side channel.

While recent work has extended fuzzing to hardware and
CPS targets as Tab. I shows, including robotic vehicles (RV)

2

TABLE I: Existing fuzzing methods targeted at sensors, hard-
ware, and CPSs

Method Target
Application Know. Target Object Feedback

Mechanism

DeFUZZ [21] Sensor ○ Firmware Path Transition
RVFuzzer [22] RV System ○ Control Algorithm Control Instability
PGFUZZ [23] RV System ○∗ Control Algorithm Safety Policy
DriveFuzz [24] AD System ○ Control Algorithm Driving Quality
SensorFuzz [25] RV System ○ Control Algorithm Resilience Score

Trippel et al. [26] RTL Hardware ○ Hardware Design Edge Coverage
Zhang et al. [27] CPS ○ Control Algorithm Deviation

○: White-box. ○: Black-box.
∗

Previous research [12] regards PGFUZZ as a black-box fuzzing method since the RV’s
source code is optional in its workflow. However, unlike the AD simulator, the RV simulator,
like Gazebo [28], needs to be adapted and fine-tuned according to the source code.

and autonomous driving (AD) systems [23], [25], [27], these
approaches primarily focus on the digital components of the
target, such as firmware, control algorithms, and hardware
designs [23], [25]–[27]. Consequently, existing fuzzing tech-
niques remain confined to the digital domain, leaving the
physical domain unexplored.

The key challenges of fuzzing sensors stem from two
limitations of current methods. 1) The physical signal input to
sensors lacks “grammar” or “semantic” constraints that help
reduce the input space, making existing input analysis tech-
niques such as dependency analysis, code fragment assembly,
or language models [18], [29], [30] inapplicable. 2) The black-
box sensor hardware provides severely limited feedback on the
internal states, making existing fuzzing algorithms that rely
on state machine inference [31], [32], crash signals [33], or
predefined variable deviation [23], [27] inappropriate. These
limitations of existing techniques motivate us to explore a new
fuzzing paradigm in the language of physical signals.

III. PRELIMINARY INVESTIGATION

In this section, we conduct a comprehensive investigation
into two key challenges and derive insights, thereby aiding
in the design of our physical fuzzing framework for sensor
vulnerability detection.

A. Reducing Input Space (Challenge 1)

Unlike conventional software fuzzing, which operates over
discrete input spaces, our physical fuzzing faces a continuous
and diverse parameter space for physical signals. It results in
a practically unbounded range of input signals. Nevertheless,
a large body of existing research on transduction attacks sug-
gests that attack signals should be carefully crafted to exploit
sensor vulnerabilities and influence sensor outputs effectively.
This indicates that we can filter out the vast majority of
irrelevant input signals to reduce the time-consuming physical
interaction process. Therefore, we review and summarize
previous sensor vulnerabilities in Table II. Specifically, we
categorize vulnerabilities based on the modality of the attack
signal (acoustic and ultrasonic, laser, and electromagnetic) and
identify each according to its underlying physical principle.
We classify sensor vulnerabilities into two main types: sig-
nal injection vulnerabilities, which allow attackers to inject
malicious signals, and measurement shaping vulnerabilities,

which impact the sensor outputs. For each vulnerability, we
analyze the corresponding signal requirements. Our analysis
reveals that the analog signals capable of triggering sensor
vulnerabilities are typically neither complex nor composed
of elusive, composite patterns. On the contrary, most vul-
nerabilities are triggered by common, repeatable factors, as
sensor component weaknesses often stem from overlooked
or unavoidable physical principles. This observation aligns
with established research in electromagnetics, which shows
that emitting basic waveforms with varying parameters can
effectively identify and analyze electromagnetic interference
in complex systems [38]. Based on the summary in Table II,
we now discuss several key signal requirements:

Frequency. Frequency is one of the most commonly re-
ported signal parameters in existing research. Mechanical
and electrical components in sensors often exhibit inherent
resonant frequencies. For example, a mechanical wave at
the resonant frequency can cause vibration in the MEMS
transducers of microphones [39] or in the inertial units of
motion sensors [4]. Similarly, an electromagnetic wave at the
EM resonant frequency can induce a significant response in
internal wiring [2]. Attackers can exploit these vulnerable
frequencies to inject malicious signals and manipulate sensor
measurements. Moreover, signals within specific frequency
ranges can make transduction attacks more stealthy, for in-
stance, using invisible lasers to interfere with lidars [40].

Amplitude. Due to the signal attenuation, shorter attack
distances and higher signal amplitude can significantly in-
crease the attack success rate (ASR). Besides, a high enough
amplitude is also reported to induce the nonlinear effects
of the sensor amplifier [5]. Besides, in most transduction
attack scenarios, amplitude is a sensitive parameter of concern
because of the constraint of the attacker’s capabilities. Emitting
a high-amplitude signal requires a non-portable device and
carries risks of being detected, compelling attackers to resort
to low-power attacks [41]. Therefore, the amplitude bound can
act as a metric in evaluating the hardness of a transduction
attack, which contributes to security analysis.

Amplitude Modulation. In addition to the fundamental sine
wave, signal modulation is widely used to inject malicious
signals into sensors. In previous research, amplitude modula-
tion is the most frequently used modulation mode, especially
in electromagnetic wave injection [37]. Besides, amplitude-
modulated ultrasonic signals can also exploit the nonlinear
effects of microphones, injecting malicious audio or backdoor
triggers [11], [34].

Moreover, sensor vulnerabilities have an antecedent re-
lationship. Yan et al. [2] categorized them as the signal
injection vulnerability and measurement shaping vulnerability.
Theoretically, the signal injection vulnerability pertains to
how a physical signal can be injected into the sensor circuit,
while the measurement shaping vulnerability refers to how
the injected electrical signal influences the sensor output. For
example, the resonance of the accelerometer introduces a high-
frequency vibration (signal injection), which further causes
signal aliasing in the digital AD converter (measurement

3

TABLE II: The attack signal requirements of previous transduction attacks.

Signal Modality Vulnerability Sensor Attack Point Signal Requirements Response Features

Sound
and

Ultrasonic

Resonance∗ (R.) [4], [5]
Accelerometer

&
Gyroscope

Transducer Resonant Frequency (F) Fluctuating Measurements

Asymmetric Saturation+ (A.S.) [5] Amplifier Resonant Frequency (F)
High Amplitude (A)

Constant Offsets
Harmonics

Aliasing+ (A.) [5] Filter Resonant Frequency (F)
Specific Frequency Point (F)

New Frequency Components
Constant Offsets

Frequency Leakage+ (F.L.)
Microphone

Filter Boundary Frequency (F) Unfiltered Frequency

Nonlinear Effects+ (N.E.) [11], [34] Amplifier Ultrasonic (F)
Amplitude Modulation (M) Controllable Harmonic

Laser Photoelectronic Effects∗ (P.E) [9], [35] Microphone Transducer Wavelength (F)
Amplitude Modulation (M) Signal Injection

Electromagnetic EM coupling∗ (E.C.) [36], [37]
Touchscreen Excitation Circuit Electromagnetic (F) Capacitance Variation

Image Sensor Transmission Wire Electromagnetic(F)
Amplitude Modulation (M)

Changing Pixel Color
Adding Image Noise

Nonlinear Effects+ (N.E.) [10] Microphone Amplifier Electromagnetic (F)
Amplitude Modulation (M) Controllable Harmonic

F: Frequency. A: Amplitude. M: Modulation mode. ∗: Signal Injection Vulnerability. +: Measurement Shaping Vulnerability.

shaping).
Summarizing these findings, we can propose an insight to

reducing the input space by establishing a signal construction
set consisting of prominent signal parameters for case gener-
ation, by which PhyFuzz can use as few cases as possible
to excavate as many flaws as possible.

Insight 1: The physical signals that have the potential to
induce sensor vulnerability tend to exhibit distinct charac-
teristics. These characteristics can be used to construct a set
of signals in order to reduce the input space.

B. Leveraging Output Information (Challenge 2)
A sensor consists of a series of interconnected, fine-grained

components whose structure is integral to its working prin-
ciple; any attempt to disassemble it would affect its output.
This limits us to observing only the final output, making it
a black-box model. Consequently, the black-box hardware of
sensors motivates us to design a fuzzing feedback mechanism
only based on sensor outputs. Two key questions are: 1)
How to increase the coverage of vulnerability detection based
on limited sensor output information? 2) How to increase
the generality of testing among a diversity of sensor output
formats?

First, based on related sensor security studies, we observe
that different physical attacks on the same sensor produce
distinct outputs due to their reliance on distinct physical
principles. For instance, the measurements of accelerometers
fluctuate under their resonant frequency but exhibit constant
offsets under the output control attack [5]. Similarly, Fig. 1
also illustrates that the output of microphones varies under
two distinct transduction attacks. (B) indicates the microphone
leaks the ultrasonic signal and induces aliasing in the digital
AD converter, and (C) indicates that an amplitude-modulated
ultrasonic signal induces the nonlinear vulnerability of the
microphone amplifier. Yan et al. [2] further discussed how
vulnerabilities of different sensor components contribute to
various measurements. This result suggests that the sensor
output diversity can reflect the sensor vulnerability diversity,
enabling comprehensive vulnerability exploration. By analogy
to traditional software fuzzing, we define this concept as the
coverage in the context of sensor vulnerability detection.

0 10 20 30 40 50 60 70 80
ms

0.005
0.000
0.005

(A) Benign Measurement

0 10 20 30 40 50 60 70 80
ms

0.005
0.000
0.005

(B) Sine Wave 23000 Hz

0 10 20 30 40 50 60 70 80
ms

0.005
0.000
0.005

(C) Amplitude Modulation 38900 Hz

Fig. 1: The time-domain waveform of microphones output
under frequency leakage and aliasing (B) and nonlinear effects
(C) vulnerabilities.

However, the continuous and multi-format nature of raw
sensor data still leaves a dilemma for designing available
fuzzing feedback. For instance, mono microphones can output
a fragment of time-series data, while color cameras can
output a high-dimensional stream. To achieve generality, we
adopt feature engineering to transform raw sensor output
into feature-level information. Then, we utilize differential
analysis [42] to normalize and discretize output variations
across sensors.

Insight 2: Sensor output diversity implies sensor vulnerabil-
ity diversity. With proper feature extraction and discretiza-
tion, it can serve as feedback to guide fuzzing.

IV. SYSTEM DESIGN

Based on our insights in Sec.III, we propose PhyFuzz,
which aims to fuzz various sensor vulnerabilities and verify
their security in a black-box scenario. The entire pipeline is
illustrated in Fig. 2 and can be divided into five modules.
Briefly, the initial seed is generated with the Signal Construc-
tion Set, which contains the essential parameters for each test

4

Fuzzing Algorithm

 Signal Construction Set

Test Case

Frequency Amplitude

Phase Modulation

Feature DiscretizationPhysical Interaction

Signal
Construction Sensor Under Test

Extractor Discrete
Vector

Fitness Calculation

DeviationCoverage
Seed

Queue
Input

Queue
 Mutation

Attack Response

Differential Analysis

Benign Triplets

float. int.

Retain case that achieves new coverage

Fuzzing
Report

Initialize

<-,-,->
<-,-,->

……

❶

❷

❸ ❹

❺

❻

Bug Indicator
Judge Analyze

Record Template

feedback

+

Fig. 2: The overview of PhyFuzz. ❶: Initialize the seed randomly with the signal construction set and append it to the queue.
❷: Pick out the best seed in the queue and mutate it several times. ❸: Emit the case signal to attack the SUT. ❹: Extract the
response of SUT as features and convert them into a discrete vector with differential analysis. ❺: calculate the fitness with
the coverage and deviation information. ❻: retain or eliminate a case according to the coverage changes and fruitless mutation
times.

case. In each iteration, a seed is selected, mutated to create
several cases by Fuzzing Algorithm, and transmitted to the
sensor under test (SUT) through Physical Interaction. The
response of SUT will be processed by Feature Discretization
and then fed back to Fuzzing Algorithm for fitness calculation
and case retention. After fuzzing, Bug Indicator will judge the
potential sensor vulnerabilities from the result and provide a
semi-automatic analysis.

A. Signal Construction Set
Sec. III-A presents an insight that identifying prominent

signal parameters aids in reducing the input space. In this
section, we define a signal construction set to reduce the
input space of the physical domain, represented as a four-tuple
{A,F, P,M}. Each element in the tuple represents amplitude,
frequency, initial phase, and modulation mode, respectively.
Previous investigations have highlighted the importance of
frequency, amplitude, and amplitude modulation.

The frequency domain is the most critical search space
due to its impact being agnostic for different sensors. In
comparison, the impact of amplitude is of direct physical
significance. Low amplitude tends to have a linear effect on
sensor measurements, whereas high amplitude is more likely
to induce nonlinear responses. Therefore, we use a sigmoid
function to distribute the amplitudes more towards the ends of
the range, as shown in Equ. 1:

A′ = g(x) = Amin + (Amax −Amin) ·
1

1 + e−k(x−c)
(1)

where Amin and Amax is the lower and upper bounds of the
amplitude. k and c are the hyperparameters of the sigmoid
function, representing the steepness and midpoint of the curve,
respectively.

In addition, to construct a wider variety of physical signals
and cover more potential sensor vulnerabilities, PhyFuzz also

introduces additional parameters, including more modulation
modes and variable phases.

Modulation Mode. In addition to amplitude modulation, we
incorporate phase and frequency modulation in our algorithm
to enhance our construction set. While the essence of all mod-
ulation modes is to transfer information with carrier signals,
different modulation modes result in variations in signal shape
and the derivative frequency components that are valuable to
study.

Phase. As one of the three primary parameters of signals,
phase describes the signal offset at the beginning point. Al-
though previous work has not found that the initial phase can
directly induce sensor vulnerability, dynamically modifying
the phase of existing attack signals can help to manipulate
sensor measurements. Therefore, in PhyFuzz, the phase will
be activated by our mutator when a case is proven to be able
to impact the sensor measurements.

Each test case s(t) can be constructed according to Equ. 2.
The base signal m(t) is typically a standard sine wave with a
fixed low frequency. Modulation parameters, kp and kf , serve
as hyperparameters.

s(t) =


sine : A′sin(2πFt+ P)
AM : A′(m(t) + 1)sin(2πFt+ P)
PM : A′sin(2πFt+ kpm(t) + P)

FM : A′sin(2πFt+ kf
∫ t

0
m(τ)dτ + P)

(2)

B. Physical Interaction

Compared with traditional software-level fuzzing,
PhyFuzz features a unique and crucial module, physical
interaction. The test case generated in the digital domain is
transmitted into the physical world by the signal transmitter
and then delivered to the SUT. PhyFuzz collects the SUT’s

5

digital response (raw measurements) and feeds it to the next
computing unit, completing the cross-domain process.

Signal Transmitter. A complete signal transmitter typically
consists of a signal generator, an amplifier, and a transducer.
For different signal modalities, the transducer varies; for
example, ultrasonic signals use ultrasonic probes, and electro-
magnetic signals use antennas. In consideration of lightweight
testing demands, PhyFuzz simplifies the signal transmitter
with existing integrated equipment, which will be further
introduced in our implementation.

Sensor Under Test. The goal of PhyFuzz is to find vulner-
abilities of SUT in a physical environment without requiring
expert knowledge. Although the SUTs are completely black-
box for us, PhyFuzz can still be compatible with various
SUTs due to their commonality in converting the physical
sensing into the digital output. Therefore, PhyFuzz only
requires collecting SUT measurements with an adapter board
and the corresponding driver program rather than developing
SUT-specific tracing instrumentation [26].

C. Feature Discretization

The insight proposed in Sec. III-B demonstrates that we
can design a novel coverage metric to guide PhyFuzz for
sensor vulnerability detection. In this section, we propose a
feature discretization algorithm to effectively leverage the out-
put information of SUTs and formulate the fuzzing feedback
mechanism.

Specifically, our algorithm consists of two steps: feature
extraction and differential analysis. We first transform the
raw sensor data into feature-level representations by feature
engineering. Then, differential analysis discretizes the contin-
uous feature space by comparing test data and benign data,
generating a discrete vector for each test case. By aggregating
these discrete vectors into a set, we can construct a coverage
metric. Notably, our notion of ”coverage” differs from con-
ventional metrics. In black-box sensor fuzzing, where internal
states are unobservable, conventional state coverage can not be
used. Instead, our ”coverage” is derived from output variations,
reflecting the diversity of vulnerabilities. Both approaches aim
to guide exploration and avoid low-value trails.

The detailed algorithm is illustrated in Alg. 1. Initially, we
extract a group of statistical features from a long period of
benign measurements. For each feature, we take the maximum
and minimum values and calculate the interval. This process
builds a triplet Tij = {Min,Max, Interval} for each feature
as the baseline. The feature categories we used are predefined
by a feature template (detailed in Sec. IV-E).

For different categories of sensors, the feature triplet
achieves sensor-agnosticity. Even for sensors with unique and
complicated output formats, e.g., cameras, we can leverage
the edge computing capability of data collector devices to
reduce the output dimension by pre-extracting several features
for acceleration.

In each test, we extract corresponding features from the
measurement, compare them with the baseline triplet, and
obtain the discrete vector. This vector not only indicates the

Algorithm 1 Feature discretization Algorithm

Require: A long period of benign measurements Mb, mea-
surements in each test mt, data dimension D, extracted
feature category F

Ensure: The discrete vector of the test result V
1: for i = 0 to D do
2: Split Mb according to mt and get Arrayb
3: // Extract the statistical features of benign data as

triplets
4: for feaj in F do
5: fB

ij = Feature Extract(feaj , Arrayb[i]);
6: Tij = {min(fB

ij),max(fB
ij),max(fB

ij)−min(fB
ij)};

7: end for
8: // Extract the statistical features of a piece of test data
9: for feaj in F do

10: tfij = Feature Extract(feaj ,mt[i]);
11: // Compare two features and assign discrete value
12: if f t

ij > Tij [0]&f t
ij < Tij [1] then

13: vij = 0;
14: else if f t

ij > Tij [1] then
15: vij = floor((Tij [1]− f t

ij)/Tij [2]);
16: else
17: vij = −floor((Tij [0]− f t

ij)/Tij [2]);
18: end if
19: end for
20: end for
21: Concat all vij together and get V .

Seed
< �, �, �, �, ����,�,� >

Deterministic Stage

Normalize �, �, �

Operator Matrix
�: iterate modulation mode

�, �, �: inverse, change order of magnitude

Havoc Stage

Operator Sets
����ℎ����� ��� �� ���,

������ �����, ����������� �����

Apply to �, �, � according to ����,�,�

Seed Queue

Several Cases
< ��

′, ��
′, ��

′, ��
′, ����,�,� >

Parameter Schedule

Good Cases
For each parameter �
����

′ reset if ��
′ ≠ �

Bad Cases
For each parameter �
����

′ ×= � if ��
′ ≠ �

Construction & Execution

Retained Cases

 All Good Cases

Original Seed
< �, �, �, �, ���′�,�,� >
if find new good cases
or its Operator Matrix

has not been
exhausted

Splicing Stage

Cross over

if all are bad cases
and this epoch
has not entered
Splicing Stage

Yes

No

Add

Select

Fitness Calculation

if its operator matrix has
not been exhausted

Yes

No

Fig. 3: The thorough pipeline of fuzzing algorithm.

potential sensor malfunction but also provides coverage in-
formation, guiding PhyFuzz towards exploring more diverse
sensor vulnerabilities.

D. Fuzzing Algorithm

In this section, we present a comprehensive overview of our
entire fuzzing algorithm. Unlike traditional software fuzzing,
physical fuzzing has unique features, encouraging us to im-

6

prove some techniques of case generation, fitness calculation,
and case retention.

Case Generation. The first test case of PhyFuzz is
randomly generated with the signal construction set (❶) and
put into the seed queue. In each iteration, as shown in Fig. 3,
a seed will be selected from the seed queue and mutated
according to our mutation schedule, which adopts the three-
stage mutation strategy (deterministic, havoc, and splicing
stage) proposed in AFL [20]. Compared to traditional software
fuzzing, PhyFuzz has improved in mainly two aspects:
mutation operator and parameter schedule.

1) Mutation Operator determines the basic unit of seed
mutation. The traditional fuzzing framework uses byte-level
mutation operators, such as bitflip, delete, or insert byte.
However, our seed consists of a group of parameters with
real physical meanings rather than binary files, motivating
PhyFuzz to improve the design mutation operator for dif-
ferent parameters. Specifically, among all four parameters, the
modulation mode is discrete and finite, while the other hard-
to-exhaust parameters have bound constraints. Hence, in the
deterministic stage, we will maintain an operator matrix for
each seed to exhaust all modulation modes while adjusting
other parameters with the fixed arithmetic operation. In the
havoc stage, we randomly choose arithmetic, random, and
interest value as our mutation operators to generate several
test cases. If no coverage improvement occurs after physical
interaction testing in a havoc turn, the crossover operator will
be employed to recombine parameters of those mutated cases
in the splicing stage, and then re-enter the havoc stage again.

2) Parameter Schedule is designed to determine the impor-
tance of each signal element. This technique is derived from
the byte schedule in a traditional fuzzing framework, with
which the fuzzer can assign a higher mutation frequency to the
more important bytes. Inspired by Ant Colony Optimization
(ACO) [43], PhyFuzz uses mutation probability pro in the
havoc stage to measure the importance of each parameter of
the test case. Whenever a new case is generated, pro will be
assigned with initial values and dynamically adjusted during
its lifetime. Specifically, the initial values of F,A, P are as-
signed according to prior knowledge mentioned in Sec. IV-A.
Whenever a seed is fed into the fuzzing loop if its generated
case achieves a new coverage (noted as a good case), the
probabilities of changed parameters proK ,K ∈ {F,A, P} will
be reset to the initial value. Conversely, if the coverage does
not increase (i.e., a bad case), the proK will be decreased by
multiplying δ ∈ (0, 1). Detailed hyper-parameter settings are
illustrated in Tab. V.

Fitness Calculation. During fuzzing, each test case will
be constructed and emitted to the SUT (❸) and obtain a
discrete vector, as we mentioned in Sec. IV-C. From the vector,
PhyFuzz will compute a fitness value to measure the case’s
significance. Before each fuzzing epoch, PhyFuzz will select
the seed with the highest fitness from the seed queue for
mutation. As shown in Alg. 2 (❺), fitness is calculated by the
discrete vector V and the global coverage array C. Briefly,
the fitness function consists of two items, as shown in line 15

in Alg. 2. The first term quantifies how markedly the sensor

Algorithm 2 Fitness Calculation Algorithm

Require: The discrete vector of test signal V , the global
coverage array C, hyper parameters α and β

Ensure: The Fitness of the test signal Fitness; Whether
achieving new coverage new coverage

1: deviation = |V |;
2: min distance = ∞
3: new coverage = False
4: for cov in C do
5: if cov is equal to V then
6: min distance = 0;
7: Break the loop;
8: end if
9: distance = |V − cov|;

10: min distance = min(min distance, distance);
11: end for
12: if min distance! = 0 then
13: new coverage = True
14: end if
15: Fitness = α · deviation+ β ·min distance;
16: Add V into C.

response differs from the normal response, indicating potential
vulnerabilities. The second term represents the minimum dis-
tance to all previously observed vectors in C, which contains
all discrete vectors of previous tests.

Case Retention. In terms of the case retention strategy, all
newly generated cases that achieve new coverage, i.e., good
cases, will be retained in the seed queue(❻). In addition, if the
original seed generates any good cases or its operator matrix
has not been exhausted, it will also be retained.

E. Bug Indicator

In parallel to the fuzzing loop, PhyFuzz can record and
process the bug cases by the bug indicator. It works in two
steps: 1) determining whether a case induces the malfunction
of the SUT, and 2) automatically conducting preliminary
analysis on the bug case in order for humans to understand it
better.

Judging Bugs. When the deviation in Alg. 2 exceeds the
pre-defined deviation threshold, the bug indicator automati-
cally logs this case. The deviation is computed as a relative
measure of the sensor readings, representing a multiple (e.g.,
three times) of the sensor’s baseline noise range to ensure
applicability across various sensor types. In our evaluation, the
threshold is empirically set at 2, which provides a good balance
between effective anomaly detection and strong resistance
to noise. For a few sensors with low precision or without
measurable noise, the threshold is set as a small percentage
of the full sensor output range. In practice, the threshold
could be tuned according to the detection strategy—higher
thresholds reduce false positives, whereas lower ones reduce
false negatives. Upon completion of the entire fuzzing process,
PhyFuzz will conduct replicate experiments on recorded

7

bugs to confirm these bugs for each SUT and exclude ambient
noise interference.

Unlike traditional software fuzzing, physical sensor vulnera-
bilities cannot be located via error code fragments. Prior CPS
fuzzing approaches only identified bugs according to sensor
readings above or below the upper or lower boundary [27].
While recording which analog signal can induce sensor vul-
nerability suffices for typical users, we still hope PhyFuzz
can help sensor developers and the security community in in-
depth bug analysis.

Analyzing Bugs. The bug analysis hinges on systematic
classification and characterization to yield concise and inter-
pretable results. In Sec. III, we proposed to categorize the
different types of sensor vulnerabilities via the variation of
output features.

An intuitive idea is to employ machine learning to cluster
or classify the bug list. However, due to the discrete and
concealed nature of vulnerability triggers, there is a lack
of sufficient and balanced data samples, hindering conven-
tional ML algorithms’ effectiveness. Consequently, we turned
to empirical knowledge of sensor vulnerabilities. While the
expert knowledge only encompasses previously discovered
vulnerabilities and lacks foresight, it effectively filters well-
documented cases, allowing analysts to concentrate on dis-
covering and investigating novel vulnerability patterns.

As mentioned before, the signal injection vulnerabilities
can be identified by the modality of the signal stimula-
tion. As for the measurement shaping vulnerabilities, we
find they possess similar feature variations under different
signal stimulations, as they stem from the shaping of injected
electrical signals. Therefore, we can create predefined feature
templates of measurement shaping vulnerabilities to identify
and categorize well-studied vulnerabilities, thus reducing the
burden of manual review. For instance, most bug records
of an accelerometer are caused by resonance and aliasing.
Except for a few resonance frequency points, the response
exhibits a significant change in standard deviation and almost
no change in the average. Based on these observations, we
propose a feature-matching algorithm to automatically analyze
the human-readable but time-consuming record. Note that the
use of heuristic templates does not contradict our claim of
being expert-knowledge-independent, as relevant knowledge is
embedded in the framework design rather than required from
end-users during testing.

We present example templates for several well-studied
measurement shaping sensor vulnerabilities in Tab. III, in
which the feature categories will be used in Sec. IV-C.
In this template, we select five time-domain features and
five frequency-domain features to distinguish several well-
studied sensor vulnerabilities in Tab. II. Specifically, aliasing
may result in fluctuation or output bias (noted as A.1 and
A.2), inducing the distinguish variation of Std. and Avg. [5].
Asymmetric saturation is caused by the intense signal injection
and the asymmetric clipping of the amplifier, resulting in a
constant shift and probably a slight fluctuation (corresponding
to Avg. and Std.). Frequency-domain features can be used

TABLE III: The templates of several well-studied measure-
ment shaping sensor vulnerabilities.

Vul. Feature Template
Max. Min. Avg. Std. RMS E.D. F.E. F.C. E.Z E.B

A.1 0 0 0 1 0 1 1 0 -1 0
A.2 1 1 1 -1 1 1 1 0 1 -1
A.S. 0 0 1 0 0 1 0 0 1 0
N.E. 0 0 0 1 0 1 0 1 -1 1
F.L. 1 1 0 1 1 1 1 1 0 -1

E.D.: Euclidean Distance. F.E: Frequency Entropy. F.C.: Frequency Center.
E.Z.: Energy at Zero. E.B.: Energy at Baseband.

to differentiate similar vulnerabilities. Nonlinear effects will
introduce the baseband signal, inducing the energy increase
at baseband frequency (E.B.). Constant shift can also be
captured by an increase in energy at zero frequency (E.Z.).
Other features also enrich the representation capability of the
template. To leverage these feature variations, we formulate
a vector consisting of 0, 1, and -1 to depict the anticipated
affected features of each vulnerability. Features marked as 1
indicate the primary characteristics of the vulnerabilities, while
such vulnerabilities should not impact those marked as -1.
Some less prominent affected features are denoted as 0.

Note that these templates can only assist users in dealing
with a large number of bug records. In some complex cases
(e.g., when plural vulnerabilities are triggered simultaneously),
manual analysis combined with injected signal parameters
is still necessary, although our evaluation has shown that
the small amount of overlap does not affect the ability of
our method to find these vulnerabilities. In addition, it is
important to clarify that measurement shaping is not always
an absolute prerequisite. Certain injection methods, like laser
signals, can be directly injected into microphones without
specific measurement shaping.

The detailed pseudocode of these two steps is presented
in Alg. 3. Finally, by following these two steps, we can
confirm the bug record and promptly eliminate well-studied
records. The remaining records will constitute a valuable
repository of vulnerabilities that are more likely to represent
new security threats, warranting further analysis by sensor
security professionals.

V. EVALUATION

A. Implementation

To systematically conduct PhyFuzz, we have developed
and implemented a prototype comprising several signal trans-
mitters, a sensor data collector, and an upper computer.

Signal Transmitter. Based on our comprehensive review
of prior transduction attacks, we have selected three classical
signal modalities for attacks: acoustic (sound and ultrasonic),
laser, and electromagnetic. As shown in Fig. 4, we equip a
JBL speaker for audible sound generation, a ViFa speaker for
ultrasonic emission, a laser probe for laser stimulation, and
a portable USRP B210 to generate electromagnetic waves.
All these devices are commonly used in relevant research. In
our implementation, the distance between the transmitters and
the bare SUT is 10 cm, eliminating the need for additional
amplifiers. This setting reflects practical attack constraints,

8

TABLE IV: The overview fuzzing result of PhyFuzz under 13 sensors of 9 different types.

Application Sensor Type Model Manuf. Output S.R.
(Hz)

Signal Injection Vulnerability Measurements Shaping Vulnerability
R. P.E. E.C. A. A.S. F.L. N.E. N.C.

RV System
Accelerometer ADXL345 ADI I2C/SPI 200 Ð Û Ð Û Ð Û

LIS2DW12 STM I2C/SPI 200 Ð Û Ð Û Ð Û

Gyroscope MPU6050 INVN I2C 100 Ð Ð Ð
L3G4200D STM I2C/SPI 100 Ð Ð Ð

Voice System Microphone∗ SPH0645 Knowles I2S 48k ☼ Ð Ð Ð
INMP441 INVN I2S 48k ☼ Û Ð Û Û Ð Ð

Vision System

Color sensor+ TCS3472 TAOS I2C 200 Û Û
Light sensor+ BH1750 ROHM I2C 8 Û Û Û

CMOS Camera+ IMX219 Sony CSI 30
CCD Camera+ 1200TVL Sony USB 25 Û Û

Environmental
Monitoring

Pressure sensor BMP180 Bosch I2C 100 ☼ Û Û Û
BMP280 Bosch I2C/SPI 10 ☼ Û Û Û

H&T sensor SHT30 Sensirion I2C 20 Û Û Û

Ð: Sound and Ultrasonic Signal. ☼: Laser Signal. Û: Electromagnetic Signal.
∗: No audible sound test for microphones. +: No laser test for optical sensors. N.C.: No Conclusion.

Algorithm 3 Bug Indicator Algorithm

Require: The raw bug record of PhyFuzz Rr, the bug
threshold bt, the heuristic feature template F, the param-
eter of the repeat test m and n (m > n), the matching
threshold mt.

Ensure: The confirmed bug record Rc, The confirmed bug
record excluded the well-studied vulnerabilities Re.

1: // Repeat tests for m times to confirm the bugs
2: for case in Rr) do
3: hit count = 0
4: for i in range (m) do
5: deviation = Repeat Test(case)
6: if deviation > bt then
7: hit count+ = 1
8: end if
9: end for

10: if hit count > n then
11: Add case into Rc

12: end if
13: end for
14: // Exclude cases of well-studied vulnerabilities
15: for case in Rc do
16: for template in F do
17: Vori = case.V
18: Vmask = Vori.copy(); Vmask[template == −1] = 0
19: key arr = Vmask[template == 1]

20: if |Vmask−Vori|
|Vori| < mt and np.all(key arr ̸= 0) then

21: continue
22: end if
23: end for
24: Add case into Re

25: end for

as vulnerabilities requiring stronger signals at this distance
would be unrealistic for real-world exploitation. If the user
deems it necessary to add a power amplifier, it will not affect
the working framework of PhyFuzz. Additionally, since the
wavelength of the laser probe is fixed, the fuzzing variables of
the laser test are simplified. Only DC signals and AM signals

Fig. 4: The picture of our evaluation implementation. Left: the
hardware devices (excluding some wires). Right: our adaptor
board.

are validated, replacing the original modulation mode.
Other Components. For the sensor data collector, we

employ a Raspberry Pi with a customizable adapter board,
enabling compatibility with diverse SUT categories. A host PC
will execute the fuzzing algorithm and coordinate the workings
of other components.

Configurable Parameter. Our fuzzing framework includes
several major hyperparameters, with default values docu-
mented in Tab. V as follows. The test duration is conservatively
set to 3 seconds to ensure compatibility with low-sample-
rate sensors while maintaining testing efficiency. Additional
parameters, including the probabilities of mutation operators
and modulation parameters, can be referred to in our code. The
default settings for PhyFuzz’s key parameters establish the
boundaries of our search space and the practical constraints of
our implementation.

B. Fuzzing Result

1) Overall Performance: To verify the performance of
PhyFuzz, we conduct a series of evaluations with 13 different
sensors of 9 categories representative of prevalent intelligent
applications. With our bug indicator algorithm, we pre-process

9

TABLE V: The default value of major configurable parame-
ters.

Process Parameter Value

Case Generation

Frequency range (sound) 20-20k Hz
Frequency range (ultrasonic) 20k-48k Hz

Frequency range (EM) 70M-6000M Hz
Frequency range (laser) 20-20k Hz

Attack duration 3 s
Population of each iteration 8

Mutation time 1-4
Initial probability(F,A, P) [0.8, 0.5, 0]

Amplitude gain range 0.3-1.0
Precision (sound, ultrasonic) 0.1 Hz

Precision (EM) 0.01 Mhz
Precision (laser) 0.1 Hz

Fitness Calculation Deviation factor (α) 0.2
Coverage factor (β) 0.8

Bug Indicator Threshold of Deviation 2

the fuzzing records, reaffirm, and identify 46 vulnerabilities,
as shown in Tab. IV.

Under the default settings and implementation outlined in
Table V and Section V-A, PhyFuzz requires approximately
6-7 hours for 400 iterations in sound and ultrasonic tests, 2
hours for 200 iterations in laser tests, and 12-14 hours for
640 iterations in electromagnetic tests. Sensors with complex
outputs, such as cameras, require more time for each iteration.
Subsequent replicate experiments will also take additional
time, depending on the number of bug records. Additionally,
for low-sample-rate sensors, we dynamically extend attack
durations to ensure data validity during vulnerability confir-
mation. We repeatedly conducted three fuzzing trials, where
the initial seed inputs were randomly generated for each trial.

Tab. IV summarizes the vulnerabilities of 13 sensors that
PhyFuzz found. Our results reveal that mechanical motion
sensors show particular susceptibility to acoustic signals, while
the electromagnetic signal demonstrates broad effectiveness
across most sensor types. Specifically, PhyFuzz successfully
reproduced known vulnerabilities in well-studied sensors, such
as the ADXL345 and MPU6050, validating against prior
research findings [5], [44]. Additionally, for other sensors that
have not yet received attention, e.g., color and light sensors,
PhyFuzz effectively demonstrated its adaptability by identi-
fying five novel vulnerability classes from them. In particular,
we identified a specific vulnerability in a 1200TVL camera but
could not draw precise conclusions. Although similar vulner-
abilities have been reported in CCD cameras [45], we cannot
assert that they share the same underlying mechanism with
CMOS cameras. Further discussion and analysis of these six
vulnerabilities are provided in the Case Study and Appendix B.

We have reported all these vulnerabilities to the correspond-
ing manufacturers via email. All have responded, and three en-
gaged in further discussions for additional details. We present
their responses in Appendix A. These results collectively
demonstrate PhyFuzz’s effectiveness in both reproducing
known vulnerabilities and discovering novel ones. Complete
fuzzing results are available in the supplementary materials.
We will show some specific attack effects in subsequent case

studies.
2) Compared with Sweep Test: Given that PhyFuzz is

the first fuzzing framework specifically designed for sensor
vulnerability identification, direct comparison with existing
fuzzing approaches is not feasible. Therefore, we benchmark
our framework against traditional sweep testing, which is
widely adopted in sensor security research. Unlike the in-
telligent fuzzing strategy of PhyFuzz, sweep testing uses a
series of signals with uniformly varying frequencies to identify
the vulnerable points of the SUT. To align with PhyFuzz,
we follow the common setup: 1) The default waveform is
a sine wave with maximum amplitude and an initial phase
of 0. 2) Crucial parameters, including frequency range and
attack duration, maintain consistency with PhyFuzz. 3) The
frequency step, which directly controls the searching precision,
is adjusted to match the testing time of PhyFuzz, ensuring
a fair comparison of the efficiency. Through detailed experi-
ments, we compare the performance of PhyFuzz and sweep
testing, verifying the superior performance of PhyFuzz in
both comprehensiveness and efficiency.

First, the pictures at the top of Fig. 5 show the vulnerability
discovery result of PhyFuzz and the sweep testing across
four representative sensors involving sound, ultrasound, and
EM signals. For sweep testing, we use lines to represent the
normalized deviation across frequency spectra and highlight
the distinct vulnerable frequency bands identified by sweep
testing with color blocks. As for our fuzzing approach, we
provided no prior knowledge to qualify the signal parameters
and demonstrated the bug records with scatters. Notably,
conventional sweep testing uses sine signals with variable
frequency and fixes other parameters. In the experiment of
INMP441, extended AM sweep testing is conducted due to
the well-known nonlinear effects of microphones [11] (split
by the grey dashed line). These figures reveal that PhyFuzz
is capable of covering all the vulnerabilities identified by
sweep testing under all settings. Moreover, in some cases,
e.g., L3G4200D and BMP280, PhyFuzz can discover other
vulnerable frequency ranges induced by modulation signals.
These results validate PhyFuzz’s dual capability in both
reproducing known vulnerabilities and uncovering novel attack
surfaces through its intelligent fuzzing strategy.

Second, we thoroughly compare the efficiency of PhyFuzz
and the sweep test and represent it at the bottom of Fig. 5 and
Tab. VI. Due to the exhaustive frequency-space exploration
of the sweep testing, its time cost is inevitably high. As
mentioned earlier, we equalize the comparison by reducing the
search precision to match PhyFuzz’s time budget. To fairly
quantify performance, we propose three metrics: 1) Efficiency,
the number of bugs found per unit test time; 2) TFB, the time
to discover the first bug; and 3) TDMVT, the time to discover
the most vulnerability types. Specifically, we introduce TFB
because early feedback on discovered bugs can improve the
user experience and help address vulnerabilities without stag-
nation periods. Besides, TDMVT meets the requirement of
finding diverse vulnerability types, whereas Efficiency cannot
represent it.

10

20k 25k 30k 35k 40k 45k 48k
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Fu
zz

in
g

D
ev

. (
no

rm
)

sine fuzzing AM fuzzing sine vulnerable band AM vulnerable band sine sweep test AM sweep test

0.0

0.2

0.4

0.6

0.8

1.0

Sw
ee

p
D

ev
. (

no
rm

)

20k 25k 30k 35k 40k 45k 48k
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Fu
zz

in
g

D
ev

. (
no

rm
)

0.0

0.2

0.4

0.6

0.8

1.0

Sw
ee

p
D

ev
. (

no
rm

)

(a) INMP441 Ð(20 kHz-48 kHz)

...500 1k 2k 4k 8k ...
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Fu
zz

in
g

D
ev

. (
no

rm
)

0.0

0.2

0.4

0.6

0.8

1.0

Sw
ee

p
D

ev
. (

no
rm

)

(b) ADXL345 Ð(20 Hz-20 kHz)

... 2k 4k 8k 16k 24k ...
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Fu
zz

in
g

D
ev

. (
no

rm
)

0.0

0.2

0.4

0.6

0.8

1.0

Sw
ee

p
D

ev
. (

no
rm

)

(c) L3G4200D Ð(20 Hz-48 kHz)

... 100 250 500 1200 3000 ...
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Fu
zz

in
g

D
ev

. (
no

rm
)

0.0

0.2

0.4

0.6

0.8

1.0

Sw
ee

p
D

ev
. (

no
rm

)

(d) BMP180 Û(70 Mhz-5 GHz)

0 1000 2000 3000 4000 5000
Record Times

0

20

40

60

80

100

120

140

Bu
g

Re
co

rd
s

Bug Num. (Ours) Bug Num. (ST) Vulnerability Type (Ours) Vulnerability Type (ST)

0

1

2

Vu
ln

er
ab

ilit
y

Ty
pe

s

0 1000 2000 3000 4000 5000
Record Times

0

250

500

750

1000

1250

Bu
g

Re
co

rd

0

1

2

3
Vu

ln
er

ab
ili

ty
 T

yp
e

(e) INMP441Ð(20 kHz-48 kHz)

0 1000 2000 3000 4000 5000 6000
Record Times

0
100
200
300
400
500
600

0

1

2

(f) ADXL345Ð(20 Hz-20 kHz)

0 1000 2000 3000 4000
Record Times

0

50

100

150

Bu
g

Re
co

rd

0

1

2

Vu
ln

er
ab

ili
ty

 T
yp

e

(g) L3G4200DÐ(20 Hz-48 kHz)

0 1000 2000 3000 4000 5000 6000
Record Times

0

200

400

600

Bu
g

Re
co

rd

0

1

2

Vu
ln

er
ab

ili
ty

 T
yp

e

(h) BMP180Û(70 Mhz-5 GHz)

Fig. 5: Comparison between PhyFuzz and sweep testing. (a)-(d) represent the frequency distribution and the deviation degree
of bug cases. (e)-(f) represent the efficiency of finding bugs and vulnerability types.

TABLE VI: Detailed metric comparison between PhyFuzz and sweep testing.

Sensor Precision Algorithm Test Time Bug Number Efficiency TFB TDMVT

INMP441
Ð(20 kHz-48 kHz)

10 Hz Sweep Test 5600 935 0.1670 1 2802
0.1 Hz PhyFuzz 5784 1249 0.2159 1 37

ADXL345
Ð(20 Hz-20 kHz)

3 Hz Sweep Test 6660 447 0.0671 388 2098
0.1 Hz PhyFuzz 6156 452 0.0734 63 100

L3G4200D
Ð(20 Hz-48 kHz)

10 Hz Sweep Test 4798 75 0.0156 400 800
0.1 Hz PhyFuzz 5747 144 0.0251 121 300

BMP180
Û(70 MHz-5 GHz)

1 MHz Sweep Test 4930 85 0.0172 1625 1700
10 kHz PhyFuzz 5999 645 0.1075 45 172

Our experiment results illustrate that PhyFuzz consistently
outperforms sweep testing across all evaluation metrics. We
can conclude that PhyFuzz not only detects a higher quantity
of bug cases but also identifies the most bug types faster.

Specifically, in terms of Efficiency, PhyFuzz presents
comparable performance over sweep testing. Notably, while
sweep testing occasionally benefits from starting frequencies
within vulnerable ranges (e.g., INMP441), PhyFuzz still
shows a superior long-term efficiency. When dealing with large
search spaces (e.g., electromagnetic experiment on BMP180),
PhyFuzz achieves a 6.25× speedup in Efficiency. Further-
more, PhyFuzz excels in TFB, delivering valid responses
up to 12× faster than sweep testing. The TDMVT metric
also confirms the most striking advantage of PhyFuzz: it
maintains an average 27× higher speed in discovering most
vulnerability types, while sweep testing often stagnates by
repeatedly identifying similar vulnerabilities.

Another distinguishing superiority of PhyFuzz lies in its
ability to efficiently discover more vulnerability types. In
contrast, traditional sweep testing often stagnates by repeatedly
identifying similar vulnerabilities through minor parameter
adjustments.

Our experiments yield two critical findings that demonstrate
PhyFuzz’s superiority:

1. Time Efficiency Advantage. In our comparison experi-
ments, PhyFuzz operates with significantly finer step sizes
(indicating a more comprehensive search space). Still, it out-
performs sweep testing within equivalent time budgets in terms
of the number of bug records and the variety of vulnerability
types.

2. Expert Knowledge Independence. The fundamental limi-
tation of sweep testing lies in its frequency exploration. Thus,
it requires expert knowledge to manually preset other signal
parameters (e.g., the experiment with INMP441). However,
this may be manageable for an experienced researcher or a sen-
sor developer, it presents challenges for the B2B consumers,
who are also responsible for validating the security of third-
party sensors and ensuring the overall security of the CPS
product. In contrast, PhyFuzz can cover more signal param-
eters by automatically generating test cases without requiring
prior knowledge while maintaining testing effectiveness.

3) Effectiveness of Bug Indicator: As shown in Alg. 3,
PhyFuzz has the capability to match bug records with known
measurement shaping vulnerabilities automatically. Our algo-

11

rithm will first filter partial cases based on the deviation and
the pre-defined threshold. Then, we utilize feature templates
to classify the remaining cases automatically.

To ensure the vulnerabilities are reproducible and ex-
ploitable, we additionally manually re-tested and verified that
all vulnerabilities could be exploited to spoof the sensor’s
output, some of which are demonstrated in the Case Study
and Appendix B. Moreover, we analyzed the measurements
and quantified the attack impact on each sensor vulnerability
to illustrate the susceptibility of SUTs.

Tab. VII presents the result of our bug indicator. During
impact quantification, we identify the case with the most
significant deviation for each vulnerability and define the
ratio of its absolute offset and sensor range as the attack
impact. Unlike the sensor-agnostic feature-level deviation used
during fuzzing, the absolute offset of the time-domain signal
straightforwardly represents the physical significance of vul-
nerabilities, especially for sensors of the same type.

From the results, we can observe that our template can
achieve high matching rates across all test cases, effectively
identifying well-studied vulnerabilities and filtering relevant
records. Notably, the impact of mismatched cases is typically
less prominent, with manual analysis showing that most of
them can be categorized as other vulnerabilities. These mis-
matches primarily occur when the input signal strength is
insufficient to trigger feature deviations above the threshold.
In particular, some bugs of 1200TVL can not be identified by
any template, which we will further discuss in the case study.

In addition, due to the power difference of the signal
transmitter, the impact of acoustic signals is greater than that
of EM signals. In subsequent case studies, we can verify the
correctness of these bug records with an extra amplifier for
EM signals. More importantly, it indicates that PhyFuzz can
detect the subtle variations in sensor readings that are difficult
for the human eye, thereby avoiding power consumption and
bodily harm to testers from high-power attacks.

In summary, our bug indicator can effectively classify
existing vulnerabilities and filter out most cases. It allows us
to provide comprehensive qualitative vulnerability reports for
consumers and alleviate manual efforts for experts through the
functionality of bug Indicators.

C. Case Study

The above experiments demonstrate that PhyFuzz spe-
cializes in identifying the malfunctions of SUTs. However,
when we find some new bugs, PhyFuzz cannot reveal their
incentive and principle. In this section, we manually analyze
some typical and crucial cases to verify whether the bugs
detected by PhyFuzz are correct and valuable.

1) Inertial Sensor: Inertial sensors are used to measure the
orientation, position, and motion of an object in space. In
our evaluation, we select four types of inertial sensors: two
accelerometers (ADXL345, LIS2DW12) and two gyroscopes
(MPU6050, L3G4200D). In particular, MPU6050 can also
act as an accelerometer, providing output with six-axis data.

0 2 4 6 8 10
Time(s)

1.0
1.1
1.2
1.3
1.4

Z-
ax

is(
g) Benign

EM Attack

Fig. 6: The measurement under 1510 MHz electromagnetic
attack from the Z-axis of ADXL345.

These sensors typically share similar vulnerabilities due to
their common principle of inertia.

Sound and Ultrasonic. Acoustic signals pose a significant
threat to inertial sensors as they can induce resonance and
vulnerabilities in the sensing unit. In our evaluation, we
subjected the inertial sensor to experiencing 0 g along the
X and Y axes and 1 g along the Z axis. Then, PhyFuzz
successfully identified several vulnerabilities. Taking the Z
axis as an example, we demonstrate some details in Tab. VIII.

ADXL345 and MPU6050 have been extensively studied in
the cyber-physical system community [5]. Although PhyFuzz
finds the same vulnerabilities as previous research, we ob-
served that their vulnerable frequency ranges are not entirely
identical, suggesting that the manufacturing and product batch
can influence the sensor vulnerabilities. We also notice that
LIS2DW12 does not exhibit asymmetric saturation vulnera-
bilities. The bug record indicates that the measurement de-
viation of LIS2DW12 is not significant enough to exceed
its amplifier’s dynamic range. Notably, L3G4200D is the
only sensor with an analog filter before the AD converter,
which helps mitigate resonance and thus avoids signal aliasing.
However, PhyFuzz still finds that L3G4200D has a very
narrow vulnerable frequency range, which can induce aliasing
and asymmetric saturation.

Electromagnetic. For inertial sensors, PhyFuzz success-
fully identified electromagnetic vulnerabilities in three sensors,
as shown in Tab. IX. The result indicates that PhyFuzz
discovered a similar vulnerable frequency range of ADXL345
and LIS2DW12, even without an amplifier. To demonstrate the
attack performance clearly, we reproduce the EM attack with
a square wave on ADXL345 with a 20 W power amplifier. We
show the result in Fig. 6, demonstrating the Z-axis output of
ADXL345 with a square electromagnetic wave. It is evident
that the measurement exhibits discernible changes in response
to the electromagnetic signals.

In comparison, the output of MPU6050 and L3G42000D
demonstrates greater resistance to electromagnetic interfer-
ence. PhyFuzz does not find significant measurement devia-
tions under our evaluation settings, suggesting it is relatively
resistant to electromagnetic interference.

2) Camera: Camera sensors are more intricate than tra-
ditional sensors due to their multi-dimensional output. To
seamlessly adapt the camera sensor, we extract statistical
features through edge computing of data collectors, similar
to the driven programs of other sensors. In our evaluation,
we selected two sensors, IMX219 and 1200TVL, representing

12

TABLE VII: Template matching and impact identification result for each sensor and sensor vulnerability.

Sensor Range Signal Bug Number Record Num / Impact (%)
A. A.S. N.E. F.L. Miss

ADXL345 ±2g Ð 452 452/27.2 93/27.2 – – 0
Û 150 4/3.2 150/4.8 – – 0

LIS2DW12 ±2g Ð 152 60/4.9 86/4.9 – – 6/0.2
Û 150 4/0.5 150/0.7 – – 0

MPU6050 ±2g Ð 832 557/19.7 802/19.7 – – 3/0.1
L3G4200D ±250 Ð 60 54/2.7 1/1.8 – – 6/1.0
SPH0645 ±1 Ð 1345 440/19.9 – 463/46.7 1182/29.0 5/0.0

INMP441 ±1 Ð 1079 931/30.2 – 893/33.9 296/41.1 11/0.1
Û 518 493/42.2 62/16.5 – – 5/0.0

TCS34725 0∼255 Û 7 7/0.7 – – – 0
BH1750 0∼65536 Û 125 117/0.4 125/0.5 – – 0

1200TVL 0∼255 Û 6 – – – – 6/0.3
BMP180 -40∼85 Û 295 4/0.1 295/1.3 – – 0
BMP280 300∼1100 Û 645 7/0.2 644/0.4 – – 0
SHT30 0∼100 Û 151 150/1.2 151/1.2 – – 0

TABLE VIII: Details fuzzing result of Inertial Sensors under
the sound and ultrasonic test

Sensor Vulnerability Signal Charateristic
Freq. (kHz) Amp.∗ (gain)

ADXL345 R. + A. 0.65-0.9, 2.5-3.5, 5.4-6.8 0.3
R. + A.S. 2.74-2.77 0.9

LIS2DW12 R. + A. 0.5-1.1, 1.9-2.1, 3.7-3.8 0.6

MPU6050+ R. + A. 5.0-5.2 0.5
R. + A.S. 5.15-5.18 1

L3G42000D R. + A. 8.00-8.06 0.8
R. + A.S. 8.04 1

∗
Amplitude indicates the lowest amplitude to induce the vulnerability.

+
Presenting the vulnerability of X axis due to no bug record at Z axis.

TABLE IX: Details fuzzing result of Inertial Sensors under
the electromagnetic test

Sensor Vulnerability Signal Charateristic
Freq. (MHz) Amp.∗ (gain)

ADXL345 E.C.+A.S. 1470-1610 0.4
LIS2DW12 E.C.+A.S. 1480-1600 0.45
MPU6050 N.S.D.+ – –

L3G42000D N.S.D.+ – –
∗

Amplitude indicates the lowest amplitude to induce the vulnerability.
+

N.S.D.: No Significant Deviation.

CMOS and CCD cameras, respectively. As they are not
equipped with an anti-shake module, no significant deviation
was observed during sound and ultrasonic tests. However,
as Tab. X shows, PhyFuzz still successfully identifies the
electromagnetic vulnerabilities in 1200TVL.

TABLE X: Details fuzzing result of Camera Sensors under the
electromagnetic test

Sensor Vulnerability Signal Charateristic
Freq. (MHz) Amp.∗ (gain)

IMX219 N.S.D.+ – –

1200TVL E.C.+A.S. 1452-1600, 1700, 2800,... 0.8
E.C. 1058, 1224 1

∗
Amplitude indicates the lowest amplitude to induce the vulnerability.

+
N.S.D.: No Significant Deviation.

Due to the limited amplitude of our electromagnetic trans-
mitter, the deviations in camera output are only discernible
at the feature level. To better illustrate the effects of the
attack at the pixel level, we employ a 20 W amplifier to
enhance the electromagnetic interference. The image results
are presented in Fig. 7 in Appendix B, revealing two notable
phenomena. First, the image output of the 1200TVL gets
bright (overexposed) under several frequencies of EM signals,
which we assume is due to sensor saturation. Second, we also
observe that several black-and-white strips appear in the image
under some frequency points.

We further conducted a complementary case study on mi-
crophone interference. Due to space constraints, this part of
the analysis will be detailed in Appendix C.

VI. RELATED WORK

Hardware and CPS Fuzzing. The exponential growth of
critical infrastructure and IoT deployments has driven the ex-
tension of software fuzzing to hardware and CPS, as illustrated
in Table I. DeFUZZ adapts conventional fuzzing algorithms to
sensor firmware [21]. Trippel et al. demonstrate a hardware
fuzzing pipeline by converting RTL hardware designs into
equivalent software models [26]. PGfuzz [23] constructs a
policy-guided fuzzing framework for RV systems, uncovering
156 unknown bugs in multiple autopilot frameworks. CPS-
Fuzz [27] deploys fuzzing over a real-world water treatment
system and discovers 15 potential unsafe system states. Yang et
al. develop a sensor-input fuzzer to expose spoofing attacks on
RV systems [25]. While these approaches advanced the field,
they primarily focus on the non-physical layers of devices or
systems, including the firmware [21], hardware designs [26],
and control algorithms of CPS [23], [25], [27].

Black-Box Fuzzing. Tab. XI demonstrates that existing
black-box fuzzing algorithms primarily follow two paradigms.
The input analysis paradigm, which is particularly effective
for applications with strict grammar and semantics, such as
JavaScript engines, utilizes structured input models for test
case generation. Montage [18] designs a language model-

13

TABLE XI: The strategy of existing blackbox fuzzing algo-
rithm

Method Target
Application Para. Strategy

Favocado [29] JavaScript Engine I. Dependency Analysis
Codealchemist [30] JavaScript Engine I. Code Chunk Assembly

Montage [18] JavaScript Engine I. Language Model
Joeri et al. [31] Protocol O. State Machine
zhang et al. [23] CPS O. Maximize Deviation
DriveFuzz [24] ADS O. Minimize Quality

Schiller et al. [33] Drone Firmware O. Split Error Commands
DifFuzz [42] Program Side-channel O. Differential Analysis

I.: Input Analysis. O.: Ouput Analysis.

guided fuzzer to uncover vulnerabilities in the JavaScript
engine. Favocado [29] generates test cases based on a rule
set of grammar and semantic information. CodeAlchemist [30]
produces effective test cases with code fragment assembly. The
alternative output analysis paradigm analyzes output informa-
tion to guide fuzzing. Protocol fuzzing work infers a state ma-
chine for the TLS protocol or web applications [31], [32] based
on the system output. Practical CPS or RV fuzzing frameworks
adopt the drone’s crash signal [33] or the deviation [23], [27]
as a feedback mechanism. Despite their success in respective
domains, these approaches either exhibit narrow applicability
or rely on oversimplified feedback mechanisms. For sensor
vulnerability detection, such approaches prove inadequate due
to the diversity of the transduction attack.

VII. LIMITATION AND FUTURE WORK

In this paper, we propose PhyFuzz to automatically iden-
tify vulnerabilities on diverse sensors. We improved several
fuzzing techniques and developed an approach compatible
with different types of sensors and signal modalities. However,
certain types of sensors and signal modalities are still not cov-
ered by PhyFuzz. For example, active sensors are excluded
since their main vulnerability is the lack of echo authenti-
cation [46], [47], which can be easily detected by replaying
the active signal. Nonetheless, our fuzzing framework could
apply to active sensors like LiDAR in detecting other com-
mon vulnerabilities, such as EM coupling. Additionally, our
prototype is not compatible with large-scale integrated sensor
systems [40], [48]. Their large size makes them susceptible
to transduction attacks from specific directions. A practical
solution is to test their individual submodules.

Regarding the signal modalities, we adopt acoustic, laser,
and electromagnetic signals as attack signals in our evalu-
ations. However, other modalities, such as voltage [15] and
magnetic [49], [50], can also induce transduction attacks. As
the first work on physical signal fuzzing, this paper focused on
proposing a scalable framework and validating its effectiveness
with the most common signal modalities in prior studies. We
believe extension to other modalities is viable and would be
a promising future direction.

VIII. CONCLUSION

In this paper, we present PhyFuzz, a novel physical
fuzzing framework for automatically uncovering sensor vul-

nerabilities in an expert-knowledge-independent manner. Our
approach bridges the gap between traditional software fuzzing
and transduction attacks, providing a practical tool for sensor
developers and users to identify potential risks. PhyFuzz
addresses key challenges in the physical domain—such as the
large input space and the black-box nature of sensors—through
a signal construction set and a feature discretization algorithm.
To validate the efficiency of PhyFuzz, we implemented our
approach by building an integrated toolkit in the physical
scenario. Extensive experiments are conducted with 13 sensors
across 9 types, revealing 46 vulnerabilities. All discovered
vulnerabilities were responsibly disclosed to the respective
manufacturers. The complete results and PhyFuzz source
code will be released to support future research.

ACKNOWLEDGEMENT

We sincerely appreciate our anonymous reviewers and
shepherd for their valuable comments and suggestions. This
work was supported by China NSFC Grant 62201503 and
62222114.

REFERENCES

[1] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
The next computing revolution,” in Proceedings of Design Automation
Conference, 2010, pp. 731–736.

[2] C. Yan, H. Shin, C. Bolton, W. Xu, Y. Kim, and K. Fu, “Sok: A mini-
malist approach to formalizing analog sensor security,” in Proceedings
of 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020,
pp. 233–248.

[3] D. Davidson, H. Wu, R. Jellinek, T. Ristenpart, and V. Singh, “Control-
ling uavs with sensor input spoofing attacks,” in Proceedings of the 10th
USENIX Conference on Offensive Technologies, ser. WOOT’16. USA:
USENIX Association, 2016, p. 221–231.

[4] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
“Rocking drones with intentional sound noise on gyroscopic sensors,”
in Proceedings of 24th USENIX security symposium (USENIX Security
15), 2015, pp. 881–896.

[5] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut: Waging
doubt on the integrity of mems accelerometers with acoustic injection
attacks,” in Proceedings of 2017 IEEE European symposium on security
and privacy (EuroS&P). IEEE, 2017, pp. 3–18.

[6] X. Ji, Y. Cheng, Y. Zhang, K. Wang, C. Yan, W. Xu, and K. Fu,
“Poltergeist: Acoustic adversarial machine learning against cameras and
computer vision,” in Proceedings of 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 2021, pp. 160–175.

[7] H. Kim, R. Bandyopadhyay, M. O. Ozmen, Z. B. Celik, A. Bianchi,
Y. Kim, and D. Xu, “A systematic study of physical sensor attack
hardness,” in Proceedings of 2024 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, 2024, pp. 143–143.

[8] D. Hage, “The trillion sensor economy is coming,” https://rfidgs.com/
the-trillion-sensor-economy-is-coming/, 2021.

[9] T. Sugawara, B. Cyr, S. Rampazzi, D. Genkin, and K. Fu, “Light
commands: Laser-based audio injection attacks on voice-controllable
systems,” in 29th USENIX Security Symposium (USENIX Security 20),
2020, pp. 2631–2648.

[10] D. F. Kune, J. Backes, S. S. Clark, D. Kramer, M. Reynolds, K. Fu,
Y. Kim, and W. Xu, “Ghost talk: Mitigating emi signal injection attacks
against analog sensors,” in Proceedings of 2013 IEEE Symposium on
Security and Privacy. IEEE, 2013, pp. 145–159.

[11] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, “Dolphinattack:
Inaudible voice commands,” in Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, 2017, pp. 103–
117.

[12] X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, “Fuzzing: a survey for
roadmap,” ACM Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–36,
2022.

14

[13] J. Fraden and J. King, Handbook of modern sensors: physics, designs,
and applications. Springer, 2004, vol. 3.

[14] “Ieee standard for sensor performance parameter definitions,” IEEE Std
2700-2017 (Revision of IEEE Std 2700-2014), pp. 1–64, 2018.

[15] K. Wang, S. Xiao, X. Ji, C. Yan, C. Li, and W. Xu, “Volttack: Control
iot devices by manipulating power supply voltage,” in Proceedings of
2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023, pp.
1771–1788.

[16] K. Dewey, J. Roesch, and B. Hardekopf, “Language fuzzing using
constraint logic programming,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ser. ASE
’14. New York, NY, USA: Association for Computing Machinery,
2014, p. 725–730. [Online]. Available: https://doi.org/10.1145/2642937.
2642963

[17] K. Dewey, J. Roesch, and B. Hardekopf, “Fuzzing the rust typechecker
using clp (t),” in Proceedings of 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2015, pp. 482–
493.

[18] S. Lee, H. Han, S. K. Cha, and S. Son, “Montage: A neural network
language model-guided javascript engine fuzzer,” in Proceedings of 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 2613–
2630.

[19] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 2329–2344.
[Online]. Available: https://doi.org/10.1145/3133956.3134020

[20] M. Zalewski, “Afl (american fuzzy lop),” https://github.com/google/AFL,
2021.

[21] X. Zhu, S. Liu, and A. Jolfaei, “A fuzzing method for security testing
of sensors,” IEEE Sensors Journal, 2023.

[22] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, “RVFuzzer: Finding input validation bugs in
robotic vehicles through Control-Guided testing,” in Proceedings of 28th
USENIX Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, Aug. 2019, pp. 425–442. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/kim

[23] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu, “Pgfuzz:
Policy-guided fuzzing for robotic vehicles.” in Proceedings of NDSS,
2021.

[24] S. Kim, M. Liu, J. J. Rhee, Y. Jeon, Y. Kwon, and C. H. Kim, “Drivefuzz:
Discovering autonomous driving bugs through driving quality-guided
fuzzing,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 1753–1767.
[Online]. Available: https://doi.org/10.1145/3548606.3560558

[25] K. Yang, S. Mohan, Y. Kwon, H. Lee, and C. H. Kim, “Poster:
Automated discovery of sensor spoofing attacks on robotic vehicles,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 3503–3505.

[26] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo, and
M. Hicks, “Fuzzing hardware like software,” in Proceedings of 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 3237–
3254.

[27] F. Zhang, Q. Wu, B. Xuan, Y. Chen, W. Lin, C. M. Poskitt, J. Sun, and
B. Chen, “Constructing cyber-physical system testing suites using active
sensor fuzzing,” IEEE Transactions on Software Engineering, 2023.

[28] “Gazobe,” https://gazebosim.org/, 2020.
[29] S. T. Dinh, H. Cho, K. Martin, A. Oest, K. Zeng, A. Kapravelos, G.-

J. Ahn, T. Bao, R. Wang, A. Doupé et al., “Favocado: Fuzzing the
binding code of javascript engines using semantically correct test cases.”
in Proceedings of NDSS, 2021.

[30] H. Han, D. Oh, and S. K. Cha, “Codealchemist: Semantics-aware code
generation to find vulnerabilities in javascript engines.” in Proceedings
of NDSS, 2019.

[31] J. De Ruiter and E. Poll, “Protocol state fuzzing of tls implementations,”
in Proceedings of 24th USENIX Security Symposium (USENIX Security
15), 2015, pp. 193–206.

[32] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of
the state: A State-Aware Black-Box web vulnerability scanner,”
in Proceedings of 21st USENIX Security Symposium (USENIX
Security 12). Bellevue, WA: USENIX Association, Aug. 2012,
pp. 523–538. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/doupe

[33] N. Schiller, M. Chlosta, M. Schloegel, N. Bars, T. Eisenhofer,
T. Scharnowski, F. Domke, L. Schönherr, and T. Holz, “Drone security
and the mysterious case of dji’s droneid,” in Proceedings of 30th Annual
Network and Distributed System Security Symposium, NDSS 2023, San
Diego, California, USA, February 27 - March 3, 2023. The Internet
Society, 2023. [Online]. Available: https://www.ndss-symposium.org/
ndss-paper/drone-security-and-the-mysterious-case-of-djis-droneid/

[34] N. Roy, H. Hassanieh, and R. Roy Choudhury, “Backdoor: Making
microphones hear inaudible sounds,” in Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services,
2017, pp. 2–14.

[35] B. Cyr, T. Sugawara, and K. Fu, “Why lasers inject perceived sound into
mems microphones: Indications and contraindications of photoacoustic
and photoelectric effects,” in Proceedings of 2021 IEEE Sensors. IEEE,
2021, pp. 1–4.

[36] K. Wang, R. Mitev, C. Yan, X. Ji, A.-R. Sadeghi, and W. Xu, “Analyzing
and defending ghosttouch attack against capacitive touchscreens,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–16, 2024.

[37] S. Köhler, R. Baker, and I. Martinovic, “Signal injection attacks against
ccd image sensors,” in Proceedings of the 2022 ACM on Asia Conference
on Computer and Communications Security, 2022, pp. 294–308.

[38] D. Su, S. Xie, A. Chen, X. Shang, K. Zhu, and H. Xu, “Basic
emission waveform theory: A novel interpretation and source identifi-
cation method for electromagnetic emission of complex systems,” IEEE
Transactions on Electromagnetic Compatibility, vol. 60, no. 5, pp. 1330–
1339, 2018.

[39] A. Novak and P. Honzı́k, “Measurement of nonlinear distortion of mems
microphones,” Applied Acoustics, vol. 175, p. 107802, 2021.

[40] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and dazzle: Adversarial
optical channel exploits against lidars for automotive applications,”
in Proceedings of Cryptographic Hardware and Embedded Systems
– CHES 2017, W. Fischer and N. Homma, Eds. Cham: Springer
International Publishing, 2017, pp. 445–467.

[41] Z. Zheng, X. Li, C. Yan, X. Ji, and W. Xu, “The silent manipulator:
A practical and inaudible backdoor attack against speech recognition
systems,” in Proceedings of the 31st ACM International Conference
on Multimedia, ser. MM ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 7849–7858. [Online]. Available:
https://doi.org/10.1145/3581783.3613843

[42] S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “Diffuzz: differential
fuzzing for side-channel analysis,” in Proceedings of 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE,
2019, pp. 176–187.

[43] X. Zhu and M. Böhme, “Regression greybox fuzzing,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 2169–2182. [Online]. Available:
https://doi.org/10.1145/3460120.3484596

[44] A. Pahl, K.-U. Rathjen, and S. Dickmann, “Intended electromagnetic
interference with motion detectors,” in Proceedings of 2021 IEEE
International Joint EMC/SI/PI and EMC Europe Symposium, 2021, pp.
324–328.

[45] S. Köhler, R. Baker, and I. Martinovic, “Signal injection attacks against
ccd image sensors,” in Proceedings of the 2022 ACM on Asia Conference
on Computer and Communications Security, ser. ASIA CCS ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
294–308. [Online]. Available: https://doi.org/10.1145/3488932.3497771

[46] W. Xu, C. Yan, W. Jia, X. Ji, and J. Liu, “Analyzing and enhancing the
security of ultrasonic sensors for autonomous vehicles,” IEEE Internet
of Things Journal, vol. 5, no. 6, pp. 5015–5029, 2018.

[47] C. Yan, W. Xu, and J. Liu, “Can you trust autonomous vehicles:
Contactless attacks against sensors of self-driving vehicle,” Def Con,
vol. 24, no. 8, p. 109, 2016.

[48] Z. Jin, X. Ji, Y. Cheng, B. Yang, C. Yan, and W. Xu, “Pla-lidar:
Physical laser attacks against lidar-based 3d object detection in
autonomous vehicle,” in 2023 IEEE Symposium on Security and
Privacy (SP). Los Alamitos, CA, USA: Proceedings of IEEE
Computer Society, may 2023, pp. 1822–1839. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179458

[49] D. Dai, Z. An, and L. Yang, “Inducing wireless chargers to voice out for
inaudible command attacks,” in Proceedings of 2023 IEEE Symposium
on Security and Privacy (SP). IEEE, 2023, pp. 1789–1806.

[50] A. Barua and M. A. Al Faruque, “Hall spoofing: A non-invasive dos

15

Fig. 7: The image output of 1200TVL under electromagnetic tests. (a): original image; (b): interfered image with black and
white strips; (c): interfered image with overexpose. (d)(e)(f): the corresponding grayscale images.

0.0 0.8 1.6 2.4 3.2 4.0
Time(s)

102.8
103.0
103.2
103.4
103.6
103.8
104.0
104.2
104.4

Pr
es

su
re

(k
Pa

) Benign
Laser Attack

(a) BMP180 ☼

0.0 0.1 0.2 0.3 0.4 0.5
Time(s)

1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

A
m

pl
it

ud
e

Benign
Laser Attack

(b) SPH0645 ☼

0 2 4 6 8 10
Time(s)

20

30

40

50

60

70

G
re

en
 C

ha
nn

el
 R

ea
di

ng Benign
EM Attack

(c) TCS34725 Û

0 4 8 12 16 20
Time(s)

64.0

64.5

65.0

65.5

66.0

66.5

67.0

H
um

id
it

y(
%

)

Benign
EM Attack

(d) SHT30 Û

Fig. 8: Laser and electromagnetic vulnerability validation.

attack on grid-tied solar inverter,” in Proceedings of 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 1273–1290.

[51] S. Koffas, J. Xu, M. Conti, and S. Picek, “Can you hear it? backdoor
attacks via ultrasonic triggers,” in Proceedings of the 2022 ACM
Workshop on Wireless Security and Machine Learning, ser. WiseML ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
57–62. [Online]. Available: https://doi.org/10.1145/3522783.3529523

APPENDIX A
DISCLOSURE TO MANUFACTURERS

All six newly discovered vulnerabilities were reported to
their respective manufacturers. We initially contacted the sen-
sor vendors (all authorized distributors) via email, providing
the affected sensor model information and a brief description
of the vulnerability types. Most vendors acknowledged receipt
of our reports and confirmed that they will notify the manufac-
turers, while two vendors recommended that we contact the
upstream manufacturers directly. We subsequently contacted
these two manufacturers to disclose the vulnerabilities (involv-

ing three vulnerabilities). They requested detailed information
on the sensor’s physical vulnerability report. Upon receiving
our comprehensive vulnerability reports, the manufacturers
confirmed that the information had been forwarded to their
specialized security teams for evaluation.

APPENDIX B
VULNERABILITY VALIDATION

Here, we provide some of the vulnerabilities explored by
PhyFuzz in our evaluation. Specifically, we focus on sensor
types that have received little attention in previous work,
especially under laser and electromagnetic signals.

A. Laser Vulnerability Validation

Laser attack can be easily reproduced because it’s not sensi-
tive to a specific frequency range. Here, we present two cases
of a pressure sensor, BMP180, and a microphone, SPH0645,
in Fig. 8 (a-b), which demonstrate both photoacoustic and

16

photoelectric effects, respectively. The attack signal is a sine
wave (amplitude varies sinusoidally). We can find that the
outputs of both sensors fluctuate synchronously with the attack
signal.

B. Electromagnetic Vulnerability Validation with Amplifier

In our evaluation, we don’t equip an amplifier in the
implementation of PhyFuzz. However, the malfunction of
sensor measurements is sometimes discernible at the feature-
level, but difficult to detect with the naked eye, especially
in the electromagnetic tests. To better show the attack perfor-
mance, we reproduce the EM attack on ADXL345, TCS34725,
SHT30, BH1750, and 1200TVL with a 20 W power amplifier.

The attack signal is still a sine electromagnetic signal. From
the results in Fig. 8 (c-d), we can find that the measurements
of the color sensor TCS34725 (Green light output) and the
H&T sensor SHT30 (humidity output) are affected under the
electromagnetic attack. The sine EM wave can offset the
readings of the TCS34725 by a fixed value immediately and
gradually decrease those of the SHT30, suggesting a differ-
ent vulnerability principle. The results of the ADXL345 are
presented in the previous Case Study. Regarding the BH1750,
we find that a high-power electromagnetic attack can directly
induce an I/O error, disabling its operation.

In addition, Fig. 7 shows the image output of 1200TVL, a
CCD camera, under the electromagnetic tests. In particular, as
shown in Fig. 7 (b), we observe that several black and white
strips appear in the darker areas of the image under some
frequency points. Besides, we find the image output of the
1200TVL gets bright (overexposed) under several frequencies
of EM signals, as illustrated in Fig. 7 (c), which we assume
is due to saturation. We also draw the gray scale images of
these pictures in Fig. 7 (d)-(f) to demonstrate their difference.

APPENDIX C
CASE STUDY FOR MICROPHONE

Microphone sensors can convert an acoustic signal into an
electrical signal, widely used in various intelligent applications
such as telecommunication and audio recognition systems.
In our evaluation, we chose two MEMS microphone sensor
prototypes: SPH0645 and INMP441. Despite the fact that cur-
rent microphones can achieve sample rates exceeding 96 kHz,
many still come equipped with a band-pass filter to eliminate
high-frequency components. This is necessary because these
components may lead to intermodulation distortion or intro-
duce inaudible backdoor triggers [51]. Therefore, ultrasonic
signals should not fall within the expected response range of
the microphones.

Ultrasonic. The ultrasonic signal is proven to be a severe
threat to microphone sensors, as it could cause the vibration of
the microphone diaphragm and generate an electrical signal.
While a low-pass filter can mitigate the interference of ultra-
sonic, previous research has reported several vulnerabilities
induced by malicious ultrasonic signals [11], [34]. In our
evaluation, PhyFuzz also finds such vulnerabilities under
ultrasonic testing, as shown in Tab. XII.

TABLE XII: Details fuzzing result of Microphone Sensors
under the ultrasonic test

Sensor Vulnerability Signal Charateristic
Freq. (kHz) Amp.∗ (gain) Signal Type

SPH0645
F. L. 20-22 0.3 –

F.L. + A. 23-25 0.5 –
N.E. 20-26 0.5 Modulated

INMP441
F. L. 20-22 0.3 –

F.L. + A. 23-25 0.4 –
N.E. 20-45 0.7 Modulated

∗: Amplitude indicates the lowest amplitude to induce the vulnerability.

TABLE XIII: Details fuzzing result of Microphone Sensors
under the electromagnetic test

Sensor Vulnerability Signal Charateristic
Freq. (MHz) Amp.∗ (gain) Signal Type

SPH0645 N.S.D. – – –

INMP441 E.C.+N.E. 1570-1780 0.6 Modulated
E.C..+N.E. 3000-3005 0.5 FM

∗: Amplitude indicates the lowest amplitude to induce the vulnerability.
N.S.D.: No Significant Deviation.

From the result, it can be found that both SPH0645 and
INMP441 exhibit similar vulnerabilities, as previously doc-
umented in various studies. The occurrence of frequency
leakage suggests that their filters are incapable of screening
out unexpected ultrasonic frequencies, thereby enabling the
injection of ultrasonic signals. It is worth noting that both
microphones employ digital filtering after the AD converter.
According to the Nyquist-Shannon sampling theorem, the
leaked ultrasonic signal could lead to acoustic aliasing, a
conclusion supported by our evaluation.

In addition, when the test case involves a modulated signal,
particularly the amplitude-modulated signal, multiple high-
frequency components will produce unexpected low-frequency
components due to the nonlinear effects of the electronic
components in the microphone, such as the amplifier. The
result also indicates that SPH0645 and INMP441 can not avoid
this vulnerability.

Electromagnetic. Previous research has revealed that con-
sumer electronic devices containing microphones are vulnera-
ble to the injection of false audio signals [10]. Tab. XIII shows
the result of SPH0645 and INMP441 under the electromag-
netic test.

From the result, it can be inferred that SPH0645 exhibits
better resilience against electromagnetic interference than
INMP441. It’s vital to note that the strength of the attack
signals directly influences the success of the electromagnetic
attack, and our evaluation still follows the implementations
in Sec. V-A. Conversely, PhyFuzz finds two vulnerable
frequency ranges of INMP441, indicating two potential entry
points for the electromagnetic signals. Moreover, the result
also demonstrates that normal sine electromagnetic signals can
not effectively inject malicious signals into the microphone
sensors. Even with a vulnerable frequency, modulated signals
can deviate from the measurement of the microphone sensor.

17

